
Reinforcement Learning based Sequential and Robust Bayesian Optimal Experimental
Design

by

Wanggang Shen

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in the University of Michigan
2023

Doctoral Committee:

Assistant Professor Xun Huan, Chair
Assistant Professor Nikola Banovic
Professor Krishna Garikipati
Professor Youssef Marzouk, MIT

Wanggang Shen
wgshen@umich.edu

ORCID iD: 0000-0002-6824-9393

© Wanggang Shen 2023

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my advisor, Prof. Xun Huan, for
his unwavering and continuous support and encouragement throughout my doctoral journey. His
expertise and invaluable insights have been crucial in shaping the direction of my research, and
his constructive feedback has been essential in refining my research work. Engaging in my PhD
study under the mentorship of Xun has been an incredibly enjoyable experience. It is a tremendous
honor for me to have commenced my doctoral journey at the same time he joined the faculty of
the University of Michigan. I am also immensely grateful to the members of my thesis committee,
Prof. Marzouk, Prof. Garikipati, and Prof. Banovic. Their support has significantly enriched the
quality of this thesis.

I shall extend my sincere appreciation to all my labmates in the UQ-SciML group, colleagues,
and friends for creating an excellent research and living environment. Special thanks to Jiayuan
Dong for his contributions to this thesis, and to Chengyang Huang for helping to organize my
dissertation defense.

I would like to acknowledge the financial support provided by the Defense Advanced Re-
search Projects Agency (DARPA), the National Science Foundation (NSF), the U.S. Department
of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR), and
the Michigan Institute for Computational Discovery and Engineering (MICDE), which made this
research possible.

Lastly, I am thankful to my family for their constant support, and all the collaborators I have had
the opportunity to work with during my projects.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF FIGURES . vi

LIST OF TABLES . xi

LIST OF APPENDICES . xiii

ABSTRACT . xiv

CHAPTER

1 Introduction . 1
1.1 Background and motivation . 1

1.1.1 Optimal experimental design . 1
1.1.2 Sequential optimal experimental design 3
1.1.3 Robust optimal experimental design . 5
1.1.4 Robust sequential optimal experimental design 6

1.2 Objectives and outline . 7
2 Sequential Optimal Experimental Design . 9

2.1 Problem formulation . 10
2.1.1 Background . 10
2.1.2 Sequential optimal experimental design formulation 11
2.1.3 Generalization of suboptimal experimental design strategies 13
2.1.4 Information measures as experimental design rewards 14

2.2 Numerical methods for sOED . 15
2.2.1 Derivation of the policy gradient . 15
2.2.2 Numerical estimation of the policy gradient 16
2.2.3 Pseudocode for the overall algorithm 20

2.3 Numerical results and discussions . 21
2.3.1 Linear-Gaussian benchmark . 21
2.3.2 Contaminant source inversion in a convection-diffusion field 24

2.4 Summary . 37
3 Variational Sequential Optimal Experimental Design 41

3.1 Problem formulation . 42

iii

3.1.1 Background . 42
3.1.2 Sequential optimal experimental design formulation 43
3.1.3 Experimental design utilities . 44
3.1.4 One-point estimate for rewards . 45

3.2 Numerical Methods for vsOED . 47
3.2.1 Policy gradient and variational gradient 47
3.2.2 Neural network architecture of model posterior predictor 49
3.2.3 Neural network architectures of parameter and predictive quantity poste-

rior predictors . 49
3.2.4 Neural network architecture of actor and critic 52
3.2.5 Training details of the policy gradient based vsOED 55

3.3 Numerical results and discussions . 61
3.3.1 Assessment setup . 61
3.3.2 Source location finding . 64
3.3.3 Constant elasticity of substitution (CES) 76
3.3.4 SIR model for disease spread . 79
3.3.5 Convection-diffusion . 84

3.4 Summary . 89
4 Robust Optimal Experimental Design . 94

4.1 Problem formulation . 94
4.1.1 Background . 94
4.1.2 Utility variance . 96
4.1.3 Variance-penalized robust design criterion 97

4.2 Numerical methods for rOED . 98
4.2.1 Monte Carlo estimator . 98
4.2.2 Bayesian optimization . 103
4.2.3 Common random samples . 106

4.3 Numerical results and discussions . 106
4.3.1 Linear-Gaussian benchmark . 107
4.3.2 Nonlinear model . 109
4.3.3 Contaminant source inversion in a diffusion field 116
4.3.4 Contaminant source inversion with building obstacles 124

4.4 Summary . 129
5 Robust Sequential Optimal Experimental Design . 130

5.1 Problem formulation . 130
5.2 Numerical methods for rsOED . 131

5.2.1 Derivation of the policy gradient . 131
5.2.2 Numerical estimation of the policy gradient 134
5.2.3 Evaluation of Kullback-Leibler rewards 135
5.2.4 Algorithms of rsOED . 136

5.3 Numerical results . 137
5.3.1 Source location finding with stochastic rewards 137

5.4 Summary . 138

iv

6 Conclusions and future work . 141
6.1 Conclusions . 141
6.2 Limitations and future work . 143

APPENDICES . 145

BIBLIOGRAPHY . 181

v

LIST OF FIGURES

FIGURE

1.1 Utility histograms of two example designs. 5

2.1 Flowchart of the process involved in a 𝑁-experiment sOED. 11
2.2 Convergence history of PG-sOED. 23
2.3 The difference of expected utilities using the TIG formulation and the IIG formulation. 24
2.4 Sample numerical solution of the concentration field 𝐺 at different time snapshots.

The solution is solved in a wider computational domain [−1, 2]2 but displayed here
in [0, 1]2. In this case, \ = [0.210, 0.203, 0.05, 2] and the convection grows over
time with 𝑢𝑥 = 𝑢𝑦 = 10𝑡/0.2. Isotropic diffusion dominates early on and the plume
stretches towards the convective direction over time. 25

2.5 Comparison of the concentration field 𝐺 at 𝑡 = 0.05 and 𝑡 = 0.2 for Case 2 using
the DNN surrogate (left column) and finite volume (right column). The surrogate
solutions appear very accurate. 28

2.6 Case 1. Expected utility for one-experiment design at 𝑡 = 0.32. The best design
locations are at the corners. 28

2.7 Case 1. Posterior PDF contours for the one-experiment design under different design
locations (red dot) and a sample source location (purple star). The posteriors exhibit
shapes resemble an arc of a circle, due to the isotropic nature of diffusion and the
domain geometry. 29

2.8 Case 1. An episode instance obtained by PG-sOED and greedy design. The purple
star represents the true \, red dot represents the physical state (vehicle location), red
line segment tracks the vehicle displacement (design) from the preceding location, and
contours plot the posterior PDF. 30

2.9 Case 1. Histograms of total rewards from 104 test episodes from PG-sOED and greedy
design. The mean total reward for PG-sOED is 0.615 ± 0.007, higher than greedy
design’s 0.552 ± 0.005. 30

2.10 Case 2. Vehicle locations of episodes obtained from PG-sOED, greedy, and batch
designs. 32

2.11 Case 2. Expected utility versus sensor location if conducting a single-experiment
design at 𝑡 = 0.05 and 𝑡 = 0.2. 33

2.12 Case 2. Histograms of total rewards from 104 test episodes generated using PG-sOED,
greedy, and batch designs. The mean total reward for PG-sOED is 1.344 ± 0.008,
higher than greedy design’s 1.178 ± 0.010 and batch design’s 1.264 ± 0.007. 33

vi

2.13 Case 2. Examples of episode instances where PG-sOED outperforms greedy and batch
designs. The purple star represents the true \, red dot represents the physical state
(vehicle location), red line segment tracks the vehicle displacement (design) from the
preceding location, and contours plot the posterior PDF. 34

2.14 Case 2. Examples of episode instances where greedy design outperforms PG-sOED.
The purple star represents the true \, red dot represents the physical state (vehicle
location), red line segment tracks the vehicle displacement (design) from the preceding
location, and contours plot the posterior PDF. 34

2.15 Case 3. Histograms of total rewards from 104 test episodes generated using PG-sOED,
greedy, and batch designs. The mean total reward for PG-sOED is 3.435 ± 0.016,
higher than greedy design’s 3.057 ± 0.015 and batch design’s 2.856 ± 0.012. 35

2.16 Case 3. Vehicle locations from 104 test episodes generated using PG-sOED, greedy,
and batch designs (rows) for experiments 1–4 (columns). 36

2.17 Case 3. Example episode instances using PG-sOED, greedy and batch designs. 38
2.18 Case 3. Expected utility for one-experiment design at 𝑡1 = 0.05. The best design

location is the domain center. 39
2.19 Case 4. Histograms of total rewards from 104 test episodes generated using PG-sOED

and batch designs. The mean total reward for PG-sOED is 4.853 ± 0.018, higher than
batch design’s 3.581 ± 0.016. 39

3.1 Expected utilities of various OED methods, all estimated using PCE with 𝐿 = 106.
(a) Mean and standard error (shaded) from 2000 evaluation episodes. (b) Mean and
standard error (shaded) of 4 replicates with different random seeds, each replicate
evaluated with 2000 episodes. 67

3.2 GMM posterior of PoIs versus their true posterior. Red stars are the true source locations. 67
3.3 Policies for 𝑁 = 15. The contour background illustrates the signal strength. 68
3.4 QoI posterior predictive comparisons for the goal-oriented OED. 68
3.5 Training histories of PoI inference OED and QoI goal-oriented OED for the uni-model

source location finding problem, optimized for horizon 𝑁 = 30. The solid line and the
shaded region are the mean and standard error of 4 replicates with different random
seeds. 69

3.6 Examples of GMM posterior, NF posterior, and true posterior at horizon 𝑁 = 3. Red
stars are the true source locations. 70

3.7 Variational expected utility lower bounds of goal-oriented OED for the uni-model
source location finding problem. The solid line and the shaded region are the mean
and standard error of 4 replicates with different random seeds. 70

3.8 Training histories of PoI inference OED for the multi-model source location finding
problem, optimized for horizon 𝑁 = 30. The solid line and the shaded region are the
mean and standard error of 4 replicates with different random seeds. 72

3.9 Expected utilities of various OED scenarios for the multi-model source location finding
problem, averaged over 2 replicates. Variational lower bounds with 106 samples are
presented except for inference OED, where PCE with 2000 samples and 𝐿 = 106 is
used for evaluation. 73

3.10 Example designs of various OED scenarios for the multi-model source location finding
problem, optimized for horizon 𝑁 = 30. 75

vii

3.11 Example model posteriors from the model discrimination OED optimized for horizon
𝑁 = 30. 76

3.12 Training histories for the CES problem, optimized for horizon 𝑁 = 10. The solid line
and the shaded region are the mean and standard error of 4 replicates with different
random seeds. 78

3.13 Expected utilities of various OED methods for th CES problem, all estimated using
PCE with 𝐿 = 106. (a) Mean and standard error (shaded) from 2000 evaluation
episodes. (b) Mean and standard error (shaded) of 4 replicates with different random
seeds, each replicate evaluated with 2000 episodes. 80

3.14 Examples of GMM posterior and true posterior for the CES problem at horizon 𝑁 = 10.
Red stars are the parameter values. 80

3.15 Training histories for the SIR problem, optimized for horizon 𝑁 = 10. The solid line
and the shaded region are the mean and standard error of 4 replicates with different
random seeds. 83

3.16 (a) SIR trajectories for 3 realizations of (𝛽, 𝜌) with different ratios 𝑅 = 𝛽/𝜌. (b)
Corresponding designs. 83

3.17 (a) vsOED plot is the mean and standard error (shaded) from 4 replicates with different
random seeds, each replicate evaluated with 3 × 105 episodes. Shaded regions are
practically invisible, suggesting robustness. (b) An example posterior generated from
the GMM. 84

3.18 Example comparisons between true and surrogate model predicted concentration fields. 87
3.19 Training histories of inference OED for the convection-diffusion problem, optimized

for horizon 𝑁 = 10. The solid line and the shaded region are the mean and standard
error of 4 replicates with different random seeds. 88

3.20 Expected utilities of various OED scenarios, averaged over 2 replicates. Variational
lower bounds are evaluated using 106 samples. 90

3.21 Example designs of various OED scenarios of the convection-diffusion problem, op-
timized for horizon 𝑁 = 10. 91

3.22 Example model and parameter posteriors from the model discrimination OED and
inference OED for the convection-diffusion problem optimized for horizon 𝑁 = 10. . . 92

4.1 The performance of MC estimator estimating the utility variance �̃� (𝑑 = 3) as the
sample number increases for 1D linear Gaussian case. 107

4.2 The estimated utility variance �̃� (𝑑) when not using common random samples for 1D
linear Gaussian case. 108

4.3 The estimated utility variance �̃� (𝑑) when using common random samples for 1D
linear Gaussian case. 108

4.4 The comparison between the estimated expected utility and the exact expected utility
under different sample sizes for 1D linear Gaussian case. 109

4.5 Estimated expected utility and utility variance for 1D nonlinear case. 110
4.6 𝑈_ (𝑑) versus 𝑑 with _ = 0.2 and _ = 1 for 1D nonlinear case. 110
4.7 Histograms of 𝑢(𝑑, 𝑦) for 𝑑 = 0.2 and 𝑑 = 1 for 1D nonlinear case. 111
4.8 The scatter plots of 𝑢(𝑑, 𝑦) against 𝑦 at 𝑑 = 0.2 and 𝑑 = 1 for 1D nonlinear case. . . . 112
4.9 The posterior 𝑝(\ |𝑦, 𝑑) when 𝑦 = 0.03 and 𝑦 = 1, at 𝑑 = 0.2 and 𝑑 = 1 for 1D

nonlinear case. 112

viii

4.10 𝐺 (\, 𝑑) versus \, at 𝑑 = 0.2 and 𝑑 = 1 for 1D nonlinear case. 112
4.11 Updating history of BO when using common random samples for the 1D nonlinear

case, where dark blue curve is the estimated 𝑈_ (𝑑) (i.e., objective function), grey
triangles are the initial points of BO, orange circle are the search points of BO, and the
red star is the optimal point of BO. 113

4.12 Updating history of BO when not using common random samples for 1D nonlinear
case, where the dark blue curve and blue shaded area are the estimated mean and
standard deviation of 𝑈_ (𝑑) (i.e., objective function), grey triangles are the initial
points of BO, orange circle are the searching points of BO, and the red star is the
optimal point of BO. 114

4.13 Contours of estimated expected utility, utility variance and variance-penalized objec-
tive when using common random samples for 2D nonlinear case. 114

4.14 Contours of estimated expected utility, utility variance and variance-penalized objec-
tive when not using common random samples for 2D nonlinear case. 115

4.15 Updating history of BO when using common random samples for 2D nonlinear case,
where the background is the estimate of𝑈_ (𝑑) (i.e., objective function), grey triangles
are the initial points of BO, orange circles are the searching points of BO, and the red
star is the optimal point of BO. 115

4.16 Updating history of BO when not using common random samples for 2D nonlinear
case, where the background is the estimate of 𝑈_ (𝑑) (i.e., objective function), grey
triangles are the initial points of BO, orange circles are the searching points of BO,
and red star is the optimal point of BO. 116

4.17 Sample comparison of the concentration field 𝐺 using the DNN surrogates (left col-
umn) and finite volume (right column). They appear nearly identical. 118

4.18 Contours of estimated expected utility, utility variance and the scatter plot of utility
variance against expected utility when using common random samples for 2D source
inversion case with 1 sensor. 118

4.19 Contours of estimated variance-penalized objective with different _ values for 2D
source inversion case with 1 sensor. 119

4.20 Histograms of 𝑢(𝑑∗
𝑈
, 𝑦) and 𝑢(𝑑∗

𝑈_
, 𝑦) with different _ values for 2D source inversion

case with 1 sensor, where the value before ± sign is the MC mean (expected utility),
and the value after ± sign is the MC standard deviation (square root of the utility
variance). 119

4.21 Updating history of Bayesian optimization when using common random samples for
2D source inversion case with 1 sensor, where the background is the estimate of𝑈_ (𝑑)
when _ = 0.5 (i.e., objective function), grey triangles are the initial points of BO,
orange circles are the searching points of BO, and the red star is the optimal point of BO.120

4.22 Example posteriors with low KL-divergence for 2D source inversion case with 1 sensor,
where the first row corresponds to 𝑑∗

𝑈
and the second row 𝑑∗

𝑈_
, the red star denotes the

sensor location, and the magenta inverted triangle denotes the true source location. . . 121
4.23 Random combinations of sensor locations and their estimated expected utility, utility

variance, and the scatter plot of utility variance against expected utility when using
common random samples for 2D source inversion case with 2 sensors. 121

4.24 Contours of estimated variance-penalized objective with different _ values for 2D
source inversion case with 2 sensors. 122

ix

4.25 Histograms of 𝑢(𝑑∗
𝑈
, 𝑦) and 𝑢(𝑑∗

𝑈_
, 𝑦) with different _ values for 2D source inversion

case with 2 sensors, where the value before ± sign is the MC mean (expected utility),
and the value after ± sign is the MC standard deviation (square root of the utility
variance). 123

4.26 The updating history of Bayesian optimization when using common random samples
for 2D source inversion case with 2 sensors, where grey triangles are the initial points
of BO, orange circles are the searching points of BO, and the red star is the optimal
point of BO. 123

4.27 Example posteriors with low KL-divergence for 2D source inversion case with 2
sensors, where the first row corresponds to 𝑑∗

𝑈
and the second row 𝑑∗

𝑈_
, the red stars

denote the sensor locations, and the magenta inverted triangle denotes the true source
location. 124

4.28 Contours of estimated expected utility, utility variance and the scatter plot of utility
variance against expected utility with 7 different building obstacles for 2D source
inversion case with 1 sensor, where each column corresponds to the same building. . . 125

4.29 Contours of estimated variance-penalized objective with different _ values for 2D
source inversion case with 1 sensor and building #4. 126

4.30 Histograms of 𝑢(𝑑∗
𝑈
, 𝑦) and 𝑢(𝑑∗

𝑈_
, 𝑦) with different _ values for 2D source inversion

case with 1 sensor and building #4, where the value before ± sign is the MC mean
(expected utility), and the value after ± sign is the MC standard deviation (square root
of the utility variance). 126

4.31 Updating history of BO when using common random samples for 2D source inversion
case with 1 sensor and building #4, where the background is the estimate of 𝑈_ (𝑑)
when _ = 0.5 (i.e., objective function), grey triangles are the initial points of BO,
orange circles are the searching points of BO, and the red star is the optimal point of BO.127

4.32 Example posteriors with low KL-divergence for 2D source inversion case with 1 sensor
and building #4, where the first row corresponds to 𝑑∗

𝑈
and the second row 𝑑∗

𝑈_
, the

red star denotes the sensor location, and the magenta inverted triangle denotes the true
source location. 127

4.33 Histograms of 𝑢(𝑑∗
𝑈
, 𝑦) and 𝑢(𝑑∗

𝑈_
, 𝑦) for 2D source inversion case with 1 sensor and

building #5, where the value before ± sign is the MC mean (expected utility), and the
value after ± sign is the MC standard deviation (square root of the utility variance). . . 128

4.34 Example posteriors with low KL-divergence for 2D source inversion case with 1 sensor
and building #5, where the first row corresponds to 𝑑∗

𝑈
and the second row 𝑑∗

𝑈_
, the

red star denotes the sensor location, and the magenta inverted triangle denotes the true
source location. 128

5.1 Histograms of the total reward of 2000 sampled episodes under various variance
penalty coefficient _s. 138

5.2 Example policies under various variance penalty coefficient _s. Each column corre-
sponds to a specific _ value, while each row corresponds to a true source location. . . 139

x

LIST OF TABLES

TABLE

2.1 Architecture of the actor. 22
2.2 Architecture of the critic. 23
2.3 Comparison of computational costs between ADP-sOED and PG-sOED. 24
2.4 Setup of the four cases for contaminant source inversion in a convection-diffusion field. 26
2.5 Architecture of the surrogate forward model. 27

3.1 Architecture of the NN-based model posterior predictor. 49
3.2 Architecture of the feature net of the GMM net. 50
3.3 Architecture of the weight net of the GMM net. 50
3.4 Architecture of the mean net or standard deviation net of the GMM net. 50
3.5 Architecture of the feature net of the NF net. The first value under Dimension column

is used for the source location problem in 3.3.2 and CES problem in 3.3.3; the second
value is used for the SIR problem in 3.3.4. 52

3.6 Architecture of the 𝑠1 and 𝑡1 nets of the NF net. The first value under Dimension
column is used for the source location problem in 3.3.2 and CES problem in 3.3.3; the
second value is used for the SIR problem in 3.3.4. 52

3.7 Architecture of the 𝑠2 and 𝑡2 nets of the NF net. The first value under Dimension
column is used for the source location problem in 3.3.2 and CES problem in 3.3.3; the
second value is used for the SIR problem in 3.3.4. 53

3.8 Architecture of the actor. 54
3.9 Architecture of the critic. 54
3.10 Properties of different methods. 62
3.11 Hyperparameters of the uni-model source location finding problem. In the table, “lr”

means “learning rate”. 65
3.12 PCE evaluation of optimal policies from 4 replicates of PoI inference OED for the

uni-model source location finding problem, optimized for horizon 𝑁 = 30. 69
3.13 Aggregated PCE evaluation results of optimal policies from 4 replicates of PoI infer-

ence OED for the uni-model source location finding problem, optimized for horizon
𝑁 = 30. 69

3.14 Hyperparameters of the multi-model source location finding problem. 71
3.15 PCE evaluation of optimal policies from 4 replicates of inference OED for the multi-

model source location finding problem, optimized for horizon 𝑁 = 30. 72
3.16 Aggregated PCE evaluation results of optimal policies from 4 replicates of inference

OED for the multi-model source location finding problem, optimized for horizon 𝑁 = 30. 72
3.17 EIG on model probability for various OED scenarios optimized for horizon 𝑁 = 30. . 74

xi

3.18 EIG on the PoI for various OED scenarios optimized for horizon 𝑁 = 30. 74
3.19 Hyperparameters for the CES problem. 77
3.20 PCE evaluation of optimal policies from 4 replicates of PoI inference OED for the

CES problem, optimized for horizon 𝑁 = 10. 77
3.21 Aggregated PCE evaluation of optimal policies from 4 replicates of PoI inference OED

for the CES problem, optimized for horizon 𝑁 = 10. 78
3.22 Hyperparameters for the SIR problem. 82
3.23 Variational expected utility lower bounds of optimal policies from 4 replicates for the

SIR problem, optimized for horizon 𝑁 = 10. 83
3.24 Aggregated variational expected utility lower bounds of optimal policies from 4 repli-

cates for the SIR problem, optimized for horizon 𝑁 = 10. 83
3.25 Architecture of the surrogate forward model. 86
3.26 Architecture of the surrogate prediction model. 86
3.27 Testing MSE of surrogate models. 87
3.28 Hyperparameters for the convection-diffusion problem. 88
3.29 Variational lower bounds evaluated for optimal policies from 4 replicates of inference

OED for the convection-diffusion problem, optimized for horizon 𝑁 = 10. 89
3.30 Aggregated variational lower bounds evaluated for optimal policies from 4 replicates

of inference OED for the convection-diffusion problem, optimized for horizon 𝑁 = 10. 89

5.1 Mean and variance of the total rewards estimated with PCE and variational approxi-
mation under different variance penalty coefficients. 138

xii

LIST OF APPENDICES

Appendix A. Appendix of sequential optimal experimental design (sOED) 145

Appendix B. Appendix of variational sequential optimal experimental design (vsOED) . 154

Appendix C. Appendix of robust optimal experimental design (rOED) 164

Appendix D. Appendix of robust sequential optimal experimental design (rsOED) . . . 173

xiii

ABSTRACT

Optimal experimental design (OED) is a statistical approach aimed at designing experiments in
order to extract maximum information from them. It entails carefully selecting experimental
conditions to effectively achieve specific objectives, such as minimizing the uncertainty associated
with the model parameters. OED is highly valuable in various fields such as engineering, physics,
chemistry, and biology to optimize the performance of a system or to gain a deeper understanding of
a phenomenon. While conventional OED approaches predominantly focus on batch experimental
designs that maximize expected information gain on model parameters, there remain active research
questions that merit further investigation:

• How can we optimally design a sequence of experiments, and fully capture information
offered by earlier experiments to adaptive update the later ones?

• How can we expand the OED objective function to include other design metrics beyond
model parameter inference, such as model discrimination and goal-oriented predictions?

• How can we incorporate robustness into OED?

To address these questions, we first present a mathematical framework and computational
methods to optimally design a finite number of sequential experiments. We formulate this sequential
OED (sOED) problem as a finite-horizon partially observable Markov decision process (POMDP)
in a Bayesian setting and with information-theoretic utilities. sOED then seeks an optimal design
policy that incorporates elements of both feedback and lookahead, generalizing the suboptimal batch
and greedy designs. We solve for the sOED policy numerically via policy gradient (PG) methods
from reinforcement learning, and provide a derivation of the PG expression for sOED. Adopting an
actor-critic approach, we parameterize the policy and value functions using deep neural networks
and improve them using gradient estimates produced from simulated episodes of designs and
observations. The overall PG-sOED method is validated on a linear-Gaussian benchmark, and its
advantages over batch and greedy designs are demonstrated through a contaminant source inversion
problem in a convection-diffusion field. Building upon sOED, we introduce variational sequential
OED (vsOED) to further accelerate the designing process. Specifically, we adopt a lower bound
estimator for the expected utility through variational approximation to the Bayesian posteriors.

xiv

The optimal design policy is solved numerically by simultaneously maximizing the variational
lower bound and performing policy gradient updates. We demonstrate this general methodology
for a range of OED problems targeting parameter inference, model discrimination, and goal-
oriented prediction. These cases encompass explicit and implicit likelihoods, nuisance parameters,
and physics-based partial differential equation models. Our vsOED results indicate substantially
improved sample efficiency and reduced number of forward model simulations compared to previous
sequential design algorithms.

In order to design experiments in a robust manner, we further introduce robust OED (rOED).
We employ the utility variance as a measure of design robustness and introduce a variance-
penalized objective formulation that tradeoff between maximizing expected utility (optimality) and
minimizing utility variance (robustness). To accurately estimate the variance-penalized objective,
we propose a double-nested Monte Carlo estimator, enhanced by efficient sampling techniques
for improved efficiency. The accuracy and convergence of the proposed estimator is validated
on benchmark examples and a sensor placement problem for source inversion in a diffusion field
with building obstacles. Lastly, we formulate robust sequential OED (rsOED) that combines
the principles of sequential design with the variance-penalized robust objective. We provide a
solution algorithm enabled by deriving the policy gradient expressions of rsOED, and validate its
performance on a nonlinear numerical example.

xv

CHAPTER 1

Introduction

1.1 Background and motivation

1.1.1 Optimal experimental design

Experiments are indispensable for scientific research and play a crucial role in advancing knowledge
and developing models. The data collected from experiments can provide valuable information
for refining and validating our models, which is pivotal for understanding the underlying processes
described by these models. However, conducting experiments and gathering data can be expensive
and time-consuming, and not all experiments yield an equal amount of information. Therefore,
carefully designed experiments have the potential to provide substantial resource savings.

Designs based on heuristics are generally not optimal, especially when dealing with high-
dimensional, nonlinear complex systems under uncertain and noisy environments. Leveraging a
model that simulates the experiment process, the research of optimal experimental design (OED)
seeks to systematically quantify and maximize the value of experiments. In order to identify these
high-value experiments, it is important to first specify a criterion that appropriately measures the
value of an experiment. A relevant and suitable criterion choice can vary from problem to problem
depending on the specific goals of the experiments. For example, when the goal is to learn particular
unknown parameters of a model, the criterion may entail the degree of uncertainty reduction on
those parameters; if the goal is to improve the prediction of certain quantities of interest (QoIs)
computed by the model, the criterion may pertain to the reduction of predictive uncertainty of those
QoIs; and if the goal is to select the most plausible model among a set of candidate models, the
criterion may involve metrics for model selection.

Historically, OED with linear models [50, 4, 133] uses criteria based on the information matrix
to maximize the value of experiments. Different operations on this matrix lead to the well-known
alphabetical designs [18]: A-optimality minimizes the trace of the inverse of the information matrix,
D-optimality maximizes the determinant of the information matrix, and E-optimality maximizes
the minimum eigenvalue of the information matrix, etc. Bayesian OED further incorporates prior

1

and posterior distributions that reflect the uncertainty reduction from the experiment [34, 13, 33].
In particular, Bayesian 𝐷-optimal design generalizes to the nonlinear setting under an information-
theoretic perspective [92] by capturing the expected Kullback–Leibler (KL) divergence from the
prior to the posterior (equivalently, the expected information gain (EIG) on the model parameters).

Although Bayesian OED criteria can be evaluated analytically for the linear case, they are
intractable for nonlinear models and must require numerical approximations [21, 53, 33, 108, 123].
Common approximation techniques include linearization on nonlinear models [21, 53] and Laplace
approximation on the posterior distributions [97]. With advances in computing power and a need to
tackle problems with greater size and complexity, strategy has shifted towards enhancing Bayesian
OED capabilities to handle increasingly complex models without compromising on their nonlinear,
non-Gaussian nature [110, 108]. For example, a double-nested Monte Carlo (MC) sampling
technique has been proposed to estimate the EIG [124], and combined with sample reuse, surrogate
modeling, and stochastic optimization method to create a computationally feasible framework for
Bayesian OED with complex nonlinear systems [72]. Many advanced techniques have also been
proposed to accelerate computation, improve the estimation accuracy, or tailor Bayesian OED to
specific problems [143, 98, 150, 1, 123, 146, 114, 11, 82, 56, 51, 62, 120].

The OED problem becomes more challenging when nuisance (or auxiliary, ancillary) parameters
are present—that is, additional parameters that carry uncertainty but not targeted for inference.
Numerical techniques such as the double-nested MC can no longer be directly applied since the
nuisance parameters need to be marginalized out, requiring yet another MC loop. To tackle this
need, [51] introduces a layered multiple importance sampling technique with an additional MC
marginalization, while [114] proposes to use a semi-implicit nested MC estimator to estimate the
expected utility with nuisance parameters, and [56] presents a variational OED framework that can
handle implicit likelihoods with nuisance parameters by learning a variational approximation for
both the likelihood and marginal likelihood.

While much of the above work focused on OED criteria targeting the model parameters, in many
scenarios prioritizing the uncertainty of a model’s QoI prediction becomes even more crucial. For
example, in engineering design, the ultimate goal may entail computing the maximum deformation
of a structure under a load (the QoI), while reducing the uncertainty of the structure’s material prop-
erties such as Young’s modulus and yield stress (the model parameters) would only be intermediate
steps needed toward computing the goal QoI. By adopting an OED criterion that reflects the infor-
mation gain directly on those QoIs would constitute a goal-oriented OED (GOOED) formulation,
which may lead to designs that differ significantly from their non-goal-oriented counterparts.

GOOED also brings additional computational challenges, since it needs to incorporate an addi-
tional parameter-to-QoI mapping. To address this issue, [28] proposes the Optimal Experimental
Design for Prediction (OED4P) framework. This framework focuses on optimizing experimental

2

design for predictions based on push-forward models. It includes two types of problems: the in-
verse problem for updating the probability density function (PDF) of key input parameters based on
observation data, and the forward problem for measuring EIG through another push-forward model.
The OED4P framework updates the distribution of key model parameters through a new probability
measure, which is similar to Bayes’ theorem but uses an initial probability instead of evidence in
the denominator. It then generates an updated distribution of model predictions through sampling
methods and calculates the KL divergence between the updated and initial probabilities. This
framework helps reduce the expense of traditional Bayesian inference by avoiding the calculation
of evidence, but the framework departs from the Bayesian update of uncertainty and can be difficult
to apply in practice. Approaches more closely following the Bayesian framework include [6] that
focuses on linear mappings in order to allow analytical Gaussian posterior and posterior-predictive
distributions. An efficient computational method by [155] further uses an offline-online decomposi-
tion and low-rank approximation to reduce the complexity of high dimensional QoIs, but remained
with linear models. GOOED for nonlinear observation and prediction mappings remains an open
and active area of research.

When multiple candidate models are available, OED for model discrimination aims to design
experiments to effectively differentiate between multiple candidate models, rather than solely
focusing on model parameters or predictions. Various utility functions for model discrimination
have been proposed, including total separation that accounts for the difference between the posterior
predictive means of candidate models [122, 102, 103], T-optimality criterion which maximizes the
minimal deviation between a null model and an alternative [5], and mutual information between
the model indicator and the observations [19, 17, 32, 46, 65] that is widely used.

In addition to the OED challenges for handling nonlinear models, nuisance parameters, goal-
oriented QoIs, and multi-models each in its own, another key research gap is there does not exist
a unified OED framework that can incorporate them simultaneously. Furthermore, all the OED
methods mentioned above are designed for static (batch) experiments, and do not accommodate the
adaptive design of a sequence of experiments. We seek to fill these gaps through the work of this
thesis.

1.1.2 Sequential optimal experimental design

When multiple experiments can be performed sequentially, common OED strategies be-
come suboptimal. Batch (static) design decides all experiments a priori and does not offer
any opportunity to adapt to new observations (i.e., no feedback). Greedy (myopic) design
[20, 44, 32, 136, 45, 46, 79, 64, 81] plans only for the next experiment and lacks consideration for
future consequences (i.e., no lookahead). It is easy to relate, even from everyday experience (e.g.,

3

driving a car, planning an event), that a lack of feedback (adaptation) and lookahead (foresight) can
lead to suboptimal decision-making.

A provably optimal formulation of sequential experimental design—we call it the sequential
OED (sOED) [109, 147, 71, 74]—includes both elements of feedback and lookahead. As we will
show in this thesis, sOED generalizes both the batch and greedy designs. The main features of
sOED are twofold. First, sOED works with design policies (i.e., functions that adaptively suggest
what experiment to perform depending on what has transpired). Second, sOED designs for all
remaining experiments, therefore it captures the effect of each design decision on the entire design
horizon.

Following [71, 74], sOED can be formally and mathematically formulated using a state-space
representation, specifically via a partially observable Markov decision process (POMDP). In this
approach, a belief state is formed based on the Bayesian posterior describing the uncertainty of
a hidden state (i.e., of the unknown model parameter), thereby turning the POMDP into a belief
Markov decision process (MDP) [95]. The formalization through state-space modeling reveals
the essence of sequential design: its ability to adapt. Adaptation must be done in response to
something, and this “something” is what defines the state. The intersection of sequential design
and state-space modeling is largely missing in the current OED literature .

The POMDP emerging from sOED is atypical and challenging: finite horizon, continuous
distributions, infinite state space, continuous designs and observations, sampling-only transitions
where each is a Bayesian inference, and information measures as rewards. Off-the-shelf POMDP
algorithms (e.g., [31, 94, 30, 87, 75]) are not directly suitable to accommodate this problem. Solution
attempts for sOED have also been sparse, for example [29, 60, 119, 24, 36, 111, 149] largely limit
to discrete settings or do not use a Bayesian framework with information criteria. More recent
efforts for Bayesian sOED [71, 74] employ approximate dynamic programming (ADP) and transport
maps but remain computationally expensive. Elsewhere, [55] introduces the Deep Adaptive Design
(DAD) that efficiently amortizes the inference cost by learning a policy network that instantaneously
returns the next design given previous designs and observations, thereby greatly accelerating the
online deployment speed. A variant, the Implicit DAD (iDAD) [76], is further furnished with the
ability to accommodate implicit likelihoods. Since both DAD and iDAD use the forward model (i.e.
parameter-to-observable map) derivative, [14] proposed to learn the policy using RL without this
requirement. However, both this RL algorithm and DAD employ a nested Monte Carlo (MC) EIG
lower bound that scales with O(𝑛2) forward model evaluations, which remains costly since each
forward model run may entail a partial differential equation (PDE) solve in many engineering and
science settings [154]. Moreover, these advanced sequential design methods solely focus on criteria
targeting the model parameters, while there is a noticeable lack of research on sOED tailored for
tasks such as model discrimination and goal-oriented QoIs, particularly when nuisance parameters

4

are involved.

1.1.3 Robust optimal experimental design

Conventional Bayesian OED studies primarily focus on maximizing the expected utility (e.g., the
expected information gain) of experiments, acknowledging the inherent randomness resulting from
the stochastic nature of experimental observations that cannot be predetermined. As a result, it is
necessary to consider all possible scenarios by taking the expectation over observations. However,
these studies typically ignore the risk or spread associated with the utility itself. While a design
that maximizes the expected utility is optimal in expectation, it does not guarantee a high utility
outcome once the experiment is conducted and the data is collected. Figure 1.1 illustrates this
point by showing the histograms of utility for two different designs. Design #1 has a slightly
higher expected utility of 5 compared to design #2 which stands at 4.8, making design #1 superior
under the criterion of maximizing the expected utility. However, the utility of design #1 exhibits a
significantly larger variance. This implies that there is a non-small probability of obtaining a utility
lower than 3 if an experiment is conducted under this design. On the other hand, design #2 offers
much higher certainty of the utility, with very small probability for the utility to be lower than 4.
In this case, despite design #1 having a higher utility in expectation, design #2 can be reasonably
considered as a better design due to its more stable outcome. This aligns with the principle of loss
or risk aversion, especially when considering potential experimental costs. The possibility of a low
utility outcome with design #1 may result in a much larger loss, taking into account the expense of
the experiment.

0 1 2 3 4 5 6 7 8 9 10
Utility

0.0
0.2
0.4
0.6
0.8
1.0
1.2

De
ns

ity

design #1
design #2

Figure 1.1: Utility histograms of two example designs.

The example above highlights the need for a more robust approach to experimental design, which
we refer to as robust OED (rOED). rOED aims to find a design that not only has a high expected
utility, but also a stable outcome. There is already existing literature on robust design, such as

5

Taguchi methods in product quality control, which addresses variation in product performance
due to uncontrollable environmental factors by varying them along with the controllable design
factors [140, 49, 86, 10, 25, 22]. Additionally, a variance-penalized criterion has been proposed
for response adaptive design of clinical trials to evaluate performance based on both expected total
responses and the variance of responses [156, 89]. In the experimental design field, clustering
local optimal designs have been used to construct a robust experimental design for multivariate
generalized linear models [43], tolerating model violations by augmenting the optimal design
points with space-filling points [85], and a worst-case formulation with a min-max (or max-min)
optimization [148, 84, 137]. [67] further compares the worst-case design with Bayesian OED, and
finds that Bayesian OED is already robust to some extent compared with non-Bayesian OED, as it
marginalizes out the uncertainty by taking the expectation over the prior. More research has been
done to make the Bayesian OED more robust against prior misspecifications by using classes of
priors [13, 12, 40, 145]. Nevertheless, there remains a lack of investigation on identifying and
minimizing the variability of the experimental utility within the Bayesian OED framework.

1.1.4 Robust sequential optimal experimental design

The idea of robustness can be further combined with sequential experiments to form the robust se-
quential OED (rsOED). The objective of rsOED is to enhance the robustness of sOED by effectively
controlling the variance of the rewards/utilities associated with the experimental outcomes.

There is no existing work specifically for rsOED, however, significant progress has been made
in the field of reinforcement learning to improve the robustness of agent behaviors. For instance,
exponential utilities are used to model risk-averse behaviors [70, 16, 9, 112], value-at-risk (VaR) and
conditional-value-at-risk (CVaR) are also utilized to improve the robustness of policy by focusing
on eliminating bad rewards [48, 121, 35, 141, 157], and reinforcement learning algorithms are also
developed for the worst-case criterion [68, 104].

In addition to these risk-sensitive methods, variance-based methods are also widely adopted
due to their high interpretability, and mean-minus-variance is commonly used due to its simplicity
[52, 135, 151, 101]. In order to estimate the variance, an indirect method is proposed using the first
and second moment of the rewards [135], and has been widely studied [152, 142, 88, 118]. For
example, [142, 88] developed an actor-critic method for mean-minus-variance optimization, and
[152] extends the usage of the indirect estimator to _-returns. Meanwhile, a direct estimator of the
variance is also proposed [131], and [77] proposes a variance-penalized on-policy and off-policy
actor-critic method based on the direct estimator, and provides the policy gradient for maximizing
the variance-penalized objective, however, their work is limited to stochastic policy, and there is a
lack of variance-penalized reinforcement learning algorithms specifically designed for deterministic

6

policies and continuous action spaces.

1.2 Objectives and outline

Despite significant recent advances and wide-ranging applications in the field of OED, the research
on sOED is relatively limited, particularly in leveraging reinforcement learning techniques. In
addition, existing sOED research is computationally intensive in terms of forward model evaluations
and only concentrates on the inference of model parameters as the objective of experimental design.
Moreover, there is a significant research void in the area of controlling the utility variance within
the Bayesian OED framework. This gap exists not only in the context of batch (non-sequential)
design but also in sequential designs.

We propose to tackle these research challenges in this thesis via two main avenues. First, we
aim to develop computationally efficient sOED methods for a range of OED problems targeting
parameter inference, model discrimination and goal-oriented prediction, even in the presence of
nuisance parameters. Second, we want to develop numerical techniques that enhance the robustness
of both OED and sOED by effectively controlling the variance of utilities.

More specifically, the main objectives of this thesis can be summarized as follows.

• To develop computationally efficient methods for solving sOED problems using techniques
from reinforcement learning. Specifically, it is achieved via the following sub-objectives:

– To derive the policy gradient expressions for finite-horizon sOED to enable gradient-
based optimization.

– To leverage the expressive capabilities of deep neural networks to approximate the
policy and value function, as well as to serve as surrogate models for expensive forward
models.

– To employ advanced reinforcement learning techniques, such as replay buffer and the
target network.

• To rigorously formulate the variational sequential optimal experimental design (vsOED)
framework, which uses the variational approximation to the Bayesian posteriors to form a
lower bound estimator for expected utility, avoiding the need for computationally intensive
information gain calculations.

• To extend vsOED to handle various OED problems including parameter inference, model
discrimination, and goal-oriented prediction, even when nuisance parameters are present.

7

• To formulate the robust optimal experimental design (rOED) framework, which enhances
the robustness of batch (non-sequential) design by introducing a penalty on the variance
of utilities to the objective function. This involves developing numerical techniques for
estimating the variance-penalized objective function, and analyzing the bias and variance of
the estimator.

• To formulate the robust sequential optimal experimental design (rsOED) framework, combin-
ing the principles of sOED and rOED. This includes deriving the policy gradient expressions
for the variance of the total rewards for rsOED, and utilizing variational posterior approxi-
mation to accelerate the computation.

• To validate sOED, vsOED, rOED and rsOED using numerical examples, including those
involving computationally-intensive PDE-based models.

The dissertation is organized as follows. In Chapter 2, we present a thorough formulation
for sOED and its problem statement, detail the PG-sOED algorithm and its numerical setup and
demonstrate PG-sOED on a number of numerical examples. In Chapter 3, we introduce vsOED
within a unified framework, offer numerical algorithms to solve vsOED problems and demonstrate
its efficiency over baseline methods through various illustrative examples. In Chapter 4, we
introduce the formulation of the variance-penalized rOED, propose a double-nested MC estimator
to estimate the variance-penalized criterion, and provide the convergence order of this estimator.
We present numerical examples to validate the convergence of the proposed estimator and show
the value of rOED in real physical problems. In Chapter 5, we present the problem statement of
rsOED, provide the policy gradient expressions and the corresponding MC estimator, and validate
rsOED on a numerical example. The last chapter, Chapter 6, provides concluding remarks and
discussions for future work.

8

CHAPTER 2

Sequential Optimal Experimental Design

Sequential optimal experimental design (sOED) involves the optimal design of a sequence of
experiments by leveraging newly acquired information (i.e., adaptation or feedback) and anticipat-
ing future effects (i.e., lookahead). In this chapter, we present a general mathematical formulation
to sOED featuring a state-space representation under the belief Markov decision process (MDP)
framework. We prove the sOED’s optimality over batch and greedy designs, and illuminate the
inherent higher computational cost of greedy design compared to sOED by contrasting their infor-
mation gain reward structures. We then introduce new, computationally efficient methods to solve
the sOED problem using actor-critic techniques from reinforcement learning (RL). Specifically, we
will derive the policy gradient (PG) formulas for sOED to enable gradient-based optimization, and
employ deep neural network (DNNs) to achieve expressive parameterization of the policy func-
tions. We call this new method the PG-sOED algorithm. We validate PG-sOED on a benchmark
example and demonstrate its advantages over other design baselines (e.g., batch and greedy designs)
via a sensor movement problem for contaminant source inversion in a convection-diffusion field.
Notably, we provide explanations for the resulting policy behaviors using knowledge about the
underlying physical process.

In this chapter, we only focus on sOED for model parameter inference, the extension to other
design objectives (e.g., model discrimination, goal-oriented prediction) will be introduced in Chap-
ter 3.

The content of this chapter corresponds to the author’s publication [130], and the code is
available at: https://github.com/wgshen/sOED.

9

https://github.com/wgshen/sOED

2.1 Problem formulation

2.1.1 Background

Consider designing a finite1 number of 𝑁 experiments indexed by 𝑘 = 0, 1, . . . , 𝑁 − 1. The
integer 𝑘 then represents the number of experiments completed thus far (e.g., 𝑘 = 0 refers to
the first experiment before any has been conducted, and 𝑘 = 𝑁 − 1 refers to the last experiment
where 𝑁 − 1 has been previously completed). While the decision of how many experiments to
perform (i.e., choice of 𝑁) is important, it is not considered in this thesis; instead, we assume
𝑁 is always given and fixed. Let \ ∈ R𝑁\ denote the vector of uncertain model parameters we
seek to learn from the experiments, 𝑑𝑘 ∈ D𝑘 ⊆ R𝑁𝑑 the design vector for the 𝑘th experiment,
(e.g., experiment conditions), 𝑦𝑘 ∈ R𝑁𝑦 the observation vector from the 𝑘th experiment, (i.e.,
experiment measurements), and 𝑁\ , 𝑁𝑑 , and 𝑁𝑦 respectively the dimensions of parameter, design,
and observation spaces. While the notation above suggests continuous-valued \, 𝑑𝑘 , and 𝑦𝑘 , discrete
or mixed settings can be accommodated as well. For simplicity, we let 𝑁𝑑 and 𝑁𝑦 be constant
across all experiments, but this is not required.

A Bayesian approach treats \ as a random vector. After performing the 𝑘th experiment, the
conditional probability density function (PDF) for \ is updated via Bayes’ rule:

𝑝(\ |𝑑𝑘 , 𝑦𝑘 , 𝐼𝑘) =
𝑝(𝑦𝑘 |\, 𝑑𝑘 , 𝐼𝑘)𝑝(\ |𝐼𝑘)

𝑝(𝑦𝑘 |𝑑𝑘 , 𝐼𝑘)
(2.1)

where 𝐼𝑘 = [𝑑0, 𝑦0, . . . , 𝑑𝑘−1, 𝑦𝑘−1] (and 𝐼0 = ∅) is the information sequence collecting the design
and observation records from all experiments before the 𝑘th experiment; 𝑝(\ |𝐼𝑘) is the prior
PDF (prior to the 𝑘th experiment), 𝑝(𝑦𝑘 |\, 𝑑𝑘 , 𝐼𝑘) is the likelihood, 𝑝(𝑦𝑘 |𝑑𝑘 , 𝐼𝑘) is the marginal
likelihood (or model evidence), and 𝑝(\ |𝑑𝑘 , 𝑦𝑘 , 𝐼𝑘) is the posterior PDF. The prior depicts the state
of uncertainty about \ before the 𝑘th experiment, and the posterior represents the updated state
of uncertainty after having observed the outcome from the 𝑘th experiment. Equation (2.1) also
simplifies 𝑝(\ |𝑑𝑘 , 𝐼𝑘) = 𝑝(\ |𝐼𝑘) since the prior should not be affected by the upcoming design.

The likelihood describes the observable 𝑦𝑘 through a forward model 𝐺𝑘 that governs the
underlying process for the 𝑘th experiment (e.g., via solving a system of partial differential equations
(PDEs)). For example, a popular likelihood emerges from the observation model

𝑦𝑘 = 𝐺𝑘 (\, 𝑑𝑘 ; 𝐼𝑘) + 𝜖𝑘 , (2.2)

where 𝜖𝑘 is an additive noise (e.g., measurement noise). The inclusion of 𝐼𝑘 in 𝐺𝑘 signifies

1In experimental design, the experiments are generally expensive and limited in number. Finite and small values of
𝑁 are therefore of primary interest. This is in contrast to RL that often deals with infinite horizon.

10

that model behavior may be affected by previous experiments. Each evaluation of the likelihood
𝑝(𝑦𝑘 |\, 𝑑𝑘 , 𝐼𝑘) = 𝑝𝜖 (𝑦𝑘 − 𝐺𝑘 (\, 𝑑𝑘 ; 𝐼𝑘)) thus involves a forward model solve (e.g., the PDEs),
typically the most expensive parts of the overall computation.

Lastly, the posterior after the 𝑘th experiment 𝑝(\ |𝑑𝑘 , 𝑦𝑘 , 𝐼𝑘) = 𝑝(\ |𝐼𝑘+1) becomes the prior for
the (𝑘 + 1)th experiment and can be similarly inserted back into Eqn. (2.1). Hence, Bayes’ rule
can be consistently and recursively applied for a sequence of multiple experiments, and it has long
been demonstrated as an extended logic for expressing and updating uncertainty as new evidence
becomes available [38].

2.1.2 Sequential optimal experimental design formulation

We now present the general formulation for sOED, posed as an MDP. An MDP is defined by a
4-tuple: {state space (X), design (action) space (D), transition dynamics (F), and reward function
(𝑔)}. A policy (𝜋) further maps from state to action, thus it determines the rule for taking a design
(action) when at a particular state. All these entities are introduced in detail below. An overview
flowchart describing sOED is presented in Fig. 2.1 to accompany the definitions below.

Figure 2.1: Flowchart of the process involved in a 𝑁-experiment sOED.

State. The state vector 𝑥𝑘 = [𝑥𝑘,𝑏, 𝑥𝑘,𝑝] ∈ X𝑘 captures the state of the system and environment
before conducting the 𝑘th experiment. It encompasses a belief state 𝑥𝑘,𝑏 representing the state of
uncertainty about \, and a physical state 𝑥𝑘,𝑝 carrying all other non-uncertain state information
needed for subsequent experiments. Since \ is not directly observable and can be only inferred
from observations 𝑦𝑘 through Eqn. (2.1), this also corresponds to a POMDP for \ (or a belief-MDP
on 𝑥𝑘 since the belief and physical states in 𝑥𝑘 are fully observable).

Conceptually, a realization of the belief state manifests as a posterior random variable (𝑥𝑘,𝑏 =

𝑥′
𝑘,𝑏

) = (\ |𝐼𝑘 = 𝐼′
𝑘
). To represent such a random variable, one may use, for example, its PDF,

cumulative distribution function, or characteristic function, but these all require some functional
approximation in practice. Alternatively, one can track 𝐼𝑘 directly to capture 𝑥𝑘,𝑏 without any
approximation and without needing to perform Bayesian inference explicitly since 𝐼𝑘 is the trivial

11

sufficient statistic for the posterior2, 3. However, the dimension of 𝐼𝑘 grows with 𝑘 , but is always
upper-bounded in the finite-experiment case here. Regardless of representation, the belief state
space is uncountably infinite (i.e., the possible posteriors that can be realized is uncountably
infinite), and hence it is not a discrete or finite-state system. We will further describe our numerical
techniques for the belief state in Sec. 2.2.2.1 and Sec. 2.2.2.3.

Design (action) and policy. Sequential experimental design is adaptive in nature. It involves
building policies mapping from the state space to the design space, 𝜋 = {`𝑘 : X𝑘 ↦→ D𝑘 , 𝑘 =

0, . . . , 𝑁 − 1}, where the design for the 𝑘th experiment is determined by the state via 𝑑𝑘 = `𝑘 (𝑥𝑘).
Thus, sOED is inherently adaptive and computes designs based on the current state which depends
on the previous experiments and their outcomes. We focus on deterministic policies in this work.

System dynamics (state transition). The system dynamics 𝑥𝑘+1 = F𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) describes
the transition from state 𝑥𝑘 to state 𝑥𝑘+1 after performing the 𝑘th experiment under design 𝑑𝑘 and
observing 𝑦𝑘 . For the belief state, the prior 𝑥𝑘,𝑏 transitions to the posterior 𝑥𝑘+1,𝑏 via Bayes’ rule
in Eqn. (2.1). The physical state, if present, evolves according to the relevant physical process. We
note that while the policy is deterministic, the transition from 𝑥𝑘 to 𝑥𝑘+1 is in fact stochastic since
the observation 𝑦𝑘 is random.

Utility (reward). 𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) ∈ R denotes the immediate reward obtained from performing
the 𝑘th experiment, and it may depend on the state, design, and observation values. Similarly,
𝑔𝑁 (𝑥𝑁) ∈ R denotes the terminal reward catching any other reward measure that can only be
computed after all experiments are completed. We will provide specific examples of reward
structure pertaining to information measures in Sec. 2.1.4.

sOED problem statement. The sOED problem seeks the design policy that solves the following
optimization problem: from a given initial state 𝑥0,

𝜋∗ = arg max
𝜋={`0,...,`𝑁−1}

𝑈 (𝜋) (2.3)

s.t. 𝑑𝑘 = `𝑘 (𝑥𝑘) ∈ D𝑘 ,

𝑥𝑘+1 = F𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘), for 𝑘 = 0, . . . , 𝑁 − 1,

2𝐼𝑘 collects the complete history of experiments and their observations, therefore is a sufficient statistic for 𝑥𝑘 by
definition. Hence, if 𝐼𝑘 is known, then the full state 𝑥𝑘 is equivalently represented. All of these are conditioned on
a given initial 𝑥0 (which includes the prior on \), but for simplicity we will omit this conditioning when writing the
PDFs in this thesis, with the understanding that it is always implied.

3It is possible for \ |𝐼𝑘’s with different 𝐼 ′
𝑘
’s to have the same PDF (or distribution or characteristic function), for

example simply by exchanging the experiments. Hence, the mappings from 𝐼𝑘 to these portrayals (PDF, distribution,
characteristic functions) are non-injective. This may be problematic when considering transition probabilities of the
belief state, but avoided if we keep to our root definition of belief state based on 𝐼𝑘 , which remains unique.

12

where

𝑈 (𝜋) = E𝑦0,...,𝑦𝑁−1 |𝜋,𝑥0

[
𝑁−1∑︁
𝑘=0

𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) + 𝑔𝑁 (𝑥𝑁)
]

(2.4)

is the expected total utility functional. If 𝑥0 is unknown or stochastic, another expectation can be
taken over 𝑥0.

There are several traits of the sOED problem that makes it uniquely challenging: finite hori-
zon; unobservable \; uncountably infinite state space; continuous design and observation spaces;
intractable and sample-only transitions; each transition requiring a Bayesian inference and a poten-
tially expensive forward model evaluation; and information measures as rewards.

2.1.3 Generalization of suboptimal experimental design strategies

We illustrate that both batch and greedy designs are special cases of the expected utility in Eqn. (2.4).
That is, sOED generalizes these design strategies.

Batch OED designs all 𝑁 experiments together prior to performing any of those experiments.
Hence, it is non-adaptive by definition and cannot make use of new information acquired from any
of the 𝑁 experiments to help adjust the design of other experiments. Mathematically, batch design
seeks static design (instead of a policy) over the joint design space D := D0 × D1 × · · · × D𝑁−1:

(𝑑ba
0 , . . . , 𝑑

ba
𝑁−1) = arg max

(𝑑0,...,𝑑𝑁−1)∈D
E𝑦0,...,𝑦𝑁−1 |𝑑0,...,𝑑𝑁−1,𝑥0

[
𝑁−1∑︁
𝑘=0

𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) + 𝑔𝑁 (𝑥𝑁)
]
, (2.5)

subject to the system dynamics. In other words, the design 𝑑𝑘 is chosen independent of 𝑥𝑘 (for
𝑘 > 0). The suboptimality of batch design becomes clear once realizing Eqn. (2.5) is equivalent
to the sOED formulation in Eqn. (2.3) but restricting all `𝑘 to be only constant functions—that
is, sOED corresponds to a constraint relaxation of the batch optimization problem. Therefore,
𝑈 (𝜋∗) ≥ 𝑈 (𝜋ba = 𝑑ba).

Greedy design is a type of sequential experimental design and produces a policy. It optimizes
only for the immediate reward at each experiment:

`
gr
𝑘
= arg max

`𝑘

E𝑦𝑘 |𝑥𝑘 ,`𝑘 (𝑥𝑘) [𝑔𝑘 (𝑥𝑘 , `𝑘 (𝑥𝑘), 𝑦𝑘)] , 𝑘 = 0, . . . , 𝑁 − 2, (2.6)

`
gr
𝑁−1 = arg max

`𝑁−1

E𝑦𝑁−1 |𝑥𝑁−1,`𝑁−1 (𝑥𝑁−1) [𝑔𝑁−1(𝑥𝑁−1, `𝑁−1(𝑥𝑁−1), 𝑦𝑁−1) + 𝑔𝑁 (𝑥𝑁)] ,

without needing to subject to the system dynamics since the policy functions `gr
𝑘

are decoupled.
𝑈 (𝜋∗) ≥ 𝑈 (𝜋gr) follows trivially.

13

2.1.4 Information measures as experimental design rewards

In this section, we formulate reward functions that measure the information gained from the
sequence of experiments. The formulation also illuminates the inherent computational disadvantage
of greedy design compared to sOED. Lindley’s seminal paper [92] proposes to use the mutual
information between the parameter and observation as the expected utility, and Ginebra [61]
provides more general criteria for proper information measures for OED. In particular, mutual
information is equal to the expected KL divergence from the prior to the posterior, quantifying the
farness between these two distributions. A larger divergence corresponds to a greater degree of
belief update—and hence information gain—resulting from the experiment and its observation.

Following Lindley, we demonstrate the use of KL divergence in two sensible sequential design
reward structures. The first, call it the terminal-information-gain (TIG) formulation, involves
clumping the information gain from all 𝑁 experiments in the terminal reward (without loss of
generality, we omit non-information reward contributions):

𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) = 0, 𝑘 = 0, . . . , 𝑁 − 1 (2.7)

𝑔𝑁 (𝑥𝑁) = 𝐷KL (𝑝(·|𝐼𝑁) | | 𝑝(·|𝐼0))

=

∫
Θ

𝑝(\ |𝐼𝑁) ln
[
𝑝(\ |𝐼𝑁)
𝑝(\ |𝐼0)

]
𝑑\. (2.8)

The second, call it the incremental-information-gain (IIG) formulation, uses incremental informa-
tion gain from each experiment in their respective immediate rewards:

𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) = 𝐷KL (𝑝(·|𝐼𝑘+1) | | 𝑝(·|𝐼𝑘))

=

∫
Θ

𝑝(\ |𝐼𝑘+1) ln
[
𝑝(\ |𝐼𝑘+1)
𝑝(\ |𝐼𝑘)

]
𝑑\, 𝑘 = 0, . . . , 𝑁 − 1 (2.9)

𝑔𝑁 (𝑥𝑁) = 0. (2.10)

We denote 𝑈𝑇 (𝜋) the sOED expected utility defined in Eqn. (2.4) subject to the constraints in
Eqn. (2.3) for a given policy 𝜋 while using the TIG formulation in Eqn. (2.7) and (2.8), and𝑈𝐼 (𝜋)
be the same except using the IIG formulation in Eqn. (2.9) and (2.10). It is important to note that in
this chapter, both TIG and IIG formulations only focus on the information gain (or equivalently KL
divergence) on parameter inference, and the extension to model discrimination and QoI prediction
will be discussed in Chapter 3.

Theorem 1 (Terminal-incremental equivalence in sOED for parameter inference). 𝑈𝑇 (𝜋) = 𝑈𝐼 (𝜋)
for any policy 𝜋.

A proof is provided in Appendix A.1. As a result, the two reward formulations lead to the same

14

sOED problem.
Notably, greedy design can only be formed using the IIG formulation in Eqn. (2.9) and (2.10) (if

using TIG formulation, greedy design would optimize the zero in Eqn. (2.7)). Consequently, greedy
design has a major computational disadvantage: it must compute the posteriors and incremental
KL divergence terms for all intermediate experiments in order to evaluate the rewards. In contrast,
sOED may use the TIG formulation, which only requires computing the posterior and KL divergence
once after the final experiment is complete. Moreover, together with Theorem 1, we have𝑈𝑇 (𝜋∗) =
𝑈𝐼 (𝜋∗) ≥ 𝑈𝐼 (𝜋gr) (i.e., sOED achieves higher expected utility than greedy design regardless of
whether sOED uses the TIG or IIG formulation).

2.2 Numerical methods for sOED

We approach the sOED problem by explicitly parameterizing the policy functions. We then derive
gradient of the expected utility with respect to the policy parameters so to enable gradient-based
optimization of the policy—this is known as the PG method [132, 91, 139, 78, 41, 125, 105, 126,
99, 96, 8]. A key benefit of explicit policy parameterization is that the policy can be optimized
entirely offline, and only needs to be evaluated online without additional optimization iterations.
This is in contrast to ADP-sOED approaches [71, 74] and greedy design where a new optimization
must be performed online in order to identify the next experimental design, a much slower process.
In the following, we first derive the exact PG expression in Sec. 2.2.1. We then present numerical
methods in Sec. 2.2.2 to estimate this exact PG expression.

2.2.1 Derivation of the policy gradient

In the new PG-sOED method, each policy function `𝑘 is parameterized with parameters 𝑤𝑘
(𝑘 = 0, . . . , 𝑁 − 1), and denoted by the shorthand form `𝑘,𝑤𝑘

. The overall policy 𝜋 is therefore
parameterized by 𝑤 = {𝑤𝑘 ,∀𝑘} ∈ R𝑁𝑤 and denoted by 𝜋𝑤, where 𝑁𝑤 is the dimension of the
overall policy parameter vector. The sOED problem stated in Eqn. (2.3) and (2.4) then updates to:

𝑤∗ = arg max
𝑤

𝑈 (𝑤) (2.11)

s.t. 𝑑𝑘 = `𝑘,𝑤𝑘
(𝑥𝑘) ∈ D𝑘 ,

𝑥𝑘+1 = F𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘), for 𝑘 = 0, . . . , 𝑁 − 1,

15

from a given initial state 𝑥0, where

𝑈 (𝑤) = E𝑦0,...,𝑦𝑁−1 |𝜋𝑤 ,𝑥0

[
𝑁−1∑︁
𝑘=0

𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) + 𝑔𝑁 (𝑥𝑁)
]
. (2.12)

We now aim to derive the gradient ∇𝑤𝑈 (𝑤) in order to leverage gradient-based optimization to
solve the sOED problem.

Before presenting the gradient expression, we first introduce the action-value function (or Q-
function). The Q-function following policy 𝜋𝑤 and at the 𝑘th experiment is

𝑄
𝜋𝑤
𝑘
(𝑥𝑘 , 𝑑𝑘) = E𝑦𝑘 ,...,𝑦𝑁−1 |𝜋𝑤 ,𝑥𝑘 ,𝑑𝑘

[
𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) +

𝑁−1∑︁
𝑡=𝑘+1

𝑔𝑡 (𝑥𝑡 , `𝑡,𝑤𝑡
(𝑥𝑡), 𝑦𝑡) + 𝑔𝑁 (𝑥𝑁)

]
(2.13)

= E𝑦𝑘 |𝑥𝑘 ,𝑑𝑘
[
𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) +𝑄𝜋𝑤

𝑘+1(𝑥𝑘+1, `𝑘+1,𝑤𝑘+1 (𝑥𝑘+1))
]

(2.14)

𝑄
𝜋𝑤
𝑁
(𝑥𝑁 , ·) = 𝑔𝑁 (𝑥𝑁). (2.15)

for 𝑘 = 0, . . . , 𝑁 − 1, where 𝑥𝑘+1 = F𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘). The Q-function is the expected cumulative
remaining reward for performing the 𝑘th experiment at the given design 𝑑𝑘 from a given state 𝑥𝑘
and thereafter following policy 𝜋𝑤.

Theorem 2 (Policy gradient). The gradient of the expected utility in Eqn. (2.12) with respect to the
policy parameters (i.e., the policy gradient) is

∇𝑤𝑈 (𝑤) =
𝑁−1∑︁
𝑘=0
E𝑥𝑘 |𝜋𝑤 ,𝑥0

[
∇𝑤`𝑘,𝑤𝑘

(𝑥𝑘)∇𝑑𝑘𝑄
𝜋𝑤
𝑘
(𝑥𝑘 , 𝑑𝑘)

���
𝑑𝑘=`𝑘,𝑤𝑘

(𝑥𝑘)

]
. (2.16)

We provide a proof in Appendix A.2, which follows the proof strategy for an infinite-horizon
MDP given by [132] .

2.2.2 Numerical estimation of the policy gradient

The PG in Eqn. (2.16) cannot be evaluated in closed form and needs be approximated numerically.
We propose a Monte Carlo (MC) estimator:

∇𝑤𝑈 (𝑤) ≈ 1
𝑀

𝑀∑︁
𝑖=1

𝑁−1∑︁
𝑘=0

∇𝑤`𝑘,𝑤𝑘
(𝑥 (𝑖)
𝑘
)∇

𝑑
(𝑖)
𝑘

𝑄
𝜋𝑤
𝑘
(𝑥 (𝑖)
𝑘
, 𝑑

(𝑖)
𝑘
)
���
𝑑
(𝑖)
𝑘

=`𝑘,𝑤𝑘
(𝑥 (𝑖)

𝑘
)

(2.17)

where superscript indicates the 𝑖th episode (i.e., trajectory instance) generated from MC sampling.
Note that the sampling only requires a given policy and does not need any Q-function. Specifically,
for the 𝑖th episode, we first sample a hypothetical “true” \ (𝑖) from the prior belief state 𝑥0,𝑏 and

16

freeze it for the remainder of this episode—that is, all subsequent 𝑦 (𝑖)
𝑘

will be generated from
this \ (𝑖) . We then compute 𝑑 (𝑖)

𝑘
from the current policy 𝜋𝑤, sample 𝑦

(𝑖)
𝑘

from the likelihood
𝑝(𝑦𝑘 |\ (𝑖) , 𝑑 (𝑖)𝑘 , 𝐼

(𝑖)
𝑘
), for all experiments 𝑘 = 0, . . . , 𝑁 − 1. The same procedure is then repeated

for all episodes 𝑖 = 1, . . . , 𝑀 . The episode sample size 𝑀 can be selected based on indicators
such as the MC standard error. While we propose to employ a fixed \ (𝑖) for the entire 𝑖th episode,
one may also choose to resample \ (𝑖)

𝑘
at each stage 𝑘 from the updated posterior belief state

𝑥
(𝑖)
𝑘,𝑏

. These two approaches are mathematically equivalent (see Appendix A.3), but the former is
computationally much easier since it does not require working with any intermediate posteriors.
Once the gradient estimate is available, policy network optimization can be performed using
gradient-based optimization methods such as stochastic gradient ascent and Adam [80].

From Eqn. (2.17), the MC estimator for PG entails computing the gradients ∇𝑤`𝑘,𝑤𝑘
(𝑥 (𝑖)
𝑘
) and

∇
𝑑
(𝑖)
𝑘

𝑄
𝜋𝑤
𝑘
(𝑥 (𝑖)
𝑘
, 𝑑

(𝑖)
𝑘
). While the former can be obtained through the parameterized policy functions,

the latter requires parameterization of the Q-functions as well. We thus parameterize both the
policy and Q-functions—this is known as an actor-critic method. Furthermore, we adopt the
representation techniques from Deep Q-Network (DQN) [106] and DDPG [91], and use DNNs to
represent the policy and Q-functions. We present these details next.

2.2.2.1 Policy network

Conceptually, one needs to construct an individual DNN `𝑘,𝑤𝑘
to approximate `𝑘 : X𝑘 ↦→ D𝑘 for

each 𝑘 . Instead, we combine them together into a single function `𝑤 (𝑘, 𝑥𝑘), which then requires
only a single DNN for the entire policy at the cost of a higher input dimension. Subsequently, the
∇𝑤`𝑘,𝑤𝑘

(𝑥 (𝑖)
𝑘
) = ∇𝑤`𝑤 (𝑘, 𝑥 (𝑖)𝑘) term from Eqn. (2.17) can be obtained via DNN back-propagation.

Below, we discuss the architecture design of such a DNN, with particular focus on its input layer.
For the first input component, i.e., the stage index 𝑘 , instead of passing in the integer, we opt to

use a zero-indexed one-hot encoding taking the form of a unit vector:

𝑘 −→ 𝑒𝑘 = [0, . . . , 0, 1︸︷︷︸
𝑘th

, 0, . . . , 0]𝑇 . (2.18)

We choose one-hot encoding because the stage index is an ordered categorical variable rather than
a quantitative variable (i.e., it has notion of ordering but no notion of metric). Furthermore, these
unit vectors are always orthogonal, which we observe to offer good numerical performance to the
policy network. The tradeoff is that the dimension of representing 𝑘 is increased from 1 to 𝑁 .

For the second component, i.e., the state 𝑥𝑘 (including both 𝑥𝑘,𝑏 and 𝑥𝑘,𝑝), we represent it in a

17

nonparametric manner as suggested in Sec. 2.1.2:

𝑥𝑘 −→ 𝐼𝑘 = (𝑑0, 𝑦0, . . . , 𝑑𝑘−1, 𝑦𝑘−1). (2.19)

To accommodate states up to stage (𝑁−1) (i.e., 𝑥𝑁−1), we use a fixed total dimension of (𝑁−1) (𝑁𝑑+
𝑁𝑦) for this representation, where for 𝑘 < (𝑁 − 1) the entries of {𝑑𝑙 , 𝑦𝑙 | 𝑙 ≥ 𝑘} (experiments that
have not happened yet) are padded with zeros (see Eqn. (2.20)). This representation method provides
two major advantages: (a) representation of belief state without any numerical approximation, and
(b) intermediate belief states (i.e., 𝑥𝑘,𝑏 for 𝑘 < 𝑁) do not need to be computed since the policy
network can directly take input of 𝐼𝑘 . As a result, only a single final Bayesian inference conditioned
on all designs and observations needs be performed at the end of each episode (this is in contrast
to greedy design that requires all intermediate Bayesian posteriors and incremental KL divergence
terms to be computed). We note that without the presence of 𝑒𝑘 , it would not be possible for the
actor or the critic to distinguish between scenarios such as: whether at stage 𝑘 , or at a later stage
but the designs and observations from stage 𝑘 are zero (i.e. the padded values). Furthermore,
even though the mapping from 𝐼𝑘 to 𝑥𝑘 is not injective, whether utilizing 𝐼𝑘 or 𝑥𝑘 as the state
representation (i.e., inputting into the policy and the value functions) leads to the same optimal
policy and maximum expected utility value (see Appendix A.4).

Putting together these two components, the overall input layer for the policy network `𝑤 (𝑘, 𝑥𝑘)
has the form

𝐼𝑎𝑐𝑡𝑜𝑟𝑘 = [𝑒𝑘︸︷︷︸
𝑁

,

𝑁𝑑︷︸︸︷
𝑑0 , . . . , 𝑑𝑘−1, 0, . . . , 0︸ ︷︷ ︸

𝑁𝑑 (𝑁−1−𝑘)

,

𝑁𝑦︷︸︸︷
𝑦0 , . . . , 𝑦𝑘−1, 0, . . . , 0︸ ︷︷ ︸

𝑁𝑦 (𝑁−1−𝑘)

]𝑇 , (2.20)

where we also indicate the zero-paddings for entries corresponding to future experiments 𝑙 ≥ 𝑘 .
The overall input layer has a total dimension of 𝑁 + (𝑁 − 1) (𝑁𝑑 + 𝑁𝑦).

The remainder of the policy network is relatively straightforward. The output layer is an 𝑁𝑑-
dimensional vector representing 𝑑𝑘 and the network architecture can be chosen by the user. We
have experimented with dense layers, and experience suggests 2–3 hidden layers often achieve good
performance for our numerical cases. Further hyperparameter tuning may be performed but it is
not pursued in this chapter.

Lastly, we emphasize that `𝑤 (𝑘, 𝑥𝑘) is not trained in a supervised learning manner; instead, it
is updated iteratively via PG en route to maximizing𝑈 (𝑤).

18

2.2.2.2 Q-network

Under the actor-critic setup, we build DNNs 𝑄𝜋𝑤
𝑘,a𝑘

(parameterized by a𝑘) to approximate 𝑄𝜋𝑤
𝑘

:
X𝑘×D𝑘 ↦→ R for 𝑘 = 0, . . . , 𝑁−1. In a similar manner as the policy network, we combine𝑄𝜋𝑤

𝑘,a𝑘
into

a single function to form the Q-network𝑄𝜋𝑤
a (𝑘, 𝑥𝑘 , 𝑑𝑘). Subsequently, the ∇

𝑑
(𝑖)
𝑘

𝑄
𝜋𝑤
𝑘
(𝑥 (𝑖)
𝑘
, 𝑑

(𝑖)
𝑘
) term

from Eqn. (2.17) can be estimated by ∇
𝑑
(𝑖)
𝑘

𝑄
𝜋𝑤
a (𝑘, 𝑥 (𝑖)

𝑘
, 𝑑

(𝑖)
𝑘
), which can be obtained via DNN back-

propagation. The input layer takes the same form as the policy network, except we augment extra
entries for 𝑑𝑘 (i.e., 𝐼𝑐𝑟𝑖𝑡𝑖𝑐

𝑘
= [𝐼𝑎𝑐𝑡𝑜𝑟

𝑘
, 𝑑𝑘]). The overall input dimension is 𝑁 + (𝑁 −1) (𝑁𝑑 +𝑁𝑦) +𝑁𝑑 .

The network output is a scalar.
The Q-network is trained in a supervised learning manner from the MC episodes generated for

Eqn. (2.17), by finding a that minimizes the following loss function built based on Eqn. (2.14):

L(a) = 1
𝑀

𝑀∑︁
𝑖=1

𝑁−1∑︁
𝑘=0

[
𝑄
𝜋𝑤
a (𝑘, 𝑥 (𝑖)

𝑘
, 𝑑

(𝑖)
𝑘
) −

(
𝑔𝑘 (𝑥 (𝑖)𝑘 , 𝑑

(𝑖)
𝑘
, 𝑦

(𝑖)
𝑘
) +𝑄𝜋𝑤

𝑘+1(𝑥
(𝑖)
𝑘+1, 𝑑

(𝑖)
𝑘+1)

)]2
(2.21)

where 𝑑 (𝑖)
𝑘

= `𝑤 (𝑘, 𝑥 (𝑖)𝑘) and 𝑄𝜋𝑤
𝑁
(𝑥 (𝑖)
𝑁
, ·) = 𝑔𝑁 (𝑥 (𝑖)𝑁). It is worth noting that 𝑄𝜋𝑤

𝑘+1(𝑥
(𝑖)
𝑘+1, 𝑑

(𝑖)
𝑘+1)

does not depend on a, but in practice is often approximated by 𝑄𝜋𝑤
a (𝑘 + 1, 𝑥 (𝑖)

𝑘+1, 𝑑
(𝑖)
𝑘+1) (for 𝑘 =

0, . . . , 𝑁 − 2)4. When minimizing the loss, the gradient contribution with respect to a from this
term is therefore ignored. Additionally, while in this chapter we always use a fixed sample \ (𝑖) to
generate the entire 𝑖th episode (see description following Eqn. (2.17)), we can show the resulting
Q-network indeed converges to the true Q-function defined in Eqn. (2.14) (see Appendix A.5).

2.2.2.3 Evaluation of Kullback-Leibler rewards

A final step needed to construct the Q-network (by minimizing Eqn. (2.21)) is to evaluate the
immediate and terminal rewards 𝑔𝑘 and 𝑔𝑁 . Having established the equivalence of TIG and IIG
formulations in Sec. 2.1.4, we focus on the former in this chapter since it only requires the KL
divergence in 𝑔𝑁 at the end of each episode. Adopting the state representation via 𝐼𝑘 (Sec. 2.2.2.1),
we do not need to explicitly form the intermediate posteriors. Instead, we only require a single
Bayesian inference to obtain 𝑝(\ |𝐼𝑁) and use it to calculate the KL divergence in Eqn. (2.8).

In general, the posteriors will be non-standard distributions and the KL divergence must be
approximated numerically. For small 𝑁\ (e.g., ≤ 4), we discretize the \-space on a grid and estimate
its posterior PDF pointwise. However, higher 𝑁\ would require more scalable techniques, such as
Markov chain Monte Carlo (MCMC) coupled with kernel density estimation or likelihood-free ratio
estimation [144], variational inference [15] and transport maps [71]. Estimating KL divergence

4The use of an approximate Q-value in the next (i.e., 𝑘 + 1) stage rather than expanding further with 𝑔𝑘+1, 𝑔𝑘+2, etc.
makes this a one-step lookahead approximation. This is not to be confused with greedy/myopic design, which does
not include any future value term.

19

for high dimensional \-space goes beyond the scope of this thesis, however in Chapter 3, a novel
“one-point estimate” technique is proposed and utilized to circumvent the need for explicit KL
divergence calculations.

2.2.2.4 Exploration versus exploitation

The tradeoff between exploration and exploitation is an important consideration when optimizing
the policy. Exploration searches under-explored regions while exploitation focuses on region
deemed promising based on current knowledge. Insufficient exploration may strand the policy
search in a local optimum and insufficient exploitation may lack convergence. A mixed strategy
to balance the two is prudent [27, 90], for example through the commonly used epsilon-greedy
technique [138].

We inject exploration to policy optimization by adding a perturbation to our deterministic policy
only when generating the MC episodes (Eqn. (2.17)) during training, not during testing. Hence
exploration is solely used to aid the training. The exploration design becomes:

𝑑𝑘 = `𝑘 (𝑥𝑘) + 𝜖explore (2.22)

where 𝜖explore ∼ N(0, I𝑁𝑑
𝜎2

explore). If perturbed outside D𝑘 , it can be moved back to the closest
location inside the feasible region. The value of 𝜎explore reflects the degree of exploration and
should be selected based on the problem context. For example, a reasonable approach is to set
a large 𝜎explore early in the algorithm and reduce it gradually. More advanced techniques have
been proposed to reach a better exploration, for instance, by adding noise to the policy network
parameters instead of the design variable [116, 54]; however, these strategies are beyond the scope
of our paper.

2.2.3 Pseudocode for the overall algorithm

We present the detailed algorithm for PG-sOED in Algorithm 1. We re-emphasize that the explo-
ration perturbation is only used in generating the MC episodes on line 5, but not used anywhere
else (e.g., when evaluating the policy). Furthermore, we point out that when using the TIG
formulation (Eqn. (2.7) and (2.8)), the posterior is used solely in the terminal reward, while im-
mediate rewards do not require any posterior or KL divergence calculations but may include other
non-information-based contributions. Conversely, in the IIG formulation (Eqn. (2.9) and (2.10)),
immediate rewards do incorporate intermediate posterior and KL divergence calculations. In the
numerical demonstrations of this chapter, we only focus on the TIG formulation.

20

Algorithm 1: The PG-sOED algorithm.
1: Define all components in Sec. 2.1.2;
2: Set initial state 𝑥0, policy updates 𝐿, MC sample size 𝑀 , policy and Q-network architectures,

learning rate 𝛼 for policy update, exploration scale 𝜎explore;
3: Initialize policy and Q-network parameters 𝑤 and a;
4: for 𝑙 = 1, . . . , 𝐿 do
5: Simulate 𝑀 episodes: sample \ ∼ 𝑥0,𝑏, and then for 𝑘 = 0, . . . , 𝑁 − 1 sample

𝑑𝑘 = `𝑤 (𝑘, 𝑥𝑘) + 𝜖explore and 𝑦𝑘 ∼ 𝑝(𝑦𝑘 |\, 𝑑𝑘 , 𝐼𝑘);
6: Store the full information vectors from all episodes {𝐼 (𝑖)

𝑁
}𝑀
𝑖=1, from which the intermediate

{𝐼 (𝑖)1 , 𝐼
(𝑖)
2 , . . . , 𝐼

(𝑖)
𝑁−1} can also be formed trivially;

7: Compute and store immediate and terminal rewards for all episodes {𝑔(𝑖)
𝑘
}𝑀
𝑖=1, 𝑘 = 0, . . . , 𝑁;

8: Update a by minimizing the loss in Eqn. (2.21);
9: Update 𝑤 by gradient ascent: e.g., 𝑤 = 𝑤 + 𝛼∇𝑤𝑈 (𝑤) for stochastic gradient ascent, where

∇𝑤𝑈 (𝑤) is estimated through Eqn. (2.17);
10: (Optional) Reduce 𝛼 and 𝜎explore;
11: end for
12: Return optimized policy 𝜋𝑤;

2.3 Numerical results and discussions

We present two groups of examples to demonstrate PG-sOED. The first is a linear-Gaussian problem
(Sec. 2.3.1) that offers a closed form solution due to its conjugate prior. This problem serves as
a benchmark to validate PG-sOED and illustrate its superior computational speed over an existing
ADP-sOED baseline. The second entails a sensor movement problem for contaminant source
inversion in a convection-diffusion field (Sec. 2.3.2). It is divided into four cases with increasing
complexity, each with a different illustration purpose. The purpose of Case 1 is to highlight the
difference between sOED and greedy design, while Case 2 additionally draws contrast against batch
design. Case 3 further features a higher dimensional parameter space, and Case 4 demonstrates
a much longer sequence of experiments. We explain the behavior of the resulting policies using
knowledge about the underlying convection-diffusion physics.

2.3.1 Linear-Gaussian benchmark

We adopt the linear-Gaussian problem from [71, 74] as a benchmark for validating PG-sOED. The
observation model takes the form

𝑦𝑘 = 𝐺 (\, 𝑑𝑘) + 𝜖𝑘 = \𝑑𝑘 + 𝜖𝑘 , (2.23)

21

where the forward model is linear in \ and 𝜖𝑘 ∼ N(0, 12). The benchmark designs for 𝑁 = 2
experiments, with prior \ ∼ N(0, 32) and design constrained in 𝑑𝑘 ∈ [0.1, 3]. The resulting
conjugate form renders all subsequent posteriors to be analytically Gaussian, thus allowing the
optimal policies to be computed in closed form. There is no physical state for this problem. The
stage and terminal rewards are

𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) = 0, 𝑘 = 0, 1 (2.24)

𝑔𝑁 (𝑥𝑁) = 𝐷KL (𝑝(·|𝐼𝑁) | | 𝑝(·|𝐼0)) − 2
(
ln𝜎2

𝑁 − ln 2
)2

(2.25)

where 𝜎2
𝑁

represents the variance of the final belief state, and the additive penalty in 𝑔𝑁 is
purposefully inserted to make the problem more challenging.

The rewards are calculated by discretizing the \ space onto a uniform grid with 50 nodes. It is
worth noting that testing with 1000 nodes has been conducted and the results indicate that increasing
the number of nodes from 50 to 1000 does not have a significant impact on the outcomes. We
solve this sOED problem both by ADP-sOED [74] and PG-sOED. For PG-sOED, we set 𝐿 = 100,
𝑀 = 1000, 𝛼 = 0.15, and 𝜎explore = 0.2 (decrease by factor of 0.95 per policy update). Both the
policy network and Q-network contain two hidden layers with ReLU activation, and each hidden
layer has 80 nodes. The architectures of the policy network (actor) and the Q-network (critic) are
presented in Table 2.1 and Table 2.2, where the Linear mapping in Table 2.1 maps the output value
to be within the design bounds. While we observed even a low 𝑀 = 10 yielded good performance,
𝑀 = 1000 is used to further reduce MC error in the demonstration. Stochastic gradient ascent is
utilized for both the optimization of actor and critic networks. Both ADP-sOED and PG-sOED are
implemented using Python and executed within the same computational environment.

Table 2.1: Architecture of the actor.

Layer Description Dimension Activation

Input 𝐼𝑎𝑐𝑡𝑜𝑟
𝑘

𝑁 + (𝑁 − 1) (𝑁𝑑 + 𝑁𝑦) -
H1 Dense 80 ReLU
H2 Dense 80 ReLU
H4 Dense 𝑁𝑑 Sigmoid

Output Identity 𝑁𝑑 Linear mapping

To assess the policies found by ADP-sOED and PG-sOED, we sample 104 episodes using
their final policies and compute their total rewards. ADP-sOED yields a mean total reward of
0.775 ± 0.006 and PG-sOED also 0.775 ± 0.006, where the ± is the MC standard error. Both
match extremely well with the analytical result 𝑈 (𝜋∗) ≈ 0.783 [71, 74] where the discrepancy of

22

Table 2.2: Architecture of the critic.

Layer Description Dimension Activation

Input 𝐼𝑐𝑟𝑖𝑡𝑖𝑐
𝑘

𝑁 + (𝑁 − 1) (𝑁𝑑 + 𝑁𝑦) + 𝑁𝑑 -
H1 Dense 80 ReLU
H2 Dense 80 ReLU

Output Dense 1 -

PG-sOED is attributed primarily to the NN hyperparameters (e.g., NN architectures, learning rates,
etc.). These results support that both ADP-sOED and PG-sOED have found the optimal policy.

Figures 2.2a and 2.2b present the convergence history for the expected utility and residual
(|𝑈 (𝜋∗) − 𝑈 (𝑤) |) as a function of the PG-sOED iterations. The convergence is rapid, reaching
over 3 orders of magnitude residual reduction within 30 iterations. The much lower initial expected
utility (around −8.5) also indicates that a random policy (from random initialization) performs
much worse than the optimized policy.

0 20 40 60 80 100
Gradient ascent step

10

8

6

4

2

0

2

Re
wa

rd

Training history
Optimal expected utility

(a) Expected reward history

0 20 40 60 80 100
Gradient ascent step

10 5

10 4

10 3

10 2

10 1

100

101

Re
sid

ua
l

Training history

(b) Residual history |𝑈 (𝜋∗) −𝑈 (𝜋) |

Figure 2.2: Convergence history of PG-sOED.

Table 2.3 compares the computational costs between ADP-sOED and PG-sOED obtained using
a single 2.6 GHz CPU on a MacBook Pro laptop. The timing values reflect 30 gradient ascent
updates for PG-sOED in the training stage, and 1 policy update (the minimum needed) for ADP-
sOED. PG-sOED produces orders-of-magnitude speedups compared to ADP-sOED, especially the
extremely low testing time (i.e., using the policy online during the experimental campaign after the
policy has been constructed offline) achieving 0.0002 seconds per experiment (4 seconds per 104

episodes with 𝑁 = 2 experiments per episode). This drastic speedup is due to ADP-sOED being
a value-based approach where each policy evaluation needs to solve a (stochastic) optimization
problem, while PG-sOED only requires a single forward pass of its policy-network free of any

23

optimization or forward model evaluations. The fast online speed makes PG-sOED an excellent
candidate for real-time design situations.

Table 2.3: Comparison of computational costs between ADP-sOED and PG-sOED.

Training time (s) Forward model evaluations Testing time (s)
ADP-sOED 837 5.3 × 108 24,396
PG-sOED 24 3.1 × 106 4

Figure 2.3 depicts the difference of expected utility values obtained from the TIG formulation
and IIG formulation, obtained analytically using the MATLAB symbolic mathematics and then
evaluated numerically. The differences are all on the order of 10−15, which is near the numerical
limit of double precision. This provides empirical validation to the equivalence between the
expected utilities using the TIG formulation and the IIG formulation, which was stated and proven
earlier in Theorem 1.

Figure 2.3: The difference of expected utilities using the TIG formulation and the IIG formulation.

2.3.2 Contaminant source inversion in a convection-diffusion field

2.3.2.1 Problem setup

The next group of demonstrations entails mobile sensor design in a convection-diffusion field
(e.g., of a chemical contaminant plume). The contaminant concentration 𝐺 at time 𝑡 and location
𝑧 = [𝑧𝑥 , 𝑧𝑦] within a two-dimensional rectangular domain is governed by the convection-diffusion

24

PDE:

𝜕𝐺 (𝑧, 𝑡; \)
𝜕𝑡

= ∇2𝐺 − 𝑢(𝑡) · ∇𝐺 + 𝑆(𝑧, 𝑡; \), 𝑧 ∈ [𝑧𝐿 , 𝑧𝑅]2, 𝑡 > 0, (2.26)

where 𝑢 = [𝑢𝑥 , 𝑢𝑦] ∈ R2 is a time-dependent convective velocity, and \ = [\𝑥 , \𝑦, \ℎ, \𝑠] ∈ R4 is
the source parameter residing within the source function

𝑆(𝑧, 𝑡; \) = \𝑠

2𝜋\2
ℎ

exp

(
−
(\𝑥 − 𝑧𝑥)2 + (\𝑦 − 𝑧𝑦)2

2\2
ℎ

)
. (2.27)

Here \𝑥 and \𝑦 denote the source location, and \ℎ and \𝑠 denote the source width and source
strength. The initial condition is 𝐺 (𝑧, 0; \) = 0, and homogeneous Neumann boundary condition
(i.e., zero-flux) is imposed for all sides of the domain. We solve the PDE numerically using
second-order finite volume method on a uniform grid of size Δ𝑧𝑥 = Δ𝑧𝑦 = 0.01 and a second-order
fractional step method for time-marching with stepsize Δ𝑡 = 5.0 × 10−4. Figure 2.4 provides an
example illustrating the evolution of solution 𝐺 over time.

Figure 2.4: Sample numerical solution of the concentration field 𝐺 at different time snapshots.
The solution is solved in a wider computational domain [−1, 2]2 but displayed here in [0, 1]2. In
this case, \ = [0.210, 0.203, 0.05, 2] and the convection grows over time with 𝑢𝑥 = 𝑢𝑦 = 10𝑡/0.2.
Isotropic diffusion dominates early on and the plume stretches towards the convective direction
over time.

For the design problem, we have a vehicle with sensing equipment for measuring the contaminant
concentration 𝐺, and the vehicle can be relocated at fixed time intervals. We seek to determine
where we should relocate this vehicle such that its measurements can lead to the best inference of
the source parameters \. We consider 𝑁 measurement opportunities at times 𝑡𝑘 for 𝑘 = 0, . . . , 𝑁−1.
The vehicle starts with initial belief state 𝑥0,𝑏 = (\ |𝐼0) (i.e., prior on \) and initial physical state
𝑥0,𝑝 (i.e., initial vehicle location). The design variable is the displacement of the vehicle from its
current location. The physical state is updated via

𝑥𝑘+1,𝑝 = 𝑥𝑘,𝑝 + 𝑑𝑘 . (2.28)

25

At the new physical location, a noisy measurement of the contaminant concentration is obtained in
the form

𝑦𝑘 = 𝐺 (𝑧 = 𝑥𝑘+1,𝑝, 𝑡𝑘 ; \) + 𝜖𝑘
(
1 + |𝐺 (𝑥𝑘+1,𝑝, 𝑡𝑘 ; \) |

)
(2.29)

where 𝜖𝑘 ∼ N(0, 𝜎2
𝜖), thus the observation noise is affected by the signal magnitude. Once the

new measurement is acquired, the belief state is updated from 𝑥𝑘,𝑏 = (\ |𝐼𝑘) to 𝑥𝑘+1,𝑏 = (\ |𝐼𝑘+1)
through Bayes’ rule. The reward functions are

𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) = −𝑐𝑞 𝑓𝑐 (𝑑𝑘), 𝑘 = 0, . . . , 𝑁 − 1 (2.30)

𝑔𝑁 (𝑥𝑁) = 𝐷KL (𝑝(·|𝐼𝑁) | | 𝑝(·|𝐼0)) , (2.31)

where 𝑐𝑞 is a parameter that reflects the relative weight of the movement cost. The immediate
reward reflects a cost on the vehicle movement where 𝑓𝑐 (𝑑𝑘) denotes the specific movement cost
function that may also depend on the convection velocity.

We explore four cases for the convection-diffusion problem, with their detailed settings sum-
marized in Table 2.4. The four cases involve different number of experiments and measurement
times: Case 1 measures at 𝑡0 = 0.15 and 𝑡1 = 0.32; Case 2 at 𝑡0 = 0.05 and 𝑡1 = 0.2, Case 3 at
𝑡𝑘 = 0.05(𝑘 + 1) (𝑘 = 0, . . . , 3), and Case 4 at 𝑡𝑘 = 0.012(𝑘 + 1) (𝑘 = 0, . . . , 14). For PG-sOED,
we set 𝐿 = 300 for Case 1–3 and 𝐿 = 3000 for Case 4. All cases use 𝑀 = 1000, 𝛼 = 0.01 with the
Adam optimizer, and 𝜎explore = 0.05. Performance evaluation of design policies is done using 104

test episodes.

Table 2.4: Setup of the four cases for contaminant source inversion in a convection-diffusion field.

Case 1 Case 2 Case 3 Case 4
Number of experiments 𝑁 = 2 𝑁 = 4 𝑁 = 15

Prior of \𝑥 and \𝑦 \𝑥 , \𝑦 ∼ U([0, 1])
Prior of \ℎ \ℎ = 0.05 \ℎ ∼ U([0.02, 0.1])

Prior of \𝑠 \𝑠 =

{
0 if 𝑡 < 0.16
2 if 𝑡 ≥ 0.16 \𝑠 = 2 \𝑠 ∼ U([0, 5])

Initial physical state 𝑥0,𝑝 = [0.5, 0.5]
Design constraint 𝑑𝑘 ∈ [−0.25, 0.25]2 𝑥𝑘,𝑝 ∈ [0, 1]2

Velocity field 𝑢𝑥 = 𝑢𝑦 = 0 𝑢𝑥 = 𝑢𝑦 = 10𝑡/0.2
Noise scale 𝜎𝜖 = 0.1 𝜎𝜖 = 0.05

Cost function 𝑓𝑐 (𝑑𝑘) ∥𝑑𝑘 ∥2 ∥𝑑𝑘 ∥ −
√

2
40 𝑑𝑘 · 𝑢(𝑡𝑘)

Cost coefficient 𝑐𝑞 = 0.5 𝑐𝑞 = 0 𝑐𝑞 = 0.2 𝑐𝑞 = 0

26

2.3.2.2 Surrogate model

Solving the forward model Eqn. (2.26) using finite volume is still computationally viable for PG-
sOED, but expensive. One strategy to accelerate the computation is to employ surrogate models to
replace the original forward model. We use DNNs to construct surrogate models of 𝐺 (𝑧, 𝑡𝑘 ; \) for
𝑘 = 0, . . . , 𝑁 − 1. Each DNN uses a 5-dimensional input layer taking 𝑧 and \ except for \𝑠 (note
that 𝐺 is linearly proportional to \𝑠), five hidden layers with 40, 80, 40, 20, and 10 nodes, and a
scalar output 𝐺. The architecture of the surrogate forward model is summarized in Table 2.5. A
dataset is generated by solving for 𝐺 on 2000 samples of \ drawn from its prior distribution. These
concentration values are then first restricted to only the domain that is reacheable by the vehicle
(due to the design constraint), then shuffled across \ and split 80% for training and 20% for testing.
We achieve test mean-squared-errors of around 10−6 for all surrogate models. Figure 2.5 provides
an example comparing the concentration contours from 𝑡 = 0.05 and 𝑡 = 0.2 of Case 2 using the
DNN surrogates (left column) and finite volume (right column), appearing nearly identical. More
importantly, the surrogate models provide a significant speedup over the finite volume solver by a
factor of 105.

Table 2.5: Architecture of the surrogate forward model.

Layer Description Dimension Activation

Input [𝑧𝑥 , 𝑧𝑦, \𝑥 , \𝑦, \ℎ] 5 -
H1 Dense 40 ReLU
H2 Dense 80 ReLU
H3 Dense 40 ReLU
H4 Dense 20 ReLU
H5 Dense 10 ReLU

Output Dense 1 -

2.3.2.3 Case 1

Case 1 is diffusion-only, its purpose it to comparing PG-sOED with greedy design. We begin by
offering a physical intuition about high-value design locations via Fig. 2.6 that plots the expected
utility for a single-experiment design. The key insight is that high-value experiments are at the
corners of the domain. This can be explained by the isotropic nature of diffusion process that
carries information about distance but not direction, thereby leading to posterior distributions that
resemble an arc of a circle (Fig. 2.7). Combined with the rectangular domain geometry and
Neumann boundary conditions, the “covered area” of high-probability posterior is smallest (i.e.,

27

(a) 𝑡 = 0.05 (b) 𝑡 = 0.2

Figure 2.5: Comparison of the concentration field 𝐺 at 𝑡 = 0.05 and 𝑡 = 0.2 for Case 2 using the
DNN surrogate (left column) and finite volume (right column). The surrogate solutions appear
very accurate.

least uncertain), averaged over all possible \ source locations, when the measurements are taken at
the corners.

zx

0.0 0.2 0.4 0.6 0.8 1.0

zy

0.0
0.2

0.4
0.6

0.8
1.0

U

0.65
0.70

0.75

0.80

0.85

Figure 2.6: Case 1. Expected utility for one-experiment design at 𝑡 = 0.32. The best design
locations are at the corners.

With the insight that corners are good, understanding the behavior of PG-sOED becomes easier.
Figure 2.8a shows the posterior contours after 1 and 2 experiments (i.e., 𝑝(\ |𝐼1) and 𝑝(\ |𝐼2)) of an
episode instance when using the PG-sOED policy; Fig. 2.8b displays those for the greedy design
policy. In each plot, the purple star represents the true source location for that episode, the red
dot represents the physical state (vehicle location), and the red line segment tracks the vehicle
displacement (design) from the preceding location.

28

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y

0
1
2
3
4
5
6
7
8

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

source sensor

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Figure 2.7: Case 1. Posterior PDF contours for the one-experiment design under different design
locations (red dot) and a sample source location (purple star). The posteriors exhibit shapes
resemble an arc of a circle, due to the isotropic nature of diffusion and the domain geometry.

In PG-sOED (Fig. 2.8a), the first design moves the vehicle towards a corner despite the source is
off at 𝑡0 and that no concentration is measured, incurring a negative reward 𝑔0 = −0.040 due to the
movement penalty. The greedy design realizes the source is off and remains at the initial location
(center), keeping its reward at 𝑔0 = 0. At this point, it would appear greedy design is performing
better. The source then becomes active in the second experiment at 𝑡1, and both PG-sOED and
greedy shift the vehicle towards a corner. However, PG-sOED is able to arrive much closer to the
corner and obtains a more informative measurement compared to greedy design, since PG-sOED
has already made a head start in the first experiment. With a “sacrifice” of seemingly fruitless
first experiment, PG-sOED is able to better position the vehicle for a much more lucrative second
experiment, such that the expected total reward over the entire design horizon is maximized (total
reward = 2.941 for PG-sOED versus total reward = 1.959 for greedy). We further generate 104

test episodes under different samples of true \ and collect their realized total rewards in Fig. 2.9.
The mean total reward for PG-sOED is 0.615 ± 0.007, higher than greedy design’s 0.552 ± 0.005,
where the ± is the MC standard error. The information-gain component of this mean total reward
for PG-sOED is 0.712 ± 0.007, which is also higher than greedy design’s 0.614 ± 0.005. This
indicates PG-sOED’s ability to find efficient tradeoffs of the movement cost in order to achieve a
much higher information gain.

2.3.2.4 Case 2

Case 2 incorporates convection in addition to diffusion, its aim is to compare PG-sOED with both
greedy and batch designs. In Fig. 2.10, we plot the physical states 𝑥1,𝑝 and 𝑥2,𝑝 (i.e., vehicle locations
after the first and second experiments) from 104 episodes sampled from PG-sOED, greedy, and
batch designs. We observe both PG-sOED and batch design initially move the vehicle towards the
top-right (convective direction) and then turn back; greedy design roughly moves in the opposite
direction. Notably, 𝑑1 (design for the second experiment) for batch design is fixed regardless of the

29

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y

p(|I1)

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0
p(|I2)

0
4
8
12
16
20
24
28
32

(a) PG-sOED, total reward = 2.941
(information gain = 3.038, movement cost = 0.097)

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y

p(|I1)

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0
p(|I2)

0
4
8
12
16
20
24
28
32

(b) Greedy, total reward = 1.959
(information gain = 2.022, movement cost = 0.063)

Figure 2.8: Case 1. An episode instance obtained by PG-sOED and greedy design. The purple star
represents the true \, red dot represents the physical state (vehicle location), red line segment tracks
the vehicle displacement (design) from the preceding location, and contours plot the posterior PDF.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Reward

0

500

1000

1500

2000

Co
un

ts

PG-sOED
Greedy

Figure 2.9: Case 1. Histograms of total rewards from 104 test episodes from PG-sOED and
greedy design. The mean total reward for PG-sOED is 0.615 ± 0.007, higher than greedy design’s
0.552 ± 0.005.

30

outcome of the first experiment, which is in contrast to PG-sOED and greedy that are adaptive.
We explain the policy behaviors through Fig. 2.11, which plots the expected utility contours

respectively for performing a single-experiment design at 𝑡 = 𝑡0 = 0.05 and 𝑡 = 𝑡1 = 0.2. For
𝑡0 in Fig. 2.11a, the optimal design is around (0.3, 0.3), which explains the initial movement of
greedy design towards the bottom-left. For 𝑡1, however, Fig. 2.11b reveals that the top-right region
becomes more informative. Physically, this is a result of the convection velocity growing larger
towards the top-right direction, and more information can be obtained if we “catch” the flow at
a downstream position. This phenomenon explains why PG-sOED and batch design both move
towards the top-right even in the first experiment, since both can plan for a more informative second
experiment.

Returning to the two-experiment design, Fig. 2.12 summarizes the total rewards from 104 test
episodes with PG-sOED reaching the highest mean at 1.344 ± 0.008 followed by batch design’s
1.264±0.007 and greedy design’s 1.178±0.010. The advantage of PG-sOED is greater over greedy
and less over batch, suggesting a more prominent role of lookahead than adaptation in this case.
From the histograms, greedy design has many low-reward episodes, which correspond to scenarios
when the true source location is in the upper-right (greedy design’s first move is always to the
bottom-left). At the same time, greedy design has a similar distribution of high-reward episodes as
sOED because it is able to adapt. In contrast, batch design does not have many low-reward episodes
since its first move is always to the upper-right. It also has fewer high-reward episodes due to its
inability to adapt.

Lastly, we provide some examples of posteriors resulting from different episodes. Figure 2.13
presents scenarios where PG-sOED visibly achieves a narrower posterior compared to greedy and
batch designs, which is also reflected quantitatively through the higher total reward. Meanwhile,
there are also scenarios where PG-sOED achieves a lower total reward, such as those shown in
Fig. 2.14. Since the true \ is not known when designing the experiments, PG-sOED thus optimizes
the expected total reward (i.e., averaged) over all possible such scenarios.

2.3.2.5 Cases 3 and 4

The last two cases, Cases 3 and 4, demonstrate the use of PG-sOED for a higher dimensional
parameter space and longer sequence of experiments. Note that the movement cost for Case 3 has
an additional term that penalizes when moving against the convective flow.

Case 3 additionally incorporates source strength \𝑠 and width \ℎ as unknown parameters for a
total of 𝑁\ = 4, and increases the number of experiments to 𝑁 = 4. From Fig. 2.15, we see that
PG-sOED’s mean total reward (3.435± 0.016) outperforms both greedy (3.057± 0.015) and batch
(2.856 ± 0.012) designs. The information-gain component of the mean total reward for PG-sOED
(3.763 ± 0.016) is also noticeably better than greedy (3.258 ± 0.016) and batch (3.104 ± 0.012)

31

Figure 2.10: Case 2. Vehicle locations of episodes obtained from PG-sOED, greedy, and batch
designs.

32

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
zx

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

z y

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

(a) 𝑡 = 0.05

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
zx

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

z y

0.04

0.12

0.20

0.28

0.36

0.44

0.52

0.60

0.68

(b) 𝑡 = 0.2

Figure 2.11: Case 2. Expected utility versus sensor location if conducting a single-experiment
design at 𝑡 = 0.05 and 𝑡 = 0.2.

0 1 2 3 4 5 6
Reward

0

200

400

600

800

1000

1200

Co
un

ts

PG-sOED
Greedy

(a) PG-sOED versus greedy

0 1 2 3 4 5 6
Reward

0

100

200

300

400

500

600

700

Co
un

ts

PG-sOED
Batch

(b) PG-sOED versus batch

Figure 2.12: Case 2. Histograms of total rewards from 104 test episodes generated using PG-sOED,
greedy, and batch designs. The mean total reward for PG-sOED is 1.344±0.008, higher than greedy
design’s 1.178 ± 0.010 and batch design’s 1.264 ± 0.007.

33

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y
p(|I1)

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0
p(|I2)

0
2
4
6
8
10
12
14
16

(a) PG-sOED, \ = (0.7, 0.9), total reward = 2.020

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y

p(|I1)

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0
p(|I2)

0
2
4
6
8
10
12
14
16

(b) Greedy, \ = (0.7, 0.9), total reward = 0.493

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y

p(|I1)

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0
p(|I2)

0
10
20
30
40
50
60
70

(c) PG-sOED, \ = (0.8, 0.8), total reward = 3.497

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y

p(|I1)

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0
p(|I2)

0
10
20
30
40
50
60
70

(d) Batch, \ = (0.8, 0.8), total reward = 3.120

Figure 2.13: Case 2. Examples of episode instances where PG-sOED outperforms greedy and
batch designs. The purple star represents the true \, red dot represents the physical state (vehicle
location), red line segment tracks the vehicle displacement (design) from the preceding location,
and contours plot the posterior PDF.

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y

p(|I1)

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0
p(|I2)

0
2
4
6
8
10
12
14

(a) PG-sOED, \ = (0.1, 0.4), total reward = 1.076

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y

p(|I1)

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0
p(|I2)

0
2
4
6
8
10
12
14

(b) Greedy, \ = (0.1, 0.4), total reward = 1.687

Figure 2.14: Case 2. Examples of episode instances where greedy design outperforms PG-sOED.
The purple star represents the true \, red dot represents the physical state (vehicle location), red
line segment tracks the vehicle displacement (design) from the preceding location, and contours
plot the posterior PDF.

34

designs. In particular, PG-sOED features a prominent bimodal distribution of the total rewards,
but also a heavier tail to the right leading to an overall greater mean compared to greedy and
batch designs. Figure 2.16 shows the physical states 𝑥𝑘+1,𝑝 (i.e., vehicle locations after the 𝑘-th
experiments) from 104 test episodes following PG-sOED, greedy, and batch designs. As expected,
batch design produces identical movement paths since it is non-adaptive, while the PG-sOED and
greedy designs scatter into the entire domain. Notably, we do not observe much movement to
the left and bottom regions over the four experiments. This behavior can be explained by that (i)
moving towards the bottom-left is against the convective direction and requires a higher movement
cost, and (ii) the bottom-left offers lower information since the convection carries the contaminant
towards the top-right.

0 2 4 6 8 10
Reward

0

100

200

300

400

Co
un

ts

PG-sOED
Greedy

(a) PG-sOED versus greedy

0 2 4 6 8 10
Reward

0

100

200

300

400

Co
un

ts

PG-sOED
Batch

(b) PG-sOED versus batch

Figure 2.15: Case 3. Histograms of total rewards from 104 test episodes generated using PG-sOED,
greedy, and batch designs. The mean total reward for PG-sOED is 3.435±0.016, higher than greedy
design’s 3.057 ± 0.015 and batch design’s 2.856 ± 0.012.

We explain the policy behaviors with the aid of Fig. 2.17, which shows the marginal posterior
PDF contours from episode instances obtained by PG-sOED, greedy, and batch designs. From
the figure, we observe the first move for PG-sOED is towards the bottom-right, which appears
counter-intuitive since the convective flows is towards the top-right. Moreover, the expected utility
for designing a single experiment at 𝑡0, shown in Fig. 2.18, further suggests “staying still” is favored
since its maximum is near the center of the domain; indeed this is realized and adopted by the
greedy and batch designs as seen in Fig. 2.17. However, moving towards the bottom-right is in
fact an excellent design for the long-term utility. This can be explained by recognizing that the
top-right region indeed offers the most informative measurements and all of the design strategy will
eventually suggest an experiment there. However, taking a measurement in bottom-right region
provides information from an orthogonal direction that enhances the future information gain from
those top-right measurements. For example, if the true source location is near the bottom, the

35

Figure 2.16: Case 3. Vehicle locations from 104 test episodes generated using PG-sOED, greedy,
and batch designs (rows) for experiments 1–4 (columns).

36

bottom-right experiment can detect its presence and adapt future experiments there to gain more
information; if the true source location is near the top, the bottom-right experiment can detect its
absence and substantially narrow down the posterior probability there and guide future experiments
back towards the top-right. Furthermore, the best opportunity to move in this “off-stream” direction
is in the first experiment, where the convective speed is lowest and so the penalty for moving against
the convective flow is minimum. Overall, PG-sOED is able to reveal this low-cost information-
orthogonal first move that enhances the value of subsequent experiments.

Lastly, Case 4 extends to designing 𝑁 = 15 experiments using PG-sOED. When designing more
experiments such as in this case, greedy design becomes very expensive and no longer practical
due to its need for repeated Bayesian inference and incremental KL-divergence estimates at every
experiment. This is in contrast to PG-sOED which remains inexpensive since it requires just a
single terminal Bayesian inference and KL-divergence for each episode. We present the histogram
of total rewards for PG-sOED and batch designs (greedy no longer practical) in Fig. 2.19, where
the advantage of PG-sOED appears prominent.

2.4 Summary

In this chapter, we introduce a comprehensive mathematical formulation for sOED that incorporates
a state-space representation. We provide a proof of sOED’s optimality, highlighting its superiority
over batch and greedy designs. We then introduce new, computationally efficient methods to solve
the sOED problem using policy gradient method (PG-sOED). We derive the PG expressions for
sOED, enabling gradient-based optimization, and utilize deep neural networks to learn the policy
function, value function and surrogate model.

The key contributions and novelty of our PG-sOED method are summarized as follows.

• We formulate the sOED problem as a finite-horizon POMDP under a Bayesian setting and
with information-theoretic utilities. This formulation bridges the concepts of sequential
experimental design with state-space modeling.

• We show that sOED generalizes the commonly-used batch and greedy design strategies.

• We provide a proof demonstrating the equivalence of the objective function when utilizing
terminal information gain and incremental information gain.

• We present the new PG-sOED algorithm by deriving its policy gradient expressions, forming
its Monte Carlo estimator, and adopting DNN parameterizations for the policy and value
functions.

37

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y

p(x, y|I1)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0.02 0.04 0.06 0.08 0.10
h

0

1

2

3

4

5

s

p(h, s|I1)

1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

p(x, y|I2)

0.0
0.8
1.6
2.4
3.2
4.0
4.8
5.6
6.4

0.02 0.04 0.06 0.08 0.10
h

0

1

2

3

4

5

p(h, s|I2)

0.0
0.8
1.6
2.4
3.2
4.0
4.8
5.6

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

p(x, y|I3)

0
2
4
6
8
10
12
14
16

0.02 0.04 0.06 0.08 0.10
h

0

1

2

3

4

5

p(h, s|I3)

0
1
2
3
4
5
6
7
8

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

p(x, y|I4)

0
8
16
24
32
40
48
56

0.02 0.04 0.06 0.08 0.10
h

0

1

2

3

4

5

p(h, s|I4)

0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5

(a) PG-sOED, \ = (0.95, 0.8, 0.06, 0.2), total reward = 3.818 (information gain
= 4.156, movement cost = 0.338)

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y

p(x, y|I1)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0.02 0.04 0.06 0.08 0.10
h

0

1

2

3

4

5

s

p(h, s|I1)

0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

p(x, y|I2)

0.0
0.8
1.6
2.4
3.2
4.0
4.8
5.6

0.02 0.04 0.06 0.08 0.10
h

0

1

2

3

4

5

p(h, s|I2)

0.0
0.6
1.2
1.8
2.4
3.0
3.6
4.2

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

p(x, y|I3)

0.0
1.5
3.0
4.5
6.0
7.5
9.0
10.5

0.02 0.04 0.06 0.08 0.10
h

0

1

2

3

4

5

p(h, s|I3)

0.0
0.6
1.2
1.8
2.4
3.0
3.6
4.2
4.8

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

p(x, y|I4)

0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0

0.02 0.04 0.06 0.08 0.10
h

0

1

2

3

4

5

p(h, s|I4)

0
1
2
3
4
5
6
7
8

(b) Greedy, \ = (0.95, 0.8, 0.06, 0.2), total reward = 2.699 (information gain =

2.964, movement cost = 0.265)

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y

p(x, y|I1)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0.02 0.04 0.06 0.08 0.10
h

0

1

2

3

4

5

s

p(h, s|I1)

0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

p(x, y|I2)

0.0
0.6
1.2
1.8
2.4
3.0
3.6
4.2

0.02 0.04 0.06 0.08 0.10
h

0

1

2

3

4

5

p(h, s|I2)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

p(x, y|I3)

0.0
1.5
3.0
4.5
6.0
7.5
9.0

0.02 0.04 0.06 0.08 0.10
h

0

1

2

3

4

5

p(h, s|I3)

0.0
0.8
1.6
2.4
3.2
4.0
4.8
5.6

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

p(x, y|I4)

0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5

0.02 0.04 0.06 0.08 0.10
h

0

1

2

3

4

5

p(h, s|I4)

0.0
1.5
3.0
4.5
6.0
7.5
9.0

(c) Batch, \ = (0.95, 0.8, 0.06, 0.2), total reward= 2.380 (information gain= 2.628,
movement cost = 0.248)

Figure 2.17: Case 3. Example episode instances using PG-sOED, greedy and batch designs.

38

zx

0.0 0.2 0.4 0.6 0.8 1.0

z y

0.0
0.2

0.4
0.6

0.8
1.0

U

0.2
0.3
0.4
0.5
0.6
0.7

Figure 2.18: Case 3. Expected utility for one-experiment design at 𝑡1 = 0.05. The best design
location is the domain center.

0 2 4 6 8 10
Reward

0

50

100

150

200

250

300

350

400

Co
un

ts

PG-sOED
Batch

Figure 2.19: Case 4. Histograms of total rewards from 104 test episodes generated using PG-sOED
and batch designs. The mean total reward for PG-sOED is 4.853±0.018, higher than batch design’s
3.581 ± 0.016.

39

• We validate PG-sOED on a benchmark example and demonstrate its advantages over other
design baselines via a sensor movement problem for contaminant source inversion in a
convection-diffusion field. Notably, we provide explanations for the resulting policy behaviors
using knowledge about the underlying physical process.

• We make available our PG-sOED code at https://github.com/wgshen/sOED.

40

https://github.com/wgshen/sOED

CHAPTER 3

Variational Sequential Optimal Experimental Design

The sequential optimal experimental design (sOED) framework introduced in Chapter 2 faces
two significant challenges. The first is the expensive computations for estimating the Kullback-
Leibler (KL) divergence reward terms, especially in high-dimensional parameter spaces. The
second is that sOED is only formulated for OED targeting single-model parameter inference, and
cannot tackle scenarios with multiple models and different design objectives beyond parameter
inference (e.g., OED for model discrimination, goal-oriented prediction, etc.). In this chapter,
we introduce variational sequential optimal experimental design (vsOED) that provides an
enhanced mathematical framework and new numerical methods to overcome these challenges.

This chapter begins with a brief review on the formulation of sOED, and introduces the new
entities and notations needed for accommodating multi-model scenarios, and a unified reward
structure that encompasses information gain for model discrimination, parameter inference, and
goal-oriented prediction, even in the presence of nuisance parameters. We further adopt a lower
bound estimator for the expected utility through variational approximation to the Bayesian posteriors
in order to bypass the intensive calculations of KL divergence.

We then introduce the numerical methods for solving vsOED problems. The optimal design
policy is obtained by simultaneously maximizing the variational lower bound and performing pol-
icy gradient updates, utilizing advanced reinforcement learning (RL) techniques, such as replay
buffer and target network. Finally, we demonstrate vsOED for a range of OED problems targeting
parameter inference, model discrimination, and goal-oriented prediction. These cases encompass
explicit and implicit likelihoods, nuisance parameters, and physics-based partial differential equa-
tion (PDE) models. The results indicate substantially improved sample efficiency and reduced
number of forward model simulations compared to existing sequential design algorithms.

The content of this chapter corresponds to the author’s publication [129], and the code is
available at: https://github.com/wgshen/vsOED.

41

https://github.com/wgshen/vsOED

3.1 Problem formulation

3.1.1 Background

Similar to the framework of sOED in Chapter 2, we focus on OED for a finite total of 𝑁 experiments
indexed by 𝑘 ∈ {0, . . . , 𝑁 − 1}, where each experiment can be conducted under design 𝑑𝑘 ∈ D𝑘 ⊆
R𝑁𝑑 and produces an observation 𝑦𝑘 ∈ R𝑁𝑦 . The information sequence of all past experiments’
designs and observations is denoted by 𝐼𝑘 = [𝑑0, 𝑦0, . . . , 𝑑𝑘−1, 𝑦𝑘−1] (with 𝐼0 = ∅). However, in
contrast to sOED that only considers a single model with unknown parameters, in vsOED we will
further consider a discrete set of M candidate models indexed by 𝑚 ∈ {1, . . . ,M} for describing
the experimental process. Each model contains unknown parameters of interest (PoIs) \𝑚 ∈ R𝑁\𝑚

we wish to learn from the experiments, nuisance parameters [𝑚 ∈ R𝑁[𝑚 that are uncertain but not
targeted for learning, and associated predictive quantities of interest (QoIs) 𝑧𝑚 ∈ R𝑁𝑧𝑚 that only
depend on this model’s parameters. For simplicity, we present these variables to be continuous
and their dimensions remain constant across experiments; however this is not a requirement. The
relationships of these entities may be summarized via an observation model

𝑦𝑘 = 𝐺𝑘 (\𝑚, [𝑚, 𝑑𝑘 ;𝑚, 𝐼𝑘) + 𝜖𝑘 (3.1)

where 𝐺𝑘 is the observation forward mapping and 𝜖𝑘 is the observation noise, and a predictive
model

𝑧𝑚 = 𝐻 (\𝑚, [𝑚;𝑚) (3.2)

where 𝐻 is the predictive forward mapping. In many engineering and science systems, the forward
mappings 𝐺𝑘 and 𝐻 involve the most expensive computations (e.g., solving systems of PDEs).
Hence, the number of forward solves is often used as the unit for computational cost assessments.

Adopting a Bayesian approach, after the 𝑘th experiment is carried out, the joint probability
density function (PDF) on 𝑚, \𝑚, [𝑚 can be updated following Bayes’ rule:

𝑝(𝑚, \𝑚, [𝑚 |𝑑𝑘 , 𝑦𝑘 , 𝐼𝑘) =
𝑝(𝑦𝑘 |𝑚, \𝑚, [𝑚, 𝑑𝑘 , 𝐼𝑘) 𝑝(𝑚, \𝑚, [𝑚 |𝐼𝑘)

𝑝(𝑦𝑘 |𝑑𝑘 , 𝐼𝑘)
(3.3)

= 𝑃(𝑚 |𝐼𝑘+1) 𝑝(\𝑚, [𝑚 |𝑚, 𝐼𝑘+1),

where 𝑝(𝑚, \𝑚, [𝑚 |𝐼𝑘) is the prior, 𝑝(𝑦𝑘 |𝑚, \𝑚, [𝑚, 𝑑𝑘 , 𝐼𝑘) is the likelihood, 𝑝(𝑦𝑘 |𝑑𝑘 , 𝐼𝑘) is the
marginal likelihood; and the joint posterior 𝑝(𝑚, \𝑚, [𝑚 |𝑑𝑘 , 𝑦𝑘 , 𝐼𝑘) (and similarly for the prior)
can be factored into product of 𝑃(𝑚 |𝐼𝑘+1) the posterior probability mass function (PMF) of model
and 𝑝(\𝑚, [𝑚 |𝑚, 𝐼𝑘+1) the posterior PDF of parameters conditioned on model 𝑚. In the remainder

42

of this chapter, we adopt the convention where when 𝑚 is not explicitly mentioned, conditioning
on 𝑚 is implied through other variables’ subscripts, e.g., 𝑝(\𝑚, [𝑚 |𝐼𝑘) = 𝑝(\𝑚, [𝑚 |𝑚, 𝐼𝑘). Upon
propagating the parameter posterior through 𝐻, the posterior-predictive PDF for 𝑧𝑚 becomes

𝑝(𝑧𝑚 |𝐼𝑘+1) =
∫
Θ,H

𝑝(\𝑚, [𝑚 |𝐼𝑘+1) 𝑝(𝑧𝑚 |\𝑚, [𝑚) 𝑑\𝑚 𝑑[𝑚 . (3.4)

If 𝐻 is a deterministic model, then 𝑝(𝑧𝑚 |\𝑚, [𝑚) collapses to a Dirac delta function.
The posterior after the 𝑘th experiment 𝑝(𝑚, \𝑚, [𝑚 |𝑑𝑘 , 𝑦𝑘 , 𝐼𝑘) = 𝑝(𝑚, \𝑚, [𝑚 |𝐼𝑘+1) serves as

the prior for the (𝑘 + 1)th experiment and is again applied to Eqn. (3.3). Hence, the Bayesian
framework can be naturally and recursively used for sequential experiment.

3.1.2 Sequential optimal experimental design formulation

Below we briefly review the MDP-baseformulation of sOED and the core components of a Markov
decision process (MDP) for better understanding.

State. 𝑥𝑘 = [𝑥𝑘,𝑏, 𝑥𝑘,𝑝] ∈ X𝑘 is the state of the system and environment prior to the 𝑘th
experiment. The belief state 𝑥𝑘,𝑏 fully captures the state of uncertainty in 𝑚, \𝑚, [𝑚, and 𝑧𝑚,
and the physical state 𝑥𝑘,𝑝 tracks any non-uncertain design-relevant quantities. The belief state
conceptualizes as the posterior following a Bayesian paradigm for updating the rational belief
about an outcome’s plausibility [38, 47]. In practice, this amounts to numerically representing
the posteriors in Eqn. (3.3) and (3.4) or their sufficient statistics. We adopt the trivial sufficient
statistics of the posterior, 𝐼𝑘 , which also captures the physical state since it records the history of
all past experiments; hence, we will adopt 𝑥𝑘 = 𝐼𝑘 for the rest of this chapter. The effectiveness of
using 𝐼𝑘 to represent 𝑥𝑘 has already been verified in the numerical cases presented in Sec. 2.3. The
main drawback is that dim(𝐼𝑘) grows with 𝑘 , however it is always capped due to finite 𝑁 .

Design (action) and policy. 𝜋 = {`𝑘 : X𝑘 ↦→ D𝑘 }𝑁−1
𝑘=0 is the deterministic policy mapping from

state space to design (action) space. The design for the 𝑘th experiment is thus 𝑑𝑘 = `𝑘 (𝐼𝑘).
State transition. 𝑥𝑘+1 = F𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) describes the transition from state 𝑥𝑘 to state 𝑥𝑘+1 after

conducting the 𝑘th experiment under design 𝑑𝑘 and observing 𝑦𝑘 . Since we represent the state
using 𝐼𝑘 , the transition is simply a concatenation 𝐼𝑘+1 = [𝐼𝑘 , 𝑑𝑘 , 𝑦𝑘].

Utility (reward). 𝑔𝑘 (𝐼𝑘 , 𝑑𝑘 , 𝑦𝑘) ∈ R denotes the immediate reward from the 𝑘th experiment, and
𝑔𝑁 (𝐼𝑁) ∈ R is the terminal reward that can be only computed after all experiments are completed.
Examples of information gain (IG)-based rewards will be provided in Sec. 3.1.3 and Sec. 3.1.4.

43

Problem statment. The sOED problem seeks the policy that maximizes the expected utility𝑈:

𝜋∗ = arg max
𝜋={`0,...,`𝑁−1}

{
𝑈 (𝜋) = E𝐼𝑁 |𝜋,𝐼0

[
𝑁−1∑︁
𝑘=0

𝑔𝑘 (𝐼𝑘 , 𝑑𝑘 , 𝑦𝑘) + 𝑔𝑁 (𝐼𝑁)
]}

(3.5)

s.t. 𝑑𝑘 = `𝑘 (𝐼𝑘) ∈ D𝑘 ,

𝐼𝑘+1 = [𝐼𝑘 , 𝑑𝑘 , 𝑦𝑘], for 𝑘 = 0, . . . , 𝑁 − 1, .

This sOED framework has been shown to generalize the batch and sequential greedy designs in
Sec. 2.1.3.

3.1.3 Experimental design utilities

Similar to Sec. 2.1.4, we propose two IG-based reward formulations incorporating various design
objectives.

1) Terminal-information-gain (TIG) targets the overall IG (KL divergence) from all 𝑁 exper-
iments via the terminal reward (without loss of generality, contributions from non-information
reward are omitted):

𝑔𝑘 (𝐼𝑘 , 𝑑𝑘 , 𝑦𝑘) = 0, 𝑘 = 0, . . . , 𝑁 − 1 (3.6)

𝑔𝑁 (𝐼𝑁) = 𝛼M𝐷KL (𝑃(𝑚 |𝐼𝑁) | | 𝑃(𝑚))
+ E𝑚 |𝐼𝑁 [𝛼Θ𝐷KL (𝑝(\𝑚 |𝐼𝑁) | | 𝑝(\𝑚)) + 𝛼𝑍𝐷KL (𝑝(𝑧𝑚 |𝐼𝑁) | | 𝑝(𝑧𝑚))] , (3.7)

where 𝛼M ∈ [0, 1] (for model), 𝛼Θ ∈ [0, 1] (for PoIs) and 𝛼𝑍 ∈ [0, 1] (for QoIs) are the
weights/switches of IG from the different variables. For example, setting 𝛼M = 1 and 𝛼Θ = 𝛼𝑍 = 0
reduces to only IG for model probability (OED for model discrimination); 𝛼Θ = 1 and 𝛼M = 𝛼𝑍 = 0
reduces to IG on PoIs (OED for inference); 𝛼𝑍 = 1 and 𝛼Θ = 𝛼M = 0 reduces to IG on QoIs
(OED for goal-oriented prediction). In the special case when 𝛼M = 𝛼Θ = 1 and 𝛼𝑍 = 0, or
𝛼M = 𝛼𝑍 = 1 and 𝛼Θ = 0, the terminal reward is equivalent to 𝐷KL (𝑝(𝑚, \𝑚 |𝐼𝑁) | | 𝑝(𝑚, \𝑚)) and
𝐷KL (𝑝(𝑚, 𝑧𝑚 |𝐼𝑁) | | 𝑝(𝑚, 𝑧𝑚)), respectively (see Appendix B.1). When nuisance parameter [𝑚 is
absent, one should not set both 𝛼Θ and 𝛼𝑍 to 1, since the IG on 𝑧𝑚 is fully absorbed into the IG on
\𝑚 (Appendix B.2).

2) Incremental-information-gain (IIG) adopts incremental IG for the immediate rewards:

𝑔𝑘 (𝐼𝑘 , 𝑑𝑘 , 𝑦𝑘) = 𝛼M𝐷KL (𝑃(𝑚 |𝐼𝑘+1) | | 𝑃(𝑚 |𝐼𝑘)) + E𝑚 |𝐼𝑘+1

[
𝛼Θ𝐷KL (𝑝(\𝑚 |𝐼𝑘+1) | | 𝑝(\𝑚 |𝐼𝑘))

+ 𝛼𝑍𝐷KL (𝑝(𝑧𝑚 |𝐼𝑘+1) | | 𝑝(𝑧𝑚 |𝐼𝑘))
]
, 𝑘 = 0, . . . , 𝑁 − 1 (3.8)

𝑔𝑁 (𝐼𝑁) = 0. (3.9)

44

We denote 𝑈𝑇 (𝜋) to be the resulting sOED expected utility from Eqn. (3.5) when adopting the
TIG rewards (Eqn. (3.6) and (3.7)), and𝑈𝐼 (𝜋) when adopting the IIG rewards (Eqn. (3.8) and (3.9)).

Theorem 3 (Terminal-incremental equivalence). 𝑈𝑇 (𝜋) = 𝑈𝐼 (𝜋) for any policy 𝜋.

A proof is provided in Appendix B.3. Hence, both formulations induce the same sOED problem.

3.1.4 One-point estimate for rewards

Direct evaluation of the expected utility requires repeated KL divergence (integral) estimates. Naı̈ve
estimates using grid discretization or MC integration would be highly expensive. Similar to [55], we
propose one-point estimates that are much less costly. The 1) one-point-TIG formulation involves

¤𝑔𝑘 (𝐼𝑘 , 𝑑𝑘 , 𝑦𝑘) = 0, 𝑘 = 0, . . . , 𝑁 − 1 (3.10)

¤𝑔𝑁 (𝐼𝑁) = 𝛼M ln
𝑃(¤𝑚 |𝐼𝑁)
𝑃(¤𝑚) + 𝛼Θ ln

𝑝(¤\𝑚 |𝐼𝑁)
𝑝(¤\𝑚)

+ 𝛼𝑍 ln
𝑝(¤𝑧𝑚 |𝐼𝑁)
𝑝(¤𝑧𝑚)

; (3.11)

and the 2) one-point-IIG involves

¤𝑔𝑘 (𝐼𝑘 , 𝑑𝑘 , 𝑦𝑘) = 𝛼M ln
𝑃(¤𝑚 |𝐼𝑘+1)
𝑃(¤𝑚 |𝐼𝑘)

+ 𝛼Θ ln
𝑝(¤\𝑚 |𝐼𝑘+1)
𝑝(¤\𝑚 |𝐼𝑘)

+ 𝛼𝑍 ln
𝑝(¤𝑧𝑚 |𝐼𝑘+1)
𝑝(¤𝑧𝑚 |𝐼𝑘)

, 𝑘 = 0, . . . , 𝑁 − 1 (3.12)

¤𝑔𝑁 (𝐼𝑁) = 0. (3.13)

In the above, ¤𝑚, ¤\𝑚, and ¤𝑧𝑚 are the “true” sample values that generated the sequence 𝐼𝑁 appearing
in the conditionals. The corresponding one-point estimate expected utility is:

¤𝑈 (𝜋) = E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚E𝐼𝑁 |𝜋,𝐼0, ¤𝑚, ¤\𝑚, ¤[𝑚

[
𝑁−1∑︁
𝑘=0

¤𝑔𝑘 (𝐼𝑘 , 𝑑𝑘 , 𝑦𝑘) + ¤𝑔𝑁 (𝐼𝑁)
]
. (3.14)

We denote ¤𝑈𝑇 (𝜋) to be the resulting expected utility from Eqn. (3.14) when adopting the one-
point-TIG rewards (Eqn. (3.10) and (3.11)), and ¤𝑈𝐼 (𝜋) when adopting the one-point-IIG rewards
(Eqn. (3.12) and (3.13)).

Theorem 4 (One-point estimate equivalence). 𝑈𝑇 (𝜋) = ¤𝑈𝑇 (𝜋) = ¤𝑈𝐼 (𝜋) = 𝑈𝐼 (𝜋) for any policy 𝜋.

A proof is provided in Appendix B.4. Hence, both the original sOED and one-point estimate
formulations, using either TIG or IIG, induce the same sOED problem. We note that for ¤𝑈𝐼 (𝜋), all
the intermediate posteriors cancel out and only the prior 𝑝(·) (i.e., 𝑝(·|𝐼0)) and the final posterior
𝑝(·|𝐼𝑁) survive. However, working with intermediate posteriors in the incremental rewards can

45

lead to denser rewards that improves numerical performance [14]. For any expected utility form,
the prior term 𝑝(·) may be omitted since it would only result in an objective shift and not affect the
arg-max (see Appendix B.5). For cases when the prior is difficult to compute (e.g., prior-predictive
𝑝(𝑧𝑚) =

∫
Θ,H 𝑝(\𝑚, [𝑚) 𝑝(𝑧𝑚 |\𝑚, [𝑚) 𝑑\𝑚 𝑑[𝑚 that needs to marginalize out \𝑚 and [𝑚), we will

drop the prior term and use the shifted expected utility for policy optimization.
The one-point estimates proposed in Sec. 3.1.4 still require posterior density evaluations. In-

spired by [56], we replace the true posteriors 𝑝(·|𝐼𝑘) with variational posterior approximations
𝑞(·|𝐼𝑘 ; 𝜙(·)), forming a lower bound estimator to the expected utility. The 1) variational-one-point-
TIG becomes

¤𝑔𝑘 (𝐼𝑘 , 𝑑𝑘 , 𝑦𝑘 ; 𝜙) = 0, 𝑘 = 0, . . . , 𝑁 − 1 (3.15)

¤𝑔𝑁 (𝐼𝑁 ; 𝜙) = 𝛼M ln
𝑞(¤𝑚 |𝐼𝑁 ; 𝜙M)

𝑃(¤𝑚) + 𝛼Θ ln
𝑞(¤\𝑚 |𝐼𝑁 ; 𝜙Θ𝑚

)
𝑝(¤\𝑚)

+ 𝛼𝑍 ln
𝑞(¤𝑧𝑚 |𝐼𝑁 ; 𝜙𝑍𝑚)

𝑝(¤𝑧𝑚)
; (3.16)

and the 2) variational-one-point-IIG becomes

¤𝑔𝑘 (𝐼𝑘 , 𝑑𝑘 , 𝑦𝑘 ; 𝜙) = 𝛼M ln
𝑞(¤𝑚 |𝐼𝑘+1; 𝜙M)
𝑞(¤𝑚 |𝐼𝑘 ; 𝜙M) + 𝛼Θ ln

𝑞(¤\𝑚 |𝐼𝑘+1; 𝜙Θ𝑚
)

𝑞(¤\𝑚 |𝐼𝑘 ; 𝜙Θ𝑚
)

+ 𝛼𝑍 ln
𝑞(¤𝑧𝑚 |𝐼𝑘+1; 𝜙𝑍𝑚)
𝑞(¤𝑧𝑚 |𝐼𝑘 ; 𝜙𝑍𝑚)

, 𝑘 = 0, . . . , 𝑁 − 1 (3.17)

¤𝑔𝑁 (𝐼𝑁 ; 𝜙) = 0, (3.18)

with the understanding that 𝑞(·|𝐼0; 𝜙(·)) is 𝑝(·|𝐼0). The corresponding variational one-point estimate
expected utility is:

¤𝑈 (𝜋; 𝜙) = E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚E𝐼𝑁 |𝜋,𝐼0, ¤𝑚, ¤\𝑚, ¤[𝑚

[
𝑁−1∑︁
𝑘=0

¤𝑔𝑘 (𝐼𝑘 , 𝑑𝑘 , 𝑦𝑘 ; 𝜙) + ¤𝑔𝑁 (𝐼𝑁 ; 𝜙)
]
. (3.19)

Following similar ideas in non-sequential OED [56, 7], we show this to be a lower bound of the
expected utility.

Theorem 5 (Variational lower bound). ¤𝑈 (𝜋; 𝜙) ≤ ¤𝑈 (𝜋) = 𝑈 (𝜋) for any policy 𝜋 and variational
posterior parameter 𝜙. The bound is tight if and only if 𝑞(·|𝐼𝑁 ; 𝜙(·)) = 𝑝(·|𝐼𝑁) (except the trivial
case when 𝛼M = 𝛼Θ = 𝛼𝑍 = 0).

A proof is provided in Appendix B.6. The variational sOED (vsOED) problem thus entails

46

finding the optimal variational approximation and the optimal policy to maximize the lower bound:

𝜋∗, 𝜙∗ = arg max
𝜋,𝜙

¤𝑈 (𝜋; 𝜙) (3.20)

s.t. 𝑑𝑘 = `𝑘 (𝐼𝑘) ∈ D𝑘 ,

𝐼𝑘+1 = [𝐼𝑘 , 𝑑𝑘 , 𝑦𝑘], for 𝑘 = 0, . . . , 𝑁 − 1.

We note that the tightness of the bound does not depend on the quality of the intermediate
variational posteriors (i.e., 𝑞(·|𝐼𝑘 ; 𝜙(·)) for 𝑘 = 1, . . . , 𝑁 − 1) due to their cancellations, and low-
quality intermediate posterior approximation may be used (see Appendix B.7). For example, when
all intermediate posteriors are approximated by the prior, then the one-point-IIG collapses to the
one-point-TIG. However, as we show in the results, good intermediate posterior approximations can
lead to better numerical performance. Non-IG-based reward contributions (that do not depend on
the posteriors) can also be incorporated into all previously introduced expected utility formulations
without affecting any of the theorem results.

In our implementation, we employ a neural network (NN) to approximate the model posterior
𝑞(¤𝑚 |𝐼𝑘 ; 𝜙M), which takes 𝑑𝑘 ’s and 𝑦𝑘 ’s and uses a softmax output activation to produce each
model’s probability. For parameter posteriors 𝑞(¤\𝑚 |𝐼𝑘 ; 𝜙Θ𝑚

) and 𝑞(¤𝑧𝑚 |𝐼𝑘 ; 𝜙𝑍𝑚), we use independent
Gaussian mixture models (GMMs) with NNs predicting the GMM weights, means, and standard
deviations. Truncated Gaussian is used for parameter with compact support. We also include
results using normalizing flows (NFs) for parameter posterior approximations, where the NF work
is contributed by collaborator Jiayuan Dong. Further details are in Sec. 3.2.2 and 3.2.3.

3.2 Numerical Methods for vsOED

3.2.1 Policy gradient and variational gradient

We employ gradient-based methods to numerically solve for the optimal vsOED policy. To extract
gradient, we explicitly parameterize policy 𝜋 by 𝑤 ∈ R𝑁𝑤 and denote the parameterized policy as
𝜋𝑤. Learning the policy (i.e. actor) explicitly offers significantly faster online usage compared
to dynamic programming sOED [74] and myopic design that require solving new optimization
problems at run time, which has been shown in Sec. 2.3.1. Using parameterized policy, the vsOED

47

problem becomes:

𝑤∗, 𝜙∗ = arg max
𝑤,𝜙

¤𝑈 (𝑤; 𝜙) (3.21)

s.t. 𝑑𝑘 = `𝑘,𝑤 (𝐼𝑘) ∈ D𝑘 ,

𝐼𝑘+1 = [𝐼𝑘 , 𝑑𝑘 , 𝑦𝑘], for 𝑘 = 0, . . . , 𝑁 − 1.

The gradient of the expected utility with respect to 𝜙 can be trivially shown (Leibniz rule) to be:

∇𝜙 ¤𝑈 (𝑤; 𝜙) = E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚E𝐼𝑁 |𝜋,𝐼0, ¤𝑚, ¤\𝑚, ¤[𝑚

[
𝑁−1∑︁
𝑘=0

∇𝜙 ¤𝑔𝑘 (𝐼𝑘 , 𝑑𝑘 , 𝑦𝑘 ; 𝜙) + ∇𝜙 ¤𝑔𝑁 (𝐼𝑁 ; 𝜙)
]
. (3.22)

The policy gradient can be derived near-identically following the proof in Appendix A.2 except that
the expressions for vsOED involve an additional outer expectation over ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚; therefore the
derivation is not repeated. The vsOED policy gradient is:

∇𝑤 ¤𝑈 (𝑤; 𝜙) = E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚

𝑁−1∑︁
𝑘=0
E𝐼𝑘 |𝜋,𝐼0, ¤𝑚, ¤\𝑚, ¤[𝑚

[
∇𝑤`𝑘,𝑤 (𝐼𝑘)∇𝑑𝑘𝑄

𝜋𝑤
𝑘
(𝐼𝑘 , 𝑑𝑘)

���
𝑑𝑘=`𝑘,𝑤 (𝐼𝑘)

]
, (3.23)

where𝑄𝜋𝑤
𝑘

is the actor-value function (i.e. critic) that quantifies the expected cumulative remaining
reward for conducting 𝑘th experiment at design 𝑑𝑘 and state 𝐼𝑘 and thereafter following policy 𝜋𝑤.

In our implementation, we use NNs to parameterize both the actor and critic (architecture in
Sec. 3.2.4), with the critic parameters being a ∈ R𝑁a . Details about the overall numerical algorithm
are provided in the following sections, including the NN architectures (Sec. 3.2.2 to 3.2.4), MC
estimate of the variational gradient (Sec. 3.2.5.1) and policy gradient (Sec. 3.2.5.3), formulation
and training of critic networks under TIG and IIG (Sec. 3.2.5.2), exploration strategy (Sec. 3.2.5.4),
and hyperparameter tuning (Sec. 3.2.5.5). The overall pseudocode is summarized in Algorithm 2.

Algorithm 2: The vsOED algorithm.
1: Initialize variational parameters 𝜙, actor (policy) parameters 𝑤, critic parameters a;
2: for 𝑙 = 1, . . . , 𝑛update do
3: Simulate 𝑛episode episodes: sample 𝑚, \𝑚, [𝑚 and 𝑧𝑚 from the prior, and then for

𝑘 = 0, . . . , 𝑁 − 1 sample 𝑑𝑘 = `𝑘,𝑤 (𝐼𝑘) + 𝜖explore and 𝑦𝑘 ∼ 𝑝(𝑦𝑘 |𝑚, \𝑚, [𝑚, 𝑑𝑘 , 𝐼𝑘);
4: Update newly generated information sequences

{
𝐼
(𝑖)
𝑁

}𝑛episode

𝑖=1
into replay buffer;

5: Sample 𝑛batch episodes from the replay buffer, update 𝜙 and
{
¤𝑔(𝑖)
𝑘

}𝑛batch

𝑖=1
using sampled batch;

6: Estimate gradients and update a and 𝑤 via gradient ascent using sampled batch;
7: end for
8: Return optimized policy network 𝜋𝑤;

48

3.2.2 Neural network architecture of model posterior predictor

The overall architecture of a NN-based posterior predictor for model probability (𝑞(𝑚 |𝐼𝑘 ; 𝜙M)) is
shown in Table 3.1; the same architecture is utilized for all numerical cases in this chapter. More
specifically, the model posterior predictor takes 𝐼𝑘 as input, and outputs the log-probabilities of each
candidate model ln 𝑞(𝑚 |𝐼𝑘 ; 𝜙M). Separate model posterior predictors are trained for each stage
when the IIG formulation is used. However, as shown earlier in Appendix B.7, the quality of the
intermediate variational posterior approximations does not directly contribute to the accuracy of
the overall variational expected utility estimate, and thus one may elect to train these intermediate
model posterior predictors more “loosely”, for example, by using smaller NN architectures and
with shared weights among the NNs.

Table 3.1: Architecture of the NN-based model posterior predictor.

Layer Description Dimension Activation

Input 𝐼𝑘 𝑘 (𝑁𝑑 + 𝑁𝑦) -
H1 Dense 256 ReLU
H2 Dense 256 ReLU
H3 Dense 256 ReLU

Output Dense M LogSoftmax

3.2.3 Neural network architectures of parameter and predictive quantity
posterior predictors

We introduce the GMM- and NF-based posterior predictors for PoIs (𝑞(\𝑚 |𝐼𝑘 ; 𝜙Θ𝑚
)) and QoIs

(𝑞(𝑧𝑚 |𝐼𝑘 ; 𝜙𝑍𝑚)). We adopt the same architectures for both the PoI and QoI posterior predictors, and
so only introduce them in the context of PoIs below but with the understanding that the same applies
to the QoIs. Similar to the model posterior predictor, separate PoI and QoI posterior predictors are
trained for each stage when the IIG formulation is used.

3.2.3.1 Independent Gaussian Mixture Models

An independent GMM approximates a complex distribution through a weighted sum of multiple
independent Gaussians:

𝑞(\𝑚 |𝐼𝑘 ; 𝜙Θ𝑚
) =

𝑛mixture∑︁
𝑖=1

𝑤𝑖 (𝐼𝑘 ; 𝜙Θ𝑚
) N (\𝑚; `𝑖 (𝐼𝑘 ; 𝜙Θ𝑚

), Σ𝑖 (𝐼𝑘 ; 𝜙Θ𝑚
)), (3.24)

49

where for the 𝑖th Gaussian, 𝑤𝑖 (𝐼𝑘 ; 𝜙Θ𝑚
) is its mixture weight, `𝑖 (𝐼𝑘 ; 𝜙Θ𝑚

) ∈ R𝑁\𝑚 is its mean,
and Σ𝑖 (𝐼𝑘 ; 𝜙Θ𝑚

) ∈ R𝑁\𝑚×𝑁\𝑚 is its diagonal covariance matrix with the square root of the diagonal
terms being the standard deviations. The weights, means, and standard deviations of the GMM are
predicted using NNs, together referred to as the GMM net. These NNs share a common backend
network that learns shared features. The architectures of the feature net, weight net, mean net and
standard deviation net are provided in Table 3.2 to 3.4. The Linear mapping in Table 3.4 refers
to the process of mapping the output to a specific range that is problem dependent. This mapping
ensures that the predicted means and standard deviations of the GMM fall within the desired range.
Additionally, an epsilon of 10−27 is added to Eqn. (3.24) to prevent numerical underflow. When
some PoIs have compact support, independent truncated normal distributions [26] are used to
replace the dimensions corresponding to those PoIs within the Gaussian distributions. The specific
ranges of the linear mapping and the usage of truncated normal will be mentioned in each numerical
case. The same GMM net architecture is used across all numerical cases.

Table 3.2: Architecture of the feature net of the GMM net.

Layer Description Dimension Activation

Input 𝐼𝑘 𝑘 (𝑁𝑑 + 𝑁𝑦) -
H1 Dense 256 ReLU

Output Dense 256 ReLU

Table 3.3: Architecture of the weight net of the GMM net.

Layer Description Dimension Activation

Input Feature(𝐼𝑘) 256 -
H1 Dense 256 ReLU
H2 Dense 256 ReLU

Output Dense 𝑛mixture Softmax

Table 3.4: Architecture of the mean net or standard deviation net of the GMM net.

Layer Description Dimension Activation

Input Feature(𝐼𝑘) 256 -
H1 Dense 256 ReLU
H2 Dense 256 ReLU
H3 Dense 𝑛mixture𝑁\𝑚 Sigmoid

Output Identity 𝑛mixture𝑁\𝑚 Linear mapping

50

3.2.3.2 Normalizing Flows

The NF setup in this section is contributed by collaborator Jiayuan Dong. A NF approximates a
target random variable \ by finding an overall invertible mapping to this target from a standard
normal of the same dimension, \ = 𝑔(b) (and b = 𝑓 (\) where 𝑓 = 𝑔−1), via a composition of
successive invertible mappings. The PDFs of these random variables are related via

𝑝Θ(\) = 𝑝b (𝑓 (\)) |det𝐷 𝑓 (\) | (3.25)

where 𝐷 𝑓 (\) is the Jacobian of 𝑓 at \. Writing in a successive mapping form \ = 𝑔(b) =

𝑔𝑛 ◦ 𝑔𝑛−1 ◦ ... ◦ 𝑔1(b) = 𝑔𝑛 (𝑔𝑛−1(...(𝑔1(b))...)) with 𝑛 ≥ 1 invertible transformations, the log
density is

ln 𝑝Θ(\) = ln 𝑝b (𝑓𝑛 ◦ 𝑓𝑛−1 ◦ ... ◦ 𝑓1(\)) +
𝑛∑︁
𝑖=1

ln |det𝐷 𝑓𝑖 ◦ 𝑓𝑖−1 ◦ ... 𝑓1(\) | (3.26)

where 𝑓 (\) = 𝑓𝑛 ◦ 𝑓𝑛−1 ◦ ... ◦ 𝑓1(\) and 𝑓𝑖 = 𝑔
−1
𝑖

. The successive transformations on b can achieve
a highly expressive density for the target variable \ [42].

To approximate the PoI posterior 𝑞(\𝑚 |𝐼𝑘 ; 𝜙Θ𝑚
), we build NF b = 𝑓 (\) using an invertible

neural network (INN) [42], and refer to the overall mapping as the NF net. INN partitions \ into
two parts \ = [\1, \2]𝑇 with approximately equal dimensions, and introduces invertible mappings

𝑓1(\) =
(

\1

\̃2 = \2 ⊙ exp(𝑠1(\1)) + 𝑡1(\1)

)
𝑓2(𝑓1(\)) =

(
\̃1 = \1 ⊙ exp(𝑠2(\̃2)) + 𝑡2(\̃2)

\̃2

)
(3.27)

where 𝑠1, 𝑡1 map R𝑛\1 ↦→ R𝑛\2 and 𝑠2, 𝑡2 map R𝑛\2 ↦→ R𝑛\1 , and ⊙ denotes element-wise product.
The Jacobian of 𝑓1 is [

I𝑑 0
𝜕 𝑓1 (\)
𝜕\2

diag(exp[𝑠1(\1)])

]
,

a lower triangular matrix with determinant exp[∑𝑛\2
𝑗=1 𝑠1(\1) 𝑗]. Similarly the Jacobian of 𝑓2 is an

upper triangular matrix with determinant exp[∑𝑛\1
𝑗=1 𝑠2(\̃2) 𝑗]. 𝑠’s and 𝑡’s can represented via, for

example, NNs for their expressiveness. Multiple such transformations from Eqn. (3.27) can also
be composed together to further increase expressiveness of the overall mapping; we use 𝑛trans to
denote the number of such transformation.

51

To incorporate the dependency of posterior on 𝐼𝑘 , the 𝑠(·) and 𝑡 (·) are set up to also take 𝐼𝑘 as
input. Similar to the GMM setup, 𝐼𝑘 is first fed into a feature network whose output has the same
dimension as 𝐼𝑘 . The architectures of the feature network, and the 𝑠1, 𝑡1; 𝑠2, 𝑡2 networks in NFs are
provided in Table 3.5 to 3.7. Mirroring the GMM net, an epsilon of 10−27 is added to Eqn. (3.26)
to prevent numerical underflow.

Table 3.5: Architecture of the feature net of the NF net. The first value under Dimension column is
used for the source location problem in 3.3.2 and CES problem in 3.3.3; the second value is used
for the SIR problem in 3.3.4.

Layer Description Dimension Activation

Input 𝐼𝑘 𝑘 (𝑁𝑑 + 𝑁𝑦) -
H1 Dense 256 / 128 ReLU
H2 Dense 256 / 128 ReLU
H3 Dense 256 / None ReLU

Output Feature(𝐼𝑘) 𝑘 (𝑁𝑑 + 𝑁𝑦) -

Table 3.6: Architecture of the 𝑠1 and 𝑡1 nets of the NF net. The first value under Dimension column
is used for the source location problem in 3.3.2 and CES problem in 3.3.3; the second value is used
for the SIR problem in 3.3.4.

Layer Description Dimension Activation

Input Feature(𝐼𝑘) + \1 𝑘 (𝑁𝑑 + 𝑁𝑦) + 𝑛\1 -
H1 Dense 256 / 128 ReLU
H2 Dense 256 / 128 ReLU
H3 Dense 256 / 128 ReLU

Output 𝑠1(·) or 𝑡1(·) 𝑛\2 -

3.2.4 Neural network architecture of actor and critic

The same architectures of the actor and critic networks described in Sec. 2.2.2.1 and 2.2.2.2 are
adopted here. The actor `𝑘,𝑤 learns a mapping from state 𝐼𝑘 to design 𝑑𝑘 . Instead of learning
separate actors for each stage, we combine them into a single actor. The overall input takes the
form

𝐼𝑎𝑐𝑡𝑜𝑟𝑘 = [𝑒𝑘 , 𝐼𝑘]

52

Table 3.7: Architecture of the 𝑠2 and 𝑡2 nets of the NF net. The first value under Dimension column
is used for the source location problem in 3.3.2 and CES problem in 3.3.3; the second value is used
for the SIR problem in 3.3.4.

Layer Description Dimension Activation

Input Feature(𝐼𝑘) + \̃2 𝑘 (𝑁𝑑 + 𝑁𝑦) + 𝑛\2 -
H1 Dense 256 / 128 ReLU
H2 Dense 256 / 128 ReLU
H3 Dense 256 / 128 ReLU

Output 𝑠2(·) or 𝑡2(·) 𝑛\1 -

where 𝑒𝑘 is an 0-indexed one-hot encoding vector of size 𝑁 to represent the current experiment
stage:

𝑒𝑘 = [0, . . . , 0, 1︸︷︷︸
𝑘th

, 0, . . . , 0]𝑇 ,

and 𝐼𝑘 is a vector of fixed size (𝑁 − 1) (𝑁𝑑 + 𝑁𝑦) obtained by extending 𝐼𝑘 with zero-padding:

𝐼𝑘 = [

𝑁𝑑︷︸︸︷
𝑑0 , . . . , 𝑑𝑘−1, 0, . . . , 0︸ ︷︷ ︸

𝑁𝑑 (𝑁−1−𝑘)

,

𝑁𝑦︷︸︸︷
𝑦0 , . . . , 𝑦𝑘−1, 0, . . . , 0︸ ︷︷ ︸

𝑁𝑦 (𝑁−1−𝑘)

]𝑇 .

The total dimension of 𝐼𝑎𝑐𝑡𝑜𝑟
𝑘

is 𝑁 + (𝑁 − 1) (𝑁𝑑 + 𝑁𝑦). The inputs of the critic is

𝐼𝑐𝑟𝑖𝑡𝑖𝑐𝑘 = [𝐼𝑎𝑐𝑡𝑜𝑟𝑘 , 𝑑𝑘]

with total dimension 𝑁 + (𝑁 − 1) (𝑁𝑑 + 𝑁𝑦) + 𝑁𝑑 . The output of the critic is a scalar. The
architectures of the actor and critic are presented in Table 3.8 and Table 3.9, where the Linear
mapping in Table 3.8 maps the output value to be within the design bounds. The same actor and
critic architectures are used across all numerical cases in this chapter.

Other architectures have been proposed for constructing the actor and critic networks, such as the
encoder-pooling-emitter structure used in [55, 76, 14]. These architectures leverage a permutation
invariance property that arises from the conditional independence of likelihoods. However, it is
important to note that in our case, the conditional independence of likelihoods does not hold, even
if the likelihood function does not depend on past experience (i.e. if 𝑝(𝑦𝑘 |𝑚, \𝑚, [𝑚, 𝑑𝑘 , 𝐼𝑘) =

𝑝(𝑦𝑘 |𝑚, \𝑚, [𝑚, 𝑑𝑘)). For instance, if the problem involves multiple models, the model posterior

53

Table 3.8: Architecture of the actor.

Layer Description Dimension Activation

Input 𝐼𝑎𝑐𝑡𝑜𝑟
𝑘

𝑁 + (𝑁 − 1) (𝑁𝑑 + 𝑁𝑦) -
H1 Dense 256 ReLU
H2 Dense 256 ReLU
H3 Dense 256 ReLU
H4 Dense 𝑁𝑑 Sigmoid

Output Identity 𝑁𝑑 Linear mapping

Table 3.9: Architecture of the critic.

Layer Description Dimension Activation

Input 𝐼𝑐𝑟𝑖𝑡𝑖𝑐
𝑘

𝑁 + (𝑁 − 1) (𝑁𝑑 + 𝑁𝑦) + 𝑁𝑑 -
H1 Dense 256 ReLU
H2 Dense 256 ReLU
H3 Dense 256 ReLU

Output Dense 1 -

can be shown to be not permutation invariant:

𝑃(𝑚 |𝐼𝑁) ∝ 𝑃(𝑚)
𝑁−1∏
𝑘=0

∫
Θ,H

𝑝(𝑦𝑘 |𝑚, \𝑚, [𝑚, 𝑑𝑘)𝑝(\𝑚, [𝑚 |𝑚, 𝐼𝑘) 𝑑\𝑚 𝑑[𝑚

= 𝑃(𝑚)
𝑁−1∏
𝑘=0

𝑝(𝑦𝑘 |𝑚, 𝐼𝑘 , 𝑑𝑘)

≠ 𝑃(𝑚)
𝑁−1∏
𝑘=0

𝑝(𝑦𝑘 |𝑚, 𝑑𝑘)

since in the middle equation, we see that the factored marginal likelihoods in our case depend on
the entire history 𝐼𝑘 . Even when the problem only involves a single model (i.e. M = 1), the PoI

54

posterior is not permutation invariant if nuisance parameters are present:

𝑝(\𝑚 |𝐼𝑁) ∝ 𝑝(\𝑚)
𝑁−1∏
𝑘=0

∫
H
𝑝(𝑦𝑘 |𝑚, \𝑚, [𝑚, 𝑑𝑘)𝑝([𝑚 |𝑚, \𝑚, 𝐼𝑘) 𝑑[𝑚

= 𝑝(\𝑚)
𝑁−1∏
𝑘=0

𝑝(𝑦𝑘 |𝑚, \𝑚, 𝐼𝑘 , 𝑑𝑘)

≠ 𝑝(\𝑚)
𝑁−1∏
𝑘=0

𝑝(𝑦𝑘 |𝑚, \𝑚, 𝑑𝑘).

Therefore, the encoder-pooling-emitter is not applicable and not adopted. [76] further proposed to
use long short-term memory networks (LSTM) as the history encoder when conditional indepen-
dence does not hold. However, similar to the encoder-pooling-emitter, the backpropagation time
of the LSTM encoder increases quadratically with horizon 𝑁 , and becomes expensive for larger
values of 𝑁 .

3.2.5 Training details of the policy gradient based vsOED

3.2.5.1 Training of the posterior approximation

Due to the cancellation of intermediate posteriors as shown in Appendix B.7, the variational
gradient in Eqn. (3.22) only involves the gradient of the final variational posterior:

∇𝜙 ¤𝑈 (𝑤; 𝜙) = E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚E𝐼𝑁 |𝜋,𝐼0, ¤𝑚, ¤\𝑚, ¤[𝑚

[
𝛼M∇𝜙M ln 𝑞(¤𝑚 |𝐼𝑁 ; 𝜙M)

+ 𝛼Θ∇𝜙Θ𝑚 ln 𝑞(¤\𝑚 |𝐼𝑁 ; 𝜙Θ𝑚
)

+ 𝛼𝑍∇𝜙𝑍𝑚 ln 𝑞(¤𝑧𝑚 |𝐼𝑁 ; 𝜙𝑍𝑚)
]
.

A Monte Carlo (MC) estimate for the variational gradient is:

∇𝜙 ¤𝑈 (𝑤; 𝜙) ≈ 1
𝑛batch

𝑛batch∑︁
𝑖=1

[
𝛼M∇𝜙M ln 𝑞(¤𝑚 (𝑖) |𝐼 (𝑖)

𝑁
; 𝜙M)

+ 𝛼Θ∇𝜙Θ𝑚 ln 𝑞(¤\ (𝑖)𝑚 |𝐼 (𝑖)
𝑁

; 𝜙Θ𝑚
)

+ 𝛼𝑍∇𝜙𝑍𝑚 ln 𝑞(¤𝑧(𝑖)𝑚 |𝐼 (𝑖)
𝑁

; 𝜙𝑍𝑚)
]
,

55

where ¤𝑚 (𝑖) , ¤\ (𝑖)𝑚 , ¤[(𝑖)𝑚 , ¤𝑧(𝑖)𝑚 ∼ 𝑝(𝑚, \𝑚, [𝑚, 𝑧𝑚) and 𝐼 (𝑖)
𝑁

∼ 𝑝(𝐼𝑁 | ¤𝑚 (𝑖) , ¤\ (𝑖)𝑚 , ¤[(𝑖)𝑚 , 𝜋𝑤), and the gradients
can be obtained by, for example, PyTorch Autograd. In our implementation, we draw samples from
a replay buffer in order to reduce computations and to enable off-policy learning.

If the IIG formulation is used, the intermediate variational posteriors can be trained in the same
manner with their MC gradient estimates:

1
𝑛batch

𝑛batch∑︁
𝑖=1

[
𝛼M∇𝜙M ln 𝑞(¤𝑚 (𝑖) |𝐼 (𝑖)

𝑘
; 𝜙M)

+ 𝛼Θ∇𝜙Θ𝑚 ln 𝑞(¤\ (𝑖)𝑚 |𝐼 (𝑖)
𝑘

; 𝜙Θ𝑚
)

+ 𝛼𝑍∇𝜙𝑍𝑚 ln 𝑞(¤𝑧(𝑖)𝑚 |𝐼 (𝑖)
𝑘

; 𝜙𝑍𝑚)
]

for 𝑘 = 1, . . . , 𝑁 − 1. The optimization of the variational posterior approximation is carried out
using Adam [80] for all numerical cases. Hyperparameter tuning will be discussed in Sec. 3.2.5.5,
and specific hyperparameter settings will be specified for each case.

The variational posterior approximation is updated first during each outer iteration in Algo-
rithm 2.

3.2.5.2 More about the critic

The action-value function (i.e. critic) 𝑄𝜋𝑤
𝑘
(𝐼𝑘 , 𝑑𝑘) quantifies the expected cumulative remaining

reward for conducting the 𝑘th experiment at design 𝑑𝑘 and state 𝐼𝑘 , and thereafter following policy
𝜋𝑤. The critics formulated with the the one-point reward estimates using either the true posterior
or variational posterior are respectively

𝑄
𝜋𝑤
𝑘
(𝐼𝑘 , 𝑑𝑘) = E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚 |𝐼𝑘E𝐼𝑁 |𝜋𝑤 ,𝐼𝑘 ,𝑑𝑘 , ¤𝑚, ¤\𝑚, ¤[𝑚

[
𝑁−1∑︁
𝑘=0

¤𝑔𝑘 (𝐼𝑘 , 𝑑𝑘 , 𝑦𝑘) + ¤𝑔𝑁 (𝐼𝑁)
]

𝑄
𝜋𝑤
𝑘
(𝐼𝑘 , 𝑑𝑘 ; 𝜙) = E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚 |𝐼𝑘E𝐼𝑁 |𝜋𝑤 ,𝐼𝑘 ,𝑑𝑘 , ¤𝑚, ¤\𝑚, ¤[𝑚

[
𝑁−1∑︁
𝑘=0

¤𝑔𝑘 (𝐼𝑘 , 𝑑𝑘 , 𝑦𝑘 ; 𝜙) + ¤𝑔𝑁 (𝐼𝑁 ; 𝜙)
]
.

56

Specifically, the critics under TIG take the form:

𝑄
𝜋𝑤
𝑇,𝑘

(𝐼𝑘 , 𝑑𝑘) = E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚 |𝐼𝑘E𝐼𝑁 |𝜋𝑤 ,𝐼𝑘 ,𝑑𝑘 , ¤𝑚, ¤\𝑚, ¤[𝑚

[
𝛼M ln

𝑃(¤𝑚 |𝐼𝑁)
𝑃(¤𝑚) + 𝛼Θ ln

𝑝(¤\𝑚 |𝐼𝑁)
𝑝(¤\𝑚)

+ 𝛼𝑍 ln
𝑝(¤𝑧𝑚 |𝐼𝑁)
𝑝(¤𝑧𝑚)

]
𝑄
𝜋𝑤
𝑇,𝑘

(𝐼𝑘 , 𝑑𝑘 ; 𝜙) = E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚 |𝐼𝑘E𝐼𝑁 |𝜋𝑤 ,𝐼𝑘 ,𝑑𝑘 , ¤𝑚, ¤\𝑚, ¤[𝑚

[
𝛼M ln

𝑞(¤𝑚 |𝐼𝑁 ; 𝜙M)
𝑃(¤𝑚) + 𝛼Θ ln

𝑞(¤\𝑚 |𝐼𝑁 ; 𝜙Θ𝑚
)

𝑝(¤\𝑚)
+ 𝛼𝑍 ln

𝑞(¤𝑧𝑚 |𝐼𝑁 ; 𝜙𝑍𝑚)
𝑝(¤𝑧𝑚)

]
,

and the critics under IIG take the form:

𝑄
𝜋𝑤
𝐼,𝑘
(𝐼𝑘 , 𝑑𝑘) = E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚 |𝐼𝑘E𝐼𝑁 |𝜋𝑤 ,𝐼𝑘 ,𝑑𝑘 , ¤𝑚, ¤\𝑚, ¤[𝑚

[
𝛼M ln

𝑃(¤𝑚 |𝐼𝑁)
𝑃(¤𝑚 |𝐼𝑘)

+ 𝛼Θ ln
𝑝(¤\𝑚 |𝐼𝑁)
𝑝(¤\𝑚 |𝐼𝑘)

+ 𝛼𝑍 ln
𝑝(¤𝑧𝑚 |𝐼𝑁)
𝑝(¤𝑧𝑚 |𝐼𝑘)

]
𝑄
𝜋𝑤
𝐼,𝑘
(𝐼𝑘 , 𝑑𝑘 ; 𝜙) = E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚 |𝐼𝑘E𝐼𝑁 |𝜋𝑤 ,𝐼𝑘 ,𝑑𝑘 , ¤𝑚, ¤\𝑚, ¤[𝑚

[
𝛼M ln

𝑞(¤𝑚 |𝐼𝑁 ; 𝜙M)
𝑞(¤𝑚 |𝐼𝑘 ; 𝜙M) + 𝛼Θ ln

𝑞(¤\𝑚 |𝐼𝑁 ; 𝜙Θ𝑚
)

𝑞(¤\𝑚 |𝐼𝑘 ; 𝜙Θ𝑚
)
+ 𝛼𝑍 ln

𝑞(¤𝑧𝑚 |𝐼𝑁 ; 𝜙𝑍𝑚)
𝑞(¤𝑧𝑚 |𝐼𝑘 ; 𝜙𝑍𝑚)

]
.

Remark 1: The difference between the one-point-TIG and -IIG critics is

𝑄
𝜋𝑤
𝑇,𝑘

(𝐼𝑘 , 𝑑𝑘) −𝑄𝜋𝑤
𝐼,𝑘
(𝐼𝑘 , 𝑑𝑘) = E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚 |𝐼𝑘E𝐼𝑁 |𝜋𝑤 ,𝐼𝑘 ,𝑑𝑘 , ¤𝑚, ¤\𝑚, ¤[𝑚

[
𝛼M ln

𝑃(¤𝑚 |𝐼𝑘)
𝑃(¤𝑚) + 𝛼Θ ln

𝑝(¤\𝑚 |𝐼𝑘)
𝑝(¤\𝑚)

+ 𝛼𝑍 ln
𝑝(¤𝑧𝑚 |𝐼𝑘)
𝑝(¤𝑧𝑚)

]
= E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚 |𝐼𝑘

[
𝛼M ln

𝑃(¤𝑚 |𝐼𝑘)
𝑃(¤𝑚) + 𝛼Θ ln

𝑝(¤\𝑚 |𝐼𝑘)
𝑝(¤\𝑚)

+ 𝛼𝑍 ln
𝑝(¤𝑧𝑚 |𝐼𝑘)
𝑝(¤𝑧𝑚)

]
,

which is constant with respect to 𝑑𝑘 . Since ∇𝑑𝑘𝑄
𝜋𝑤
𝑘
(𝐼𝑘 , 𝑑𝑘) is used in the policy gradient

(Eqn. (3.23)), then whether adopting 𝑄𝜋𝑤
𝑇,𝑘

(𝐼𝑘 , 𝑑𝑘) or 𝑄𝜋𝑤
𝐼,𝑘
(𝐼𝑘 , 𝑑𝑘) will result in the same policy

gradient value.

57

Remark 2: The difference between 𝑄𝜋𝑤
𝑇,𝑘

(𝐼𝑘 , 𝑑𝑘) and 𝑄𝜋𝑤
𝑇,𝑘

(𝐼𝑘 , 𝑑𝑘 ; 𝜙) is

𝑄
𝜋𝑤
𝑇,𝑘

(𝐼𝑘 , 𝑑𝑘) −𝑄𝜋𝑤
𝑇,𝑘

(𝐼𝑘 , 𝑑𝑘 ; 𝜙)

= E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚 |𝐼𝑘E𝐼𝑁 |𝜋𝑤 ,𝐼𝑘 ,𝑑𝑘 , ¤𝑚, ¤\𝑚, ¤[𝑚

[
𝛼M ln

𝑃(¤𝑚 |𝐼𝑁)
𝑞(¤𝑚 |𝐼𝑁 ; 𝜙M) + 𝛼Θ ln

𝑝(¤\𝑚 |𝐼𝑁)
𝑞(¤\𝑚 |𝐼𝑁 ; 𝜙Θ𝑚

)
+ 𝛼𝑍 ln

𝑝(¤𝑧𝑚 |𝐼𝑁)
𝑞(¤𝑧𝑚 |𝐼𝑁 ; 𝜙𝑍𝑚)

]
= E𝐼𝑁 |𝜋𝑤 ,𝐼𝑘 ,𝑑𝑘

[
𝛼M𝐷KL (𝑃(𝑚 |𝐼𝑁) | | 𝑞(𝑚 |𝐼𝑁 ; 𝜙M))

+ E𝑚 |𝐼𝑁
[
𝛼Θ𝐷KL

(
𝑝(\𝑚 |𝐼𝑁) | | 𝑞(\𝑚 |𝐼𝑁 ; 𝜙Θ𝑚

)
)
+ 𝛼𝑍𝐷KL

(
𝑝(𝑧𝑚 |𝐼𝑁) | | 𝑞(𝑧𝑚 |𝐼𝑁 ; 𝜙𝑍𝑚)

)]]
,

which is an expected weighted KL divergence (with positive weights). It equals to zero if and
only if the variational posterior approximations 𝑞(·|𝐼𝑁 ; 𝜙(·)) are equal to the true posteriors 𝑝(·|𝐼𝑁)
(except the trivial case when 𝛼M = 𝛼Θ = 𝛼𝑍 = 0). In other words, 𝑄𝜋𝑤

𝑇,𝑘
(𝐼𝑘 , 𝑑𝑘 ; 𝜙) forms a lower

bound of𝑄𝜋𝑤
𝑇,𝑘

(𝐼𝑘 , 𝑑𝑘), and learning an accurate variational posterior approximation could also help
reduce the bias in the critic.

Remark 3: The difference between 𝑄𝜋𝑤
𝐼,𝑘
(𝐼𝑘 , 𝑑𝑘) and 𝑄𝜋𝑤

𝐼,𝑘
(𝐼𝑘 , 𝑑𝑘 ; 𝜙) is

𝑄
𝜋𝑤
𝐼,𝑘
(𝐼𝑘 , 𝑑𝑘) −𝑄𝜋𝑤

𝐼,𝑘
(𝐼𝑘 , 𝑑𝑘 ; 𝜙)

= E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚 |𝐼𝑘E𝐼𝑁 |𝜋𝑤 ,𝐼𝑘 ,𝑑𝑘 , ¤𝑚, ¤\𝑚, ¤[𝑚

[
𝛼M ln

𝑃(¤𝑚 |𝐼𝑁)
𝑞(¤𝑚 |𝐼𝑁 ; 𝜙M) + 𝛼Θ ln

𝑝(¤\𝑚 |𝐼𝑁)
𝑞(¤\𝑚 |𝐼𝑁 ; 𝜙Θ𝑚

)
+ 𝛼𝑍 ln

𝑝(¤𝑧𝑚 |𝐼𝑁)
𝑞(¤𝑧𝑚 |𝐼𝑁 ; 𝜙𝑍𝑚)

− 𝛼M ln
𝑃(¤𝑚 |𝐼𝑘)

𝑞(¤𝑚 |𝐼𝑘 ; 𝜙M) − 𝛼Θ ln
𝑝(¤\𝑚 |𝐼𝑘)

𝑞(¤\𝑚 |𝐼𝑘 ; 𝜙Θ𝑚
)
− 𝛼𝑍 ln

𝑝(¤𝑧𝑚 |𝐼𝑘)
𝑞(¤𝑧𝑚 |𝐼𝑘 ; 𝜙𝑍𝑚)

]
= E𝐼𝑁 |𝜋𝑤 ,𝐼𝑘 ,𝑑𝑘

[
𝛼M𝐷KL (𝑃(𝑚 |𝐼𝑁) | | 𝑞(𝑚 |𝐼𝑁 ; 𝜙M))

+ E𝑚 |𝐼𝑁
[
𝛼Θ𝐷KL

(
𝑝(\𝑚 |𝐼𝑁) | | 𝑞(\𝑚 |𝐼𝑁 ; 𝜙Θ𝑚

)
)
+ 𝛼𝑍𝐷KL

(
𝑝(𝑧𝑚 |𝐼𝑁) | | 𝑞(𝑧𝑚 |𝐼𝑁 ; 𝜙𝑍𝑚)

)]]
− 𝛼M𝐷KL (𝑃(𝑚 |𝐼𝑘) | | 𝑞(𝑚 |𝐼𝑘 ; 𝜙M))
− E𝑚 |𝐼𝑘

[
𝛼Θ𝐷KL

(
𝑝(\𝑚 |𝐼𝑘) | | 𝑞(\𝑚 |𝐼𝑘 ; 𝜙Θ𝑚

)
)
+ 𝛼𝑍𝐷KL

(
𝑝(𝑧𝑚 |𝐼𝑘) | | 𝑞(𝑧𝑚 |𝐼𝑘 ; 𝜙𝑍𝑚)

)]
.

58

Applying the triangle inequality, the difference is bounded by���𝑄𝜋𝑤
𝐼,𝑘
(𝐼𝑘 , 𝑑𝑘) −𝑄𝜋𝑤

𝐼,𝑘
(𝐼𝑘 , 𝑑𝑘 ; 𝜙)

���
≤ E𝐼𝑁 |𝜋𝑤 ,𝐼𝑘 ,𝑑𝑘

[
𝛼M𝐷KL (𝑃(𝑚 |𝐼𝑁) | | 𝑞(𝑚 |𝐼𝑁 ; 𝜙M))

+ E𝑚 |𝐼𝑁
[
𝛼Θ𝐷KL

(
𝑝(\𝑚 |𝐼𝑁) | | 𝑞(\𝑚 |𝐼𝑁 ; 𝜙Θ𝑚

)
)
+ 𝛼𝑍𝐷KL

(
𝑝(𝑧𝑚 |𝐼𝑁) | | 𝑞(𝑧𝑚 |𝐼𝑁 ; 𝜙𝑍𝑚)

)]]
+ 𝛼M𝐷KL (𝑃(𝑚 |𝐼𝑘) | | 𝑞(𝑚 |𝐼𝑘 ; 𝜙M))
+ E𝑚 |𝐼𝑘

[
𝛼Θ𝐷KL

(
𝑝(\𝑚 |𝐼𝑘) | | 𝑞(\𝑚 |𝐼𝑘 ; 𝜙Θ𝑚

)
)
+ 𝛼𝑍𝐷KL

(
𝑝(𝑧𝑚 |𝐼𝑘) | | 𝑞(𝑧𝑚 |𝐼𝑘 ; 𝜙𝑍𝑚)

)]
.

Therefore, the bias of the critic is contributed from both the bias of the final variational posterior
𝑞(·|𝐼𝑁 ; 𝜙(·)) and the bias of the intermediate variational posteriors 𝑞(·|𝐼𝑘 ; 𝜙(·)) for 𝑘 = 1, . . . , 𝑁 −1.
It equals to zero if and only if all the variational posteriors are equal to their corresponding true
posteriors (except the trivial case when 𝛼M = 𝛼Θ = 𝛼𝑍 = 0).

The critic network (parameterized by a) is updated after the update of the variational posterior
approximation and the update of the one-point IG ¤𝑔𝑘 (𝐼𝑘 , 𝑑𝑘 , 𝑦𝑘 ; 𝜙) and ¤𝑔𝑁 (𝐼𝑁 ; 𝜙) during each outer
iteration in Algorithm 2. It can be learned in a supervised learning manner by minimizing the loss
function:

L(a) = 1
𝑛batch

𝑛batch∑︁
𝑖=1

𝑁−1∑︁
𝑘=0

[
𝑄
𝜋𝑤
𝑘,a

(𝐼 (𝑖)
𝑘
, 𝑑

(𝑖)
𝑘
) −

(
¤𝑔𝑘 (𝐼 (𝑖)𝑘 , 𝑑

(𝑖)
𝑘
, 𝑦

(𝑖)
𝑘
) + 𝛾𝑄𝜋𝑤

𝑘+1,a (𝐼
(𝑖)
𝑘+1, 𝑑

(𝑖)
𝑘+1)

)]2
,

where 𝛾 ∈ [0, 1] is a discount factor used for regularization, and batch samples are drawn from the
replay buffer. When the TIG formulation is used, all the stage rewards ¤𝑔𝑘 for 𝑘 = 0, . . . , 𝑁 − 1 are
0 if there are no non-IG immediate rewards. In that case, the training of the critic network at early
stages will be slow and may even lead to numerical divergence of the policy gradient when horizon
𝑁 is long. Therefore, we utilize the idea of REINFORCE [153] and modify the loss function for
TIG to

L(a) = 1
𝑛batch

𝑛batch∑︁
𝑖=1

𝑁−1∑︁
𝑘=0

[
𝑄
𝜋𝑤
𝑘,a

(𝐼 (𝑖)
𝑘
, 𝑑

(𝑖)
𝑘
)

− 𝜓
(
¤𝑔𝑘 (𝐼 (𝑖)𝑘 , 𝑑

(𝑖)
𝑘
, 𝑦

(𝑖)
𝑘
) + 𝛾𝑄𝜋𝑤

𝑘+1,a (𝐼
(𝑖)
𝑘+1, 𝑑

(𝑖)
𝑘+1)

)
− (1 − 𝜓)

(
𝑁−1∑︁
𝑡=𝑘

𝛾𝑡−𝑘 ¤𝑔𝑡 (𝐼 (𝑖)𝑡 , 𝑑
(𝑖)
𝑡 , 𝑦

(𝑖)
𝑡) + 𝛾𝑁−𝑘 ¤𝑔𝑁 (𝐼 (𝑖)𝑁)

)]2

,

where 𝜓 linearly increases from 0 to 1 during the training process. Moreover, the target network in

59

[91] is also utilized to enable off-policy learning with the update rate of the target network set to
0.1 across all numerical cases. The optimization of the critic network is carried out using Adam
for all numerical cases.

3.2.5.3 Numerical estimation of the policy gradient

The actor network is updated last during each outer iteration in Algorithm 2. The MC estimator of
the policy gradient (Eqn. (3.23)) is

∇𝑤 ¤𝑈 (𝑤; 𝜙) ≈ 1
𝑛batch

𝑛batch∑︁
𝑖=1

𝑁−1∑︁
𝑘=0

∇𝑤`𝑘,𝑤 (𝐼 (𝑖)𝑘)∇
𝑑
(𝑖)
𝑘

𝑄
𝜋𝑤
𝑘,a

(𝐼 (𝑖)
𝑘
, 𝑑

(𝑖)
𝑘
)
���
𝑑
(𝑖)
𝑘

=`𝑘,𝑤 (𝐼 (𝑖)𝑘
)
.

In our implementation, we draw batch samples from a replay buffer. The optimization of the actor
network is performed with Adam for all numerical cases.

3.2.5.4 Exploration versus exploitation

To promote better exploration during the optimization process, the same exploration strategy as
Sec. 2.2.2.4 is utilized by adding perturbation to the deterministic policy:

𝑑𝑘 = `𝑘 (𝐼𝑘) + 𝜖explore,

where 𝜖explore follows a zero-mean multivariate Gaussian distribution with a diagonal covariance.
The covariance diagonal terms reflect the exploration length scale for each dimension of 𝑑𝑘 . If
perturbing to outside the feasible design region D𝑘 , it will be moved back to the closest feasible
point. A good balance of exploration and exploitation is important for the numerical algorithm
to find a good policy. Insufficient exploration limits the understanding of the environment, while
too much exploration (i.e. insufficient exploitation) may lead to slow convergence. A reasonable
strategy is to set a larger exploration in the early stages of training and then gradually reduce it.
Details of these exploration settings will be specified for each numerical case in Sec. 3.3.

We emphasize that the policy exploration is employed solely during the training phase. During
evaluation (testing), the deterministic policy is still utilized without additional exploration.

3.2.5.5 Hyperparameter tuning

Since vsOED is trained with limited budgets in this chapter, our main strategy for hyperparameter
tuning is to start with a relatively large hyperparameter value and gradually decrease it.

For the optimization of the model posterior predictor and the parameter posterior predictor with
GMM and NF, we start with the initial learning rate 10−3 and an exponential learning rate decay

60

rate 0.9999.
For the optimization of the critic network, an initial learning rate of 10−3 and a learning rate

decay rate of 0.9999 are used across all numerical cases. Both the variational approximation and
the critic network are updated 5 steps (i.e. applying gradient ascent steps 5 times) within each
outer iteration. It is important to note that updating the variational approximation and the critic
network too many steps in each outer iteration may result in overestimation of the value function
and adversely affect the policy search [66].

For the optimization of the actor network, a learning rate decay rate of 0.9999 is used. However,
the choice of the initial learning rate is more problem-dependent. Typically, we start with an initial
learning rate of 10−3 and gradually decrease it to 5× 10−4 or 2× 10−4 if divergence occurs. For IIG
formulation, an initial learning rate of 10−3 works well. However, for TIG formulation, a smaller
actor learning rate is required. This is because the learning of the critic in TIG is slower, and a
large actor learning rate can more easily induce divergence in the early stages of training.

For other hyperparameters, including the number of updates 𝑛update, the number of new MC
episodes 𝑛episode, the batch size 𝑛batch, the replay buffer size 𝑛buffer, a number of combinations are
tested to select the optimal combination and their values are specified for each numerical case in
Sec. 3.3.

3.3 Numerical results and discussions

3.3.1 Assessment setup

3.3.1.1 Baseline algorithms for comparison

We validate and compare the performance of vsOED on a number of numerical experiments against
baselines involving various real-time and adaptive algorithms, listed as follows:

• Random. For Random design, a design is sampled uniformly within D.

• DAD. For DAD [55], we use the code available at: https://github.com/ae-foster/dad.
The default setup is used as the full training; for testing under limited budgets, different
combinations of hyperparameters are tested to select the optimal one.

• iDAD. For iDAD [76], we use the code available at: https://github.com/

desi-ivanova/idad. The default setup is used as the full training but the learning rate is
set as 0.0002; for testing under limited budgets, different combinations of hyperparameters
are tested to select the optimal one.

61

https://github.com/ae-foster/dad
https://github.com/desi-ivanova/idad
https://github.com/desi-ivanova/idad

• RL. For RL [14], we use the code available at: https://github.com/csiro-mlai/
RL-BOED. The default setup is used as the full training; for testing under limited budgets,
different combinations of hyperparameters are tested to select the optimal one.

The key properties of methods compared in this chapter are summarized in Table 3.10.

Table 3.10: Properties of different methods.

Real-time Adaptive Implicit No model derivative Multi-model

Random ✓ ✗ ✓ ✓ ✓

DAD ✓ ✓ ✗ ✗ ✗

iDAD ✓ ✓ ✓ ✗ ✗

RL ✓ ✓ ✗ ✓ ✗

vsOED ✓ ✓ ✓ ✓ ✓

For vsOED, we employ GMMs and NFs for posterior approximation, and TIG and IIG reward
formulations. We use the naming convention where, for example, vsOED-G-I stands for GMM
with IIG, and vsOED-N-T for NF with TIG. Baseline methods include Random design, DAD [55],
iDAD [76], and RL that employed advanced RL techniques [14]. RL can also be combined with
both TIG and IIG, denoted by RL-T and RL-I respectively. DAD and iDAD require the derivative
of the forward model, vsOED and iDAD can accommodate implicit likelihoods, and only vsOED
can handle multi-model scenarios and model discrimination OED.

All experiments are implemented in Python using PyTorch. Truncated normal distribution is not
naturally supported by PyTorch, we use the code from: https://github.com/toshas/torch_
truncnorm. The solver of the SIR model is from: https://github.com/desi-ivanova/idad.

All experiments are run on the Great Lakes Slurm HPC Cluster nodes: https://arc.umich.
edu/greatlakes/configuration/, each node is equipped with a single Nvidia Tesla A40 or
V100 GPU.

3.3.1.2 Prior contrastive estimation

In order to maintain a consistent comparison platform, we will always use prior contrastive es-
timation (PCE) [55, 14, 57] to estimate the expected utility of different trained policies when
possible.

When nuisance parameters [are not present, the reward corresponding to PoIs under the one-

62

https://github.com/csiro-mlai/RL-BOED
https://github.com/csiro-mlai/RL-BOED
https://github.com/toshas/torch_truncnorm
https://github.com/toshas/torch_truncnorm
https://github.com/desi-ivanova/idad
https://arc.umich.edu/greatlakes/configuration/
https://arc.umich.edu/greatlakes/configuration/

point estimate formulation can also be estimated by

ln
𝑝(¤\𝑚 |𝐼𝑘2)
𝑝(¤\𝑚 |𝐼𝑘1)

= ln
𝑝(𝐼𝑘2 | ¤𝑚, ¤\𝑚)𝑝(𝐼𝑘1)
𝑝(𝐼𝑘1 | ¤𝑚, ¤\𝑚)𝑝(𝐼𝑘2)

≈ ln
𝑝(𝐼𝑘2 | ¤𝑚, ¤\𝑚) 1

𝐿+1

[
𝑝(𝐼𝑘1 | ¤𝑚, ¤\𝑚) +

∑𝐿𝑚
𝑙=1 𝑝(𝐼𝑘1 | ¤𝑚, \𝑚,𝑙)

]
𝑝(𝐼𝑘1 | ¤𝑚, ¤\𝑚) 1

𝐿+1

[
𝑝(𝐼𝑘2 | ¤𝑚, ¤\𝑚) +

∑𝐿𝑚
𝑙=1 𝑝(𝐼𝑘2 | ¤𝑚, \𝑚,𝑙)

] ,
where the first equality follows Bayes’ rule, \𝑚,𝑙 ∼ 𝑝(\𝑚) are 𝐿𝑚 contrastive i.i.d. samples, which
are shared in the numerator and denominator in the last equation, and 0 ≤ 𝑘1 < 𝑘2 ≤ 𝑁 . When
𝑘1 = 0 and 𝑘2 = 𝑁 , it is the estimate for the terminal one-point-IG, and when 𝑘1 = 𝑘 and 𝑘2 = 𝑘 +1,
it is the estimate for the incremental one-point-IG at the 𝑘th stage. PCE forms a lower bound of the
EIG, and the bound becomes tight as 𝐿𝑚 → ∞ [55]. Note that PCE cannot be practically applied
when [is present, since evaluating the likelihood 𝑝(𝐼𝑘 | ¤𝑚, \𝑚,𝑙) would require yet another loop to
marginalize out [𝑚 and is extremely expensive. Similarly, PCE also cannot be practically applied
for estimating the reward of IG on the goal-oriented predictive QoIs, which requires another loop
to marginalize out \𝑚 and [𝑚.

The reward of IG on model probability using the one-point estimate can also be rewritten as

ln
𝑃(¤𝑚 |𝐼𝑘2)
𝑃(¤𝑚 |𝐼𝑘1)

= ln
𝑝(𝐼𝑘2 | ¤𝑚)𝑝(𝐼𝑘1)
𝑝(𝐼𝑘1 | ¤𝑚)𝑝(𝐼𝑘2)

= ln
𝑝(𝐼𝑘2 | ¤𝑚)

∑M
𝑚=1 𝑃(𝑚)𝑝(𝐼𝑘1 |𝑚)

𝑝(𝐼𝑘1 | ¤𝑚)
∑M
𝑚=1 𝑃(𝑚)𝑝(𝐼𝑘2 |𝑚)

,

where each marginalized likelihood 𝑝(𝐼𝑘 |𝑚) may be estimated by

𝑝(𝐼𝑘 |𝑚) =
∫
Θ,𝐻

𝑝(\𝑚, [𝑚 |𝑚)𝑝(𝐼𝑘 |𝑚, \𝑚, [𝑚) 𝑑\𝑚 𝑑[𝑚

≈ 1
𝐿𝑚

𝐿𝑚∑︁
𝑙=1

𝑝(𝐼𝑘 |𝑚, \𝑚,𝑙 , [𝑚,𝑙),

with \𝑚,𝑙 and [𝑚,𝑙 being samples independently drawn from the joint prior 𝑝(\𝑚, [𝑚 |𝑚). To ensure
an accurate estimate during the evaluation stage to compare the policies found by different methods,
we use a large sample size 𝐿𝑚 ≈ 106

M .
For cases having nuisance parameters or predictive QoIs (i.e. 𝛼𝑍 > 0), other measures are

reported.

63

3.3.2 Source location finding

We adapt the source location finding problem from [55]. In this numerical case, we enlist M = 3
candidate models with uniform model prior (i.e. 𝑃(𝑚) = 1/3). For the 𝑚th model (𝑚 ∈ {1, 2, 3}),
there are 𝑚 sources randomly located in a 2D domain, each emitting a signal that decays inversely
with the square of the distance. The PoIs are the source locations \𝑚 = {\𝑚,1, . . . , \𝑚,𝑚} where
\𝑚,𝑖 ∈ R2 denotes the location of 𝑖th source. The total intensity at a given location 𝑑, aggregated
from the 𝑚 sources, is then

`(𝑚, \𝑚, 𝑑) = 𝜖𝑏𝑔 +
𝑚∑︁
𝑖=1

1

𝜖𝑚𝑎𝑥 +
 \𝑚,𝑖 − 𝑑 2 ,

where 𝜖𝑏𝑔 = 10−1 is the background signal, and 𝜖𝑚𝑎𝑥 = 10−4 is the maximum signal. The
experimental observation is noise-corrupted signals, and the likelihood follows

log 𝑦 |𝑚, \𝑚, 𝑑 ∼ N(log `(𝑚, \𝑚, 𝑑), 𝜎2),

where the noise standard deviation is 𝜎 = 0.5. The prior is

\𝑚,𝑖 ∼ N(0, 𝐼).

The design is for finding the optimal sequence of observation locations to maximize the expected
utility, and the design space is restricted to D𝑘 = [−4, 4]2.

We are also interested in a goal-oriented OED situation that involves the flux along the 𝑥 spatial
direction, which can be computed using Fick’s law:

𝑓 (𝑚, \𝑚, 𝑑) = −𝐷𝜕`(𝑚, \𝑚, 𝑑)
𝜕𝑥

,

where 𝑓 represents the flux, and 𝐷 = 1 is the diffusivity. More specifically, we consider the flux
integrated over an infinite vertical wall located at 𝑥 = 6, which yields

𝐽 (𝑚, \𝑚) =
∫ +∞

𝑦=−∞
𝑓 (𝑚, \𝑚, (6, 𝑦)) 𝑑𝑦

=

𝑚∑︁
𝑖=1

− 𝜋(\𝑚,𝑖,𝑥 − 6)(
𝜖𝑚𝑎𝑥 + (\𝑚,𝑖,𝑥 − 6)2)3/2 .

The final goal-oriented QoI is the log flux magnitude 𝑧𝑚 = log |𝐽 (𝑚, \𝑚) |. It is worth noting that
the flux is only depending on the 𝑥-position of the source (i.e. \𝑚,𝑖,𝑥). Since the explicit form of the
prior-predictive for the QoI is not analytically available, we elect to omit it from the computations

64

and it does not affect the optimal policy per Appendix B.5. Below we first show a uni-model case
where 𝑚 is fixed at 2 and so 𝛼M = 0, and then present the multi-model case.

3.3.2.1 Uni-model example

In this uni-model example, 𝑚 is fixed at 2.
Hyperparameters. The hyperparameters for the uni-model source location finding problem

are listed in Table 3.11, where vsOED-G-I stands for GMM with IIG, and vsOED-N-T for NF with
TIG, etc. For the linear mapping in the output layer of the GMM net, we transform the output of the
GMM mean net of the PoI posterior predictor to a range of [−6, 6], the output of the GMM standard
deviation net of the PoI posterior predictor to a range of [10−5, 1], the output of the GMM mean net
of the QoI posterior predictor to a range of [−6, 6], and the output of the GMM standard deviation
net of the QoI posterior predictor to a range of [10−5, 2]. The truncated normal distribution is not
used in this example.

Table 3.11: Hyperparameters of the uni-model source location finding problem. In the table, “lr”
means “learning rate”.

vsOED-G-T vsOED-G-I vsOED-F-T vsOED-F-I

#training iteration 𝑛update 10001 10001 10001 10001
#new episodes per iteration 𝑛episode 1000 1000 1000 1000

batch size 𝑛batch 10000 10000 10000 10000
parameter predictor initial lr 10−3 10−3 10−3 10−3

parameter predictor lr decay 0.9999 0.9999 0.9999 0.9999
#param predictor update per iteration 5 5 5 5

𝑛mixture 8 8 N/A N/A
𝑛trans N/A N/A 4 4

initial actor lr 5 × 10−4 10−3 10−3 10−3

actor lr decay 0.9999 0.9999 0.9999 0.9999
initial critic lr 10−3 10−3 10−3 10−3

critic lr decay 0.9999 0.9999 0.9999 0.9999
max buffer size 106 106 106 106

discount factor 𝛾 1 0.9 1 0.9
initial design noise scale 0.5 0.5 0.5 0.5
design noise scale decay 0.9999 0.9999 0.9999 0.9999

target network lr 0.1 0.1 0.1 0.1

Calculation of the goal-oriented posterior. The true posterior-predictive PDF of the goal-
oriented QoI 𝑧 shown in Fig. 3.4 are calculated on a discretized grid, where the prior 𝑝(𝑧) is
obtained using kernel density estimation (KDE) [127] with 106 prior 𝑧 samples, and the likelihood

65

𝑝(𝐼𝑁 |𝑧, 𝜋) is obtained with approximate Bayesian computation (ABC) [39]:

𝑝(𝐼𝑁 |𝑧, 𝜋) ≈
1

𝑛accept

𝐿∑︁
𝑖=1

𝑝(𝐼𝑁 |\ (𝑖) , 𝜋)1|𝐻 (\ (𝑖))−𝑧 |<=𝜖 ,

where \ (𝑖) ∼ 𝑝(\), 1 is an indicator function and 𝑛accept is the number of \ samples that satisfy the
indicator function. We use 𝐿 = 106 samples and acceptance tolerance 𝜖 = 10−3 to ensure accuracy.

PoI inference OED. The first case is a pure PoI (i.e. source locations) inference OED where
𝛼Θ = 1 and 𝛼𝑍 = 0; this is identical to the setup in previous literature [55, 76, 14]. Figure 3.1a
presents the expected cumulative utilities at various experiment stages, where all policies are
optimized for a design horizon of𝑁 = 30 experiments and then evaluated on the various intermediate
experiment stages. We restrict vsOED training to a total budget of 10 million episode samples,
while fully training RL, DAD and iDAD using their default publication settings (RL 8 trillion
episodes, DAD 100 billion episodes, and iDAD 200 million episodes). In this plot, vsOED with
IIG achieves noticeably better expected utilities compared to TIG, while TIG still reaches similar
performance as other fully trained baselines as they all produce comparable expected utilities at
𝑁 = 30. The lower values for vsOED with TIG in the earlier stages suggest that the policy sacrifices
short-term rewards for a higher total expected utility.

Figure 3.1b presents the expected utility versus design horizon 𝑁 , where at each 𝑁 the data point
reflects a new policy optimized specifically for that horizon. We apply an equal computational
budget of 10 million episodes for all methods. In this comparison, vsOED outperforms other
baselines across all 𝑁 . IIG again achieves better performance than TIG, especially for 𝑁 > 15. The
shaded regions in both Fig. 3.1a and 3.1b illustrate the robustness of vsOED, RL, and DAD training
against random seeds, while iDAD exhibits some instability for longer horizons. Lastly, Fig. 3.2
provides a validation example showing that GMM can effectively approximate the posterior even
when highly non-Gaussian.

QoI goal-oriented OED. The second case is a pure goal-oriented OED where 𝛼Θ = 0 and
𝛼𝑍 = 1. The scenario is that the source is emitting a harmful contaminant posing a risk of
populated area to the right of the domain. Our predictive QoI 𝑧 is the contaminant flux integrated
on the infinite vertical wall located at 𝑥 = 6. Figure 3.3 contrasts the behavior of the PoI OED
policy and the goal-oriented OED policy, where the former adjusts toward the estimated source
locations while the latter forms a roughly vertical design pattern. This behavior can be explained
from physical principles: since the flux is integrated over the 𝑦-coordinate, it is solely dependent
on the 𝑥-position of the source (i.e. \𝑥) (Sec. 3.3.2). Spreading measurements along a vertical is
more sensitive at detecting changes in \𝑥 due to the isotropic nature of the source emission—this is
supported by Fig. 3.4a showing the greater posterior shrinkage from a simple vertical sensor design

66

0 5 10 15 20 25 30
Experiment stage

0

2

4

6

8

10

12

Ex
pe

ct
ed

 u
til

ity
 (P

CE
) vsOED-G-T

vsOED-G-I
vsOED-N-T
vsOED-N-I
RL-T
RL-I
DAD
iDAD
Random

(a) Expected cumulative utility versus experiment
stage

0 5 10 15 20 25 30
Experiments

0

2

4

6

8

10

12

Ex
pe

ct
ed

 u
til

ity
 (P

CE
) vsOED-G-T

vsOED-G-I
vsOED-N-T
RL-T
RL-I
DAD
iDAD
Random

(b) Expected utility versus design horizon

Figure 3.1: Expected utilities of various OED methods, all estimated using PCE with 𝐿 = 106.
(a) Mean and standard error (shaded) from 2000 evaluation episodes. (b) Mean and standard error
(shaded) of 4 replicates with different random seeds, each replicate evaluated with 2000 episodes.

2 1 0 1 2
x

2

1

0

1

2

y

GMM pred

2 1 0 1 2
x

2

1

0

1

2 true

(a) 𝑁 = 1

2 1 0 1 2
x

2

1

0

1

2

y

GMM pred

2 1 0 1 2
x

2

1

0

1

2 true

(b) 𝑁 = 3

Figure 3.2: GMM posterior of PoIs versus their true posterior. Red stars are the true source
locations.

67

over a simple horizontal sensor design. Figure 3.4b demonstrates that the GMM again successfully
approximates the posterior-predictive of 𝑧.

4 2 0 2 4
dx

4

2

0

2

4

d y

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

(a) PoI inference OED policy trajectories

4 2 0 2 4
dx

4

2

0

2

4

d y

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

(b) QoI goal-oriented OED policy trajectories

Figure 3.3: Policies for 𝑁 = 15. The contour background illustrates the signal strength.

4 2 0 2 44

2

0

2

4

source
Vert. d
Horiz. d

2.5 2.0 1.5 1.0 0.5
log flux

0

1

2

3

4

pr
ob

ab
ilit

y

prior
Vert. d
Horiz. d
true

(a) Vertical 𝑑 versus horizontal 𝑑

2.5 2.0 1.5 1.0 0.5
log flux

0

5

10

15

20

pr
ob

ab
ilit

y

2.5 2.0 1.5 1.0 0.5
log flux

prior
post GMM
post true
true value

(b) Posterior-predictive at 𝑁 = 15

Figure 3.4: QoI posterior predictive comparisons for the goal-oriented OED.

Training stability. Figure 3.5 shows the training histories of the PoI inference OED (𝛼Θ = 1)
and the QoI goal-oriented OED (𝛼𝑍 = 1), where the solid line and the shaded region are the mean
and standard error of 4 replicates with different random seeds. The training of vsOED appears
highly robust against randomization. Table 3.12 presents the PCE evaluation of optimal policies
from 4 replicates of PoI inference OED, optimized for horizon 𝑁 = 30. Each element in the table
represents the mean and standard error computed from 2000 samples. Table 3.13 further provides
the mean and standard error aggregated from the means of these 4 replicates. These tables further
demonstrate the robustness of vsOED. Moreover, we observe that vsOED with NF achieves slightly
better performance compared to using GMM. This can be attributed to the increased expressiveness
of NFs. Figure 3.6 provides insights into the expressiveness of NFs, from which we can find that
when the posterior is highly non-Gaussian, NF outperforms GMM in approximating the posterior.
However, as the horizon 𝑁 increases, the posterior tends toward sharper multi-modal Gaussian
mixtures, which explains the similar performance of using GMM and NFs at horizon 𝑁 = 30.
Figure 3.7 draws the variational expected utility lower bounds against the number of experiments
for the goal-oriented OED. It also demonstrates the robustness of vsOED.

68

0 2000 4000 6000 8000 10000
Iteration

2

0

2

4

6

8

10

Va
ria

tio
na

l E
U

lo
we

r b
ou

nd

vsOED-G-T
vsOED-G-I
vsOED-N-T
vsOED-N-I

(a) Inference OED

0 2000 4000 6000 8000 10000
Iteration

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5

Va
ria

tio
na

l E
U

lo
we

r b
ou

nd vsOED-G-T
vsOED-G-I

(b) Goal-oriented OED

Figure 3.5: Training histories of PoI inference OED and QoI goal-oriented OED for the uni-model
source location finding problem, optimized for horizon 𝑁 = 30. The solid line and the shaded
region are the mean and standard error of 4 replicates with different random seeds.

Table 3.12: PCE evaluation of optimal policies from 4 replicates of PoI inference OED for the
uni-model source location finding problem, optimized for horizon 𝑁 = 30.

Run 1 Run 2 Run 3 Run 4

vsOED-G-T 11.257 ± 0.046 11.089 ± 0.046 11.237 ± 0.046 11.022 ± 0.044
vsOED-G-I 12.496 ± 0.040 12.306 ± 0.043 12.577 ± 0.040 11.895 ± 0.044
vsOED-F-T 11.239 ± 0.046 11.674 ± 0.045 11.149 ± 0.046 11.592 ± 0.045
vsOED-F-I 12.393 ± 0.042 12.342 ± 0.042 12.155 ± 0.042 12.536 ± 0.043

Table 3.13: Aggregated PCE evaluation results of optimal policies from 4 replicates of PoI inference
OED for the uni-model source location finding problem, optimized for horizon 𝑁 = 30.

Mean SE

vsOED-G-T 11.151 0.049
vsOED-G-I 12.319 0.132
vsOED-F-T 11.414 0.112
vsOED-F-I 12.357 0.068

69

2 1 0 1 2
x

2

1

0

1

2

y

GMM pred

2 1 0 1 2
x

2

1

0

1

2 NFs pred

2 1 0 1 2
x

2

1

0

1

2 true

(a) Example posterior 1

2 1 0 1 2
x

2

1

0

1

2

y

GMM pred

2 1 0 1 2
x

2

1

0

1

2 NFs pred

2 1 0 1 2
x

2

1

0

1

2 true

(b) Example posterior 2

Figure 3.6: Examples of GMM posterior, NF posterior, and true posterior at horizon 𝑁 = 3. Red
stars are the true source locations.

0 5 10 15 20 25 30
Experiments

0.0

0.5

1.0

1.5

2.0

2.5

EU
 lo

we
r b

ou
nd

vsOED-G-T
vsOED-G-I

Figure 3.7: Variational expected utility lower bounds of goal-oriented OED for the uni-model
source location finding problem. The solid line and the shaded region are the mean and standard
error of 4 replicates with different random seeds.

70

3.3.2.2 Multi-model example

For the multi-model source location finding problem, 5 scenarios will be considered: model
discrimination OED (𝛼M = 1, 𝛼Θ = 𝛼𝑍 = 0), inference OED (𝛼Θ = 1, 𝛼M = 𝛼𝑍 = 0), goal-
oriented OED (𝛼𝑍 = 1, 𝛼M = 𝛼Θ = 0), discrimination-inference OED (𝛼M = 𝛼Θ = 1, 𝛼𝑍 = 0) and
discrimination-goal-oriented OED (𝛼M = 𝛼𝑍 = 1, 𝛼Θ = 0).

Hyperparameters. The hyperparameters are listed in Table 3.14. The linear mapping in the
output layer of the GMM net is the same as the uni-model example in Sec. 3.3.2.1.

Table 3.14: Hyperparameters of the multi-model source location finding problem.

vsOED-G-T vsOED-G-I

#training iteration 𝑛update 10001 10001
#new episodes per iteration 𝑛episode 1000 1000

batch size 𝑛batch 10000 10000
model predictor initial lr 10−3 10−3

model predictor lr decay 0.9999 0.9999
#model predictor update per iteration 5 5

parameter predictor initial lr 10−3 10−3

parameter predictor lr decay 0.9999 0.9999
#param predictor update per iteration 5 5

𝑛mixture 8 8
initial actor lr 2 × 10−4 10−3

actor lr decay 0.9999 0.9999
initial critic lr 10−3 10−3

critic lr decay 0.9999 0.9999
max buffer size 106 106

discount factor 𝛾 1 0.9
initial design noise scale 0.5 0.5
design noise scale decay 0.9999 0.9999

target network lr 0.1 0.1

Training stability. For the multi-model source location finding, the investigation of training
stability is illustrated here only on the inference OED scenario. Figure 3.8 shows the training
histories of the inference OED, where the solid line and the shaded region are the mean and
standard error of 4 replicates with different random seeds. Similar to the uni-model case, the
training of vsOED appears highly robust against randomization. Table 3.15 presents the PCE
evaluation of optimal policies from 4 replicates of inference OED, optimized for horizon 𝑁 = 30.
Each element in the table represents the mean and standard error computed from 2000 samples.
Table 3.16 further provides the mean and standard error aggregated from the means of these 4
replicates. These results further support that vsOED is robust under different random seeds.

71

0 2000 4000 6000 8000 10000
Iteration

2

0

2

4

6

8

Va
ria

tio
na

l E
U

lo
we

r b
ou

nd

vsOED-G-T
vsOED-G-I

Figure 3.8: Training histories of PoI inference OED for the multi-model source location finding
problem, optimized for horizon 𝑁 = 30. The solid line and the shaded region are the mean and
standard error of 4 replicates with different random seeds.

Table 3.15: PCE evaluation of optimal policies from 4 replicates of inference OED for the multi-
model source location finding problem, optimized for horizon 𝑁 = 30.

Run 1 Run 2 Run 3 Run 4

vsOED-G-T 9.672 ± 0.055 9.263 ± 0.055 9.058 ± 0.057 8.833 ± 0.056
vsOED-G-I 10.567 ± 0.048 10.085 ± 0.049 10.464 ± 0.050 10.429 ± 0.048

Table 3.16: Aggregated PCE evaluation results of optimal policies from 4 replicates of inference
OED for the multi-model source location finding problem, optimized for horizon 𝑁 = 30.

Mean SE

vsOED-G-T 9.206 0.154
vsOED-G-I 10.386 0.090

72

Expected utilities. Figure 3.9 plots the expected utilities of various OED scenarios, averaged
over 2 replicates. The IIG formulation demonstrates greater stablility and higher performance,
especially when the horizon 𝑁 is longer than 15.

0 5 10 15 20 25 30
Experiments

0.0

0.2

0.4

0.6

0.8

1.0

EU
 lo

we
r b

ou
nd

vsOED-G-T
vsOED-G-I

(a) Model discrimination OED

0 5 10 15 20 25 30
Experiments

0

2

4

6

8

10

Ex
pe

ct
ed

 u
til

ity
 (P

CE
)

vsOED-G-T
vsOED-G-I

(b) Inference OED

0 5 10 15 20 25 30
Experiments

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

EU
 lo

we
r b

ou
nd

vsOED-G-T
vsOED-G-I

(c) Goal-oriented OED

0 5 10 15 20 25 30
Experiments

0

2

4

6

8

10

EU
 lo

we
r b

ou
nd

vsOED-G-T
vsOED-G-I

(d) Discrimination-inference OED

0 5 10 15 20 25 30
Experiments

0.0

0.5

1.0

1.5

2.0

2.5

3.0

EU
 lo

we
r b

ou
nd

vsOED-G-T
vsOED-G-I

(e) Discrimination-goal-oriented OED

Figure 3.9: Expected utilities of various OED scenarios for the multi-model source location finding
problem, averaged over 2 replicates. Variational lower bounds with 106 samples are presented
except for inference OED, where PCE with 2000 samples and 𝐿 = 106 is used for evaluation.

Policies. Figure 3.10 plots example designs for various OED scenarios. The model discrimina-
tion OED tends to do more exploration, while the inference OED tends to exploit the knowledge
about the source location. Similar to the uni-model example, the goal-oriented OED prefers to take
vertical measurements. The discrimination-inference OED and the discrimination-goal-oriented

73

OED appear slightly more exploratory than the inference OED and the goal-oriented OED, respec-
tively.

Model discrimination. Figure 3.11 illustrates the true model posteriors and the posteriors
predicted by the model posterior predictor of the model discrimination OED, optimized for horizon
𝑁 = 30. The policy learned by the model discrimination OED is effective in distinguishing between
different models, and the predicted distributions from the model posterior predictor align well with
the true posteriors.

To further illustrate that the model discrimination OED has found a good policy, we compare the
EIG on model probability of various OED scenarios optimized for horizon 𝑁 = 30 in Table 3.17.
The EIG is calculated by PCE with 2000 samples and 𝐿𝑚 ≈ 106

3 for 𝑚 = 1, 2, 3. The model
discrimination OED finds the optimal policy in terms of maximizing the EIG on model probability.
The EIG on the model probability in the discrimination-inference OED and discrimination-goal-
oriented OED are also higher than that of inference OED and goal-oriented OED, respectively.

Table 3.17: EIG on model probability for various OED scenarios optimized for horizon 𝑁 = 30.

Mean SE

model discrimination OED 1.020 0.003
inference OED 0.896 0.005
goal-oriented OED 0.815 0.005
discrimination-inference OED 0.950 0.005
discrimination-goal-oriented OED 0.967 0.004

PoI inference. Table 3.18 lists the EIG on the PoI for various OED scenarios optimized for
horizon 𝑁 = 30. The EIG is calculated by PCE with 2000 samples and 𝐿𝑚 ≈ 106

3 for𝑚 = 1, 2, 3. As
expected, the inference OED finds the best policy in terms of maximizing the EIG on PoI inference.

Table 3.18: EIG on the PoI for various OED scenarios optimized for horizon 𝑁 = 30.

Mean SE

model discrimination OED 5.956 0.065
inference OED 10.567 0.048
goal-oriented OED 6.999 0.053
discrimination-inference OED 10.330 0.049
discrimination-goal-oriented OED 7.830 0.052

74

4 2 0 2 4
dx

4

2

0

2

4

d y

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

(a) Model discrimination OED

4 2 0 2 4
dx

4

2

0

2

4

d y

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

(b) Inference OED

4 2 0 2 4
dx

4

2

0

2

4

d y

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

(c) Goal-oriented OED

4 2 0 2 4
dx

4

2

0

2

4

d y

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

(d) Discrimination-inference OED

4 2 0 2 4
dx

4

2

0

2

4

d y

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

4 2 0 2 4
dx

4

2

0

2

4

(e) Discrimination-goal-oriented OED

Figure 3.10: Example designs of various OED scenarios for the multi-model source location finding
problem, optimized for horizon 𝑁 = 30.

75

m=1 m=2 m=30.0

0.2

0.4

0.6

0.8

1.0

m=1 m=2 m=3 m=1 m=2 m=3 m=1 m=2 m=3 m=1 m=2 m=3 m=1 m=2 m=3

true model
post pred
post true

Figure 3.11: Example model posteriors from the model discrimination OED optimized for horizon
𝑁 = 30.

3.3.3 Constant elasticity of substitution (CES)

This experiment involves a single model, and was previously studied in [56, 57, 14]. Constant
elasticity of substitution (CES) falls under the domain of behavioral economics, where participants
are presented with two baskets 𝑥 and 𝑥′ of goods and asked to assess the subjective difference in
utility between the two baskets. The participants rate this difference on a sliding scale ranging from
0 to 1. The CES model [3] is then used to model the underlying utility function with latent PoIs
\ = (𝜌, 𝛽, log 𝑢) with the following prior:

𝜌 ∼ 𝐵𝑒𝑡𝑎 (1, 1)
𝛽 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 ([1, 1, 1])

log 𝑢 ∼ N
(
1, 32

)
.

It is worth noting that the degree of freedom of 𝛽 is 2 as the sum of 𝛽𝑖 for 𝑖 = 1, 2, 3 is 1, therefore,
only 𝛽1 and 𝛽2 are included in \. The design variable is 𝑑 = (𝑥, 𝑥′) where 𝑥, 𝑥′ ∈ [0, 100]3 represent
the baskets of goods. The forward model is

𝑈 (𝑥) =
(∑︁
𝑖

𝑥
𝜌

𝑖
𝛽𝑖

) 1
𝜌

`[= 𝑢 · (𝑈 (𝑥) −𝑈 (𝑥′))
𝜎[= 𝜏𝑢 · (1 + ∥ 𝑥 − 𝑥′ ∥)

[∼ N
(
`[, 𝜎

2
[

)
𝑦 = 𝑐𝑙𝑖𝑝 (𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ([), 𝜖 , 1 − 𝜖) , (3.28)

where 𝜏 = 0.005 and 𝜖 = 2−22.
Hyperparameters. The hyperparameters are listed in Table 3.19. We only use vsOED with

TIG formulation since the horizon of this problem is at most 10. For the linear mapping in the

76

output layer of the GMM net, we transform the output of the GMM mean net of the PoI posterior
predictor to a range of [−1, 2] for 𝜌 and 𝛽, [−17, 19] for log 𝑢, and the output of the GMM standard
deviation net of the PoI posterior predictor to a range of [10−5, 3] for all variables. The truncated
normal distribution is used on 𝜌 and 𝛽 with support [0, 1].

Table 3.19: Hyperparameters for the CES problem.

vsOED-G-T vsOED-F-T

#training iteration 𝑛update 10001 10001
#new episodes per iteration 𝑛episode 1000 1000

batch size 𝑛batch 10000 10000
parameter predictor initial lr 10−3 10−3

parameter predictor lr decay 0.9999 0.9999
#param predictor update per iteration 5 5

𝑛mixture 8 N/A
𝑛trans N/A 4

initial actor lr 10−3 10−3

actor lr decay 0.9999 0.9999
initial critic lr 10−3 10−3

critic lr decay 0.9999 0.9999
max buffer size 106 106

discount factor 𝛾 1 1
initial design noise scale 5 5
design noise scale decay 0.9998 0.9998

target network lr 0.1 0.1

Training stability. Figure 3.12 shows the training histories of the CES problem, where the
solid line and the shaded region are the mean and standard error of 4 replicates with different
random seeds. The training process of the CES problem exhibits slightly more noise compared to
the source location finding problem, but overall remains robust against randomization. Table 3.20
presents the PCE evaluation results of 4 replicates optimized for horizon 𝑁 = 10. Each element in
the table represents the mean and standard error computed from 2000 samples. Table 3.21 further
provides the mean and standard error aggregated from the means of these 4 replicates.

Table 3.20: PCE evaluation of optimal policies from 4 replicates of PoI inference OED for the CES
problem, optimized for horizon 𝑁 = 10.

Run 1 Run 2 Run 3 Run 4

vsOED-G-T 11.785 ± 0.068 12.340 ± 0.059 12.290 ± 0.058 11.125 ± 0.079
vsOED-F-T 8.401 ± 0.098 9.510 ± 0.086 8.908 ± 0.087 10.299 ± 0.081

77

0 2000 4000 6000 8000 10000
Iteration

2

0

2

4

6

8

10

12
Va

ria
tio

na
l E

U
lo

we
r b

ou
nd vsOED-G-T

vsOED-N-T

Figure 3.12: Training histories for the CES problem, optimized for horizon 𝑁 = 10. The solid line
and the shaded region are the mean and standard error of 4 replicates with different random seeds.

Table 3.21: Aggregated PCE evaluation of optimal policies from 4 replicates of PoI inference OED
for the CES problem, optimized for horizon 𝑁 = 10.

Mean SE

vsOED-G-T 11.885 0.245
vsOED-F-T 9.280 0.354

78

Expected utilities and posteriors. Figure 3.13a presents the expected cumulative utilities
at various experiment stages, where all policies are optimized for a design horizon of 𝑁 = 10
experiments and then evaluated on the various intermediate experiment stages. We restrict vsOED
training to a total budget of 10 million episode samples, while fully training RL, DAD and iDAD
using (RL 8 trillion episodes, DAD 100 billion episodes, and iDAD 200 million episodes). In
Fig. 3.13b, we draw the expected utility plotted against the design horizon 𝑁 . Each data point
represents a new policy optimized for a specific design horizon. The computational budget of 10
million episodes is equally allocated to all methods for a fair comparison. Figure 3.13a demonstrates
that the performance of vsOED with GMM and TIG is slightly inferior to the fully-trained RL but
significantly better than fully-trained DAD and iDAD. The lower values for vsOED with GMM
and TIG in the earlier stages indicate that the policy prioritizes long-term expected utility over
short-term rewards. In Fig. 3.13b, it is evident that under a common budget, vsOED with GMM
and TIG outperforms other baseline methods for all values of 𝑁 . Furthermore, the shaded regions
in Fig. 3.13b represent the robustness of vsOED-G-T and RL training against random seeds. On
the other hand, vsOED-F-T and DAD exhibit higher noise.

In this example, the performance of vsOED with NF is significantly worse compared to vsOED
with GMM. This can be attributed to the limitation of NFs, as they are designed to handle random
variables with infinite support, while in this case both 𝜌 and 𝛽 have finite support.

Figure 3.14 compares the posterior predicted by GMM and the true posterior. The GMM
performs well in predicting log 𝑢, but it tends to have wider posterior predictions for 𝜌 and 𝛽

compared to the true posterior. This is due to the nature of the CES problem, where many
observations are clipped at the two ends as shown in Eqn. (3.28). Consequently, there are numerous
observations with identical values, which makes it challenging for GMM to accurately learn the
mapping from designs and observations to the posterior distribution. Nevertheless, despite the
challenges in predicting the posterior accurately, vsOED with GMM is still able to find a good
policy.

3.3.4 SIR model for disease spread

We demonstrate the ability of vsOED to handle implicit likelihood via the SIR example from [76].
This experiment only involves a single model.

SIR is a stochastic model [83, 37] describing the spread of infectious diseases in a population.
Individuals in the population are divided into three categories: susceptible, infected, and recovered.
Transitions among these categories are governed by the infection rate and recovery rate parameters.
The SIR model problem aims to estimate the infection rate 𝛽 and the recovery rate 𝜌 by designing
time points for measuring the number of infected individuals . Given a fixed population of size 𝑁 ,

79

0 2 4 6 8 10
Experiment stage

2

4

6

8

10

12

Ex
pe

ct
ed

 u
til

ity
 (P

CE
)

vsOED-G-T
vsOED-N-T
RL-T
RL-I
DAD
iDAD
Random

(a) Expected cumulative utility versus experiment
stage

0 2 4 6 8 10
Experiments

2

4

6

8

10

12

Ex
pe

ct
ed

 u
til

ity
 (P

CE
)

vsOED-G-T
vsOED-N-T
RL-T
RL-I
DAD
iDAD
Random

(b) Expected utility versus design horizon

Figure 3.13: Expected utilities of various OED methods for th CES problem, all estimated using
PCE with 𝐿 = 106. (a) Mean and standard error (shaded) from 2000 evaluation episodes. (b) Mean
and standard error (shaded) of 4 replicates with different random seeds, each replicate evaluated
with 2000 episodes.

0.0 0.2 0.4 0.6 0.8 1.0

0
10
20
30
40
50 GMM pred

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

2

GMM pred

10 5 0 5 10

0.0
0.5
1.0
1.5
2.0
2.5
3.0 GMM pred

0.0 0.2 0.4 0.6 0.8 1.0
0

10
20
30
40
50 true

0.00 0.25 0.50 0.75 1.00
1

0.00

0.25

0.50

0.75

1.00

2

true

10 5 0 5 10
logu

0.0
0.5
1.0
1.5
2.0
2.5
3.0 true

Figure 3.14: Examples of GMM posterior and true posterior for the CES problem at horizon
𝑁 = 10. Red stars are the parameter values.

80

each individual starts from a susceptible state (𝜏) (𝜏 is time) to an infected state 𝐼 (𝜏) with rate 𝛽,
and then recovers back to the recovered state 𝑅(𝜏) with rate 𝜌.

The stochastic versions of SIR is usually defined by a continuous-time Markov chain (CTMC),
which can be sampled via the Gillespie algorithm [2]. However, this generally yields discrete pop-
ulation states that have undefined gradients. We follow [76] to an alternative simulation algorithm
that uses stochastic differential equations (SDEs), where yields continuous state populations and
gradients can be approximated.

The population state vector is defined to be X(𝜏) = (𝑆(𝜏), 𝐼 (𝜏))𝑇 , where 𝑅(𝜏) can be ignored
as the population size is fixed. The system of Itô SDEs that defines the stochastic SIR model is
given by:

𝑑X(𝜏) = f (X(𝜏))𝑑𝜏 + G(X(𝜏))𝑑W(𝜏) (3.29)

where f is the drift vector, G is the diffusion matrix, and W(𝜏) is a vector of independent Wiener
processes (also called Brownian motion). From [83], the drift vector and diffusion matrix are

f (X(𝜏)) =
(

−𝛽 𝑆(𝜏)𝐼 (𝜏)
𝑁

𝛽
𝑆(𝜏)𝐼 (𝜏)

𝑁
− 𝜌𝐼 (𝜏)

)
and G(X(𝜏)) = ©«

−
√︃
𝛽
𝑆(𝜏)𝐼 (𝜏)

𝑁
0√︃

𝛽
𝑆(𝜏)𝐼 (𝜏)

𝑁
−
√︁
𝜌𝐼 (𝜏)

ª®¬ . (3.30)

Given Eqn. (3.29) and (3.30), we can simulate state populations X(𝜏) by solving the SDE using
finite-differencing methods, such as the Euler-Maruyama method. For a fair comparison, we follow
[76] and just use the solutions of Eqn. (3.29) as data and do not consider an additional Poisson
observational model that increases the noise in simulated data as suggested in [83].

The PoIs of this example are the logarithmic infection rate log 𝛽 and the logarithmic recovery
rate log 𝜌 with the following prior:

log 𝛽 ∼ N
(
log 0.5, 0.52

)
log 𝜌 ∼ N

(
log 0.1, 0.52

)
.

The design variable 𝑑 is the time 𝜏 ∈ [0, 100] for taking measurements, where the observable is
the number of infected people 𝐼 (𝜏). 𝐼 (𝜏) can be obtained by solving Eqn. (3.29). Solving the
underlying SDE is expensive, we thus limit the computational budget to 1 million forward model
simulations for both vsOED and iDAD. To accelerate the training process, we pre-generate and
store 1 million simulations, and access the stored simulations during the training. A new set of
3 × 105 simulations are used as evaluation data. We emphasize that the likelihood of stochastic
SIR model is implicit. This is because we can only sample from the likelihood, but evaluating the

81

likelihood PDF directly is not possible due to the stochastic nature of the process.
Hyperparameters. The hyperparameters are listed in Table 3.22. We only use vsOED with

TIG formulation since the horizon of this problem is at most 10. For the linear mapping in the
output layer of the GMM net, we transform the output of the GMM mean net of the PoI posterior
predictor to a range of [−6, 4], and the output of the GMM standard deviation net of the PoI
posterior predictor to a range of [10−5, 0.5] for all variables. The truncated normal distribution is
not used in this case.

Table 3.22: Hyperparameters for the SIR problem.

vsOED-G-T vsOED-F-T

#training iteration 𝑛update 10001 10001
#new episodes per iteration 𝑛episode 1000 1000

batch size 𝑛batch 10000 10000
parameter predictor initial lr 5 × 10−4 10−3

parameter predictor lr decay 0.9999 0.9999
#param predictor update per iteration 5 5

𝑛mixture 8 N/A
𝑛trans N/A 4

initial actor lr 5 × 10−4 5 × 10−4

actor lr decay 0.9999 0.9999
initial critic lr 10−3 10−3

critic lr decay 0.9999 0.9999
max buffer size 106 106

discount factor 𝛾 1 1
initial design noise scale 5 5
design noise scale decay 0.9999 0.9999

target network lr 0.1 0.1

Training stability. Figure 3.15 presents the training histories for the SIR problem, where the
solid line and the shaded region are the mean and standard error of 4 replicates with different
random seeds. Overall, the training of vsOED is highly stable, with consistent performance across
different random seeds, except for a dip in the training of vsOED-G-T. Table 3.23 presents the lower
bound evaluation of optimal policies from 4 replicates optimized for horizon 𝑁 = 10. Each element
in the table represents the mean and standard error computed from 3 × 105 samples. Table 3.24
further provides the mean and standard error aggregated from the means of these 4 replicates,
supporting the robustness of vsOED in the SIR problem.

Policies. Fig. 3.16 shows the trajectories and designs of 3 realizaitons of (𝛽, 𝜌) with different
ratios 𝑅 = 𝛽/𝜌. Smaller 𝑅 corresponds to a more spreading design, which aligns with the results
in [76].

82

0 2000 4000 6000 8000 10000
Iteration

2

1

0

1

2

3

Va
ria

tio
na

l E
U

lo
we

r b
ou

nd

vsOED-G-T
vsOED-N-T

Figure 3.15: Training histories for the SIR problem, optimized for horizon 𝑁 = 10. The solid line
and the shaded region are the mean and standard error of 4 replicates with different random seeds.

Table 3.23: Variational expected utility lower bounds of optimal policies from 4 replicates for the
SIR problem, optimized for horizon 𝑁 = 10.

Run 1 Run 2 Run 3 Run 4

vsOED-G-T 4.091 ± 0.002 4.093 ± 0.002 4.090 ± 0.001 4.092 ± 0.001
vsOED-F-T 4.097 ± 0.002 4.100 ± 0.002 4.091 ± 0.002 4.106 ± 0.002

Table 3.24: Aggregated variational expected utility lower bounds of optimal policies from 4
replicates for the SIR problem, optimized for horizon 𝑁 = 10.

Mean SE

vsOED-G-T 4.092 0.001
vsOED-F-T 4.099 0.003

0 20 40 60 80 100
Time

0
50

100
150
200
250
300
350
400

In

fe
ct

ed
 p

eo
pl

e

R=2.18
R=5.42
R=19.34

(a) SIR trajectories

0 20 40 60 80 100
Time

1
2
3
4
5
6
7
8
9

10

St
ag

e

R=2.18
R=5.42
R=19.34

(b) SIR policies

Figure 3.16: (a) SIR trajectories for 3 realizations of (𝛽, 𝜌) with different ratios 𝑅 = 𝛽/𝜌. (b)
Corresponding designs.

83

Expected utilities and the posterior. Since the likelihood is implicit, PCE cannot be used to
evaluate the expected utility. As a result, we directly present the variational lower bound as an
alternative metric for measuring the performance of trained policies. Figure 3.17a illustrates the
variational lower bound of the expected utility versus design horizon. vsOED and iDAD perform
similarly, with vsOED slightly better in some cases. However, we note that the comparison is not
entirely commensurable since the two methods use different variational lower bounds, and that
iDAD additionally uses the forward model derivative. A potential benefit for vsOED is that it does
not require forward model derivative, which can be valuable where model derivative is inaccessible.
Figure 3.17b shows an example posterior generated from the GMM, which we see is consistent
with the true data-generating values. Section 3.3.4 contains additional details on the SIR example.

0 2 4 6 8 10
Experiments

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

EU
 lo

we
r b

ou
nd

vsOED-G-T
vsOED-N-T
iDAD-NWJ
iDAD-InfoNCE

(a) Expected utility versus design horizon

3 2 1 0 1 2
log infection rate

6

5

4

3

2

1

0

lo
g

re
co

ve
ry

 ra
te

(b) GMM posterior at 𝑁 = 2

Figure 3.17: (a) vsOED plot is the mean and standard error (shaded) from 4 replicates with different
random seeds, each replicate evaluated with 3 × 105 episodes. Shaded regions are practically
invisible, suggesting robustness. (b) An example posterior generated from the GMM.

3.3.5 Convection-diffusion

The last example entails finding the optimal sensor movement locations within a chemical contami-
nant plume governed by the 2D convection-diffusion PDE. This experiment is similar to the source
location finding case in Sec. 3.3.2, and Sec. 2.3.2 for the uni-model example.

Here we consider M = 3 candidate models with uniform prior model probability (i.e. 𝑃(𝑚) =
1/3). For the 𝑚th model (𝑚 ∈ {1, 2, 3}), there are 𝑚 chemical contaminant sources randomly
located in a 2D domain. Instead of an analytical function to describe the source signal, here the
contaminant concentration at a given time 𝑡 and a location b = [b𝑥 , b𝑦] ∈ R2 is determined by a

84

convection-diffusion partial differential equation (PDE). Specifically, for the 𝑚th model:

𝜕𝐺 (b, 𝑡;𝑚, \𝑚, [𝑚)
𝜕𝑡

= ∇2𝐺 − 𝑢([𝑚) · ∇𝐺 + 𝑆(b, 𝑡;𝑚, \𝑚), b ∈ [−1, 2]2, 0 ≤ 𝑡 ≤ 0.2,

where 𝑢 = [𝑣 cos 𝛽, 𝑣 sin 𝛽] ∈ R2 is the convection velocity that is described by nuisance parameters
[𝑚, which encompasses the convection speed (magnitude) 𝑣 ∼ U[0, 20] and the convection angle
𝛽 ∼ U[0, 2𝜋]. The source function is

𝑆(b, 𝑡;𝑚, \𝑚) =
𝑚∑︁
𝑖=1

𝑠

2𝜋ℎ2 exp

(
−
 \𝑚,𝑖 − b 2

2ℎ2

)
,

where the PoIs \𝑚 = {\𝑚,1, . . . , \𝑚,𝑚} entails the source locations for 𝑚th model, 𝑠 = 2 is the
known source strength, and ℎ = 0.05 is the known source width. The initial condition of the PDE
is 𝐺 (b, 0;𝑚, \𝑚, [𝑚) = 0 and homogeneous Neumann boundary conditions are applied to all sides
of the domain. The PoI prior is

\𝑚,𝑖,𝑥 , \𝑚,𝑖,𝑦 ∼ U[0, 1],

and the observation model is

𝑦 = 𝐺 (𝑑, 𝑡;𝑚, \𝑚, [𝑚) + 𝜖,

with 𝜖 ∼ N(0, 𝜎2) and𝜎 = 0.05 being the observation noise standard deviation, and 𝑑 = [𝑑𝑥 , 𝑑𝑦] ∈
[0, 1]2 the design variable is the sensor locations for taking measurements.

Similar to Sec. 3.3.2, we are interested in the integrated flux at the right boundary and at a future
time 𝑡 = 0.2, with the formula

𝐽 (𝑚, \𝑚, [𝑚) =
∫ 1

b𝑦=0
−
𝜕𝐺 ((b𝑥 = 1, b𝑦), 𝑡 = 0.2;𝑚, \𝑚, [𝑚)

𝜕b𝑥
𝑑b𝑦,

and the overall goal-oriented QoI is 𝑧𝑚 = log (|𝐽 (𝑚, \𝑚, [𝑚) | + 10−27).
The OED problem involves designing a sequence of 𝑁 sensor locations over time (i.e. relocation

movements), where the 𝑘th experiment is performed at time 𝑡𝑘 = 0.01(𝑘 +1). Moreover, we assume
that the initial sensor location is at b0 = [0.5, 0.5], and we incorporate a sensor movement penalty to
the immediate rewards to reflect the cost of moving. For stage 𝑘 = 0, the penalty is −0.1 ∥ 𝑑0 − b0 ∥ ,
and for stage 𝑘 = 1, . . . , 𝑁 − 1, the penalty is −0.1 ∥ 𝑑𝑘 − 𝑑𝑘−1 ∥ ; hence, a further movement would
incur a higher cost.

Surrogate model. To solve the convection-diffusion PDE, we employ the second-order finite

85

volume method on a uniform grid. The grid has a size of Δb𝑥 = Δb𝑦 = 0.01, ensuring a consistent
spatial discretization. For time integration, we utilize the second-order fractional step method with
a time step of Δ𝑡 = 5.0 × 10−4. The flux can be easily computed by applying the finite difference
to the grids near the right boundary.

While using the numerical PDE solver as the forward model is possible, it can be computationally
expensive and wasteful, since the numerical PDE solver solves for the concentration over the entire
domain, while only a small subset of these values are used in the forward model. Therefore, to
accelerate the computation, we pre-build NN surrogate forward models of 𝐺 (b, 𝑡𝑘 ;𝑚, \𝑚, [𝑚) for
each 𝑚th model and at each 𝑡𝑘 for 𝑘 = 0, . . . , 𝑁 − 1. We also build NN surrogate goal-oriented
prediction models of 𝐽 (𝑚, \𝑚, [𝑚) for each 𝑚th model. The architecture of the surrogate forward
and prediction models are summarized in Table 3.25 and 3.26. 20,000 simulations are generated
with random \𝑚 and [𝑚 for each 𝑚th model. From these, 18,000 are used for training, and
2000 for testing. The testing mean squared errors (MSE) are summarized in Table 3.27, showing
good surrogate accuracy. Figure 3.18 presents comparisons of true and surrogate model predicted
concentration fields, also indicating good agreement.

Table 3.25: Architecture of the surrogate forward model.

Layer Description Dimension Activation

Input [\𝑚, [𝑚, b] 2𝑚 + 4 -
H1 Dense 256 ReLU
H2 Dense 256 ReLU
H3 Dense 256 ReLU
H4 Dense 256 ReLU

Output Dense 1 -

Table 3.26: Architecture of the surrogate prediction model.

Layer Description Dimension Activation

Input [\𝑚, [𝑚] 2𝑚 + 2 -
H1 Dense 256 ReLU
H2 Dense 256 ReLU
H3 Dense 256 ReLU

Output Dense 1 -

Hyperparameters. The hyperparameters are listed in Table 3.28. We only use vsOED with
the TIG formulation. For the linear mapping in the output layer of the GMM net, we transform the
output of the GMM mean net of the PoI posterior predictor to a range of [−1, 2], and the output of

86

Table 3.27: Testing MSE of surrogate models.

Model surrogate forward model surrogate prediction model

𝑚 = 1 3.094 × 10−5 4.141 × 10−5

𝑚 = 2 3.284 × 10−4 4.986 × 10−4

𝑚 = 3 1.650 × 10−3 2.080 × 10−3

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 pred

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 true

(a) 𝑚 = 1

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 pred

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 true

(b) 𝑚 = 3

Figure 3.18: Example comparisons between true and surrogate model predicted concentration
fields.

the GMM standard deviation net of the PoI posterior predictor to a range of [10−5, 1] for all PoIs.
For the goal-oriented QoI posterior predictor, we transform the output of the GMM mean net to a
range of [−15, 3], and the output of the GMM standard deviation net to a range of [10−5, 4]. The
truncated normal distribution is used on all PoIs with support [0, 1].

Similar to the multi-model source location finding problem, 5 scenarios will be considered:
model discrimination OED (𝛼M = 1, 𝛼Θ = 𝛼𝑍 = 0), inference OED (𝛼Θ = 1, 𝛼M = 𝛼𝑍 = 0),
goal-oriented OED (𝛼𝑍 = 1, 𝛼M = 𝛼Θ = 0), discrimination-inference OED (𝛼M = 𝛼Θ = 1, 𝛼𝑍 = 0)
and discrimination-goal-oriented OED (𝛼M = 𝛼𝑍 = 1, 𝛼Θ = 0).

Training stability. For brevity, the investigation of training stability is illustrated here only
on the inference OED scenario, with similar observations found in other scenarios. Figure 3.8
shows the training histories of the inference OED, where the solid line and the shaded region are
the mean and standard error of 4 replicates with different random seeds. Note that the prior term
is omitted due to the presence of nuisance parameters. Table 3.29 presents the variational lower
bounds evaluated for optimal policies from 4 replicates of inference OED, optimized for horizon
𝑁 = 10. Each element in the table represents the mean and standard error computed from 106

samples. Table 3.30 further provides the mean and standard error aggregated from the means of
these 4 replicates. From these results, vsOED demonstrates excellent robustness under different
random seeds.

87

Table 3.28: Hyperparameters for the convection-diffusion problem.

vsOED-G-T

#training iteration 𝑛update 10001
#new episodes per iteration 𝑛episode 1000

batch size 𝑛batch 10000
model predictor initial lr 10−3

model predictor lr decay 0.9999
#model predictor update per iteration 5

parameter predictor initial lr 10−3

parameter predictor lr decay 0.9999
#param predictor update per iteration 5

𝑛mixture 8
initial actor lr 5 × 10−4

actor lr decay 0.9999
initial critic lr 10−3

critic lr decay 0.9999
max buffer size 106

discount factor 𝛾 1
initial design noise scale 0.05
design noise scale decay 0.9999

target network lr 0.1

0 2000 4000 6000 8000 10000
Iteration

2

1

0

1

2

3

Va
ria

tio
na

l E
U

lo
we

r b
ou

nd

vsOED-G-T

Figure 3.19: Training histories of inference OED for the convection-diffusion problem, optimized
for horizon 𝑁 = 10. The solid line and the shaded region are the mean and standard error of 4
replicates with different random seeds.

88

Table 3.29: Variational lower bounds evaluated for optimal policies from 4 replicates of inference
OED for the convection-diffusion problem, optimized for horizon 𝑁 = 10.

Run 1 Run 2 Run 3 Run 4

vsOED-G-T 2.998 ± 0.002 3.057 ± 0.002 2.857 ± 0.002 3.039 ± 0.002

Table 3.30: Aggregated variational lower bounds evaluated for optimal policies from 4 replicates
of inference OED for the convection-diffusion problem, optimized for horizon 𝑁 = 10.

Mean SE

vsOED-G-T 2.988 0.039

Expected utilities. Figure 3.20 plots the expected utilities of various OED scenarios, averaged
over 2 replicates.

Policies. Figure 3.21 plots example designs of various OED scenarios optimized for horizon
𝑁 = 10. The overall behavior is similar to the multi-model source location finding problem . The
policy behavior of model discrimination OED is more exploratory often extending to the boundaries
of the domain, leading to a high IG (narrow posterior) on model probability as shown in Fig. 3.22a.
The inference OED policy appears to explore closer around the estimated sources while leveraging
the background convection, and the goal-oriented policy exhibits a similar vertical design tendency
as explained in the Sec. 3.3.2 example.

Posteriors. Figure 3.22 illustrates the model and PoI posteriors of the model discrimination
OED and inference OED optimized for horizon 𝑁 = 10. The model posterior predictor and GMM
both effectively approximate their true posteriors.

3.4 Summary

In this chapter, we propose a novel variational sequential optimal experimental design (vsOED)
method to alleviate the expensive computational requirements for solving PG-sOED. The key idea of
vsOED is to estimate and maximize an O(𝑛) lower bound formed through variational approximation
of the Bayesian posteriors without needing explicit likelihood and prior. Notably, in contrast to
existing sequential design algorithms that primarily focus on the EIG of model parameters within
a single model, vsOED offers a unified framework that accommodates multi-model scenarios with
diverse design objectives, including EIG for model probability, parameters of interest, and predictive
quantities of interest, even in the presence of nuisance parameters. Furthermore, RL techniques are
utilized to enhance the performance and efficiency of vsOED. We implement vsOED on benchmark

89

0 2 4 6 8 10 12 14 16
Experiments

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

EU
 lo

we
r b

ou
nd

vsOED-G-T

(a) Model discrimination OED

0 2 4 6 8 10 12 14 16
Experiments

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

EU
 lo

we
r b

ou
nd

vsOED-G-T

(b) Inference OED

0 2 4 6 8 10 12 14 16
Experiments

1.7

1.6

1.5

1.4

1.3

1.2

1.1
EU

 lo
we

r b
ou

nd

vsOED-G-T

(c) Goal-oriented OED

0 2 4 6 8 10 12 14 16
Experiments

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

EU
 lo

we
r b

ou
nd

vsOED-G-T

(d) Discrimination-inference OED

0 2 4 6 8 10 12 14 16
Experiments

1.6

1.4

1.2

1.0

0.8

0.6

EU
 lo

we
r b

ou
nd

vsOED-G-T

(e) Discrimination-goal-oriented OED

Figure 3.20: Expected utilities of various OED scenarios, averaged over 2 replicates. Variational
lower bounds are evaluated using 106 samples.

90

0.00 0.25 0.50 0.75 1.00
dx

0.00

0.25

0.50

0.75

1.00
d y

speed 3.73, angle 1.99

0.00 0.25 0.50 0.75 1.00
dx

speed 4.52, angle 1.78

0.00 0.25 0.50 0.75 1.00
dx

speed 14.23, angle 0.10

0.00 0.25 0.50 0.75 1.00
dx

speed 16.79, angle 1.69

0.00 0.25 0.50 0.75 1.00
dx

speed 5.52, angle 0.81

0.00 0.25 0.50 0.75 1.00
dx

speed 11.06, angle 0.96

(a) Model discrimination OED

0.00 0.25 0.50 0.75 1.00
dx

0.00

0.25

0.50

0.75

1.00

d y

speed 3.73, angle 1.99

0.00 0.25 0.50 0.75 1.00
dx

speed 4.52, angle 1.78

0.00 0.25 0.50 0.75 1.00
dx

speed 14.23, angle 0.10

0.00 0.25 0.50 0.75 1.00
dx

speed 16.79, angle 1.69

0.00 0.25 0.50 0.75 1.00
dx

speed 5.52, angle 0.81

0.00 0.25 0.50 0.75 1.00
dx

speed 11.06, angle 0.96

(b) Inference OED

0.00 0.25 0.50 0.75 1.00
dx

0.00

0.25

0.50

0.75

1.00

d y

speed 3.73, angle 1.99

0.00 0.25 0.50 0.75 1.00
dx

speed 4.52, angle 1.78

0.00 0.25 0.50 0.75 1.00
dx

speed 14.23, angle 0.10

0.00 0.25 0.50 0.75 1.00
dx

speed 16.79, angle 1.69

0.00 0.25 0.50 0.75 1.00
dx

speed 5.52, angle 0.81

0.00 0.25 0.50 0.75 1.00
dx

speed 11.06, angle 0.96

(c) Goal-oriented OED

0.00 0.25 0.50 0.75 1.00
dx

0.00

0.25

0.50

0.75

1.00

d y

speed 3.73, angle 1.99

0.00 0.25 0.50 0.75 1.00
dx

speed 4.52, angle 1.78

0.00 0.25 0.50 0.75 1.00
dx

speed 14.23, angle 0.10

0.00 0.25 0.50 0.75 1.00
dx

speed 16.79, angle 1.69

0.00 0.25 0.50 0.75 1.00
dx

speed 5.52, angle 0.81

0.00 0.25 0.50 0.75 1.00
dx

speed 11.06, angle 0.96

(d) Discrimination-inference OED

0.00 0.25 0.50 0.75 1.00
dx

0.00

0.25

0.50

0.75

1.00

d y

speed 3.73, angle 1.99

0.00 0.25 0.50 0.75 1.00
dx

speed 4.52, angle 1.78

0.00 0.25 0.50 0.75 1.00
dx

speed 14.23, angle 0.10

0.00 0.25 0.50 0.75 1.00
dx

speed 16.79, angle 1.69

0.00 0.25 0.50 0.75 1.00
dx

speed 5.52, angle 0.81

0.00 0.25 0.50 0.75 1.00
dx

speed 11.06, angle 0.96

(e) Discrimination-goal-oriented OED

Figure 3.21: Example designs of various OED scenarios of the convection-diffusion problem,
optimized for horizon 𝑁 = 10.

91

m=1 m=2 m=30.0

0.2

0.4

0.6

0.8

1.0

m=1 m=2 m=3 m=1 m=2 m=3 m=1 m=2 m=3 m=1 m=2 m=3 m=1 m=2 m=3

true model
post pred
post true

(a) Model posteriors from the model discrimination OED scenario

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

PoI post pred

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

PoI post true

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
conv speed

0

1

2

3

4

5

6

co
nv

 a
ng

le

Nuisance param post true

(b) Parameter posteriors at 𝑚 = 1 from the inference OED scenario

Figure 3.22: Example model and parameter posteriors from the model discrimination OED and
inference OED for the convection-diffusion problem optimized for horizon 𝑁 = 10.

92

problems and illustrate significantly improved sampling efficiency under fixed budgets of forward
model runs, and also demonstrate with a physics-based model with PDE-governed dynamics.

The key contributions and novelty of our vsOED method are summarized as follows.

• We formulate the vsOED framework and generalize its usage to a wide range of OED
scenarios.

• We provide a proof demonstrating the equivalence of the objective function when utilizing
the full information gain and its one-point estiamte as the reward.

• We present the numerical techniques for solving vsOED problems, specifically the Monte
Carlo estimator of policy gradient and variational gradient, and the DNN architectures for
posterior approximation, policy and value functions.

• We validate vsOED on a number of cases, demonstrating its efficiency over other baseline
methods, and its versatility in addressing diverse OED scenarios.

• We make available our vsoed code at https://github.com/wgshen/vsOED.

93

https://github.com/wgshen/vsOED

CHAPTER 4

Robust Optimal Experimental Design

The formulations in Chapter 2 and 3 focus on maximizing the expected (i.e., average) utility, they
do not account for the risk of obtaining very low (or high) utility values. While one may quantify
risk in different ways (e.g., mean-plus-variance, mean-plus-deviation/semi-deviation, conditional
value-at-risk, entropic risk), we adopt the simple mean-plus-variance [100] approach and employ
the variance to capture the dispersion of utility realizations. By incorporating both the expectation
and variance of utility into a single optimization problem, one may find new designs that, for
example, trades off some average utility in order to achieve a much lower risk.

In this chapter, we introduce the variance-penalized design criterion for achieving robust opti-
mal experimental design (rOED) for batch (non-sequential) designs (robust sequential cases will
be presented in the next chapter). The chapter begins with the formulation of variance-penalized
rOED. We then propose a double-nested Monte Carlo (MC) estimator for the variance-penalized
criterion and also derive its convergence rate. Numerical examples are presented, including a
linear-Gaussian benchmark to validate the convergence of the proposed estimator, a synthetic non-
linear case to show the benefits of rOED, and a contaminant source inversion case with and without
building obstacles to demonstrate its usage in more realistic physical problems.

The code for this chapter is available at: https://github.com/wgshen/rOED.

4.1 Problem formulation

4.1.1 Background

We begin by reviewing the notation and formulation for batch OED. Adopting the same notation as
previous chapters, we let 𝑑 ∈ R𝑁𝑑 denote the controllable design variables of an experiment, \ ∈
R𝑁\ the unknown model parameters, and 𝑦 ∈ R𝑁𝑦 the observations obtained from the experiments;
𝑁𝑑 , 𝑁\ , and 𝑁𝑦 are the dimensions of design, parameter, and observation spaces, respectively.
When an experiment is carried out under design 𝑑 and observation 𝑦 is obtained, the probability

94

https://github.com/wgshen/rOED

density function (PDF) of the unknown parameters can be updated according to Bayes’ rule:

𝑝(\ |𝑦, 𝑑) = 𝑝(𝑦 |\, 𝑑) 𝑝(\ |𝑑)
𝑝(𝑦 |𝑑) , (4.1)

where 𝑝(\ |𝑑) is the prior PDF, 𝑝(𝑦 |\, 𝑑) is the likelihood, 𝑝(𝑦 |𝑑) is the model evidence or marginal
likelihood, and 𝑝(\ |𝑦, 𝑑) is the posterior. The prior belief of \ should not be affected by the selected
experiment design, thus 𝑝(\ |𝑑) can be simplified to 𝑝(\). The likelihood often results from an
observation model such as

𝑦 = 𝐺 (\, 𝑑) + 𝜖, (4.2)

where 𝐺 is a forward model that governs the underlying experimental process (e.g., a system
of partial differential equations (PDEs)), and 𝜖 ∈ R𝑁𝑦 represents the measurement noise. Often
measurement noise consists of the superposition of a large number of small zero-mean random
perturbations, and so by the Central Limit Theorem 𝜖 ∼ N(0, Σ𝜖) can be a reasonable representa-
tion. Thus, each likelihood evaluation 𝑝(𝑦 |\, 𝑑) = 𝑝𝜖 (𝑦−𝐺 (\, 𝑑)) involves a forward model solve,
which is often the most computationally expensive part.

From a decision-theoretic view, the objective of OED can be stated as an expected utility:

𝑈 (𝑑) =
∫
Y

∫
Θ

𝑝(\, 𝑦 |𝑑)𝑢(𝑑, 𝑦, \) 𝑑\ 𝑑𝑦, (4.3)

where 𝑢(𝑑, 𝑦, \) is the utility function for a particular realization of 𝑑, 𝑦, and \, and the expectation
is taken over 𝑝(\, 𝑦 |𝑑) since \ and 𝑦 are random.

An information-theoretic utility can be adopted based on the Bayesian formulation [92], we
choose the utility function to be the Kullback-Leibler (KL) divergence from the prior to the
posterior:

𝑢(𝑑, 𝑦, \) = 𝐷KL(𝑝\ (·|𝑦, 𝑑) | | 𝑝\ (·)) =
∫
Θ

𝑝(\̃ |𝑦, 𝑑) ln
𝑝(\̃ |𝑦, 𝑑)
𝑝(\̃)

𝑑\̃ = 𝑢(𝑑, 𝑦), (4.4)

where the KL divergence has a non-negative value which quantifies the difference between two
distributions. Note that the last equality results from the utility itself involves taking an expectation
over the parameter space, and hence not a function of \. We will then use this 𝑢(𝑑, 𝑦) as the utility
function in the rest of this chapter. By substituting the utility function Eqn. (4.4) into Eqn. (4.3),

95

we obtain the expected utility:

𝑈 (𝑑) =
∫
Y

∫
Θ

𝑝(\, 𝑦 |𝑑)𝑢(𝑑, 𝑦) 𝑑\ 𝑑𝑦

=

∫
Y
𝑝(𝑦 |𝑑)𝑢(𝑑, 𝑦) 𝑑𝑦

=

∫
Y
𝑝(𝑦 |𝑑)

∫
Θ

𝑝(\ |𝑦, 𝑑) ln
𝑝(\ |𝑦, 𝑑)
𝑝(\) 𝑑\ 𝑑𝑦, (4.5)

where the second equality is due to the marginalization of the outer integral of \. The expected
utility is therefore the expected information gain (EIG) on parameters \ over observations 𝑦 given
design variables 𝑑, and is also equivalent to the mutual information between \ and 𝑦 given 𝑑. We
emphasize that the inner integral of Eqn. (4.5) reflects the update of knowledge on \ by observing
𝑦 (i.e., information gain), and the outer integral is considering all possible experimental outcomes
because 𝑦 is not known when designing the experiment.

The OED problem then involves solving the following optimization problem:

𝑑∗𝑈 = arg max
𝑑∈D

𝑈 (𝑑), (4.6)

where 𝑑∗
𝑈

is the optimal design that maximizes the expected utility within the design space D.

4.1.2 Utility variance

The variance of utility 𝑢(𝑑, 𝑦) is (recall \ is dropped per Eqn. (4.4)):

�̃� (𝑑) = V𝑦 |𝑑 [𝑢(𝑑, 𝑦)]
= E𝑦 |𝑑

{
[𝑢(𝑑, 𝑦) −𝑈 (𝑑)]2}

= E𝑦 |𝑑
[
𝑢(𝑑, 𝑦)2] −𝑈 (𝑑)2, (4.7)

where the second term in Eqn. (4.7) is the square of the expected utility. We introduce short-hand
notation �̃�`2 (𝑑) to denote the first term, with the subscript `2 indicating second moment. This

96

term can be further expanded as

�̃�`2 (𝑑) =
∫
Y
𝑝(𝑦 |𝑑)

[∫
Θ

𝑝(\ |𝑦, 𝑑) ln
𝑝(\ |𝑦, 𝑑)
𝑝(\) 𝑑\

]2
𝑑𝑦

=

∫
Y
𝑝(𝑦 |𝑑)

[∫
Θ

𝑝(\ |𝑦, 𝑑) ln
𝑝(𝑦 |\, 𝑑)
𝑝(𝑦 |𝑑) 𝑑\

]2
𝑑𝑦 (4.8)

=

∫
Y
𝑝(𝑦 |𝑑) [ln 𝑝(𝑦 |𝑑)]2 𝑑𝑦

− 2
∫
Y
𝑝(𝑦 |𝑑) ln 𝑝(𝑦 |𝑑)

∫
Θ

𝑝(\ |𝑦, 𝑑) ln 𝑝(𝑦 |\, 𝑑) 𝑑\ 𝑑𝑦

+
∫
Y
𝑝(𝑦 |𝑑)

[∫
Θ

𝑝(\ |𝑦, 𝑑) ln 𝑝(𝑦 |\, 𝑑) 𝑑\
]2
𝑑𝑦

=

∫
Y
𝑝(𝑦 |𝑑) [ln 𝑝(𝑦 |𝑑)]2 𝑑𝑦 (�̃�`2,1(𝑑)) (4.9)

− 2
∫
Θ

𝑝(\)
∫
Y
𝑝(𝑦 |\, 𝑑) ln 𝑝(𝑦 |𝑑) ln 𝑝(𝑦 |\, 𝑑) 𝑑𝑦 𝑑\ (�̃�`2,2(𝑑))

+
∫
Y
𝑝(𝑦 |𝑑)

[∫
Θ

𝑝(\ |𝑦, 𝑑) ln 𝑝(𝑦 |\, 𝑑) 𝑑\
]2
𝑑𝑦, (�̃�`2,3(𝑑))

where the second equality is from applying Bayes’ rule, the third equality results from expanding
the square term, and the last equality is from applying Bayes’ rule on the second term. The three
terms in Eqn. (4.9) are denoted as �̃�`2,1, �̃�`2,2 and �̃�`2,3 respectively.

By expanding the utility variance in this manner, we can approximate its value by estimating
𝑈 (𝑑), �̃�`2,1(𝑑), �̃�`2,2(𝑑) and �̃�`2,3(𝑑) individually. We will introduce the estimation techniques
in Sec. 4.2.1.

4.1.3 Variance-penalized robust design criterion

We introduce the mean-plus-variance rOED objective that seeks to maximize the expected utility
while penalizing a large utility variance:

𝑈_ (𝑑) = 𝑈 (𝑑) − _�̃� (𝑑), (4.10)

where _ ∈ R is a hyperparameter that reflects the relative importance between the expectation and
variance terms, or user preference on how robust the design to be. For example, a larger positive _
yields a more robust design and may be suitable for risk-averse situations, although likely at the cost
of a lower expected utility. For a robust design, _ should remain non-negative; however, one can
choose negative _ to achieve aggressive, risk-seeking designs. When _ = 0, Eqn. (4.10) simplifies

97

to the non-robust OED criterion. It is worth noting that Eqn. (4.10) can be rewritten as

𝑈_ (𝑑) = E𝑦 |𝑑 [𝑢(𝑑, 𝑦)] − _E𝑦 |𝑑
{
[𝑢(𝑑, 𝑦) −𝑈 (𝑑)]2}

= E𝑦 |𝑑
{
𝑢(𝑑, 𝑦) − _ [𝑢(𝑑, 𝑦) −𝑈 (𝑑)]2} .

Therefore, if we treat 𝑢(𝑑, 𝑦)−_ [𝑢(𝑑, 𝑦) −𝑈 (𝑑)]2 as a new utility function 𝑢_ (𝑑, 𝑦), then𝑈_ (𝑑) still
fits the general form of OED objective in Eqn. (4.3) (with the understanding that here 𝑢(𝑑, 𝑦, \) =
𝑢(𝑑, 𝑦)).

The rOED problem entails solving the following optimization problem:

𝑑∗𝑈_
= arg max

𝑑∈D
𝑈_ (𝑑). (4.11)

For _ > 0, both the expected utility and utility variance at 𝑑∗
𝑈_

are lower than at 𝑑∗
𝑈

.

4.2 Numerical methods for rOED

4.2.1 Monte Carlo estimator

The expected utility in Eqn. (4.5), as well as the variance-penalized form in Eqn. (4.10), generally
cannot be evaluated in closed-form. We propose to estimate these quantities numerically using
MC sampling. In the following sections, we will introduce the MC estimator for each term in the
variance-penalized objective, and then combine them together to reach a complete MC estimator
for the rOED criterion.

4.2.1.1 Estimation of𝑈 (𝑑) and𝑈 (𝑑)2

The estimation of𝑈 (𝑑) is using the double-nested MC estimator proposed by [124]. Using Bayes’
rule, Eqn. (4.5) can be rewritten as

𝑈 (𝑑) =
∫
Θ

𝑝(\)
∫
Y
𝑝(𝑦 |\, 𝑑) ln

𝑝(𝑦 |\, 𝑑)
𝑝(𝑦 |𝑑) 𝑑𝑦 𝑑\, (4.12)

and a nested MC estimator can be formed as

�̂�𝑁,𝑀1 (𝑑) = 1
𝑁

𝑁∑︁
𝑖=1

ln 𝑝(𝑦 (𝑖) |\ (𝑖) , 𝑑) − ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 (𝑖) |\ (𝑖, 𝑗) , 𝑑)

 , (4.13)

98

where \ (𝑖) are drawn from the prior 𝑝(\), 𝑦 (𝑖) are drawn from the likelihood 𝑝(𝑦 |\ = \ (𝑖) , 𝑑), \ (·, 𝑗)

are again drawn from the prior 𝑝(\), and 𝑁 and 𝑀1 are the numbers of outer loop samples (\ (𝑖)

and 𝑦 (𝑖)) and inner loop samples (\ (·, 𝑗)), respectively. �̂�𝑁,𝑀1 (𝑑) is a biased estimator due to the
inner loop MC estimator for 𝑝(𝑦 |𝑑) =

∫
Θ
𝑝(𝑦 |\, 𝑑)𝑝(\) 𝑑\, but it is asymptotically unbiased as

𝑀1 → ∞. The variance of this estimator is

V
[
�̂�𝑁,𝑀1 (𝑑)

]
≈ 𝐴1(𝑑)

𝑁
+ 𝐵1(𝑑)
𝑁𝑀1

, (4.14)

and the bias is

E
[
�̂�𝑁,𝑀1 (𝑑) −𝑈 (𝑑)

]
≈ 𝐸1(𝑑)

𝑀1
, (4.15)

where 𝐴1, 𝐵1 and 𝐸1 are problem-specific constants that depend on the design variables, as well
as prior and likelihood distributions [124, 72]. The variance of this estimator is dominated by
𝑁 , while the bias is by 𝑀1. [72] also suggests reusing outer samples as the inner samples (i.e.,
\ (𝑖,·) = \ (·)), which reduces the forward model evaluations from 𝑂 (𝑁𝑀1) to 𝑂 (𝑁) for a given 𝑑,
with the implication that 𝑁 = 𝑀1. Reusing samples introduces additional bias but the effect is
small, and it brings the additional benefits of avoiding arithmetic underflow for the estimation of
log evidence when sample size is small. For the following sections, we will present the estimator
with independent outer samples and inner samples, but reuse samples in the code implementation.

Building upon the estimator of 𝑈 (𝑑), a MC estimator of 𝑈 (𝑑)2 is simply �̂�𝑁,𝑀1 (𝑑)2. Ap-
pendix C.1 provides a derivation that the variance of �̂�𝑁,𝑀1 (𝑑)2 is

V
[
�̂�𝑁,𝑀1 (𝑑)2] ≈ 𝐴2(𝑑)

𝑁
+ 𝐵2(𝑑)
𝑁𝑀1

, (4.16)

and the bias is

E
[
�̂�𝑁,𝑀1 (𝑑)2 −𝑈 (𝑑)2] ≈ 𝐷2(𝑑)

𝑁
+ 𝐸2(𝑑)

𝑀1
, (4.17)

Different from �̂�𝑁,𝑀1 (𝑑), the bias of �̂�𝑁,𝑀1 (𝑑)2 is also controlled by the number of outer samples
𝑁 , in addition to the number of inner samples 𝑀1.

4.2.1.2 Estimation of �̃�`2 (𝑑)

For the estimation of �̃�`2 (𝑑), we evaluate its three parts �̃�`2,1(𝑑), �̃�`2,2(𝑑) and �̃�`2,3(𝑑) separately,
and then add them up to form an estimator for �̃�`2 (𝑑).

99

The MC estimator of �̃�`2,1(𝑑) is

ˆ̃𝑈𝑁,𝑀1
`2,1 (𝑑) = 1

𝑁

𝑁∑︁
𝑖=1

ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 (𝑖) |\ (𝑖, 𝑗) , 𝑑)

2

, (4.18)

where \ (·, 𝑗) are drawn from the prior 𝑝(\), and 𝑦 (𝑖) ∼ 𝑝(𝑦 |𝑑) are drawn by sampling \ (𝑖) from
the prior 𝑝(\), and then sampling 𝑦 (𝑖) from the likelihood 𝑝(𝑦 |\ = \ (𝑖) , 𝑑). Having sample pairs
(\ (𝑖) , 𝑦 (𝑖)) from the joint distribution 𝑝(\, 𝑦 |𝑑), we can ignore \ (𝑖) samples, and the remaining 𝑦 (𝑖)

become the samples from the marginal distribution 𝑝(𝑦 |𝑑). Appendix C.2 provides a derivation to
show that the variance of ˆ̃𝑈𝑁,𝑀1

`2,1 (𝑑) is proportional to 𝐴3 (𝑑)
𝑁

+ 𝐵3 (𝑑)
𝑁𝑀1

while the bias is proportional to
𝐸3 (𝑑)
𝑀1

.
The MC estimator of �̃�`2,2(𝑑) is

ˆ̃𝑈𝑁,𝑀1
`2,2 (𝑑) = − 2

𝑁

𝑁∑︁
𝑖=1

ln 𝑝(𝑦 (𝑖) |\ (𝑖) , 𝑑) ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 (𝑖) |\ (𝑖, 𝑗) , 𝑑)

 (4.19)

where the sampling of \ (𝑖) , 𝑦 (𝑖) and \ (𝑖, 𝑗) is the same as �̂�𝑁,𝑀1 (𝑑). Appendix C.3 provides a
derivation to show that the variance of ˆ̃𝑈𝑁,𝑀1

`2,2 (𝑑) is proportional to 𝐴4 (𝑑)
𝑁

+ 𝐵4 (𝑑)
𝑁𝑀1

and the bias is
proportional to 𝐸4 (𝑑)

𝑀1
.

The estimation of �̃�`2,3(𝑑) is more difficult, because the inner part of �̃�`2,3(𝑑) requires sampling
from the posterior 𝑝(\ |𝑦, 𝑑). Posterior sampling can be achieved by Markov chain Monte Carlo
(MCMC) but may become very expensive since 𝑁 MCMC chains would be needed for each 𝑑.
Instead, we can apply Bayes’ rule to 𝑝(\ |𝑦, 𝑑) in �̃�`2,3(𝑑) and rewrite it as

�̃�`2,3(𝑑) =
∫
Y
𝑝(𝑦 |𝑑)

[∫
Θ

𝑝(\) 𝑝(𝑦 |\, 𝑑)
𝑝(𝑦 |𝑑) ln 𝑝(𝑦 |\, 𝑑) 𝑑\

]2
𝑑𝑦

=

∫
Y
𝑝(𝑦 |𝑑)

[
1

𝑝(𝑦 |𝑑)

∫
Θ

𝑝(\)𝑝(𝑦 |\, 𝑑) ln 𝑝(𝑦 |\, 𝑑) 𝑑\
]2
𝑑𝑦, (4.20)

with the corresponding MC estimator

ˆ̃𝑈𝑁,𝑀1,𝑀2
`2,3 (𝑑) = 1

𝑁

𝑁∑︁
𝑖=1

{
𝑀1∑𝑀1

𝑗=1 𝑝(𝑦 (𝑖) |\ (𝑖, 𝑗) , 𝑑)
1
𝑀2

𝑀2∑︁
𝑘=1

𝑝(𝑦 (𝑖) |\ (𝑖,𝑘) , 𝑑) ln 𝑝(𝑦 (𝑖) |\ (𝑖,𝑘) , 𝑑)
}2

, (4.21)

where 𝑦 (𝑖) are drawn from the marginal likelihood 𝑝(𝑦 |𝑑) in the same way as ˆ̃𝑈𝑁,𝑀1
`2,1 (𝑑), and \ (·, 𝑗)

and \ (·,𝑘) are independently drawn from the prior 𝑝(\). Appendix C.4 provides a derivation to show
that the variance of ˆ̃𝑈𝑁,𝑀1,𝑀2

`2,3 (𝑑) is proportional to 𝐴5 (𝑑)
𝑁

+ 𝐵5 (𝑑)
𝑁𝑀1

+ 𝐶5 (𝑑)
𝑁𝑀2

, and the bias is proportional

100

to 𝐸5 (𝑑)
𝑀1

+ 𝐹5 (𝑑)
𝑀2

.
Combing the three parts together results in the overall MC estimator of �̃�`2 (𝑑):

ˆ̃𝑈𝑁,𝑀1,𝑀2
`2 (𝑑) = ˆ̃𝑈𝑁,𝑀1

`2,1 (𝑑) + ˆ̃𝑈𝑁,𝑀1
`2,2 (𝑑) + ˆ̃𝑈𝑁,𝑀1,𝑀2

`2,3 (𝑑)

=
1
𝑁

𝑁∑︁
𝑖=1

ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 (𝑖) |\ (𝑖, 𝑗) , 𝑑)

2

(4.22)

− 2
𝑁

𝑁∑︁
𝑖=1

ln 𝑝(𝑦 (𝑖) |\ (𝑖) , 𝑑) ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 (𝑖) |\ (𝑖, 𝑗) , 𝑑)

+ 1
𝑁

𝑁∑︁
𝑖=1

{
𝑀1∑𝑀1

𝑗=1 𝑝(𝑦 (𝑖) |\ (𝑖, 𝑗) , 𝑑)
1
𝑀2

𝑀2∑︁
𝑘=1

𝑝(𝑦 (𝑖) |\ (𝑖,𝑘) , 𝑑) ln 𝑝(𝑦 (𝑖) |\ (𝑖,𝑘) , 𝑑)
}2

,

whose bias is the summation of the biases of three parts:

E
[

ˆ̃𝑈𝑁,𝑀1,𝑀2
`2 (𝑑) − �̃�`2 (𝑑)

]
≈ 𝐸3(𝑑) + 𝐸4(𝑑) + 𝐸5(𝑑)

𝑀1
+ 𝐹5(𝑑)

𝑀2
=
𝐸6(𝑑)
𝑀1

+ 𝐹6(𝑑)
𝑀2

, (4.23)

where 𝐸6(𝑑) = 𝐸3(𝑑) +𝐸4(𝑑) +𝐸5(𝑑) and 𝐹6(𝑑) = 𝐹5(𝑑). To approximate the variance of �̃�`2 (𝑑),
we assume that ˆ̃𝑈𝑁,𝑀1

`2,1 (𝑑), ˆ̃𝑈𝑁,𝑀1
`2,2 (𝑑) and ˆ̃𝑈𝑁,𝑀1,𝑀2

`2,3 (𝑑) are independent (this can be achieved by
resampling for each estimator, although in practice we will use the same samples across different
estimators), then the variance of ˆ̃𝑈𝑁,𝑀1,𝑀2

`2 (𝑑) is

V
[

ˆ̃𝑈𝑁,𝑀1,𝑀2
`2 (𝑑)

]
= V

[
ˆ̃𝑈𝑁,𝑀1
`2,1 (𝑑)

]
+ V

[
ˆ̃𝑈𝑁,𝑀1
`2,2 (𝑑)

]
+ V

[
ˆ̃𝑈𝑁,𝑀1,𝑀2
`2,3 (𝑑)

]
≈ 𝐴3(𝑑) + 𝐴4(𝑑) + 𝐴5(𝑑)

𝑁
+ 𝐵3(𝑑) + 𝐵4(𝑑) + 𝐵5(𝑑)

𝑁𝑀1
+ 𝐶5(𝑑)
𝑁𝑀2

(4.24)

=
𝐴6(𝑑)
𝑁

+ 𝐵6(𝑑)
𝑁𝑀1

+ 𝐶6(𝑑)
𝑁𝑀2

, (4.25)

where 𝐴6(𝑑) = 𝐴3(𝑑) + 𝐴4(𝑑) + 𝐴5(𝑑), 𝐵6(𝑑) = 𝐵3(𝑑) + 𝐵4(𝑑) + 𝐵5(𝑑) and 𝐶6(𝑑) = 𝐶5(𝑑).

4.2.1.3 Estimation of �̃� (𝑑)

Following Eqn. (4.7), the estimation of the utility variance �̃� (𝑑) can be realized by combining the
estimator of �̃�`2 (𝑑) and𝑈 (𝑑)2:

ˆ̃𝑈𝑁,𝑀1,𝑀2 (𝑑) = ˆ̃𝑈𝑁,𝑀1,𝑀2
`2 (𝑑) − �̂�𝑁,𝑀1 (𝑑)2 (4.26)

101

whose variance is (by assuming independence between theestimators)

V
[

ˆ̃𝑈𝑁,𝑀1,𝑀2 (𝑑)
]
= V

[
ˆ̃𝑈𝑁,𝑀1,𝑀2
`2 (𝑑)

]
+ V

[
�̂�𝑁,𝑀1 (𝑑)2]

≈ 𝐴7(𝑑)
𝑁

+ 𝐵7(𝑑)
𝑁𝑀1

+ 𝐶7(𝑑)
𝑁𝑀2

, (4.27)

where 𝐴7(𝑑) = 𝐴2(𝑑) + 𝐴6(𝑑), 𝐵7(𝑑) = 𝐵2(𝑑) + 𝐵6(𝑑), 𝐶7(𝑑) = 𝐶6(𝑑), and the bias is

E
[

ˆ̃𝑈𝑁,𝑀1,𝑀2 (𝑑) − �̃� (𝑑)
]
≈ 𝐷7(𝑑)

𝑁
+ 𝐸7(𝑑)

𝑀1
+ 𝐹7(𝑑)

𝑀2
, (4.28)

where 𝐷7(𝑑) = −𝐷2(𝑑), 𝐸7(𝑑) = 𝐸6(𝑑) − 𝐸2(𝑑), and 𝐹7(𝑑) = 𝐹6(𝑑).

4.2.1.4 Estimation of𝑈_ (𝑑)

Following Eqn. (4.10), the estimation of the variance-penalized objective 𝑈_ (𝑑) can be achieved
by

�̂�
𝑁,𝑀1,𝑀2
_

(𝑑) = �̂�𝑁,𝑀1 (𝑑) − _ ˆ̃𝑈𝑁,𝑀1,𝑀2 (𝑑)

= �̂�𝑁,𝑀1 (𝑑) − _(ˆ̃𝑈𝑁,𝑀1,𝑀2
`2 (𝑑) − �̂�𝑁,𝑀1 (𝑑)2)

= �̂�𝑁,𝑀1 (𝑑)
[
1 + _�̂�𝑁,𝑀1 (𝑑)

]
− _ ˆ̃𝑈𝑁,𝑀1,𝑀2

`2 (𝑑), (4.29)

where the estimator �̂�𝑁,𝑀1 (𝑑) can be referred to Eqn. (4.13), and ˆ̃𝑈𝑁,𝑀1,𝑀2
`2 (𝑑) to Eqn. (4.22).

The variance of this complete estimator is (by assuming independence between �̂�𝑁,𝑀1 (𝑑) and
ˆ̃𝑈𝑁,𝑀1,𝑀2 (𝑑))

V
[
�̂�
𝑁,𝑀1,𝑀2
_

(𝑑)
]
= V

[
�̂�𝑁,𝑀1 (𝑑)

]
+ _2V

[
ˆ̃𝑈𝑁,𝑀1,𝑀2 (𝑑)

]
≈ _2𝐴8(𝑑) + 𝐴9(𝑑)

𝑁
+ _

2𝐵8(𝑑) + 𝐵9(𝑑)
𝑁𝑀1

+ _
2𝐶8(𝑑)
𝑁𝑀2

, (4.30)

where 𝐴8(𝑑) = 𝐴7(𝑑), 𝐴9(𝑑) = 𝐴2(𝑑), 𝐵8(𝑑) = 𝐵7(𝑑), 𝐵9(𝑑) = 𝐵2(𝑑), 𝐶8(𝑑) = 𝐶7(𝑑), and the
bias is

E
[
�̂�
𝑁,𝑀1,𝑀2
_

(𝑑) −𝑈_ (𝑑)
]
≈ _𝐷8(𝑑)

𝑁
+ _𝐸8(𝑑) + 𝐸9(𝑑)

𝑀1
+ _𝐹8(𝑑)

𝑀2
, (4.31)

where 𝐷8(𝑑) = −𝐷7(𝑑), 𝐸8(𝑑) = −𝐸7(𝑑), 𝐸9(𝑑) = 𝐸1(𝑑), and 𝐹8(𝑑) = −𝐹7(𝑑). In practice, we
will reuse outer \ (·) samples as inner \ (𝑖,·) samples, which reduces the forward model evaluations
from 𝑂 (𝑁 + 𝑁𝑀1 + 𝑁𝑀2) to 𝑂 (𝑁); this requires setting 𝑁 = 𝑀1 = 𝑀2. Both the bias and
variance of variance-penalized objective estimator are approximately proportional to 𝑂 (1

𝑁
) with

102

sample reuse. We will show the convergence of bias and variance of this estimator in Sec. 4.3.1.
Notice that although �̂�𝑁,𝑀1,𝑀2

_
(𝑑) has the same order of bias and variance as �̂�𝑁,𝑀1 (𝑑), the bias and

variance of �̂�𝑁,𝑀1,𝑀2
_

(𝑑) will be higher than those of �̂�𝑁,𝑀1 (𝑑) with the same number of samples,
due to its larger constants. Moreover, we want to emphasize that estimating variance-penalized
objective has the same order of time complexity as estimating the expected utility by double-nested
MC since the former only uses quantities that have already been calculated in the latter.

4.2.2 Bayesian optimization

Equipped with the ability to estimate the objective function 𝑈_ (𝑑) with MC sampling, we can
now attempt to solve the optimization problem in Eqn. (4.11). Naı̈ve optimization techniques
such as grid search and random search would be highly expensive and do not scale well to multi-
dimensional design spaces. More efficient and intelligent optimization algorithms are desired.
One approach is to extract the gradient of 𝑈_ (𝑑) either analytically or numerically, and then
apply gradient-based or quasi-Newton optimization methods such as gradient ascent and L-BFGS-
B. When gradient information is unavailable, one must adopt a derivative-free method such as
simultaneous perturbation stochastic approximation (SPSA) and Nelder–Mead nonlinear simplex
(NMNS) [72]. However, SPSA is sensitive to the MC noise in the objective estimation, while NMNS
may converge slowly even for smooth functions. Moreover, all before-mentioned optimization
methods are prone to getting stuck in a local optimum and have no guarantee to find the global
optimum. Global optimization methods like simulated annealing and genetic algorithm also tend
to be costly and require many iterations to converge.

We propose to use Bayesian optimization (BO) to solve the optimization problem in Eqn. (4.11).
BO is a derivative-free global optimization method that is sample-efficient and also robust to
noisy objective functions [23, 134, 128, 115]. It is particularly suitable for expensive objective
evaluations (this is the case here since each MC estimate of𝑈_ (𝑑) requires many repeated forward
model evaluations especially to estimate the utility variance accurately) and the optimization
domain is recommended to be less than 20 dimensions [58, 107]. BO constructs and updates a
surrogate Gaussian process (GP) of the objective function𝑈_ (𝑑) based on previous evaluations of
the objective. The GP provides mean and variance of the objective (i.e. of 𝑈_ (𝑑)) resulting from
not yet having evaluated the objective in the optimization process—notably, this is different from
the mean and variance of the utility stemming from the uncertainty in the model. In other words,
the uncertainty portrayed by the GP can be reduced by additional evaluations of the objective; the
uncertainty of the utility can only be reduced by performing more experiments. From the objective
GP, BO then chooses the next point to evaluate the objective by maximizing the acquisition
function, for example by considering both GP mean and variance so as to balance the exploration

103

and exploitation to better identify the global optimum. Overall, we emphasize that BO itself is not
OED, it is a tool for solving the optimization problem in Eqn. (4.11) and is agnostic to the OED
utility formulations.

Each iteration of BO can be summarized by three steps: updating the GP by performing GP
regression, forming the acquisition function, and finding the next objective evaluation location by
maximizing the acquisition function. We will describe these steps in detail below.

4.2.2.1 Gaussian process regression

A GP is a stochastic process (i.e., a collection of random variables) where any finite sub-collection
of those random variables has a multivariate Gaussian distribution. Consider the task of inferring
the variance-penalized objective function 𝑈_ (𝑑) : R𝑁𝑑 → R whose evaluation is noisy (due to
using a MC estimator):

�̂�
𝑁,𝑀1,𝑀2
_

(𝑑) = 𝑈_ (𝑑) + [, (4.32)

where [∼ N(0, 𝜎2
[) models the error of the estimator. If we use a GP to describe𝑈_ (𝑑):

𝑈_ (·) ∼ GP(`(·), 𝑘 (·, ·)), (4.33)

that means every collection of random variables {𝑈_ (𝑑) : 𝑑 ∈ D} follow a multivariate Gaussian
distribution. More specifically, for a finite set of 𝑑1, . . . , 𝑑𝑚 ∈ D, the corresponding 𝑈_ (𝑑1), . . . ,
𝑈_ (𝑑𝑚) have the following Gaussian distribution:

𝑈_ (𝑑1)
...

𝑈_ (𝑑𝑚)

 ∼ N
©«

`(𝑑1)
...

`(𝑑𝑚)

 ,

𝑘 (𝑑1, 𝑑1) · · · 𝑘 (𝑑1, 𝑑𝑚)

...
. . .

...

𝑘 (𝑑𝑚, 𝑑1) · · · 𝑘 (𝑑𝑚, 𝑑𝑚)

ª®®®¬ , (4.34)

where the mean function `(·) is usually selected, without loss of generality, to be 0 to reach a
zero-mean GP (this amounts to centering the data). A typical choice for the covariance kernel
function 𝑘 (·, ·) is the Radial basis function (i.e., square-exponential) kernel:

𝑘 (𝑑, 𝑑′) = exp

(
−
∥ 𝑑 − 𝑑′ ∥2

2
2𝑙2

)
, (4.35)

where 𝑙 is a hyperparameter to control the width of the kernel.

When we have already collected noisy estimations
−−−−−−−→
�̂�
𝑁,𝑀1,𝑀2
_

at seveal different design locations

104

𝐷, then �̂�𝑁,𝑀1,𝑀2
_

(𝑑) at a new design 𝑑 follows a Gaussian distribution jointly with
−−−−−−−→
�̂�
𝑁,𝑀1,𝑀2
_

:

−−−−−−−→
�̂�
𝑁,𝑀1,𝑀2
_

�̂�
𝑁,𝑀1,𝑀2
_

(𝑑)

 =

[−→
𝑈_

𝑈_ (𝑑)

]
+

[−→[
[

]
∼ N

(
0,

[
𝐾 (𝐷, 𝐷) + 𝜎2

[𝐼 𝐾 (𝐷, 𝑑)
𝐾 (𝑑, 𝐷) 𝑘 (𝑑, 𝑑) + 𝜎2

[

])
. (4.36)

Since
−−−−−−−→
�̂�
𝑁,𝑀1,𝑀2
_

is known, we can get the probability distribution of 𝑈_ (𝑑) by conditioning on
−−−−−−−→
�̂�
𝑁,𝑀1,𝑀2
_

, which is also a Gaussian distribution, with the updated mean

`(𝑑 |𝐷,
−−−−−−−→
�̂�
𝑁,𝑀1,𝑀2
_

) = 𝐾 (𝑑, 𝐷)
(
𝐾 (𝐷, 𝐷) + 𝜎2

[𝐼

)−1 −−−−−−−→
�̂�
𝑁,𝑀1,𝑀2
_

, (4.37)

and the standard deviation

𝜎(𝑑 |𝐷,
−−−−−−−→
�̂�
𝑁,𝑀1,𝑀2
_

) = 𝑘 (𝑑, 𝑑) − 𝐾 (𝑑, 𝐷)
(
𝐾 (𝐷, 𝐷) + 𝜎2

[𝐼

)−1
𝐾 (𝐷, 𝑑). (4.38)

4.2.2.2 Acquisition function

The acquisition function at a given location 𝑑 reflects the benefit of taking the next measurement at
𝑑 towards the task of solving the optimization problem. It is usually formulated by using accessible
information from the GP (e.g., its mean and standard deviation) in order to balance the exploration
(i.e., take measurements at highly uncertain regions in case the under-explored regions contain the
global optimum) and exploitation (i.e., take measurements at good regions that are already known
to refine the results). Many popular choices for the acquisition function are available, such as the
probability of improvement (PI), expected improvement (EI) and upper confidence bound (UCB).
For example, UCB is formulated as

𝑎(𝑑) = `(𝑑 |𝐷) + ^𝜎(𝑑 |𝐷), (4.39)

where ^ is a hyperparameter that controls the degree of exploration. We adopt UCB in this work.

4.2.2.3 Optimization of the acquisition function

The next objective evaluation location 𝑑′ is selected as the maximum point of the acquisition
function:

𝑑′ = arg max
𝑑∈D

𝑎(𝑑). (4.40)

105

Since the acquisition function is very inexpensive to evaluate by design, this inner optimization
problem can be solved easily using existing optimization packages. After obtaining the next
measurement location, we then evaluate the objective function value �̂�𝑁,𝑀1,𝑀2

_
(𝑑′), augment the

data set of evaluated objectives 𝐷, and repeat the process, until we reach the stopping criterion
(e.g., maximum number of iterations, change in objective below threshold).

In this work, we use an existing BO Python package [113], with some small modifications to
make it applicable for more complex constraints.

4.2.3 Common random samples

Although BO tolerates noisy objective evaluations, its convergence may be slowed by high noise in
estimating the variance-penalized objective. To mitigate this objective noise without simply adding
more MC samples, we adopt the technique of common random samples: that is, reusing the same \
samples and noise samples across different designs 𝑑. This technique effectively introduces artificial
correlation between the objective noise across different designs (a “synchronized randomization”)
so as to make the objective function smoother and easier to optimize. Note that common random
samples is different from the before-mentioned reuse technique in Sec. 4.2.1.4, where the latter
entails reusing outer loop \ samples as inner loop \ samples when estimating 𝑈_ (𝑑) to reduce
forward model evaluations and avoid arithmetic underflow. Using common random samples is
equivalent to resetting the random seed of the random number generator every time when we start
MC sampling to estimate the objective function; further discussions can be found in [73].

However, we want to emphasize that although using common random samples will introduce
more variability to the arg-max under a finite sample size, it is still worth using since the variability
becomes negligible with a decent amount of samples, and the resulting objective function is much
smoother than not using common random samples. We will show the comparison between using
and not using common random samples in Sec. 4.3.1 and Sec. 4.3.2.

4.3 Numerical results and discussions

We present three examples to illustrate the benefits of rOED. The first example is a linear Gaussian
problem (Sec. 4.3.1) which has a closed-form solution and serves as a validation benchmark.
We will compare the numerical results from our estimator with the analytical solution, to show
the convergence and accuracy of the estimator. The second case is a synthetic nonlinear case
(Sec. 4.3.2), in which we will show the benefits of considering robustness of design. We will then
apply rOED to a 2D contaminant source inversion case (Sec. 4.3.3 and Sec. 4.3.4), to demonstrate
its usage in a more realistic multi-dimensional physical problem.

106

4.3.1 Linear-Gaussian benchmark

Consider an observation model with a forward model that is linear with respect to its parameter
\ ∈ R:

𝑦(\, 𝑑) = 𝐺 (\, 𝑑) + 𝜖 = \𝑑 + 𝜖 . (4.41)

The prior on \ is N(0, 32), and the design domain is 𝑑 ∈ [0, 3]. Due to the linearity in the forward
model and the Gaussian prior and noise, the posterior on \ is analytically Gaussian.

The variance-penalized objective estimator �̂�𝑁,𝑀1,𝑀2
_

can be decomposed into two components:
the expected utility estimator �̂�𝑁,𝑀1 and the utility variance estimator ˆ̃𝑈𝑁,𝑀1,𝑀2 . The performance
of �̂�𝑁,𝑀1 has been discussed in detail in [72], therefore in this example we focus on the utility
variance estimator ˆ̃𝑈𝑁,𝑀1,𝑀2 .

We first investigate the change of bias and variance of ˆ̃𝑈𝑁,𝑀1,𝑀2 (𝑑) at a fixed 𝑑 as the sample
number increases. We pick 𝑑 = 3, which corresponds to the largest utility variance and also the
largest estimation error. Note that 𝑁 = 𝑀1 = 𝑀2 is always implied since we reuse outer samples as
inner samples in our implementation. Fig. 4.1 shows the performance of our MC estimator as the
sample number increases, including the comparison between the estimate and the exact solution
(Fig. 4.1a), the absolute bias of the estimator against sample number (Fig. 4.1b), and the variance
of the estimator against sample number (Fig. 4.1c). In order to evaluate the bias and the variance
of the estimator, we repeat the computation 50 times for each 𝑁 . Both the bias and the variance
decrease approximately at the order of 𝑂 (1

𝑁
), agreeing with the convergence analysis in Sec. 4.2.

The absolute bias in Fig. 4.1b has more fluctuation than the variance in Fig. 4.1c. This is possibly
a result of the sample reuse technique inducing more fluctuations to the additional terms in the
bias estimator convergence rate (leading terms only)𝑂 (𝐴

𝑁
+ 𝐵
𝑀1

+ 𝐶
𝑀2

) versus the variance estimator
convergence rate 𝑂 (1

𝑁
)).

102 103 104 105

N

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

U
(d

=
3)

exact
Estimator mean
Estimator 1

(a) Estimate versus exact

102 103 104 105

N

10 3

10 2

10 1

Ab
so

lu
te

 b
ia

s Estimator bias
O(1/N)

(b) Estimator absolute bias

102 103 104 105

N

10 4

10 3

10 2

Va
ria

nc
e

Estimator var
O(1/N)

(c) Estimator variance

Figure 4.1: The performance of MC estimator estimating the utility variance �̃� (𝑑 = 3) as the
sample number increases for 1D linear Gaussian case.

We then investigate the effect of using common random samples as mentioned in Sec. 4.2.3.

107

Fig. 4.2 and Fig. 4.3 show the comparison between not using and using common random samples.
The estimator has been rerun 10 times to obtain the estimator mean and variance at each 𝑑. As
expected, using common random samples results in a much smoother objective function compared
to its counterpart. Although using common random samples will result in a slightly different
objective function, the shift is negligible with a sufficient amount of samples, and the shift can be
fully compensated by the benefits of additional smoothness. Therefore, we will always use common
random samples in this chapter, and we will further show a 2D example in Sec. 4.3.2 to reinforce
this conclusion.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
d

0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

U
(d

)

(a) 𝑁 = 100

0.0 0.5 1.0 1.5 2.0 2.5 3.0
d

0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

U
(d

)

(b) 𝑁 = 1000

0.0 0.5 1.0 1.5 2.0 2.5 3.0
d

0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

U
(d

)

exact
Estimator mean
Estimator 1

(c) 𝑁 = 10000

Figure 4.2: The estimated utility variance �̃� (𝑑) when not using common random samples for 1D
linear Gaussian case.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
d

0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

U
(d

)

(a) 𝑁 = 100

0.0 0.5 1.0 1.5 2.0 2.5 3.0
d

0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

U
(d

)

(b) 𝑁 = 1000

0.0 0.5 1.0 1.5 2.0 2.5 3.0
d

0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

U
(d

)

exact
Estimator mean
Estimator 1

(c) 𝑁 = 10000

Figure 4.3: The estimated utility variance �̃� (𝑑) when using common random samples for 1D linear
Gaussian case.

Figure 4.4 shows the comparison between the estimated expected utility using common random
samples and the exact expected utility under different sample sizes. The estimated expected utility
quickly converges to the exact solution with high accuracy with just 𝑁 = 1000 samples.

From Fig. 4.3 and 4.4, we can find that the expected utility in the range of 𝑑 ∈ [0, 3] has a
log shape and a continuing increasing trend, while the utility variance starts to stabilize beyond
𝑑 = 2. That means with higher 𝑑, we will get a higher expected utility 𝑈 (𝑑), but with almost
non-increasing utility variance �̃� (𝑑), and so higher valued 𝑑 is preferred in rOED for 1D linear

108

Gaussian problem for as long as _ is not too large to make the variance term dominating; this is the
same optimal design location as the non-robust OED formulation.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
d

0.5
0.0
0.5
1.0
1.5
2.0
2.5

U
(d

)

(a) 𝑁 = 100

0.0 0.5 1.0 1.5 2.0 2.5 3.0
d

0.5
0.0
0.5
1.0
1.5
2.0
2.5

U
(d

)
(b) 𝑁 = 1000

0.0 0.5 1.0 1.5 2.0 2.5 3.0
d

0.5
0.0
0.5
1.0
1.5
2.0
2.5

U
(d

)

exact
Estimator mean
Estimator 1

(c) 𝑁 = 10000

Figure 4.4: The comparison between the estimated expected utility and the exact expected utility
under different sample sizes for 1D linear Gaussian case.

4.3.2 Nonlinear model

We adapt the nonlinear model used in [72] but with a slight modification:

𝑦(\, 𝑑) = 𝐺 (\, 𝑑) + 𝜖
= \3𝑑2 + \ exp(−1.3 |0.2 − 𝑑 |) + 𝜖, (4.42)

where \ ∼ U[0, 1] is the scalar unknown parameter, 𝜖 ∼ N(0, 10−4𝐼𝑁𝑦
) is an additive Gaussian

noise, and we will consider 1D and 2D design spaces (𝑑 ∈ [0, 1] and 𝑑 ∈ [0, 1]2, respectively).
The observation space and additive Gaussian noise have the same dimension as the design space
(i.e., 𝑁𝑦 = 𝑁𝑑).

We first investigate the 1D design case. Figure 4.5 shows the estimated expected utility and
estimated utility variance using 𝑁 = 10000 samples and 10 reruns. Similar to the linear Gaussian
case, the bias and variance of the variance estimator are larger than that of the expected utility
estimator under the same sample size. Nevertheless, 𝑁 = 10000 appears sufficient to solve the
OED problem with utility variance. It is worth noting that if we only look at the expected utility
(without variance), 𝑈 (𝑑 = 1.0) is slightly larger than 𝑈 (𝑑 = 0.2) and so 𝑑 = 1.0 would be the
non-robust OED optimal design. However, the variance at 𝑑 = 1.0 is much higher than that at
𝑑 = 0.2, which indicates that 𝑑 = 1.0 is a risky design when considering the utility variance. We
thus draw the 𝑈_ (𝑑) in Fig. 4.6 with _ equals 0.2 and 1 respectively. When _ = 0.2, the rOED
objective at 𝑑 = 0.2 is already better than 𝑑 = 1; as _ increases to 1, the advantage of 𝑑 = 0.2 is
even more prominent, and 𝑑 = 1 in fact becomes the worst design in the entire design space.

To further investigate the difference of utility variance between 𝑑 = 0.2 and 𝑑 = 1, we plot

109

0.0 0.2 0.4 0.6 0.8 1.0
d

2.95
3.00
3.05
3.10
3.15
3.20
3.25

U
(d

)

Estimator mean
Estimator 1

(a) Expected utility

0.0 0.2 0.4 0.6 0.8 1.0
d

0.0
0.1
0.2
0.3
0.4
0.5

U
(d

)

Estimator mean
Estimator 1

(b) Utility variance

Figure 4.5: Estimated expected utility and utility variance for 1D nonlinear case.

0.0 0.2 0.4 0.6 0.8 1.0
d

2.7
2.8
2.9
3.0
3.1
3.2
3.3

U
(d

)

Estimator mean
Estimator 1

(a) _ = 0.2

0.0 0.2 0.4 0.6 0.8 1.0
d

2.7
2.8
2.9
3.0
3.1
3.2
3.3

U
(d

)

Estimator mean
Estimator 1

(b) _ = 1

Figure 4.6: 𝑈_ (𝑑) versus 𝑑 with _ = 0.2 and _ = 1 for 1D nonlinear case.

110

the histogram of 𝑢(𝑑, 𝑦) under 𝑑 = 0.2 and 𝑑 = 1 in Fig. 4.7, where 𝑢(𝑑, 𝑦) is computed by grid
discretization on \ space. 𝑢(𝑑 = 0.2, 𝑦) is quite stable (low spread), while 𝑢(𝑑 = 1, 𝑦) varies almost
uniformly between 2.2 and 4.4, with greater potential of getting much higher or lower utility values.
We then draw scatter plot of 𝑢(𝑑, 𝑦) and 𝑦 in Fig. 4.8, where we see 𝑑 = 0.2’s low variance is
supported by 𝑢(𝑑, 𝑦) not changing much for large parts of the 𝑦 value, while 𝑑 = 1.0’s high variance
can be seen by its 𝑢(𝑑, 𝑦) being more sensitive to 𝑦. Sample posteriors conditioned on observing
𝑦 = 0.03 (low utility for 𝑑 = 1) or 𝑦 = 1 (high utility for 𝑑 = 1) for both 𝑑 = 0.2 and 𝑑 = 1 in
Fig. 4.9, from which we can find that 𝑦 = 0.03 and 𝑦 = 1 results in similar posterior uncertainties
for 𝑑 = 0.2, but significant different posterior uncertainties for 𝑑 = 1.0, further supporting the
robustness of 𝑑 = 0.2.

To fully explain why 𝑑 = 1 has a higher variance compared to 𝑑 = 0.2, we need to go back to the
forward model in Eqn. (4.42). When 𝑑 = 0.2, the forward model is dominated by \; when 𝑑 = 1,
the dominating term is \3. Plotting 𝐺 (\, 𝑑) as a function of \ at 𝑑 = 0.2 and 𝑑 = 1 respectively in
Fig. 4.10,𝐺 (\, 𝑑 = 0.2) exhibits a linear shape and𝐺 (\, 𝑑 = 1) a cubic curve shape. As a heuristic,
a higher slope of 𝐺 tend to suggest more information since the output of 𝐺 is more sensitive to the
input. From these plots, the slope of𝐺 (\, 𝑑 = 0.2) is almost invariant at different \, while the slope
of 𝐺 (\, 𝑑 = 1) changes significantly. This difference helps explain why the utility 𝑢(𝑑 = 0.2, 𝑦) is
stable, while the utility 𝑢(𝑑 = 1, 𝑦) has a large variation depending on whether the underlying \ is
small (low slope region) or big (high slope region).

2.0 2.5 3.0 3.5 4.0 4.5 5.0
u(d, y)

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

De
ns

ity

(a) 𝑑 = 0.2

2.0 2.5 3.0 3.5 4.0 4.5 5.0
u(d, y)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

De
ns

ity

(b) 𝑑 = 1

Figure 4.7: Histograms of 𝑢(𝑑, 𝑦) for 𝑑 = 0.2 and 𝑑 = 1 for 1D nonlinear case.

We then investigate the performance of BO. Figure 4.11 presents the updating history of Bayesian
optimization when using common random samples, where Fig. 4.11a superimpose BO points upon
the objective function and Fig. 4.11b plots the updating history of BO against the update step. We
observe that BO quickly converges to the optimal design, while continue exploring the design space
in order to find potentially better designs as exhibited by the dips in the BO updating history after

111

(a) 𝑑 = 0.2 (b) 𝑑 = 1

Figure 4.8: The scatter plots of 𝑢(𝑑, 𝑦) against 𝑦 at 𝑑 = 0.2 and 𝑑 = 1 for 1D nonlinear case.

0.0 0.2 0.4 0.6 0.8 1.00
20
40
60
80

100

p(
|y

,d
)

y=0.03
y=1

(a) 𝑑 = 0.2

0.0 0.2 0.4 0.6 0.8 1.00
20
40
60
80

100

p(
|y

,d
)

y=0.03
y=1

(b) 𝑑 = 1

Figure 4.9: The posterior 𝑝(\ |𝑦, 𝑑) when 𝑦 = 0.03 and 𝑦 = 1, at 𝑑 = 0.2 and 𝑑 = 1 for 1D nonlinear
case.

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

G
(

,d
)

d = 0.2
d = 1

e = 1 e 1.04

2.88

Figure 4.10: 𝐺 (\, 𝑑) versus \, at 𝑑 = 0.2 and 𝑑 = 1 for 1D nonlinear case.

112

reaching the optimal design.

0.0 0.2 0.4 0.6 0.8 1.0
d

2.7
2.8
2.9
3.0
3.1
3.2
3.3

U
(d

)

BO init
BO search
BO opt

(a) BO locations superimposed on the objective
function

0 2 4 6 8 10 12 14 16 18
update

2.7
2.8
2.9
3.0
3.1
3.2
3.3

es
tim

at
e

of
 U

(d
)

BO init
BO search
BO opt

(b) BO history

Figure 4.11: Updating history of BO when using common random samples for the 1D nonlinear
case, where dark blue curve is the estimated 𝑈_ (𝑑) (i.e., objective function), grey triangles are the
initial points of BO, orange circle are the search points of BO, and the red star is the optimal point
of BO.

To demonstrate BO’s ability to tolerate noisy objective evaluations, we apply it to the same
problem as Fig. 4.11, but without using common random samples, plotting the results in Fig. 4.12.
In order to make BO insensitive to noise, we set the standard deviation of the BO noise𝜎[(mentioned
in Eqn. (4.32)) as 0.05. In this case, BO still finds the optimal design, but it has more exploitation
searches around 𝑑 = 0.2 because BO is not confident about this optimal point due to the high noise.
As a consequence, BO has fewer exploration searches and would need more iterations to explore
the under-explored region between 𝑑 = 0.4 and 𝑑 = 1, if there was a better design in this region.

Fig. 4.13 shows the contours of estimated expected utility, utility variance and variance-penalized
objective when _ = 1. Apparently, 𝑑 = [0.2, 1] and 𝑑 = [1, 0.2] correspond to the highest expected
utility, while 𝑑 = [0.2, 0.2] is the optimal robust design when _ = 1. Notice that using common
random samples does introduce some small shift, which can be found by the asymmetry at the
bottom left corner of Fig. 4.13b. Comparing Fig. 4.13 to Fig. 4.14, it is obvious that using common
random samples does smoothen the objective function a lot.

Fig. 4.15 presents the updating history of BO when using common random samples, from which
we can find that BO successfully finds the global optimum 𝑑∗

𝑈_
= [0.2, 0.2] against the other two

local optimal points 𝑑 = [0.2, 1] and 𝑑 = [1.0.2]. For this case, we are using 𝑁 = 10000 samples
and rerunning it for 10 times to get a more accurate estimate. It can be difficult to find the global
optimum even for BO when the objective function is too noisy, as shown in Fig. 4.16. Although
BO does realize that there is a cross pattern having higher objective values and places all BO points
alongside this cross pattern, it struggles to pinpoint the true global optimum. This difficulty can be

113

0.0 0.2 0.4 0.6 0.8 1.0
d

2.7
2.8
2.9
3.0
3.1
3.2
3.3

U
(d

)

BO init
BO search
BO opt

(a) BO on objective function

0 2 4 6 8 10 12 14 16 18
update

2.7
2.8
2.9
3.0
3.1
3.2
3.3

es
tim

at
e

of
 U

(d
)

BO init
BO search
BO opt

(b) BO history

Figure 4.12: Updating history of BO when not using common random samples for 1D nonlinear
case, where the dark blue curve and blue shaded area are the estimated mean and standard deviation
of 𝑈_ (𝑑) (i.e., objective function), grey triangles are the initial points of BO, orange circle are the
searching points of BO, and the red star is the optimal point of BO.

0.0 0.2 0.4 0.6 0.8 1.0
d1

0.0

0.2

0.4

0.6

0.8

1.0

d 2

3.29

3.34

3.38

3.43

3.48

3.53

3.58

3.62

3.67

(a)𝑈 (𝑑)

0.0 0.2 0.4 0.6 0.8 1.0
d1

0.0

0.2

0.4

0.6

0.8

1.0

d 2

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

(b) �̃� (𝑑)

0.0 0.2 0.4 0.6 0.8 1.0
d1

0.0

0.2

0.4

0.6

0.8

1.0

d 2

3.12

3.17

3.22

3.27

3.32

3.37

3.42

3.47

3.52

3.57

(c)𝑈_(𝑑) when _ = 1

Figure 4.13: Contours of estimated expected utility, utility variance and variance-penalized objec-
tive when using common random samples for 2D nonlinear case.

114

0.0 0.2 0.4 0.6 0.8 1.0
d1

0.0

0.2

0.4

0.6

0.8

1.0
d 2

3.28

3.33

3.38

3.43

3.48

3.53

3.58

3.63

3.68

(a)𝑈 (𝑑)

0.0 0.2 0.4 0.6 0.8 1.0
d1

0.0

0.2

0.4

0.6

0.8

1.0

d 2

-0.1

0.0

0.1

0.1

0.2

0.2

0.3

0.4

0.4

0.5

(b) �̃� (𝑑)

0.0 0.2 0.4 0.6 0.8 1.0
d1

0.0

0.2

0.4

0.6

0.8

1.0

d 2

3.07

3.13

3.19

3.25

3.31

3.37

3.43

3.49

3.55

3.61

(c)𝑈_(𝑑) when _ = 1

Figure 4.14: Contours of estimated expected utility, utility variance and variance-penalized objec-
tive when not using common random samples for 2D nonlinear case.

mitigated by increasing MC samples in estimating the objective, or running BO for more iterations.

0.0 0.2 0.4 0.6 0.8 1.0
d1

0.0

0.2

0.4

0.6

0.8

1.0

d 2

3.12

3.17

3.22

3.27

3.32

3.37

3.42

3.47

3.52

3.57

(a) BO on objective contour

1 3 5 7 9 11 13 15 17 19 21 23 25
update

3.0
3.1
3.2
3.3
3.4
3.5
3.6

es
tim

at
e

of
 U

(d
)

BO init
BO search
BO opt

(b) BO history

Figure 4.15: Updating history of BO when using common random samples for 2D nonlinear case,
where the background is the estimate of 𝑈_ (𝑑) (i.e., objective function), grey triangles are the
initial points of BO, orange circles are the searching points of BO, and the red star is the optimal
point of BO.

115

0.0 0.2 0.4 0.6 0.8 1.0
d1

0.0

0.2

0.4

0.6

0.8

1.0

d 2

3.07

3.13

3.19

3.25

3.31

3.37

3.43

3.49

3.55

3.61

(a) BO on objective contour

1 3 5 7 9 11 13 15 17 19 21 23 25
update

3.0
3.1
3.2
3.3
3.4
3.5
3.6

es
tim

at
e

of
 U

(d
)

BO init
BO search
BO opt

(b) BO history

Figure 4.16: Updating history of BO when not using common random samples for 2D nonlinear
case, where the background is the estimate of 𝑈_ (𝑑) (i.e., objective function), grey triangles are
the initial points of BO, orange circles are the searching points of BO, and red star is the optimal
point of BO.

4.3.3 Contaminant source inversion in a diffusion field

4.3.3.1 Problem setup

The progression of a contaminant’s concentration in a 2D square domain [0, 1]2 may be described
by the scalar diffusion PDE:

𝜕𝐺 (𝑧, 𝑡; \)
𝜕𝑡

= ∇2𝐺 + 𝑆(𝑧, 𝑡; \), 𝑧 ∈ [0, 1]2, 𝑡 > 0, (4.43)

where \ = [\𝑥 , \𝑦] ∈ R2 represents the source location, which is also the unknown parameter to be
inferred and endowed with a uniform prior U[0, 1]2. The source term has the form

𝑆(𝑧, 𝑡; \) = 𝑠

2𝜋ℎ2 exp
(
−∥\ − 𝑧∥2

2ℎ2

)
, (4.44)

where 𝑠 = 2 and ℎ = 0.05 indicate the source strength and source width respectively. The
initial condition is 𝐺 (𝑧, 0; \) = 0 and we apply Neumann boundary condition on all sides of the
square domain. The PDE is solved by the second-order finite volume method on a uniform grid with
Δ𝑧𝑥 = Δ𝑧𝑦 = 0.01, and the time marching is second order fractional step method with Δ𝑡 = 5×10−4.

The design variable is selected as the location of the sensor to measure the contaminant con-
centration. We only do one experiment at 𝑡 = 0.16, thus the dimension of the design variable only
depends on how many sensors we want to place to take measurements (i.e., if we have 𝑚 sensors
in the domain, then the dimension of design variables will be 𝑁𝑑 = 2𝑚, and the dimension of

116

observations will be 𝑁𝑦 = 𝑚, while the dimension of parameters 𝑁\ is always 2). We also assume
that there is an additive Gaussian noise on the measurements, such that the measurement at location
𝑧 is modelled by

𝑦(𝑧) = 𝐺 (𝑧, 𝑡 = 0.16; \) + 𝜖, (4.45)

where 𝜖 ∼ N(0, 0.052) represents the additive noise. The design variable 𝑑 is then just a set of
sensor locations (i.e., 𝑑 = [𝑧(1) , . . . , 𝑧(𝑚)] for 𝑚 sensors), and the observation 𝑦 is simply a batch
of observations at those sensor locations (i.e., 𝑦 = [𝑦(𝑧(1)), . . . , 𝑦(𝑧(𝑚))]). For multiple sensor
problems, we also assume that the measurement noise to be independent and identically distributed
across different sensors.

4.3.3.2 Surrogate modeling

Using the full PDE solver as the forward model is doable but computationally expensive. For
example, using a single 2.6 GHz CPU on a MacBook Pro laptop requires approximately 1.2
seconds per PDE forward model solve, and so estimating 𝑈_ (𝑑) with 10000 MC samples takes
about 3.3 hours at each 𝑑. To accelerate the computations, we use deep neural networks (DNNs) to
construct a surrogate model of𝐺 (𝑧, 𝑡 = 0.16; \). The DNN takes a four-dimensional input including
\ and 𝑧. It has 5 hidden layers, each with 100, 200, 100, 50, and 20 nodes, and ReLU activation
function. The output of the DNN is a scalar representing the value of 𝐺. To train the DNN, we
first generate 1000 \ uniformly sampled over the parameter space, then obtain the corresponding
𝐺 on uniform grid points in 𝑧 by running the full PDE solver. These results are then split into 80%
training set and 20% testing set. After training, the testing mean squared error (MSE) can reach
down to the order of 10−6. Figure 4.17 shows the comparison of the contaminant concentration 𝐺
computed by DNN surrogate and finite volume, they appear almost identical. More importantly,
DNN surrogate model provides a 105 speedup at the cost of 40 minutes on generating the data and
training the DNN.

4.3.3.3 Results

We first consider a case with design one sensor. Objective value is estimated using 𝑁 = 30000 MC
samples. Common random samples are employed across different designs. Figure 4.18a shows the
contours of estimated expected utility, from which we observe the four corners to have the highest
expected utility while the center of the domain has the lowest, which has already been explained
in Case 1 in Sec. 2.3.2. However, the four corners also have a much higher utility variance as
shown in Fig. 4.18b. The high variance at the corners results from the utility of a corner design can
vary significantly depending on the distance between the sensor location and the source location.

117

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0
z y

Surrogate

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0
Finite volume

0.00
0.11
0.22
0.32
0.43
0.54
0.65
0.76
0.86
0.97

(a) example 1

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y

Surrogate

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0
Finite volume

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

(b) example 2

Figure 4.17: Sample comparison of the concentration field 𝐺 using the DNN surrogates (left
column) and finite volume (right column). They appear nearly identical.

Figure 4.18c further presents the scatter plot of estimated utility variance against the expected
utility. From this figure, we observe a steep cliff at the high 𝑈 (𝑑) region, which means that many
designs have similar expected utility but quite different utility variances. Hence, through the rOED
formulation, we can identify a design with low utility variance but still achieves high expected
utility.

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y

0.90

0.96

1.02

1.08

1.14

1.20

1.26

1.32

1.38

(a) Estimated𝑈 (𝑑)

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y

0.39

0.48

0.57

0.66

0.75

0.84

0.93

1.02

1.11

(b) Estimated �̃� (𝑑) (c) Estimated �̃� (𝑑) versus𝑈 (𝑑)

Figure 4.18: Contours of estimated expected utility, utility variance and the scatter plot of utility
variance against expected utility when using common random samples for 2D source inversion case
with 1 sensor.

Figure 4.19 presents the contours of estimated variance-penalized objective with different _
values, and Fig. 4.20 shows the histograms of 𝑢(𝑑∗

𝑈
, 𝑦) and 𝑢(𝑑∗

𝑈_
, 𝑦), where the 𝑑∗

𝑈
and 𝑑∗

𝑈_
are

selected from the grid points with maximal 𝑈 (𝑑) and 𝑈_ (𝑑) in Fig. 4.19. As _ increases, the
optimal sensor location first moves from the corner to the middle of the boundary and then moves
towards the domain center, and the utility variance shrinks significantly with a small sacrifice on the
expected utility, which can be seen by observing the values before and after the ± sign in Fig. 4.20.

To illustrate the BO results, we focus on a specific case with _ = 0.5. Figure 4.21 presents the

118

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2
0.4
0.6
0.8
1.0

z y
= 0.05

0.86
0.92
0.98
1.04
1.10
1.16
1.22
1.28
1.34

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

= 0.1

0.84
0.90
0.96
1.02
1.08
1.14
1.20
1.26
1.32

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

= 0.2

0.78
0.84
0.90
0.96
1.02
1.08
1.14
1.20
1.26

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0
0.2
0.4
0.6
0.8
1.0

z y

= 0.5

0.62
0.68
0.74
0.80
0.86
0.92
0.98
1.04
1.10

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

= 0.7

0.52
0.58
0.64
0.70
0.76
0.82
0.88
0.94
1.00

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

= 1.0

0.25
0.33
0.40
0.47
0.55
0.62
0.70
0.78
0.85

Figure 4.19: Contours of estimated variance-penalized objective with different _ values for 2D
source inversion case with 1 sensor.

1 2 3 4 5 60.0
0.5
1.0
1.5
2.0
2.5

De
ns

ity

= 0.05
u(d *

U , y) = 1.390 ± 1.043
u(d *

U , y) = 1.388 ± 0.801

1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

= 0.1
u(d *

U , y) = 1.390 ± 1.043
u(d *

U , y) = 1.386 ± 0.779

1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

= 0.2
u(d *

U , y) = 1.390 ± 1.043
u(d *

U , y) = 1.384 ± 0.765

1 2 3 4 5 6
u(d, y)

0.0
0.5
1.0
1.5
2.0
2.5

De
ns

ity

= 0.5
u(d *

U , y) = 1.390 ± 1.043
u(d *

U , y) = 1.380 ± 0.758

1 2 3 4 5 6
u(d, y)

0.0

0.5

1.0

1.5

2.0

2.5

= 0.7
u(d *

U , y) = 1.390 ± 1.043
u(d *

U , y) = 1.338 ± 0.714

1 2 3 4 5 6
u(d, y)

0.0

0.5

1.0

1.5

2.0

2.5

= 1.0
u(d *

U , y) = 1.390 ± 1.043
u(d *

U , y) = 1.321 ± 0.696

Figure 4.20: Histograms of 𝑢(𝑑∗
𝑈
, 𝑦) and 𝑢(𝑑∗

𝑈_
, 𝑦) with different _ values for 2D source inversion

case with 1 sensor, where the value before ± sign is the MC mean (expected utility), and the value
after ± sign is the MC standard deviation (square root of the utility variance).

119

updating history of BO, showing rapid convergence to the optimal design located near the middle
of each of the domain’s boundaries. In fact, BO has searched all four regions (from symmetry)
with high objective function value, showing good performance in finding the global optimum. To
further explain why the middle of the domain boundary has lower variance than the corners, we
draw 3000 \ samples from the prior, generate corresponding observations 𝑦 through the surrogate
model for both 𝑑∗

𝑈
and 𝑑∗

𝑈_
that are found by BO, and then compute the KL divergence from prior

to posterior for these 𝑦 observations. After that, we pick 5 \ samples with low KL divergence and
draw their posteriors in Fig. 4.22. The worst cases of 𝑑∗

𝑈
have a lower KL divergence than the worst

cases of 𝑑∗
𝑈_

, with a more flat posterior distribution. This is because when the source is located
somewhere near the diagonal, the posterior of 𝑑∗

𝑈
will also have a full diagonal shape across the

square domain, hence a wider distribution coverage and a lower KL divergence.

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y

0.62

0.68

0.74

0.80

0.86

0.92

0.98

1.04

1.10

(a) BO on objective contour

1 3 5 7 9 11 13 15 17 19 21 23 25
update

0.80
0.85
0.90
0.95
1.00
1.05
1.10

es
tim

at
e

of
 U

(d
)

BO init
BO search
BO opt

(b) BO history

Figure 4.21: Updating history of Bayesian optimization when using common random samples
for 2D source inversion case with 1 sensor, where the background is the estimate of 𝑈_ (𝑑) when
_ = 0.5 (i.e., objective function), grey triangles are the initial points of BO, orange circles are the
searching points of BO, and the red star is the optimal point of BO.

Next we design two sensor locations for a 𝑁𝑑 = 4 setting. For illustration, we randomly
sample 1000 combinations of two sensor locations and use 𝑁 = 30000 MC samples for each
estimate. Figure 4.23a shows the estimated expected utility of those location combinations, with
the value represented by the coloring and the highest combination is marked by a thick line.
The results suggest taking measurements at the two adjacent corners yields the highest expected
utility. Figure 4.23b similarly plots the estimated utility variance of location combinations, and the
combination with the lowest estimated utility variance is marked by a thick line. Combinations that
are closer to the domain center have smaller variances. Figure 4.23c further shows the scatter plot
between estimated utility variance and expected utility, from which we can find a similar pattern as
the 1 sensor case with a steep cliff at the high𝑈 (𝑑) region.

120

Figure 4.22: Example posteriors with low KL-divergence for 2D source inversion case with 1
sensor, where the first row corresponds to 𝑑∗

𝑈
and the second row 𝑑∗

𝑈_
, the red star denotes the

sensor location, and the magenta inverted triangle denotes the true source location.

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y

1.40

1.60

1.80

2.00

2.20

2.40

2.60

(a) Estimated𝑈 (𝑑)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(b) Estimated �̃� (𝑑) (c) Estimated �̃� (𝑑) v.s. 𝑈 (𝑑)

Figure 4.23: Random combinations of sensor locations and their estimated expected utility, utility
variance, and the scatter plot of utility variance against expected utility when using common random
samples for 2D source inversion case with 2 sensors.

121

Figure 4.24 presents the random location combinations and their estimated𝑈_ (𝑑) with different
_ values, and Fig. 4.25 shows the histograms of 𝑢(𝑑∗

𝑈
, 𝑦) and 𝑢(𝑑∗

𝑈_
, 𝑦), where the 𝑑∗

𝑈
and 𝑑∗

𝑈_
are

selected from the random combinations with maximal𝑈 (𝑑) and𝑈_ (𝑑) in Fig. 4.24. As _ increases,
the optimal sensor location first moves from the domain boundary to the domain center, and the
utility variance shrinks significantly with a small sacrifice on the expected utility, which is similar
to the 1 sensor case. The histogram of 𝑢(𝑑∗

𝑈
, 𝑦) has a multimodal distribution, whose highest peak

lies in the low utility region; while the histogram of 𝑢(𝑑∗
𝑈_
, 𝑦) is unimodal, whose peak lies in the

middle of the two peaks of 𝑢(𝑑∗
𝑈
, 𝑦). The rOED framework effectively merges these two peaks

together and find a design that is more robust, or “more unimodal” in terms of its histogram.

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2
0.4
0.6
0.8
1.0

z y

= 0.05

1.50

1.75

2.00

2.25

2.50

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

= 0.1

1.50

1.75

2.00

2.25

2.50

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

= 0.2

1.25

1.50

1.75

2.00

2.25

2.50

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0
0.2
0.4
0.6
0.8
1.0

z y

= 0.5

1.00

1.25

1.50

1.75

2.00

2.25

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

= 0.7

1.00

1.50

2.00

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

= 1.0

0.00

0.50

1.00

1.50

2.00

Figure 4.24: Contours of estimated variance-penalized objective with different _ values for 2D
source inversion case with 2 sensors.

The BO results with _ = 0 and _ = 0.5 are shown in Fig. 4.26. For _ = 0, BO optimum after
50 updates has an objective function value of 2.669, which is very close to the maximum of 1000
random combinations 2.674. For _ = 0.5, BO optimum has a value of 2.382, which is also close
to the maximum of 1000 random combinations 2.398. BO, however, found these high values in
significantly fewer objective evaluations (less than 20).

To further illustrate the difference between 𝑑∗
𝑈

and 𝑑∗
𝑈_

, we draw 3000 \ samples from the
prior, generate corresponding observations 𝑦 through the surrogate model for both 𝑑∗

𝑈
and 𝑑∗

𝑈_
that

are found by BO, and then compute the KL divergence from prior to posterior values for these 𝑦
observations. After that, we pick 5 \ samples with low KL divergence (including the one with the

122

1 2 3 4 5 60.0
0.1
0.2
0.3
0.4
0.5

De
ns

ity

= 0.05
u(d *

U , y) = 2.677 ± 1.050
u(d *

U , y) = 2.677 ± 1.050

1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

0.5

= 0.1
u(d *

U , y) = 2.677 ± 1.050
u(d *

U , y) = 2.649 ± 0.827

1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

= 0.2
u(d *

U , y) = 2.677 ± 1.050
u(d *

U , y) = 2.607 ± 0.670

1 2 3 4 5 6
u(d, y)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

De
ns

ity

= 0.5
u(d *

U , y) = 2.677 ± 1.050
u(d *

U , y) = 2.627 ± 0.678

1 2 3 4 5 6
u(d, y)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

= 0.7
u(d *

U , y) = 2.677 ± 1.050
u(d *

U , y) = 2.502 ± 0.541

1 2 3 4 5 6
u(d, y)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

= 1.0
u(d *

U , y) = 2.677 ± 1.050
u(d *

U , y) = 2.502 ± 0.541

Figure 4.25: Histograms of 𝑢(𝑑∗
𝑈
, 𝑦) and 𝑢(𝑑∗

𝑈_
, 𝑦) with different _ values for 2D source inversion

case with 2 sensors, where the value before ± sign is the MC mean (expected utility), and the value
after ± sign is the MC standard deviation (square root of the utility variance).

0 5 10 15 20 25 30 35 40 45 50
update

1.8
2.0
2.2
2.4
2.6

es
tim

at
e

of
 U

(d
)

BO init
BO search
BO opt

(a) BO history when _ = 0

0 5 10 15 20 25 30 35 40 45 50
update

1.2
1.4
1.6
1.8
2.0
2.2
2.4

es
tim

at
e

of
 U

(d
)

BO init
BO search
BO opt

(b) BO history when _ = 0.5

Figure 4.26: The updating history of Bayesian optimization when using common random samples
for 2D source inversion case with 2 sensors, where grey triangles are the initial points of BO, orange
circles are the searching points of BO, and the red star is the optimal point of BO.

123

lowest KL divergence) as the worst cases and draw the posteriors of them in Fig. 4.27. Similar to
the 1 sensor case, the worst cases of 𝑑∗

𝑈
display a much lower utility than the worst cases of 𝑑∗

𝑈_

with a more flat posterior distribution.

Figure 4.27: Example posteriors with low KL-divergence for 2D source inversion case with 2
sensors, where the first row corresponds to 𝑑∗

𝑈
and the second row 𝑑∗

𝑈_
, the red stars denote the

sensor locations, and the magenta inverted triangle denotes the true source location.

4.3.4 Contaminant source inversion with building obstacles

We now add additional building obstacles to the source inversion domain in order to make it more
realistic. The prior of source location is still a uniform distribution except for the area of building
obstacles, in which the prior density is 0.

Figure 4.28 presents the contours of estimated expected utility, utility variance and the scatter
plot of utility variance against the expected utility with 7 different building obstacles, where each
column corresponds to the same building. The ‘steep cliff’ also exists, which means that we can
still find a robust design that has much lower utility variance but slightly lower expected utility
when there are building obstacles in the domain.

We further pick two representative cases, which are building #4 and #5 and designing 1 and 2
sensors respectively. We first focus on placing 1 sensor on building #4, with Fig. 4.29 presenting the
contours of estimated variance-penalized objective with different _ values and Fig. 4.30 showing
the histograms of 𝑢(𝑑∗

𝑈
, 𝑦) and 𝑢(𝑑∗

𝑈_
, 𝑦). Here the 𝑑∗

𝑈
and 𝑑∗

𝑈_
are found from grid search. As _

increases, the optimal sensor location moves towards the domain center.
We then apply BO to find the optimal design 𝑑∗

𝑈_
for both _ = 0 and _ = 0.5. Figure 4.31 shows

the updating history of BO, where it finds 3 out of 4 local optimums within tens of updates. Note
that the design constraints are active to prevent placing sensors inside the building obstacles during
optimization of the acquisition function.

124

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y

Building #1

1.17

1.21

1.26

1.30

1.35

1.40

1.44

1.48

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

Building #2

0.96

1.02

1.08

1.14

1.20

1.26

1.32

1.38

1.44

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

Building #3

1.02

1.08

1.14

1.20

1.26

1.32

1.38

1.44

1.50

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

Building #4

0.88
0.95
1.02
1.10
1.18
1.25
1.32
1.40
1.48
1.55

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

Building #5

1.03

1.10

1.18

1.25

1.33

1.40

1.48

1.55

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

Building #6

1.33
1.36
1.40
1.43
1.46
1.48
1.51
1.54
1.57
1.60

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

Building #7

1.50

1.52

1.54

1.55

1.57

1.59

1.61

1.63

1.64

(a) Estimated𝑈 (𝑑)

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y

0.32

0.44

0.56

0.68

0.80

0.92

1.04

1.16

1.28

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

0.36

0.48

0.60

0.72

0.84

0.96

1.08

1.20

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

0.40

0.52

0.64

0.76

0.88

1.00

1.12

1.24

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

0.36

0.48

0.60

0.72

0.84

0.96

1.08

1.20

1.32

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

0.30

0.45

0.60

0.75

0.90

1.05

1.20

1.35

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

0.48

0.66

0.84

1.02

1.20

1.38

1.56

1.74

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

0.56

0.68

0.80

0.92

1.04

1.16

1.28

1.40

(b) Estimated �̃� (𝑑)

(c) Estimated �̃� (𝑑) v.s. 𝑈 (𝑑)

Figure 4.28: Contours of estimated expected utility, utility variance and the scatter plot of utility
variance against expected utility with 7 different building obstacles for 2D source inversion case
with 1 sensor, where each column corresponds to the same building.

125

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2
0.4
0.6
0.8
1.0

z y
= 0.05

0.85
0.93
1.00
1.08
1.15
1.23
1.30
1.38
1.45

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

= 0.1

0.83
0.90
0.98
1.05
1.12
1.20
1.28
1.35
1.43

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

= 0.2

0.78
0.85
0.93
1.00
1.08
1.15
1.23
1.30
1.38

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0
0.2
0.4
0.6
0.8
1.0

z y

= 0.5

0.60
0.68
0.75
0.83
0.90
0.98
1.05
1.12
1.20

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

= 0.7

0.48
0.55
0.62
0.70
0.78
0.85
0.93
1.00
1.08

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

= 1.0

0.18
0.27
0.36
0.45
0.54
0.63
0.72
0.81
0.90
0.99

Figure 4.29: Contours of estimated variance-penalized objective with different _ values for 2D
source inversion case with 1 sensor and building #4.

1 2 3 4 5 60.0
0.5
1.0
1.5
2.0
2.5

De
ns

ity

= 0.05
u(d *

U , y) = 1.502 ± 0.991
u(d *

U , y) = 1.503 ± 0.947

1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

= 0.1
u(d *

U , y) = 1.502 ± 0.991
u(d *

U , y) = 1.499 ± 0.900

1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

= 0.2
u(d *

U , y) = 1.502 ± 0.991
u(d *

U , y) = 1.495 ± 0.879

1 2 3 4 5 6
u(d, y)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

De
ns

ity

= 0.5
u(d *

U , y) = 1.502 ± 0.991
u(d *

U , y) = 1.428 ± 0.724

1 2 3 4 5 6
u(d, y)

0.0

0.5

1.0

1.5

2.0

2.5

= 0.7
u(d *

U , y) = 1.502 ± 0.991
u(d *

U , y) = 1.406 ± 0.687

1 2 3 4 5 6
u(d, y)

0.0

0.5

1.0

1.5

2.0

2.5

= 1.0
u(d *

U , y) = 1.502 ± 0.991
u(d *

U , y) = 1.381 ± 0.667

Figure 4.30: Histograms of 𝑢(𝑑∗
𝑈
, 𝑦) and 𝑢(𝑑∗

𝑈_
, 𝑦) with different _ values for 2D source inversion

case with 1 sensor and building #4, where the value before ± sign is the MC mean (expected utility),
and the value after ± sign is the MC standard deviation (square root of the utility variance).

126

0.0 0.2 0.4 0.6 0.8 1.0
zx

0.0

0.2

0.4

0.6

0.8

1.0

z y

0.60

0.68

0.75

0.83

0.90

0.98

1.05

1.12

1.20

(a) BO on objective contour

0 4 8 12 16 20 24 28 32 36 40
update

0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

es
tim

at
e

of
 U

(d
)

BO init
BO search
BO opt

(b) BO history

Figure 4.31: Updating history of BO when using common random samples for 2D source inversion
case with 1 sensor and building #4, where the background is the estimate of 𝑈_ (𝑑) when _ = 0.5
(i.e., objective function), grey triangles are the initial points of BO, orange circles are the searching
points of BO, and the red star is the optimal point of BO.

We then draw posteriors of 5 worst cases of 𝑑∗
𝑈

and 𝑑∗
𝑈_

that are obtained from BO in Fig. 4.32.
For the worst cases of 𝑑∗

𝑈
, it is difficult to tell apart whether the source is on the left side or the

right side (see the probability mass at the bottom of the left side), and sometimes will even put vast
probability mass to the wrong side (see the second and the fourth cases); while for the worst cases
of 𝑑∗

𝑈_
, at least it can discriminate the side of the source correctly, thus results in a higher utility for

the worst cases.

Figure 4.32: Example posteriors with low KL-divergence for 2D source inversion case with 1
sensor and building #4, where the first row corresponds to 𝑑∗

𝑈
and the second row 𝑑∗

𝑈_
, the red star

denotes the sensor location, and the magenta inverted triangle denotes the true source location.

Now focusing on the second example for designing two sensors on building #5, Fig. 4.33 shows

127

the histograms of 𝑢(𝑑∗
𝑈
, 𝑦) and 𝑢(𝑑∗

𝑈_
, 𝑦) and Fig. 4.34 plots the example posteriors of 5 worst cases

of 𝑑∗
𝑈

and 𝑑∗
𝑈_

. Overall it makes sense to have two sensors on both the left side and right side, and
the robust design 𝑑∗

𝑈_
further places two sensors one at the bottom and the other at the top. Such

a design can be understood to be more space-filling and likely to mitigate some of the worst cases
encountered by 𝑑∗

𝑈
where the source location happens to be far away from both two sensors at the

top.

1 2 3 4 5 6
u(d, y)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

De
ns

ity
u(d *

U , y) = 2.690 ± 0.813
u(d *

U , y) = 2.648 ± 0.639

Figure 4.33: Histograms of 𝑢(𝑑∗
𝑈
, 𝑦) and 𝑢(𝑑∗

𝑈_
, 𝑦) for 2D source inversion case with 1 sensor and

building #5, where the value before ± sign is the MC mean (expected utility), and the value after ±
sign is the MC standard deviation (square root of the utility variance).

Figure 4.34: Example posteriors with low KL-divergence for 2D source inversion case with 1
sensor and building #5, where the first row corresponds to 𝑑∗

𝑈
and the second row 𝑑∗

𝑈_
, the red star

denotes the sensor location, and the magenta inverted triangle denotes the true source location.

128

4.4 Summary

In this chapter, we introduce a variance-penalized robust criterion for achieving robust Bayesian
optimal experimental design (rOED). This criterion is applicable to a wide range of utility functions
that adhere to the general form suggested by [93], and the variance-penalized criterion itself also
conforms to this general form. Adopting a Bayesian perspective with a focus on parameter inference,
we employ the information gain proposed by [92] as the utility function. The robust criterion favors
a design with higher expected information gain, but also lower variance. To efficiently estimate
the variance-penalized objective, we propose a Monte Carlo sampling technique that incorporates
sample reuse. Our numerical examples demonstrate the convergence rate of estimation accuracy as
the sample number increases and highlight the value of considering utility variance. To obtain the
globally optimal design in an efficient manner, we propose employing Bayesian optimization (BO).
Moreover, common random samples are used to introduce artificial correlation among different
design points, to smoothen the objective function and expedite optimization convergence.

The key contributions and novelty of our rOED method are summarized as follows.

• We formulate the variance-penalized rOED framework.

• We present the Monte Carlo estimator for estimating the objective of rOED, and analyze the
variance and bias of this estimator.

• We validate rOED on a benchmark example and showcase its effectiveness in tackling complex
physical problems.

• We make available our roed code at https://github.com/wgshen/rOED.

129

https://github.com/wgshen/rOED

CHAPTER 5

Robust Sequential Optimal Experimental Design

Having introduce sequential optimal experimental design (sOED) in Chapter 2 and robust optimal
experimental design (rOED) for batch design in Chapter 4, we now combine these principles
together to introduce the variance-penalized robust sequential optimal experimental design
(rsOED). This short chapter presents the formulation of rsOED, numerical methods for solving the
rsOED problem centering around the idea of estimating policy gradient (PG) for the the variance-
penalized expected total utility using Monte Carlo (MC) sampling and variational approximation.
Lastly, a numerical example of nonlinear model is presented to demonstrate the effectiveness of
rsOED.

5.1 Problem formulation

The rsOED framework is identical to that of sOED from Chapter 2 (see Sec. 2.1.2), except that
the objective function in Eqn. (2.3) is replaced with the variance-penalized objective. The rsOED
problem statement is then, from a given initial state 𝑥0, find the optimal policy

𝜋∗ = arg max
𝜋

𝑈_ (𝜋) (5.1)

s.t. 𝑑𝑘 = `𝑘 (𝑥𝑘) ∈ D𝑘 ,

𝑥𝑘+1 = F𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘), for 𝑘 = 0, . . . , 𝑁 − 1,

130

where the objective function is now

𝑈_ (𝜋) = 𝑈 (𝜋) − _�̃� (𝜋) (5.2)

= E𝑦0,...,𝑦𝑁−1 |𝜋,𝑥0

[
𝑁−1∑︁
𝑘=0

𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) + 𝑔𝑁 (𝑥𝑁)
]

− _V𝑦0,...,𝑦𝑁−1 |𝜋,𝑥0

[
𝑁−1∑︁
𝑘=0

𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) + 𝑔𝑁 (𝑥𝑁)
]

(5.3)

and_ is a scalar penalty coefficient. The purpose of the new objective function Eqn. (5.3) is to enable
a tradeoff between maximizing the expected utility and minimizing the utility variance, thereby
achieving more robust policy that is less affected by variability in the experimental outcomes.

It is worth noting that, unlike the incremental-terminal equivalence of the expected total utility
𝑈 (𝜋) shown in Theorem 1, the variance of the total utility �̃� (𝜋)differs between the incremental and
terminal formulations (i.e., �̃�𝑇 (𝜋) ≠ �̃�𝐼 (𝜋)). We only focus on the terminal formulation (Eqn. (2.7)
and (2.8)) for rsOED in this chapter.

Lastly, our rsOED formulation in this chapter will only present the setup involving a single
forward model with OED for parameter inference. However, it can be extended to accommodate
the generalized scenarios involving multi-model, goal-oriented Quantities of Interest (QoIs), and
nuisance parameters, akin to the vsOED formulation in Chapter 3.

5.2 Numerical methods for rsOED

Similar to the numerical methods for sOED (see Sec. 2.2), we approach the rsOED problem by
explicitly parameterizing the policy function. This allows us to leverage gradient-based optimization
techniques to optimize the policy parameters and find the policy that maximizes the variance-
penalized expected total utility. In the following, we first present the policy gradient of rsOED in
Sec. 5.2.1 with its numerical estimation in Sec. 5.2.2, and then discuss how to estimate the KL
divergence using the variational approximation in Sec. 5.2.3.

5.2.1 Derivation of the policy gradient

The strategy for establishing the policy gradient based rsOED (PG-rsOED) is similar to that of the
PG-sOED. Each policy function `𝑘 is parameterized by parameters 𝑤𝑘 (𝑘 = 0, . . . , 𝑁 −1), denoted
as `𝑘,𝑤𝑘

. The overall policy 𝜋 is then parameterized by the set 𝑤 = {𝑤𝑘 ,∀𝑘} ∈ R𝑁𝑤 and denoted
as 𝜋𝑤, where 𝑁𝑤 is the dimension of the overall policy parameter vector. The rsOED problem

131

statement, with a parameterized policy, becomes:

𝑤∗ = arg max
𝑤

𝑈_ (𝑤) (5.4)

s.t. 𝑑𝑘 = `𝑘,𝑤𝑘
(𝑥𝑘) ∈ D𝑘 ,

𝑥𝑘+1 = F𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘), for 𝑘 = 0, . . . , 𝑁 − 1,

from a given initial state 𝑥0, where

𝑈_ (𝑤) = 𝑈 (𝑤) − _�̃� (𝑤) (5.5)

= E𝑦0,...,𝑦𝑁−1 |𝜋𝑤 ,𝑥0

[
𝑁−1∑︁
𝑘=0

𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) + 𝑔𝑁 (𝑥𝑁)
]

− _V𝑦0,...,𝑦𝑁−1 |𝜋𝑤 ,𝑥0

[
𝑁−1∑︁
𝑘=0

𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) + 𝑔𝑁 (𝑥𝑁)
]
. (5.6)

The next step involves deriving the gradient ∇𝑤𝑈_ (𝑤) so it can be utilized with gradient-based
optimization for solving the rsOED problem.

In order to present the gradient expression for the PG-rsOED method, it is necessary to first
introduce the value functions. The state-value function (or V-function) and the action-value function
(or Q-function) corresponding to the expected utility have been introduced in Appendix A.2 and
Sec. 2.2.1, respectively. Here we introduce the variance state-value function (�̃�-function) and the
variance action-value function (�̃�-function) corresponding to the variance of the total utility. The
variance state-value function following policy 𝜋𝑤 and at the 𝑘th experiment is defined as

�̃�
𝜋𝑤
𝑘

(𝑥𝑘) = V𝑦𝑘 ,...,𝑦𝑁−1 |𝜋𝑤 ,𝑥𝑘

[
𝑁−1∑︁
𝑡=𝑘

𝑔𝑡 (𝑥𝑡 , `𝑡,𝑤𝑡
(𝑥𝑡), 𝑦𝑡) + 𝑔𝑁 (𝑥𝑁)

]
(5.7)

�̃�
𝜋𝑤
𝑁

(𝑥𝑁) = 0, (5.8)

for 𝑘 = 0, . . . , 𝑁 − 1, where 𝑥𝑘+1 = F𝑘 (𝑥𝑘 , `𝑘,𝑤𝑘
(𝑥𝑘), 𝑦𝑘). The variance state-value function is the

variance of cumulative remaining reward starting from a given state 𝑥𝑘 and following policy 𝜋𝑤 for
all remaining experiments. The varaince action-value function following policy 𝜋𝑤 and at the 𝑘th
experiment is defined as

�̃�
𝜋𝑤
𝑘
(𝑥𝑘 , 𝑑𝑘) = V𝑦𝑘 ,...,𝑦𝑁−1 |𝜋𝑤 ,𝑥𝑘 ,𝑑𝑘

[
𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) +

𝑁−1∑︁
𝑡=𝑘+1

𝑔𝑡 (𝑥𝑡 , `𝑡,𝑤𝑡
(𝑥𝑡), 𝑦𝑡) + 𝑔𝑁 (𝑥𝑁)

]
(5.9)

�̃�
𝜋𝑤
𝑁
(𝑥𝑁 , ·) = 0, (5.10)

132

for 𝑘 = 0, . . . , 𝑁 − 1, where 𝑥𝑘+1 = F𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘). The variance action-value function is the
variance of cumulative remaining reward for performing the 𝑘th experiment at the given design 𝑑𝑘
from a given state 𝑥𝑘 and thereafter following policy 𝜋𝑤. The two functions are related through

�̃�
𝜋𝑤
𝑘

(𝑥𝑘) = �̃�𝜋𝑤
𝑘
(𝑥𝑘 , `𝑘,𝑤𝑘

(𝑥𝑘)). (5.11)

Moreover, the variance action-value function can also be expressed using a recursive relationship
as follows:

�̃�
𝜋𝑤
𝑘
(𝑥𝑘 , 𝑑𝑘) = E𝑦𝑘 |𝑥𝑘 ,𝑑𝑘

[
�̂�
𝜋𝑤
𝑘+1(𝑥𝑘+1) + �̃�𝜋𝑤𝑘+1(𝑥𝑘+1)

]
, (5.12)

where �̂�𝜋𝑤
𝑘+1(𝑥𝑘+1) =

[
𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) +𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) −𝑄𝜋𝑤

𝑘
(𝑥𝑘 , 𝑑𝑘)

]2 for 𝑘 = 0, . . . , 𝑁 −2, �̂�𝜋𝑤
𝑁

(𝑥𝑁) =[
𝑔𝑁−1(𝑥𝑁−1, 𝑑𝑁−1, 𝑦𝑁−1) +𝑉𝜋𝑤𝑁 (𝑥𝑁) −𝑄𝜋𝑤

𝑁−1(𝑥𝑁−1, 𝑑𝑁−1)
]2, and �̃�𝜋𝑤

𝑁
(𝑥𝑁) = 0. The proof is pro-

vided in Appendix D.1.
The gradient of the variance-penalized objective function in Eqn. (5.5) can be decomposed into

the gradient of the expected utility, which is ready in Eqn. (2.16), and the gradient of the variance
of the total utility.

Theorem 6 (Policy gradient for rsOED). The gradient of the variance of the total utility �̃� (𝑤) with
respect to the policy parameters is

∇𝑤�̃� (𝑤) (5.13)

=

𝑁−1∑︁
𝑘=0
E𝑥𝑘 |𝜋𝑤 ,𝑥0

[
∇𝑤`𝑘,𝑤𝑘

(𝑥𝑘)∇𝑑𝑘�̃�
𝜋𝑤
𝑘
(𝑥𝑘 , 𝑑𝑘)

���
𝑑𝑘=`𝑘,𝑤𝑘

(𝑥𝑘)

]
+
𝑁−2∑︁
𝑘=0
E𝑥𝑘+1 |𝜋𝑤 ,𝑥0

{
2
[
𝑔𝑘 +𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) −𝑄𝜋𝑤

𝑘
(𝑥𝑘 , `𝑘,𝑤𝑘

(𝑥𝑘))
]
×

𝑁−1∑︁
𝑙=𝑘+1

E𝑥𝑙 |𝜋𝑤 ,𝑥𝑘+1

[
∇𝑤`𝑙,𝑤𝑙

(𝑥𝑙)∇𝑑𝑙𝑄
𝜋𝑤
𝑙

(𝑥𝑙 , 𝑑𝑙) |𝑑𝑙=`𝑙,𝑤𝑙 (𝑥𝑙)
]}
.

A proof is provided in Appendix D.2. By combining the gradient of the expected utility in
Eqn. (2.16) and the gradient of the variance of the total utility in Eqn. (5.13), we can obtain the
gradient of the variance-penalized objective as

∇𝑤𝑈_ (𝑤) = ∇𝑤𝑈 (𝑤) − _∇𝑤�̃� (𝑤). (5.14)

133

5.2.2 Numerical estimation of the policy gradient

In general, the policy gradient in Eqn. (5.14) does not have a closed-form and numerical approx-
imation is required. A MC estimator for ∇𝑤𝑈 (𝑤) has been provided in Eqn. (2.17), and the MC
estimator for the gradient of variance of the total utility is

∇𝑤�̃� (𝑤)

≈ 1
𝑀

𝑀∑︁
𝑖=1

𝑁−1∑︁
𝑘=0

∇𝑤`𝑘,𝑤𝑘
(𝑥 (𝑖)
𝑘
)∇

𝑑
(𝑖)
𝑘

�̃�
𝜋𝑤
𝑘
(𝑥 (𝑖)
𝑘
, 𝑑

(𝑖)
𝑘
)
���
𝑑
(𝑖)
𝑘

=`𝑘,𝑤𝑘
(𝑥 (𝑖)

𝑘
)

+ 1
𝑀

𝑀∑︁
𝑖=1

𝑁−2∑︁
𝑘=0

2
[
𝑔
(𝑖)
𝑘

+𝑉𝜋𝑤
𝑘+1(𝑥

(𝑖)
𝑘+1) −𝑄

𝜋𝑤
𝑘
(𝑥 (𝑖)
𝑘
, `𝑘,𝑤𝑘

(𝑥 (𝑖)
𝑘
))

]
×[

𝑁−1∑︁
𝑙=𝑘+1

∇\`𝑙,𝑤𝑙
(𝑥 (𝑖)
𝑙
)∇

𝑑
(𝑖)
𝑙

𝑄
𝜋𝑤
𝑙

(𝑥 (𝑖)
𝑙
, 𝑑

(𝑖)
𝑙
)
���
𝑑
(𝑖)
𝑙

=`𝑙,𝑤𝑙 (𝑥
(𝑖)
𝑙

)

]
=

1
𝑀

𝑀∑︁
𝑖=1

𝑁−1∑︁
𝑘=0

∇𝑤`𝑘,𝑤𝑘
(𝑥 (𝑖)
𝑘
)∇

𝑑
(𝑖)
𝑘

�̃�
𝜋𝑤
𝑘
(𝑥 (𝑖)
𝑘
, 𝑑

(𝑖)
𝑘
)
���
𝑑
(𝑖)
𝑘

=`𝑘,𝑤𝑘
(𝑥 (𝑖)

𝑘
)

+ 2
𝑀

𝑀∑︁
𝑖=1

𝑁−1∑︁
𝑘=1

{
𝑘−1∑︁
𝑙=0

[
𝑔
(𝑖)
𝑙

+𝑉𝜋𝑤
𝑙+1 (𝑥

(𝑖)
𝑙+1) −𝑄

𝜋𝑤
𝑙

(𝑥 (𝑖)
𝑙
, `𝑙,𝑤𝑙

(𝑥 (𝑖)
𝑙
))

]}
×

∇𝑤`𝑘,𝑤𝑘
(𝑥 (𝑖)
𝑘
)∇

𝑑
(𝑖)
𝑘

𝑄
𝜋𝑤
𝑘
(𝑥 (𝑖)
𝑘
, 𝑑

(𝑖)
𝑘
)
���
𝑑
(𝑖)
𝑘

=`𝑘,𝑤𝑘
(𝑥 (𝑖)

𝑘
)

where the superscript indicates the 𝑖th episode (i.e., trajectory instance) generated from MC sam-
pling and 𝑀 is the number of MC samples. Note that we have switched the order of summation
in the second part to facilitate easier computation. The sampling technique is the same as that
discussed in Sec. 2.2.2. By combining with the MC estimator for the PG of expected utility in
Eqn. (2.17), we arrive at the overall MC estimator for the variance-penalized objective function:

∇𝑤𝑈_ (𝑤) (5.15)

≈ 1
𝑀

𝑀∑︁
𝑖=1

𝑁−1∑︁
𝑘=0

∇𝑤`𝑘,𝑤𝑘
(𝑥 (𝑖)
𝑘
)∇

𝑑
(𝑖)
𝑘

(
𝑄
𝜋𝑤
𝑘
(𝑥 (𝑖)
𝑘
, 𝑑

(𝑖)
𝑘
) − _�̃�𝜋𝑤

𝑘
(𝑥 (𝑖)
𝑘
, 𝑑

(𝑖)
𝑘
)
) ���
𝑑
(𝑖)
𝑘

=`𝑘,𝑤𝑘
(𝑥 (𝑖)

𝑘
)

− 2_
𝑀

𝑀∑︁
𝑖=1

𝑁−1∑︁
𝑘=1

{
𝑘−1∑︁
𝑙=0

[
𝑔
(𝑖)
𝑙

+𝑉𝜋𝑤
𝑙+1 (𝑥

(𝑖)
𝑙+1) −𝑄

𝜋𝑤
𝑙

(𝑥 (𝑖)
𝑙
, `𝑙,𝑤𝑙

(𝑥 (𝑖)
𝑙
))

]}
×

∇𝑤`𝑘,𝑤𝑘
(𝑥 (𝑖)
𝑘
)∇

𝑑
(𝑖)
𝑘

𝑄
𝜋𝑤
𝑘
(𝑥 (𝑖)
𝑘
, 𝑑

(𝑖)
𝑘
)
���
𝑑
(𝑖)
𝑘

=`𝑘,𝑤𝑘
(𝑥 (𝑖)

𝑘
)

Compared with PG-sOED, the MC estimator for rsOED further entails computing the gradient of
the variance action-value function ∇

𝑑
(𝑖)
𝑘

�̃�
𝜋𝑤
𝑘
(𝑥 (𝑖)
𝑘
, 𝑑

(𝑖)
𝑘
). Therefore, we also use a DNN (�̃�-network)

134

with parameters ã to represent the variance action-value function. The training of �̃�-network is
similar to the training of Q-network described in Sec. 2.2.2.2. Note that �̃�𝜋𝑤

𝑘
(𝑥𝑘 , 𝑑𝑘) can be written

in a recursive form (see Eqn. (5.12)), the analogous loss function for optimizing ã is

L(ã) = 1
𝑀

𝑀∑︁
𝑖=1

𝑁−1∑︁
𝑘=0

[
�̃�
𝜋𝑤
ã
(𝑘, 𝑥 (𝑖)

𝑘
, 𝑑

(𝑖)
𝑘
) −

(
�̂�
𝜋𝑤
𝑘+1(𝑥

(𝑖)
𝑘+1) + �̃�

𝜋𝑤
𝑘+1(𝑥

(𝑖)
𝑘+1))

)]2
, (5.16)

where �̂�𝜋𝑤
𝑘+1(𝑥

(𝑖)
𝑘+1) =

[
𝑔𝑘 (𝑥 (𝑖)𝑘 , 𝑑

(𝑖)
𝑘
, 𝑦

(𝑖)
𝑘
) +𝑄𝜋𝑤

𝑘+1(𝑥
(𝑖)
𝑘+1, 𝑑

(𝑖)
𝑘+1) −𝑄

𝜋𝑤
𝑘
(𝑥 (𝑖)
𝑘
, 𝑑

(𝑖)
𝑘
)
]2

for 𝑘 = 0, . . . , 𝑁 − 2, �̂�𝜋𝑤
𝑁

(𝑥 (𝑖)
𝑁
) =

[
𝑔𝑁−1(𝑥 (𝑖)𝑁−1, 𝑑

(𝑖)
𝑁−1, 𝑦

(𝑖)
𝑁−1) +𝑉

𝜋𝑤
𝑁

(𝑥 (𝑖)
𝑁
) −𝑄𝜋𝑤

𝑁−1(𝑥
(𝑖)
𝑁−1, 𝑑

(𝑖)
𝑁−1)

]2
,

�̃�
𝜋𝑤
𝑘+1(𝑥

(𝑖)
𝑘+1) = �̃�

𝜋𝑤
𝑘+1(𝑥

(𝑖)
𝑘+1, 𝑑

(𝑖)
𝑘+1) for 𝑘 = 0, . . . , 𝑁 − 2, �̃�𝜋𝑤

𝑁
(𝑥 (𝑖)
𝑁
) = 0, and 𝑑 (𝑖)

𝑘
= `𝑤 (𝑘, 𝑥 (𝑖)𝑘) for

𝑘 = 0, . . . , 𝑁 − 1.

5.2.3 Evaluation of Kullback-Leibler rewards

The last remaining task involves estimating the terminal reward 𝑔𝑁 (𝑥𝑁), as specified in Eqn. (2.8),
representing the KL divergence from the prior 𝑝(\ |𝐼0) to the final posterior 𝑝(\ |𝐼𝑁). In Chapter 2,
we discretize the \-space and estimate the posterior PDF pointwise, however, it could be impractical
when 𝑁\ > 4 as the number of grid points increase exponentially as the dimension of \-space. The
Prior Contrastive Estimator (PCE) can be employed for estimating the KL divergence as well:

𝑔𝑁 (𝑥𝑁) =
∫
Θ

𝑝(\ |𝐼𝑁) ln
[
𝑝(\ |𝐼𝑁)
𝑝(\ |𝐼0)

]
𝑑\

=

∫
Θ

𝑝(\ |𝐼0)
𝑝(𝐼𝑁 |\, 𝐼0)
𝑝(𝐼𝑁 |𝐼0)

ln
[
𝑝(𝐼𝑁 |\, 𝐼0)
𝑝(𝐼𝑁 |𝐼0)

]
𝑑\

≈ 1
𝑀PCE

𝑀PCE∑︁
𝑗=1

𝑝(𝐼𝑁 |\ (𝑗) , 𝐼0)
𝑝(𝐼𝑁 |𝐼0)

ln
[
𝑝(𝐼𝑁 |\ (𝑗) , 𝐼0)
𝑝(𝐼𝑁 |𝐼0)

]
, (5.17)

where \ (𝑗) ∼ 𝑝(\ |𝐼0), and the marginal likelihood 𝑝(𝐼𝑁 |𝐼0) is estimated by

𝑝(𝐼𝑁 |𝐼0) ≈
1

𝑀PCE

𝑀PCE∑︁
𝑗=1

𝑝(𝐼𝑁 |\ (𝑗) , 𝐼0). (5.18)

However, obtaining an accurate estimate using PCE necessitates a large number of inner loop
samples and is computationally expensive. We thus utilize the variational techniques in Chapter 3
to accelerate these computations.

While it might be tempting to directly adopt the one-point-terminal-information-gain (one-point-
TIG) estimator from Sec. 3.1.4, this is unsuitable because the variance of the one-point-TIG is not

135

equal to the variance of the TIG (the former involves both the variance induced by the randomness
in 𝑦 and \, while the latter only incorporates the randomness in 𝑦 as \ is marginalized out). Instead,
our idea is to use the variational techniques in the way presented in Sec. 3.2.5.1 to learn a posterior
approximation (i.e., train 𝑞(\ |𝐼𝑁 ; 𝜙) that approximates 𝑝(\ |𝐼𝑁)), with the understanding that we
are only considering PoI inference for a single forward model (i.e., M = 1, 𝛼M = 𝛼𝑍 = 0 and
𝛼Θ = 1), and use the variational posterior 𝑞(\ |𝐼𝑁 ; 𝜙) to learn𝑉𝜋𝑤

a′ (𝑁, 𝑥𝑁), which is equivalently the
terminal reward (and terminal KL divergence if terminal reward only involves information gain).
𝑉
𝜋𝑤
a′ (𝑁, 𝑥𝑁) is parameterized by a′, and trained by minimizing the following loss function:

L(a′) = 1
𝑀

𝑀∑︁
𝑖=1

[
𝑉
𝜋𝑤
a′ (𝑁, 𝑥 (𝑖)

𝑁
) − ln

𝑞(\ (𝑖) |𝐼𝑁 ; 𝜙)
𝑝(\ (𝑖) |𝐼0)

]2

. (5.19)

In practice, we use a single DNN (�̃�-network) to learn the action-value functions 𝑄𝜋𝑤
a (𝑘, 𝑥𝑘 , 𝑑𝑘)

for 𝑘 = 0, . . . , 𝑁 − 1, as well as the state-value function at the terminal stage (i.e., 𝑉𝜋𝑤
a′ (𝑥𝑁)). Here,

a and a′ refer to the parameters of the same DNN. The input layer for the policy network `𝑤 (𝑘, 𝑥𝑘)
is

𝐼𝑎𝑐𝑡𝑜𝑟𝑘 = [𝑒𝑘︸︷︷︸
𝑁+1

,

𝑁𝑑︷︸︸︷
𝑑0 , . . . , 𝑑𝑘−1, 0, . . . , 0︸ ︷︷ ︸

𝑁𝑑 (𝑁−𝑘)

,

𝑁𝑦︷︸︸︷
𝑦0 , . . . , 𝑦𝑘−1, 0, . . . , 0︸ ︷︷ ︸

𝑁𝑦 (𝑁−𝑘)

]𝑇 , (5.20)

where 𝑒𝑘 is a zero-indexed one-hot encoding unit vector of size 𝑁 + 1. The 𝑘th element of 𝑒𝑘 is 1,
while all other elements are 0. The input for the Q-network and �̃�-network is

𝐼𝑐𝑟𝑖𝑡𝑖𝑐𝑘 = [𝐼𝑎𝑐𝑡𝑜𝑟𝑘 , 𝑑𝑘] (5.21)

for 𝑘 = 0, . . . , 𝑁 − 1 and

𝐼𝑐𝑟𝑖𝑡𝑖𝑐𝑁 = [𝐼𝑎𝑐𝑡𝑜𝑟𝑁 , 0], (5.22)

where 0 is a zero vector of size 𝑁𝑑 .

5.2.4 Algorithms of rsOED

Advanced RL techniques, such as replay buffer and target network are also utilized in rsOED. The
overall algorithm is provided in Algorithm 3.

136

Algorithm 3: The rsOED algorithm.
1: Initialize variational parameters 𝜙, actor (policy) parameters 𝑤, critic parameters a;
2: for 𝑙 = 1, . . . , 𝑛update do
3: Simulate 𝑛episode episodes: sample \ from the prior, and then for 𝑘 = 0, . . . , 𝑁 − 1

sample 𝑑𝑘 = `𝑘,𝑤 (𝐼𝑘) + 𝜖explore and 𝑦𝑘 ∼ 𝑝(𝑦𝑘 |\, 𝑑𝑘 , 𝐼𝑘);
4: Update newly generated information sequences

{
𝐼
(𝑖)
𝑁

}𝑛episode

𝑖=1
into replay buffer;

5: Sample 𝑛batch episodes from the replay buffer, update 𝜙 using sampled batch;
6: Estimate gradients and update a (Eqn. (5.16)) via gradient descent and 𝑤 (Eqn. (5.15)) via

gradient ascent using sampled batch;
7: end for
8: Return optimized policy network 𝜋𝑤;

5.3 Numerical results

5.3.1 Source location finding with stochastic rewards

The source location finding case in Sec. 3.3.2 with 2 random sources is adopted to demonstrate the
effectiveness of rsOED. We design 𝑁 = 10 experiments and use the same setting as that described
in Sec. 3.3.2, with the exception that now the rewards are stochastic:

𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) ∼ N (0, 25𝑒−2∥ 𝑑𝑘 ∥). (5.23)

In this form, we can see that the randomness in the rewards (i.e., the standard deviation of its
distribution) is greatest when the design 𝑑𝑘 is located at the origin, and lowest when it farthest from
the origin at the corner of the squared domain D𝑘 = [−4, 4]2.

We conduct the rsOED with a number of different variance penalty coefficient settings
{−0.3, 0, 0.1, 0.3, 1} to reflect different degrees of risk preference. After training, we evaluate
the performance of rsOED by randomly generating 2000 episodes. The final KL divergence is
estimated using the PCE for these evaluation episodes. Figure 5.1 illustrates the histograms of the
total rewards corresponding to each _. The title of each subfigure displays the mean and variance
of the total rewards. We observe that as _ increases, the histogram of total rewards becomes
narrower, reflecting a more risk-averse policy. The highest mean reward is observed when _ = 0,
and decreases as _ increases.

Figure 5.2 further draws example policies (i.e., sensor measurement locations). When _ = −0.3,
the designs tend to be concentrated around the origin to maximize the randomness in the immediate
rewards (risk-seeking). When _ = 0, the policy takes measurements near the true source location.
Many measurements are still taken around the origin because the true source location follows a
Gaussian prior centered at the origin. When _ = 0.1, the design locations tend to be positioned

137

20 10 0 10 20 30
total reward

0

10

20

30

40

50

60

=-0.3, mean=2.232, var=244.637

20 10 0 10 20 30
total reward

0

20

40

60

80

100

120

140
=0, mean=7.042, var=43.819

20 10 0 10 20 30
total reward

0

50

100

150

200

250
=0.1, mean=4.973, var=10.066

20 10 0 10 20 30
total reward

0

100

200

300

400

=0.3, mean=3.134, var=3.577

20 10 0 10 20 30
total reward

0

250

500

750

1000

1250

1500

1750

=1, mean=0.214, var=0.089

Figure 5.1: Histograms of the total reward of 2000 sampled episodes under various variance penalty
coefficient _s.

away from the origin to reduce the randomness in the immediate rewards, while still leveraging the
knowledge of the true source location. When _ increases to 0.3, the policy becomes more spread
out in its design locations, and when _ = 1, the design locations are concentrated at corners to
minimize the randomness in the immediate rewards. These policy behaviors are all consistent with
our intuitive understanding of the problem mechanics.

Table 5.1 presents the mean and variance of the total rewards estimated with PCE and variational
approximation. The results demonstrate that the estimates obtained through PCE consistently align
closely with those obtained using the variational method for all _. This suggests that the rOED
algorithm using variational approximation is effective.

Table 5.1: Mean and variance of the total rewards estimated with PCE and variational approximation
under different variance penalty coefficients.

_ = −0.3 _ = 0 _ = 0.1 _ = 0.3 _ = 1

Mean of total rewards (PCE) 2.232 7.042 4.973 3.134 0.214
Mean of total rewards (variational) 1.916 5.934 4.292 2.860 0.221

Var of total rewards (PCE) 244.637 43.819 10.066 3.577 0.089
Var of total rewards (variational) 245.495 43.416 9.271 3.327 0.091

5.4 Summary

In this chapter, we integrate the principles of sOED and rOED to reach the robust sequential
optimal experimental design (rsOED). rsOED shares the same framework as sOED, but with a
distinct objective: instead of maximizing the expected utility, it focuses on the mean-minus-variance
of the utility. We then provide the numerical techniques for solving rsOED problems, specifically
the policy gradient for the variance of utilities and its Monte Carlo estimator, and demonstrate
rsOED using a numerical example.

138

4 2 0 2 4
4

2

0

2

4
=-0.3

4 2 0 2 4
4

2

0

2

4
=0

4 2 0 2 4
4

2

0

2

4
=0.1

4 2 0 2 4
4

2

0

2

4
=0.3

4 2 0 2 4
4

2

0

2

4
=1

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

4 2 0 2 4
4

2

0

2

4

Figure 5.2: Example policies under various variance penalty coefficient _s. Each column corre-
sponds to a specific _ value, while each row corresponds to a true source location.

139

The key contributions and novelty of our rsOED method are summarized as follows.

• We formulate the variance-penalized rsOED framework.

• We present the algorithm of rsOED by providing the policy gradient expressions and its
Monte Carlo estimator of the variance of utilities.

• We utilize variational approximation to accelerate the computation of information gain.

• We validate rsOED on a benchmark example.

140

CHAPTER 6

Conclusions and future work

6.1 Conclusions

This thesis first presents a mathematical framework and computational methods to optimally de-
sign a finite number of sequential experiments (sOED) . We formulate sOED as a finite-horizon
POMDP. This sOED form is provably optimal, incorporates both elements of feedback and looka-
head, and generalizes the batch (static) and greedy (myopic) design strategies. We structure the
sOED problem in a fully Bayesian manner and with information-theoretic rewards (utilities), and
prove the equivalence of incremental and terminal information gain setups. In particular, sOED can
accommodate expensive nonlinear forward models with general non-Gaussian posteriors of con-
tinuous random variables. We then introduce numerical methods for solving the sOED problem,
which entails finding the optimal policy that maximizes the expected total reward. At the core of
our approach is PG, an actor-critic RL technique that parameterizes and learns both the policy and
value functions in order to extract the gradient with respect to the policy parameters. We derive
and prove the PG expression for finite-horizon sOED, and propose an MC estimator for it. Access-
ing derivative information enables the use of gradient-based optimization algorithms to achieve
efficient policy search. Specifically, we parameterize the policy and value functions as DNNs,
and detail architecture design that accommodates a nonparametric representation of the Bayesian
posterior belief states. Combining this representation technique with the terminal information gain
formulation, PG-sOED sidesteps the need for computing intermediate Bayesian posteriors and in-
cremental KL divergence terms, making it much more computationally efficient than greedy design.
We demonstrate PG-sOED to two groups of examples. The first is a linear-Gaussian benchmark to
validate PG-sOED against the analytical solution and to illustrate its orders-of-magnitude speedups
over an existing ADP-sOED baseline. The second entails sensor movement for contaminant source
inversion in a convection-diffusion field. Through multiple cases, we show the advantages of
PG-sOED over greedy and batch designs, and provide explanation of the results leveraging the
physical knowledge of convection-diffusion process. This demonstration also illustrates the ability

141

of PG-sOED to accommodate expensive forward models with nonlinear physics and dynamics.
To enhance the computational efficiency of sOED, we further introduce vsOED, a sample-

efficient method for Bayesian sequential OED that can handle implicit models and multi-model
scenarios, and accommodate diverse OED objectives (parameter inference, model discrimination,
goal-oriented prediction). We provide a rigorous proof demonstrating the equivalence, in expecta-
tion, between using terminal information gain and incremental information gain, as well as between
using the full integral of information gain and its one-point estimate. Therefore, these approaches
lead to the same sOED problem formulation. We then present the numerical algorithms for solving
vsOED problems, particularly the variational graident and policy gradient, as well as their MC
estimator. We validate vsOED on a number of examples, including a source location case under
both uni-model and multi-model scenarios, targeting parameter inference, model discrimination
and goal-oriented QoI predictions, a CES problem with a highly non-Gaussian posterior, a SIR
problem with implicit likelihood and expensive forward model, and a convection-diffusion source
inversion problem with a real physics based PDE model. By Leveraging variational approximation
and policy gradient, vsOED demonstrates superior performance in the explicit likelihood setting
under a fixed computational budget, while achieving similar performance as iDAD in the implicit
likelihood setting without needing forward model derivatives.

We then present a mathematical framework and computational methods to solve the rOED
problems. To enhance the stability of the utility, we choose to regularize the expected utility
function with a penalty on the variance of the utility, and propose a variance-penalized objective
formulation. By adjusting the penalty coefficient, this formulation yields a design that may have a
slightly lower expected utility compared to the design obtained solely by maximizing the expected
utility, and consequently a higher worst-case utility. In order to estimate the variance-penalized
objective in an efficient manner, we propose a double-nested Monte Carlo (MC) estimator, where
outer MC samples will be reused as inner samples to reduce the forward model evaluations from
O(𝑛2) to a O(𝑛) and avoid arithmetic underflow. We also analyze the bias and variance of the
proposed estimator. Moreover, Bayesian optimization (BO) is utilized to efficiently find the global
optimal design, and common random samples are also employed to introduce artificial correlation
among different designs and smoothen the objective function. We then apply robust OED to three
examples. The first example is a linear-Gaussian problem with a closed-form solution, which is
used to validate the convergence speed of the proposed estimator as the sample number increases.
The second example has a nonlinear forward model and is used to illustrate the value of robust
OED. We provide some insights to explain why different designs will have significantly different
utility variances. Besides, the performance of BO has also been validated in this example. The third
example is a contaminant source inversion problem in a diffusion domain, with and without building
obstacles. This example further illustrates the usage of robust OED and Bayesian optimization for

142

more complicated physical problems.
Lastly, we combine the concepts of rOED and sOED, and introduce the rsOED framework that

enables the design of a sequence of experiments in a robust manner. We provide the definition of
the value functions for the variance of the total rewards, and the policy gradient expressions with
the corresponding MC estimator. Variational approximation is utilized to expedite the calculation
of the KL divergence information gain. We demonstrate rsOED on a source location problem
to showcase how the variance penalty coefficient influences the policy and the accuracy of the
variational approximation.

6.2 Limitations and future work

The main limitation of the PG-sOED approach is its inability to scale to high-dimensional settings,
hindered by the need to perform high-dimensional Bayesian inference and KL divergence estimate.
The limitations of PG-sOED are alleviated by vsOED via variational approximation, however,
vsOED is sensitive to inaccurate posterior representations, which can lead to suboptimal policies
when the posteriors are challenging to approximate. Future work for developing accurate and
adaptive posterior representations especially in high dimensions, as well as utilizing other variational
bounds [76, 117], will be important. The current algorithms for both PG-sOED and vsOED also
do not consider discrete designs or stochastic policies, which when enabled, can reach a wider
class of design problems. vsOED performance can also be further enhanced through advanced RL
techniques [126, 125, 63, 59]. It would also be interesting to explore if we could automatically
determine the number of episodes needed to train sOED and vsOED. We anticipate that as the
dimension of the parameter space and the horizon of experiments increase, the required sample
size may also increase. However, it might reach a plateau due to the diminishing return on
information gain. Some work has been done to determine the sample size for modeling human
behavior via inverse reinforcement learning [69], and similar ideas can be adapted and utilized for
sample size determination in sOED and vsOED. Infinite-horizon sOED (e.g., when we don’t know
the horizon a priori) is also of great interest, one approach to handle such scenarios is by computing
the incremental information gain after each stage of the experiment. The experiment can then be
halted once the information gain surpasses a predefined threshold. Additionally, we can consider
whether to stop the experiment as a design variable.

For rOED, we have several directions to explore. The first is how to choose the penalty coefficient
_ in a reasonable way. The second direction would be how to estimate the variance-penalized
objective more accurately. Posterior samples could be used in the inner loop of double-nested
MC estimator instead of prior samples, however, it will increase the forward model evaluations.
Potential strategies to address it might be using Laplace approximated based importance sampling

143

[11] and multilevel Monte Carlo (MLMC) [62]. The third direction is to consider different risk
criteria. A simple alternative for the utility variance could be the standard deviation of the utility.
Additionally, we can explore other approaches such as minimizing the probability of undesirable
utilities or maximizing the expected utility of worst-case scenarios, also known as the Conditional
Value at Risk (CVaR) criterion. Moreover, the robustness against the prior misspecification, model
misspecification and design noise is also gaining more and more attentionn.

For rsOED, we plan to apply it to more complex models to demonstrate its practical application
in real-world problems.

144

APPENDIX A

Appendix of sequential optimal experimental design
(sOED)

A.1 Equivalence of incremental and terminal formulations in
sOED

Proof of Theorem 1. Upon substituting Eqn. (2.7) and (2.8) into Eqn. (2.4), the expected utility for
a given deterministic policy 𝜋 using the TIG formulation is

𝑈𝑇 (𝜋) = E𝑦0,...,𝑦𝑁−1 |𝜋,𝑥0

[∫
Θ

𝑝(\ |𝐼𝑁) ln
𝑝(\ |𝐼𝑁)
𝑝(\ |𝐼0)

𝑑\

]
= E𝐼1,...,𝐼𝑁 |𝜋,𝑥0

[∫
Θ

𝑝(\ |𝐼𝑁) ln
𝑝(\ |𝐼𝑁)
𝑝(\ |𝐼0)

𝑑\

]
(A.1)

where recall 𝐼𝑘 = {𝑑0, 𝑦0, . . . , 𝑑𝑘−1, 𝑦𝑘−1} (and 𝐼0 = ∅). Similarly, substituting Eqn. (2.9) and (2.10),
the expected utility for the same policy 𝜋 using the IIG formulation is

𝑈𝐼 (𝜋) = E𝑦0,...,𝑦𝑁−1 |𝜋,𝑥0

[
𝑁∑︁
𝑘=1

∫
Θ

𝑝(\ |𝐼𝑘) ln
𝑝(\ |𝐼𝑘)
𝑝(\ |𝐼𝑘−1)

𝑑\

]
= E𝐼1,...,𝐼𝑁 |𝜋,𝑥0

[
𝑁∑︁
𝑘=1

∫
Θ

𝑝(\ |𝐼𝑘) ln
𝑝(\ |𝐼𝑘)
𝑝(\ |𝐼𝑘−1)

𝑑\

]
. (A.2)

145

In both cases, E𝑦0,...,𝑦𝑁−1 |𝜋,𝑥0 can be equivalently replaced by E𝐼1,...,𝐼𝑁 |𝜋,𝑥0 since

E𝐼1,...,𝐼𝑁 |𝜋,𝑥0 [· · ·] = E𝑑0,𝑦0,𝑑1,𝑦1,...,𝑑𝑁−1,𝑦𝑁−1 |𝜋,𝑥0 [· · ·]
= E𝑑0 |𝜋E𝑦0,𝑑1,𝑦1,...,𝑑𝑁−1,𝑦𝑁−1 |𝜋,𝑥0,𝑑0 [· · ·]
= E𝑦0,𝑑1,𝑦1,...,𝑑𝑁−1,𝑦𝑁−1 |𝜋,𝑥0,`0 (𝑥0) [· · ·]
= E𝑦0,𝑑1,𝑦1,...,𝑑𝑁−1,𝑦𝑁−1 |𝜋,𝑥0 [· · ·]
= E𝑦0 |𝜋,𝑥0E𝑑1 |𝜋,𝑥0,𝑦0E𝑦1,...,𝑑𝑁−1,𝑦𝑁−1 |𝜋,𝑥0,𝑦0,𝑑1 [· · ·]
= E𝑦0 |𝜋,𝑥0E𝑦1,...,𝑑𝑁−1,𝑦𝑁−1 |𝜋,𝑥0,𝑦0,`1 (𝑥1) [· · ·]
= E𝑦0 |𝜋,𝑥0E𝑦1,...,𝑑𝑁−1,𝑦𝑁−1 |𝜋,𝑥0,𝑦0 [· · ·]
= E𝑦0 |𝜋,𝑥0E𝑦1 |𝜋,𝑥0,𝑦0E𝑑2,...,𝑑𝑁−1,𝑦𝑁−1 |𝜋,𝑥0,𝑦0,𝑦1 [· · ·]

...

= E𝑦0 |𝜋,𝑥0E𝑦1 |𝜋,𝑥0,𝑦0 · · ·E𝑦𝑁−1 |𝜋,𝑥0,𝑦0,𝑦1,...,𝑦𝑁−2,`𝑁−1 (𝑥𝑁−1) [· · ·]
= E𝑦0 |𝜋,𝑥0E𝑦1 |𝜋,𝑥0,𝑦0 · · ·E𝑦𝑁−1 |𝜋,𝑥0,𝑦0,𝑦1,...,𝑦𝑁−2 [· · ·]
= E𝑦0,...,𝑦𝑁−1 |𝜋,𝑥0 [· · ·] ,

where the third equality is due to the deterministic policy (Dirac delta function) 𝑑0 = `0(𝑥0), the
fourth equality is due to `0(𝑥0) being known if 𝜋 and 𝑥0 are given. The seventh equality is due to
`1(𝑥1) being known if 𝜋 and 𝑥1 are given, and 𝑥1 is known if 𝑥0, 𝑑0 = `0(𝑥0) and 𝑦0 are given,
and `0(𝑥0) is known if 𝜋 and 𝑥0 are given, so overall `1(𝑥1) is known if 𝜋, 𝑥0 and 𝑦0 are given.
The eighth to second-to-last equalities all apply the same reasoning recursively. The last equality
brings the expression back to a conditional joint expectation.

146

Taking the difference between Eqn. (A.1) and Eqn. (A.2), we obtain

𝑈𝐼 (𝜋) −𝑈𝑇 (𝜋)

= E𝐼1,...,𝐼𝑁 |𝜋,𝑥0

[
𝑁∑︁
𝑘=1

∫
Θ

𝑝(\ |𝐼𝑘) ln
𝑝(\ |𝐼𝑘)
𝑝(\ |𝐼𝑘−1)

𝑑\ −
∫
Θ

𝑝(\ |𝐼𝑁) ln
𝑝(\ |𝐼𝑁)
𝑝(\ |𝐼0)

𝑑\

]
=

∫
Θ

E𝐼1,...,𝐼𝑁 |𝜋,𝑥0

[
𝑁∑︁
𝑘=1

𝑝(\ |𝐼𝑘) ln
𝑝(\ |𝐼𝑘)
𝑝(\ |𝐼𝑘−1)

− 𝑝(\ |𝐼𝑁) ln
𝑝(\ |𝐼𝑁)
𝑝(\ |𝐼0)

]
𝑑\

=

∫
Θ

E𝐼1,...,𝐼𝑁 |𝜋,𝑥0

[
𝑁−1∑︁
𝑘=1

𝑝(\ |𝐼𝑘) ln
𝑝(\ |𝐼𝑘)
𝑝(\ |𝐼𝑘−1)

+ 𝑝(\ |𝐼𝑁) ln
𝑝(\ |𝐼0)
𝑝(\ |𝐼𝑁−1)

]
𝑑\

=

∫
Θ

E𝐼1,...,𝐼𝑁−1 |𝜋,𝑥0

∫
𝐼𝑁

𝑝(𝐼𝑁 |𝐼𝑁−1, 𝜋)
[
𝑁−1∑︁
𝑘=1

𝑝(\ |𝐼𝑘) ln
𝑝(\ |𝐼𝑘)
𝑝(\ |𝐼𝑘−1)

+ 𝑝(\ |𝐼𝑁) ln
𝑝(\ |𝐼0)
𝑝(\ |𝐼𝑁−1)

]
𝑑𝐼𝑁 𝑑\

=

∫
Θ

E𝐼1,...,𝐼𝑁−1 |𝜋,𝑥0

[
𝑁−1∑︁
𝑘=1

𝑝(\ |𝐼𝑘) ln
𝑝(\ |𝐼𝑘)
𝑝(\ |𝐼𝑘−1)

+
∫
𝐼𝑁

𝑝(\, 𝐼𝑁 |𝐼𝑁−1, 𝜋) ln
𝑝(\ |𝐼0)
𝑝(\ |𝐼𝑁−1)

𝑑𝐼𝑁

]
𝑑\

=

∫
Θ

E𝐼1,...,𝐼𝑁−1 |𝜋,𝑥0

[
𝑁−1∑︁
𝑘=1

𝑝(\ |𝐼𝑘) ln
𝑝(\ |𝐼𝑘)
𝑝(\ |𝐼𝑘−1)

+ 𝑝(\ |𝐼𝑁−1) ln
𝑝(\ |𝐼0)
𝑝(\ |𝐼𝑁−1)

]
𝑑\

=

∫
Θ

E𝐼1,...,𝐼𝑁−1 |𝜋,𝑥0

[
𝑁−2∑︁
𝑘=1

𝑝(\ |𝐼𝑘) ln
𝑝(\ |𝐼𝑘)
𝑝(\ |𝐼𝑘−1)

+ 𝑝(\ |𝐼𝑁−1) ln
𝑝(\ |𝐼0)
𝑝(\ |𝐼𝑁−2)

]
𝑑\

=

∫
Θ

E𝐼1,...,𝐼𝑁−2 |𝜋,𝑥0

[
𝑁−3∑︁
𝑘=1

𝑝(\ |𝐼𝑘) ln
𝑝(\ |𝐼𝑘)
𝑝(\ |𝐼𝑘−1)

+ 𝑝(\ |𝐼𝑁−2) ln
𝑝(\ |𝐼0)
𝑝(\ |𝐼𝑁−3)

]
𝑑\

...

=

∫
Θ

E𝐼1 |𝜋,𝑥0

[
𝑝(\ |𝐼1) ln

𝑝(\ |𝐼0)
𝑝(\ |𝐼0)

]
𝑑\

= 0,

where the third equality takes the last term from the sigma-summation and combines it with the last
term, the fourth equality expands the expectation and uses 𝑝(𝐼𝑁 |𝐼1, . . . , 𝐼𝑁−1, 𝜋) = 𝑝(𝐼𝑁 |𝐼𝑁−1, 𝜋),
the fifth equality makes use of 𝑝(\ |𝐼𝑁) = 𝑝(\ |𝐼𝑁 , 𝜋), and the seventh to second-to-last equalities
repeat the same procedures recursively. Hence,𝑈𝑇 (𝜋) = 𝑈𝐼 (𝜋).

147

A.2 Policy gradient expression

Before presenting the proof of gradient expression, we first introduce the state-value function (or
V-function). The V-function following policy 𝜋𝑤 and at the 𝑘th experiment is

𝑉
𝜋𝑤
𝑘

(𝑥𝑘) = E𝑦𝑘 ,...,𝑦𝑁−1 |𝜋𝑤 ,𝑥𝑘

[
𝑁−1∑︁
𝑡=𝑘

𝑔𝑡 (𝑥𝑡 , `𝑡,𝑤𝑡
(𝑥𝑡), 𝑦𝑡) + 𝑔𝑁 (𝑥𝑁)

]
(A.3)

= E𝑦𝑘 |𝜋𝑤 ,𝑥𝑘
[
𝑔𝑘 (𝑥𝑘 , `𝑘,𝑤𝑘

(𝑥𝑘), 𝑦𝑘) +𝑉𝜋𝑤𝑘+1(𝑥𝑘+1)
]

(A.4)

𝑉
𝜋𝑤
𝑁

(𝑥𝑁) = 𝑔𝑁 (𝑥𝑁) (A.5)

for 𝑘 = 0, . . . , 𝑁 − 1, where 𝑥𝑘+1 = F𝑘 (𝑥𝑘 , `𝑘,𝑤𝑘
(𝑥𝑘), 𝑦𝑘). The V-function is the expected cumu-

lative remaining reward starting from a given state 𝑥𝑘 and following policy 𝜋𝑤 for all remaining
experiments. The V-function and Q-function are related via

𝑉
𝜋𝑤
𝑘

(𝑥𝑘) = 𝑄𝜋𝑤
𝑘
(𝑥𝑘 , `𝑘,𝑤𝑘

(𝑥𝑘)). (A.6)

Our proof for Theorem 2 follows the proof strategy for a general infinite-horizon MDP given
by [132]. A shorthand notation for writing the state transition probability is utilized for better
understanding:

𝑝(𝑥𝑘 → 𝑥𝑘+1 |𝜋𝑤) = 𝑝(𝑥𝑘+1 |𝑥𝑘 , `𝑘,𝑤 (𝑥𝑘)). (A.7)

When taking an expectation over consecutive state transitions, we further use the simplifying
notation ∫

𝑥𝑘+1

𝑝(𝑥𝑘 → 𝑥𝑘+1 |𝜋𝑤)
∫
𝑥𝑘+2

𝑝(𝑥𝑘+1 → 𝑥𝑘+2 |𝜋𝑤)

· · ·
∫
𝑥𝑘+𝑚

𝑝(𝑥𝑘+(𝑚−1) → 𝑥𝑘+𝑚 |𝜋𝑤) [· · ·] 𝑑𝑥𝑘+1 𝑑𝑥𝑘+2 · · · 𝑑𝑥𝑘+𝑚

=

∫
𝑥𝑘+𝑚

𝑝(𝑥𝑘 → 𝑥𝑘+𝑚 |𝜋𝑤) [· · ·] 𝑑𝑥𝑘+𝑚 (A.8)

= E𝑥𝑘+𝑚 |𝜋𝑤 ,𝑥𝑘 [· · ·] . (A.9)

To avoid notation congestion, below we will omit the subscript on 𝑤 and shorten `𝑘,𝑤𝑘
(𝑥𝑘) to

`𝑘,𝑤 (𝑥𝑘), with the understanding that 𝑤 takes the same subscript as the ` function.

Proof of Theorem 2. We begin by recognizing that the gradient of expected utility in Eqn. (2.12)

148

can be written using the V-function:

∇𝑤𝑈 (𝑤) = ∇𝑤𝑉𝜋𝑤0 (𝑥0). (A.10)

The goal is then to derive the gradient expression for the V-functions.
We apply the definitions and recursive relations for the V- and Q-functions, and obtain a recursive

relationship for the gradient of V-function:

∇𝑤𝑉𝜋𝑤𝑘 (𝑥𝑘) = ∇𝑤𝑄𝜋𝑤
𝑘
(𝑥𝑘 , `𝑘,𝑤 (𝑥𝑘))

= ∇𝑤

[∫
𝑦𝑘

𝑝(𝑦𝑘 |𝑥𝑘 , `𝑘,𝑤 (𝑥𝑘))𝑔𝑘 (𝑥𝑘 , `𝑘,𝑤 (𝑥𝑘), 𝑦𝑘) 𝑑𝑦𝑘

+
∫
𝑥𝑘+1

𝑝(𝑥𝑘+1 |𝑥𝑘 , `𝑘,𝑤 (𝑥𝑘))𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) 𝑑𝑥𝑘+1

]
= ∇𝑤

∫
𝑦𝑘

𝑝(𝑦𝑘 |𝑥𝑘 , `𝑘,𝑤 (𝑥𝑘))𝑔𝑘 (𝑥𝑘 , `𝑘,𝑤 (𝑥𝑘), 𝑦𝑘) 𝑑𝑦𝑘

+ ∇𝑤
∫
𝑥𝑘+1

𝑝(𝑥𝑘+1 |𝑥𝑘 , `𝑘,𝑤 (𝑥𝑘))𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) 𝑑𝑥𝑘+1

=

∫
𝑦𝑘

∇𝑤`𝑘,𝑤 (𝑥𝑘)∇𝑑𝑘 [𝑝(𝑦𝑘 |𝑥𝑘 , 𝑑𝑘)𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘)]
���
𝑑𝑘=`𝑘,𝑤 (𝑥𝑘)

𝑑𝑦𝑘

+
∫
𝑥𝑘+1

[
𝑝(𝑥𝑘+1 |𝑥𝑘 , `𝑘,𝑤 (𝑥𝑘))∇𝑤𝑉𝜋𝑤𝑘+1(𝑥𝑘+1)

+ ∇𝑤`𝑘,𝑤 (𝑥𝑘)∇𝑑𝑘 𝑝(𝑥𝑘+1 |𝑥𝑘 , 𝑑𝑘)
���
𝑑𝑘=`𝑘,𝑤 (𝑥𝑘)

𝑉
𝜋𝑤
𝑘+1(𝑥𝑘+1)

]
𝑑𝑥𝑘+1

= ∇𝑤`𝑘,𝑤 (𝑥𝑘)∇𝑑𝑘

[∫
𝑦𝑘

𝑝(𝑦𝑘 |𝑥𝑘 , 𝑑𝑘)𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) 𝑑𝑦𝑘

+
∫
𝑥𝑘+1

𝑝(𝑥𝑘+1 |𝑥𝑘 , 𝑑𝑘)𝑉𝜋𝑤𝑘+1(𝑥𝑘+1)𝑑𝑥𝑘+1

] �����
𝑑𝑘=`𝑘,𝑤 (𝑥𝑘)

+
∫
𝑥𝑘+1

𝑝(𝑥𝑘+1 |𝑥𝑘 , `𝑘,𝑤 (𝑥𝑘))∇𝑤𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) 𝑑𝑥𝑘+1

= ∇𝑤`𝑘,𝑤 (𝑥𝑘)∇𝑑𝑘𝑄
𝜋𝑤
𝑘
(𝑥𝑘 , 𝑑𝑘)

���
𝑑𝑘=`𝑘,𝑤 (𝑥𝑘)

(A.11)

+
∫
𝑥𝑘+1

𝑝(𝑥𝑘 → 𝑥𝑘+1 |𝜋𝑤)∇𝑤𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) 𝑑𝑥𝑘+1.

Applying the recursive formula Eqn. (A.11) to itself repeatedly and expanding out the overall

149

expression, we obtain

∇𝑤𝑉𝜋𝑤𝑘 (𝑥𝑘)

= ∇𝑤`𝑘,𝑤 (𝑥𝑘)∇𝑑𝑘𝑄
𝜋𝑤
𝑘
(𝑥𝑘 , 𝑑𝑘)

���
𝑑𝑘=`𝑘,𝑤 (𝑥𝑘)

+
∫
𝑥𝑘+1

𝑝(𝑥𝑘 → 𝑥𝑘+1 |𝜋𝑤)∇𝑤`𝑘+1,𝑤 (𝑥𝑘+1)∇𝑑𝑘+1𝑄
𝜋𝑤
𝑘+1(𝑥𝑘+1, 𝑑𝑘+1)

���
𝑑𝑘+1=`𝑘+1,𝑤 (𝑥𝑘+1)

𝑑𝑥𝑘+1

+
∫
𝑥𝑘+1

𝑝(𝑥𝑘 → 𝑥𝑘+1 |𝜋𝑤)
∫
𝑥𝑘+2

𝑝(𝑥𝑘+1 → 𝑥𝑘+2 |𝜋𝑤)∇𝑤𝑉𝜋𝑤𝑘+2(𝑥𝑘+2) 𝑑𝑥𝑘+2 𝑑𝑥𝑘+1

= ∇𝑤`𝑘,𝑤 (𝑥𝑘)∇𝑑𝑘𝑄
𝜋𝑤
𝑘
(𝑥𝑘 , 𝑑𝑘)

���
𝑑𝑘=`𝑘,𝑤 (𝑥𝑘)

+
∫
𝑥𝑘+1

𝑝(𝑥𝑘 → 𝑥𝑘+1 |𝜋𝑤)∇𝑤`𝑘+1,𝑤 (𝑥𝑘+1)∇𝑑𝑘+1𝑄
𝜋𝑤
𝑘+1(𝑥𝑘+1, 𝑑𝑘+1)

���
𝑑𝑘+1=`𝑘+1,𝑤 (𝑥𝑘+1)

𝑑𝑥𝑘+1

+
∫
𝑥𝑘+2

𝑝(𝑥𝑘 → 𝑥𝑘+2 |𝜋𝑤)∇𝑤𝑉𝜋𝑤𝑘+2(𝑥𝑘+2) 𝑑𝑥𝑘+2

= ∇𝑤`𝑘,𝑤 (𝑥𝑘)∇𝑑𝑘𝑄
𝜋𝑤
𝑘
(𝑥𝑘 , 𝑑𝑘)

���
𝑑𝑘=`𝑘,𝑤 (𝑥𝑘)

+
∫
𝑥𝑘+1

𝑝(𝑥𝑘 → 𝑥𝑘+1 |𝜋𝑤)∇𝑤`𝑘+1,𝑤 (𝑥𝑘+1)∇𝑑𝑘+1𝑄
𝜋𝑤
𝑘+1(𝑥𝑘+1, 𝑑𝑘+1)

���
𝑑𝑘+1=`𝑘+1,𝑤 (𝑥𝑘+1)

𝑑𝑥𝑘+1

+
∫
𝑥𝑘+2

𝑝(𝑥𝑘 → 𝑥𝑘+2 |𝜋𝑤)∇𝑤`𝑘+2,𝑤 (𝑥𝑘+2)∇𝑑𝑘+2𝑄
𝜋𝑤
𝑘+2(𝑥𝑘+2, 𝑑𝑘+2)

���
𝑑𝑘+2=`𝑘+2,𝑤 (𝑥𝑘+2)

𝑑𝑥𝑘+2

...

+
∫
𝑥𝑁

𝑝(𝑥𝑘 → 𝑥𝑁 |𝜋𝑤)∇𝑤𝑉𝜋𝑤𝑁 (𝑥𝑁) 𝑑𝑥𝑁

=

𝑁−1∑︁
𝑙=𝑘

∫
𝑥𝑙

𝑝(𝑥𝑘 → 𝑥𝑙 |𝜋𝑤)∇𝑤`𝑙,𝑤 (𝑥𝑙)∇𝑑𝑙𝑄
𝜋𝑤
𝑙

(𝑥𝑙 , 𝑑𝑙)
���
𝑑𝑙=`𝑙,𝑤 (𝑥𝑙)

𝑑𝑥𝑙

=

𝑁−1∑︁
𝑙=𝑘

E𝑥𝑙 |𝜋𝑤 ,𝑥𝑘

[
∇𝑤`𝑙,𝑤 (𝑥𝑙)∇𝑑𝑙𝑄

𝜋𝑤
𝑙

(𝑥𝑙 , 𝑑𝑙)
���
𝑑𝑙=`𝑙,𝑤 (𝑥𝑙)

]
𝑑𝑥𝑙 , (A.12)

where for the second-to-last equality, we absorb the first term into the sigma-notation by using

∇𝑤`𝑘,𝑤 (𝑥𝑘)∇𝑑𝑘𝑄
𝜋𝑤
𝑘
(𝑥𝑘 , 𝑑𝑘)

���
𝑑𝑘=`𝑘,𝑤 (𝑥𝑘)

=

∫
𝑥𝑘

𝑝(𝑥𝑘 |𝑥𝑘 , `𝑘,𝑤 (𝑥𝑘))∇𝑤`𝑘,𝑤 (𝑥𝑘)∇𝑑𝑘𝑄
𝜋𝑤
𝑘
(𝑥𝑘 , 𝑑𝑘)

���
𝑑𝑘=`𝑘,𝑤 (𝑥𝑘)

𝑑𝑥𝑘

=

∫
𝑥𝑘

𝑝(𝑥𝑘 → 𝑥𝑘 |𝜋𝑤)∇𝑤`𝑘,𝑤 (𝑥𝑘)∇𝑑𝑘𝑄
𝜋𝑤
𝑘
(𝑥𝑘 , 𝑑𝑘)

���
𝑑𝑘=`𝑘,𝑤 (𝑥𝑘)

𝑑𝑥𝑘 ,

and we eliminate the last term in the summation since ∇𝑤𝑉𝜋𝑤𝑁 (𝑥𝑁) = ∇𝑤𝑔𝑁 (𝑥𝑁) = 0.

150

At last, substituting Eqn. (A.12) into Eqn. (A.10), we obtain the policy gradient expression:

∇𝑤𝑈 (𝑤) = ∇𝑤𝑉𝜋𝑤0 (𝑥0)

=

𝑁−1∑︁
𝑙=0
E𝑥𝑙 |𝜋𝑤 ,𝑥0

[
∇𝑤`𝑙,𝑤 (𝑥𝑙)∇𝑑𝑙𝑄

𝜋𝑤
𝑙

(𝑥𝑙 , 𝑑𝑙)
���
𝑑𝑙=`𝑙,𝑤 (𝑥𝑙)

]
.

Renaming the iterator from 𝑙 to 𝑘 arrives at Eqn. (2.16) in Theorem 2, completing the proof.

A.3 Equivalence of fixing and resampling model parameters in
an sOED episode

When generating the 𝑖th episode as described in Sec. 2.2.2, employing a fixed model parameter
\ (𝑖) throughout the entire 𝑖th episode or resampling \ (𝑖)

𝑘
at each stage 𝑘 from its posterior belief

state 𝑥 (𝑖)
𝑘,𝑏

both produce mathematically equivalent results. This can be seen from factoring out the
expectations:

𝑈 (𝑤) = E𝑦0,...,𝑦𝑁−1 |𝜋𝑤 ,𝑥0

[
𝑁−1∑︁
𝑘=0

𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) + 𝑔𝑁 (𝑥𝑁)
]

= E\ |𝑥0,𝑏E𝑦0 |𝜋𝑤 ,\,𝑥0E𝑦1 |𝜋𝑤 ,\,𝑥0,𝑦0 · · ·

· · ·E𝑦𝑁−1 |𝜋𝑤 ,\,𝑥0,𝑦0,...,𝑦𝑁−2

[
𝑁−1∑︁
𝑘=0

𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) + 𝑔𝑁 (𝑥𝑁)
]

(A.13)

= E\0 |𝑥0,𝑏E𝑦0 |𝜋𝑤 ,\0,𝑥0E\1 |𝑥1,𝑏E𝑦1 |𝜋𝑤 ,\1,𝑥1 · · ·

· · ·E\𝑁−1 |𝑥𝑁−1,𝑏E𝑦𝑁−1 |𝜋𝑤 ,\𝑁−1,𝑥𝑁−1

[
𝑁−1∑︁
𝑘=0

𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) + 𝑔𝑁 (𝑥𝑁)
]
, (A.14)

where the second equality corresponds to the case of episode-fixed \ (𝑖) , and the last equality
corresponds to the case of resampling of \ (𝑖)

𝑘
.

A.4 Equivalence of using 𝑥𝑘 and 𝐼𝑘 as the state representation

Different sequences 𝐼𝑘 ’s can correspond to the same state 𝑥𝑘 . However, if two sequences 𝐼 (1)
𝑘

and
𝐼
(2)
𝑘

share the identical state 𝑥𝑘 , and 𝑥𝑘 carries sufficient information for subsequent experiments
along with \ and 𝑑𝑘 (i.e., the forward model is always 𝐺𝑘 (\, 𝑑𝑘 ; 𝑥𝑘,𝑝)), then the optimal designs
based on using 𝑥𝑘 and 𝐼𝑘 as the state representation would also be identical if it is unique, and they
should yield the same maximum expected tail utility. Consequently, employing either 𝑥𝑘 or 𝐼𝑘 for

151

𝑘 = 0, . . . , 𝑁 − 1 would result in identical policies and yield the same maximal expected utility.
This can be proven using backward induction. We start from the (𝑁 − 1)th stage, and assume

that we have a sequence 𝐼𝑁−1 which corresponds to state 𝑥𝑁−1, then the expected tail reward of
taking design 𝑑𝑁−1 is

𝑄𝑁−1(𝐼𝑁−1, 𝑑𝑁−1) = E𝑦𝑁−1 |𝐼𝑁−1,𝑑𝑁−1 [𝑔𝑁−1(𝑥𝑁−1, 𝑑𝑁−1, 𝑦𝑁−1) + 𝐷KL(𝑥𝑁 | |𝑥𝑁−1)]
= E\ |𝑥𝑁−1,𝑏E𝑦𝑁−1 |\,𝑑𝑁−1,𝑥𝑁−1, 𝑝 [𝑔𝑁−1(𝑥𝑁−1, 𝑑𝑁−1, 𝑦𝑁−1) + 𝐷KL(𝑥𝑁 | |𝑥𝑁−1)]
= E𝑦𝑁−1 |𝑥𝑁−1,𝑑𝑁−1 [𝑔𝑁−1(𝑥𝑁−1, 𝑑𝑁−1, 𝑦𝑁−1) + 𝐷KL(𝑥𝑁 | |𝑥𝑁−1)]
= 𝑄𝑁−1(𝑥𝑁−1, 𝑑𝑁−1),

where the second equality is due to (𝑦𝑁−1 |\, 𝑑𝑁−1, 𝑥𝑁−1,𝑝) = (𝑦𝑁−1 |\, 𝑑𝑁−1, 𝐼𝑁−1) and (\ |𝑥𝑁−1,𝑏) =
(\ |𝐼𝑁−1). Therefore, two sequences 𝐼 (1)

𝑁−1 and 𝐼
(2)
𝑁−1 with the same state 𝑥𝑁−1 share the same

maximal expected tail reward, and the same optimal design 𝑑∗
𝑁−1 if it is unique. In other words,

𝑉∗(𝐼𝑁−1) = 𝑉∗(𝑥𝑁−1). Then we go back to stage 𝑁 − 2, and assume that we have a sequence 𝐼𝑁−2

which corresponds to state 𝑥𝑁−2, the expected tail reward of taking design 𝑑𝑁−2 and then follow
optimal policy 𝜋𝐼 (note that 𝜋𝐼 is the optimal policy w.r.t. 𝐼) is

𝑄
𝜋𝐼
𝑁−2(𝐼𝑁−2, 𝑑𝑁−2) = E𝑦𝑁−2 |𝐼𝑁−2,𝑑𝑁−2

[
𝑔𝑁−2(𝑥𝑁−2, 𝑑𝑁−2, 𝑦𝑁−2) +𝑄𝜋𝐼

𝑁−1(𝐼𝑁−1, `𝐼 (𝐼𝑁−1))
]

= E𝑦𝑁−2 |𝑥𝑁−2,𝑑𝑁−2

[
𝑔𝑁−2(𝑥𝑁−2, 𝑑𝑁−2, 𝑦𝑁−2) +𝑉𝜋𝐼𝑁−1(𝐼𝑁−1)

]
= E𝑦𝑁−2 |𝑥𝑁−2,𝑑𝑁−2

[
𝑔𝑁−2(𝑥𝑁−2, 𝑑𝑁−2, 𝑦𝑁−2) +𝑉𝜋𝑥𝑁−1(𝑥𝑁−1)

]
= 𝑄

𝜋𝑥
𝑁−2(𝑥𝑁−2, 𝑑𝑁−2),

where the third equality is because𝑉∗(𝐼𝑁−1) = 𝑉∗(𝑥𝑁−1). Therefore, using 𝐼𝑁−2 and 𝑥𝑁−2 share the
same optimal design 𝑑∗

𝑁−2 if it is unique, and the maximal expected tail reward that can be reached
by following 𝜋𝐼 after 𝐼𝑁−1 (i.e., 𝑉𝜋𝐼

𝑁−1(𝐼𝑁−1)) is the same as the maximal expected tail reward that
can be reached by following 𝜋𝑥 after the corresponding 𝑥𝑁−1 (i.e., 𝑉𝜋𝑥

𝑁−1(𝑥𝑁−1)), where 𝜋𝑥 is the
optimal policy w.r.t. the state 𝑥.

Using the backward induction method, we can further show that if two sequences share the same
state, the optimal policy should also be the same if it is unique. Moreover, both sequences should
yield the same maximum expected tail reward. This implies that whether the policy function and
the value function are based on 𝐼𝑘 or 𝑥𝑘 does not affect the results.

152

A.5 Convergence of Q-network

Eqn. (2.21) is formed where each episode is generated by fixing the model parameter through-
out, as described in Sec. 2.2.2. Among all possible episodes, the probability that (𝑥𝑘 , 𝑑𝑘)
takes place is E\ |𝑥0,𝑏 [𝑝(𝑥𝑘 , 𝑑𝑘 |𝜋𝑤, \, 𝑥0)], and the probability that (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) takes place is
E\ |𝑥0,𝑏 [𝑝(𝑥𝑘 , 𝑑𝑘 |𝜋𝑤, \, 𝑥0)𝑝(𝑦𝑘 |\, 𝑥𝑘 , 𝑑𝑘)]. Thus, the probability that (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) takes place

conditioned on (𝑥𝑘 , 𝑑𝑘) is
E\ |𝑥0,𝑏 [𝑝(𝑥𝑘 ,𝑑𝑘 |𝜋𝑤 ,\,𝑥0)𝑝(𝑦𝑘 |\,𝑥𝑘 ,𝑑𝑘)]

E\ |𝑥0,𝑏 [𝑝(𝑥𝑘 ,𝑑𝑘 |𝜋𝑤 ,\,𝑥0)] , and each (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) contributes to
𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) +𝑄𝜋𝑤

𝑘+1(𝑥𝑘+1, 𝑑𝑘+1) as the target for the Q-network training at (𝑥𝑘 , 𝑑𝑘). As Eqn. (2.21)
employs the Mean Squared Error, in the limit of an infinite number of training episodes 𝑀 along
with the unlimited representation capabilities of the DNN architecture, the value of Q-network at
(𝑥𝑘 , 𝑑𝑘) converges to the expectation of the target over (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) conditioned on (𝑥𝑘 , 𝑑𝑘), which
is:

𝑄
𝜋𝑤
a (𝑘, 𝑥𝑘 , 𝑑𝑘) =

E\ |𝑥0,𝑏

[
𝑝(𝑥𝑘 , 𝑑𝑘 |𝜋𝑤, \, 𝑥0) E𝑦𝑘 |\,𝑥𝑘 ,𝑑𝑘

[
𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) +𝑄𝜋𝑤

𝑘+1(𝑥𝑘+1, 𝑑𝑘+1)
]]

E\ |𝑥0,𝑏 [𝑝(𝑥𝑘 , 𝑑𝑘 |𝜋𝑤, \, 𝑥0)]
(A.15)

=
E\ |𝑥0,𝑏

[
𝑝(𝑥𝑘 , 𝑑𝑘 |𝜋𝑤, \, 𝑥0) E𝑦𝑘 |\,𝑥𝑘 ,𝑑𝑘

[
𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) +𝑄𝜋𝑤

𝑘+1(𝑥𝑘+1, 𝑑𝑘+1)
]]

𝑝(𝑥𝑘 , 𝑑𝑘 |𝜋𝑤, 𝑥0)
= E\ |𝑥𝑘 ,𝑑𝑘 ,𝜋𝑤 ,𝑥0E𝑦𝑘 |\,𝑥𝑘 ,𝑑𝑘

[
𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) +𝑄𝜋𝑤

𝑘+1(𝑥𝑘+1, 𝑑𝑘+1)
]

= E\ |𝑥𝑘E𝑦𝑘 |\,𝑥𝑘 ,𝑑𝑘
[
𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) +𝑄𝜋𝑤

𝑘+1(𝑥𝑘+1, 𝑑𝑘+1)
]

= E𝑦𝑘 |𝑥𝑘 ,𝑑𝑘
[
𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) +𝑄𝜋𝑤

𝑘+1(𝑥𝑘+1, 𝑑𝑘+1)
]

(A.16)

where 𝑑𝑘+1 = `𝑘+1,𝑤𝑘+1 (𝑥𝑘+1). The third equality applies Bayes’ rule, and the fourth equality
follows because \ depends only on 𝑥𝑘 when 𝑥𝑘 is given. Eqn. (A.16) is identical to Eqn. (2.14),
therefore showing the Q-network converges to the true Q-function.

153

APPENDIX B

Appendix of variational sequential optimal
experimental design (vsOED)

B.1 Information gain jointly with model probability

Akin to the total entropy described in [17], the information gain (IG) jointly on the model probability
and model parameters of interest (PoIs) is:

𝐷KL
(
𝑝(𝑚, \𝑚 |𝐼𝑘2) | | 𝑝(𝑚, \𝑚 |𝐼𝑘1)

)
=

M∑︁
𝑚=1

∫
Θ

𝑝(𝑚, \𝑚 |𝐼𝑘2) ln
𝑝(𝑚, \𝑚 |𝐼𝑘2)
𝑝(𝑚, \𝑚 |𝐼𝑘1)

𝑑\𝑚

=

M∑︁
𝑚=1

𝑃(𝑚 |𝐼𝑘2)
∫
Θ

𝑝(\𝑚 |𝐼𝑘2) ln
𝑃(𝑚 |𝐼𝑘2) 𝑝(\𝑚 |𝐼𝑘2)
𝑃(𝑚 |𝐼𝑘1) 𝑝(\𝑚 |𝐼𝑘1)

𝑑\𝑚

=

M∑︁
𝑚=1

𝑃(𝑚 |𝐼𝑘2) ln
𝑃(𝑚 |𝐼𝑘2)
𝑃(𝑚 |𝐼𝑘1)

+
M∑︁
𝑚=1

𝑃(𝑚 |𝐼𝑘2)
∫
Θ

𝑝(\𝑚 |𝐼𝑘2) ln
𝑝(\𝑚 |𝐼𝑘2)
𝑝(\𝑚 |𝐼𝑘1)

𝑑\𝑚

= 𝐷KL
(
𝑃(𝑚 |𝐼𝑘2) | | 𝑃(𝑚 |𝐼𝑘1)

)
+ E𝑚 |𝐼𝑘2

[
𝐷KL

(
𝑝(\𝑚 |𝐼𝑘2) | | 𝑝(\𝑚 |𝐼𝑘1)

)]
,

where 0 ≤ 𝑘1 ≤ 𝑘2 ≤ 𝑁 . Note that we use the convention where when𝑚 is not explicitly mentioned,
conditioning on 𝑚 is implied through other variables’ subscripts, e.g., 𝑝(\𝑚 |𝐼𝑘) = 𝑝(\𝑚 |𝑚, 𝐼𝑘).
When setting 𝑘1 = 0 and 𝑘2 = 𝑁 , we recover the terminal reward in Eqn. (3.7) under the special
case of 𝛼M = 𝛼Θ = 1 and 𝛼𝑍 = 0.

154

Similarly, the IG jointly on the model probability and predictive quantities of interest (QoIs) is:

𝐷KL
(
𝑝(𝑚, 𝑧𝑚 |𝐼𝑘2) | | 𝑝(𝑚, 𝑧𝑚 |𝐼𝑘1)

)
=

M∑︁
𝑚=1

∫
𝑍

𝑝(𝑚, 𝑧𝑚 |𝐼𝑘2) ln
𝑝(𝑚, 𝑧𝑚 |𝐼𝑘2)
𝑝(𝑚, 𝑧𝑚 |𝐼𝑘1)

𝑑𝑧𝑚

=

M∑︁
𝑚=1

𝑃(𝑚 |𝐼𝑘2)
∫
𝑍

𝑝(𝑧𝑚 |𝐼𝑘2) ln
𝑃(𝑚 |𝐼𝑘2) 𝑝(𝑧𝑚 |𝐼𝑘2)
𝑃(𝑚 |𝐼𝑘1) 𝑝(𝑧𝑚 |𝐼𝑘1)

𝑑𝑧𝑚

=

M∑︁
𝑚=1

𝑃(𝑚 |𝐼𝑘2)
𝑃(𝑚 |𝐼𝑘2)
𝑃(𝑚 |𝐼𝑘1)

+
M∑︁
𝑚=1

𝑃(𝑚 |𝐼𝑘2)
∫
𝑍

𝑝(𝑧𝑚 |𝐼𝑘2) ln
𝑝(𝑧𝑚 |𝐼𝑘2)
𝑝(𝑧𝑚 |𝐼𝑘1)

𝑑𝑧𝑚

= 𝐷KL
(
𝑃(𝑚 |𝐼𝑘2) | | 𝑃(𝑚 |𝐼𝑘1)

)
+ E𝑚 |𝐼𝑘2

[
𝐷KL

(
𝑝(𝑧𝑚 |𝐼𝑘2) | | 𝑝(𝑧𝑚 |𝐼𝑘1)

)]
,

where 0 ≤ 𝑘1 ≤ 𝑘2 ≤ 𝑁 . When setting 𝑘1 = 0 and 𝑘2 = 𝑁 , we recover the terminal reward in
Eqn. (3.7) under the special case of 𝛼M = 𝛼𝑍 = 1 and 𝛼Θ = 0.

B.2 Information gain jointly on model parameters and predic-
tive quantities

When the nuisance parameters [𝑚 are absent, the IG jointly on the PoIs and QoIs given model 𝑚 is:

𝐷KL
(
𝑝(\𝑚, 𝑧𝑚 |𝐼𝑘2) | | 𝑝(\𝑚, 𝑧𝑚 |𝐼𝑘1)

)
=

∫
Θ,𝑍

𝑝(\𝑚, 𝑧𝑚 |𝐼𝑘2) ln
𝑝(\𝑚, 𝑧𝑚 |𝐼𝑘2)
𝑝(\𝑚, 𝑧𝑚 |𝐼𝑘1)

𝑑𝑧𝑚 𝑑\𝑚

=

∫
Θ,𝑍

𝑝(\𝑚, 𝑧𝑚 |𝐼𝑘2) ln
𝑝(\𝑚 |𝐼𝑘2) 𝑝(𝑧𝑚 |\𝑚, 𝐼𝑘2)
𝑝(\𝑚 |𝐼𝑘1) 𝑝(𝑧𝑚 |\𝑚, 𝐼𝑘1)

𝑑𝑧𝑚 𝑑\𝑚

=

∫
Θ,𝑍

𝑝(\𝑚, 𝑧𝑚 |𝐼𝑘2) ln
𝑝(\𝑚 |𝐼𝑘2) 𝑝(𝑧𝑚 |\𝑚)
𝑝(\𝑚 |𝐼𝑘1) 𝑝(𝑧𝑚 |\𝑚)

𝑑𝑧𝑚 𝑑\𝑚

=

∫
Θ,𝑍

𝑝(\𝑚, 𝑧𝑚 |𝐼𝑘2) ln
𝑝(\𝑚 |𝐼𝑘2)
𝑝(\𝑚 |𝐼𝑘1)

𝑑𝑧𝑚 𝑑\𝑚

=

∫
Θ

𝑝(\𝑚 |𝐼𝑘2) ln
𝑝(\𝑚 |𝐼𝑘2)
𝑝(\𝑚 |𝐼𝑘1)

𝑑\𝑚

= 𝐷KL
(
𝑝(\𝑚 |𝐼𝑘2) | | 𝑝(\𝑚 |𝐼𝑘1)

)
,

where the third equality is due to 𝑧𝑚 only dependent on \𝑚 when [𝑚 is absent (see Eqn. (3.4)).
Hence, the IG on the QoIs is fully absorbed into the IG on the PoIs when nuisance parameters are
absent.

155

B.3 Proof of Theorem 3 (terminal-incremental equivalence)

Proof. We first decompose𝑈𝑇 (𝜋) into four additive parts:

𝑈𝑇 (𝜋) = 𝑈𝑇 (𝜋; non-IG) +𝑈𝑇 (𝜋;𝛼M) +𝑈𝑇 (𝜋;𝛼Θ) +𝑈𝑇 (𝜋;𝛼𝑍),

where𝑈𝑇 (𝜋; non-IG) captures any non-IG reward contributions, and the other three parts are (while
explicitly writing out 𝐼0)

𝑈𝑇 (𝜋;𝛼M) = 𝛼ME𝐼𝑁 |𝜋,𝐼0 [𝐷KL (𝑃(𝑚 |𝐼𝑁) | | 𝑃(𝑚 |𝐼0))]
𝑈𝑇 (𝜋;𝛼Θ) = 𝛼ΘE𝐼𝑁 |𝜋,𝐼0E𝑚 |𝐼𝑁 [𝐷KL (𝑝(\𝑚 |𝐼𝑁) | | 𝑝(\𝑚 |𝐼0))]
𝑈𝑇 (𝜋;𝛼𝑍) = 𝛼𝑍E𝐼𝑁 |𝜋,𝐼0E𝑚 |𝐼𝑁 [𝐷KL (𝑝(𝑧𝑚 |𝐼𝑁) | | 𝑝(𝑧𝑚 |𝐼0))] .

Similarly,𝑈𝐼 (𝜋) can also be decomposed into four additive parts:

𝑈𝐼 (𝜋) = 𝑈𝐼 (𝜋; non-IG) +𝑈𝐼 (𝜋;𝛼M) +𝑈𝐼 (𝜋;𝛼Θ) +𝑈𝐼 (𝜋;𝛼𝑍),

where𝑈𝐼 (𝜋; non-IG) captures any non-IG reward contributions, and the other three parts are (while
explicitly writing out 𝐼0)

𝑈𝐼 (𝜋;𝛼M) = 𝛼ME𝐼𝑁 |𝜋,𝐼0

[
𝑁−1∑︁
𝑘=0

𝐷KL (𝑃(𝑚 |𝐼𝑘+1) | | 𝑃(𝑚 |𝐼𝑘))
]

𝑈𝐼 (𝜋;𝛼Θ) = 𝛼ΘE𝐼𝑁 |𝜋,𝐼0

𝑁−1∑︁
𝑘=0
E𝑚 |𝐼𝑘+1 [𝐷KL (𝑝(\𝑚 |𝐼𝑘+1) | | 𝑝(\𝑚 |𝐼𝑘))]

𝑈𝐼 (𝜋;𝛼𝑍) = 𝛼𝑍E𝐼𝑁 |𝜋,𝐼0

𝑁−1∑︁
𝑘=0
E𝑚 |𝐼𝑘+1 [𝐷KL (𝑝(𝑧𝑚 |𝐼𝑘+1) | | 𝑝(𝑧𝑚 |𝐼𝑘))] .

Since TIG and IIG formulations only entail the IG contributions, the non-IG reward contributions
are therefore not affected by this choice and hence

𝑈𝑇 (𝜋; non-IG) = 𝑈𝐼 (𝜋; non-IG).

156

For the part corresponding to IG on model probability:

𝑈𝐼 (𝜋;𝛼M) −𝑈𝑇 (𝜋;𝛼M)

= 𝛼ME𝐼𝑁 |𝜋,𝐼0

[
𝑁−1∑︁
𝑘=0

𝐷KL (𝑃(𝑚 |𝐼𝑘+1) | | 𝑃(𝑚 |𝐼𝑘)) − 𝐷KL (𝑃(𝑚 |𝐼𝑁) | | 𝑃(𝑚 |𝐼0))
]

= 𝛼ME𝐼𝑁 |𝜋,𝐼0

[
𝑁−1∑︁
𝑘=0

M∑︁
𝑚=1

𝑃(𝑚 |𝐼𝑘+1) ln
𝑃(𝑚 |𝐼𝑘+1)
𝑃(𝑚 |𝐼𝑘)

−
M∑︁
𝑚=1

𝑃(𝑚 |𝐼𝑁) ln
𝑃(𝑚 |𝐼𝑁)
𝑃(𝑚 |𝐼0)

]
= 𝛼M

M∑︁
𝑚=1
E𝐼𝑁 |𝜋,𝐼0

[
𝑁−1∑︁
𝑘=0

𝑃(𝑚 |𝐼𝑘+1) ln
𝑃(𝑚 |𝐼𝑘+1)
𝑃(𝑚 |𝐼𝑘)

− 𝑃(𝑚 |𝐼𝑁) ln
𝑃(𝑚 |𝐼𝑁)
𝑃(𝑚 |𝐼0)

]
= 𝛼M

M∑︁
𝑚=1
E𝐼𝑁 |𝜋,𝐼0

[
𝑁−2∑︁
𝑘=0

𝑃(𝑚 |𝐼𝑘+1) ln
𝑃(𝑚 |𝐼𝑘+1)
𝑃(𝑚 |𝐼𝑘)

+ 𝑃(𝑚 |𝐼𝑁) ln
𝑃(𝑚 |𝐼𝑁)
𝑃(𝑚 |𝐼𝑁−1)

− 𝑃(𝑚 |𝐼𝑁) ln
𝑃(𝑚 |𝐼𝑁)
𝑃(𝑚 |𝐼0)

]
= 𝛼M

M∑︁
𝑚=1
E𝐼𝑁 |𝜋,𝐼0

[
𝑁−2∑︁
𝑘=0

𝑃(𝑚 |𝐼𝑘+1) ln
𝑃(𝑚 |𝐼𝑘+1)
𝑃(𝑚 |𝐼𝑘)

− 𝑃(𝑚 |𝐼𝑁) ln
𝑃(𝑚 |𝐼𝑁−1)
𝑃(𝑚 |𝐼0)

]
= 𝛼M

M∑︁
𝑚=1
E𝐼𝑁−1 |𝜋,𝐼0

[
𝑁−2∑︁
𝑘=0

𝑃(𝑚 |𝐼𝑘+1) ln
𝑃(𝑚 |𝐼𝑘+1)
𝑃(𝑚 |𝐼𝑘)

− E𝐼𝑁 |𝜋,𝐼𝑁−1𝑃(𝑚 |𝐼𝑁) ln
𝑃(𝑚 |𝐼𝑁−1)
𝑃(𝑚 |𝐼0)

]
= 𝛼M

M∑︁
𝑚=1
E𝐼𝑁−1 |𝜋,𝐼0

[
𝑁−2∑︁
𝑘=0

𝑃(𝑚 |𝐼𝑘+1) ln
𝑃(𝑚 |𝐼𝑘+1)
𝑃(𝑚 |𝐼𝑘)

− 𝑃(𝑚 |𝐼𝑁−1) ln
𝑃(𝑚 |𝐼𝑁−1)
𝑃(𝑚 |𝐼0)

]
...

= 𝛼M

M∑︁
𝑚=1
E𝐼1 |𝜋,𝐼0

[0∑︁
𝑘=0

𝑃(𝑚 |𝐼𝑘+1) ln
𝑃(𝑚 |𝐼𝑘+1)
𝑃(𝑚 |𝐼𝑘)

− 𝑃(𝑚 |𝐼1) ln
𝑃(𝑚 |𝐼1)
𝑃(𝑚 |𝐼0)

]
= 0,

where the seventh equality is due to

E𝐼𝑁 |𝜋,𝐼𝑁−1𝑃(𝑚 |𝐼𝑁) ln
𝑃(𝑚 |𝐼𝑁−1)
𝑃(𝑚 |𝐼0)

=

∫
Y
𝑝(𝑦𝑁−1 |𝜋, 𝐼𝑁−1)𝑃(𝑚 |𝐼𝑁) ln

𝑃(𝑚 |𝐼𝑁−1)
𝑃(𝑚 |𝐼0)

𝑑𝑦𝑁−1

=

∫
Y
𝑝(𝑦𝑁−1, 𝑚 |𝜋, 𝐼𝑁−1) ln

𝑃(𝑚 |𝐼𝑁−1)
𝑃(𝑚 |𝐼0)

𝑑𝑦𝑁−1

= 𝑃(𝑚 |𝐼𝑁−1) ln
𝑃(𝑚 |𝐼𝑁−1)
𝑃(𝑚 |𝐼0)

with 𝑃(𝑚 |𝐼𝑁) = 𝑃(𝑚 |𝐼𝑁−1, 𝜋, 𝑦𝑁−1) since the policy is deterministic, and the eighth equality results
from repeatedly applying the steps between the third and seventh equalities until 𝑁 = 1.

157

For the part corresponding to IG on the PoIs:

𝑈𝐼 (𝜋;𝛼Θ) −𝑈𝑇 (𝜋;𝛼Θ)

= 𝛼ΘE𝐼𝑁 |𝜋,𝐼0

[
𝑁−1∑︁
𝑘=0
E𝑚 |𝐼𝑘+1𝐷KL (𝑝(\𝑚 |𝐼𝑘+1) | | 𝑝(\𝑚 |𝐼𝑘)) − E𝑚 |𝐼𝑁𝐷KL (𝑝(\𝑚 |𝐼𝑁) | | 𝑝(\𝑚 |𝐼0))

]
= 𝛼Θ

M∑︁
𝑚=1
E𝐼𝑁 |𝜋,𝐼0

[
𝑁−1∑︁
𝑘=0

𝑃(𝑚 |𝐼𝑘+1)𝐷KL (𝑝(\𝑚 |𝐼𝑘+1) | | 𝑝(\𝑚 |𝐼𝑘))

− 𝑃(𝑚 |𝐼𝑁)𝐷KL (𝑝(\𝑚 |𝐼𝑁) | | 𝑝(\𝑚 |𝐼0))
]

= 𝛼Θ

M∑︁
𝑚=1
E𝐼𝑁 |𝜋,𝐼0

[
𝑁−2∑︁
𝑘=0

𝑃(𝑚 |𝐼𝑘+1)𝐷KL (𝑝(\𝑚 |𝐼𝑘+1) | | 𝑝(\𝑚 |𝐼𝑘))

+ 𝑃(𝑚 |𝐼𝑁)𝐷KL (𝑝(\𝑚 |𝐼𝑁) | | 𝑝(\𝑚 |𝐼𝑁−1))

− 𝑃(𝑚 |𝐼𝑁)𝐷KL (𝑝(\𝑚 |𝐼𝑁) | | 𝑝(\𝑚 |𝐼0))
]

= 𝛼Θ

M∑︁
𝑚=1
E𝐼𝑁 |𝜋,𝐼0

[
𝑁−2∑︁
𝑘=0

𝑃(𝑚 |𝐼𝑘+1)𝐷KL (𝑝(\𝑚 |𝐼𝑘+1) | | 𝑝(\𝑚 |𝐼𝑘))

+ 𝑃(𝑚 |𝐼𝑁)
∫
Θ

𝑝(\𝑚 |𝐼𝑁) ln
𝑝(\𝑚 |𝐼0)
𝑝(\𝑚 |𝐼𝑁−1)

𝑑\𝑚

]
= 𝛼Θ

M∑︁
𝑚=1
E𝐼𝑁−1 |𝜋,𝐼0

[
𝑁−2∑︁
𝑘=0

𝑃(𝑚 |𝐼𝑘+1)𝐷KL (𝑝(\𝑚 |𝐼𝑘+1) | | 𝑝(\𝑚 |𝐼𝑘))

+ E𝐼𝑁 |𝜋,𝐼𝑁−1𝑃(𝑚 |𝐼𝑁)
∫
Θ

𝑝(\𝑚 |𝐼𝑁) ln
𝑝(\𝑚 |𝐼0)
𝑝(\𝑚 |𝐼𝑁−1)

𝑑\𝑚

]
= 𝛼Θ

M∑︁
𝑚=1
E𝐼𝑁−1 |𝜋,𝐼0

[
𝑁−2∑︁
𝑘=0

𝑃(𝑚 |𝐼𝑘+1)𝐷KL (𝑝(\𝑚 |𝐼𝑘+1) | | 𝑝(\𝑚 |𝐼𝑘))

− 𝑃(𝑚 |𝐼𝑁−1)𝐷KL (𝑝(\𝑚 |𝐼𝑁−1) | | 𝑝(\𝑚 |𝐼0))
]

...

= 𝛼Θ

M∑︁
𝑚=1
E𝐼1 |𝜋,𝐼0

[0∑︁
𝑘=0

𝑃(𝑚 |𝐼𝑘+1)𝐷KL (𝑝(\𝑚 |𝐼𝑘+1) | | 𝑝(\𝑚 |𝐼𝑘))

− 𝑃(𝑚 |𝐼1)𝐷KL (𝑝(\𝑚 |𝐼1) | | 𝑝(\𝑚 |𝐼0))
]

= 0,

158

where the fourth equality is due to

𝑃(𝑚 |𝐼𝑁)𝐷KL (𝑝(\𝑚 |𝐼𝑁) | | 𝑝(\𝑚 |𝐼𝑁−1)) − 𝑃(𝑚 |𝐼𝑁)𝐷KL (𝑝(\𝑚 |𝐼𝑁) | | 𝑝(\𝑚 |𝐼0))

= 𝑃(𝑚 |𝐼𝑁)
∫
Θ

𝑝(\𝑚 |𝐼𝑁)
[
ln

𝑝(\𝑚 |𝐼𝑁)
𝑝(\𝑚 |𝐼𝑁−1)

− ln
𝑝(\𝑚 |𝐼𝑁)
𝑝(\𝑚 |𝐼0)

]
𝑑\𝑚

= 𝑃(𝑚 |𝐼𝑁)
∫
Θ

𝑝(\𝑚 |𝐼𝑁) ln
𝑝(\𝑚 |𝐼0)
𝑝(\𝑚 |𝐼𝑁−1)

𝑑\𝑚,

and the sixth equality is due to

E𝐼𝑁 |𝜋,𝐼𝑁−1𝑃(𝑚 |𝐼𝑁)
∫
Θ

𝑝(\𝑚 |𝐼𝑁) ln
𝑝(\𝑚 |𝐼0)
𝑝(\𝑚 |𝐼𝑁−1)

𝑑\𝑚

=

∫
Y
𝑃(𝑦𝑁−1 |𝜋, 𝐼𝑁−1)𝑃(𝑚 |𝐼𝑁)

∫
Θ

𝑝(\𝑚 |𝐼𝑁) ln
𝑝(\𝑚 |𝐼0)
𝑝(\𝑚 |𝐼𝑁−1)

𝑑\𝑚 𝑑𝑦𝑁−1

=

∫
Y

∫
Θ

𝑃(𝑦𝑁−1, 𝑚, \𝑚 |𝜋, 𝐼𝑁−1) ln
𝑝(\𝑚 |𝐼0)
𝑝(\𝑚 |𝐼𝑁−1)

𝑑\𝑚 𝑑𝑦𝑁−1

= 𝑃(𝑚 |𝐼𝑁−1)
∫
Θ

𝑃(\𝑚 |𝐼𝑁−1) ln
𝑝(\𝑚 |𝐼0)
𝑝(\𝑚 |𝐼𝑁−1)

𝑑\𝑚 𝑑𝑦𝑁−1

= −𝑃(𝑚 |𝐼𝑁−1)𝐷KL (𝑝(\𝑚 |𝐼𝑁−1) | | 𝑝(\𝑚 |𝐼0)) ,

and the seventh equality results from repeatedly applying the steps between the second and sixth
equalities until 𝑁 = 1.

For the part corresponding to IG on the QoIs, the derivation is identical as above for the PoIs
except replacing \𝑚 with 𝑧𝑚, to arrive at

𝑈𝐼 (𝜋;𝛼𝑍) −𝑈𝑇 (𝜋;𝛼𝑍) = 0.

Combining the equivalence results from the four parts, we obtain

𝑈𝐼 (𝜋) = 𝑈𝑇 (𝜋)

for any policy 𝜋.

159

B.4 Proof of Theorem 4 (one-point-estimate equivalence)

Proof. We begin by proving the equivalence of expected utility under the TIG and one-point-TIG:

𝑈𝑇 (𝜋) = E𝐼𝑁 |𝜋,𝐼0

[
𝑁−1∑︁
𝑘=0

𝑔𝑘 (𝐼𝑘 , 𝑑𝑘 , 𝑦𝑘) + 𝑔𝑁 (𝐼𝑁)
]

= E𝐼𝑁 |𝜋,𝐼0

[
𝛼M𝐷KL (𝑃(𝑚 |𝐼𝑁) | | 𝑃(𝑚))

+ E𝑚 |𝐼𝑁 [𝛼Θ𝐷KL (𝑝(\𝑚 |𝐼𝑁) | | 𝑝(\𝑚)) + 𝛼𝑍𝐷KL (𝑝(𝑧𝑚 |𝐼𝑁) | | 𝑝(𝑧𝑚))]
]

= E𝐼𝑁 |𝜋,𝐼0

[
𝛼ME𝑚 |𝐼𝑁 ln

𝑃(𝑚 |𝐼𝑁)
𝑃(𝑚)

+ E𝑚 |𝐼𝑁

[
𝛼ΘE\𝑚 |𝐼𝑁 ln

𝑝(\𝑚 |𝐼𝑁)
𝑝(\𝑚)

+ 𝛼𝑍E𝑧𝑚 |𝐼𝑁 ln
𝑝(𝑧𝑚 |𝐼𝑁)
𝑝(𝑧𝑚)

]]
= E𝑚,𝐼𝑁 |𝜋,𝐼0

[
𝛼M ln

𝑃(𝑚 |𝐼𝑁)
𝑃(𝑚)

+ 𝛼ΘE\𝑚 |𝐼𝑁 ln
𝑝(\𝑚 |𝐼𝑁)
𝑝(\𝑚)

+ 𝛼𝑍E𝑧𝑚 |𝐼𝑁 ln
𝑝(𝑧𝑚 |𝐼𝑁)
𝑝(𝑧𝑚)

]
= E𝑚,𝐼𝑁 |𝜋,𝐼0

[
𝛼ME\𝑚,𝑧𝑚 |𝐼𝑁 ln

𝑃(𝑚 |𝐼𝑁)
𝑃(𝑚)

+ 𝛼ΘE\𝑚,𝑧𝑚 |𝐼𝑁 ln
𝑝(\𝑚 |𝐼𝑁)
𝑝(\𝑚)

+ 𝛼𝑍E\𝑚,𝑧𝑚 |𝐼𝑁 ln
𝑝(𝑧𝑚 |𝐼𝑁)
𝑝(𝑧𝑚)

]
= E𝑚,\𝑚,𝑧𝑚,𝐼𝑁 |𝜋,𝐼0

[
𝛼M ln

𝑃(𝑚 |𝐼𝑁)
𝑃(𝑚) + 𝛼Θ ln

𝑝(\𝑚 |𝐼𝑁)
𝑝(\𝑚)

+ 𝛼𝑍 ln
𝑝(𝑧𝑚 |𝐼𝑁)
𝑝(𝑧𝑚)

]
= E𝑚,\𝑚,[𝑚,𝑧𝑚,𝐼𝑁 |𝜋,𝐼0

[
𝛼M ln

𝑃(𝑚 |𝐼𝑁)
𝑃(𝑚) + 𝛼Θ ln

𝑝(\𝑚 |𝐼𝑁)
𝑝(\𝑚)

+ 𝛼𝑍 ln
𝑝(𝑧𝑚 |𝐼𝑁)
𝑝(𝑧𝑚)

]
= E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚E𝐼𝑁 |𝜋,𝐼0, ¤𝑚, ¤\𝑚, ¤[𝑚

[
𝛼M ln

𝑃(¤𝑚 |𝐼𝑁)
𝑃(¤𝑚) + 𝛼Θ ln

𝑝(¤\𝑚 |𝐼𝑁)
𝑝(¤\𝑚)

+ 𝛼𝑍 ln
𝑝(¤𝑧𝑚 |𝐼𝑁)
𝑝(¤𝑧𝑚)

]
= ¤𝑈𝑇 (𝜋).

Next, we have already established the equivalence𝑈𝑇 (𝜋) = 𝑈𝐼 (𝜋) in Appendix B.3. Finally, we

160

show the equivalence between ¤𝑈𝐼 (𝜋) and ¤𝑈𝑇 (𝜋) by cancelling out all intermediate posteriors:

¤𝑈𝐼 (𝜋)

= E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚E𝐼𝑁 |𝜋,𝐼0, ¤𝑚, ¤\𝑚, ¤[𝑚

𝑁−1∑︁
𝑘=0

[
𝛼M ln

𝑃(¤𝑚 |𝐼𝑘+1)
𝑃(¤𝑚 |𝐼𝑘)

+ 𝛼Θ ln
𝑝(¤\𝑚 |𝐼𝑘+1)
𝑝(¤\𝑚 |𝐼𝑘)

+ 𝛼𝑍 ln
𝑝(¤𝑧𝑚 |𝐼𝑘+1)
𝑝(¤𝑧𝑚 |𝐼𝑘)

]
(B.1)

= E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚E𝐼𝑁 |𝜋,𝐼0, ¤𝑚, ¤\𝑚, ¤[𝑚

[
𝛼M ln

𝑃(¤𝑚 |𝐼𝑁)
𝑃(¤𝑚) + 𝛼Θ ln

𝑝(¤\𝑚 |𝐼𝑁)
𝑝(¤\𝑚)

+ 𝛼𝑍 ln
𝑝(¤𝑧𝑚 |𝐼𝑁)
𝑝(¤𝑧𝑚)

]
(B.2)

= ¤𝑈𝑇 (𝜋).

Combining the above equivalence results together, we have

𝑈𝑇 (𝜋) = ¤𝑈𝑇 (𝜋) = ¤𝑈𝐼 (𝜋) = 𝑈𝐼 (𝜋)

for any policy 𝜋.

B.5 Omitting prior terms

The difference between the expected utilities under the one-point IG estimate formulations that
omit and include the prior term is:

𝛿 ¤𝑈 (𝜋)
= E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚E𝐼𝑁 |𝜋,𝐼0, ¤𝑚, ¤\𝑚, ¤[𝑚

[
𝛼M ln 𝑃(¤𝑚) + 𝛼Θ ln 𝑝(¤\𝑚) + 𝛼𝑍 ln 𝑝(¤𝑧𝑚)

]
= E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚

[
𝛼M ln 𝑃(¤𝑚) + 𝛼Θ ln 𝑝(¤\𝑚) + 𝛼𝑍 ln 𝑝(¤𝑧𝑚)

]
,

which is constant with respect to the policy 𝜋. Therefore, whether including or omitting the prior
terms will not affect the optimal policy (i.e. the arg-max to the expected utilities). The same
conclusion can be drawn for the expected utilities under the full IG formulations.

B.6 Proof of Theorem 5 (variational lower bound)

Proof. Appendix B.7 shows that the expected utilities using the variational-one-point-TIG and
variational-one-point-IIG are equivalent. Thus, below we prove the lower bound under the
variational-one-point-TIG, and the same result carries over to the variational-one-point-IIG due
to their equivalence.

161

The difference between the expected utility and the variational expected utility is

¤𝑈 (𝜋) − ¤𝑈 (𝜋; 𝜙)

= E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚E𝐼𝑁 |𝜋,𝐼0, ¤𝑚, ¤\𝑚, ¤[𝑚

[
𝛼M ln

𝑃(¤𝑚 |𝐼𝑁)
𝑞(¤𝑚 |𝐼𝑁 ; 𝜙M) + 𝛼Θ ln

𝑝(¤\𝑚 |𝐼𝑁)
𝑞(¤\𝑚 |𝐼𝑁 ; 𝜙Θ𝑚

)

+ 𝛼𝑍 ln
𝑝(¤𝑧𝑚 |𝐼𝑁)

𝑞(¤𝑧𝑚 |𝐼𝑁 ; 𝜙𝑍𝑚)

]
= 𝛼ME ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚,𝐼𝑁 |𝜋,𝐼0

[
ln

𝑃(¤𝑚 |𝐼𝑁)
𝑞(¤𝑚 |𝐼𝑁 ; 𝜙M)

]
+ 𝛼ΘE ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚,𝐼𝑁 |𝜋,𝐼0

[
ln

𝑝(¤\𝑚 |𝐼𝑁)
𝑞(¤\𝑚 |𝐼𝑁 ; 𝜙Θ𝑚

)

]
+ 𝛼𝑍E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚,𝐼𝑁 |𝜋,𝐼0

[
ln

𝑝(¤𝑧𝑚 |𝐼𝑁)
𝑞(¤𝑧𝑚 |𝐼𝑁 ; 𝜙𝑍𝑚)

]
= 𝛼ME ¤𝑚,𝐼𝑁 |𝜋,𝐼0

[
ln

𝑃(¤𝑚 |𝐼𝑁)
𝑞(¤𝑚 |𝐼𝑁 ; 𝜙M)

]
+ 𝛼ΘE ¤𝑚, ¤\𝑚,𝐼𝑁 |𝜋,𝐼0

[
ln

𝑝(¤\𝑚 |𝐼𝑁)
𝑞(¤\𝑚 |𝐼𝑁 ; 𝜙Θ𝑚

)

]
+ 𝛼𝑍E ¤𝑚, ¤𝑧𝑚,𝐼𝑁 |𝜋,𝐼0

[
ln

𝑝(¤𝑧𝑚 |𝐼𝑁)
𝑞(¤𝑧𝑚 |𝐼𝑁 ; 𝜙𝑍𝑚)

]
= 𝛼ME𝐼𝑁 |𝜋,𝐼0E ¤𝑚 |𝐼𝑁

[
ln

𝑃(¤𝑚 |𝐼𝑁)
𝑞(¤𝑚 |𝐼𝑁 ; 𝜙M)

]
+ 𝛼ΘE ¤𝑚,𝐼𝑁 |𝜋,𝐼0E ¤\𝑚 | ¤𝑚,𝐼𝑁

[
ln

𝑝(¤\𝑚 |𝐼𝑁)
𝑞(¤\𝑚 |𝐼𝑁 ; 𝜙Θ𝑚

)

]
+ 𝛼𝑍E ¤𝑚,𝐼𝑁 |𝜋,𝐼0E ¤𝑧𝑚 | ¤𝑚,𝐼𝑁

[
ln

𝑝(¤𝑧𝑚 |𝐼𝑁)
𝑞(¤𝑧𝑚 |𝐼𝑁 ; 𝜙𝑍𝑚)

]
= 𝛼ME𝐼𝑁 |𝜋,𝐼0

[
𝐷KL (𝑃(¤𝑚 |𝐼𝑁) | | 𝑞(¤𝑚 |𝐼𝑁 ; 𝜙M))

]
+ 𝛼ΘE ¤𝑚,𝐼𝑁 |𝜋,𝐼0

[
𝐷KL

(
𝑝(¤\𝑚 |𝐼𝑁) | | 𝑞(¤\𝑚 |𝐼𝑁 ; 𝜙Θ𝑚

)
)]

+ 𝛼𝑍E ¤𝑚,𝐼𝑁 |𝜋,𝐼0

[
𝐷KL

(
𝑝(¤𝑧𝑚 |𝐼𝑁) | | 𝑞(¤𝑧𝑚 |𝐼𝑁 ; 𝜙𝑍𝑚)

)]
≥ 0

162

where 𝛼M ≥ 0, 𝛼Θ ≥ 0, 𝛼𝑍 ≥ 0. The sixth equality is due to 𝑝(¤\𝑚 |𝐼𝑁) being equivalent
to 𝑝(¤\𝑚 | ¤𝑚, 𝐼𝑁) and 𝑝(¤𝑧𝑚 |𝐼𝑁) being equivalent to 𝑝(¤𝑧𝑚 | ¤𝑚, 𝐼𝑁), due to the notation convention
adopted in this paper. The bound is tight if and only if 𝑞(·|𝐼𝑁 ; 𝜙(·)) = 𝑝(·|𝐼𝑁) (except the trivial
case when 𝛼M = 𝛼Θ = 𝛼𝑍 = 0).

B.7 Cancellation of intermediate posteriors

Similar to Eqn. (B.1) and Eqn. (B.2), all intermediate variational posteriors 𝑞(·|𝐼𝑘 ; 𝜙(·)) for 𝑘 =

1, . . . , 𝑁 − 1 cancel out:

¤𝑈𝐼 (𝜋; 𝜙)

= E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚E𝐼𝑁 |𝜋,𝐼0, ¤𝑚, ¤\𝑚, ¤[𝑚

𝑁−1∑︁
𝑘=0

[
𝛼M ln

𝑞(¤𝑚 |𝐼𝑘+1; 𝜙M)
𝑞(¤𝑚 |𝐼𝑘 ; 𝜙M)

+ 𝛼Θ ln
𝑞(¤\𝑚 |𝐼𝑘+1; 𝜙Θ𝑚

)
𝑞(¤\𝑚 |𝐼𝑘 ; 𝜙Θ𝑚

)
+ 𝛼𝑍 ln

𝑞(¤𝑧𝑚 |𝐼𝑘+1; 𝜙𝑍𝑚)
𝑞(¤𝑧𝑚 |𝐼𝑘 ; 𝜙𝑍𝑚)

]
= E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚E𝐼𝑁 |𝜋,𝐼0, ¤𝑚, ¤\𝑚, ¤[𝑚

[
𝛼M

(
ln
𝑞(¤𝑚 |𝐼1; 𝜙M)

𝑃(¤𝑚) + ln
𝑞(¤𝑚 |𝐼2; 𝜙M)
𝑞(¤𝑚 |𝐼1; 𝜙M) + · · · + ln

𝑞(¤𝑚 |𝐼𝑁 ; 𝜙M)
𝑞(¤𝑚 |𝐼𝑁−1; 𝜙M)

)
+ 𝛼Θ

(
ln
𝑞(¤\𝑚 |𝐼1; 𝜙Θ𝑚

)
𝑝(¤\𝑚)

+ ln
𝑞(¤\𝑚 |𝐼2; 𝜙Θ𝑚

)
𝑞(¤\𝑚 |𝐼1; 𝜙Θ𝑚

)
+ · · · + ln

𝑞(¤\𝑚 |𝐼𝑁 ; 𝜙Θ𝑚
)

𝑞(¤\𝑚 |𝐼𝑁−1; 𝜙Θ𝑚
)

)
+ 𝛼𝑍

(
ln
𝑞(¤𝑧𝑚 |𝐼1; 𝜙𝑍𝑚)

𝑝(¤𝑧𝑚)
+ ln

𝑞(¤𝑧𝑚 |𝐼2; 𝜙𝑍𝑚)
𝑞(¤𝑧𝑚 |𝐼1; 𝜙𝑍𝑚)

+ · · · + ln
𝑞(¤𝑧𝑚 |𝐼𝑁 ; 𝜙𝑍𝑚)
𝑞(¤𝑧𝑚 |𝐼𝑁−1; 𝜙𝑍𝑚)

)]
= E ¤𝑚, ¤\𝑚, ¤[𝑚, ¤𝑧𝑚E𝐼𝑁 |𝜋,𝐼0, ¤𝑚, ¤\𝑚, ¤[𝑚

[
𝛼M ln

𝑞(¤𝑚 |𝐼𝑁 ; 𝜙M)
𝑃(¤𝑚)

+ 𝛼Θ ln
𝑞(¤\𝑚 |𝐼𝑁 ; 𝜙Θ𝑚

)
𝑝(¤\𝑚)

+ 𝛼𝑍 ln
𝑞(¤𝑧𝑚 |𝐼𝑁 ; 𝜙𝑍𝑚)

𝑝(¤𝑧𝑚)

]
= ¤𝑈𝑇 (𝜋; 𝜙).

Therefore, only the prior and the final variational posterior terms contribute to the variational
expected utility. Since the prior PDF is either known or omitted, the accuracy of the variational
expected utility only depends on the quality of the final variational posterior approximation.

163

APPENDIX C

Appendix of robust optimal experimental design
(rOED)

In this appendix, all the expectations and variances are conditioned on the design 𝑑. However, we
will omit this conditioning for simplicity with the understanding that it is always implied.

C.1 Variance and bias of �̂�𝑁,𝑀1 (𝑑)2

The variance of �̂�𝑁,𝑀1 (𝑑) can be estimated using Taylor expansions for the moments of functions
of random variables:

V
[
�̂�𝑁,𝑀1 (𝑑)2] ≈ {

2E
[
�̂�𝑁,𝑀1 (𝑑)

]}2
V

[
�̂�𝑁,𝑀1 (𝑑)

]
≈ 4

[
𝑈 (𝑑) + 𝐸1(𝑑)

𝑀1

]2 [
𝐴1(𝑑)
𝑁

+ 𝐵1(𝑑)
𝑁𝑀1

]
≈ 𝐴2(𝑑)

𝑁
+ 𝐵2(𝑑)
𝑁𝑀1

.

The bias of �̂�𝑁,𝑀1 (𝑑) is

E
[
�̂�𝑁,𝑀1 (𝑑)2 −𝑈 (𝑑)2] = E [

(�̂�𝑁,𝑀1 (𝑑) −𝑈 (𝑑))2 − 2𝑈 (𝑑)2 + 2�̂�𝑁,𝑀1 (𝑑)𝑈 (𝑑)
]

= V
[
�̂�𝑁,𝑀1 (𝑑)

]
− 2𝑈 (𝑑)2 + 2𝑈 (𝑑)E

[
�̂�𝑁,𝑀1 (𝑑)

]
≈ 𝐴1(𝑑)

𝑁
+ 𝐵1(𝑑)
𝑁𝑀1

+ 2𝑈 (𝑑)E
[
�̂�𝑁,𝑀1 (𝑑) −𝑈 (𝑑)

]
≈ 𝐴1(𝑑)

𝑁
+ 𝐵1(𝑑)
𝑁𝑀1

+ 2𝑈 (𝑑)𝐸1(𝑑)
𝑀1

≈ 𝐷2(𝑑)
𝑁

+ 𝐸2(𝑑)
𝑀1

,

note that the 1
𝑁𝑀1

term has been discarded in the last equality.

164

C.2 Variance and bias of ˆ̃𝑈𝑁,𝑀1
`2,1 (𝑑)

The variance of ˆ̃𝑈𝑁,𝑀1
`2,1 (𝑑) can be decomposed as

V
[

ˆ̃𝑈𝑁,𝑀1
`2,1 (𝑑)

]
=

1
𝑁
V

ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

2
=

1
𝑁
VE

ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

2 �����𝑦 (C.1)

+ 1
𝑁
EV

ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

2 �����𝑦
where the first equality is due to the independence between

[
ln 1

𝑀1

∑𝑀1
𝑗=1 𝑝(𝑦

(𝑖1) |\ (𝑖1, 𝑗) , 𝑑)
]2

and[
ln 1

𝑀1

∑𝑀1
𝑗=1 𝑝(𝑦

(𝑖2) |\ (𝑖2, 𝑗) , 𝑑)
]2

when 𝑖1 ≠ 𝑖2, and the second equality is due to the law of total
variance. It is obvious that

E

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)
�����𝑦 = 𝑝(𝑦 |𝑑)

V

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)
�����𝑦 =

1
𝑀1
V [𝑝(𝑦 |\∗, 𝑑) |𝑦]

where \∗ represents the random variable \ (·, 𝑗) , and the superscript is used to distinguish the inner
\∗ from the outer random variable \ for \ (·) . By applying Taylor expansions for the moments of
function of random variables, we can get

E

ln
1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)
�����𝑦 ≈ ln 𝑝(𝑦 |𝑑) −

V

[
1
𝑀1

∑𝑀1
𝑗=1 𝑝(𝑦 |\

(·, 𝑗) , 𝑑)
�����𝑦

]
2𝑝(𝑦 |𝑑)2

= ln 𝑝(𝑦 |𝑑) − V [𝑝(𝑦 |\∗, 𝑑) |𝑦]
2𝑝(𝑦 |𝑑)2

1
𝑀1

, (C.2)

165

V

ln
1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)
�����𝑦 ≈ 1

𝑝(𝑦 |𝑑)2
1
𝑀1
V [𝑝(𝑦 |\∗, 𝑑) |𝑦]

=
V [𝑝(𝑦 |\∗, 𝑑) |𝑦]

𝑝(𝑦 |𝑑)2
1
𝑀1

, (C.3)

and

E

ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

2 �����𝑦
≈

lnE

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)
�����𝑦

2

+ 1 − ln 𝑝(𝑦 |𝑑)
𝑝(𝑦 |𝑑)2 V

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)
�����𝑦

= [ln 𝑝(𝑦 |𝑑)]2 + 1 − ln 𝑝(𝑦 |𝑑)
𝑝(𝑦 |𝑑)2

1
𝑀1
V [𝑝(𝑦 |\∗, 𝑑) |𝑦] , (C.4)

as well as

V

ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

2 �����𝑦 ≈
[
2 ln 𝑝(𝑦 |𝑑)
𝑝(𝑦 |𝑑)

]2 1
𝑀1
V [𝑝(𝑦 |\∗, 𝑑) |𝑦] . (C.5)

By plugging Eqn. (C.4) and Eqn. (C.5) into Eqn. (C.1), we can get the variance of ˆ̃𝑈𝑁,𝑀1
`2,1 (𝑑) as

V
[

ˆ̃𝑈𝑁,𝑀1
`2,1 (𝑑)

]
≈ 1
𝑁
V

{
[ln 𝑝(𝑦 |𝑑)]2 + 1 − ln 𝑝(𝑦 |𝑑)

𝑝(𝑦 |𝑑)2
1
𝑀1
V [𝑝(𝑦 |\∗, 𝑑) |𝑦]

}
+ 1
𝑁𝑀1

E

{[
2 ln 𝑝(𝑦 |𝑑)
𝑝(𝑦 |𝑑)

]2
V [𝑝(𝑦 |\∗, 𝑑) |𝑦]

}
=
𝐴3(𝑑)
𝑁

+ 𝐵3(𝑑)
𝑁𝑀1

166

The bias of ˆ̃𝑈𝑁,𝑀1
`2,1 (𝑑) is

E
[

ˆ̃𝑈𝑁,𝑀1
`2,1 (𝑑) − �̃�`2,1(𝑑)

]
=E

ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

2 − E
{
[ln 𝑝(𝑦 |𝑑)]2}

=EE

ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

2 �����𝑦 − E
{
[ln 𝑝(𝑦 |𝑑)]2}

≈E
{
[ln 𝑝(𝑦 |𝑑)]2 + 1 − ln 𝑝(𝑦 |𝑑)

𝑝(𝑦 |𝑑)2
1
𝑀1
V [𝑝(𝑦 |\∗, 𝑑) |𝑦]

}
− E

{
[ln 𝑝(𝑦 |𝑑)]2}

=
𝐸3(𝑑)
𝑀1

C.3 Variance and bias of ˆ̃𝑈𝑁,𝑀1
`2,2 (𝑑)

The variance of ˆ̃𝑈𝑁,𝑀1
`2,2 (𝑑) can be decomposed as

V
[

ˆ̃𝑈𝑁,𝑀1,𝑀2
`2,3 (𝑑)

]
=

4
𝑁
V

ln 𝑝(𝑦 |\, 𝑑) ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

=
4
𝑁
VE

ln 𝑝(𝑦 |\, 𝑑) ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

�����\, 𝑦 (C.6)

+ 4
𝑁
EV

ln 𝑝(𝑦 |\, 𝑑) ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

�����\, 𝑦

where \ stands for the random variable in the outer integral, and \ (·, 𝑗) are the samples in the inner
loop. We can easily get that

E

ln 𝑝(𝑦 |\, 𝑑) ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

�����\, 𝑦

= ln 𝑝(𝑦 |\, 𝑑)E
ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

�����\, 𝑦

≈ ln 𝑝(𝑦 |\, 𝑑)
[
ln 𝑝(𝑦 |𝑑) − V [𝑝(𝑦 |\∗, 𝑑) |𝑦]

2𝑝(𝑦 |𝑑)2
1
𝑀1

]

167

where the first equality is because \ and 𝑦 are given in this conditional expectation, thus ln 𝑝(𝑦 |\, 𝑑)
can be pulled out of the expectation, and the second equality is simply using Eqn. (C.2). We can
also get

V

ln 𝑝(𝑦 |\, 𝑑) ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

�����\, 𝑦

= [ln 𝑝(𝑦 |\, 𝑑)]2V

ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

�����\, 𝑦

≈ [ln 𝑝(𝑦 |\, 𝑑)]2 V [𝑝(𝑦 |\∗, 𝑑) |𝑦]
𝑝(𝑦 |𝑑)2

1
𝑀1

=
[ln 𝑝(𝑦 |\, 𝑑)]2V [𝑝(𝑦 |\∗, 𝑑)]

𝑝(𝑦 |𝑑)2
1
𝑀1

where the second equality is using Eqn. (C.3). By plugging the above two equations into Eqn. (C.6),
we can obtain the variance of ˆ̃𝑈𝑁,𝑀1

`2,2 (𝑑) as

V
[

ˆ̃𝑈𝑁,𝑀1
`2,2 (𝑑)

]
≈ 4
𝑁
V

{
ln 𝑝(𝑦 |\, 𝑑)

[
ln 𝑝(𝑦 |𝑑) − V [𝑝(𝑦 |\∗, 𝑑) |𝑦]

2𝑝(𝑦 |𝑑)2
1
𝑀1

]}
+ 4
𝑁𝑀1

E

[
[ln 𝑝(𝑦 |\, 𝑑)]2V [𝑝(𝑦 |\∗, 𝑑) |𝑦]

𝑝(𝑦 |𝑑)2

]
=
𝐴4(𝑑)
𝑁

+ 𝐵4(𝑑)
𝑁𝑀1

The bias of ˆ̃𝑈𝑁,𝑀1,𝑀2
`2,3 (𝑑) is

E
[

ˆ̃𝑈𝑁,𝑀1
`2,2 (𝑑) − �̃�`2,2(𝑑)

]
= − 2E

ln 𝑝(𝑦 |\, 𝑑) ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

 + 2E [ln 𝑝(𝑦 |\, 𝑑) ln 𝑝(𝑦 |𝑑)]

= − 2EE
ln 𝑝(𝑦 |\, 𝑑) ln

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

�����\, 𝑦 + 2E [ln 𝑝(𝑦 |\, 𝑑) ln 𝑝(𝑦 |𝑑)]

= − 2E
{
ln 𝑝(𝑦 |\, 𝑑)

[
ln 𝑝(𝑦 |𝑑) − V [𝑝(𝑦 |\∗, 𝑑) |𝑦]

2𝑝(𝑦 |𝑑)2
1
𝑀1

]}
+ 2E [ln 𝑝(𝑦 |\, 𝑑) ln 𝑝(𝑦 |𝑑)]

=
1
𝑀1
E

[
ln 𝑝(𝑦 |\, 𝑑)V [𝑝(𝑦 |\∗, 𝑑) |𝑦]

𝑝(𝑦 |𝑑)2

]
=
𝐸4(𝑑)
𝑀1

168

C.4 Variance and bias of ˆ̃𝑈𝑁,𝑀1,𝑀2
`2,3 (𝑑)

The variance of ˆ̃𝑈𝑁,𝑀1,𝑀2
`2,3 (𝑑) can be decomposed as

V
[

ˆ̃𝑈𝑁,𝑀1,𝑀2
`2,3 (𝑑)

]
=

1
𝑁
V

[

𝑀1∑𝑀1
𝑗=1 𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

1
𝑀2

𝑀2∑︁
𝑘=1

𝑝(𝑦 |\ (·,𝑘) , 𝑑) ln 𝑝(𝑦 |\ (·,𝑘) , 𝑑)
]2 (C.7)

=
1
𝑁
VE

[

𝑀1∑𝑀1
𝑗=1 𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

1
𝑀2

𝑀2∑︁
𝑘=1

𝑝(𝑦 |\ (·,𝑘) , 𝑑) ln 𝑝(𝑦 |\ (·,𝑘) , 𝑑)
]2 �����𝑦

(C.8)

+ 1
𝑁
EV

[

𝑀1∑𝑀1
𝑗=1 𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

1
𝑀2

𝑀2∑︁
𝑘=1

𝑝(𝑦 |\ (·,𝑘) , 𝑑) ln 𝑝(𝑦 |\ (·,𝑘) , 𝑑)
]2 �����𝑦

It is easy to get

E

[
𝑀1∑𝑀1

𝑗=1 𝑝(𝑦 |\ (·, 𝑗) , 𝑑)
1
𝑀2

𝑀2∑︁
𝑘=1

𝑝(𝑦 |\ (·,𝑘) , 𝑑) ln 𝑝(𝑦 |\ (·,𝑘) , 𝑑)
�����𝑦

]
=E

[1
𝑀2

∑𝑀2
𝑘=1 𝑝(𝑦 |\

(·,𝑘) , 𝑑) ln 𝑝(𝑦 |\ (·,𝑘) , 𝑑)
1
𝑀1

∑𝑀1
𝑗=1 𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

�����𝑦
]

≈E [𝑝(𝑦 |\
′, 𝑑) ln 𝑝(𝑦 |\′, 𝑑) |𝑦]
𝑝(𝑦 |𝑑) + E [𝑝(𝑦 |\

′, 𝑑) ln 𝑝(𝑦 |\′, 𝑑) |𝑦]
𝑝(𝑦 |𝑑)3 V

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)
�����𝑦

=E\′ |𝑦 [ln 𝑝(𝑦 |\′, 𝑑)] +
E\′ |𝑦 [ln 𝑝(𝑦 |\′, 𝑑)]

𝑝(𝑦 |𝑑)2 V [𝑝(𝑦 |\∗, 𝑑) |𝑦] 1
𝑀1

where \′ represents the random variable \ (·,𝑘) , and the superscript is used to distinguish the inner
\′ from the outer random variable \ for \ (·) and the other inner random variable \∗ for \ (·, 𝑗) . In the
second equality for expanding the condition expectation, we discard the covariance term because the
numerator and denominator are independent. Notice that E [𝑓 (\) |𝑦] and E\ |𝑦 [𝑓 (\)] are different.
\ follows the prior distribution in the former expectation with a fixed 𝑦, while in the latter one, \

169

follows the posterior distribution conditioned on 𝑦. The last equality is due to

E [𝑝(𝑦 |\′, 𝑑) ln 𝑝(𝑦 |\′, 𝑑) |𝑦]
𝑝(𝑦 |𝑑) =

∫
Θ
𝑝(\′)𝑝(𝑦 |\′, 𝑑) ln 𝑝(𝑦 |\′, 𝑑) 𝑑\′

𝑝(𝑦 |𝑑)

=

∫
Θ

𝑝(\′)𝑝(𝑦 |\′, 𝑑)
𝑝(𝑦 |𝑑) ln 𝑝(𝑦 |\′, 𝑑) 𝑑\′

=

∫
Θ

𝑝(\′|𝑦, 𝑑) ln 𝑝(𝑦 |\′, 𝑑) 𝑑\′

= E\′ |𝑦 [ln 𝑝(𝑦 |\′, 𝑑)]

with the understanding that the conditioning on 𝑑 is always implied. We can also get

V

[
𝑀1∑𝑀1

𝑗=1 𝑝(𝑦 |\ (·, 𝑗) , 𝑑)
1
𝑀2

𝑀2∑︁
𝑘=1

𝑝(𝑦 |\ (·,𝑘) , 𝑑) ln 𝑝(𝑦 |\ (·,𝑘) , 𝑑)
�����𝑦

]
=V

[1
𝑀2

∑𝑀2
𝑘=1 𝑝(𝑦 |\

(·,𝑘) , 𝑑) ln 𝑝(𝑦 |\ (·,𝑘) , 𝑑)
1
𝑀1

∑𝑀1
𝑗=1 𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

�����𝑦
]

≈
1
𝑀2
V [𝑝(𝑦 |\′, 𝑑) ln 𝑝(𝑦 |\′, 𝑑) |𝑦]

𝑝(𝑦 |𝑑)2 + {E [𝑝(𝑦 |\′, 𝑑) ln 𝑝(𝑦 |\′, 𝑑) |𝑦]}2

𝑝(𝑦 |𝑑)4 V

1
𝑀1

𝑀1∑︁
𝑗=1

𝑝(𝑦 |\ (·, 𝑗) , 𝑑)
�����𝑦

=
V [𝑝(𝑦 |\′, 𝑑) ln 𝑝(𝑦 |\′, 𝑑) |𝑦]

𝑝(𝑦 |𝑑)2
1
𝑀2

+
{
E\′ |𝑦 [ln 𝑝(𝑦 |\′, 𝑑)]

}2

𝑝(𝑦 |𝑑)2 V [𝑝(𝑦 |\∗, 𝑑) |𝑦] 1
𝑀1

Hence,

E

[

𝑀1∑𝑀1
𝑗=1 𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

1
𝑀2

𝑀2∑︁
𝑘=1

𝑝(𝑦 |\ (·,𝑘) , 𝑑) ln 𝑝(𝑦 |\ (·,𝑘) , 𝑑)
]2 �����𝑦

≈
{
E\′ |𝑦 [ln 𝑝(𝑦 |\′, 𝑑)] +

E\′ |𝑦 [ln 𝑝(𝑦 |\′, 𝑑)]
𝑝(𝑦 |𝑑)2 V [𝑝(𝑦 |\∗, 𝑑) |𝑦] 1

𝑀1

}2

+ V [𝑝(𝑦 |\′, 𝑑) ln 𝑝(𝑦 |\′, 𝑑) |𝑦]
𝑝(𝑦 |𝑑)2

1
𝑀2

170

and

V

[

𝑀1∑𝑀1
𝑗=1 𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

1
𝑀2

𝑀2∑︁
𝑘=1

𝑝(𝑦 |\ (·,𝑘) , 𝑑) ln 𝑝(𝑦 |\ (·,𝑘) , 𝑑)
]2 �����𝑦

≈4
{
E\′ |𝑦 [ln 𝑝(𝑦 |\′, 𝑑)] +

E\′ |𝑦 [ln 𝑝(𝑦 |\′, 𝑑)]
𝑝(𝑦 |𝑑)2 V [𝑝(𝑦 |\∗, 𝑑) |𝑦] 1

𝑀1

}2

× V [𝑝(𝑦 |\′, 𝑑) ln 𝑝(𝑦 |\′, 𝑑) |𝑦]
𝑝(𝑦 |𝑑)2

1
𝑀2

By plugging the above two equations into Eqn. (C.8), we can then get the variance of �̃�`2,3(𝑑) as

V
[

ˆ̃𝑈𝑁,𝑀1,𝑀2
`2,3 (𝑑)

]
≈ 1
𝑁
V

{ {
E\′ |𝑦 [ln 𝑝(𝑦 |\′, 𝑑)] +

E\′ |𝑦 [ln 𝑝(𝑦 |\′, 𝑑)]
𝑝(𝑦 |𝑑)2 V [𝑝(𝑦 |\∗, 𝑑) |𝑦] 1

𝑀1

}2

+ V [𝑝(𝑦 |\′, 𝑑) ln 𝑝(𝑦 |\′, 𝑑) |𝑦]
𝑝(𝑦 |𝑑)2

1
𝑀2

}
+ 1
𝑁𝑀2

E

{
4
{
E\′ |𝑦 [ln 𝑝(𝑦 |\′, 𝑑)] +

E\′ |𝑦 [ln 𝑝(𝑦 |\′, 𝑑)]
𝑝(𝑦 |𝑑)2 V [𝑝(𝑦 |\∗, 𝑑) |𝑦] 1

𝑀1

}2

× V [𝑝(𝑦 |\′, 𝑑) ln 𝑝(𝑦 |\′, 𝑑) |𝑦]
𝑝(𝑦 |𝑑)2

1
𝑀2

}
=
𝐴5(𝑑)
𝑁

+ 𝐵5(𝑑)
𝑁𝑀1

+ 𝐶5(𝑑)
𝑁𝑀2

171

and the bias is

E
[

ˆ̃𝑈𝑁,𝑀1,𝑀2
`2,3 (𝑑) − �̃�`2,3(𝑑)

]
=E

[

𝑀1∑𝑀1
𝑗=1 𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

1
𝑀2

𝑀2∑︁
𝑘=1

𝑝(𝑦 |\ (·,𝑘) , 𝑑) ln 𝑝(𝑦 |\ (·,𝑘) , 𝑑)
]2

− E
{[
E\′ |𝑦 [ln 𝑝(𝑦 |\′, 𝑑)]

]2
}

=EE

[

𝑀1∑𝑀1
𝑗=1 𝑝(𝑦 |\ (·, 𝑗) , 𝑑)

1
𝑀2

𝑀2∑︁
𝑘=1

𝑝(𝑦 |\ (·,𝑘) , 𝑑) ln 𝑝(𝑦 |\ (·,𝑘) , 𝑑)
]2 �����𝑦

− E
{[
E\′ |𝑦 [ln 𝑝(𝑦 |\′, 𝑑)]

]2
}

≈E
{ {
E\′ |𝑦 [ln 𝑝(𝑦 |\′, 𝑑)] +

E\′ |𝑦 [ln 𝑝(𝑦 |\′, 𝑑)]
𝑝(𝑦 |𝑑)2 V [𝑝(𝑦 |\∗, 𝑑) |𝑦] 1

𝑀1

}2

+ V [𝑝(𝑦 |\′, 𝑑) ln 𝑝(𝑦 |\′, 𝑑) |𝑦]
𝑝(𝑦 |𝑑)2

1
𝑀2

}
− E

{[
E\′ |𝑦 [ln 𝑝(𝑦 |\′, 𝑑)]

]2
}

≈𝐸5(𝑑)
𝑀1

+ 𝐹5(𝑑)
𝑀2

172

APPENDIX D

Appendix of robust sequential optimal experimental
design (rsOED)

173

D.1 The recursive relationship of the variance action-value
function

We denote 𝐺𝑘+1 =
∑𝑁
𝑡=𝑘+1 𝑔𝑡 (𝑥𝑡 , 𝑑𝑡 , 𝑦𝑡) and note that E...|𝜋,𝑥𝑘 ,𝑑𝑘 ,𝑦𝑘 = E...|𝜋,𝑥𝑘+1 . The recursive

relationship of the variance action-value function can be obtained by the following steps.

�̃�
𝜋𝑤
𝑘
(𝑥𝑘 , 𝑑𝑘)

= E𝑦𝑘 ,...,𝑦𝑁−1 |𝜋𝑤 ,𝑥𝑘 ,𝑑𝑘

{[
𝑔𝑘 (𝑥𝑘 , 𝑑𝑘 , 𝑦𝑘) + 𝐺𝑘+1 −𝑄𝜋𝑤

𝑘
(𝑥𝑘 , 𝑑𝑘)

]2
}

= E𝑦𝑘 ,...,𝑦𝑁−1 |𝜋𝑤 ,𝑥𝑘 ,𝑑𝑘

{[
𝑔𝑘 + 𝐺𝑘+1 −𝑄𝜋𝑤

𝑘
(𝑥𝑘 , 𝑑𝑘) +𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) −𝑉𝜋𝑤𝑘+1(𝑥𝑘+1)

]2
}

= E𝑦𝑘 ,...,𝑦𝑁−1 |𝜋𝑤 ,𝑥𝑘 ,𝑑𝑘

{ [
𝑔𝑘 +𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) −𝑄𝜋𝑤

𝑘
(𝑥𝑘 , 𝑑𝑘)

]2 +
[
𝐺𝑘+1 −𝑉𝜋𝑤𝑘+1(𝑥𝑘+1)

]2

+ 2
[
𝑔𝑘 +𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) −𝑄𝜋𝑤

𝑘
(𝑥𝑘 , 𝑑𝑘)

] [
𝐺𝑘+1 −𝑉𝜋𝑤𝑘+1(𝑥𝑘+1)

] }
= E𝑦𝑘 |𝑥𝑘 ,𝑑𝑘

{[
𝑔𝑘 +𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) −𝑄𝜋𝑤

𝑘
(𝑥𝑘 , 𝑑𝑘)

]2
}

+ E𝑦𝑘 |𝑥𝑘 ,𝑑𝑘
{
E𝑦𝑘+1,...,𝑦𝑁−1 |𝜋𝑤 ,𝑥𝑘 ,𝑑𝑘 ,𝑦𝑘

{[
𝐺𝑘+1 −𝑉𝜋𝑤𝑘+1(𝑥𝑘+1)

]2
}}

+ 2E𝑦𝑘 |𝑥𝑘 ,𝑑𝑘

[
𝑔𝑘 +𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) −𝑄𝜋𝑤

𝑘
(𝑥𝑘 , 𝑑𝑘)

]
E𝑦𝑘+1,...,𝑦𝑁−1 |𝜋𝑤 ,𝑥𝑘 ,𝑑𝑘 ,𝑦𝑘

[
𝐺𝑘+1 −𝑉𝜋𝑤𝑘+1(𝑥𝑘+1)

]︸ ︷︷ ︸
=0

= E𝑦𝑘 |𝑥𝑘 ,𝑑𝑘

{[
𝑔𝑘 +𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) −𝑄𝜋𝑤

𝑘
(𝑥𝑘 , 𝑑𝑘)

]2
}

+ E𝑦𝑘 |𝑥𝑘 ,𝑑𝑘
{
�̃�
𝜋𝑤
𝑘+1(𝑥𝑘+1)

}
+ 0

= E𝑦𝑘 |𝑥𝑘 ,𝑑𝑘

[
𝑔𝑘 +𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) −𝑄𝜋𝑤

𝑘
(𝑥𝑘 , 𝑑𝑘)

]2︸ ︷︷ ︸
:=�̂� 𝜋𝑤

𝑘+1 (𝑥𝑘+1)

+�̃�𝜋𝑤
𝑘+1(𝑥𝑘+1)

= E𝑦𝑘 |𝑥𝑘 ,𝑑𝑘

{
�̂�
𝜋𝑤
𝑘+1(𝑥𝑘+1) + �̃�𝜋𝑤𝑘+1(𝑥𝑘+1)

}
.

Note that in the fourth equality, 𝑔𝑘 + 𝑉𝜋𝑤
𝑘+1(𝑥𝑘+1) − 𝑄𝜋𝑤

𝑘
(𝑥𝑘 , 𝑑𝑘) is not depending on 𝑦𝑘+1 up

to 𝑦𝑁−1, so it can be factored out of the expectation over 𝑦𝑘+1 up to 𝑦𝑁−1. The expectation
E𝑦𝑘+1,...,𝑦𝑁−1 |𝜋𝑤 ,𝑥𝑘 ,𝑑𝑘 ,𝑦𝑘

[
𝐺𝑘+1 −𝑉𝜋𝑤𝑘+1(𝑥𝑘+1)

]
is equal to 0 as E𝑦𝑘+1,...,𝑦𝑁−1 |𝜋𝑤 ,𝑥𝑘 ,𝑑𝑘 ,𝑦𝑘 [𝐺𝑘+1] is exactly

the definition of 𝑉𝜋𝑤
𝑘+1(𝑥𝑘+1).

174

D.2 Policy Gradient Expression of Total Utility Variance

For the proof of the policy gradient expression of total utility variance, we use the same shorthand
notations as Appendix A.2.

Proof of Theorem 6. We begin by recognizing that the gradient of the variance of the total utility
is equivalent to the gradient of the variance state-value function at the initial stage:

∇𝑤�̃� (𝑤) = ∇𝑤�̃�𝜋𝑤0 (𝑥0). (D.1)

The goal is then to derive the gradient expression for the variance state-value functions.

175

The recursive relationship for the gradient of the variance state-value function is

∇𝑤�̃�𝜋𝑤𝑘 (𝑥𝑘)
= ∇𝑤�̃�𝜋𝑤

𝑘
(𝑥𝑘 , `𝑘,𝑤𝑘

(𝑥𝑘))

= ∇𝑤
∫
𝑦𝑘

𝑃(𝑦𝑘 |𝑥𝑘 , `𝑘,𝑤𝑘
(𝑥𝑘))

[
�̂�
𝜋𝑤
𝑘+1(𝑥𝑘+1) + �̃�𝜋𝑤𝑘+1(𝑥𝑘+1)

]
𝑑𝑦𝑘

= ∇𝑤
∫
𝑥𝑘+1

𝑃(𝑥𝑘+1 |𝑥𝑘 , `𝑘,𝑤𝑘
(𝑥𝑘))

[
�̂�
𝜋𝑤
𝑘+1(𝑥𝑘+1) + �̃�𝜋𝑤𝑘+1(𝑥𝑘+1)

]
𝑑𝑥𝑘+1

=

∫
𝑥𝑘+1

∇𝑤`𝑘,𝑤𝑘
(𝑥𝑘)∇𝑑𝑘𝑃(𝑥𝑘+1 |𝑥𝑘 , 𝑑𝑘) |𝑑𝑘=`𝑘,𝑤𝑘

(𝑥𝑘)
[
�̂�
𝜋𝑤
𝑘+1(𝑥𝑘+1) + �̃�𝜋𝑤𝑘+1(𝑥𝑘+1)

]
𝑑𝑥𝑘+1

+
∫
𝑥𝑘+1

𝑃(𝑥𝑘+1 |𝑥𝑘 , `𝑘,𝑤𝑘
(𝑥𝑘))∇𝑤

[
�̂�
𝜋𝑤
𝑘+1(𝑥𝑘+1) + �̃�𝜋𝑤𝑘+1(𝑥𝑘+1)

]
𝑑𝑥𝑘+1

= ∇𝑤`𝑘,𝑤𝑘
(𝑥𝑘)∇𝑑𝑘

∫
𝑥𝑘+1

𝑃(𝑥𝑘+1 |𝑥𝑘 , 𝑑𝑘) |𝑑𝑘=`𝑘,𝑤𝑘
(𝑥𝑘)

[
�̂�
𝜋𝑤
𝑘+1(𝑥𝑘+1) + �̃�𝜋𝑤𝑘+1(𝑥𝑘+1)

]
𝑑𝑥𝑘+1

+
∫
𝑥𝑘+1

𝑃(𝑥𝑘+1 |𝑥𝑘 , `𝑘,𝑤𝑘
(𝑥𝑘))∇𝑤

{[
𝑔𝑘 +𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) −𝑄𝜋𝑤

𝑘
(𝑥𝑘 , `𝑘,𝑤𝑘

(𝑥𝑘))
]2

}
𝑑𝑥𝑘+1

+
∫
𝑥𝑘+1

𝑃(𝑥𝑘+1 |𝑥𝑘 , `𝑘,𝑤𝑘
(𝑥𝑘))∇𝑤�̃�𝜋𝑤𝑘+1(𝑥𝑘+1)𝑑𝑥𝑘+1

= ∇𝑤`𝑘,𝑤𝑘
(𝑥𝑘)∇𝑑𝑘�̃�

𝜋𝑤
𝑘
(𝑥𝑘 , 𝑑𝑘) |𝑑𝑘=`𝑘,𝑤𝑘

(𝑥𝑘)

+
∫
𝑥𝑘+1

2𝑃(𝑥𝑘+1 |𝑥𝑘 , `𝑘,𝑤𝑘
(𝑥𝑘))

[
𝑔𝑘 +𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) −𝑄𝜋𝑤

𝑘
(𝑥𝑘 , `𝑘,𝑤𝑘

(𝑥𝑘))
]
∇𝑤𝑉𝜋𝑤𝑘+1(𝑥𝑘+1)𝑑𝑥𝑘+1

−
∫
𝑥𝑘+1

2𝑃(𝑥𝑘+1 |𝑥𝑘 , `𝑘,𝑤𝑘
(𝑥𝑘))

[
𝑔𝑘 +𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) −𝑄𝜋𝑤

𝑘
(𝑥𝑘 , `𝑘,𝑤𝑘

(𝑥𝑘))
]
∇𝑤𝑄𝜋𝑤

𝑘
(𝑥𝑘 , `𝑘,𝑤𝑘

(𝑥𝑘))𝑑𝑥𝑘+1

+
∫
𝑥𝑘+1

𝑃(𝑥𝑘+1 |𝑥𝑘 , `𝑘,𝑤𝑘
(𝑥𝑘))∇𝑤�̃�𝜋𝑤𝑘+1(𝑥𝑘+1)𝑑𝑥𝑘+1

= ∇𝑤`𝑘,𝑤𝑘
(𝑥𝑘)∇𝑑𝑘�̃�

𝜋𝑤
𝑘
(𝑥𝑘 , 𝑑𝑘) |𝑑𝑘=`𝑘,𝑤𝑘

(𝑥𝑘)

+
∫
𝑥𝑘+1

2𝑃(𝑥𝑘+1 |𝑥𝑘 , `𝑘,𝑤𝑘
(𝑥𝑘))

[
𝑔𝑘 +𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) −𝑄𝜋𝑤

𝑘
(𝑥𝑘 , `𝑘,𝑤𝑘

(𝑥𝑘))
]
∇𝑤𝑉𝜋𝑤𝑘+1(𝑥𝑘+1)𝑑𝑥𝑘+1

− ∇𝑤𝑄𝜋𝑤
𝑘
(𝑥𝑘 , `𝑘,𝑤𝑘

(𝑥𝑘))
∫
𝑥𝑘+1

2𝑃(𝑥𝑘+1 |𝑥𝑘 , `𝑘,𝑤𝑘
(𝑥𝑘))

[
𝑔𝑘 +𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) −𝑄𝜋𝑤

𝑘
(𝑥𝑘 , `𝑘,𝑤𝑘

(𝑥𝑘))
]
𝑑𝑥𝑘+1︸ ︷︷ ︸

=0

+
∫
𝑥𝑘+1

𝑃(𝑥𝑘+1 |𝑥𝑘 , `𝑘,𝑤𝑘
(𝑥𝑘))∇𝑤�̃�𝜋𝑤𝑘+1(𝑥𝑘+1)𝑑𝑥𝑘+1

= · · · to be continued in the next page

176

∇𝑤�̃�𝜋𝑤𝑘 (𝑥𝑘)
= ∇𝑤`𝑘,𝑤𝑘

(𝑥𝑘)∇𝑑𝑘�̃�
𝜋𝑤
𝑘
(𝑥𝑘 , 𝑑𝑘) |𝑑𝑘=`𝑘,𝑤𝑘

(𝑥𝑘)

+
∫
𝑥𝑘+1

2𝑃(𝑥𝑘+1 |𝑥𝑘 , `𝑘,𝑤𝑘
(𝑥𝑘))

[
𝑔𝑘 +𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) −𝑄𝜋𝑤

𝑘
(𝑥𝑘 , `𝑘,𝑤𝑘

(𝑥𝑘))
]
×[

𝑁−1∑︁
𝑙=𝑘+1

∫
𝑥𝑙

𝑃(𝑥𝑘+1 → 𝑥𝑙 |𝜋𝑤)∇𝑤`𝑙,𝑤𝑙
(𝑥𝑙)∇𝑑𝑙𝑄

𝜋𝑤
𝑙

(𝑥𝑙 , 𝑑𝑙) |𝑑𝑙=`𝑙,𝑤𝑙 (𝑥𝑙)𝑑𝑥𝑙

]
𝑑𝑥𝑘+1

+
∫
𝑥𝑘+1

𝑃(𝑥𝑘+1 |𝑥𝑘 , `𝑘,𝑤𝑘
(𝑥𝑘))∇𝑤�̃�𝜋𝑤𝑘+1(𝑥𝑘+1)𝑑𝑥𝑘+1 (D.2)

Applying the recursive formula in Eqn. (D.2) to itself repeatedly and expanding out the overall

177

expression, we obtain

∇𝑤�̃�𝜋𝑤𝑘 (𝑥𝑘)
= ∇𝑤`𝑘,𝑤𝑘

(𝑥𝑘)∇𝑑𝑘�̃�
𝜋𝑤
𝑘
(𝑥𝑘 , 𝑑𝑘) |𝑑𝑘=`𝑘,𝑤𝑘

(𝑥𝑘)

+
∫
𝑥𝑘+1

2𝑃(𝑥𝑘+1 |𝑥𝑘 , `𝑘,𝑤𝑘
(𝑥𝑘))

[
𝑔𝑘 +𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) −𝑄𝜋𝑤

𝑘
(𝑥𝑘 , `𝑘,𝑤𝑘

(𝑥𝑘))
]
×[

𝑁−1∑︁
𝑙=𝑘+1

∫
𝑥𝑙

𝑃(𝑥𝑘+1 → 𝑥𝑙 |𝜋𝑤)∇𝑤`𝑙,𝑤𝑙
(𝑥𝑙)∇𝑑𝑙𝑄

𝜋𝑤
𝑙

(𝑥𝑙 , 𝑑𝑙) |𝑑𝑙=`𝑙,𝑤𝑙 (𝑥𝑙)𝑑𝑥𝑙

]
𝑑𝑥𝑘+1

+
∫
𝑥𝑘+1

𝑃(𝑥𝑘+1 |𝑥𝑘 , `𝑘,𝑤𝑘
(𝑥𝑘))

{
∇𝑤`𝑘+1,𝑤𝑘+1 (𝑥𝑘+1)∇𝑑𝑘+1�̃�

𝜋𝑤
𝑘+1(𝑥𝑘+1, 𝑑𝑘+1) |𝑑𝑘+1=`𝑘+1,𝑤𝑘+1 (𝑥𝑘+1)

+
∫
𝑥𝑘+2

2𝑃(𝑥𝑘+2 |𝑥𝑘+1, `𝑘+1,𝑤𝑘+1 (𝑥𝑘+1))
[
𝑔𝑘+1 +𝑉𝜋𝑤𝑘+2(𝑥𝑘+2) −𝑄𝜋𝑤

𝑘+1(𝑥𝑘+1, `𝑘+1,𝑤𝑘+1 (𝑥𝑘+1))
]
×[

𝑁−1∑︁
𝑙=𝑘+2

∫
𝑥𝑙

𝑃(𝑥𝑘+2 → 𝑥𝑙 |𝜋𝑤)∇𝑤`𝑙,𝑤𝑙
(𝑥𝑙)∇𝑑𝑙𝑄

𝜋𝑤
𝑙

(𝑥𝑙 , 𝑑𝑙) |𝑑𝑙=`𝑙,𝑤𝑙 (𝑥𝑙)𝑑𝑥𝑙

]
𝑑𝑥𝑘+2

+
∫
𝑥𝑘+2

𝑃(𝑥𝑘+2 |𝑥𝑘+1, `𝑘+1,𝑤𝑘+1 (𝑥𝑘+1))∇𝑤�̃�𝜋𝑤𝑘+2(𝑥𝑘+2)𝑑𝑥𝑘+2

}
𝑑𝑥𝑘+1

=

𝑘+1∑︁
𝑡=𝑘

∫
𝑥𝑡

𝑃(𝑥𝑘 → 𝑥𝑡 |𝜋𝑤)∇𝑤`𝑡,𝑤 (𝑥𝑡)∇𝑑𝑡 �̃�
𝜋𝑤
𝑡 (𝑥𝑡 , 𝑑𝑡) |𝑑𝑡=`𝑡 ,𝑤 (𝑥𝑡)𝑑𝑥𝑡

+
𝑘+1∑︁
𝑡=𝑘

∫
𝑥𝑡+1

2𝑃(𝑥𝑘 → 𝑥𝑡+1 |𝜋𝑤)
[
𝑔𝑡 +𝑉𝜋𝑤𝑡+1 (𝑥𝑡+1) −𝑄𝜋𝑤

𝑡 (𝑥𝑡 , `𝑡,𝑤 (𝑥𝑡))
]
×[

𝑁−1∑︁
𝑙=𝑡+1

∫
𝑥𝑙

𝑃(𝑥𝑡+1 → 𝑥𝑙 |𝜋𝑤)∇𝑤`𝑙,𝑤𝑙
(𝑥𝑙)∇𝑑𝑙𝑄

𝜋𝑤
𝑙

(𝑥𝑙 , 𝑑𝑙) |𝑑𝑙=`𝑙,𝑤𝑙 (𝑥𝑙)𝑑𝑥𝑙

]
𝑑𝑥𝑡+1

+
∫
𝑥𝑘+2

𝑃(𝑥𝑘 → 𝑥𝑘+2 |𝜋𝑤)∇𝑤�̃�𝜋𝑤𝑘+2(𝑥𝑘+2)𝑑𝑥𝑘+2

...

=

𝑁−2∑︁
𝑡=𝑘

∫
𝑥𝑡

𝑃(𝑥𝑘 → 𝑥𝑡 |𝜋𝑤)∇𝑤`𝑡,𝑤 (𝑥𝑡)∇𝑑𝑡 �̃�
𝜋𝑤
𝑡 (𝑥𝑡 , 𝑑𝑡) |𝑑𝑡=`𝑡 ,𝑤 (𝑥𝑡)𝑑𝑥𝑡

+
𝑁−2∑︁
𝑡=𝑘

∫
𝑥𝑡+1

2𝑃(𝑥𝑘 → 𝑥𝑡+1 |𝜋𝑤)
[
𝑔𝑡 +𝑉𝜋𝑤𝑡+1 (𝑥𝑡+1) −𝑄𝜋𝑤

𝑡 (𝑥𝑡 , `𝑡,𝑤 (𝑥𝑡))
]
×[

𝑁−1∑︁
𝑙=𝑡+1

∫
𝑥𝑙

𝑃(𝑥𝑡+1 → 𝑥𝑙 |𝜋𝑤)∇𝑤`𝑙,𝑤𝑙
(𝑥𝑙)∇𝑑𝑙𝑄

𝜋𝑤
𝑙

(𝑥𝑙 , 𝑑𝑙) |𝑑𝑙=`𝑙,𝑤𝑙 (𝑥𝑙)𝑑𝑥𝑙

]
𝑑𝑥𝑡+1

+
∫
𝑥𝑁−1

𝑃(𝑥𝑘 → 𝑥𝑁−1 |𝜋𝑤)∇𝑤�̃�𝜋𝑤𝑁−1(𝑥𝑁−1)𝑑𝑥𝑁−1

178

For the last term, we have that

∇𝑤�̃�𝜋𝑤𝑁−1(𝑥𝑁−1)
= ∇𝑤�̃�𝜋𝑤

𝑁−1(𝑥𝑁−1, `𝑁−1,𝑤 (𝑥𝑁−1))

= ∇𝑤
∫
𝑥𝑁

𝑃(𝑥𝑁 |𝑥𝑁−1, `𝑁−1,𝑤 (𝑥𝑁−1))
[
�̂�
𝜋𝑤
𝑁

(𝑥𝑁) + �̃�𝜋𝑤𝑁 (𝑥𝑁)
]
𝑑𝑥𝑁

=

∫
𝑥𝑁

∇𝑤`𝑁−1,𝑤 (𝑥𝑁−1)∇𝑑𝑁−1𝑃(𝑥𝑁 |𝑥𝑁−1, 𝑑𝑁−1) |𝑑𝑁−1=`𝑁−1,𝑤 (𝑥𝑁−1)
[
�̂�
𝜋𝑤
𝑁

(𝑥𝑁) + �̃�𝜋𝑤𝑁 (𝑥𝑁)
]
𝑑𝑥𝑁

+
∫
𝑥𝑁

𝑃(𝑥𝑁 |𝑥𝑁−1, `𝑁−1,𝑤 (𝑥𝑁−1))∇𝑤
[
�̂�
𝜋𝑤
𝑁

(𝑥𝑁) + �̃�𝜋𝑤𝑁 (𝑥𝑁)
]
𝑑𝑥𝑁

= ∇𝑤`𝑁−1,𝑤 (𝑥𝑁−1)∇𝑑𝑁−1

∫
𝑥𝑁

𝑃(𝑥𝑁 |𝑥𝑁−1, 𝑑𝑁−1) |𝑑𝑁−1=`𝑁−1,𝑤 (𝑥𝑁−1)
[
�̂�
𝜋𝑤
𝑁

(𝑥𝑁) + �̃�𝜋𝑤𝑁 (𝑥𝑁)
]
𝑑𝑥𝑁

+ 0

= ∇𝑤`𝑁−1,𝑤 (𝑥𝑁−1)∇𝑑𝑁−1�̃�
𝜋𝑤
𝑁−1(𝑥𝑁−1, 𝑑𝑁−1) |𝑑𝑁−1=`𝑁−1,𝑤 (𝑥𝑁−1)

The fourth equality is because both �̂�𝜋𝑤
𝑁

(𝑥𝑁) and �̃�𝜋𝑤
𝑁

(𝑥𝑁) are constants with respect to 𝑤. There-
fore, we have

∇𝑤�̃�𝜋𝑤𝑘 (𝑥𝑘)

=

𝑁−1∑︁
𝑡=𝑘

∫
𝑥𝑡

𝑃(𝑥𝑘 → 𝑥𝑡 |𝜋𝑤)∇𝑤`𝑡,𝑤 (𝑥𝑡)∇𝑑𝑡 �̃�
𝜋𝑤
𝑡 (𝑥𝑡 , 𝑑𝑡) |𝑑𝑡=`𝑡 ,𝑤 (𝑥𝑡)𝑑𝑥𝑡

+
𝑁−2∑︁
𝑡=𝑘

∫
𝑥𝑡+1

2𝑃(𝑥𝑘 → 𝑥𝑡+1 |𝜋𝑤)
[
𝑔𝑡 +𝑉𝜋𝑤𝑡+1 (𝑥𝑡+1) −𝑄𝜋𝑤

𝑡 (𝑥𝑡 , `𝑡,𝑤 (𝑥𝑡))
]
×[

𝑁−1∑︁
𝑙=𝑡+1

∫
𝑥𝑙

𝑃(𝑥𝑡+1 → 𝑥𝑙 |𝜋𝑤)∇𝑤`𝑙,𝑤𝑙
(𝑥𝑙)∇𝑑𝑙𝑄

𝜋𝑤
𝑙

(𝑥𝑙 , 𝑑𝑙) |𝑑𝑙=`𝑙,𝑤𝑙 (𝑥𝑙)𝑑𝑥𝑙

]
𝑑𝑥𝑡+1 (D.3)

179

Finally, by substituting Eqn. (D.3) into Eqn. (D.1), we obtain the policy gradient expression:

∇𝑤�̃� (𝑤) = ∇𝑤�̃�𝜋𝑤0 (𝑥0)

=

𝑁−1∑︁
𝑘=0

∫
𝑥𝑘

𝑃(𝑥0 → 𝑥𝑘 |𝜋𝑤)∇𝑤`𝑘,𝑤𝑘
(𝑥𝑘)∇𝑑𝑘�̃�

𝜋𝑤
𝑘
(𝑥𝑘 , 𝑑𝑘) |𝑑𝑘=`𝑘,𝑤𝑘

(𝑥𝑘)𝑑𝑥𝑘

+
𝑁−2∑︁
𝑘=0

∫
𝑥𝑘+1

2𝑃(𝑥0 → 𝑥𝑘+1 |𝜋𝑤)
[
𝑔𝑘 +𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) −𝑄𝜋𝑤

𝑘
(𝑥𝑘 , `𝑘,𝑤𝑘

(𝑥𝑘))
]
×[

𝑁−1∑︁
𝑙=𝑘+1

∫
𝑥𝑙

𝑃(𝑥𝑘+1 → 𝑥𝑙 |𝜋𝑤)∇𝑤`𝑙,𝑤𝑙
(𝑥𝑙)∇𝑑𝑙𝑄

𝜋𝑤
𝑙

(𝑥𝑙 , 𝑑𝑙) |𝑑𝑙=`𝑙,𝑤𝑙 (𝑥𝑙)𝑑𝑥𝑙

]
𝑑𝑥𝑘+1

=

𝑁−1∑︁
𝑘=0
E𝑥𝑘 |𝜋𝑤 ,𝑥0

[
∇𝑤`𝑘,𝑤𝑘

(𝑥𝑘)∇𝑑𝑘�̃�
𝜋𝑤
𝑘
(𝑥𝑘 , 𝑑𝑘)

���
𝑑𝑘=`𝑘,𝑤𝑘

(𝑥𝑘)

]
+
𝑁−2∑︁
𝑘=0
E𝑥𝑘+1 |𝜋𝑤 ,𝑥0

{
2
[
𝑔𝑘 +𝑉𝜋𝑤𝑘+1(𝑥𝑘+1) −𝑄𝜋𝑤

𝑘
(𝑥𝑘 , `𝑘,𝑤𝑘

(𝑥𝑘))
]
×

𝑁−1∑︁
𝑙=𝑘+1

E𝑥𝑙 |𝜋𝑤 ,𝑥𝑘+1

[
∇𝑤`𝑙,𝑤𝑙

(𝑥𝑙)∇𝑑𝑙𝑄
𝜋𝑤
𝑙

(𝑥𝑙 , 𝑑𝑙) |𝑑𝑙=`𝑙,𝑤𝑙 (𝑥𝑙)
]}
.

180

BIBLIOGRAPHY

[1] A. Alexanderian, N. Petra, G. Stadler, and O. Ghattas. A fast and scalable method for A-
optimal design of experiments for infinite-dimensional Bayesian nonlinear inverse problems.
SIAM Journal on Scientific Computing, 38(1):A243–A272, 2016.

[2] L. J. Allen. A primer on stochastic epidemic models: Formulation, numerical simulation,
and analysis. Infectious Disease Modelling, 2(2):128–142, 2017.

[3] K. J. Arrow, H. B. Chenery, B. S. Minhas, and R. M. Solow. Capital-labor substitution and
economic efficiency. The review of Economics and Statistics, pages 225–250, 1961.

[4] A. Atkinson, A. Donev, and R. Tobias. Optimum experimental designs, with SAS, volume 34.
Oxford University Press, 2007.

[5] A. C. Atkinson and V. Fedorov. The design of experiments for discriminating between two
rival models. Biometrika, 62(1):57–70, 1975.

[6] A. Attia, A. Alexanderian, and A. K. Saibaba. Goal-oriented optimal design of experiments
for large-scale Bayesian linear inverse problems. Inverse Problems, 34(9):095009, 2018.

[7] D. Barber and F. Agakov. The IM algorithm: a variational approach to information maxi-
mization. Advances in neural information processing systems, 16(320):201, 2004.

[8] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, D. Tb, A. Muldal,
N. Heess, and T. Lillicrap. Distributed distributional deterministic policy gradients. arXiv
preprint arXiv:1804.08617, 2018.

[9] A. Basu, T. Bhattacharyya, and V. S. Borkar. A learning algorithm for risk-sensitive cost.
Mathematics of operations research, 33(4):880–898, 2008.

[10] R. A. Bates, R. S. Kenett, D. M. Steinberg, and H. P. Wynn. Achieving robust design from
computer simulations. Quality Technology & Quantitative Management, 3(2):161–177,
2006.

[11] J. Beck, B. M. Dia, L. F. Espath, Q. Long, and R. Tempone. Fast Bayesian experimental
design: Laplace-based importance sampling for the expected information gain. Computer
Methods in Applied Mechanics and Engineering, 334:523–553, 2018.

[12] J. Berger and L. M. Berliner. Robust Bayes and empirical Bayes analysis with Y-contaminated
priors. The Annals of Statistics, pages 461–486, 1986.

181

[13] J. O. Berger. Statistical decision theory and Bayesian analysis. Springer New York, New
York, NY, 1985.

[14] T. Blau, E. V. Bonilla, I. Chades, and A. Dezfouli. Optimizing sequential experimental design
with deep reinforcement learning. In International Conference on Machine Learning, pages
2107–2128. PMLR, 2022.

[15] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859–877, 2017.

[16] V. S. Borkar. A sensitivity formula for risk-sensitive cost and the actor–critic algorithm.
Systems & Control Letters, 44(5):339–346, 2001.

[17] D. M. Borth. A total entropy criterion for the dual problem of model discrimination and
parameter estimation. Journal of the Royal Statistical Society: Series B (Methodological),
37(1):77–87, 1975.

[18] G. E. Box and W. U.-M. M. R. CENTER. Choice of response surface design and alphabetic
optimality. In Proceedings of the... Conference on the Design of Experiments in Army
Research, Development and Testing, volume 28, page 237, 1982.

[19] G. E. Box and W. J. Hill. Discrimination among mechanistic models. Technometrics,
9(1):57–71, 1967.

[20] G. E. P. Box. Sequential experimentation and sequential assembly of designs. Quality
Engineering, 5(2):321–330, 1992.

[21] G. E. P. Box and H. L. Lucas. Design of experiments in non-linear situations. Biometrika,
46(1-2):77–90, 1959.

[22] G. L. Boylan, P. L. Goethals, and B. R. Cho. Robust parameter design in resource-constrained
environments: An investigation of trade-offs between costs and precision within variable
processes. Applied Mathematical Modelling, 37(4):2394–2416, 2013.

[23] E. Brochu, V. Cora, and N. D. Freitas. A tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv preprint arXiv:1012.2599, 2010.

[24] A. E. Brockwell and J. B. Kadane. A gridding method for Bayesian sequential decision
problems. Journal of Computational and Graphical Statistics, 12(3):566–584, 2003.

[25] M. Brown, F. He, and L. F. Yeung. Robust measurement selection for biochemical pathway
experimental design. International journal of bioinformatics research and applications,
4(4):400–416, 2008.

[26] J. Burkardt. The truncated normal distribution. Department of Scientific Computing Website,
Florida State University, 1:35, 2014.

[27] A. N. Burnetas and M. N. Katehakis. Optimal adaptive policies for markov decision pro-
cesses. Mathematics of Operations Research, 22(1):222–255, 1997.

182

[28] T. Butler, J. D. Jakeman, and T. Wildey. Optimal experimental design for prediction based on
push-forward probability measures. Journal of Computational Physics, 416:109518, Sept.
2020.

[29] B. P. Carlin, J. B. Kadane, and A. E. Gelfand. Approaches for optimal sequential decision
analysis in clinical trials. Biometrics, 54(3):964–975, 1998.

[30] A. R. Cassandra. A survey of POMDP applications. In Working notes of AAAI 1998 fall
symposium on planning with partially observable Markov decision processes, volume 1724,
1998.

[31] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in partially observable
stochastic domains. In Aaai, volume 94, pages 1023–1028, 1994.

[32] D. R. Cavagnaro, J. I. Myung, M. A. Pitt, and J. V. Kujala. Adaptive design optimization:
A mutual information-based approach to model discrimination in cognitive science. Neural
Computation, 22(4):887–905, 2010.

[33] K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Statistical Science,
10(3):273–304, 1995.

[34] K. M. Chaloner. Optimal Bayesian experimental design for linear models. Carnegie Mellon
University, 1982.

[35] Y. Chow and M. Ghavamzadeh. Algorithms for CVaR optimization in MDPs. Advances in
neural information processing systems, 27, 2014.

[36] J. A. Christen and M. Nakamura. Sequential stopping rules for species accumulation. Journal
of Agricultural, Biological & Environmental Statistics, 8(2):184–195, 2003.

[37] A. R. Cook, G. J. Gibson, and C. A. Gilligan. Optimal observation times in experimental
epidemic processes. Biometrics, 64(3):860–868, 2008.

[38] R. T. Cox. Probability, frequency and reasonable expectation. American Journal of Physics,
14(1):1–13, 1946.

[39] K. Csilléry, M. G. Blum, O. E. Gaggiotti, and O. François. Approximate Bayesian compu-
tation (ABC) in practice. Trends in ecology & evolution, 25(7):410–418, 2010.

[40] A. DasGupta and W. Studden. Robust Bayesian experimental designs in normal linear
models. The Annals of Statistics, 19(3):1244–1256, 1991.

[41] T. Degris, M. White, and R. S. Sutton. Off-policy actor-critic. arXiv preprint
arXiv:1205.4839, 2012.

[42] L. Dinh, J. N. Sohl-Dickstein, and S. Bengio. Density estimation using Real NVP. arXiv
preprint arXiv:1605.08803, 2016.

[43] H. A. Dror and D. M. Steinberg. Robust experimental design for multivariate generalized
linear models. Technometrics, 48(4):520–529, 2006.

183

[44] H. A. Dror and D. M. Steinberg. Sequential experimental designs for generalized linear
models. Journal of the American Statistical Association, 103(481):288–298, 2008.

[45] C. C. Drovandi, J. M. McGree, and A. N. Pettitt. Sequential Monte Carlo for Bayesian se-
quentially designed experiments for discrete data. Computational Statistics & Data Analysis,
57(1):320–335, 2013.

[46] C. C. Drovandi, J. M. McGree, and A. N. Pettitt. A sequential Monte Carlo algorithm to
incorporate model uncertainty in Bayesian sequential design. Journal of Computational and
Graphical Statistics, 23(1):3–24, 2014.

[47] J. A. Duersch and T. A. Catanach. Generalizing information to the evolution of rational
belief. Entropy, 22(1):108, 2020.

[48] D. Duffie and J. Pan. An overview of value at risk. Journal of derivatives, 4(3):7–49, 1997.

[49] J. Engel and A. F. Huele. A generalized linear modeling approach to robust design. Techno-
metrics, 38(4):365–373, 1996.

[50] V. V. Fedorov. Theory of optimal experiments. Academic Press, New York, NY, 1972.

[51] C. Feng and Y. M. Marzouk. A layered multiple importance sampling scheme for focused
optimal Bayesian experimental design. arXiv preprint arXiv:1903.11187, 2019.

[52] J. A. Filar, L. C. Kallenberg, and H.-M. Lee. Variance-penalized Markov decision processes.
Mathematics of Operations Research, 14(1):147–161, 1989.

[53] I. Ford, D. M. Titterington, and C. P. Kitsos. Recent advances in nonlinear experimental
design. Technometrics, 31(1):49–60, 1989.

[54] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih, R. Munos,
D. Hassabis, O. Pietquin, et al. Noisy networks for exploration. arXiv preprint
arXiv:1706.10295, 2017.

[55] A. Foster, D. R. Ivanova, I. Malik, and T. Rainforth. Deep adaptive design: Amortizing
sequential Bayesian experimental design. In International Conference on Machine Learning,
pages 3384–3395. PMLR, 2021.

[56] A. Foster, M. Jankowiak, E. Bingham, P. Horsfall, Y. W. Teh, T. Rainforth, and N. Good-
man. Variational Bayesian optimal experimental design. Advances in Neural Information
Processing Systems, 32, 2019.

[57] A. Foster, M. Jankowiak, M. O’Meara, Y. W. Teh, and T. Rainforth. A unified stochastic
gradient approach to designing Bayesian-optimal experiments. In International Conference
on Artificial Intelligence and Statistics, pages 2959–2969. PMLR, 2020.

[58] P. I. Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

[59] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pages 1587–1596. PMLR, 2018.

184

[60] R. Gautier and L. Pronzato. Adaptive control for sequential design. Discussiones Mathe-
maticae Probability and Statistics, 20(1):97–113, 2000.

[61] J. Ginebra. On the measure of the information in a statistical experiment. Bayesian Analysis,
2(1):167–212, 2007.

[62] T. Goda, T. Hironaka, and T. Iwamoto. Multilevel Monte Carlo estimation of expected
information gains. Stochastic Analysis and Applications, 38(4):581–600, 2020.

[63] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International Conference on
Machine Learning, pages 1861–1870. PMLR, 2018.

[64] M. Hainy, C. C. Drovandi, and J. M. McGree. Likelihood-free extensions for Bayesian
sequentially designed experiments. In mODa 11-Advances in Model-Oriented Design and
Analysis: Proceedings of the 11th International Workshop in Model-Oriented Design and
Analysis held in Hamminkeln, Germany, June 12-17, 2016, pages 153–161. Springer, 2016.

[65] M. Hainy, D. J. Price, O. Restif, and C. Drovandi. Optimal Bayesian design for model
discrimination via classification. Statistics and Computing, 32(2):25, 2022.

[66] H. Hasselt. Double Q-learning. Advances in neural information processing systems, 23,
2010.

[67] F. He, M. Brown, and H. Yue. Maximin and Bayesian robust experimental design for
measurement set selection in modelling biochemical regulatory systems. International
Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, 20(9):1059–1078, 2010.

[68] M. Heger. Consideration of risk in reinforcement learning. In Machine Learning Proceedings
1994, pages 105–111. Elsevier, 1994.

[69] T. Hossain, W. Shen, A. Antar, S. Prabhudesai, S. Inoue, X. Huan, and N. Banovic. A
Bayesian approach for quantifying data scarcity when modeling human behavior via inverse
reinforcement learning. ACM Transactions on Computer-Human Interaction, 30(1):1–27,
2023.

[70] R. A. Howard and J. E. Matheson. Risk-sensitive Markov decision processes. Management
science, 18(7):356–369, 1972.

[71] X. Huan. Numerical approaches for sequential Bayesian optimal experimental design. PhD
thesis, Massachusetts Institute of Technology, 2015.

[72] X. Huan and Y. M. Marzouk. Simulation-based optimal Bayesian experimental design for
nonlinear systems. Journal of Computational Physics, 232(1):288–317, 2013.

[73] X. Huan and Y. M. Marzouk. Gradient-based stochastic optimization methods in Bayesian
experimental design. International Journal for Uncertainty Quantification, 4(6):479–510,
2014.

185

[74] X. Huan and Y. M. Marzouk. Sequential Bayesian optimal experimental design via approx-
imate dynamic programming. arXiv preprint arXiv:1604.08320, 2016.

[75] M. Igl, L. Zintgraf, T. A. Le, F. Wood, and S. Whiteson. Deep variational reinforcement
learning for POMDPs. In International Conference on Machine Learning, pages 2117–2126.
PMLR, 2018.

[76] D. R. Ivanova, A. Foster, S. Kleinegesse, M. U. Gutmann, and T. Rainforth. Implicit deep
adaptive design: policy-based experimental design without likelihoods. Advances in Neural
Information Processing Systems, 34:25785–25798, 2021.

[77] A. Jain, G. Patil, A. Jain, K. Khetarpal, and D. Precup. Variance penalized on-policy and
off-policy actor-critic. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 7899–7907, 2021.

[78] S. M. Kakade. A natural policy gradient. Advances in neural information processing systems,
14, 2001.

[79] W. Kim, M. A. Pitt, Z.-L. Lu, M. Steyvers, and J. I. Myung. A hierarchical adaptive approach
to optimal experimental design. Neural Computation, 26:2565–2492, 2014.

[80] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[81] S. Kleinegesse, C. Drovandi, and M. U. Gutmann. Sequential Bayesian experimental design
for implicit models via mutual information. Bayesian Analysis, 16(3):773–802, sep 2021.

[82] S. Kleinegesse and M. U. Gutmann. Efficient Bayesian experimental design for implicit
models. In The 22nd International Conference on Artificial Intelligence and Statistics, pages
476–485. PMLR, 2019.

[83] S. Kleinegesse and M. U. Gutmann. Gradient-based Bayesian experimental design for
implicit models using mutual information lower bounds. arXiv preprint arXiv:2105.04379,
2021.

[84] S. Körkel*, E. Kostina, H. G. Bock, and J. P. Schlöder. Numerical methods for optimal
control problems in design of robust optimal experiments for nonlinear dynamic processes.
Optimization Methods and Software, 19(3-4):327–338, 2004.

[85] A. Krishna, V. R. Joseph, S. Ba, W. A. Brenneman, and W. R. Myers. Robust experimental
designs for model calibration. Journal of Quality Technology, pages 1–12, 2021.

[86] A. Kumar, J. Motwani, and L. Otero. An application of Taguchi’s robust experimental design
technique to improve service performance. International Journal of Quality & Reliability
Management, 1996.

[87] H. Kurniawati and V. Yadav. An online POMDP solver for uncertainty planning in dynamic
environment. In Robotics Research, pages 611–629. Springer, 2016.

186

[88] P. La and M. Ghavamzadeh. Actor-critic algorithms for risk-sensitive MDPs. Advances in
neural information processing systems, 26, 2013.

[89] X. Li and X. Wang. Variance-penalized response-adaptive randomization with mismeasure-
ment. Journal of Statistical Planning and Inference, 142(7):2128–2135, 2012.

[90] Y. Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

[91] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

[92] D. V. Lindley. On a measure of the information provided by an experiment. The Annals of
Mathematical Statistics, 27(4):986–1005, 1956.

[93] D. V. Lindley. Bayesian statistics: A review. SIAM (Society for Industrial and Applied
Mathematics), Philadelphia, PA, 1972.

[94] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Efficient dynamic-programming
updates in partially observable Markov decision processes, 1995.

[95] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially observ-
able environments: Scaling up. In Machine Learning Proceedings 1995, pages 362–370.
Elsevier, 1995.

[96] Y. Liu, P. Ramachandran, Q. Liu, and J. Peng. Stein variational policy gradient. arXiv
preprint arXiv:1704.02399, 2017.

[97] Q. Long, M. Scavino, R. Tempone, and S. Wang. Fast estimation of expected informa-
tion gains for Bayesian experimental designs based on Laplace approximations. Computer
Methods in Applied Mechanics and Engineering, 259:24–39, 2013.

[98] Q. Long, M. Scavino, R. Tempone, and S. Wang. A Laplace method for under-determined
Bayesian optimal experimental designs. Computer Methods in Applied Mechanics and
Engineering, 285:849–876, 2015.

[99] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch. Multi-agent actor-critic for
mixed cooperative-competitive environments. arXiv preprint arXiv:1706.02275, 2017.

[100] H. Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.

[101] H. M. Markowitz and G. P. Todd. Mean-variance analysis in portfolio choice and capital
markets, volume 66. John Wiley & Sons, 2000.

[102] S. Masoumi, T. A. Duever, and P. M. Reilly. Sequential markov chain monte carlo (mcmc)
model discrimination. The Canadian Journal of Chemical Engineering, 91(5):862–869,
2013.

[103] J. McGree, C. C. Drovandi, and A. N. Pettitt. A sequential Monte Carlo approach to the
sequential design for discriminating between rival continuous data models. 2012.

187

[104] O. Mihatsch and R. Neuneier. Risk-sensitive reinforcement learning. Machine learning,
49:267–290, 2002.

[105] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International
conference on machine learning, pages 1928–1937. PMLR, 2016.

[106] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015.

[107] R. Moriconi, M. P. Deisenroth, and K. S. Kumar. High-dimensional Bayesian optimization
using low-dimensional feature spaces. Machine Learning, 109(9):1925–1943, 2020.

[108] P. Müller. Simulation based optimal design. Handbook of Statistics, 25:509–518, 2005.

[109] P. Müller, D. A. Berry, A. P. Grieve, M. Smith, and M. Krams. Simulation-based sequential
Bayesian design. Journal of Statistical Planning and Inference, 137(10):3140–3150, 2007.

[110] P. Müller and G. Parmigiani. Optimal design via curve fitting of Monte Carlo experiments.
Journal of the American Statistical Association, 90(432):1322–1330, 1995.

[111] S. A. Murphy. Optimal dynamic treatment regimes. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 65(2):331–366, 2003.

[112] D. Nass, B. Belousov, and J. Peters. Entropic risk measure in policy search. In 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1101–1106. IEEE,
2019.

[113] F. Nogueira. Bayesian Optimization: Open source constrained global optimization tool for
Python, 2014–.

[114] A. M. Overstall and D. C. Woods. Bayesian design of experiments using approximate
coordinate exchange. Technometrics, 59(4):458–470, 2017.

[115] M. Pelikan, D. E. Goldberg, E. Cantú-Paz, et al. BOA: The Bayesian optimization algo-
rithm. In Proceedings of the genetic and evolutionary computation conference GECCO-99,
volume 1, pages 525–532. Citeseer, 1999.

[116] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. Asfour,
P. Abbeel, and M. Andrychowicz. Parameter space noise for exploration. arXiv preprint
arXiv:1706.01905, 2017.

[117] B. Poole, S. Ozair, A. Van Den Oord, A. Alemi, and G. Tucker. On variational bounds of
mutual information. In International Conference on Machine Learning, pages 5171–5180.
PMLR, 2019.

[118] L. Prashanth and M. Ghavamzadeh. Variance-constrained actor-critic algorithms for dis-
counted and average reward MDPs. Machine Learning, 105:367–417, 2016.

188

[119] L. Pronzato and É. Thierry. Sequential experimental design and response optimisation.
Statistical Methods and Applications, 11(3):277–292, 2002.

[120] T. Rainforth, A. Foster, D. R. Ivanova, and F. B. Smith. Modern Bayesian experimental
design. arXiv preprint arXiv:2302.14545, 2023.

[121] R. T. Rockafellar, S. Uryasev, et al. Optimization of conditional value-at-risk. Journal of
risk, 2:21–42, 2000.

[122] P. M. Roth. Design of experiments for discrimination among rival models. 1967.

[123] E. G. Ryan, C. C. Drovandi, J. M. McGree, and A. N. Pettitt. A review of modern computa-
tional algorithms for Bayesian optimal design. International Statistical Review, 84(1):128–
154, 2016.

[124] K. J. Ryan. Estimating expected information gains for experimental designs with application
to the random fatigue-limit model. Journal of Computational and Graphical Statistics,
12(3):585–603, 2003.

[125] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
In International conference on machine learning, pages 1889–1897, 2015.

[126] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

[127] D. W. Scott. Multivariate density estimation: Theory, practice, and visualization. John
Wiley & Sons, 2015.

[128] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas. Taking the human out
of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):148–175,
2015.

[129] W. Shen, J. Dong, and X. Huan. Variational sequential optimal experimental design using
reinforcement learning. arXiv preprint arXiv:2306.10430, 2023.

[130] W. Shen and X. Huan. Bayesian sequential optimal experimental design for nonlinear models
using policy gradient reinforcement learning. Computer Methods in Applied Mechanics and
Engineering, In press, 2023.

[131] C. Sherstan, D. R. Ashley, B. Bennett, K. Young, A. White, M. White, and R. S. Sutton.
Comparing direct and indirect temporal-difference methods for estimating the variance of
the return. In UAI, pages 63–72, 2018.

[132] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic
policy gradient algorithms. In ICML, 2014.

[133] S. Silvey. Optimal design: An introduction to the theory for parameter estimation, volume 1.
Springer Science & Business Media, 2013.

189

[134] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

[135] M. J. Sobel. The variance of discounted Markov decision processes. Journal of Applied
Probability, 19(4):794–802, 1982.

[136] A. Solonen, H. Haario, and M. Laine. Simulation-based optimal design using a response
variance criterion. Journal of Computational and Graphical Statistics, 21(1):234–252, 2012.

[137] N.-Z. Sun. Structure reduction and robust experimental design for distributed parameter
identification. Inverse Problems, 21(2):739, 2005.

[138] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[139] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. In Advances in neural information
processing systems, pages 1057–1063, 2000.

[140] G. Taguchi. System of experimental design; engineering methods to optimize quality and
minimize costs. Technical report, 1987.

[141] A. Tamar, Y. Glassner, and S. Mannor. Optimizing the CVaR via sampling. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

[142] A. Tamar and S. Mannor. Variance adjusted actor critic algorithms. arXiv preprint
arXiv:1310.3697, 2013.

[143] G. Terejanu, R. R. Upadhyay, and K. Miki. Bayesian experimental design for the active
nitridation of graphite by atomic nitrogen. Experimental Thermal and Fluid Science, 36:178–
193, 2012.

[144] O. Thomas, R. Dutta, J. Corander, S. Kaski, M. U. Gutmann, et al. Likelihood-free inference
by ratio estimation. Bayesian Analysis, 2021.

[145] B. Toman and J. L. Gastwirth. Robust Bayesian experimental design and estimation for
analysis of variance models using a class of normal mixtures. Journal of statistical planning
and inference, 35(3):383–398, 1993.

[146] P. Tsilifis, R. G. Ghanem, and P. Hajali. Efficient Bayesian experimentation using an expected
information gain lower bound. SIAM/ASA Journal on Uncertainty Quantification, 5(1):30–
62, 2017.

[147] U. Von Toussaint. Bayesian inference in physics. Reviews of Modern Physics, 83:943–999,
2011.

[148] E. Walter and L. Pronzato. Robust experiment design: between qualitative and quantitative
identifiabilities. Identifiability of parametric models, pages 104–113, 1987.

190

[149] J. K. Wathen and J. A. Christen. Implementation of backward induction for sequentially
adaptive clinical trials. Journal of Computational and Graphical Statistics, 15(2):398–413,
2006.

[150] B. P. Weaver, B. J. Williams, C. M. Anderson-Cook, and D. M. Higdon. Computational en-
hancements to Bayesian design of experiments using Gaussian processes. Bayesian Analysis,
11(1):191–213, 2016.

[151] D. White. A mathematical programming approach to a problem in variance penalised Markov
decision processes. Operations-Research-Spektrum, 15:225–230, 1994.

[152] M. White and A. White. A greedy approach to adapting the trace parameter for temporal
difference learning. arXiv preprint arXiv:1607.00446, 2016.

[153] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3):229–256, 1992.

[154] K. Wu, P. Chen, and O. Ghattas. A fast and scalable computational framework for large-scale
high-dimensional Bayesian optimal experimental design. SIAM/ASA Journal on Uncertainty
Quantification, 11(1):235–261, 2023.

[155] K. Wu, P. Chen, and O. Ghattas. An offline-online decomposition method for efficient
linear Bayesian goal-oriented optimal experimental design: Application to optimal sensor
placement. SIAM Journal on Scientific Computing, 45(1):B57–B77, 2023.

[156] Y. Yi and X. Wang. Response adaptive designs with a variance-penalized criterion. Biomet-
rical Journal: Journal of Mathematical Methods in Biosciences, 51(5):763–773, 2009.

[157] C. Ying, X. Zhou, H. Su, D. Yan, N. Chen, and J. Zhu. Towards safe reinforcement learning
via constraining conditional value-at-risk. arXiv preprint arXiv:2206.04436, 2022.

191

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	Abstract
	Introduction
	Background and motivation
	Objectives and outline

	Sequential Optimal Experimental Design
	Problem formulation
	Numerical methods for sOED
	Numerical results and discussions
	Summary

	Variational Sequential Optimal Experimental Design
	Problem formulation
	Numerical Methods for vsOED
	Numerical results and discussions
	Summary

	Robust Optimal Experimental Design
	Problem formulation
	Numerical methods for rOED
	Numerical results and discussions
	Summary

	Robust Sequential Optimal Experimental Design
	Problem formulation
	Numerical methods for rsOED
	Numerical results
	Summary

	Conclusions and future work
	Conclusions
	Limitations and future work

	Appendices
	Appendix of sequential optimal experimental design (sOED)
	Equivalence of incremental and terminal formulations in sOED
	Policy gradient expression
	Equivalence of fixing and resampling model parameters in an sOED episode
	Equivalence of using xk and Ik as the state representation
	Convergence of Q-network

	Appendix of variational sequential optimal experimental design (vsOED)
	Information gain jointly with model probability
	Information gain jointly on model parameters and predictive quantities
	Proof of prop:vsoedterminalincremental (terminal-incremental equivalence)
	Proof of prop:vsoedonepointexpectedutility (one-point-estimate equivalence)
	Omitting prior terms
	Proof of prop:vsoedvariationalonepointexpectedutility (variational lower bound)
	Cancellation of intermediate posteriors

	Appendix of robust optimal experimental design (rOED)
	Variance and bias of N,M1(d)2
	Variance and bias of 2,1N,M1(d)
	Variance and bias of 2,2N,M1(d)
	Variance and bias of 2,3N,M1,M2(d)

	Appendix of robust sequential optimal experimental design (rsOED)
	The recursive relationship of the variance action-value function
	Policy Gradient Expression of Total Utility Variance

	Bibliography

