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ABSTRACT

In the era of precision medicine, time-to-event outcomes such as time to death or disease progres-
sion are routinely collected, along with high-throughput covariates which defy classical survival
regression models. Given challenges with high-dimensional survival data, recent emphasis has
been placed on developing novel deep learning approaches for survival estimation and prognosti-
cation. However, many survival processes in real applications involve multiple competing events.
Semi-competing risks, a variant of competing risk problems, have commonly been encountered in
clinical studies. In this dissertation, we propose a series of deep learning approaches in this setting
of semi-competing risks. Our motivation comes from the Boston Lung Cancer Survival Cohort
study, a large cancer epidemiology cohort investigating the complex mechanisms of lung cancer.

In Chapter II, we first propose a novel, multi-task deep neural network for semi-competing risks
based on the illness-death model, a compartment-type model for the rates at which individuals
transition between disease states. We develop our objective function based on the hazards of
experiencing a disease progression or death from being event-free (e.g., from time of diagnosis)
and the hazards of death following progression. Our deep learning model consists of three risk-
specific sub-networks, respectively corresponding to the three possible state transitions, and a finite
set of trainable parameters for specifying the baseline hazards and the degree of dependence among
the three transition processes. We further introduce a novel framework for evaluating predictive
performance in this setting by extending the widely used Brier score for censored univariate time-
to-event data to the bivariate survival function.

In Chapter III we further extend this method to allow the nonparametric estimation of our
transition-specific baseline hazard functions. We propose a hybrid approach to deep learning via
our so-called neural expectation-maximization (NEM) algorithm. By viewing the subject-specific
frailty as a missing variable, the algorithm iterates between three steps. In the E-step, we update the
conditional expectation of the frailties, given the data and current values for the model parameters.
In the M-step, we estimate the jump sizes for the piecewise-constant baseline hazards, then fixing
these quantities, update our estimates of the log risk functions and frailty variance as outputs of our
neural network architectures in the N-step.

While mortality is often the primary endpoint for studying the effect of a particular treatment
or exposure, non-fatal events impact illness trajectories and treatment decisions related to disease

x



management. The integration of causal inference into machine learning approaches has shown great
promise for estimating the causal effects of treatments on survival outcomes, however, little work
has been done in settings where a non-fatal event is potentially ‘truncated by death.’ In Chapter
IV, we propose a deep learning approach for estimating the causal effect of a given treatment on
a non-fatal outcome. We estimate the marginal survival function for the non-fatal event based on
an Archimedean copula model and use a jackknife pseudo-value approach to circumvent the need
for a complex loss function, whereby we estimate pseudo-survival probabilities at fixed time points
as target values. We relate our pseudo-outcomes to our causal variable of interest and additional
confounders in a deep neural network S-learner. Throughout, we provide a series of numerical
studies to evaluate our proposed approach and apply our method to the Boston Lung Cancer Study.
We conclude with some discussion on our current work and areas of future research.
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CHAPTER 1

Introduction

1.1 Background and Motivation

Survival analysis is an area of statistics where the random variate is survival time or the time until
the occurrence of a specific event, which represents a qualitative change or the transition from one
discrete state to another (e.g., alive to deceased). The most often studied event in biomedicine
is death, though events of interest in fields ranging from sociology to industry, to engineering,
to finance, to astronomy are widely encountered. The goals of survival analysis are to describe
the probability of an event occurring by some time, to detect associations between risk factors
and events, or to predict survival times based on informative characteristics. What distinguishes
survival outcomes from other outcomes is the presence of censoring, meaning that the event of
interest may not be observed for all subjects; subjects whose event times are not observed are said
to be censored. In practice, the fraction of event times that are censored in a study population can
be substantial, prohibiting the direct use of standard regression methods. Estimation methods in
survival analysis are built around extracting information from all subjects, censored or not.

In the era of precision medicine, survival outcomes with high-throughput covariates or pre-
dictors are routinely collected. These high-dimensional data (i.e., with the number of predictors
exceeding the number of observations) challenge classical survival regression models, which are
either infeasible to fit or likely to incur low predictability due to over-fitting. Recent emphasis has
been placed on developing novel machine learning approaches for survival prognostication.

However, many survival processes in real applications involve multiple competing events. Semi-
competing risk problems, a variant of competing risk problems, have commonly been encountered
in clinical studies. By semi-competing, we mean that the occurrence of one event, i.e., a non-
terminal event, is subject to the occurrence of another, terminal event, but not vice versa. As the
non-terminal event (e.g., cancer progression) is often a strong precursor to the terminal event (e.g.,
death), semi-competing events are often related and, hence, the terminal event may informatively
censor the non-terminal event. To overcome such informative censoring, researchers either consider
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only univariate outcomes such as overall survival, or composite outcomes such as progression-free
survival, that is, time to progression or death, whichever comes first. What is lacking in these
approaches is how to model a predictor’s potentially different roles in disease progress and death,
and they ignore crucial information about the sojourn time between progression and death. Even
in settings where the non-terminal and terminal event times are only modestly correlated, failing to
acknowledge this sojourn time may lead to biased predictions. In this thesis, we propose a series
of deep learning approaches for survival prediction in this setting of semi-competing risks. Our
motivation comes from the Boston Lung Cancer Survival Cohort study, one of the largest cancer
epidemiology cohorts investigating the complex mechanisms of lung cancer.

The rest of this chapter is organized as follows. In Section 1.2, we provide a brief overview
of some key concepts and notation in survival analysis and introduce the necessary perquisites on
which much of the subsequent literature is built. In Section 1.3, we turn to machine learning for
survival prediction. We first discuss the application of common machine learning concepts in these
settings, such as a support vector machines, recursive partitioning and survival trees, and ensemble
learners such as random survival forests. We then focus on a review artificial neural networks and
extend this notion to survival prediction. In Section 1.4, we conclude with a review of existing
deep learning procedures for competing risk analysis and motivate the body of this work with the
introduction of semi-competing risks.

1.2 Notation

Consider a study of 𝑛 subjects. The outcome variable is the time to the event of interest, such
as death or cancer progression. Events in other contexts can be bankruptcy, COVID-19 infection,
graduation, missing a mortgage payment, etc. A time zero also needs to be set carefully, to have
a practical interpretation when helping to address specific scientific questions. For instance, some
common choices of time zero in medical studies include date of birth, time of diagnosis, date of
randomization in a clinical trial, or first date receiving a treatment. A unique aspect of survival
analysis is that the event may go unobserved for some individuals. In particular, right censoring
occurs when a subject’s follow-up ends before the event can be observed (Figure 1.1). Though
other types of censoring exist, we focus on right censoring, which happens most often in practice.

We denote the 𝑖th subject’s survival and censoring times respectively by 𝑇𝑖 and𝐶𝑖 (𝑖 = 1, . . . , 𝑛),
which are non-negative random variates. For the 𝑖th subject, we observe 𝑿𝑖, a 𝑝-vector of covariates,
𝑌𝑖 = min(𝑇𝑖, 𝐶𝑖), and the event indicator 𝛿𝑖 = I(𝑇𝑖 ≤ 𝐶𝑖), where I(·) is an indicator function. We
assume that subjects are independent from each other, and that 𝑇𝑖 ⊥ 𝐶𝑖, given 𝑿𝑖. Often, the
goal of survival analysis is to associate 𝑿𝑖 with the distribution of 𝑇𝑖, and, in particular, model the
conditional hazard function given 𝑿𝑖, i.e.,
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Time

Death

Censoring

Study Start Study End

Patient 1 ×
Patient 2 •◦

Figure 1.1: Schematic of observations for two example patients, with different entry times, over
the course of a study. The event of interest, death, is observed for Patient 1, whereas Patient 2 is
censored, as the patient is still alive at the end of the study.

_(𝑡 |𝑿𝑖) = lim
Δ→0

1
Δ

Pr(𝑡 ≤ 𝑇𝑖 < 𝑡 + Δ|𝑇𝑖 ≥ 𝑡, 𝑿𝑖), (1.1)

which measures the instantaneous failure rate at a given time among those who are alive and whose
risk factors are characterized by 𝑿𝑖. Throughout this review, for simplicity, we assume that 𝑿𝑖 is
time-invariant, though in many circumstances extensions to time-dependent covariates are possible.

1.3 Machine Learning Techniques for Survival Prediction

Significant work has gone into the development of machine learning algorithms that can accommo-
date survival data. These non-parametric learning approaches can handle non-linear relationships
or higher-order interaction that would otherwise be costly in classical methods, and can improve
accuracy in prediction for survival outcomes.

1.3.1 Support Vector Machines

Support vector machines (SVMs) fall under the supervised learning family [139, 100] and seek
to find a hyperplane that provides maximal separation between groups. Specifically, consider a
binary outcome 𝑌𝑖 ∈ {−1, 1} for each individual 𝑖 with a corresponding 𝑝-dimensional covariate
vector, 𝑿𝑖. The goal of SVM is to identify a hyperplane, 𝐻 (𝜓, 𝑎) = {v ∈ R𝑝 |⟨𝜓, v⟩ + 𝑎 = 0},
separating these two groups so that the margin, 2/| |𝜓 | |, can be maximized, where 𝜓 ∈ R𝑝 is the
slope vector, and ⟨·, ·⟩ denotes the inner product. Often, the two classes may not be separable in
the original feature space within R𝑝, and we use F(·) to map the original predictors to a higher
dimensional space where the outcomes can be distinguished, in which case, the hyperplane is
𝐻 (𝜓, 𝑎) = {v ∈ R𝑝 |⟨𝜓,F(v)⟩ + 𝑎 = 0} and, with slight overuse of notation, the dimension of 𝜓 is
the same as that of F(v). In practice, F(·) does not have to be obtained explicitly and ⟨𝜓,F(v)⟩
can be calculated by using a reproducing kernel [141]. We further introduce a slack variable,
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b𝑖 = [1 − 𝑌𝑖{⟨𝜓,F(𝑿𝑖)⟩ + 𝑎}]+, to dictate the degree to which the 𝑖th data point is misclassified.
SVMs have been extended to model continuous time-to-event data, which are prone to censoring,

by predicting the survival time to be ⟨𝜓,F(𝑿𝑖)⟩ +𝑎. Van Belle et al. (2007) formulated the survival
SVM based on the rank concordance between the prediction and observed survival time, 𝑌𝑖, among
comparable individuals in the presence of censoring. Specifically, they introduced a comparability
indicator, 𝑣𝑖 𝑗 = 𝛿𝑖I(𝑌𝑖 < 𝑌 𝑗 ), such that the ordering of the observed survival times for subjects 𝑖, 𝑗
can only be determined when 𝑣𝑖 𝑗 = 1 [137]. For a comparable pair with 𝑣𝑖 𝑗 = 1, a concordance in
rank is reached if and only if ⟨𝜓,F(𝑿 𝑗 )⟩ − ⟨𝜓,F(𝑿𝑖)⟩ > 0. Allowing varying degrees of pairwise
slacks, i.e., when ⟨𝜓,F(𝑿 𝑗 )⟩ − ⟨𝜓,F(𝑿𝑖)⟩ ≤ 0 with 𝑣𝑖 𝑗 = 1, across comparable pairs, Van Belle et
al. proposed to solve

min
𝜓,b

1
2
∥𝜓∥2 + 𝛾

∑︁
(𝑖, 𝑗):𝑌𝑖<𝑌 𝑗

𝑣𝑖 𝑗b𝑖 𝑗

subject to
〈
𝜓,F

(
𝑿 𝑗

)〉
− ⟨𝜓,F (𝑿𝑖)⟩ ≥ −b𝑖 𝑗 ,

and b𝑖 𝑗 ≥ 0, 𝑖, 𝑗 = 1, . . . , 𝑛,

where b𝑖 𝑗 ’s are pair-specific slacks, whose summation is to be minimized, and 𝛾 > 0 is a regulariza-
tion parameter controlling the maximal margin and misclassification penalties. This formulation
can be shown to maximize the Harrell rank-based concordance index (C-index) [61]. Hence, it is
termed the rank-based SVM approach for survival data and does not estimate the “intercept,” 𝑎. An
alternative regression approach [121, 123] aimed to find a prediction, ⟨𝜓,F(𝑿𝑖)⟩+𝑎, for continuous
survival times, by identifying a hyperplane that best fit the data that are subject to censoring, i.e.,

min
𝜓,𝑎,b, ,b

∗

1
2
∥𝜓∥2 + 𝛾

𝑛∑︁
𝑖=1

(
b𝑖 + b∗𝑖

)
subject to 𝑌𝑖 − ⟨𝜓,F (𝑿𝑖)⟩ − 𝑎 ≤ b𝑖,

𝛿𝑖 (⟨𝜓,F (𝑿𝑖)⟩ + 𝑎 − 𝑌𝑖) ≤ b∗𝑖 ,
and b𝑖, b∗𝑖 ≥ 0.

With censoring indicators incorporated into the constraints, the formulation utilizes available
information from both censored and non-censored observations. To make full use of the strengths
of both approaches, [138] and [109] further proposed hybrid approaches, combining the penalties
imposed by both methods.

1.3.2 Tree-Based Methods

While SVMs are adept at estimating non-linear relationships, they do not scale well for large
datasets and often under-perform when the outcomes are noisy. Also there may be no clear in-
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terpretations for classifying data points above or below the estimated hyperplane [124]. Decision
trees are an alternative for classifying patients that provide an intuitive interpretation of the hierar-
chical relationships between predictors. Broadly, classification and regression trees (CART) is an
umbrella term for a set of recursive partitioning algorithms, which predict the group membership
(classification) or target value (regression) for an observation based on a set of binary decision
rules. Gordon and Olshen (1985) first presented survival trees, and Ciampi et al. (1985, 1986)
solidified the notion and established splitting criteria based on the log-rank and likelihood ratio test
statistics, respectively, gaining predictive accuracy and interpretability [55, 30, 29]. A recursive
partitioning algorithm for generating a survival tree is given as follows.

1. Discretize each covariate to be a binary variable (categorical variables with 𝑚 levels are
expressed as 𝑚 − 1 dummy variables).

2. For every binary covariate, 𝑋 𝑗 , 𝑗 = 1, . . . , 𝑝, compute the log-rank statistic to test the
difference between the survival curves for the two groups defined by 𝑋 𝑗 .

3. Choose the covariate, 𝑋 𝑗∗ , with the largest significant test statistic and partition the full sample
(i.e., the root node) into two groups (child nodes) based on 𝑋 𝑗∗ .

4. Repeat steps 2-3 for each subset (child node) until reaching the terminal nodes, that is,
no covariates produce a significant test statistic and there are enough events (exceeding a
prespecified number) in each terminal node.

The resulting terminal nodes split the original sample into distinct groups, who are deemed more
homogeneous within each group, and will output survival estimates via Kaplan-Meier estimation
in each group. Further variations in splitting are based on metrics that accommodate censored data
and by either minimizing within-node homogeneity or maximizing between-node heterogeneity.
For example, these metrics can be Martingale residuals [133] or deviance residuals [87]. With an
established splitting criterion, to select a final tree, either a full survival tree is ‘grown’ and ‘pruned’
or a stopping rule is applied in backward or forward selection [17].

1.3.3 Ensemble Learners

While survival trees provide a fast and intuitive means of studying hierarchical relationships of
predictors with outcomes, they are prone to over-fitting and high variability [67, 126]. Ensemble
learners overcome instability issues with techniques such as bagging, boosting, and random forests.
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1.3.3.1 Bagging

Bootstrap aggregation or bagging refers to a means of training an ensemble learner by resampling
the data with replacement, training weak learners (e.g., individual survival trees) in parallel, and
combining these results over the multiple bootstrapped samples [18]. It has three steps.

1. Bootstrapping: Resample from the original data of size 𝑛 with replacement to form a new
sample also of size 𝑛, and obtain ‘𝐵’ such samples.

2. Parallel Training: With each bootstrap sample, 𝑏 = 1, . . . , 𝐵, independently train the weak
learners in parallel.

3. Aggregation: Combine the 𝐵 individual predictions by averaging over them or by taking a
majority vote.

Bagging for survival trees was first proposed by [64]; in contrast to bagging for classification trees,
aggregation is done by averaging survival predictions, rather than a ‘majority vote.’ Each survival
tree is grown so that every terminal node has enough events, which are used to predict the survival
function node-wise at each terminal node. Then, for any newcomer, the predictions are averaged
over the individual trees to yield an ensemble prediction of their survival function.

1.3.3.2 Boosting

In a similar vein, boosting trains a series of weak learners with the goal of aggregating them
into a better ensemble learner [23]. [63] proposed a gradient boosting algorithm for survival
settings. Consider a mortality risk prediction based on covariates, 𝑿𝑖. For an 𝑀-step gradient
boosting algorithm, a prediction, F𝑚 (𝑿𝑖), is made at each step, say 𝑚 = 1, . . . , 𝑀 , based on a
previous prediction, F𝑚−1(𝑿𝑖), and an additional weak learner 𝑓𝑚 (𝑿𝑖), which is the projection of
the “residual error” of F𝑚−1(𝑿𝑖) to the space spanned by 𝑿𝑖,

F𝑚 (𝑿𝑖) = F𝑚−1(𝑿𝑖) + 𝑤𝑚 𝑓𝑚 (𝑿𝑖),

where 0 < 𝑤𝑚 ≤ 1 (e.g., 𝑤𝑚 = 0.1) is the step size, the residual error refers to the gradient of the
loss function, e.g., the negative log partial likelihood function in a survival setting, evaluated at
F𝑚−1(𝑿𝑖), and the number of steps, 𝑀 , can be viewed as a tuning parameter.

Boosting has two notable differences from bagging. First, boosting trains weak learners se-
quentially, updating the weights placed on learners iteratively, whereas in bagging individual weak
learners such as survival trees are trained independently and in parallel, which are aggregated via
majority voting or averaging. Second, boosting is applicable to settings where learners have low
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variability and high bias, as the performance is improved by redistributing the weights. In contrast,
bagging is often applied when individual learners exhibit high variability, but low bias, as it reduces
variations arising from individual trees.

1.3.3.3 Random Forests

Yet another class of ensemble learners are random forests [19], which, like bagging, aggregate
predictions from individual trees generated over bootstrap resampled datasets. However, differing
from bagging, random forests randomly select a subset of features, say 𝑝′ < 𝑝 features, when
generating each tree and use them for the individual tree’s growth. By doing so, random forests
reduce correlations among individual trees, leading to gains in accuracy [19]. The choice of 𝑝′

is problem-specific, which can also be viewed as a tuning parameter. In survival settings, [71]
aggregated the survival predictions arising from each tree by averaging the predicted cumula-
tive hazard functions into an ensemble prediction. Further notable developments include [72],
which extended random survival forests to high dimensions by incorporating regularization, [73],
which provided standard errors and confidence intervals for variable importance, and [127], which
proposed censoring unbiased regression trees and ensembles.

1.3.4 Deep Learning and Artificial Neural Networks

Deep learning has emerged as a powerful tool for risk prediction. This work stems from artificial
neural networks that tried to mirror how the human brain functions [115], wherein nodes (or
neurons) are connected in a network as a weighted sum of inputs through a series of affine
transformations and non-linear activations.

A fully-connected, feed-forward artificial neural network is made up of 𝐿 layers, with 𝑘 𝑙 neurons
in the 𝑙th layer (𝑙 = 1, . . . , 𝐿) (Figure 1.2). With an input, network predictions are made based on
an 𝐿-fold composite function, 𝑓𝐿 ◦ 𝑓𝐿−1 ◦ · · · ◦ 𝑓1(·) with (𝑔 ◦ 𝑓 ) (·) = 𝑔( 𝑓 (·)). At the 𝑙h layer,
𝑓𝑙 (·), is defined as

𝑓𝑙 (v) = 𝜎𝑙 (W𝑙v + b𝑙) ∈ R𝑘𝑙 ,

where v is a 𝑘 𝑙−1 × 1 input vector fed from the (𝑙 − 1)th layer, 𝜎𝑙 (·) : R𝑘𝑙 → R𝑘𝑙 is an activation
function, W𝑙 is a 𝑘 𝑙× 𝑘 𝑙−1 weight matrix, b𝑙 is a 𝑘 𝑙×1 bias vector, and the 0th layer is the input layer.
Typical choices of 𝜎𝑙 (·) include the sigmoid function or the rectified linear unit activation function
(ReLU), that is, 𝜎𝑙 (b) = max(0, b), where b ∈ R𝑘𝑙 and max(0, ·) operates component-wise.

For survival prediction, several deep learning approaches have emerged, beginning with the
seminal work of [42], which adopted a fully-connected, feed-forward neural network to extend
the Cox model to nonlinear predictions. Other feed-forward neural networks [93, 21, 16, 41]
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Figure 1.2: Diagram of a feed-forward, fully-connected two-layer artificial neural network, includ-
ing the hidden (1st) and output (2nd) layer. The input (0-th) layer is not counted as a real neural
network layer.

used the survival status as a training label, and output predicted survival probabilities. Further
developments have been made in Bayesian networks [15, 94, 43], convolutional neural networks
[148, 79, 80, 111], and recurrent neural networks [147]. From a different perspective, Zhao and
Feng (2020) proposed transforming each subject’s survival time into a series of jackknife pseudo
conditional survival probabilities, thus circumventing the need for complex cost functions for
censored survival data [154]. Given that the Kaplan-Meier estimator is approximately unbiased
under independent censoring, for the 𝑖th subject, the pseudo-survival probability is computed by

𝑆𝑖 (𝑡) = 𝑛𝑆(𝑡) − (𝑛 − 1)𝑆−𝑖 (𝑡),

where 𝑆(𝑡) and 𝑆−𝑖 (𝑡) are the Kaplan-Meier (KM) estimates of 𝑆(𝑡) using all 𝑛 subjects and
excluding the 𝑖th subject, respectively. For subjects 𝑖 = 1, · · · , 𝑛, the 𝑆𝑖 (𝑡) are then used as the
numeric response, similar to model fit to I (𝑇𝑖 > 𝑡), and the ANN minimizes the so-called binary
cross-entropy loss, or simply, the mean of the squared differences between the pseudo- survival
probabilities and the predicted survival probabilities from the neural network output.

1.4 Prediction for Competing and Semi-Competing Risks

Many survival processes in real applications involve multiple competing events. Risk prediction
in these settings is an up-and-coming field with many potential developments. We focus on two
common competing event settings, i.e., competing and semi-competing risks.
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1.4.1 Competing Risks

In a competing risk setting, observing an event type, labeled by 𝑐 ∈ {1, . . . , 𝐾}, effectively
eliminates the chance of observing other event types happening to the same individual [149]. For
example, when studying the survival of patients with cancer, competing events can be cancer-
related death (𝑐 = 1) or death by cardiac disease (𝑐 = 2) (Figure 1.3); an individual cannot die
of cardiac disease once they have died of cancer, and vice versa. For characterizing the risk of
competing events, there are two commonly used statistical metrics, namely, the cause-specific and
the subdistribution hazard, which target different counterfactual scenarios. The former describes
the risk under hypothetical elimination of competing events, while the latter is about the observable
risk without elimination of any competing events [117].

Time

Cancer Death (𝑐 = 1)

Cardiac Death (𝑐 = 2)

Censoring

Study Start Study End

Patient 1 ×
Patient 2 ×
Patient 3 •◦

Figure 1.3: Schematic of observation times for three example patients with competing risks: cancer
death (red cross) versus cardiac death (blue cross), with censoring denoted by an open circle.

Several authors [85, 84] have stated that the subdistribution hazard is useful for predicting the
probability of having an event of a type of interest by a given time, termed the cumulative incidence
function (CIF), which reflects an individual’s actual risks and prognosis. In the following, we focus
on the subdistribution hazard, which is derived from CIF, i.e., 𝐹𝑐 (𝑡) = Pr(𝑇𝑖 < 𝑡, C𝑖 = 𝑐), where C𝑖
marks the event type for subject 𝑖. Specifically, for each event type 𝑐 = 1, . . . , 𝐾 , it is defined as

_𝑐 (𝑡) = lim
Δ→0

Pr (𝑡 ≤ 𝑇𝑖 < 𝑡 + Δ, C𝑖 = 𝑐 | 𝑇𝑖 ≥ 𝑡 ∪ {𝑇𝑖 < 𝑡 ∧ C𝑖 ≠ 𝑐})
Δ

=
𝑑𝐹𝑐 (𝑡)/𝑑𝑡
1 − 𝐹𝑐 (𝑡)

,

which denotes the instantaneous risk of failure from event type 𝑐 among those who have not
experienced this type of event. That is, the risk set at 𝑡 includes those who are event free as well as
those who have experienced a competing event (other than type 𝑐) by 𝑡. The subdistribution hazard
model [45] links a subdistribution hazard function to covariates via

_𝑐 (𝑡 |𝑿𝑖) = _0𝑐 (𝑡) exp(𝑿⊤
𝑖 𝜷), (1.2)

where _0𝑐 (𝑡) is the baseline subdistribution hazard function for event type 𝑐, and 𝜷 specifies the
effect of 𝑿𝑖 on the probability of event 𝑐 occurring over time. In fact, model (1.2) implies that
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1 − 𝐹𝑐 (𝑡 |𝑿𝑖) = {1 − 𝐹0𝑐 (𝑡)}exp(𝑿⊤
𝑖 𝜷) , where 𝐹𝑐 (𝑡 |𝑿𝑖) and 𝐹0𝑐 (𝑡) are the CIF given 𝑿𝑖 and the

baseline CIF, respectively.
With high-dimensional predictors, several authors [81, 58, 5] proposed regularized subdistribu-

tion hazard models for variable selection, and [65] further performed inference using a one-step
debiased LASSO estimator. For prediction, several deep learning works for competing risks have
been proposed based on CIFs. DeepHit [89] developed a multi-task network to nonparametrically
estimate 𝐹𝑐 (𝑡 |𝑿𝑖) for 𝑐 = 1, . . . , 𝐾 . The network is trained to minimize a loss function, which is
constructed based on the joint distribution of the first hitting time for competing events of each
subject, while ensuring the concordance of estimates across subjects [61], that is, a patient who
died at a given time should have a higher risk at that time than a patient who survived longer. Dy-
namic DeepHit [88] further incorporated longitudinal information for dynamic predictions. Other
approaches have included DeepCompete [1], as well as a hierarchical, multi-state models [134].

1.4.2 Semi-Competing Risks

Semi-competing risk problems, a variant of competing risk problems, have commonly been en-
countered in clinical studies. By semi-competing, we mean that the occurrence of one event, i.e.,
a non-terminal event, is subject to the occurrence of another terminal event, but not vice versa
(Figure 1.4). As the non-terminal event (e.g., cancer progression) is often a strong precursor to
the terminal event (death), semi-competing events are often related and, hence, the terminal event
may informatively censor the non-terminal event [74]. To overcome such informative censoring,
researchers either consider only the terminal event (i.e., mortality) or a composite outcome such as
progression-free survival, that is, time to progression or death, whichever comes first.

Time

Non-Terminal Followed by Terminal Event

Non-Terminal Event Observed Only

Terminal Precludes Non-Terminal Event

None Observed (Censoring)

Study Start Study End

Patient 1 ♦ ×
Patient 2 ♦ •◦
Patient 3 ×
Patient 4 •◦

Figure 1.4: Schematic of four example patients with semi-competing risks: non-terminal event
(blue diamond); terminal event (red cross); censoring (black circle).

What is lacking here is how to model a predictor’s potentially different roles in disease progress
and death, while utilizing the crucial information about the sojourn time between progression
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and death. Even in settings where the non-terminal and terminal event times are only modestly
correlated, failing to acknowledge this sojourn time may lead to incorrect inference or biased
predictions [35]. In Chapter 2, we propose a novel, multi-task deep neural network for semi-
competing risks based on the illness-death model, a compartment-type model for the rates at which
individuals transition between disease states. We develop our objective function based on the
hazards of experiencing a disease progression or death from being event-free (e.g., from time of
diagnosis) and the hazards of death following progression. We further introduce a novel framework
for evaluating predictive performance in this setting by extending the widely-used Brier score for
censored univariate time-to-event data to the bivariate survival function. We then apply our method
to the Boston Lung Cancer Study, where we investigate the impact of clinical and genetic predictors
on disease progression and mortality.

In Chapter 3 we extend this method to allow for the flexible estimation of our transition-specific
baseline hazard functions as well. We propose a hybrid approach to deep learning via our so-
called neural expectation-maximization (NEM) algorithm. Under our neural EM approach, we
update the conditional expectation of a subject-specific frailty in the E-step, estimate the jump
sizes for piecewise-constant baseline hazards in the M-step, and update our estimates of the log
risk functions and frailty variance as outputs of our neural network architectures in the N-step. As
deep learning can recover non-linear risk scores, we test our method by simulating risk surfaces of
varying complexity and revisit the Boston Lung Cancer Study.

While mortality is often the main focus of cancer studies, non-fatal events, such as disease
progression, can vitally impact patient outcomes. For example, recurrence after curative treatment
is a crucial endpoint in lung cancer, affecting available second-line treatments and personalized
care. Estimating the true effect of interventions on disease recurrence is a key aspect of assessing
cancer treatments. However, semi-competing risks complicate causal inference when death pre-
vents disease recurrence. Existing approaches for estimating causal quantities in semi-competing
survival functions rely on complex objective functions with strong assumptions and are challeng-
ing to estimate accurately. To address these challenges, in Chapter 4 we propose a deep learning
approach for estimating the causal effect of treatment on non-fatal outcomes in the presence of
dependent censoring and complex covariate relationships. Our three-stage approach involves esti-
mating the marginal survival function using an Archimedean copula representation, and a jackknife
pseudo-value approach that estimates pseudo-survival probabilities at fixed time points. These
pseudo-survival probabilities serve as target values for developing causal estimators that are con-
sistent and do not rely on assumptions like proportional hazards across all time points. In the
final stage, we employ a deep neural network to link pseudo-outcomes, the causal variable, and
additional confounders. This enables us to estimate survival average causal effects through direct
standardization. We evaluate our approach through numerical studies and apply it to the Boston
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Lung Cancer Study, specifically examining the effect of surgical tumor resection in early-stage
non-small cell lung cancer patients. We conclude with remarks on future work and open areas of
study in this exciting field.
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CHAPTER 2

Deep Learning for Semi-Competing Risk Prediction

2.1 Background

Lung cancer remains one of the leading cause of cancer mortality worldwide, with a 5-year survival
rate less than 20% [13, 114]. Prognostication for individuals with lung cancer is a complex
task, often relying on the use of risk factors and health events spanning their entire life course
[53, 86]. One challenge is that an individual’s disease course involves non-terminal (e.g., disease
progression) and terminal (e.g., death) events, which form semi-competing relationships. Further,
prognosis varies greatly for patients with lung cancer, and accurate prediction of long-term events
such as progression or mortality depends on several individualized risk factors including smoking
status, genetic variants, and other comorbid conditions [22, 12, 49].

To facilitate prediction in clinically complex settings, machine learning techniques are becoming
increasingly popular for studying the potential non-linear and higher-order interactions between
large numbers of risk factors. Following developments in the prediction of time-to-event outcomes
with neural networks [42, 94, 79, 111, 75, 60], deep learning has become a key area of focus for the
development of risk prediction methods in survival analysis. Many deep learning approaches for
time-to-event outcomes extend the Cox proportional hazards model [34] to nonlinear predictions
or use a patient’s survival status directly as a binary training label, predicting a patient’s survival
probability rather than their survival time. More recently, competing risk and multi-state models
extend these methods to settings where multiple event types mutually censor one another [89, 88, 1,
134]. Such methods characterize the risk of one or more competing events by estimating either the
cause-specific or subdistribution hazards of each event type, where the survival times are viewed
as the first hitting times of the underlying stochastic processes.

While methods for competing risks improve greatly upon univariate approaches, they cannot
accommodate prediction of the joint risk of two events or the study of outcome trajectories in the
so-called sojourn time between two events. In fact, there is currently a lack of literature dealing with
risk prediction for semi-competing outcomes. Most recently [113] proposed a penalized estimation
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approach under semi-competing risks. In this chapter, we propose a novel, multi-task deep neural
network for semi-competing risks based on the illness-death model, a compartment-type model for
the rates at which individuals transition between disease states. We develop our objective function
based on the hazards of experiencing a disease progression or death from being event-free (e.g.,
from time of diagnosis) and the hazards of death following progression. Our deep learning model
consists of three risk-specific sub-networks, respectively corresponding to the three possible state
transitions, and a finite set of trainable parameters for specifying the baseline hazards and the degree
of dependence among the three transition processes.

This chapter is laid out as follows. In Section 2.2, we go over our notation and review the illness-
death model, a compartment-type model for studying the hazards, or transition rates, between semi-
competing events. In Section 2.3, we propose our deep learning approach for semi-competing risk
prediction. In Section 2.4 we introduce a novel framework for evaluating predictive performance in
this setting by extending the widely-used Brier score for censored univariate time-to-event data to
the bivariate survival function. We then assess the predictive accuracy of our method in Section 2.5.
In Section 2.6, we apply our method to analyze the BLCS cohort. We conclude with a discussion
and directions for future work.

2.2 The Illness-Death Model

Consider two events, a non-terminal event and a terminal event. Let 𝑇𝑖1 denote the time to the
non-terminal event and 𝑇𝑖2 denote the time to the terminal event for the 𝑖th observation in an
analytic sample of 𝑛 subjects. Central to the formulation of the semi-competing problem is the
illness-death model, a compartment-type model for the rates at which individuals transition between
event states [47, 131, 78, 10]. Within the framework of illness-death models, we stipulate a three
compartment model for the rates at which individuals transition between an initial, event-free state
(e.g., diagnosis), a non-terminal event state (e.g., progression), and a terminal event state (e.g.,
death). The hazard rates corresponding to the transitions from diagnosis to progression, _1(𝑡1),
diagnosis to death, _2(𝑡2), and from progression to death, _3(𝑡2 | 𝑡1), are defined as

_1 (𝑡1) = lim
Δ→0

Pr [𝑇1 ∈ [𝑡1, 𝑡1 + Δ) | 𝑇1 ≥ 𝑡1, 𝑇2 ≥ 𝑡1] /Δ; 𝑡1 > 0 (2.1)

_2 (𝑡2) = lim
Δ→0

Pr [𝑇2 ∈ [𝑡2, 𝑡2 + Δ) | 𝑇1 ≥ 𝑡2, 𝑇2 ≥ 𝑡2] /Δ; 𝑡2 > 0 (2.2)

_3 (𝑡2 | 𝑡1) = lim
Δ→0

Pr [𝑇2 ∈ [𝑡2, 𝑡2 + Δ) | 𝑇1 = 𝑡1, 𝑇2 ≥ 𝑡2] /Δ; 𝑡2 > 𝑡1 > 0, (2.3)

where _3(𝑡2 | 𝑡1) depends on 𝑡1 and 𝑡2 via their difference, 𝑡2 − 𝑡1, i.e., the sojourn time since the
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Figure 2.1: Graphical representation of the illness-death model with three states: the event free,
or initial state, the non-terminal event state, and the terminal event state. Transition rates between
states are characterized by _1(𝑡1), _2(𝑡2), and _3(𝑡2 | 𝑡1), respectively.

non-terminal event (Figure 2.1). This is a semi-Markov model with respect to _3(𝑡2 | 𝑡1) [145].
Alternatively, this would be Markov in time if _3(𝑡2) only depended on 𝑡2, the terminal event time.

In practice, both non-terminal and terminal events are subject to independent censoring. We
focus only on the case of right censoring, whereby a subject may be lost to follow-up or the study
ends before the event has occurred. We denote the censoring time for individual 𝑖 by 𝐶𝑖. Our
observed data are defined as

D = {(𝑌𝑖1, 𝛿𝑖1, 𝑌𝑖2, 𝛿𝑖2); 𝑖 = 1, . . . , 𝑛},

where 𝑌𝑖2 = min(𝑇𝑖2, 𝐶𝑖), 𝛿𝑖2 = 𝐼 (𝑇𝑖2 ≤ 𝐶𝑖), 𝑌𝑖1 = min(𝑇𝑖1, 𝑌𝑖2), 𝛿𝑖1 = 𝐼 (𝑇𝑖1 ≤ 𝑌𝑖2), and 𝐼 (·)
denotes the indicator function. Our observable data take on probability only in the so-called upper
wedge on which 𝑌𝑖1 ≤ 𝑌𝑖2 and arise from four potential cases: (1) the subject experiences both the
non-terminal and the terminal event, (2) the subject experiences only the terminal event, (3) the
subject experience only the non-terminal event, or (4) the subject experiences neither event prior
to the end of follow up (Figure 2.2). We can model (2.1) - (2.3) in the context of our observed
data as follows. We extend the Cox model [34] to our semi-competing risks setting [145, 59] by
formulating each hazard function in terms of the baseline hazard for the transition of states, a shared
frailty term, and a patient’s covariates as

_1 (𝑡1 | 𝛾𝑖, 𝒙𝑖) = 𝛾𝑖_01 (𝑡1) exp{ℎ1(𝑿𝑖)}; 𝑡1 > 0 (2.4)

_2 (𝑡2 | 𝛾𝑖, 𝒙𝑖) = 𝛾𝑖_02 (𝑡2) exp{ℎ2(𝑿𝑖)}; 𝑡2 > 0 (2.5)

_3 (𝑡2 | 𝑡1, 𝛾𝑖, 𝒙𝑖) = 𝛾𝑖_03 (𝑡2 − 𝑡1) exp{ℎ3(𝑿𝑖)}; 𝑡2 > 𝑡1 > 0, (2.6)

where 𝛾𝑖 is a patient-specific random effect, or frailty, _01 (𝑡1), _02 (𝑡2), and _03 (𝑡2 − 𝑡1) are the
baseline hazard functions for the three state transitions, respectively, 𝑿𝑖 is a 𝑝-vector of clinically
relevant predictors such as patient socio-demographic status, medical history data, and comorbid
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Figure 2.2: Graphical representation of the observable space for (𝑇1, 𝑇2) with example observations:
(1) both events are observed, (2) only the terminal event is observed, (3) only the non-terminal event
is observed, and (4) neither event is observed. The arrows represent the direction of censoring, and
D = (𝑌1, 𝛿1, 𝑌2, 𝛿2) represents the data under each example observation.

conditions, and ℎ𝑔 (𝑿𝑖); 𝑔 ∈ {1, 2, 3} are log-risk functions which relate a patient’s covariates to
the hazard rates for each potential transition. As opposed to existing works, we do not parameterize
the ℎ𝑔 (𝑿𝑖). Instead, we estimate these functions non-parametrically as outputs from our proposed
neural network architecture. The _0𝑔 functions can be taken to be Weibull functions or piecewise
constant with jumps at the distinct observed event times. Including a shared frailty term in (2.4) -
(2.6) induces a dependence structure between the multiple event times taken on a given subject. We
assume 𝛾𝑖

𝑖.𝑖.𝑑∼ Gamma(1/\, 1/\) (i.e., both shape and rate are 1/\ so that the mean and variance
are respectively 1 and \). A larger value of \ reflects a stronger dependence. Further, model (2.6)
stipulates that the hazard is a function of the sojourn time, a reasonable and common assumption
[59, 90]. Given (2.4)-(2.6), and by integrating out the frailty term, we can derive the marginal
likelihood based on 𝑛 independent subjects as

L =

𝑛∏
𝑖=1

{_1𝑖 (𝑌𝑖1)}𝛿𝑖1{_2𝑖 (𝑌𝑖1)}(1−𝛿𝑖1)𝛿𝑖2{_3𝑖 (𝑌𝑖2 − 𝑌𝑖1)}𝛿𝑖1𝛿𝑖2
(
1 + \−1

)𝛿𝑖1𝛿𝑖2
×
[
1 + \−1 {Λ1𝑖 (𝑌𝑖1) + Λ2𝑖 (𝑌𝑖1) + Λ3𝑖 (𝑌𝑖2 − 𝑌𝑖1)}

]−\−𝛿𝑖1−𝛿𝑖2
,

(2.7)

where _𝑔𝑖 (𝑠) = _0𝑔 (𝑠) exp
{
ℎ𝑔 (𝑿𝑖)

}
and Λ𝑔𝑖 (𝑡) =

∫ 𝑡
0 _𝑔𝑖 (𝑠)𝑑𝑠 for 𝑔 = 1, 2, 3. See Appendix A for

additional details. This serves as the objective function for our proposed algorithm.
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2.3 Deep Learning for Semi-Competing Risks

We propose a multi-task deep neural network for semi-competing risks by using Equation (2.7)
as the objective function with potentially high-dimensional covariates. Our neural network con-
sists of three risk-specific sub-architectures, respectively corresponding to the three possible state
transitions, and a finite set of trainable parameters for specifying the baseline hazards (i.e., the 𝜙
parameters in Figure 2.3) and the dependence among the three transition processes (i.e., \ in Figure
2.3). For example, if we specify Weibull baseline hazards in (2.4)-(2.7), then _0𝑔 (𝑠) = 𝜙𝑔1𝜙𝑔2𝑠

𝜙𝑔2−1

for 𝑔 = 1, 2, 3. As opposed to the classical models, we opt for flexible, non-parametric estima-
tion of ℎ𝑔 (·), 𝑔 = 1, 2, 3, to better capture potential non-linear dependencies of covariates on
semi-competing events and to maximize the predictive accuracy.

In particular, we design three sub-architectures to estimate the ℎ functions non-parametrically as
outputs. Each sub-network is made up of 𝐿 layers, with 𝑘 𝑙 neurons in the 𝑙th layer (𝑙 = 1, . . . , 𝐿).
Sub-network predictions are based on an 𝐿-fold composite function, 𝐹𝐿 (·) = 𝑓𝐿 ◦ 𝑓𝐿−1 ◦ · · · ◦ 𝑓1(·),
where (𝑔 ◦ 𝑓 ) (·) = 𝑔( 𝑓 (·)). Each layer-specific function, 𝑓𝑙 (·), is defined as

𝑓𝑙 (𝑥) = 𝜎𝑙 (W𝑙𝑥 + b𝑙) ∈ R𝑘𝑙+1 ,

where 𝜎𝑙 : R𝑘𝑙+1 → R𝑘𝑙+1 is an activation function, W𝑙 is a 𝑘 𝑙+1 × 𝑘 𝑙 weight matrix, and b𝐿 is a
𝑘 𝑙+1 × 1 bias vector. For identifiability, we require ℎ𝑔 (0) = 0, 𝑔 = 1, 2, 3, where 0 is a 𝑝 × 1 vector
of 0’s. Each sub-network is a fully-connected feed-forward neural network with rectified linear unit
activations (ReLU; 𝜎𝑙 (𝑥) = max(0, 𝑥)) and a linear activation in the final layer (Figure 2.3). The
number of hidden layers, nodes per layer, dropout fraction, regularization rate, and learning rate
can be optimized as hyperparameters over a grid of values based on predictive performance. We
implement our approach using the deep learning library TensorFlow [8], with model building and
fitting done using Keras [7]. Finite dimensional parameter training is done via the GradientTape
API [4] for automatic differentiation.

2.4 Bivariate Brier Score

To assess the predictive performance of methods in a semi-competing risk setting, we propose a
bivariate extension to the inverse probability of censoring weighting (IPCW)-approximated Brier
Score [20]. Let 𝑆𝑖 (𝑡) = Pr(𝑇𝑖1 > 𝑡, 𝑇𝑖2 > 𝑡) denote the disease-free survival function for individual
𝑖 at a given, fixed time point 𝑡. Further, denote an estimate of 𝑆𝑖 (𝑡) by 𝜋𝑖 (𝑡), e.g., based on (2.4)-
(2.6). If 𝑆𝑖 (𝑡) were known, a Bivariate Brier Score would simply be the mean squared error
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Figure 2.3: Architecture for the proposed semi-competing risk deep neural network.

𝑀𝑆𝐸 (𝑡) = 1
𝑛

𝑛∑︁
𝑖=1

[𝑆𝑖 (𝑡, 𝑡) − 𝜋𝑖 (𝑡, 𝑡)]2 .

However, with unknown 𝑆𝑖 (𝑡), we need to estimate it with the observed data, D, and in the presence
of censoring. In particular, we approximate the bivariate survival function by the indicator function
𝐼 (𝑇𝑖1 > 𝑡, 𝑇𝑖2 > 𝑡), which is equal to one if both conditions are true and zero, otherwise. This
provides an approximation to the true, unknown survival functions through step functions with
jumps at the observed event times. Further, in practice, patients may be lost to follow up, or the
observation period may end before the events are observed. In these situations, it is known that the
event times, 𝑇𝑖1 and 𝑇𝑖2, occur after some censoring time, 𝐶𝑖. In this setting, inverse probability of
censoring weights (IPCW) are necessary to incorporate information loss due to censoring, as we
must reweight the contributions of the individuals who do contribute information to the Bivariate
Brier Score [56, 50]. Let 𝐺𝑖 (𝑡) = Pr(𝐶𝑖 > 𝑡) > 0 be the survival function of the censoring
distribution for the 𝑖th individual. We propose a Bivariate Brier Score for assessing 𝜋𝑖 (𝑡) as
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𝐵𝐵𝑆𝑐 (𝑡) =
𝜋𝑖 (𝑡, 𝑡)2 · 𝐼 (𝑌𝑖1 ≤ 𝑡, 𝛿𝑖1 = 1, 𝑌𝑖1 ≤ 𝑌𝑖2}

𝐺𝑖 (𝑌𝑖1)

+ 𝜋𝑖 (𝑡, 𝑡)2 · 𝐼 (𝑌𝑖1 ≤ 𝑡, 𝑌𝑖2 ≤ 𝑡, 𝛿𝑖1 = 0, 𝛿𝑖2 = 1, 𝑌𝑖1 ≤ 𝑌𝑖2}
𝐺𝑖 (𝑌𝑖2)

+ [1 − 𝜋𝑖 (𝑡, 𝑡)]2 · 𝐼 (𝑌𝑖1 > 𝑡, 𝑌𝑖2 > 𝑡}
𝐺𝑖 (𝑡)

(2.8)

With 𝐺𝑖 (𝑡) known, the expectation of the IPCW-approximated Bivariate Brier Score is equal to the
mean squared error, 𝑀𝑆𝐸 (𝑡), plus a constant that is free of 𝜋𝑖 (𝑡). This additional term represents
the irreducible error incurred by approximating 𝑆𝑖 (𝑡) using data (see Appendix A). As𝐺𝑖 (𝑡) is often
unknown, we can replace it by �̂� (𝑡), a consistent estimate based on the Kaplan-Meier method.

2.5 Simulation Studies

2.5.1 Bivariate Brier Score

We first conducted a series of numerical experiments to study the performance of the proposed
Bivariate Brier Score. We generated 1,000 independent datasets of size 𝑛 = 1, 000 based on the
illness-death model. Across all simulated datasets and simulation settings, we assumed Weibull
baseline hazards with shape parameter equal to 1.5 and scale parameter equal to 0.2, and a population
frailty variance of \ = 0.5. We considered four simulation settings, varying whether or not
the semi-competing outcomes depended on a single, uniform random covariate, and varying the
administrative censoring rate at 0% and 50%. We calculate the integrated Bivariate Brier Score for
1-year survival over a sequence of 100 evenly spaced time points in each simulation and compared
the results from the model fit to a calculation which utilized the true model parameters. This was
done to compare the fitted results to those results which signified the degree of irreducible error
in the Bivariate Brier Score for each setting. These results are given in Table 2.1. As shown the
results from the model fit were consistent with those calculated using the true model parameters.

2.5.2 Deep Neural Network Approach

We then conducted simulations to illustrate the feasibility of the proposed model. We simulated
the observed data, D = {(𝑌𝑖1, 𝛿𝑖1, 𝑌𝑖2, 𝛿𝑖2, 𝑿𝑖); 𝑖 = 1, . . . , 𝑛} in a fully factorial design by varying
the sample size, frailty variance, log-risk function, and censoring rates, a total of 24 settings (Table
2.2). Specifically, we simulated the shared frailty, 𝛾𝑖, from 𝐺𝑎𝑚𝑚𝑎(1/\, 1/\) with Var(𝛾𝑖) = \

taking values of 0.5 and 2.0, corresponding to varying degrees of dependence between event times.
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Table 2.1: Mean (SD) integrated Bivariate Brier Score under various data generation settings.

Simulation Settings 1-Year iBBS

Covariate Generated? Censoring Generated? True Estimated

No No 0.0187 (0.0068) 0.0199 (0.0073)
Yes No 0.0181 (0.0067) 0.0205 (0.0077)
No Yes 0.0206 (0.0067) 0.0219 (0.0072)
Yes Yes 0.0195 (0.0066) 0.0221 (0.0075)

The baseline hazard functions, _01, _02, and _03, were taken to be Weibull with shape and scale
parameters equal to 1. We simulate two standard Normal random covariates, 𝑋1, 𝑋2 ∼ 𝑁 (0, 1),
which were taken to be predictive of the morbidity and mortality hazards through either a linear
and non-linear log-risk function. We first examined a linear log-risk function

ℎ𝑔 (𝑿𝑖) = 𝑥⊤𝑖 𝜷𝑔,

with 𝜷𝑔 = [1, 1]⊤ for 𝑔 = 1, 2, 3, so that the requirements for the classical model is satisfied,
facilitating a fair comparison with existing methods. We then considered a non-linear function

ℎ𝑔 (𝑿𝑖) = log( |𝑿𝑖 |⊤𝜷𝑔 + 1),

with 𝜷𝑔 = [1, 1]⊤ for 𝑔 = 1, 2, 3. Censoring times were generated from an exponential distributions
to yield approximate censoring rates of 0%, 25% and 50%. We varied the number of patients as
1, 000 and 10, 000. For each parameter configuration, 50 datasets were independently generated.

We compared our method to a classical MLE approach, which directly maximizes the log-
likelihood function under the assumption of a semi-Markov model with Weibull baseline hazard
functions. This approach assumes that the risk functions are linear combinations of the generated
covariates. We compare the predictive performance of our method to the MLE approach using the
average mean integrated squared error for estimating the log-risk surfaces, given by

1
𝑛

𝑛∑︁
𝑖=1

[ℎ𝑔 (𝑿𝑖) − ℎ̂𝑔 (𝑿𝑖)]2; 𝑔 = 1, 2, 3

for each state transition hazard, separately. As shown in Table 2.2, both methods accurately recover
the log-risk surfaces when the true underlying function is linear. However, in the non-linear settings,
our deep neural network approach has a much lower mean integrated squared error, on average,
compared to the classical MLE method, indicating a good performance of the proposed method.
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Table 2.2: Average (SD) mean integrated squared errors under varying simulated log-risk surfaces for each state transition hazard

Simulation Settings Maximum Likelihood Estimation Deep Neural Network

𝑛 \ Risk Censoring ℎ1 ℎ2 ℎ3 ℎ1 ℎ2 ℎ3

1,000 0.50 Linear 0% 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.07 (0.05) 0.08 (0.08) 0.08 (0.05)
10,000 0.50 Linear 0% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.08 (0.07) 0.08 (0.05) 0.08 (0.07)
1,000 2.00 Linear 0% 0.02 (0.01) 0.01 (0.01) 0.01 (0.01) 0.12 (0.07) 0.13 (0.07) 0.13 (0.09)

10,000 2.00 Linear 0% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.11 (0.06) 0.11 (0.08) 0.13 (0.10)
1,000 0.50 Non-Linear 0% 1.80 (0.33) 1.82 (0.39) 1.85 (0.34) 0.09 (0.05) 0.09 (0.04) 0.08 (0.04)

10,000 0.50 Non-Linear 0% 1.80 (0.13) 1.77 (0.13) 1.78 (0.11) 0.07 (0.03) 0.08 (0.03) 0.08 (0.05)
1,000 2.00 Non-Linear 0% 1.92 (0.53) 1.85 (0.54) 1.96 (0.53) 0.15 (0.05) 0.15 (0.06) 0.14 (0.05)

10,000 2.00 Non-Linear 0% 1.82 (0.17) 1.81 (0.18) 1.83 (0.18) 0.14 (0.04) 0.12 (0.03) 0.13 (0.06)
1,000 0.50 Linear 25% 0.01 (0.02) 0.02 (0.01) 0.02 (0.02) 0.10 (0.06) 0.10 (0.07) 0.13 (0.12)

10,000 0.50 Linear 25% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.12 (0.10) 0.12 (0.09) 0.12 (0.10)
1,000 2.00 Linear 25% 0.03 (0.02) 0.02 (0.02) 0.04 (0.03) 0.15 (0.10) 0.13 (0.09) 0.18 (0.12)

10,000 2.00 Linear 25% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.14 (0.10) 0.12 (0.08) 0.14 (0.10)
1,000 0.50 Non-Linear 25% 1.96 (0.44) 2.01 (0.54) 2.24 (0.66) 0.10 (0.07) 0.10 (0.06) 0.10 (0.08)

10,000 0.50 Non-Linear 25% 1.95 (0.15) 1.91 (0.16) 2.16 (0.20) 0.07 (0.04) 0.09 (0.08) 0.09 (0.07)
1,000 2.00 Non-Linear 25% 2.06 (0.62) 1.92 (0.72) 2.25 (0.79) 0.15 (0.08) 0.15 (0.08) 0.13 (0.06)

10,000 2.00 Non-Linear 25% 1.88 (0.21) 1.88 (0.21) 2.04 (0.28) 0.10 (0.05) 0.11 (0.06) 0.11 (0.05)
1,000 0.50 Linear 50% 0.01 (0.02) 0.02 (0.02) 0.04 (0.03) 0.10 (0.07) 0.10 (0.06) 0.20 (0.15)

10,000 0.50 Linear 50% 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.10 (0.07) 0.11 (0.08) 0.17 (0.16)
1,000 2.00 Linear 50% 0.03 (0.03) 0.03 (0.02) 0.05 (0.05) 0.22 (0.13) 0.17 (0.13) 0.24 (0.17)

10,000 2.00 Linear 50% 0.00 (0.00) 0.00 (0.00) 0.01 (0.00) 0.14 (0.09) 0.14 (0.10) 0.16 (0.14)
1,000 0.50 Non-Linear 50% 2.06 (0.50) 2.20 (0.72) 2.61 (1.00) 0.09 (0.06) 0.13 (0.13) 0.18 (0.14)

10,000 0.50 Non-Linear 50% 2.03 (0.21) 2.00 (0.18) 2.36 (0.25) 0.06 (0.03) 0.09 (0.08) 0.10 (0.09)
1,000 2.00 Non-Linear 50% 2.16 (0.76) 2.00 (0.72) 2.41 (0.91) 0.18 (0.10) 0.18 (0.09) 0.16 (0.10)

10,000 2.00 Non-Linear 50% 1.92 (0.25) 1.95 (0.23) 2.22 (0.38) 0.10 (0.05) 0.11 (0.06) 0.15 (0.13)
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2.6 Boston Lung Cancer Study

We then utilize our approach to study a subset of patients from the Boston Lung Cancer Study
(BLCS), a large hospital-based cancer epidemiology cohort investigating the molecular mechanisms
and clinical pathophysiology of lung cancer [28]. The subset includes 5,296 patients with non-small
cell lung cancer, diagnosed between June 1983 and October 2021. Also included in the dataset are
patients’ characteristics, namely, age at diagnosis (years), sex (0: male; 1: female), race (0: other;
1: white), ethnicity (0: non-Hispanic; 1: Hispanic), height (meters), weight (kilograms), smoking
status (0: never; 1: former; 2: current), pack-years, cancer stage (1-4), and two indicators of genetic
mutations (EGFR and KRAS).

Semi-competing events of cancer progression and death were documented in the data; the date of
progression is the date of the first source evidence, including exam, radiology report or pathology.
Progression followed by death was observed in 111 (2%) patients, progression but alive at the last
followup date was observed in 224 (4%) patients, and death prior to progression was observed
among 1,916 (36%) patients. To investigate the dependence of disease progression on death and to
predict the the hazards of transitioning between states based on patient risk factors, we fit models
(2.4)-(2.6) via our proposed approach. Specifically, we assumed Weibull baseline hazards for
_0𝑔 (𝑠), 𝑔 = 1, 2, 3, and 𝛾𝑖

𝑖.𝑖.𝑑∼ Gamma(1/\, 1/\). We then fit our proposed model to optimize the
objective function (2.7) and output estimates for the finite dimensional parameters (𝜙’s and \) and
the predicted ℎ𝑔, 𝑔 = 1, 2, 3 (log-risk estimates), for any covariate values.

We estimated the frailty variance, \, to be 3.15 (bootstrapped 95% CI: 3.02-3.29), suggesting
that progression is indeed correlated with death. Figure 2.4 depicts the log-risk (ℎ) functions for
the effect of patient age at diagnosis on each state transition, stratified by sex assigned at birth
and initial cancer stage, and fixing the other covariates to be at their sample means or modes. As
shown, there seems to exist a non-linear effect of age that differs by transition, cancer stage and sex.
The left panel shows that younger age and more advanced stage is associated with higher hazards
for progression; for the transitions from diagnosis or progression to death (the middle and right
panels), older age is associated with higher hazards; interestingly, while sex does not seem to play a
role in disease progression (the left panel), male patients are more likely to die than female patients
after diagnosis (the middle panel) or after progression (the right panel). Finally, more advanced
stage is associated with higher hazards for all the transitions.
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Figure 2.4: Log risk functions of age at diagnosis on each state transition, stratified by sex (solid
versus dashed lines) and initial cancer stage (line color).
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CHAPTER 3

Neural Expectation-Maximization Algorithm for
Semi-Competing Risks

3.1 Background

In the previous chapter, baseline transition hazards were estimated via gradient methods under
certain parametric assumptions. However, non-parametric baseline hazards may confer greater ro-
bustness, with much intensive computation. To address this, we propose a novel neural expectation-
maximization algorithm, in which we hope to bridge the gap between classical statistical approaches
and machine learning. Specifically, we extend our previous DNN-SCR method by proposing a hy-
brid approach to deep learning via our so-called neural expectation-maximization (NEM) algorithm.
A common approach for estimating baseline hazard is through nonparametric maximum likelihood
estimation (NPMLE), whereby the cumulative baseline hazards are taken to be non-decreasing step
functions with jumps at unique observed failure times. This is solvable through gradient methods,
however, the Hessian matrix for the NPMLE is not sparse. As its size increases linearly in 𝑛,
computation is highly unstable. The estimation of a frailty parameter also adds complexity. To
address these issues within the deep learning framework, we propose an NEM algorithm to estimate
all the unknown parameters and functions. Our goal is to present an EM algorithm that is more
numerically stable, especially for larger sample sizes. As deep learning can recover non-linear risk
scores, we test our method by simulating risk surfaces of varying complexity. We then revisit the
Boston Lung Cancer Study, where we investigate the impact of clinical and genetic predictors on
disease progression and mortality.

3.2 Notation

Recall the notation we established in the previous chapter. We consider two events, a non-
terminal event and a terminal event, with 𝑇𝑖1 denoting the time to the non-terminal event, 𝑇𝑖2
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denoting the time to the terminal event, and 𝐶𝑖 denoting the censoring time for a given individual,
𝑖 = 1, . . . , 𝑛. Our observable data are D = (𝑌𝑖1, 𝛿𝑖1, 𝑌𝑖2, 𝛿𝑖2, 𝑿𝑖), where 𝑌𝑖2 = min(𝑇𝑖2, 𝐶𝑖),
𝛿𝑖2 = 𝐼 (𝑇𝑖2 ≤ 𝐶𝑖), 𝑌𝑖1 = min(𝑇𝑖1, 𝑌𝑖2), 𝛿𝑖1 = 𝐼 (𝑇𝑖1 ≤ 𝑌𝑖2), 𝑿𝑖 is a 𝑝-vector of covariates, and 𝐼 (·)
denotes the indicator function. We model these outcomes in terms of three state transition hazards,
_𝑔𝑖 (𝑠) = _0𝑔 (𝑠) exp

{
ℎ𝑔 (𝑿𝑖)

}
and Λ𝑔𝑖 (𝑡) =

∫ 𝑡
0 _𝑔𝑖 (𝑠)𝑑𝑠 for 𝑔 = 1, 2, 3. Denoting the vector of

frailties by 𝜸 = (𝛾1, . . . , 𝛾𝑛) and the collection of model parameters by 𝝍 = {Λ01,Λ02,Λ03, \}, we
can write the augmented data likelihood as

𝐿 (𝝍;D, 𝜸) =
𝑛∏
𝑖=1

\−
1
\

Γ

(
1
\

) × 𝛾
1
\
−1

𝑖
× 𝑒−

𝛾𝑖
\ × 𝛾𝛿𝑖1+𝛿𝑖2

𝑖

×
[
_01 (𝑌𝑖1) 𝑒ℎ1 (𝑿𝑖)

]𝛿𝑖1
×
[
_02 (𝑌𝑖2) 𝑒ℎ2 (𝑿𝑖)

] (1−𝛿𝑖1)𝛿𝑖2
×
[
_03 (𝑌𝑖2 − 𝑌𝑖1) 𝑒ℎ3 (𝑿𝑖)

]𝛿𝑖1𝛿𝑖2
× exp

{
−𝛾𝑖

[
Λ01 (𝑌𝑖1) 𝑒ℎ1 (𝑿𝑖) + Λ02 (𝑌𝑖1) 𝑒ℎ2 (𝑿𝑖)

+𝛿𝑖1Λ03 (𝑌𝑖2 − 𝑌𝑖1) 𝑒ℎ3 (𝑿𝑖)
]}
.

(3.1)

Here, 𝛾𝑖
𝑖.𝑖.𝑑∼ Γ(1/\, 1/\) (i.e., both shape and rate are 1/\ so that the mean and variance are

respectively 1 and \), 𝑖 = 1, . . . , 𝑛, is a patient-specific frailty that models the dependence among
the transition processes within subject 𝑖, that is, a larger value of \ reflects a stronger dependence.

3.3 Neural Expectation-Maximization Algorithm

In our previous work, we estimated the baseline hazard functions via gradient methods under
certain parametric assumptions. For example, letting _0𝑔 (𝑠) = 𝜙1𝑔𝜙2𝑔𝑠

𝜙2𝑔−1, we specify Weibull
baseline hazards with trainable parameters 𝜙1𝑔, 𝜙2𝑔; 𝑔 ∈ {1, 2, 3}. Another common approach is
non-parametric maximum likelihood estimation [145]. Under this approach, we specify the Λ0𝑔

through non-decreasing step functions with jumps at unique observed failure times. This is also
solvable through gradient methods, however, the Hessian matrix is not sparse, and its size increases
linearly in 𝑛, making computation highly unstable. The estimation of the frailty parameter also
adds complexity. To address these issues within a deep learning framework, we propose a novel
neural expectation-maximization (EM) algorithm to estimate all the unknown parameters and risk
functions. Our goal is to present an algorithm that is more numerically stable, especially for
larger sample sizes [90], while allowing for flexible, non-parametric estimation of the covariate
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risk functions. By viewing the subject-specific frailty as a missing variable, the algorithm iterates
between three steps, namely the expectation (E) step, the maximization (M) step, and the neural
(N) deep learning step. In the E-step, we update the conditional expectation the frailties, given the
data and current values for the cumulative baseline hazards and risk functions. In the M-step, we
estimate the jump sizes for the piece-wise constant baseline hazards by maximizing the expected
log-likelihood found in the E-step, given the current estimates for the posterior expectations of the
frailties. Then, fixing these quantities, we update our estimates of the log risk functions, ℎ𝑔 (𝒙𝑖),
and frailty variance, \, as outputs of our neural network architectures in the N-step.

3.3.1 Conditional Frailty Distribution

To implement this approach, we need to derive the conditional distribution of 𝛾𝑖 based on the
observed data and given the current estimates of the baseline hazards and risk functions. It can be
shown that 𝛾𝑖 |D,𝝍 ∼ Gamma(�̃�, �̃�), where

�̃� =
1
\
+ 𝛿𝑖1 + 𝛿𝑖2 (3.2)

�̃� =
1
\
+ Λ01 (𝑌𝑖1) 𝑒ℎ1 (𝒙𝑖) + Λ02 (𝑌𝑖1) 𝑒ℎ2 (𝒙𝑖) + 𝛿𝑖1Λ03 (𝑌𝑖2 − 𝑌𝑖1) 𝑒ℎ3 (𝒙𝑖) . (3.3)

It follows that the posterior mean of 𝛾𝑖 is E[𝛾𝑖 |D,𝝍] = �̃�/�̃�, and the posterior mean of log(𝛾𝑖) is
E[log(𝛾𝑖) |D,𝝍] = digamma(�̃�) − log(�̃�), where digamma(�̃�) = 𝜕 log[Γ(�̃�)]/𝜕�̃� and Γ(·) is the
gamma function. Both quantities are needed for the E-Step. See Appendix B for details.

3.3.2 E-Step

The E-step calculates the expected log-conditional likelihood of the augmented data given the
observed data, or our ‘𝑄’ function, which can be written as:

𝑄

(
𝝍 | D,𝝍 (𝑚)

)
= E𝜸

[
ℓ (𝝍;D, 𝜸) | D,𝝍 (𝑚)

]
= 𝑄1 +𝑄2 +𝑄3 +𝑄4, (3.4)

where ℓ (𝝍;D, 𝜸) is the logarithm of the likelihood in (3.1), 𝝍 (𝑚) represents the current estimates
of the parameters at the 𝑚th iteration, and 𝑄1, 𝑄2, 𝑄3, and 𝑄4 represent the additive pieces of the
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𝑄 function that are separable with respect to the model parameters:

𝑄1 =

𝑛∑︁
𝑖=1

𝛿𝑖1E[log(𝛾𝑖) |D,𝝍 (𝑚)] + 𝛿𝑖1 {log [_01 (𝑌𝑖1)] + ℎ1(𝒙𝑖)}

− E[𝛾𝑖 |D,𝝍 (𝑚)]Λ01 (𝑌𝑖1) 𝑒ℎ1 (𝒙𝑖

𝑄2 =

𝑛∑︁
𝑖=1

𝛿𝑖2E[log(𝛾𝑖) |D,𝝍 (𝑚)] + (1 − 𝛿𝑖1) 𝛿𝑖2 {log [_02 (𝑌𝑖2)] + ℎ2(𝒙𝑖)}

− E[𝛾𝑖 |D,𝝍 (𝑚)]Λ02 (𝑌𝑖1) 𝑒ℎ2 (𝒙𝑖)

𝑄3 =

𝑛∑︁
𝑖=1

𝛿𝑖1𝛿𝑖2 {log [_03 (𝑌𝑖2)] + ℎ3(𝒙𝑖)} − E[𝛾𝑖 |D,𝝍 (𝑚)]𝛿𝑖1 (Λ03 (𝑌𝑖2 − 𝑌𝑖1)) 𝑒ℎ3 (𝒙𝑖)

𝑄4 =

𝑛∑︁
𝑖=1

−1
\

log(\) +
(
1
\
− 1

)
E[log(𝛾𝑖) |D,𝝍 (𝑚)] − 1

\
E[𝛾𝑖 |D,𝝍 (𝑚)] − log Γ

(
1
\

)
.

3.3.3 M-Step

The objective is to maximize the baseline hazard parameters given the expected log-likelihood and
updated frailty estimates. As the maximizer of our objective function over the space of absolutely
continuous cumulative baseline hazards does not exist [76], we restrict the parameter space of the
cumulative baseline hazards, Λ01, Λ02, and Λ03, to the one containing piecewise constant functions,
with jumps occurring at observed event times. Maximizers over this discrete space are termed
non-parametric maximum likelihood estimates of Λ01, Λ02, and Λ03. Under this parameter space,
_0𝑔 (𝑡) in (2.4) - (2.6) are replaced by ΔΛ0𝑔 (𝑡), the jump size at 𝑡 for the baseline hazards of each
state transition [91], and Λ0𝑔 (𝑡) =

∑𝑡
𝑠=0 ΔΛ0𝑔 (𝑠). Note that ΔΛ0𝑔 (𝑠) = 0 if 𝑠 is not one of the

observed event times corresponding to state transition 𝑔. The M-step updates are

ΔΛ
(𝑚+1)
01 (𝑡) =

∑𝑛
𝑖=1 𝛿𝑖1𝐼 [𝑌𝑖1 = 𝑡]∑𝑛

𝑖=1 E[𝛾𝑖 |D,𝝍 (𝑚)] 𝐼 [𝑌𝑖1 ≥ 𝑡] exp
{
ℎ
(𝑚)
1 (𝒙𝑖)

}
ΔΛ

(𝑚+1)
02 (𝑡) =

∑𝑛
𝑖=1 (1 − 𝛿𝑖1) 𝛿𝑖2𝐼 [𝑌𝑖2 = 𝑡]∑𝑛

𝑖=1 E[𝛾𝑖 |D,𝝍 (𝑚)] 𝐼 [𝑌𝑖2 ≥ 𝑡] exp
{
ℎ
(𝑚)
2 (𝒙𝑖)

}
ΔΛ

(𝑚+1)
03 (𝑡) =

∑𝑛
𝑖=1 𝛿𝑖1𝛿𝑖2𝐼 [𝑌𝑖2 − 𝑌𝑖1 = 𝑡]∑𝑛

𝑖=1 E[𝛾𝑖 |D,𝝍 (𝑚)]𝛿𝑖1𝐼 [𝑌𝑖2 − 𝑌𝑖1 ≥ 𝑡] exp
{
ℎ
(𝑚)
3 (𝒙𝑖)

} ,
where the numerators reflect the observed number of non-terminal events, the number of terminal
events observed prior to non-terminal events, and the number of terminal events observed after
non-terminal events, respectively These closed form updates in the M-step resemble Breslow-type
estimators. As such, to seed the EM algorithm, we initialize Λ01,Λ02, and Λ03 with their respective,
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Nelson-Aalen estimates. The frailty variance, \, is involved in 𝑄 only through 𝑄4. Thus, in our
N-step, we evaluate \ as a trainable parameter and take its update to be the direct maximizer from
the neural network output. The starting value for \ can be taken to be any positive real number,
however in practice, we use the estimated \̂ arising from maximizing the objective function directly,
assuming a linear log-risk function.

3.3.4 N-Step

Unlike approaches that parameterize ℎ𝑔 (𝒙𝑖); 𝑔 ∈ {1, 2, 3}, we opt for flexible, non-parametric
versions of ℎ𝑔 (𝒙𝑖) to better capture potential non-linear and higher-order dependencies between
predictors and to maximize the predictive accuracy of our method. We propose a deep learning
semi-competing risk model by estimating ℎ̂1(·), ℎ̂2(·), and ℎ̂3(·) as outputs from three neural
network sub-architectures. Specifically, we take negative log of Equation 3.1 to be the objective
function for a multi-task deep neural network for modeling semi-competing outcomes based on
potentially high-dimensional covariates. As before, our the N-step of our NEM approach consists
of three risk-specific sub-networks, corresponding to the three transition hazards (see Figure 3.1).

Figure 3.1: Overview of the neural expectation-maximization algorithm for semi-competing risks.

Each sub-network is made up of 𝐿 layers, with 𝑘 𝑙 neurons in the 𝑙th layer (𝑙 = 1, . . . , 𝐿). Sub-
network predictions are based on an 𝐿-fold composite function, with ReLU activations in the hidden
layers and a linear activation in the final layer. The number of hidden layers and nodes per layer,
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as well as the dropout fraction, regularization, and learning rates are optimized as hyperparameters
over a grid of values based on predictive performance.

We implement our approach using the R interface for the deep learning library TensorFlow, with
model building and fitting done using Keras API [8, 7]. Taking advantage of the Keras paradigm
for progressive disclosures of complexity, we implement our method as a custom Keras model,
which has support for custom training, evaluation, and prediction methods within the context of a
standard, user-friendly workflow. Finite parameter training for the frailty variance, \, is done via
the GradientTape API for automatic differentiation in a custom forward pass operation. Thus, the
user need simply instantiate the DNN-SCR model as an R6 object with our custom model wrapper
function and proceed with the typical workflow.

3.4 Simulation Study

We performed a series of simulation studies to validate our neural EM algorithm and illustrate
the feasibility of our method. We simulated observed data, D, from Equation 3.1, varying the
sample size, population frailty variance, log-risk function, and censoring rates across 36 simulation
settings. In particular, we simulated the shared frailty, 𝛾𝑖, from a gamma distribution with mean 1
and variance \, taking \ to be 0.5 or 2.0, corresponding to varying degrees of dependence between
event times. The baseline hazard functions, _01, _02, and _03, were generated from Weibull
distributions with shape and scale parameters 𝜙𝑔1 and 𝜙𝑔2, respectively, 𝑔 ∈ {1, 2, 3}. Across all
simulations, we took 𝜙11 = 𝜙21 = 2, 𝜙31 = 0.75, 𝜙12 = 𝜙22 = 2.25, and 𝜙32 = 2. We generated
two standard Normal random covariates, which were taken to be predictive of the morbidity and
mortality hazards through one of three functions

· Linear: ℎ𝑔 (𝑿𝑖) = 𝑿′
𝑖𝜷𝑔; 𝜷𝑔 = 1𝑝 = (1, 1, . . . , 1); 𝑔 = 1, 2, 3

· Non-Linear: ℎ𝑔 (𝑿𝑖) =
∑𝑝

𝑗=1 𝑥
3
𝑖 𝑗
𝛽𝑔 𝑗 ; 𝛽𝑔 𝑗 = 1; 𝑔 = 1, 2, 3; 𝑗 = 1, . . . , 𝑝

· Non-Monotonic: ℎ𝑔 (𝑿𝑖) = log( |𝑿′
𝑖𝜷𝑔 | + 1); 𝜷𝑔 = 1𝑝 = (1, 1, . . . , 1); 𝑔 = 1, 2, 3

In the first scenario, we took a linear form so that the requirements for the classical models
were satisfied, facilitating a fair comparison with a classical regression approach. In the second
and third scenarios, we simulated the log-risk relationship as increasingly complex, non-linear
functions of the data to highlight the utility of our method. Censoring times were generated from
an exponential distributions to yield approximate censoring rates of 0%, 25% and 50%. Lastly, we
vary the number of observations as 𝑛 = 1, 000 or 𝑛 = 10, 000. For each parameter configuration,
a total of 500 datasets were independently generated. For our method, we varied the number of
nodes per layer, the dropout fraction, the degree of regularization, and learning rate over a grid of
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values to determine the setting with the best predictive performance. Performance was assessed
via the bivariate Brier score integrated up to 𝑡 = 1 year and the average mean integrated squared
error (MISE) for estimating the log-risk surfaces for each state transition hazard, separately:

𝑀𝐼𝑆𝐸𝑔 =
1
𝑛

𝑛∑︁
𝑖=1

[
ℎ𝑔 (𝑿𝑖) − ℎ̂𝑔 (𝑿𝑖)

]2 ; 𝑔 = 1, 2, 3

Tables 3.1 and 3.2 summarize the results of this simulation study. As shown in Table 3.1,
estimation of the true frailty variance (\) is consistent across all simulation settings, though the
estimated \̂ is slightly closer to the truth for smaller values of \. Further, we integrated bivariate
Brier score for one ‘year’ survival over a sequence of 100 evenly spaced time points in each
simulation and compared the results from our method and the classical parametric regression
model fit to a calculation which utilized the true model parameters. This was done to compare
the fitted results to those results which signified the degree of irreducible error in the bivariate
Brier score for each setting. Again, the results from our method are comparable with that of the
‘true’ bivariate Brier score across all simulation settings. Table 3.2 then compares our approach to
the a standard regression in terms of the MISE for the predicted log-risk functions. In comparing
the various simulation settings, it is shown that for both methods, the MISE increases slightly
with the frailty variance and censoring rate. Further, the variability decreases with the increased
sample size. Comparing the two methods under the different risk functions, it is shown that both
methods accurately recover the log-risk surfaces for the respective state transitions when the true
underlying function of the predictors is linear. However, in the non-linear settings, our neural EM
approach has a much lower MISE, on average, compared to the classical approach, suggesting
that our method out-performs the maximum likelihood approach when the functional form of the
predictors is not truly linear. Lastly, in Figure 3.2, we graphically exemplify the estimation of the
baseline cumulative hazard functions and population frailty variance under one simulation setting:
𝑛 = 1, 000, \ = 0.5, log-risk function = non-monotonic, and censoring rates of 0%, 25%, and 50%.

3.5 Boston Lung Cancer Study

The work in this chapter is motivated by the Boston Lung Cancer Study (BLCS), one of the largest
lung cancer survival cohorts in the world [28]. A primary objective of the BLCS is to better
understand how risk factors influence a patient’ disease trajectory, where they may experience
adverse events such as a disease progression prior to death [70]. To address this, the BLCS has
amassed a comprehensive database on patients enrolled at the Massachusetts General Hospital and
the Dana-Farber Cancer Institute since 1992. The data collected by the BLCS contain demographics,
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0% Censoring

25% Censoring

50% Censoring

Figure 3.2: Estimated cumulative baseline hazard functions based on an example 50 generated
datasets with 𝑛 = 1, 000, \ = 0.5, log-risk function = non-monotonic, and censoring rates = 0%,
25%, and 50% (rows)
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Table 3.1: Estimated frailty variance and one year integrated bivariate Brier score under various simulation settings

Simulation Settings Frailty Variance Estimation Integrated Bivariate Brier Score

Sample Size Risk Function Censoring Rate Truth Parametric Neural EM Truth Parametric Neural EM

1,000 Linear 0% 0.5 0.49 (0.04) 0.49 (0.07) 0.1600 (0.0035) 0.1605 (0.0035) 0.1618 (0.0035)
10,000 Linear 0% 0.5 0.50 (0.01) 0.49 (0.03) 0.1584 (0.0013) 0.1585 (0.0013) 0.1594 (0.0014)
1,000 Linear 0% 2.0 1.96 (0.11) 1.92 (0.08) 0.1915 (0.0047) 0.1917 (0.0047) 0.1925 (0.0049)

10,000 Linear 0% 2.0 2.01 (0.03) 1.98 (0.04) 0.1911 (0.0016) 0.1911 (0.0016) 0.1921 (0.0015)
1,000 Non-Linear 0% 0.5 0.49 (0.05) 0.50 (0.08) 0.1822 (0.0038) 0.1841 (0.0036) 0.1855 (0.0036)

10,000 Non-Linear 0% 0.5 0.51 (0.01) 0.51 (0.02) 0.1821 (0.0011) 0.1836 (0.0011) 0.1858 (0.0014)
1,000 Non-Linear 0% 2.0 1.97 (0.11) 1.92 (0.07) 0.2244 (0.0022) 0.2258 (0.0022) 0.2271 (0.0024)

10,000 Non-Linear 0% 2.0 2.01 (0.03) 1.95 (0.03) 0.2245 (0.0009) 0.2251 (0.0009) 0.2276 (0.0015)
1,000 Non-Monotonic 0% 0.5 0.49 (0.05) 0.50 (0.08) 0.1822 (0.0038) 0.1841 (0.0036) 0.1855 (0.0036)

10,000 Non-Monotonic 0% 0.5 0.51 (0.01) 0.51 (0.02) 0.1821 (0.0011) 0.1836 (0.0011) 0.1858 (0.0014)
1,000 Non-Monotonic 0% 2.0 1.97 (0.11) 1.95 (0.07) 0.2244 (0.0022) 0.2258 (0.0022) 0.2271 (0.0024)

10,000 Non-Monotonic 0% 2.0 2.01 (0.03) 1.95 (0.03) 0.2245 (0.0009) 0.2251 (0.0009) 0.2276 (0.0015)

1,000 Linear 25% 0.5 0.47 (0.10) 0.47 (0.11) 0.1880 (0.0046) 0.1886 (0.0050) 0.1892 (0.0053)
10,000 Linear 25% 0.5 0.50 (0.05) 0.48 (0.02) 0.1899 (0.0030) 0.1900 (0.0029) 0.1914 (0.0029)
1,000 Linear 25% 2.0 2.00 (0.35) 1.95 (0.20) 0.2967 (0.0200) 0.2970 (0.0228) 0.2999 (0.0224)

10,000 Linear 25% 2.0 2.02 (0.12) 1.96 (0.08) 0.2979 (0.0074) 0.2979 (0.0069) 0.3030 (0.0079)
1,000 Non-Linear 25% 0.5 0.47 (0.14) 0.48 (0.12) 0.1851 (0.0045) 0.1866 (0.0040) 0.1879 (0.0048)

10,000 Non-Linear 25% 0.5 0.52 (0.05) 0.50 (0.04) 0.1858 (0.0010) 0.1874 (0.0012) 0.1893 (0.0025)
1,000 Non-Linear 25% 2.0 2.01 (0.23) 1.89 (0.21) 0.3042 (0.0176) 0.3065 (0.0220) 0.3088 (0.0201)

10,000 Non-Linear 25% 2.0 2.04 (0.10) 1.96 (0.10) 0.3032 (0.0034) 0.3044 (0.0048) 0.3113 (0.0093)
1,000 Non-Monotonic 25% 0.5 0.47 (0.14) 0.47 (0.12) 0.1851 (0.0045) 0.1866 (0.0040) 0.1879 (0.0048)

10,000 Non-Monotonic 25% 0.5 0.52 (0.05) 0.50 (0.04) 0.1858 (0.0010) 0.1874 (0.0012) 0.1893 (0.0025)
1,000 Non-Monotonic 25% 2.0 2.01 (0.23) 1.90 (0.21) 0.3042 (0.0176) 0.3065 (0.0220) 0.3088 (0.0201)

10,000 Non-Monotonic 25% 2.0 2.04 (0.10) 1.91 (0.10) 0.3032 (0.0034) 0.3044 (0.0048) 0.3113 (0.0093)

1,000 Linear 50% 0.5 0.47 (0.17) 0.47 (0.12) 0.1853 (0.0060) 0.1858 (0.0066) 0.1866 (0.0075)
10,000 Linear 50% 0.5 0.51 (0.05) 0.50 (0.05) 0.1912 (0.0042) 0.1912 (0.0046) 0.1934 (0.0044)
1,000 Linear 50% 2.0 1.96 (0.48) 1.87 (0.31) 0.3081 (0.0323) 0.3092 (0.0387) 0.3129 (0.0355)

10,000 Linear 50% 2.0 2.00 (0.16) 1.95 (0.06) 0.3050 (0.0133) 0.3050 (0.0129) 0.3090 (0.0142)
1,000 Non-Linear 50% 0.5 0.47 (0.20) 0.49 (0.12) 0.1794 (0.0037) 0.1808 (0.0032) 0.1830 (0.0056)

10,000 Non-Linear 50% 0.5 0.51 (0.06) 0.49 (0.03) 0.1819 (0.0022) 0.1833 (0.0026) 0.1853 (0.0072)
1,000 Non-Linear 50% 2.0 1.93 (0.28) 1.87 (0.21) 0.3074 (0.0211) 0.3090 (0.0239) 0.3127 (0.0264)

10,000 Non-Linear 50% 2.0 2.06 (0.11) 1.94 (0.09) 0.3076 (0.0065) 0.3092 (0.0077) 0.3179 (0.0146)
1,000 Non-Monotonic 50% 0.5 0.47 (0.20) 0.49 (0.13) 0.1794 (0.0037) 0.1808 (0.0032) 0.1830 (0.0056)

10,000 Non-Monotonic 50% 0.5 0.51 (0.06) 0.49 (0.04) 0.1819 (0.0022) 0.1833 (0.0026) 0.1853 (0.0072)
1,000 Non-Monotonic 50% 2.0 1.93 (0.28) 1.96 (0.21) 0.3074 (0.0211) 0.3090 (0.0239) 0.3127 (0.0264)

10,000 Non-Monotonic 50% 2.0 2.06 (0.11) 1.94 (0.09) 0.3076 (0.0065) 0.3092 (0.0077) 0.3179 (0.0146)
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Table 3.2: Average (SD) mean integrated squared errors for the simulated log-risk surfaces, ℎ𝑔 (𝑿𝑖), for each state transition hazard

Simulation Settings Parametric Approach Neural EM Algorithm

Sample Size Frailty Variance Log-Risk Function Censoring Rate ℎ1 (𝑿 𝑖 ) ℎ2 (𝑿 𝑖 ) ℎ3 (𝑿 𝑖 ) ℎ1 (𝑿 𝑖 ) ℎ2 (𝑿 𝑖 ) ℎ3 (𝑿 𝑖 )

1,000 0.5 Linear 0% 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.07 (0.07) 0.08 (0.08) 0.07 (0.05)
10,000 0.5 Linear 0% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.08 (0.06) 0.07 (0.05) 0.07 (0.04)
1,000 2.0 Linear 0% 0.02 (0.01) 0.01 (0.01) 0.01 (0.01) 0.12 (0.07) 0.11 (0.08) 0.12 (0.09)

10,000 2.0 Linear 0% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.11 (0.06) 0.11 (0.06) 0.13 (0.09)
1,000 0.5 Non-Linear 0% 0.17 (0.07) 0.15 (0.06) 0.19 (0.08) 0.07 (0.04) 0.09 (0.03) 0.07 (0.01)

10,000 0.5 Non-Linear 0% 0.17 (0.02) 0.19 (0.04) 0.18 (0.02) 0.08 (0.01) 0.08 (0.03) 0.08 (0.03)
1,000 2.0 Non-Linear 0% 0.22 (0.15) 0.27 (0.15) 0.22 (0.18) 0.15 (0.01) 0.10 (0.05) 0.11 (0.04)

10,000 2.0 Non-Linear 0% 0.20 (0.04) 0.19 (0.03) 0.20 (0.06) 0.14 (0.07) 0.14 (0.08) 0.12 (0.05)
1,000 0.5 Non-Monotonic 0% 1.79 (0.32) 1.79 (0.38) 1.83 (0.35) 0.09 (0.05) 0.09 (0.04) 0.09 (0.06)

10,000 0.5 Non-Monotonic 0% 1.82 (0.11) 1.81 (0.14) 1.76 (0.12) 0.07 (0.03) 0.08 (0.03) 0.08 (0.05)
1,000 2.0 Non-Monotonic 0% 1.89 (0.49) 1.86 (0.53) 1.97 (0.52) 0.15 (0.05) 0.13 (0.06) 0.14 (0.07)

10,000 2.0 Non-Monotonic 0% 1.82 (0.18) 1.80 (0.18) 1.85 (0.17) 0.14 (0.04) 0.12 (0.03) 0.14 (0.06)

1,000 0.5 Linear 25% 0.01 (0.02) 0.01 (0.01) 0.01 (0.02) 0.11 (0.10) 0.10 (0.07) 0.13 (0.12)
10,000 0.5 Linear 25% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.12 (0.08) 0.12 (0.05) 0.12 (0.10)
1,000 2.0 Linear 25% 0.03 (0.02) 0.02 (0.02) 0.03 (0.03) 0.15 (0.10) 0.13 (0.08) 0.16 (0.11)

10,000 2.0 Linear 25% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.14 (0.09) 0.12 (0.06) 0.14 (0.10)
1,000 0.5 Non-Linear 25% 0.18 (0.12) 0.15 (0.06) 0.32 (0.30) 0.10 (0.04) 0.08 (0.02) 0.07 (0.02)

10,000 0.5 Non-Linear 25% 0.19 (0.03) 0.21 (0.05) 0.21 (0.06) 0.08 (0.03) 0.08 (0.04) 0.09 (0.04)
1,000 2.0 Non-Linear 25% 0.29 (0.24) 0.31 (0.20) 0.38 (0.29) 0.14 (0.05) 0.11 (0.05) 0.12 (0.04)

10,000 2.0 Non-Linear 25% 0.21 (0.04) 0.20 (0.03) 0.19 (0.06) 0.12 (0.04) 0.14 (0.06) 0.19 (0.19)
1,000 0.5 Non-Monotonic 25% 1.97 (0.47) 2.02 (0.51) 2.18 (0.60) 0.10 (0.08) 0.10 (0.08) 0.12 (0.08)

10,000 0.5 Non-Monotonic 25% 1.92 (0.16) 1.91 (0.16) 2.16 (0.17) 0.09 (0.04) 0.09 (0.05) 0.11 (0.06)
1,000 2.0 Non-Monotonic 25% 2.00 (0.62) 1.97 (0.69) 2.25 (0.75) 0.13 (0.07) 0.15 (0.08) 0.13 (0.06)

10,000 2.0 Non-Monotonic 25% 1.85 (0.20) 1.85 (0.21) 2.12 (0.27) 0.10 (0.05) 0.11 (0.06) 0.11 (0.05)

1,000 0.5 Linear 50% 0.02 (0.02) 0.03 (0.02) 0.05 (0.03) 0.10 (0.07) 0.10 (0.09) 0.18 (0.17)
10,000 0.5 Linear 50% 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.10 (0.07) 0.11 (0.08) 0.17 (0.16)
1,000 2.0 Linear 50% 0.03 (0.03) 0.03 (0.02) 0.03 (0.05) 0.22 (0.13) 0.19 (0.13) 0.22 (0.17)

10,000 2.0 Linear 50% 0.00 (0.00) 0.00 (0.00) 0.01 (0.00) 0.14 (0.09) 0.14 (0.10) 0.16 (0.14)
1,000 0.5 Non-Linear 50% 0.16 (0.11) 0.20 (0.12) 0.43 (0.42) 0.11 (0.05) 0.09 (0.06) 0.08 (0.02)

10,000 0.5 Non-Linear 50% 0.19 (0.03) 0.22 (0.05) 0.22 (0.06) 0.08 (0.03) 0.08 (0.03) 0.11 (0.05)
1,000 2.0 Non-Linear 50% 0.30 (0.27) 0.31 (0.20) 0.37 (0.30) 0.14 (0.11) 0.12 (0.06) 0.13 (0.06)

10,000 2.0 Non-Linear 50% 0.22 (0.05) 0.20 (0.04) 0.19 (0.06) 0.16 (0.08) 0.14 (0.07) 0.14 (0.08)
1,000 0.5 Non-Monotonic 50% 2.04 (0.51) 2.00 (0.66) 2.57 (1.01) 0.11 (0.12) 0.13 (0.13) 0.18 (0.14)

10,000 0.5 Non-Monotonic 50% 2.04 (0.20) 2.05 (0.19) 2.33 (0.25) 0.06 (0.03) 0.09 (0.09) 0.14 (0.09)
1,000 2.0 Non-Monotonic 50% 2.13 (0.69) 2.00 (0.68) 2.43 (0.88) 0.18 (0.10) 0.18 (0.09) 0.16 (0.11)

10,000 2.0 Non-Monotonic 50% 1.94 (0.22) 1.95 (0.24) 2.25 (0.30) 0.10 (0.05) 0.11 (0.08) 0.15 (0.10)
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social history, pathology, treatments, oncogenic mutation status, and other risk factors pertinent
to these patient outcomes [97, 103]. Patients are recruited on a rolling basis to the BLCS upon
initial lung cancer diagnosis and followed until death. During the course of follow-up, disease
progression is recorded, which signifies a major non-terminal event in a patient’s disease trajectory
that modifies their risk of mortality. A combination of physical exam, imaging, and pathology data
were used to determine the first data of progression. All-cause mortality was reported to the BLCS,
with additional death information ascertained from the National Death Index and other sources.
Thus, our semi-competing events are defined as 𝑌𝑖1 being the first instance of cancer progression
or death, which could be censored by the end of follow-up, and 𝑌𝑖2 being the occurrence of death,
either prior to or following progression, or censoring.

3.5.1 Study Sample

Among the 19,497 participants enrolled in the BLCS cohort, 7,585 were elibile for inclusion in this
study. Eligibility was defined as having positive lung cancer diagnosis. Participants were ineligible
if they were enrolled with esophageal cancer or other primary cancer, no cancer upon further study,
or as a negative control in the case of spouses, friends, or other participants. Among those 7,585
eligible patients, we identified 7,462 (98.4%) with the temporal information necessary to define
their semi-competing outcomes, namely (1) date of primary diagnosis, (2) progression and/or death
date where applicable, and (3) last follow-up date or non-progression date. We further removed two
patients with carcinoma in situ, i.e. stage 0. Thus, our final analytic cohort consisted of 𝑛 = 7, 460
patients diagnosed with lung cancer between June 1983 and October 2021. Disease progression
was reported in 438 (5.9%) patients, with 143 (1.9%) patients experiencing progression followed
by death and 295 (4.0%) patients alive by the end of follow up. In addition 2,720 (36.5%) patients
died prior to progression (see Table 3.3).

Table 3.3: Semi-competing event rates among 𝑛 = 7, 460 patients in our analytic sample.

Progression Observed / Death Observed Yes No

Yes 143 (1.9%) 295 (4.0%)
No 2,720 (36.5%) 4,302 (57.7%)

Detailed information on patient demographics, smoking history, physiologic measurements, and
genetic mutations were also collected. Potential demographic predictors included patient age at
diagnosis (years), sex assigned at birth, self-identified race, ethnicity, and education level. Smoking
status and pack-years of smoking also were included. Relevant clinical predictors included cancer
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stage at diagnosis, histology, initial treatment, indications of chronic obstructive pulmonary disease
(COPD) or asthma, and oncogenic (somatic driver) mutation status (EGFR or KRAS).

Table 3.4 reports summary statistics for these risk factors in our study sample. As shown, median
(interquartile range (IQR)) age at diagnosis was 66 (58, 73) years, with 3,934 (53%) patients being
female, 6,866 (92%) being white, and 6,419 (86%) being non-Hispanic. Clinically relevant features
are as follows. Of the patients in our study sample, 6,003 (81%) had non-small cell lung cancer
(NSCLC; adenocarcinoma, squamous cell carcinoma, or other/unspecified NSCLC), 301 (4%) had
small cell lung cancer (SCLC), and 1,156 (15%) had lung cancer of other/unknown histologic
type (e.g., mixed type). The majority of patients had a history of smoking (6,303; 84%), with a
median (IQR) of 37 (12, 58) pack-years of smoking. Further, 1,512 patients (20%) were tested
using the SNaPshot assay for the presence of genetic variants. The results of this testing revealed
that 396 (5.3%) patients were postive for at least one KRAS variant and 285 (3.8%) patients
were positive for at least one EGFR variant. Chronic obstructive pulmonary disease (COPD) was
prevalent in 2,108 (28%) patient and 404 (5.4%) patients had asthma. Lastly, 4,350 (58%) of
patients initially underwent surgery, while 1,841 (25%) patients initially received chemotherapy,
360 (4.8%) received radiation, and 909 (12%) received another form of initial treatment (Table
3.4). We note that these characteristics are similar to a recent study utilizing patient data from
Massachusetts General Hospital, which draws comparisons to the BLCS cohort [150].

3.5.2 Univariate Associations

In an exploratory analysis, we first fit univariate Cox proportional hazards models to each event
type (progression and death), separately, to understand the marginal associations between these
events and our candidate predictors. We then fit fully-adjusted Cox models to the data. Hazard
ratios (HR) and 95% confidence intervals (CI) are given in Table 3.5. As shown, initial cancer
stage and treatment, as well as indications of COPD were significantly associated with disease
progression in the fully adjusted model. This, however, does not account for death as a form of
dependent censoring. In looking at overall mortality, we see that age, sex, education level, pack-
years of smoking, histologic type, cancer stage, initial treatment, and indications of COPD were all
associated with overall mortality (Table 3.5).

3.5.3 Predictive Modeling

These variables were then used as candidate predictors in two modeling approaches. In the first
approach, we fit our proposed neural EM algorithm, where we exemplify our method by estimating
the hazards of cancer progression, mortality, and mortality following progression as non-linear
functions of the predictors outlined above. We trained the model on a random 80% split of
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Table 3.4: Demographic and clinical characteristics for the 𝑛 = 7, 460 patients diagnosed with
lung cancer diagnosed between June 1983 and October 2021 in our analytic sample derived from
the Boston Lung Cancer Study cohort. Summary statistics are reported as 𝑛(%) for categorical
predictors and median (interquartile range) for continuous covariates.

Characteristic N = 7,4601

Age at Diagnosis (yrs.) 66 (58, 73)
Unknown 723

Sex
Female 3,934 (53%)
Male 3,408 (46%)
Unknown 118 (1.6%)

Race
White 6,866 (92%)
Black 124 (1.7%)
Asian 142 (1.9%)
Other 102 (1.4%)
Unknown 226 (3.0%)

Ethnicity
Non-Hispanic 6,419 (86%)
Hispanic 84 (1.1%)
Unknown 957 (13%)

Smoking Status
Smoker 6,303 (84%)
Non-Smoker 988 (13%)
Unknown 169 (2.3%)

Pack-Years of Smoking 37 (12, 58)
Unknown 1,053

Histologic Type
Adenocarcinoma 3,958 (53%)
Squamous Cell Carcinoma 1,175 (16%)
Non-Small Cell Lung Cancer, Unspecified 870 (12%)
Small Cell Lung Cancer 301 (4.0%)
Other/Unknown 1,156 (15%)

Stage
1 2,926 (39%)
2 729 (9.8%)
3 1,438 (19%)
4 1,763 (24%)
Limited 86 (1.2%)
Extensive 96 (1.3%)
Unknown 422 (5.7%)

Initial Treatment
Surgery 4,350 (58%)
Chemotherapy 1,841 (25%)
Radiation 360 (4.8%)
Other/Unknown 909 (12%)

EGFR Status
Variant Negative 1,227 (16%)
Variant Positive 285 (3.8%)
Not Tested 5,948 (80%)

KRAS Status
Variant Negative 1,116 (15%)
Variant Positive 396 (5.3%)
Not Tested 5,948 (80%)

Chronic Obstructive Pulmonary Disease 2,108 (28
Asthma 404 (5.4%)
1Median (IQR); n (%)
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Figure 3.3: Average (SD) Bivariate Brier score (BBS) for our Neural EM Algorithm (blue, solid
line) versus a semi-competing regression model (gray, dashed line), with 5-fold cross-validation.
Integrated (BBS) was taken over 100 evenly spaced time points from time zero to five years.

the analytic sample, with 20% of this sample further used as a validation set during training.
Hyperparameters, including the number of nodes per hidden layer, the learning rate, the dropout
rate, and the regularization rate, were optimized over a grid of candidate values and chosen based
on best predictive performance. We then tested our model on the remaining 20% of patients and
calculated the Bivariate Brier score at one hundred evenly spaced time points from time zero to five
years post-diagnosis. We compared our approach to a classical semi-competing regression model,
where we again fit the model on a random 80% training split of the data and predicted the bivariate
survival function on the holdout 20% testing set. For the traditional regression approach, we
assumed the illness-death model that is semi-Markov with respect to the third transition hazard, as
well as Weibull baseline hazards for each of the three state transitions. This procedure was repeated
across each 80% and training and 20% testing split in 5-fold cross validation. Results from our
prognostic modeling are given in Figure 3.3. As shown, the average five-year integrated Bivariate
Brier score for our method was shown to be 0.3266 (0.0876), as compared to 0.6814 (0.0104) from
the traditional regression model which assumes linear risk functions. This suggests that a model
with linear risk function may not be predictive of progression or mortality, while a model that is
agnostic to the form of the risk function may be better suited for survival prognostication.
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Table 3.5: Results from unadjusted and adjusted Cox proportional hazards models studying the univariate associations between disease
progression and death, separately, with our candidate predictors.

Univariate Progression Fully-Adjusted Progression Univariate Mortality Fully-Adjusted Mortality

Characteristic HR1 95% CI1 p-value HR1 95% CI1 p-value HR1 95% CI1 p-value HR1 95% CI1 p-value

Age at Diagnosis (yrs.) 0.979 0.97, 0.99 < 0.001 1.00 1.00, 1.01 0.3 1.01 1.01, 1.01 < 0.001 1.02 1.01, 1.02 < 0.001
Sex

Female — — — — — — — —
Male 0.92 0.76, 1.11 0.4 1.03 0.84, 1.26 0.8 1.50 1.39, 1.61 < 0.001 1.37 1.26, 1.47 < 0.001
Unknown 1.32 0.65, 2.66 0.4 0.84 0.33, 2.14 0.7 0.78 0.51, 1.17 0.2 1.28 0.71, 2.30 0.4

Race
White — — — — — — — —
Black 1.26 0.65, 2.43 0.5 1.36 0.69, 2.68 0.4 0.84 0.62, 1.13 0.3 1.02 0.75, 1.37 > 0.9
Asian 2.73 1.76, 4.24 < 0.001 1.34 0.84, 2.13 0.2 0.61 0.43, 0.85 0.003 0.77 0.54, 1.08 0.13
Other 1.23 0.55, 2.75 0.6 0.956 0.42, 2.17 > 0.9 0.92 0.64, 1.32 0.7 1.06 0.73, 1.53 0.8
Unknown 2.24 1.50, 3.36 < 0.001 1.17 0.62, 2.19 0.6 0.71 0.55, 0.93 0.013 0.78 0.54, 1.14 0.2

Ethnicity
Non-Hispanic — — — — — — — —
Hispanic 1.49 0.71, 3.16 0.3 1.23 0.55, 2.75 0.6 0.57 0.37, 0.90 0.016 0.79 0.49, 1.26 0.3
Unknown 1.25 0.97, 1.62 0.085 1.18 0.85, 1.63 0.3 0.66 0.58, 0.75 < 0.001 0.981 0.85, 1.14 0.8

Smoking Status
Smoker — — — — — — — —
Non-Smoker 1.98 1.58, 2.47 < 0.001 0.91 0.68, 1.21 0.5 0.64 0.57, 0.72 < 0.001 0.91 0.79, 1.05 0.2
Unknown 2.75 1.75, 4.31 < 0.001 2.39 1.20, 4.75 0.013 0.57 0.40, 0.81 0.002 0.70 0.42, 1.18 0.2

Pack-Years of Smoking 0.987 0.98, 0.99 < 0.001 0.999 0.99, 1.00 0.5 1.01 1.01, 1.01 < 0.001 1.00 1.00, 1.00 < 0.001
Histologic Type

Adenocarcinoma — — — — — — — —
Squamous Cell Carcinoma 0.48 0.35, 0.67 < 0.001 0.93 0.66, 1.31 0.7 1.54 1.39, 1.71 < 0.001 1.31 1.17, 1.46 < 0.001
NSCLC, Unspecified2 0.953 0.72, 1.26 0.7 1.08 0.81, 1.45 0.6 0.92 0.80, 1.06 0.2 0.74 0.64, 0.85 < 0.001
Small Cell Lung Cancer 1.20 0.78, 1.85 0.4 1.20 0.50, 2.90 0.7 3.33 2.89, 3.84 < 0.001 1.25 1.03, 1.52 0.027
Other/Unknown 0.31 0.21, 0.47 < 0.001 0.46 0.30, 0.72 < 0.001 2.29 2.09, 2.52 < 0.001 1.26 1.13, 1.41 < 0.001

Stage
1 — — — — — — — —
2 2.42 1.13, 5.21 0.024 2.30 1.07, 4.97 0.034 1.97 1.70, 2.28 < 0.001 1.81 1.56, 2.10 < 0.001
3 21.5 13.3, 34.7 < 0.001 19.2 11.7, 31.7 < 0.001 3.29 2.95, 3.67 < 0.001 2.56 2.27, 2.89 < 0.001
4 45.7 28.5, 73.4 < 0.001 22.1 13.0, 37.5 < 0.001 5.39 4.85, 6.00 < 0.001 4.80 4.19, 5.49 < 0.001
Limited 4.03 0.94, 17.3 0.061 3.12 0.58, 16.7 0.2 1.78 1.23, 2.56 0.002 0.92 0.61, 1.38 0.7
Extensive 73.4 38.3, 141 < 0.001 41.2 15.0, 114 < 0.001 10.4 8.17, 13.2 < 0.001 6.68 4.94, 9.02 < 0.001
Unknown 4.23 1.77, 10.1 0.001 11.4 4.50, 28.9 < 0.001 7.58 6.64, 8.65 < 0.001 3.01 2.53, 3.58 < 0.001

Initial Treatment
Surgery — — — — — — — —
Chemotherapy 10.2 8.17, 12.8 < 0.001 2.16 1.65, 2.85 < 0.001 3.25 2.97, 3.55 < 0.001 1.71 1.52, 1.91 < 0.001
Radiation 3.75 2.35, 6.00 < 0.001 1.50 0.92, 2.46 0.10 2.43 2.02, 2.93 < 0.001 1.93 1.59, 2.33 < 0.001
Other/Unknown 1.55 0.96, 2.50 0.072 0.67 0.39, 1.14 0.14 6.08 5.52, 6.69 < 0.001 2.81 2.47, 3.20 < 0.001

COPD2

No — — — — — — — —
Yes 0.40 0.31, 0.53 < 0.001 0.58 0.43, 0.77 < 0.001 0.91 0.84, 0.99 0.028 0.90 0.82, 0.98 0.017

Asthma
No — — — — — — — —
Yes 0.73 0.46, 1.18 0.2 0.65 0.40, 1.05 0.076 0.992 0.85, 1.16 > 0.9 1.02 0.87, 1.20 0.8

Genetic Variant Status
Variants Negative — — — — — — — —
Not Tested 0.20 0.16, 0.26 < 0.001 0.35 0.27, 0.44 < 0.001 1.71 1.48, 1.96 < 0.001 1.62 1.40, 1.87 < 0.001
KRAS or EGFR Positive 0.91 0.71, 1.17 0.5 1.04 0.80, 1.35 0.8 0.72 0.58, 0.89 0.002 0.88 0.71, 1.10 0.3

1HR = Hazard Ratio, CI = Confidence Interval
2NSCLC = Non-Small Cell Lung Cancer, COPD = Chronic Obstructive Pulmonary Disease
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Figure 3.4: Average estimated cumulative baseline hazard functions and 95% bootstrap confidence
intervals for each state transition based on 50 bootstrap samples of our data

Figure 3.4 depicts the estimated cumulative baseline hazard functions for each state transition
based on the 20% testing split of the cohort for each of the five-fold training splits. As shown,
the baseline hazards are highest in the sojourn time between progression and death. Figure 3.5
depicts the log-risk (ℎ) functions for the effect of patient age at diagnosis on each state transition,
stratified by sex assigned at birth and smoking status. All other covariates were fixed to be at their
sample means or modes for illustration. As shown, there is a non-linear relationship between age
and the risk functions, which differ by transition, particularly in the transition from progression
to death. Further, the risk of progression decreases with age but increases with death, both from
diagnosis and from progression. Further, smoking status appears to have a strong effect on the risk
of death from diagnosis, and to a lesser extent for the other state transitions. Lastly, across all state
transitions, males have a higher risk of mortality, regardless of age and smoking status.

3.6 Discussion

In this chapter, we propose a neural expectation-maximization approach which, through a mixture of
neural network architectures and trainable parameters, predicts time-to-event outcomes arising from
a semi-competing risk framework (i.e., when an non-terminal event such as disease progression,
modifies the risk of a patient’s future survival). While previous work has developed machine
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Figure 3.5: Example log-risk functions of age at diagnosis on each state transition, stratified by sex
(line color) and smoking status (solid versus dashed lines).

learning approaches for multi-state or competing-risk settings [134, 89, 88, 1], in which progression
and survival censor each other, we propose a new approach to further study the correlation between
time to progression and death, and the modified hazards for mortality in the so-called ‘sojourn time’
between progression and death. In simulation, our results show high accuracy in estimating the
relationship between predictors and the hazards of transitioning from disease onset to progression
and death, particularly in situations where the risk relationship is increasingly complex.

Based on our analysis results, we detected several non-linear effects and interactions between
commonly-studied risk factors such as age, sex assigned at birth, and smoking status. As shown
in the predicted risk functions for our data, we note a potential interaction between sex assigned
at birth and smoking status in the hazards for mortality. Such findings have been corroborated in
[57] and more recently in [135]. [57] found that patterns of smoking differed by other well-known
risk factors such as patient age, sex, tumor stage, and histology, with smoking and tumor stage
being predictive of patient mortality. Further, they found significant interactions between smoking,
clinical stage, and age with respect to progression. In our study, we note potential interactions
between smoking status, age, and sex with respect to progression, as seen by the crossing of the
covariate-specific risk functions. We also note that the difference in mortality hazards becomes
more pronounced between males and females for each year higher age at diagnosis. The study by
[135] examined the interacting effects between smoking status and other risk factors in patients
with small-cell lung cancer, including age, sex, stage, and initial treatment. However, their study,
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which focused on small-cell lung cancer, found that non-smokers had higher hazards for mortality,
while the opposite is true in our cohort of small-cell and non-small cell cases. As opposed
to these works, which considered the end points of progression and death without their shared
dependence, our analysis treats these outcomes as semi-competing. In applying our method to the
prediction of semi-competing outcomes in the Boston Lung Cancer Study Cohort, we found that
our Neural EM approach had a much greater predictive accuracy than traditional semi-competing
regression approaches. This is promising, as often, mortality is assessed without the consideration
of progression as a competing event, or to avoid technical difficulties such as dependent censoring,
composite endpoints such as progression-free survival are be constructed, which measure the
time to the first of multiple possible events. However, the composite endpoints may mask the
dependence of predictors on different endpoints, as the effects of certain clinical factors may differ
across differing states in a patient’s disease trajectory [9, 25]. Having a method which accurately
predicts survival outcomes, while appropriately accounting for the dependence between multiple
event types, will help improve clinical decision making.

Another major advantage of our approach over traditional regression models or other machine
learning approaches is the use of deep learning for risk prediction. Deep neural networks have the
ability to accommodate potentially high-dimensional predictors. Recent works have shown that
estimates based on multilayer feedforward neural networks are able to circumvent the curse of di-
mensionality in nonparametric regression settings [14, 107]. Fully understanding this phenomenon
is still a work in progress, but several authors reason that neural networks project the data into a
much lower relevant representational space through weighting [3, 54].

While these results are promising, there are still several open problems to address. First, the
implementation is computationally intensive, owing to the complex structure of the loss function
and number of iterations required to achieve convergence. Future work will improve the efficiency
of the proposed method. Further, our approach yields accuracy point estimates for the hazards of
progression, mortality, and mortality following progression, however we do not yet have a means of
quantifying the uncertainty surrounding these individualized risk predictions. We intend to extend
the method in the framework of Bayesian neural networks to obtain prediction intervals. Lastly, our
approach focuses on the joint distribution of the observed survival times for both event processes
simultaneously. However, often in practice it is of interest to study the marginal distribution of the
non-terminal event (e.g., disease progression) while appropriately accounting for the dependent
censoring incurred by death. An alternate means of formulating this problem would focus on
predicting the marginal survival function for disease progression in the presence of mortality as a
semi-competing event. We will address these problems in subsequent work.
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CHAPTER 4

A Pseudo-Value Approach to Causal Deep Learning
of Semi-Competing Risks

4.1 Introduction

Lung cancer remains the leading cause of cancer-related deaths in the United States, accounting for
one in five cancer-related deaths [122]. Significant progress has been made towards improving lung
cancer prognosis, owing in part to better screening and advances in targeted therapies [92], however,
the clinical course of patients with lung cancer is highly variable due to the complex genetic,
environmental, and psycho-social risk factors which influence a patient’s disease progression, and
survival [129]. Furthering our understanding on the efficacy of patient-specific treatments is crucial
when considering individualized approaches to care [140, 108].

More broadly, while mortality is often the primary endpoint when studying the effect of a
particular treatment or exposure, non-fatal events may also impact illness trajectories and treatment
decisions related to disease management. In the context of lung cancer, disease progression alter
remaining available treatments, making lung cancer recurrence in patients who have undergone
curative treatment an important endpoint [151, 44]. Thus, having a comprehensive understanding
of a patient’s event history, in particular, disease progression is important to inform clinical decision
making. It is often of substantial interest to study the ‘net’ effect of an intervention or exposure on
time to disease progression [38]. However, there are two challenges that hamper this analysis – how
to evaluate causality in observational studies [52] and how to account for the the semi-competing
relationship between disease progression and mortality [74].

As it is not always practical to conduct randomized controlled trials due to ethical or practical
reasons, causal inference has emerged as a powerful tool for making statements about the etiology
of an outcome based on changes in a causal variable of interest in the context of observational
studies [104, 62]. The estimands can be the average risk difference (i.e., difference in survival
probability between treatment groups) at a given point in time or the average difference in restricted
mean life time [26, 112].
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The presence of semi-competing risks can complicate causal inference by introducing dependent
censoring, where the occurrence of death, or a fatal event, precludes recurrence, a non-fatal event.
As a non-fatal event (recurrence) is often a precursor to the fatal event, this leads to informative
censoring, which can bias estimates of treatment effects [74, 51, 99]. Much of the literature on
causal methods for semi-competing risks are developed under a potential outcomes framework,
using principal stratification to estimate causal effects [99, 32, 69, 146]. Principal stratification is
a causal inference technique for handling post-treatment covariates in which patients are grouped
based on post-treatment variables and causal effects are computed within these strata. For example,
if we consider evaluating the causal effect of treatment, 𝑍 , on time to remission by time 𝑡1, a principal
stratification strategy would be to compute the survival average causal effect (SACE) among those
individuals who would have survived as a member of either treatment or control group by some
later time, 𝑡2 [48]. Here, the interpretation of the survival average causal effect (SACE) is causal
effect on remission among those individuals who would have survived as a member of either the
treatment or control group until at least time 𝑡2. However, in many contexts, it is unclear as to
whether principal stratification is truly of scientific interest, or just a means of avoiding ill-defined
counterfactual outcomes [105]. Further, many approaches for semi-competing survival functions
use complicated objective functions, which require strong assumptions and are difficult to estimate
with fidelity. Alternatively, when the outcome of interest is time to a non-fatal event, rather than the
joint outcome of the non-fatal event and death, causal methods under the paradigm of ‘truncation
by death’ have been developed [153, 96, 132, 152]. These approaches require special techniques to
accommodate the presence of censoring.

Another promising approach to causal inference in survival analysis is through the use of
pseudo-outcomes [11]. Here, the time-to-event outcome, which is subject to censoring, is re-
placed by a pseudo-survival probability, which represents a given individual’s contribution to
estimating the survival function of the study sample. This approach has several benefits. Firstly,
using a discrete time survival approach avoids the need for common assumptions. Typical strate-
gies involve the use of parametric families to characterize the distributions of the survival times,
which may be too restrictive in practice, or utilize the Cox partial likelihood defined under the
assumption of proportional hazards, which may not hold – particularly as the number of covariates
increases. Further, pseudo-value based approaches replace the potentially censored survival times
by jackknife-imputed survival probabilities. In the absence of censoring, standard loss functions
can be utilized for optimization, rather than custom-designed approaches, and causal inference
techniques such as inverse probability of treatment weighting (IPTW) or direct standardization via
‘G-methods’ are applicable.

Despite these advances, often, parametric and semi-parametric methods are limited in their
ability to model complex relationships and interactions between covariates [77]. As such, there

43



has been a growing interest in applying machine learning to survival analysis, in order to improve
the accuracy of models [142, 125]. Machine learning techniques, such as decision trees, random
forests, and deep neural networks offer flexible and powerful approach for modeling survival data
[120]. These methods can account for non-linear relationships and interactions between covariates
and can handle high-dimensional datasets with many features. Several studies have demonstrated
the effectiveness of machine learning approaches for survival analysis, including applications
in cancer prognosis [156, 36, 40, 144]. Furthermore, the integration of causal inference into
machine learning approaches has shown great promise for estimating the causal effects of treatments
on survival outcomes. Several studies have proposed machine learning approaches for causal
inference in survival analysis. For example, Hu et al. (2021) proposed an accelerated failure time
Bayesian additive regression trees framework for estimating the heterogeneous survival treatment
effects of lung cancer screening approaches [68], while Stitelman et al. (2012) proposed a general
implementation of the targeted maximum likelihood estimator (TMLE) for longitudinal data in
the context of a survival endpoint [130]. These studies and others demonstrate the potential of
combining machine learning techniques with causal inference methods for survival analysis.

Many recent developments have been made towards applying deep learning approaches for
estimation to survival analysis [148, 79, 80, 111]. However, while the potential effects of covariates
are indeed estimated non-parametrically as outputs from neural network architectures in these
settings, the construction of these loss function relies on an underlying Cox proportional hazards
or Cox frailty model, which may carry strong assumptions, or the survival times themselves may
be assumed to arise from a parametric family of distributions. In such cases, there is a disconnect
between these likelihood-based loss functions and common deep learning algorithms [128]. Further
applying deep learning to non-fatal event data with presents several challenges, including the need
to account for dependent censoring, which requires careful modeling of the joint distribution of the
semi-competing risks [119]. In an effort to address these issues, in this chapter, we propose a deep
learning approach for estimating the causal effect of a given treatment on a non-fatal outcome in the
presence of dependent censoring and potentially complex covariate relationships. In particular, we
propose a three-stage approach. In the first stage, we estimate the marginal survival function for the
non-fatal event based on a Clayton copula representation of the joint survival function. Following
recent works by Andersen et al. (2017), Zhao et al. (2020), Sabathé et al. (2020), and Orenti et
al. (2021), we propose a jackknife pseudo-value approach to circumvent the need for a complex loss
function, whereby we estimate pseudo-survival probabilities at fixed time points as target values
in the second stage [11, 154, 118, 102]. Estimation of pseudo-survival probabilities reduces the
problem at hand to a straightforward minimization of the binary cross-entropy loss function. This
approach further facilitates the development of causal estimators for such targets, which have been
shown to be consistent and do not imposes common assumptions such as proportional hazards
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across all time points. Lastly, we relate our pseudo outcomes to our causal variable of interest and
additional confounders in a deep neural network to estimate survival average causal effect estimates
via direct standardization.

The rest of this chapter is structured as follows. In Section 4.2, we review some notation and
introduce concepts such as the Clayton copula, jackknife pseudo-values, deep learning, and our
target estimand for causal inference before outlining our three-stage procedure and formulating
our deep neural network. In Section 4.3, we provide a series of numerical studies to evaluate our
proposed approach, and in Section 4.4, we apply our method to the Boston Lung Cancer Study,
a large scale epidemiologic lung cancer cohort study. We conclude with some discussion on our
current work and areas of future research.

4.2 Method

4.2.1 Notation

We consider two event types – a non-fatal event, such as disease recurrence, and a fatal event (i.e.,
death), and introduce the following notation. For a study consisting of 𝑛 individuals, let 𝑇𝑖1 and
𝑇𝑖2 denote the times to the non-terminal and terminal events, respectively, for the 𝑖th individual;
𝑖 = 1, . . . , 𝑛. We observe 𝑍𝑖, the causal variable of interest, and 𝑋𝑖, a 𝑝-vector of additional
confounding variables. In the context of our data, 𝑍𝑖 is binary treatment indicator taking values
𝑍𝑖 = 1 if a patient underwent surgical resection and 𝑍𝑖 = 0 for other first-line treatment options.
Further 𝑋𝑖 include demographics, prevalent comorbidity conditions, or genetic variants for the 𝑖th
subject. We assume (𝑇𝑖1, 𝑇𝑖2, 𝑍𝑖, 𝑋𝑖) are i.i.d copies of (𝑇1, 𝑇2, 𝑍, 𝑋).

4.2.2 Bivariate Survival Function and the Clayton Copula

As a preamble, we consider a homogeneous situation, i.e., without covariates. We assume 𝑇1

and 𝑇2 are absolute, continuous random variables taking on non-negative values. Denote the
marginal survival functions for the non-terminal and terminal events by 𝑆1(𝑡1) = 𝑃𝑟 (𝑇1 > 𝑡1)
and 𝑆2(𝑡2) = 𝑃𝑟 (𝑇2 > 𝑡1), respectively. Note that the distribution of 𝑇1 is non-parametrically
identifiable only when the non-fatal event always precedes the fatal event [145]. Otherwise, as is
the case in most practical settings, we assume a model for the joint survival distribution, given by

𝑆(𝑡1, 𝑡2) = Pr(𝑇1 > 𝑡1, 𝑇2 > 𝑡2).

When the non-terminal and terminal events are positively correlated, it is natural to assume a
Clayton copula model to express 𝑆(𝑡1, 𝑡2) as a functional of marginal survival functions, 𝑆1(𝑡1) and
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𝑆1(𝑡1) [31]:
𝑆(𝑡1, 𝑡2) = [𝑆1(𝑡1)−\ + 𝑆2(𝑡2)−\ − 1]−1/\ (4.1)

where the copula dependence parameter, \ ≥ 0, measures the strength of the relationship between
the non-fatal and fatal event times. Since the nonparametric function of (𝑡1, 𝑡2) is only identifiable
on the upper wedge, 0 < 𝑇1 ≤ 𝑇2, we assume model 4.1 on this upper wedge as well. Because
model (4.1) may not hold in the lower wedge, the usual relationship that \/(\ + 2) = Kendall’s 𝜏
may not hold [46].

4.2.3 Calculation of Distribution of Non-Fatal Event Time

Under the Clayton copula model, [46] show that the marginal survival function for the non-fatal
event time is monotonic and estimable given the joint survival function in (4.1) and the marginal
survival function for the fatal event. Specifically, for a fixed time point, 𝑡, the the joint survival
function corresponds to the survival function for the first instance of either event, 𝑆∗(𝑡), which
is often termed progression free survival probability in cancer research. The marginal survival
function for the non-terminal event is related to the progression free survival probability and the
survival function for the terminal event via

𝑆1(𝑡) = [𝑆∗(𝑡)−\ − 𝑆2(𝑡)−\ + 1]− 1
\ , (4.2)

which constitutes the basis of estimating 𝑆1(𝑡), as both 𝑆∗(𝑡) and 𝑆2(𝑡) are estimable via the
Kaplan-Meier method, because both the time to the terminal event and the time to either event are
always observable. Moreover, several works have proposed estimates for \, including the estimator
given in Fine et al. (2001). In the setting where the marginal survival functions do not depend on
covariates, We can estimate \ “ad hoc” via the concordance measure proposed by [101, 46]:∑

𝑖< 𝑗 𝑊
(
𝑌𝑖 𝑗1, 𝑌𝑖 𝑗2

)
𝐷𝑖 𝑗Δ𝑖 𝑗∑

𝑖< 𝑗 𝑊
(
𝑌𝑖 𝑗1, 𝑌𝑖 𝑗2

)
𝐷𝑖 𝑗

(
1 − Δ𝑖 𝑗

) − 1 (4.3)

where, for 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛, we denote by 𝑇𝑖 𝑗1 = min
(
𝑇𝑖1, 𝑇𝑗1

)
, 𝑇𝑖 𝑗2 = min

(
𝑇𝑖2, 𝑇𝑗2

)
, and

𝐶𝑖 𝑗 = min
(
𝐶𝑖, 𝐶 𝑗

)
, and define 𝑌𝑖 𝑗1 = min

(
𝑇𝑖 𝑗1, 𝑇𝑖 𝑗2, 𝐶𝑖 𝑗

)
and 𝑌𝑖 𝑗2 = min

(
𝑇𝑖 𝑗2, 𝐶𝑖 𝑗

)
as the

observable event times for the (𝑖, 𝑗) pair. Further, Δ𝑖 𝑗 = 𝐼
[ (
𝑇𝑖1 − 𝑇𝑗1

) (
𝑇𝑖2 − 𝑇𝑗2

)
> 0

]
and

𝐷𝑖 𝑗 = 𝐼
(
𝑇𝑖 𝑗1 < 𝑇𝑖 𝑗2 < 𝐶𝑖 𝑗

)
, such that Δ𝑖 𝑗 is estimable only when 𝐷𝑖 𝑗 = 1. In contrast to the

estimator of \ proposed in [46], we make a modification in (4.3) by subtracting 1. This is because
the definition of \ in our formulation (4.2) corresponds to replacing \ in Equation (xx) of [46] by
\ + 1.

Lastly, let 𝑌𝑖1 = min(𝑇𝑖1, 𝑇𝑖2, 𝐶𝑖) and 𝑌𝑖2 = min(𝑇𝑖2, 𝐶𝑖) denote the observable event times for a
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given individual. The weight function,𝑊𝑎,𝑏 (𝑦1, 𝑦2), is defined as

𝑊−1
𝑎,𝑏 (𝑦1, 𝑦2) = 𝑛−1

∑︁
𝑖

{𝐼 (𝑌𝑖1 ≥ min(𝑎, 𝑦1), 𝑌𝑖2 ≥ min(𝑏, 𝑦2)}

where constants 𝑎 and 𝑏 may be selected to dampen 𝑊 (·) for large 𝑦1 and 𝑦2. Theoretically, Fine
et al. (2001) show that \̂ is a consistent estimator of \, leading to the estimation of the non-fatal
survival function in the absence of covariates.

4.2.4 Extension to the Distribution of Non-Fatal Event Time with Covariates

With covariates 𝑍, 𝑋 , the copula model (4.1) can be extended to

𝑆(𝑡1, 𝑡2 |𝑍, 𝑋) = C\ [𝑆1(𝑡1 |𝑍, 𝑋), 𝑆2(𝑡2 |𝑍, 𝑋)] = [𝑆1(𝑡1 |𝑍, 𝑋)−\ + 𝑆2(𝑡2 |𝑍, 𝑋)−\ − 1]−1/\ , (4.4)

where 𝑆(𝑡1, 𝑡2 |𝑍, 𝑋) = Pr(𝑇1 > 𝑡1, 𝑇2 > 𝑡2 |𝑍, 𝑋), 𝑆1(𝑡1 |𝑍, 𝑋) = Pr(𝑇1 > 𝑡1 |𝑍, 𝑋) and 𝑆2(𝑡2 |𝑍, 𝑋) =
Pr(𝑇2 > 𝑡2 |𝑍, 𝑋). In this case, \ quantifies the correlation of 𝑇1 and 𝑇2 conditional on 𝑍, 𝑋 .
Similarly, model (4.4) implies

𝑆1(𝑡 | 𝑍, 𝑋) = [𝑆∗(𝑡 | 𝑍, 𝑋)−\ − 𝑆2(𝑡 | 𝑍, 𝑋)−\ + 1]− 1
\ ,

which is the basis of estimating 𝑆1(𝑡 | 𝑍, 𝑋). However, in this case, the estimator (4.3) of \
may not work as it was designed for a homogeneous population without considering covariates.
Our idea is to extend estimator (4.3) by conditioning on 𝑍, 𝑋 . In particular, we propose to estimate
\̂ conditional on 𝑍𝑖, 𝑋𝑖 by focusing on the nearest 𝑘 neighbors to subject 𝑖, using the Euclidean
distance of covariates. We run through all the subjects and average these estimates to achieve
an overall estimate of \̂. We term the procedure a ‘leave-one-in’ approach. More specifically,
let 𝑋 denote the matrix of covariates, including the treatment variable, 𝑍 , where each sample
𝑋𝑖 ∈ 𝑋 is a (𝑝 + 1)-dimensional vector. We consider the Euclidean distance between 𝑋𝑖 and 𝑋𝑖′ for
1 ≤ 𝑖 ≠ 𝑖′ ≤ 𝑛: | | (𝑋𝑖 − 𝑋𝑖′ | |2 = {∑𝑝+1

𝑗=1 (𝑥𝑖 𝑗 − 𝑥𝑖′ 𝑗 )
2}1/2, where 𝑥𝑖 𝑗 and 𝑥𝑖′ 𝑗 are the 𝑗 th components of

𝑋𝑖 and 𝑋𝑖′ , respectively; the Mahalanobis distance can also be used. In our numerical experience,
both distances work almost equally well.

Then, for each individual, say, subject 𝑖 ∈ {1, . . . , 𝑛}, we identify the 𝑘 nearest neighbors, among
the 𝑛 individuals, based on the their distances from this individual and denote them by N(𝑖, 𝑘). We
then estimate \̂ based on subjects from N(𝑖, 𝑘) via

\̂ (𝑖) =

∑
𝑗 ,𝑙∈N (𝑖,𝑘); 𝑗<𝑙𝑊

(
𝑌 𝑗 𝑙1, 𝑌 𝑗 𝑙2

)
𝐷 𝑗 𝑙Δ 𝑗 𝑙∑

𝑗 ,𝑙N(𝑖,𝑘); 𝑗<𝑙𝑊
(
𝑌 𝑗 𝑙1, 𝑌 𝑗 𝑙2

)
𝐷 𝑗 𝑙

(
1 − Δ 𝑗 𝑙

) − 1.
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Here, 𝑗 and 𝑙 index individuals in N(𝑖, 𝑘). An overall estimate of \ is then given by

\̂ = 𝑛−1
𝑛∑︁
𝑖=1

\̂ (𝑖) .

The number of neighbors, 𝑘 , is chosen by visual examination of the estimated \̂ values over a range
of values for 𝑘 . See Figure 4.1 for the results of this calculation over 50 generated datasets (black
line = average value, grey ribbon = standard deviation) corresponding to Setting 2 in Section 4.3.

Figure 4.1: Example calculation across 50 simulated datasets with correlated covariates

4.2.5 Potential Outcomes Framework for Causal Inference

Under a potential outcomes framework, 𝑇 𝑧
𝑖1 denotes the potential time to recurrence that would

occur had 𝑍𝑖 = 𝑧 ∈ {0, 1} for the 𝑖th individual. Causal inference infers the ‘true’ effect of an
intervention on time to disease recurrence by comparing 𝑇1

𝑖1 vs 𝑇0
𝑖1 [104]. Before proceeding we

make several common assumptions:

1. Consistency: ∃ {𝑇1
𝑖1, 𝑇

0
𝑖1} s.t. 𝑇𝑖1 = 𝑇

𝑍𝑖
𝑖1 almost surely. In other words, an individual’s

potential outcome under their assigned treatment group is the outcome that will actually be
observed.
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2. Positivity: 𝑍𝑖 ∈ {0, 1} ∀𝑋𝑖, or the assumption that every individual has a non-zero probability
of being assigned to either treatment group.

3. No Interference: 𝑇 𝑧
𝑖1 is unaffected by the value of 𝑧 for another subject, 𝑗 .

4. Exchangeability: 𝑇1
𝑖1, 𝑇

0
𝑖1 ⊥ 𝑍𝑖 | 𝑋𝑖, i.e., ‘no unmeasured confounding.’

We are interested in the average causal effect of 𝑍𝑖 on the time to recurrence, 𝑇𝑖1. With the as-
sumptions above, a common causal quantity of interest given the counterfactual potential outcomes
is the average treatment effect (ATE), or the expected difference in potential outcomes over all
individuals in the study. We can consider the average causal difference in the risk of recurrence at
time 𝑡 as

E[𝐼 (𝑇1
𝑖1 > 𝑡)] − E[𝐼 (𝑇

0
𝑖1 > 𝑡)], (4.5)

For Equation (4.5), note that E[𝐼 (𝑇𝑖1 ≤ 𝑡)] = 1− 𝑆1(𝑡). Thus, given a consistent estimator of 𝑆1(𝑡),
𝑆1(𝑡), we can construct an ‘S-learner’ to estimate the ATE by training a deep neural network for
𝑆𝑖1(𝑡 |𝑋𝑖, 𝑍𝑖) and predicting the potential outcomes 𝑆𝑖1(𝑡 |𝑋𝑖, 𝑧); 𝑧 ∈ {0, 1}. An estimate of the ATE
for the average causal risk difference is then given by

ˆATE = 𝑛−1
𝑛∑︁
𝑖=1

{𝑆𝑖1(𝑡 |𝑋𝑖, 1) − 𝑆𝑖1(𝑡 |𝑋𝑖, 0)}. (4.6)

4.2.6 A Pseudo-Values Approach for Causal Estimation

Our goal is to construct a model to study the difference in risk of recurrence at a given point in
time. As the efficacy of a given treatment may change over time, common approaches to causal
survival analysis such as the Cox Q-model may impose certain structures across all time points,
e.g., proportional hazards, that are not realistic. Pseudo-values provide an intuitive means of
circumventing the proportional hazards assumption, while also replacing potentially incompletely
observed outcomes with a real-valued function of our outcome for each individual [11]. In general,
for any function 𝑓 (𝑡), pseudo-responses can be generated as 𝑓𝑖 (𝑡) = 𝑛 𝑓 (𝑡) − (𝑛 − 1) 𝑓 −𝑖 (𝑡), where
𝑓 (𝑡) is the overall estimate of 𝑓 (𝑡) and 𝑓 −𝑖 (𝑡) is an estimate omitting the 𝑖th subject. In our setting,
consider 𝐽 discrete time points, indexed by 𝑗 = 1, . . . , 𝐽. The probability of no recurrence by time
𝑡 𝑗 is given by 𝑆1(𝑡 𝑗 ) = Pr(𝑇𝑖1 > 𝑡 𝑗 ). A pseudo-outcome for individual 𝑖 at time point 𝑡 𝑗 can be
constructed as

𝑆𝑖1(𝑡 𝑗 ) = 𝑛 × 𝑆1(𝑡 𝑗 ) − (𝑛 − 1) × 𝑆−𝑖1 (𝑡 𝑗 )
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where 𝑆1(𝑡 𝑗 ) and 𝑆−𝑖1 (𝑡 𝑗 ) are the overall estimate of 𝑆1(𝑡 𝑗 ) using all 𝑛 subjects and the ‘leave-
one-out’ estimate excluding the 𝑖th subject, respectively, based on (4.2). Intuitively, this estimator
for 𝑆1(𝑡 𝑗 ) represents the contribution of the 𝑖th individual in estimating E[𝑆1(𝑡 𝑗 )] in a sample
of 𝑛 subjects. Further, because we have a consistent estimate of 𝑆1(𝑡), 𝑆𝑖1(𝑡 𝑗 ) is approximately
independent of 𝑆𝑖′1(𝑡 𝑗 ) for 𝑖 ≠ 𝑖′ as 𝑛→ ∞ and

lim
𝑛→∞

𝐸 [𝑆𝑖1(𝑡 𝑗 ) | 𝑍𝑖, 𝑋𝑖] = 𝑆1(𝑡 𝑗 | 𝑍𝑖, 𝑋𝑖)

for any 𝑖 [6, 95]. With these results, the pseudo-values, 𝑆𝑖1(𝑡), can then be used as numeric
responses, similar to a logistic model fit to 𝐼

(
𝑇𝑖1 > 𝑡 𝑗

)
if the data were fully observed. However, as

𝐼 (𝑇𝑖 > 𝑡) is not observed for all subjects due to censoring, we must estimate the pseudo-responses
for both the censored and uncensored individuals. We carry forward a design matrix of size
𝑛 × (𝑝 + 𝐽), where 𝑝 denotes the number of covariates in 𝑋 and we include 𝐽 − 1 dummy variables
encoding time 𝑡 𝑗 .

4.2.7 Neural Network Architecture

The pseudo-value approach facilitates direct estimation of the target quantity of interest, without
needing to optimizing the joint likelihood of the survival times directly. This circumvents the need
for complex loss functions as part of the neural network architecture. Our deep neural network
(DNN) directly minimizes the binary cross-entropy loss between the pseudo-survival probabilities,
𝑆𝑖1(𝑡 𝑗 ) and the predicted survival probabilities from the neural network output, 𝜋𝑖 (𝑡 𝑗 ), such that

Binary Cross Entropy Loss =
1
𝑛

{
𝑛∑︁
𝑖=1

−𝑆𝑖1(𝑡 𝑗 ) log[𝜋𝑖 (𝑡 𝑗 )] − [1 − 𝑆𝑖1(𝑡 𝑗 )] log[1 − 𝜋𝑖 (𝑡 𝑗 )]
}
.

Our proposed DNN is an S-learner consisting of a single fully-connected feed-forward neural
network with an input layer, 𝐿 hidden layers with 𝑘 𝑙 neurons in the 𝑙th layer; 𝑙 = 1, . . . , 𝐿, and an
output layer [155, 83]. Hidden layers are connected via a non-linear activation function such as
the rectified linear unit activation functions (ReLU; 𝜎𝑙 (𝑥) = max(0, 𝑥)), while the output layer’s
activation function is specified based on the target quantity. For example, as our target values
are survival probabilities, a sigmoidal activation function (𝜎𝑙 (𝑥) = {1 + 𝑒−𝑥}−1) is used for the
final layer to constrain the output probabilities between 0 and 1. Estimation is based on an 𝐿-fold
composite function

𝐹𝐿 (·) = 𝑓𝐿 ◦ 𝑓𝐿−1 ◦ · · · ◦ 𝑓1(·) where (𝑔 ◦ 𝑓 ) (·) = 𝑔( 𝑓 (·)),
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𝑓𝑙 (𝑥) = 𝜎𝑙 (W𝑙𝑥 + b𝑙) ∈ R𝑘𝑙+1 ,

where 𝜎𝑙 is an activation function, W𝑙 are weights, and b𝐿 are biases. Our network output is
optimized under the binary cross-entropy loss function, which has a faster convergence rate than
the traditional mean squared error due to its steeper gradient when the predicted output is far from
the true output. Our final layer outputs a representation of the data, Ψ, which is used to then predict
the counterfactual outcomes for each individual, 𝑆𝑖1(𝑡 |𝑋𝑖, 𝑧); 𝑧 ∈ {0, 1}, before calculating

ˆ̂
𝐴𝑇𝐸 = 𝑛−1

𝑛∑︁
𝑖=1

{𝑆𝑖1(𝑡 |𝑋𝑖, 1) − 𝑆𝑖1(𝑡 |𝑋𝑖, 0)}.

Hyperparameters needed to fully specify the neural network architecture include the number of
hidden layers and number of nodes per hidden layer, the dropout fraction, and learning rate. In
practice, these quantities are optimized over a Cartesian grid search based on predictive perfor-
mance. We implement our approach with the R interface for Keras, using the deep learning library
TensorFlow as the backend [7, 8].

4.3 Simulations

We next performed a series of simulations to assess the accuracy of our proposed approach against
standard methods. In particular we varied the sample size, copula dependence parameter, censoring
rates, and covariate-dependent risk functions in a fully factorial design. We considered two cases
for the sample sizes, letting 𝑛 = 500 or 𝑛 = 1, 000. Further, we let the copula dependence
parameter, \, equal 0.5, or 2, corresponding to a Kendall’s 𝜏 value of 0.2, or 0.5. Dependent on
each data generation model, we varied the parameters used to generate censoring times to achieve
approximate censoring rates of 0% or 50%. Lastly, we considered two different generative model
settings, described further below.

We considered two generative models of varying complexity. In the first setting, we simulated
data from a proportional hazards model with a risk function that is linear in terms of the covariates,
facilitating a fair comparison between the competing methods. In the second setting, we again
simulated the data from a proportional hazards model, but we introduced a non-linear risk function
through the use of higher order terms and correlated covariates.

Setting 1: Linear Risk Function

We first generated the data following the simulation scheme proposed in Peng and Fine (2007),
Hsieh and Huang (2012), and Orenti et al. (2021) [106, 66, 102]. Specifically, we generated
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non-fatal (𝑇𝑖1) and fatal (𝑇𝑖2) event times from marginal models specified by

log(𝑇𝑖1/3) = −(𝛽1𝑍𝑖 + 𝛽1𝑋𝑖1 + 𝛽1𝑋𝑖2) + Y𝑖1
log(𝑇𝑖2/3) = −(𝛽2𝑍𝑖 + 𝛽2𝑋𝑖1 + 𝛽2𝑋𝑖2) + Y𝑖2,

where 𝑍𝑖 is a Bernoulli random variable with a success probability of 0.5, 𝑋𝑖1 and 𝑋𝑖2 are indepen-
dent truncated normal random variables with mean 1, variance 0.5, and truncation bounds of [0,
2], and (Y𝑖1, Y𝑖2) are correlated random errors. To induce dependence between the simulated event
times, we simulate Y𝑖1 and Y𝑖2 from the Clayton copula model,[

Pr (Y𝑖1 > 𝑡1)−\ + Pr (Y𝑖2 > 𝑡2)−\ − 1
]− 1

\ ,

where Y𝑖1 and Y𝑖2 follow the extreme value distribution, i.e., Pr (Y𝑖1 > 𝑡1) = exp{− exp(𝑡1)} and
Pr (Y𝑖2 > 𝑡2) = exp{− exp(𝑡2)} [116]. Across all simulation settings, we fixed 𝛽1 = 1 and 𝛽2 = 0.2.
In settings where the event times may be censored, we generated independent censoring times, 𝐶𝑖,
from a mixture of uniforms, where 𝐶𝑖 ∼ Unif (0, 1) with probability 0.2 and from Unif (1, 1.2) with
probability 0.8, yielding an approximate censoring rate of 50%.

Setting 2: Non-Linear Risk Function, Correlated Covariates

In our second data generation scenario, we adopted a similar framework as described previously,
but we have modified the covariate risk functions to include higher-order terms and correlations.
We generated three covariates, 𝑿 = (𝑋1, 𝑋2, 𝑋3)′, from a multivariate normal distribution with
𝑿 ∼ 𝑁3(0, Σ), where the covariance matrix, Σ, is AR(1) with elements (𝜎𝑖 𝑗 ) = 0.5|𝑖− 𝑗 |. We then
dichotomized 𝑍𝑖 = I(𝑋𝑖1 ≥ 0) to be a binary covariate representing our causal variable of interest.
We generated the event times, (𝑇𝑖1) and (𝑇𝑖2), from marginal models specified by

log(𝑇𝑖1/3) = −(𝛽1𝑍𝑖 + 𝛽1𝑋
2
𝑖1 + 𝛽1𝑋

2
𝑖2) + Y𝑖1

log(𝑇𝑖2/3) = −(𝛽2𝑍𝑖 + 𝛽2𝑋
2
𝑖1 + 𝛽2𝑋

2
𝑖2) + Y𝑖2,

to understand the performance differences between our non-parametric approach and approaches
which are mis-specified when assuming a linear form with independent covariates.

Across all scenarios, we independently generated 50 datasets and calculated the average bias
and mean squared error (MSE) for the estimated average treatment effect (ATE) for our proposed
approach against a causal Q-model, which was fit using generalized estimating equations with a
complementary log-log mean link, corresponding to the proportional hazards model [102]. For the
methods which relied on the calculation of pseudo-values, we first estimated the copula dependence
parameter using the ‘leave-one-in’ approach described previously, applied to the entire sample of
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𝑛 observations. We carried forward the estimated \̂ to calculate the pseudo- non-fatal survival
probabilities at fixed time points 𝑡 = 0.2, 0.4, 0.6, 0.8, and 1.0. For our method, we hypertuned
our DNN parameters once per simulation setting and carried forward the best configuration of
hyperparameters across all 50 datasets. Lastly, for each method, we randomly split each dataset
into an 80% training set and a 20% testing set. We fit the respective models on the training set and
calculated the ATE at 𝑡 = 1.0 in the testing set.

Table 4.1 summarize the results of this simulation study. As shown, model performance was
similar in the first data generation setting where the parametric Q-model is correctly specified,
though the correct model is slightly less biased and more efficient. This is to be expected, as we
are fitting the true model to the data, while the DNN represents a stochastic approximation of the
true data generation function. In the second setting, however, the performance for our proposed
approach is better, as the true covariate risk function contains correlated covariates and higher-order
terms. While the degree of bias for the proposed approach remains fairly consistent with the first
data generation setting, the bias increases for the parametric Q-model. We also note that for both
methods, performance was typically better in settings with a larger sample size (𝑛 = 1, 000 versus
500), a smaller degree of dependence between the event times (\ = 0.5 versus 2.0), and when the
data were fully observed versus censored, as expected.

4.4 Boston Lung Cancer Study

The Boston Lung Cancer Study is a collaborative research effort between Dana-Farber Cancer
Institute and Massachusetts General Hospital which focuses on improving the understanding and
treatment of lung cancer, one of the leading causes of cancer-related deaths worldwide [27].

4.4.1 Study Population

Among all participants in the Boston Lung Cancer Study (BLCS) cohort, 7,755 were initially
eligible for inclusion in this analysis. Eligibility was defined as having a positive lung cancer
diagnosis. Participants were ineligible if they were enrolled with esophageal cancer or other
primary cancer, no cancer upon further study, or as a negative control in the case of spouses,
friends, or other participants. Among those 7,755 eligible patients, we identified 7,697 (99%) with
the temporal information necessary to define their semi-competing outcomes, namely (1) date of
primary diagnosis, (2) recurrence, progression, and/or death date where applicable, and (3) last
follow-up date or non-progression date. We further removed 56 patients diagnosed in the past 6
months, 25 patients with negative survival times, 212 patients with small-cell lung cancer, and
6 patients with carcinoma in situ , i.e., stage 0 (Figure 4.2). As available treatment options are
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Table 4.1: Average bias and mean squared error (MSE) for estimated vs. true ATE comparing our
proposed method to the parametric Q-Model. Results are averaged over 50 independently generated
datasets for each setting.

Simulation Settings Bias Mean Squared Error

𝒏 𝜽 Censoring Q-Model Proposed Q-Model Proposed

Setting 1

500 0.5 50% 0.0025 0.0060 0.0020 0.0063
500 0.5 0% 0.0025 0.0045 0.0022 0.0042
500 2.0 50% 0.0025 0.0057 0.0022 0.0053
500 2.0 0% 0.0018 0.0069 0.0019 0.0011
1000 0.5 50% 0.0018 0.0025 0.0013 0.0028
1000 0.5 0% 0.0023 0.0035 0.0014 0.0028
1000 2.0 50% 0.0019 0.0048 0.0014 0.0037
1000 2.0 0% 0.0018 0.0030 0.0012 0.0021

Setting 2

500 0.5 50% 0.0483 0.0043 0.0076 0.0032
500 0.5 0% 0.0520 0.0030 0.0078 0.0031
500 2.0 50% 0.0444 -0.0083 0.0081 0.0045
500 2.0 0% 0.0476 -0.0030 0.0079 0.0046
1000 0.5 50% 0.0485 -0.0043 0.0036 0.0028
1000 0.5 0% 0.0518 -0.0034 0.0038 0.0024
1000 2.0 50% 0.0444 -0.0040 0.0046 0.0032
1000 2.0 50% 0.0475 -0.0035 0.0042 0.0033

predicated on a patient’s cancer stage, we considered two subgroups of patients – those who were
diagnosed with stages 1-3a NSCLC (4,700; 63.5%) and those who were diagnosed with stages
3b-4 NSCLC (2,703; 36.5%). As stages 1-3a are widely considered to be operable, we focused on
understanding the average treatment effect of first-line surgical resection on time-to-relapse among
this subset of patients (Figure 4.2).

4.4.2 Patient Characteristics

Descriptive statistics for the study cohort are given in Table 4.2. As shown, median age among
all patients with NSCLC was 66 years old [interquartile range (IQR): 59-74], with a majority of
patients identifying as female (54%), White/Caucasian (92%) and non-Hispanic (87%). Further,
the majority of study participants were former smokers (57%) with a median 40 pack-years of
smoking (IQR: 16-53). Among all patients, the majority underwent surgical resection (4,444;
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Figure 4.2: Flowchart of inclusion and exclusion criteria for the Boston Lung Cancer Study analytic
sample and distributions of observed outcomes (progression and/or death).

67%) as first-line treatment. However, stratifying by stage at diagnosis, we found that patients
with earlier-stage diagnoses were slightly older (median, IQR age: 68, 61-74 years versus 64,
56-72 years), with a higher proportion being female (55% versus 50%) and White/Caucasian
(93% versus 92%), and a lower proportion identifying as non-Hispanic (85% versus 90%). Social
history differed between these two groups as well, with more former smokers (60% versus 53%)
as compared to current smokers (25% versus 30%) in the earlier-stage group, though a higher
median number of pack-years of smoking (40 versus 37 pack-years). Lastly, rates of testing for two
common genetic variants, EGFR and KRAS, differed between these groups, with more patients
(81% versus 76%) tested in the earlier-stage group. Among those tested, we observed a higher
proportion of patients in the earlier-stage group with a KRAS mutation (30% versus 21%), though
a higher proportion in the late-stage group with an EGFR mutation (18% versus 21%). We then
carried forward our final analytic cohort of 4,700 patients diagnosed with non-small cell lung
cancer (NSCLC), stages 1-3a. Disease recurrence was reported in 1,651 (35.13%) patients, with
885 (18.83%) patients experiencing recurrence followed by death and 1,810 (38.51%) patients who
died prior to recurrence (Figure 4.2).
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Table 4.2: Characteristics of the 𝑛 = 7, 403 patients in the Boston Lung Cancer Study cohort,
overall and stratified by stage at diagnosis.

Stage at DiagnosisCharacteristic Overall, 𝒏 = 7, 4031
1-3A, 𝒏 = 4, 7001 3B-4, 𝒏 = 2, 7031

First-Line Treatment
Chemotherapy 1,851 (28%) 365 (8.0%) 1,486 (70%)
Other 7 (0.1%) 2 (<0.1%) 5 (0.2%)
Radiation 366 (5.5%) 194 (4.3%) 172 (8.1%)
Surgery 4,444 (67%) 3,994 (88%) 450 (21%)
Unknown 735 145 590

Age at Diagnosis (yrs.) 66 (59, 74) 68 (61, 74) 64 (56, 72)
Body Mass Index 26.4 (23.0, 31.1) 26.6 (23.3, 31.1) 25.7 (22.6, 30.1)
Sex

Male 3,431 (46%) 2,093 (45%) 1,338 (50%)
Female 3,966 (54%) 2,603 (55%) 1,363 (50%)
Unknown 6 (<0.1%) 4 (<0.1%) 2 (<0.1%)

Race
White/Caucasian 6,834 (92%) 4,349 (93%) 2,485 (92%)
Other 364 (4.9%) 212 (4.5%) 152 (5.6%)
Unknown 205 (2.8%) 139 (3.0%) 66 (2.4%)

Ethnicity
Non-Hispanic 6,410 (87%) 3,990 (85%) 2,420 (90%)
Hispanic 87 (1.2%) 57 (1.2%) 30 (1.1%)
Unknown 906 (12%) 653 (14%) 253 (9.4%)

Education
Some Grade School 438 (5.9%) 276 (5.9%) 162 (6.0%)
Some High School 976 (13%) 589 (13%) 387 (14%)
High School Graduate 1,451 (20%) 946 (20%) 505 (19%)
Vocational/Technical School 279 (3.8%) 156 (3.3%) 123 (4.6%)
Some College or Associate’s Degree 1,469 (20%) 940 (20%) 529 (20%)
College Graduate 962 (13%) 604 (13%) 358 (13%)
Graduate or Professional School 831 (11%) 514 (11%) 317 (12%)
Other 997 (13%) 675 (14%) 322 (12%)

Smoking Status
Never Smoker 1,009 (14%) 592 (13%) 417 (15%)
Former Smoker 4,251 (57%) 2,821 (60%) 1,430 (53%)
Current Smoker 1,979 (27%) 1,171 (25%) 808 (30%)
Smoker, Status Unknown 164 (2.2%) 116 (2.5%) 48 (1.8%)

Pack-Years of Smoking 40 (16, 53) 40 (19, 53) 37 (12, 54)
EGFR Mutation

No 1,255 (17%) 737 (16%) 518 (19%)
Yes 298 (4.0%) 158 (3.4%) 140 (5.2%)
Not Tested 5,850 (79%) 3,805 (81%) 2,045 (76%)

KRAS Mutation
No 1,148 (16%) 630 (13%) 518 (19%)
Yes 405 (5.5%) 265 (5.6%) 140 (5.2%)
Not Tested 5,850 (79%) 3,805 (81%) 2,045 (76%)

1n (%); Median (IQR)
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4.4.3 Time-to-Recurrence

In line with our proposed analytic framework, we first calculated the survival function for recurrence
based on the joint survival function and the survival function for death under the assumed Clayton
copula. We carried this for our study sample, as well as stratified by patient sex (male versus
female). The copula dependence parameter, \, captures the strength of the relationship between
progression and death, with larger values corresponding to a higher degree of dependence between
these two events. We estimated the value of this parameter using our ‘leave-one-in’ modification to
the extended concordance-based estimator proposed in Fine et al. (2001) [46]. Among all patients
in our study, we estimated the dependence between progression and death to be 5.60, corresponding
to a Kendall’s 𝜏 value of 0.737. This suggests a high degree of correlation between progression and
death. Further stratified by patient sex, we estimated this dependence to be higher among females
(5.93) than males (4.85), corresponding to a 𝜏 of 0.748 versus 0.708, respectively.

4.4.4 Risk Difference between First-Line Therapies

We calculated pseudo-recurrence probabilities at one-year benchmarks from one- to five-years
follow up. We carried forward these pseudo-outcomes to our S-learner, where we estimated the
average causal difference in the risk of recurrence between surgery and other first-line treatments
overall, and stratified by sex and smoking status. These results are presented in Figure 4.3. As
shown, the overall difference in risk of recurrence between first-line therapies was estimated to vary
over time, with a 5.7% difference at one year, attenuating to 1.9% after five years. Stratified by
patient sex, we see that among male patients, the risk difference is slightly higher, with a one-year
difference of 5.9, attenuating to 2.0%, as compared to female patients, among whom we estimated
the risk difference to be between 5.6% and 1.3% over five years. Larger differences were observed
when stratifying by patient smoking status. As shown, treatment differences were slightly higher
among current smokers, ranging from 5.9% to 2.5%, while among former (range: 5.6% to 1.2%)
and never smokers (range: 5.6% to 0.1%) these differences were less.

4.5 Discussion

In this work, we propose a deep learning framework for causal inference in time-to-event data
with dependent censoring due to semi-competing risks, with a focus on non-fatal events such as
time-to-recurrence. We demonstrate the performance of our approach on simulated data and apply
it to a real-world dataset from a large epidemiologic lung cancer cohort. Our findings highlight
the importance of accounting for semi-competing risks and provide new insights into the causal
relationship between first line surgical resection and and the risk of recurrence. As shown, this
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Figure 4.3: Estimated average causal difference in the risk of recurrence between surgery and other
first-line treatments among patients with stage 1-3A non-small cell lung cancer, over time and (A)
stratified by sex; (B) stratified by smoking status

approach provides an accurate method for estimating the causal average treatment effect on the
probability of disease recurrence, particularly in settings where the true relationship between the
non-fatal outcome, treatment, and other confounding variables is complex.

A specific aim of this study was to focus on the effect of treatment on time to recurrence, rather
than alternatives such as overall survival or progression-free survival, for several reasons. First,
time to recurrence provides a more precise and clinically meaningful measure of the duration of
response to treatment. Time to recurrence measures the time from diagnosis to the point where
disease progression is observed, while composites such as progression-free survival measures the
time to either disease progression or death. As a result, time to recurrence can more accurately
capture the effect of treatment on disease progression, while progression-free survival can be
confounded by the effect of treatment on survival. As remaining treatment options are dictated by
the monitoring of disease progression, directly studying recurrence is less susceptible to bias than
progression-free survival [151, 44].

In the context of the Boston Lung Cancer Study data, we observed differences in the efficacy of
surgical resection compared to other first-line therapies, which attenuated over time. While there is
limited literature on this topic, several studies suggest that surgical resection has better prognostic
outcomes in patients with stage 1-3A NSCLC, particularly in the first five years of follow up
[143, 136]. Further, advances in surgical techniques have led to safer, less invasive procedures,
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which make surgery an important intervention, potentially in addition to other therapeutic regimens
[98]. Additional, we note a modest difference in the effect of surgery versus other first-line therapies
when comparing male and female patient subgroups. While previous studies have reported similar
rates of recurrence between these sub-populations [82], the timing of recurrence differs [39].
There is also evidence that female patients have a significantly better response to neoadjuvant
chemotherapy than male patients [24]. With respect to smoking status, we note many other
individualized factors may contribute to greater perceived treatment benefits for current smokers
versus former or never smokers, including stage and genetic mutations [33, 110], warranting further
study. Further, much of the literature on NSCLC prognosis points to a lack of emphasis on predictors
of other clinical endpoints besides overall survival [22]. Namely, research has shown that patients
and providers are interested in endpoints such as disease recurrence and response to therapy, which
impact quality of life and guide treatment decisions [37].

There are also several open problems and areas of future direction. A primary concern is
how to conduct inference in this setting. Our approach yields accurate point estimates for our
causal estimand, but we do not yet have a means of quantifying the uncertainty surrounding these
estimates. While uncertainty quantification in causal deep learning is still relatively new, it is an
important step in developing methods that have practical clinical applicability [2]. Other approaches
such as Bayesian neural networks may lead to valid inference for testing for the significance of
the causal effect estimates. Further, the implementation is computationally intensive, owing to
the intermediate steps needed to calculate the marginal survival functions and pseudo-responses
before training our deep neural network. Future work will improve the efficiency of the proposed
method. We also consider extending this approach to other useful target values, such as restricted
mean survival times. We will address these problems in subsequent work. Overall, however, we
demonstrate the performance of this approach on simulated and real-world data, highlighting its
ability to accurately estimate the causal effect in the presence of semi-competing risks. Our findings
demonstrate the importance of accounting for dependent censoring due to semi-competing risks
when estimating the causal effect of treatment on time-to-non fatal events.
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APPENDIX A

Technical Details for Chapter 2

A.1 Illness-Death Model Notation

Let 𝑇1 and 𝑇2 denote the times to a non-terminal and terminal event, respectively. Let _1(𝑡1) denote
the hazard of the non-terminal event at time 𝑡1, _2(𝑡2) denote the hazard of the terminal event at 𝑡2
without experiencing the non-terminal event, and _3(𝑡2 | 𝑡1) denote the hazard of the terminal event
at 𝑡2 given the observation of the non-terminal event at 𝑡1 ≤ 𝑡2. These hazard rates, corresponding
to the transitions between states are defined as

_1 (𝑡1) = lim
Δ→0

Pr [𝑇1 ∈ [𝑡1, 𝑡1 + Δ) | 𝑇1 ≥ 𝑡1, 𝑇2 ≥ 𝑡1] /Δ; 𝑡1 > 0 (A.1)

_2 (𝑡2) = lim
Δ→0

Pr [𝑇2 ∈ [𝑡2, 𝑡2 + Δ) | 𝑇1 ≥ 𝑡2, 𝑇2 ≥ 𝑡2] /Δ; 𝑡2 > 0 (A.2)

_3 (𝑡2 | 𝑡1) = lim
Δ→0

Pr [𝑇2 ∈ [𝑡2, 𝑡2 + Δ) | 𝑇1 = 𝑡1, 𝑇2 ≥ 𝑡2] /Δ; 𝑡2 ≥ 𝑡1 > 0. (A.3)

Note that the definitions of _1(𝑡1) and _2(𝑡2) mirror that of the cause-specific hazards under a
competing risks framework, where they describe the hazards of first observing either the non-
terminal or terminal event. Under semi-competing risks, observing the non-terminal event is
subject to observing the terminal event, but not vice-versa. Hence, _3(𝑡2 | 𝑡1) describes the hazards
of observing the terminal event at 𝑡2 after having observed the non-terminal event at 𝑡1. As we
cannot observe the non-terminal event after the terminal event has been observed, the space of
(𝑇1, 𝑇2) is restricted to the so-called ‘upper wedge’ of the first quadrant where 𝑡1 ≤ 𝑡2, and the
non-terminal event is said to be dependently censored by the terminal event. To incorporate this
dependence, we model (A.1) - (A.3) by extending the Cox proportional hazards model [34] to a
shared gamma-frailty conditional Markov model
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_1 (𝑡1 | 𝛾, 𝑿) = 𝛾_01 (𝑡1) exp {ℎ1(𝑿)} ; 𝑡1 > 0 (A.4)

_2 (𝑡2 | 𝛾, 𝑿) = 𝛾_02 (𝑡2) exp {ℎ2(𝑿)} ; 𝑡2 > 0 (A.5)

_3 (𝑡2 | 𝑡1, 𝛾, 𝑿) = 𝛾_03 (𝑡2 − 𝑡1) exp {ℎ3(𝑿)} ; 𝑡2 ≥ 𝑡1 > 0, (A.6)

where 𝛾 is a random effect, referred to as a subject’s frailty, _0𝑔 (𝑡) ; 𝑔 ∈ {1, 2, 3} are the baseline
hazards for the three state transitions, 𝑿 is a 𝑝-vector of covariates, and ℎ𝑔 (𝑿) are log-risk
functions which relate the covariates to the hazard rates for each potential transition. This model is
considered semi-Markov, as the time to the terminal event after having observed the non-terminal
event is conditional on the ‘sojourn time’ between events. Based on (A.4) - (A.5), we can also write
out the following survival functions

𝑆(𝑡1, 𝑡1 | 𝛾) = 𝑒−𝛾 [Λ01 (𝑡1) exp{ℎ1 (𝑿)}+Λ02 (𝑡1) exp{ℎ2 (𝑿)}] (A.7)

𝑆2|1(𝑡2 | 𝑡1, 𝛾) = 𝑒−𝛾Λ03 (𝑡2−𝑡1) exp{ℎ3 (𝑿)}; 𝑡2 ≥ 𝑡1, (A.8)

where Λ0𝑔 (𝑡) =
∫ 𝑡

0 _0𝑔 (𝑢)𝑑𝑢 are the cumulative baseline hazards for each transition. We can see
that the joint survival function conditional on 𝛾 and evaluated at 𝑡2 = 𝑡1 takes the form in (A.7) due
to the competing nature of the state transitions from no event to the first of either the non-terminal
or the terminal event. The survival function of 𝑡2 conditional on 𝑡1 and the frailty in (A.8) is defined
in terms of transition in the sojourn time between events.

A.2 Conditional Likelihood Function

In practice, we do not fully observe (𝑇1, 𝑇2), as both events are subject to administrative censoring.
Let 𝐶 denote the censoring time. We observe

D = {(𝑌𝑖1, 𝛿𝑖1, 𝑌𝑖2, 𝛿𝑖2, 𝑿𝑖); 𝑖 = 1, . . . , 𝑛},

where 𝑌𝑖2 = min(𝑇𝑖2, 𝐶𝑖), 𝛿𝑖2 = 𝐼 (𝑇𝑖2 ≤ 𝐶𝑖), 𝑌𝑖1 = min(𝑇𝑖1, 𝑌𝑖2), 𝛿𝑖1 = 𝐼 (𝑇𝑖1 ≤ 𝑌𝑖2), 𝑿𝑖 is a
𝑝-vector of covariates, 𝐼 (·) is the indicator function, and 𝑖 indexes an individual subject in the
study, 𝑖 = 1, . . . , 𝑛. There are four potential event progressions we can observe for an individual
during a finite period of follow-up (Table A.1). To construct the likelihood conditional on the
subject-specific frailties, we multiply the likelihood contributions under each case in Table A.1,
raised to the appropriate event indicators, and taken over the 𝑛 subjects. Define 𝜸 = (𝛾1, . . . , 𝛾𝑛)
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to be the 𝑛-vector of latent frailties, and let 𝝍 = {Λ01,Λ02,Λ03, \} be the collection of model
parameters to be learned. The likelihood function is

Table A.1: Potential event progressions and corresponding observed data

Observed Event Progression Observed Data

Case Non-Terminal Terminal 𝑌𝑖1 𝛿𝑖1 𝑌𝑖2 𝛿𝑖2

1 ✓ ✓ 𝑇𝑖1 1 𝑇𝑖2 1
2 ✗ ✓ 𝑇𝑖2 0 𝑇𝑖2 1
3 ✓ ✗ 𝑇𝑖1 1 𝐶𝑖 0
4 ✗ ✗ 𝐶𝑖 0 𝐶𝑖 0

𝐿 (𝝍;D, 𝜸) =
𝑛∏
𝑖=1

[
𝑆(𝑌𝑖1, 𝑌𝑖1) × 𝛾𝑖_01(𝑌𝑖1) exp{ℎ1(𝑿𝑖)} × 𝑆2|1(𝑌𝑖2 | 𝑌𝑖1)×

× 𝛾𝑖_03(𝑌𝑖2 − 𝑌𝑖1) exp{ℎ3(𝑿𝑖)}]𝛿𝑖1𝛿𝑖2 × [𝑆(𝑌𝑖1, 𝑌𝑖1) × 𝛾𝑖_02(𝑌𝑖2) exp{ℎ2(𝑿𝑖)}] (1−𝛿𝑖1)𝛿𝑖2

×
[
𝑆(𝑌𝑖1, 𝑌𝑖1) × 𝛾𝑖_01(𝑌𝑖1) exp{ℎ1(𝑿𝑖)} × 𝑆2|1(𝑌𝑖2 | 𝑌𝑖1)

]𝛿𝑖1 (1−𝛿𝑖2) × [𝑆(𝑌𝑖1, 𝑌𝑖1)] (1−𝛿𝑖1) (1−𝛿𝑖2)

=

𝑛∏
𝑖=1

{
𝛾2
𝑖 _01(𝑌𝑖1) exp{ℎ1(𝑿𝑖)}_03(𝑌𝑖2 − 𝑌𝑖1) exp{ℎ3(𝑿𝑖)}

×𝑒−𝛾𝑖 [Λ01 (𝑌𝑖1) exp{ℎ1 (𝑿𝑖}+Λ02 (𝑌𝑖1) exp{ℎ2 (𝑿𝑖)}+Λ03 (𝑌𝑖2−𝑌𝑖1) exp{ℎ3 (𝑿𝑖)}]
}𝛿𝑖1𝛿𝑖2

×
{
𝑒−𝛾𝑖 [Λ01 (𝑌𝑖1) exp{ℎ1 (𝑿𝑖)}+Λ02 (𝑌𝑖1) exp{ℎ2 (𝑿𝑖)}]

× 𝛾𝑖_02(𝑌𝑖2) exp{ℎ2(𝑿𝑖)}}(1−𝛿𝑖1)𝛿𝑖2 × {𝛾𝑖_01(𝑌𝑖1) exp{ℎ1(𝑿𝑖)}

×𝑒−𝛾𝑖 [Λ01 (𝑌𝑖1) exp{ℎ1 (𝑿𝑖)}+Λ02 (𝑌𝑖1) exp{ℎ2 (𝑿𝑖)}+Λ03 (𝑌𝑖2−𝑌𝑖1) exp{ℎ3 (𝑿𝑖)}]
}𝛿𝑖1 (1−𝛿𝑖2)

×
{
𝑒−𝛾𝑖 [Λ01 (𝑌𝑖1) exp{ℎ1 (𝑿𝑖)}+Λ02 (𝑌𝑖1) exp{ℎ2 (𝑿𝑖)}]

} (1−𝛿𝑖1) (1−𝛿𝑖2)
=

𝑛∏
𝑖=1

{𝛾𝑖_01(𝑌𝑖1) exp{ℎ1(𝑿𝑖)}}𝛿𝑖1 × {𝛾𝑖_02(𝑌𝑖2) exp{ℎ2(𝑿𝑖)}}(1−𝛿𝑖1)𝛿𝑖2

× {𝛾𝑖_03(𝑌𝑖2 − 𝑌𝑖1) exp{ℎ3(𝑿𝑖)}}𝛿𝑖1𝛿𝑖2

×
{
𝑒−𝛾𝑖 [Λ01 (𝑌𝑖1) exp{ℎ1 (𝑿𝑖)}+Λ02 (𝑌𝑖1) exp{ℎ2 (𝑿𝑖)}]

} (1−𝛿𝑖1)
×
{
𝑒−𝛾𝑖 [Λ01 (𝑌𝑖1) exp{ℎ1 (𝑿𝑖}+Λ02 (𝑌𝑖1) exp{ℎ2 (𝑿𝑖)}+Λ03 (𝑌𝑖2−𝑌𝑖1) exp{ℎ3 (𝑿𝑖)}]

}𝛿𝑖1
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=

𝑛∏
𝑖=1

𝛾
𝛿𝑖1+𝛿𝑖2
𝑖

× {_01(𝑌𝑖1) exp{ℎ1(𝑿𝑖)}}𝛿𝑖1

× {_02(𝑌𝑖2) exp{ℎ2(𝑿𝑖)}}(1−𝛿𝑖1)𝛿𝑖2 × {_03(𝑌𝑖2 − 𝑌𝑖1) exp{ℎ3(𝑿𝑖)}}𝛿𝑖1𝛿𝑖2

×
{
𝑒−𝛾𝑖 [Λ01 (𝑌𝑖1) exp{ℎ1 (𝑿𝑖}+Λ02 (𝑌𝑖1) exp{ℎ2 (𝑿𝑖)}+𝛿𝑖1Λ03 (𝑌𝑖2−𝑌𝑖1) exp{ℎ3 (𝑿𝑖)}]

} (A.9)

A.3 Likelihood Function

In this section, we provide the necessary steps to derive our objective function, namely the marginal
data log-likelihood function under the assumed illness-death model. Note that, as given in Table
A.1, the observable times for each patient, 𝑌𝑖1 and 𝑌𝑖2, arise from 𝑇𝑖1, 𝑇𝑖2, and 𝐶𝑖 in one of four
cases: (1) the patient experiences both the non-terminal and the terminal event, (2) the patient
experiences only the terminal event, (3) the patient experience only the non-terminal event, or (4)
the patient experiences neither event. The likelihood contribution for a given patient under each of
these four cases can be derived, starting with the hazard rates defined in (2.4) - (2.6) and utilizing
the joint density of the event times as follows.

Case 1: We first derive the likelihood contribution for an individual who experiences both events.
Conditional on one’s frailty, (𝛾), this is given by

exp
{
−
∫ 𝑦1

0
[_1(𝑠) + _2(𝑠)] 𝑑𝑠

}
_1 (𝑦1) × exp

{
−
∫ 𝑦2−𝑦1

0
_3(𝑠)𝑑𝑠

}
_3 (𝑦2 − 𝑦1)

= exp
{
−
∫ 𝑦1

0
[𝛾_01 (𝑠) exp {ℎ1(𝑥)} + 𝛾_02 (𝑠) exp {ℎ2(𝑥)}] 𝑑𝑠

}
× 𝛾_01 (𝑦1) exp {ℎ1(𝑥)}

× exp
{
−
∫ 𝑦2−𝑦1

0
𝛾_03 (𝑠) exp {ℎ3(𝑥)} 𝑑𝑠

}
𝛾_03 (𝑦2 − 𝑦1) exp {ℎ3(𝑥)}

= exp {−𝛾 [exp {ℎ1(𝑥)}Λ01 (𝑦1) + exp {ℎ2(𝑥)}Λ02 (𝑦1)]} 𝛾_01 (𝑦1) exp {ℎ1(𝑥)}
× exp {−𝛾 exp {ℎ3(𝑥)}Λ03 (𝑦2 − 𝑦1)} 𝛾_03 (𝑦2 − 𝑦1) exp {ℎ3(𝑥)}

= exp
{
−𝛾

[
𝑒ℎ1 (𝑥)Λ01 (𝑦1) + 𝑒ℎ2 (𝑥)Λ02 (𝑦1) + 𝑒ℎ3 (𝑥)Λ03 (𝑦2 − 𝑦1)

]}
× 𝛾𝑒ℎ1 (𝑥)_01 (𝑦1) × 𝛾𝑒ℎ3 (𝑥)_03 (𝑦2 − 𝑦1) ,

where Λ01(𝑡) =
∫ 𝑡

0 _01(𝑠)𝑑𝑠, Λ02(𝑡) =
∫ 𝑡

0 _02(𝑠)𝑑𝑠, and Λ03(𝑠, 𝑡) = Λ03(𝑡) − Λ03(𝑠) denote the
cumulative conditional hazard functions. Marginalizing over 𝛾, we take
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∫ ∞

0
exp

{
−𝛾

[
𝑒ℎ1 (𝑥)Λ01 (𝑦1) + 𝑒ℎ2 (𝑥)Λ02 (𝑦1) + 𝑒ℎ3 (𝑥)Λ03 (𝑦2 − 𝑦1)

]}
× 𝛾𝑒ℎ1 (𝑥)_01 (𝑦1) × 𝛾𝑒ℎ3 (𝑥)_03 (𝑦2 − 𝑦1) ×

1

Γ

(
1
\

) \− 1
\ 𝛾

1
\
−1 exp

{
−𝛾
\

}
𝑑𝛾.

For simplicity, let

𝐴 = 𝑒ℎ1 (𝑥)Λ01 (𝑦1) + 𝑒ℎ2 (𝑥)Λ02 (𝑦1) + 𝑒ℎ3 (𝑥)Λ03 (𝑦2 − 𝑦1)
𝐵 = 𝑒ℎ1 (𝑥)_01 (𝑦1) × 𝑒ℎ3 (𝑥)_03 (𝑦2 − 𝑦1) ,

such that

=

∫ ∞

0
𝛾2𝐵 × exp {−𝛾𝐴} × 1

Γ

(
1
\

) \− 1
\ 𝛾

1
\
−1 exp

{
−𝛾
\

}
𝑑𝛾

= 𝐵 ×
(

1/\
1/\ + 𝐴

)1/\
×
∫ ∞

0
𝛾2 1

Γ

(
1
\

) (
1
\
+ 𝐴

)1/\
𝛾1/\−1 exp

{
−𝛾

(
1
\
+ 𝐴

)}
𝑑𝛾.

Recognizing this as the second moment of a Gamma random variable, this expression reduces to

= 𝐵 ×
(

1/\
1/\ + 𝐴

)1/\
×
{
Var[𝛾] + E[𝛾]2} = 𝐵 ×

(
1/\

1/\ + 𝐴

)1/\
×
{

1/\
(1/\ + 𝐴)2 +

(
1/\

1/\ + 𝐴

)2
}

= 𝐵 ×
(

1
1 + \𝐴

)1/\
× 1 + \

(1 + \𝐴)2 = 𝐵 × (1 + \) × (1 + \𝐴)−1/\−2 .

Thus, the likelihood contribution for an individual under Case 1 is

𝑒ℎ1 (𝑥)_01 (𝑦1) × 𝑒ℎ3 (𝑥)_03 (𝑦2 − 𝑦1) × (1 + \)

×
{
1 + \

[
𝑒ℎ1 (𝑥)Λ01 (𝑦1) + 𝑒ℎ2 (𝑥)Λ02 (𝑦1) + 𝑒ℎ3 (𝑥)Λ03 (𝑦2 − 𝑦1)

]}−1/\−2
.

(A.10)

Case 2: Next, we derive the likelihood contribution for an individual who experiences just the
terminal event. Conditional on 𝛾, is given by

exp
{
−
∫ 𝑦1

0
[_1(𝑠) + _2(𝑠)] 𝑑𝑠

}
_2 (𝑦1)

= exp
{
−
∫ 𝑦1

0
[𝛾_01 (𝑠) exp {ℎ1(𝑥)} + 𝛾_02 (𝑠) exp {ℎ2(𝑥)}] 𝑑𝑠

}
× 𝛾_02 (𝑦1) exp {ℎ2(𝑥)}

= exp
{
−𝛾

[
𝑒ℎ1 (𝑥)Λ01 (𝑦1) + 𝑒ℎ2 (𝑥)Λ02 (𝑦1)

]}
× 𝛾𝑒ℎ2 (𝑥)_02 (𝑦1) .
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Marginalizing over 𝛾, we take∫ ∞

0
exp

{
−𝛾

[
𝑒ℎ1 (𝑥)Λ01 (𝑦1) + 𝑒ℎ2 (𝑥)Λ02 (𝑦1)

]}
× 𝛾𝑒ℎ2 (𝑥)_02 (𝑦1)

× 1

Γ

(
1
\

) \− 1
\ 𝛾

1
\
−1 exp

{
−𝛾
\

}
𝑑𝛾.

For simplicity, let
𝐴 = 𝑒ℎ1 (𝑥)Λ01 (𝑦1) + 𝑒ℎ2 (𝑥)Λ02 (𝑦1)
𝐵 = 𝑒ℎ2 (𝑥)_02 (𝑦1) ,

such that

=

∫ ∞

0
𝛾𝐵 × exp {−𝛾𝐴} × 1

Γ

(
1
\

) \− 1
\ 𝛾

1
\
−1 exp

{
−𝛾
\

}
𝑑𝛾

= 𝐵 ×
(

1/\
1/\ + 𝐴

)1/\
×
∫ ∞

0
𝛾

1

Γ

(
1
\

) (
1
\
+ 𝐴

)1/\
𝛾1/\−1 exp

{
−𝛾

(
1
\
+ 𝐴

)}
𝑑𝛾.

Recognizing this as the first moment of a Gamma random variable, this expression reduces to

= 𝐵 ×
(

1/\
1/\ + 𝐴

)1/\
× E[𝛾] = 𝐵 ×

(
1

1 + \𝐴

)1/\
× 1

1 + \𝐴 = 𝐵 × (1 + \𝐴)−1/\−1 .

Thus, the likelihood contribution for an individual under Case 2 is

𝑒ℎ2 (𝑥)_02 (𝑦1) ×
{
1 + \

[
𝑒ℎ1 (𝑥)Λ01 (𝑦1) + 𝑒ℎ2 (𝑥)Λ02 (𝑦1)

]}−1/\−1
. (A.11)

Case 3: Next, we derive the likelihood contribution for an individual who experiences only the
non-terminal event. Conditional on 𝛾, this is given by

exp
{
−
∫ 𝑦1

0
[_1(𝑠) + _2(𝑠)] 𝑑𝑠

}
_1 (𝑦1) × exp

{
−
∫ 𝑦2−𝑦1

0
_3(𝑠)𝑑𝑠

}
= exp

{
−
∫ 𝑦1

0
[𝛾_01 (𝑠) exp {ℎ1(𝑥)} + 𝛾_02 (𝑠) exp {ℎ2(𝑥)}] 𝑑𝑠

}
× 𝛾_01 (𝑦1) exp {ℎ1(𝑥)}

× exp
{
−
∫ 𝑦2−𝑦1

0
𝛾_03 (𝑠) exp {ℎ3(𝑥)} 𝑑𝑠

}
= exp {−𝛾 [exp {ℎ1(𝑥)}Λ01 (𝑦1) + exp {ℎ2(𝑥)}Λ02 (𝑦1)]} 𝛾_01 (𝑦1)
× exp {ℎ1(𝑥)} exp {−𝛾 exp {ℎ3(𝑥)}Λ03 (𝑦2 − 𝑦1)}
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= exp
{
−𝛾

[
𝑒ℎ1 (𝑥)Λ01 (𝑦1) + 𝑒ℎ2 (𝑥)Λ02 (𝑦1) + 𝑒ℎ3 (𝑥)Λ03 (𝑦2 − 𝑦1)

]}
× 𝛾𝑒ℎ1 (𝑥)_01 (𝑦1) .

Marginalizing this over 𝛾, we take∫ ∞

0
exp

{
−𝛾

[
𝑒ℎ1 (𝑥)Λ01 (𝑦1) + 𝑒ℎ2 (𝑥)Λ02 (𝑦1) + 𝑒ℎ3 (𝑥)Λ03 (𝑦2 − 𝑦1)

]}
× 𝛾𝑒ℎ1 (𝑥)_01 (𝑦1) ×

1

Γ

(
1
\

) \− 1
\ 𝛾

1
\
−1 exp

{
−𝛾
\

}
𝑑𝛾.

For simplicity, let

𝐴 = 𝑒ℎ1 (𝑥)Λ01 (𝑦1) + 𝑒ℎ2 (𝑥)Λ02 (𝑦1) + 𝑒ℎ3 (𝑥)Λ03 (𝑦2 − 𝑦1)
𝐵 = 𝑒ℎ1 (𝑥)_01 (𝑦1) ,

such that

=

∫ ∞

0
𝛾𝐵 × exp {−𝛾𝐴} × 1

Γ

(
1
\

) \− 1
\ 𝛾

1
\
−1 exp

{
−𝛾
\

}
𝑑𝛾

= 𝐵 ×
(

1/\
1/\ + 𝐴

)1/\
×
∫ ∞

0
𝛾

1

Γ

(
1
\

) (
1
\
+ 𝐴

)1/\
𝛾1/\−1 exp

{
−𝛾

(
1
\
+ 𝐴

)}
𝑑𝛾.

Recognizing this as the first moment of a Gamma random variable, this expression reduces to:

= 𝐵 ×
(

1/\
1/\ + 𝐴

)1/\
× E[𝛾] = 𝐵 ×

(
1

1 + \𝐴

)1/\
× 1

1 + \𝐴 = 𝐵 × (1 + \𝐴)−1/\−1 .

Thus, the likelihood contribution for an individual under Case 3 is

𝑒ℎ1 (𝑥)_01 (𝑦1) ×
{
1 + \

[
𝑒ℎ1 (𝑥)Λ01 (𝑦1) + 𝑒ℎ2 (𝑥)Λ02 (𝑦1)

+ 𝑒ℎ3 (𝑥)Λ03 (𝑦2 − 𝑦1)
]}−1/\−1

.

(A.12)

Case 4: Finally, we derive the likelihood contribution for an individual who experiences neither
event. Conditional on 𝛾, this is given by

exp
{
−
∫ 𝑦1

0
[_1(𝑠) + _2(𝑠)] 𝑑𝑠

}
exp

{
−
∫ 𝑦1

0
[𝛾_01 (𝑠) exp {ℎ1(𝑥)} + 𝛾_02 (𝑠) exp {ℎ2(𝑥)}] 𝑑𝑠

}
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= exp
{
−𝛾

[
𝑒ℎ1 (𝑥)Λ01 (𝑦1) + 𝑒ℎ2 (𝑥)Λ02 (𝑦1)

]}
.

Marginalizing this over 𝛾, we take∫ ∞

0
exp

{
−𝛾

[
𝑒ℎ1 (𝑥)Λ01 (𝑦1) + 𝑒ℎ2 (𝑥)Λ02 (𝑦1)

]}
× 1

Γ

(
1
\

) \− 1
\ 𝛾

1
\
−1 exp

{
−𝛾
\

}
𝑑𝛾.

For simplicity, let 𝐴 = 𝑒ℎ1 (𝑥)Λ01 (𝑦1) + 𝑒ℎ2 (𝑥)Λ02 (𝑦1), such that

=

∫ ∞

0
exp {−𝛾𝐴} × 1

Γ

(
1
\

) \− 1
\ 𝛾

1
\
−1 exp

{
−𝛾
\

}
𝑑𝛾

=

(
1/\

1/\ + 𝐴

)1/\
×
∫ ∞

0

1

Γ

(
1
\

) (
1
\
+ 𝐴

)1/\
𝛾1/\−1 exp

{
−𝛾

(
1
\
+ 𝐴

)}
𝑑𝛾.

Recognizing this as that of a Gamma random variable’s density function take over its support, this
reduces to (1 + \𝐴)−1/\ . Thus, the likelihood contribution for an individual under Case 4 is{

1 + \
[
𝑒ℎ1 (𝑥)Λ01 (𝑦1) + 𝑒ℎ2 (𝑥)Λ02 (𝑦1)

]}−1/\
. (A.13)

Likelihood: Given the likelihood contributions under each of the four cases derived above and our
event indicators, 𝛿1 and 𝛿2 as denoted in Table A.1, we can write out the full likelihood contribution
of the 𝑖th sample individual as follows

L𝑖 = Case1(𝑦𝑖1)𝛿𝑖1𝛿𝑖2 × Case2(𝑦𝑖1) (1−𝛿𝑖1)𝛿𝑖2 × Case3(𝑦𝑖1)𝛿𝑖1 (1−𝛿𝑖2) × Case4(𝑦𝑖1) (1−𝛿𝑖1) (1−𝛿𝑖2)

= _01 (𝑦𝑖1)𝛿𝑖1 _02 (𝑦𝑖2)𝛿𝑖2 (1−𝛿𝑖1) _03 (𝑦𝑖2)𝛿𝑖1𝛿𝑖2

× exp {𝛿𝑖1 · ℎ1(𝑥𝑖) + 𝛿𝑖2 (1 − 𝛿𝑖1) · ℎ2(𝑥𝑖) + 𝛿𝑖1𝛿𝑖2 · ℎ3(𝑥𝑖)} × (1 + \)𝛿𝑖1𝛿𝑖2

×
{
1 + \

[
Λ01 (𝑦𝑖1) 𝑒ℎ1 (𝑥𝑖) + Λ02 (𝑦𝑖1) 𝑒ℎ2 (𝑥𝑖) + Λ03 (𝑦𝑖2 − 𝑦𝑖1) 𝑒ℎ3 (𝑥𝑖)

]}− 1
\
−𝛿𝑖1−𝛿𝑖2

.

The full likelihood is then the product of each individual’s likelihood contribution

L =

𝑛∏
𝑖=1

L𝑖 =

𝑛∏
𝑖=1

_01 (𝑦𝑖1)𝛿𝑖1 _02 (𝑦𝑖2)𝛿𝑖2 (1−𝛿𝑖1) _03 (𝑦𝑖2)𝛿𝑖1𝛿𝑖2

× exp {𝛿𝑖1 · ℎ1(𝑥𝑖) + 𝛿𝑖2 (1 − 𝛿𝑖1) · ℎ2(𝑥𝑖) + 𝛿𝑖1𝛿𝑖2 · ℎ3(𝑥𝑖)} × (1 + \)𝛿𝑖1𝛿𝑖2

×
{
1 + \

[
Λ01 (𝑦𝑖1) 𝑒ℎ1 (𝑥𝑖) + Λ02 (𝑦𝑖1) 𝑒ℎ2 (𝑥𝑖) + Λ03 (𝑦𝑖2 − 𝑦𝑖1) 𝑒ℎ3 (𝑥𝑖)

]}− 1
\
−𝛿𝑖1−𝛿𝑖2

(A.14)
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A.4 Objective Function under Weibull Baseline Hazards

In order to fully define our objective function, we must specify a form for the baseline hazards. We
assume the baseline hazards follow a Weibull(𝜙1, 𝜙2) distribution, with

_0𝑔 (𝑡) = 𝜙𝑔1𝜙𝑔2𝑡
𝜙𝑔1−1; Λ0𝑔 (𝑡) = 𝜙𝑔2𝑡

𝜙𝑔1; 𝑔 ∈ {1, 2, 3}.

We can then specify the full likelihood function as

L =

𝑛∏
𝑖=1

(
𝜙11𝜙12𝑦

𝜙11−1
𝑖1

)𝛿𝑖1 (
𝜙21𝜙22𝑦

𝜙21−1
𝑖2

)𝛿𝑖2 (1−𝛿𝑖1) (
𝜙31𝜙32𝑦

𝜙31−1
𝑖2

)𝛿𝑖1𝛿𝑖2
× exp {𝛿𝑖1 · ℎ1(𝑥𝑖) + 𝛿𝑖2 (1 − 𝛿𝑖1) · ℎ2(𝑥𝑖) + 𝛿𝑖1𝛿𝑖2 · ℎ3(𝑥𝑖)}

× (1 + \)𝛿𝑖1𝛿𝑖2 ×
{
1 + \

[
𝜙12𝑦

𝜙11
𝑖1 𝑒

ℎ1 (𝑥𝑖) + 𝜙22𝑦
𝜙21
𝑖1 𝑒

ℎ2 (𝑥𝑖) + 𝜙32(𝑦𝑖2 − 𝑦𝑖1)𝜙31𝑒ℎ3 (𝑥𝑖)
]}− 1

\
−𝛿𝑖1−𝛿𝑖2

,

and the log-likelihood function as:

ℓ = log[L] = log

[
𝑛∏
𝑖=1

(
𝜙11𝜙12𝑦

𝜙11−1
𝑖1

)𝛿𝑖1 (
𝜙21𝜙22𝑦

𝜙21−1
𝑖2

)𝛿𝑖2 (1−𝛿𝑖1) (
𝜙31𝜙32𝑦

𝜙31−1
𝑖2

)𝛿𝑖1𝛿𝑖2
× exp {𝛿𝑖1 · ℎ1(𝑥𝑖) + 𝛿𝑖2 (1 − 𝛿𝑖1) · ℎ2(𝑥𝑖) + 𝛿𝑖1𝛿𝑖2 · ℎ3(𝑥𝑖)}

×(1 + \)𝛿𝑖1𝛿𝑖2 ×
{
1 + \

[
𝜙12𝑦

𝜙11
𝑖1 𝑒

ℎ1 (𝑥𝑖) + 𝜙22𝑦
𝜙21
𝑖1 𝑒

ℎ2 (𝑥𝑖) + 𝜙32(𝑦𝑖2 − 𝑦𝑖1)𝜙31𝑒ℎ3 (𝑥𝑖)
]}− 1

\
−𝛿𝑖1−𝛿𝑖2

]
=

𝑛∑︁
𝑖=1

𝛿𝑖1 · [log(𝜙11) + log(𝜙12) + (𝜙11 − 1) · log(𝑦𝑖1)] + 𝛿𝑖2 (1 − 𝛿𝑖1) · [log(𝜙21) + log(𝜙22)

+ (𝜙21 − 1) · log(𝑦𝑖2)] + 𝛿𝑖1𝛿𝑖2 · [log(𝜙31) + log(𝜙32) + (𝜙31 − 1) · log(𝑦𝑖2)]
+ 𝛿𝑖1 · ℎ1(𝑥𝑖) + 𝛿𝑖2 (1 − 𝛿𝑖1) · ℎ2(𝑥𝑖) + 𝛿𝑖1𝛿𝑖2 · ℎ3(𝑥𝑖) + 𝛿𝑖1𝛿𝑖2 · (1 + \)

−
(
1
\
+ 𝛿𝑖1 + 𝛿𝑖2

)
· log

{
1 + \

[
𝜙12𝑦

𝜙11
𝑖1 𝑒

ℎ1 (𝑥𝑖) + 𝜙22𝑦
𝜙21
𝑖1 𝑒

ℎ2 (𝑥𝑖) + 𝜙32(𝑦𝑖2 − 𝑦𝑖1)𝜙31𝑒ℎ3 (𝑥𝑖)
]}
.

Thus, we have that

ℓ =

𝑛∑︁
𝑖=1

𝛿𝑖1 · [log(𝜙11) + log(𝜙12) + (𝜙11 − 1) · log(𝑦𝑖1) + ℎ1(𝑥𝑖)]

+ 𝛿𝑖2 (1 − 𝛿𝑖1) · [log(𝜙21) + log(𝜙22) + (𝜙21 − 1) · log(𝑦𝑖2) + ℎ2(𝑥𝑖)]
+ 𝛿𝑖1𝛿𝑖2 · [log(𝜙31) + log(𝜙32) + (𝜙31 − 1) · log(𝑦𝑖2) + ℎ3(𝑥𝑖) + log(1 + \)]

−
(
1
\
+ 𝛿𝑖1 + 𝛿𝑖2

)
log

{
1 + \

[
𝜙12𝑦

𝜙11
𝑖1 𝑒

ℎ1 (𝑥𝑖) + 𝜙22𝑦
𝜙21
𝑖1 𝑒

ℎ2 (𝑥𝑖) + 𝜙32(𝑦𝑖2 − 𝑦𝑖1)𝜙31𝑒ℎ3 (𝑥𝑖)
]}

(A.15)
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A.5 Bivariate Brier Score

A.5.1 Brier Score with Fully-Observed Data

First, consider a single event of interest, and let𝑇𝑖 denote the event time for individual 𝑖; 𝑖 = 1, . . . , 𝑛.
Let 𝑓𝑖 (𝑡) denote the corresponding density function, such that

𝑆𝑖 (𝑡) = Pr(𝑇𝑖 > 𝑡) =
∫ ∞

𝑡

𝑓𝑖 (𝑢)𝑑𝑢

is the survival function for the 𝑖th individual at time 𝑡. Let 𝜋𝑖 (𝑡) denote a valid estimate for the
survival function. Assuming the event times are fully observed, define the Brier Score as

𝐵𝑆(𝑡) = 1
𝑛

𝑛∑︁
𝑖=1

[𝐼 {𝑇𝑖 > 𝑡} − 𝜋𝑖 (𝑡)]2 ,

where 𝐼{·} is the indicator function. This provides an approximation to the true, unknown survival
functions through step functions with jumps at event times. As the survival functions must be
approximated by 𝐼 {𝑇𝑖 > 𝑡}, we can see that

E [𝐵𝑆(𝑡)] = E
[
1
𝑛

𝑛∑︁
𝑖=1

[𝐼 {𝑇𝑖 > 𝑡} − 𝜋𝑖 (𝑡)]2

]
= E

[
1
𝑛

𝑛∑︁
𝑖=1

[
𝜋𝑖 (𝑡)2𝐼 {𝑇𝑖 ≤ 𝑡} + {1 − 𝜋𝑖 (𝑡)}2 𝐼 {𝑇𝑖 > 𝑡}

] ]
=

1
𝑛

𝑛∑︁
𝑖=1
E
[
𝜋𝑖 (𝑡)2𝐼 {𝑇𝑖 ≤ 𝑡} + {1 − 𝜋𝑖 (𝑡)}2 𝐼 {𝑇𝑖 > 𝑡}

]
=

1
𝑛

𝑛∑︁
𝑖=1

𝜋𝑖 (𝑡)2 Pr (𝑇𝑖 ≤ 𝑡) + [1 − 𝜋𝑖 (𝑡)]2 Pr (𝑇𝑖 > 𝑡) =
1
𝑛

𝑛∑︁
𝑖=1

𝜋𝑖 (𝑡)2 [1 − 𝑆𝑖 (𝑡)] + [1 − 𝜋𝑖 (𝑡)]2 𝑆𝑖 (𝑡)

=
1
𝑛

𝑛∑︁
𝑖=1

{
[𝑆𝑖 (𝑡) − 𝜋𝑖 (𝑡)]2 + 𝑆𝑖 (𝑡) [1 − 𝑆𝑖 (𝑡)]

}
= 𝑀𝑆𝐸 (𝑡) + 1

𝑛

𝑛∑︁
𝑖=1

{𝑆𝑖 (𝑡) [1 − 𝑆𝑖 (𝑡)]} ,

where the additional piece is constant with respect to 𝜋𝑖 (𝑡) and represents the irreducible error in
approximating 𝑆𝑖 (𝑡) by these step functions.

A.5.2 Brier Score with Right Censoring

In practice, it is often the case that not all events are observed. In this situation, it is known that
the event time, 𝑇𝑖, occurs after some censoring time, 𝐶𝑖. We observe D = {(𝑌𝑖, 𝛿𝑖); 𝑖 = 1, . . . , 𝑛},
where 𝑌𝑖 = min{𝑇𝑖, 𝐶𝑖} is the observation time and 𝛿𝑖 = 𝐼{𝑇𝑖 ≤ 𝐶𝑖} is the event indicator for the
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𝑖th individual. With censoring, we must adopt inverse probability of censoring weighting (IPCW)
([56, 50]). The IPCW-approximated Brier Score is

𝐵𝑆𝐶 (𝑡) =
1
𝑛

𝑛∑︁
𝑖=1

[
𝜋𝑖 (𝑡)2 · 𝐼 {𝑌𝑖 ≤ 𝑡, 𝛿𝑖 = 1}

𝐺𝑖 (𝑌𝑖−)
+
{
1 − 𝜋𝑖 (𝑡)2} · 𝐼 {𝑌𝑖 > 𝑡}

𝐺𝑖 (𝑡)

]
,

where 𝐺𝑖 (𝑡) = Pr(𝐶𝑖 > 𝑡) > 0 is the survival function of the censoring distribution for the 𝑖th
individual. With 𝐺𝑖 (𝑡) known, note that the expectation of the IPCW-approximated Brier Score is
equivalent to that of the Brier Score without censoring

E [BS𝐶 (𝑡)] =
1
𝑛

𝑛∑︁
𝑖=1
E

[
𝜋𝑖 (𝑡)2𝐼 {𝑌𝑖 ≤ 𝑡, 𝛿𝑖 = 1}

𝐺𝑖 (𝑌𝑖)
+ [1 − 𝜋𝑖 (𝑡)]2 1 {𝑌𝑖 > 𝑡}

𝐺𝑖 (𝑡)

]
=

1
𝑛

𝑛∑︁
𝑖=1

𝜋𝑖 (𝑡)2 · E
[
1 {𝑇𝑖 ≤ 𝑡, 𝑇𝑖 ≤ 𝐶𝑖}

𝐺𝑖 (𝑌𝑖)

]
+ [1 − 𝜋𝑖 (𝑡)]2 Pr (𝑇𝑖 > 𝑡, 𝐶𝑖 > 𝑡)

𝐺𝑖 (𝑡)

=
1
𝑛

𝑛∑︁
𝑖=1

𝜋𝑖 (𝑡)2
∫ 𝑡

0

𝐺𝑖 (𝑢−) 𝑓𝑖 (𝑢)
𝐺𝑖 (𝑢−)

𝑑𝑢 + [1 − 𝜋𝑖 (𝑡)]2 𝐺𝑖 (𝑡)𝑆𝑖 (𝑡)
𝐺𝑖 (𝑡)

=
1
𝑛

𝑛∑︁
𝑖=1

𝜋𝑖 (𝑡)2 [1 − 𝑆𝑖 (𝑡)] + [1 − 𝜋𝑖 (𝑡)]2 𝑆𝑖 (𝑡)

= MSE(𝑡) + 1
𝑛

𝑛∑︁
𝑖=1

𝑆𝑖 (𝑡) [1 − 𝑆𝑖 (𝑡)] .

A.5.3 Bivariate Brier Score with Right Censoring

Following the framework outlined in the previous sections, we now provide additional detail on the
derivation of the Bivariate Brier Score outlined in Section 2.4. As described previously, consider
two events of interest which form a semi-competing relationship. Let 𝑇𝑖1 and 𝑇𝑖2 denote the non-
terminal and terminal event times, respectively, and 𝐶𝑖 the censoring time for the 𝑖th individual.
We observe D = {(𝑌𝑖1, 𝛿𝑖1, 𝑌𝑖2, 𝛿𝑖2); 𝑖 = 1, . . . , 𝑛} where 𝑌𝑖2 = min(𝑇𝑖2, 𝐶𝑖), 𝛿𝑖2 = 𝐼 (𝑇𝑖2 ≤ 𝐶𝑖),
𝑌𝑖1 = min(𝑇𝑖1, 𝑌𝑖2), 𝛿𝑖1 = 𝐼 (𝑇𝑖1 ≤ 𝑌𝑖2), and 𝐼 (·) denotes the indicator function.

We show that the expectation of the Bivariate Brier Score is equal to the mean squared error of
the predictor, 𝜋𝑖 (𝑡), plus a constant. To proceed, we compute the expectation in additive pieces. In
the first piece, we consider the region where at least the non-terminal event is observed by time 𝑡,
and𝑌𝑖1 is less than or equal to𝑌𝑖2, but the terminal event may or may not be observed. In the second
piece, we consider the region where the terminal event is observed prior to the non-terminal event.
In the third piece, we consider the region where neither event has been observed by time 𝑡.

Piece 1: At least the non-terminal event is observed by time 𝑡, and 𝑌𝑖1 is less than or equal to 𝑌𝑖2,
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but the terminal event may or may not be observed.

E

[
𝜋𝑖 (𝑡)2 × 𝐼 (𝑌𝑖1 ≤ 𝑡, 𝛿𝑖1 = 1, 𝑌𝑖1 ≤ 𝑌𝑖2}

𝐺𝑖 (𝑌𝑖1)

]
= 𝜋𝑖 (𝑡)2 × E

[
𝐼 (𝑇𝑖1 ≤ 𝑡, 𝑇𝑖1 ≤ 𝐶𝑖, 𝑇𝑖1 ≤ 𝑇𝑖2}

𝐺𝑖 (𝑇𝑖1)

]
= 𝜋𝑖 (𝑡)2 × E

[
E

[
𝐼 (𝑇𝑖1 ≤ 𝑡, 𝑇𝑖1 ≤ 𝐶𝑖, 𝑇𝑖1 ≤ 𝑇𝑖2}

𝐺𝑖 (𝑌𝑖1)
| 𝑇𝑖1, 𝑇𝑖2

] ]
= 𝜋𝑖 (𝑡)2 × E

[
𝐼 (𝑇𝑖1 ≤ 𝑡, 𝑇𝑖1 ≤ 𝑇𝑖2}

𝐺𝑖 (𝑇𝑖1)
× E [𝐼 (𝑇𝑖1 ≤ 𝐶𝑖} | 𝑇𝑖1, 𝑇𝑖2]

]
= 𝜋𝑖 (𝑡)2 × E

[
𝐼 (𝑇𝑖1 ≤ 𝑡, 𝑇𝑖1 ≤ 𝑇𝑖2}

𝐺𝑖 (𝑇𝑖1)
× Pr (𝑇𝑖1 ≤ 𝐶𝑖)

]
= 𝜋𝑖 (𝑡)2 × E

[
𝐼 (𝑇𝑖1 ≤ 𝑡, 𝑇𝑖1 ≤ 𝑇𝑖2}

𝐺𝑖 (𝑇𝑖1)
× 𝐺𝑖 (𝑇𝑖1)

]
= 𝜋𝑖 (𝑡)2 × E [𝐼 (𝑇𝑖1 ≤ 𝑡, 𝑇𝑖1 ≤ 𝑇𝑖2}] = 𝜋𝑖 (𝑡)2 × Pr (𝑇𝑖1 ≤ 𝑡, 𝑇𝑖1 ≤ 𝑇𝑖2) .

Piece 2: The terminal event is observed prior to the non-terminal event occurring.

E

[
𝜋𝑖 (𝑡)2 × 𝐼 (𝑌𝑖1 ≤ 𝑡, 𝑌𝑖2 ≤ 𝑡, 𝛿𝑖1 = 0, 𝛿𝑖2 = 1, 𝑌𝑖1 ≤ 𝑌𝑖2}

𝐺𝑖 (𝑌𝑖2)

]
= 𝜋𝑖 (𝑡)2 × E

[
𝐼 (𝑇𝑖2 ≤ 𝑡, 𝑇𝑖1 > 𝑇𝑖2, 𝑇𝑖2 ≤ 𝐶𝑖}

𝐺𝑖 (𝑌𝑖2)

]
= 𝜋𝑖 (𝑡)2 × E

[
E

[
𝐼 (𝑇𝑖2 ≤ 𝑡, 𝑇𝑖1 > 𝑇𝑖2, 𝑇𝑖2 ≤ 𝐶𝑖}

𝐺𝑖 (𝑌𝑖2)
| 𝑇𝑖1, 𝑇𝑖2

] ]
= 𝜋𝑖 (𝑡)2 × E

[
𝐼 (𝑇𝑖2 ≤ 𝑡, 𝑇𝑖1 > 𝑇𝑖2}

𝐺𝑖 (𝑌𝑖2)
× E [𝐼 (𝑇𝑖2 ≤ 𝐶𝑖} | 𝑇𝑖1, 𝑇𝑖2]

]
= 𝜋𝑖 (𝑡)2 × E

[
𝐼 (𝑇𝑖2 ≤ 𝑡, 𝑇𝑖1 > 𝑇𝑖2}

𝐺𝑖 (𝑌𝑖2)
× Pr (𝑇𝑖2 ≤ 𝐶𝑖)

]
= 𝜋𝑖 (𝑡)2 × E

[
𝐼 (𝑇𝑖2 ≤ 𝑡, 𝑇𝑖1 > 𝑇𝑖2}

𝐺𝑖 (𝑌𝑖2)
× 𝐺𝑖 (𝑇𝑖2)

]
= 𝜋𝑖 (𝑡)2 × E [𝐼 (𝑇𝑖2 ≤ 𝑡, 𝑇𝑖1 > 𝑇𝑖2}] = 𝜋𝑖 (𝑡)2 × Pr (𝑇𝑖2 ≤ 𝑡, 𝑇𝑖1 > 𝑇𝑖2) .

Piece 3: Neither event has been observed by time 𝑡.

E

[
[1 − 𝜋𝑖 (𝑡)]2 × 𝐼 (𝑌𝑖1 > 𝑡, 𝑌𝑖2 > 𝑡}

𝐺𝑖 (𝑡)

]
=

[1 − 𝜋𝑖 (𝑡)]2

𝐺𝑖 (𝑡)
× E [𝐼 (𝑇𝑖1 > 𝑡, 𝑇𝑖2 > 𝑡, 𝐶𝑖 > 𝑡}]

=
[1 − 𝜋𝑖 (𝑡)]2

𝐺𝑖 (𝑡)
× Pr (𝑇𝑖1 > 𝑡, 𝑇𝑖2 > 𝑡, 𝐶𝑖 > 𝑡)

=
[1 − 𝜋𝑖 (𝑡)]2

𝐺𝑖 (𝑡)
× Pr (𝑇𝑖1 > 𝑡, 𝑇𝑖2 > 𝑡) × Pr (𝐶𝑖 > 𝑡)

=
[1 − 𝜋𝑖 (𝑡)]2

𝐺𝑖 (𝑡)
× 𝑆𝑖 (𝑡, 𝑡) × 𝐺𝑖 (𝑡) = [1 − 𝜋𝑖 (𝑡)]2 × 𝑆𝑖 (𝑡, 𝑡) .
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Combining these pieces, and summing over the 𝑛 individuals, we can see that

E [𝐵𝐵𝑆𝑐 (𝑡)] = E
[
1
𝑛

𝑛∑︁
𝑖=1

𝜋𝑖 (𝑡)2 · 𝐼 (𝑌𝑖1 ≤ 𝑡, 𝛿𝑖1 = 1, 𝑌𝑖1 ≤ 𝑌𝑖2}
𝐺𝑖 (𝑌𝑖1)

+ 𝜋𝑖 (𝑡)2 · 𝐼 (𝑌𝑖1 ≤ 𝑡, 𝑌𝑖2 ≤ 𝑡, 𝛿𝑖1 = 0, 𝛿𝑖2 = 1, 𝑌𝑖1 ≤ 𝑌𝑖2}
𝐺𝑖 (𝑌𝑖2)

+ [1 − 𝜋𝑖 (𝑡)]2 · 𝐼 (𝑌𝑖1 > 𝑡, 𝑌𝑖2 > 𝑡}
𝐺𝑖 (𝑡)

]
=

1
𝑛

𝑛∑︁
𝑖=1
E

[
𝜋𝑖 (𝑡)2 · 𝐼 (𝑌𝑖1 ≤ 𝑡, 𝛿𝑖1 = 1, 𝑌𝑖1 ≤ 𝑌𝑖2}

𝐺𝑖 (𝑌𝑖1)

]
+ E

[
𝜋𝑖 (𝑡)2 · 𝐼 (𝑌𝑖1 ≤ 𝑡, 𝑌𝑖2 ≤ 𝑡, 𝛿𝑖1 = 0, 𝛿𝑖2 = 1, 𝑌𝑖1 ≤ 𝑌𝑖2}

𝐺𝑖 (𝑌𝑖2)

]
+ E

[
[1 − 𝜋𝑖 (𝑡)]2 · 𝐼 (𝑌𝑖1 > 𝑡, 𝑌𝑖2 > 𝑡}

𝐺𝑖 (𝑡)

]
=

1
𝑛

𝑛∑︁
𝑖=1

𝜋𝑖 (𝑡)2 · Pr (𝑇𝑖1 ≤ 𝑡, 𝑇𝑖1 ≤ 𝑇𝑖2)

+ 𝜋𝑖 (𝑡)2 · Pr (𝑇𝑖2 ≤ 𝑡, 𝑇𝑖1 > 𝑇𝑖2) + [1 − 𝜋𝑖 (𝑡)]2 · 𝑆𝑖 (𝑡, 𝑡)

=
1
𝑛

𝑛∑︁
𝑖=1

𝜋𝑖 (𝑡)2 · [1 − 𝑆𝑖 (𝑡)] + [1 − 𝜋𝑖 (𝑡)]2 · 𝑆𝑖 (𝑡, 𝑡)

= MSE(𝑡) + 1
𝑛

𝑛∑︁
𝑖=1

𝑆𝑖 (𝑡, 𝑡) · [1 − 𝑆𝑖 (𝑡, 𝑡)] .

In expectation, the Bivariate Brier Score is equivalent to the mean squared error of the predictor,
𝜋𝑖 (𝑡), plus an additional piece that is constant with respect to 𝜋𝑖 (𝑡). This additional term represents
the irreducible error incurred by approximating 𝑆𝑖 (𝑡) by step functions, 𝐼 (𝑌𝑖1 > 𝑡,𝑌𝑖2 > 𝑡).
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APPENDIX B

Technical Details for Chapter 3

B.1 Neural Expectation-Maximization Algorithm

In the following, we provide additional detail on the neural expectation-maximization algorithm
outlined in Section 3.3. Viewing the subject-specific frailties as a latent, random effects, the
algorithm iterates between three steps, namely the expectation (E) step, the maximization (M) step,
and the neural (N) step. In the E-step, the frailties are estimated given the data and current values
for the model parameters by taking the expectation of the augmented conditional log-likelihood
in (3.1). In the M-step, the model parameters corresponding to the baseline hazard functions are
estimated by maximizing the expected log-likelihood in the E-step, given the current estimates for
the frailties. Then, fixing these quantities, the log risk functions for a patient’s covariates and the
population frailty variance are updated as outputs of the neural network architectures in the N-step.

B.1.1 Conditional Frailty Distribution

The conditional density of 𝜸 given the data is proportional to the product of the conditional
likelihood, 𝐿 (𝝍;D, 𝜸), which was derived in Appendix A, and the marginal density of 𝜸 by Bayes
rule. We assume that each 𝛾𝑖 independently follows a Gamma distribution with a density function
𝑓 (𝛾𝑖) = \

− 1
\

Γ( 1
\ )
𝛾

1
\
−1

𝑖
𝑒−

𝛾𝑖
\ so that E[𝛾𝑖] = 1 and Var(𝛾𝑖) = \. The marginal density of 𝜸 is the product

over the 𝑛 independent 𝛾𝑖 densities. Thus, for a fixed value of \, the posterior distribution of 𝜸 is

𝑓 (𝜸 |D,𝝍) ∝ 𝑓 (𝜸) × 𝐿 (𝝍;D, 𝜸) =
𝑛∏
𝑖=1

\−
1
\

Γ

(
1
\

) × 𝛾
1
\
−1

𝑖
× 𝑒−

𝛾𝑖
\ × 𝛾𝛿𝑖1+𝛿𝑖2

𝑖

×
[
_01 (𝑌𝑖1) 𝑒ℎ1 (𝒙𝑖)

]𝛿𝑖1
×
[
_02 (𝑌𝑖2) 𝑒ℎ2 (𝒙𝑖)

] (1−𝛿𝑖1)𝛿𝑖2
×
[
_03 (𝑌𝑖2 − 𝑌𝑖1) 𝑒ℎ3 (𝒙𝑖)

]𝛿𝑖1𝛿𝑖2
× exp

{
−𝛾𝑖

[
Λ01 (𝑌𝑖1) 𝑒ℎ1 (𝒙𝑖) + Λ02 (𝑌𝑖1) 𝑒ℎ2 (𝒙𝑖) + 𝛿𝑖1Λ03 (𝑌𝑖2 − 𝑌𝑖1) 𝑒ℎ3 (𝒙𝑖)

]}
.
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Considering only the terms which involve 𝛾𝑖, we can reduce the above expression to

𝑓 (𝜸 |D,𝝍) ∝
𝑛∏
𝑖=1

𝛾
1
\
+𝛿𝑖1+𝛿𝑖2−1

𝑖

× exp
{
−𝛾𝑖

[
1
\
+ Λ01 (𝑌𝑖1) 𝑒ℎ1 (𝒙𝑖) + Λ02 (𝑌𝑖1) 𝑒ℎ2 (𝒙𝑖) + 𝛿𝑖1Λ03 (𝑌𝑖2 − 𝑌𝑖1) 𝑒ℎ3 (𝒙𝑖)

]}
.

which we recognize to also be the kernel of a Gamma distribution, apart from a constant. Conditional
on the data, the 𝛾𝑖’s follow a Gamma(�̃�, �̃�) distribution with

�̃� =
1
\
+ 𝛿𝑖1 + 𝛿𝑖2,

�̃� =
1
\
+ Λ01 (𝑌𝑖1) 𝑒ℎ1 (𝒙𝑖) + Λ02 (𝑌𝑖1) 𝑒ℎ2 (𝒙𝑖) + 𝛿𝑖1Λ03 (𝑌𝑖2 − 𝑌𝑖1) 𝑒ℎ3 (𝒙𝑖) .

From this result, we have that the posterior means of the 𝛾𝑖 are given by E[𝛾𝑖 |D,𝝍] = �̃�/�̃�. The
posterior means of log(𝛾𝑖) can also be derived. Without loss of generality, let the rate parameter,
�̃�, equal 1, as its effect on the logarithm of 𝛾𝑖 is a negative linear shift by a factor of log(�̃�). Thus,
the density of 𝛾𝑖 ∼ Gamma(�̃�, 1) is given by

𝑓 (𝛾𝑖 |D,𝝍) =
1

Γ(�̃�) 𝛾
�̃�−1
𝑖 exp{−𝛾𝑖}𝑑𝛾𝑖 =

1
Γ(�̃�) 𝛾

�̃�
𝑖 exp{−𝛾𝑖}

𝑑𝛾𝑖

𝛾𝑖
.

Substituting 𝛾𝑖 = exp{log(𝛾𝑖)} and noting that 𝑑𝛾𝑖/𝛾𝑖 = 𝑑 log(𝛾𝑖), we have that

𝑓 (log(𝛾𝑖) |D,𝝍) =
1

Γ(�̃�) exp{�̃� log(𝛾𝑖) − exp{log(𝛾𝑖)}}𝑑 log(𝛾𝑖).

As 𝑓 (log(𝛾𝑖) |D,𝝍) is a probability density function, and therefore must integrate to unity, and the
support of log(𝛾𝑖) is in R, we have that

Γ(�̃�) =
∫
R

exp{�̃� log(𝛾𝑖) − exp{log(𝛾𝑖)}}𝑑 log(𝛾𝑖).

Differentiating under the integral with respect to �̃�, we have that

𝜕

𝜕�̃�
[exp{�̃� log(𝛾𝑖) − exp{log(𝛾𝑖)}}𝑑 log(𝛾𝑖)]

= log(𝛾𝑖) exp{�̃� log(𝛾𝑖) − exp{log(𝛾𝑖)}}𝑑 log(𝛾𝑖)
= Γ(�̃�) log(𝛾𝑖) 𝑓 (log(𝛾𝑖) |D,𝝍).

Finally, dividing by Γ(�̃�) and integrating over R with respect to log(𝛾𝑖) yields an expression for the
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posterior expectation of log(𝛾𝑖) as follows

E[log(𝛾𝑖) |D,𝝍] = − log(�̃�) +
∫
R

log(𝛾𝑖) 𝑓 (log(𝛾𝑖) |D,𝝍)

= − log(�̃�) + 1
Γ(�̃�)

∫
R

𝜕

𝜕�̃�
exp{�̃� log(𝛾𝑖) − exp{log(𝛾𝑖)}}𝑑 log(𝛾𝑖)

= − log(�̃�) + 1
Γ(�̃�)

𝜕

𝜕�̃�

∫
R

exp{�̃� log(𝛾𝑖) − exp{log(𝛾𝑖)}}𝑑 log(𝛾𝑖)

= − log(�̃�) + 1
Γ(�̃�)

𝜕

𝜕�̃�
Γ(�̃�) = − log(�̃�) + 𝜕

𝜕�̃�
log [Γ(�̃�)] = digamma(�̃�) − log(�̃�)

B.1.2 E-Step

In the E-step, we calculate the expected log-conditional likelihood of the augmented data given the
observed data, or our ‘𝑄’ function. 𝑄 can be written as

𝑄(𝝍 | D,𝝍 (𝑚)) = E𝜸 [ℓ(𝝍;D, 𝜸) | D,𝝍 (𝑚)]

= E𝜸 [log(∏𝑛
𝑖=1 𝛾

𝛿𝑖1+𝛿𝑖2
𝑖

× \
− 1
\

Γ( 1
\
) × 𝛾

1
\
−1

𝑖
× 𝑒−

𝛾𝑖
\

× [_01(𝑌𝑖1)𝑒ℎ1 (𝒙𝑖)]𝛿𝑖1 × [_02(𝑌𝑖2)𝑒ℎ2 (𝒙𝑖)] (1−𝛿𝑖1)𝛿𝑖2 × [_03(𝑌𝑖2 − 𝑌𝑖1)𝑒ℎ3 (𝒙𝑖)]𝛿𝑖1𝛿𝑖2

× exp{−𝛾𝑖 [Λ01(𝑌𝑖1)𝑒ℎ1 (𝒙𝑖) + Λ02(𝑌𝑖1)𝑒ℎ2 (𝒙𝑖) + 𝛿𝑖1Λ03(𝑌𝑖2 − 𝑌𝑖1)𝑒ℎ3 (𝒙𝑖)]}) | D,𝝍 (𝑚)]
= E𝜸 [

∑𝑛
𝑖=1 𝛿𝑖1 log(𝛾𝑖) + 𝛿𝑖2 log(𝛾𝑖) + 𝛿𝑖1 log[_01(𝑌𝑖1)] + 𝛿𝑖1ℎ1(𝒙𝒊)

+ (1 − 𝛿𝑖1)𝛿𝑖2 log[_02(𝑌𝑖2)] + (1 − 𝛿𝑖1)𝛿𝑖2ℎ2(𝒙𝒊)
+ 𝛿𝑖1𝛿𝑖2 log[_03(𝑌𝑖2 − 𝑌𝑖1)] + 𝛿𝑖1𝛿𝑖2ℎ3(𝒙𝒊)
− 𝛾𝑖 [Λ01(𝑌𝑖1)𝑒ℎ1 (𝒙𝑖) + Λ02(𝑌𝑖1)𝑒ℎ2 (𝒙𝑖) + 𝛿𝑖1Λ03(𝑌𝑖2 − 𝑌𝑖1)𝑒ℎ3 (𝒙𝑖)]

− 1
\

log(\) + (1
\
− 1) log(𝛾𝑖) −

1
\
𝛾𝑖 − log Γ(1

\
) | D,𝝍 (𝑚)]

=
∑𝑛
𝑖=1 𝛿𝑖1E𝜸 [log(𝛾𝑖) | D,𝝍 (𝑚)] + 𝛿𝑖2E𝜸 [log(𝛾𝑖) | D,𝝍 (𝑚)]

+ 𝛿𝑖1 log[_01(𝑌𝑖1)] + 𝛿𝑖1ℎ1(𝒙𝒊)
+ (1 − 𝛿𝑖1)𝛿𝑖2 log[_02(𝑌𝑖2)] + (1 − 𝛿𝑖1)𝛿𝑖2ℎ2(𝒙𝒊)
+ 𝛿𝑖1𝛿𝑖2 log[_03(𝑌𝑖2 − 𝑌𝑖1)] + 𝛿𝑖1𝛿𝑖2ℎ3(𝒙𝒊)
− E𝜸 [𝛾𝑖 | D,𝝍 (𝑚)] [Λ01(𝑌𝑖1)𝑒ℎ1 (𝒙𝑖) + Λ02(𝑌𝑖1)𝑒ℎ2 (𝒙𝑖) + 𝛿𝑖1Λ03(𝑌𝑖2 − 𝑌𝑖1)𝑒ℎ3 (𝒙𝑖)]

− 1
\

log(\) + (1
\
− 1)E[log(𝛾𝑖) |D,𝝍 (𝑚)] − 1

\
E[𝛾𝑖 |D,𝝍 (𝑚)] − log Γ(1

\
)

= 𝑄1 +𝑄2 +𝑄3 +𝑄4,

where
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𝑄1 =

𝑛∑︁
𝑖=1

𝛿𝑖1E𝜸

[
log(𝛾𝑖) | D,𝝍 (𝑚)

]
+ 𝛿𝑖1 log [_01 (𝑌𝑖1)] + 𝛿𝑖1ℎ1(𝒙𝒊)

− E𝜸
[
𝛾𝑖 | D,𝝍 (𝑚)

]
Λ01 (𝑌𝑖1) 𝑒ℎ1 (𝒙𝑖)

𝑄2 =

𝑛∑︁
𝑖=1

𝛿𝑖2E𝜸

[
log(𝛾𝑖) | D,𝝍 (𝑚)

]
+ (1 − 𝛿𝑖1) 𝛿𝑖2 log [_02 (𝑌𝑖2)]

+ (1 − 𝛿𝑖1) 𝛿𝑖2ℎ2(𝒙𝒊) − E𝜸
[
𝛾𝑖 | D,𝝍 (𝑚)

]
Λ02 (𝑌𝑖1) 𝑒ℎ2 (𝒙𝑖)

𝑄3 =

𝑛∑︁
𝑖=1

𝛿𝑖1𝛿𝑖2 log [_03 (𝑌𝑖2 − 𝑌𝑖1)] + 𝛿𝑖1𝛿𝑖2ℎ3(𝒙𝒊)

− E𝜸
[
𝛾𝑖 | D,𝝍 (𝑚)

]
𝛿𝑖1Λ03 (𝑌𝑖2 − 𝑌𝑖1) 𝑒ℎ3 (𝒙𝑖)

𝑄4 =

𝑛∑︁
𝑖=1

−1
\

log(\) +
(
1
\
− 1

)
E[log(𝛾𝑖) |D,𝝍 (𝑚)] − 1

\
E[𝛾𝑖 |D,𝝍 (𝑚)] − log Γ

(
1
\

)
.

B.1.3 M-Step

In the M-step, the objective is to maximize the baseline hazard functions in the expected log-
likelihood with the updated frailty estimates. Note that our objective function, 𝑄, can be written
as the sum of 𝑄1, 𝑄2, 𝑄3, and 𝑄4. Each of the first three involves only the baseline hazard for a
state transition, and the last one involves only the frailty variance. Thus, the M-step updates for
Λ01,Λ02, and Λ03 can be defined utilizing 𝑄1, 𝑄2, and 𝑄3, separately, and the frailty variance,
\, with 𝑄4. As the maximizer of our objective function over the space of absolutely continuous
cumulative baseline hazards does not exist [76], we restrict the parameter space of the cumulative
baseline hazards, Λ01,Λ02, and Λ03, to the one containing piecewise constant functions, with jumps
occurring at observed event times. Maximizers over this discrete space are termed nonparametric
maximum likelihood estimates of Λ01,Λ02, and Λ03. Under this parameter space, _0𝑔 (𝑡) in (2.4)
- (2.6) are replaced by ΔΛ0𝑔 (𝑡), the jump size at 𝑡 for the baseline hazards of each state transition
[91], and Λ0𝑔 (𝑡) =

∑𝑡
𝑠=0 ΔΛ0𝑔 (𝑠). Note that ΔΛ0𝑔 (𝑠) = 0 if 𝑠 is not one of the observed event times

corresponding to state transition 𝑔. As such, the M-step updates for these jump sizes, ΔΛ0𝑔 (𝑡), can
be derived as follows.

Update for 𝚫𝚲01(𝒕): The M-step involves maximize the values of the baseline hazard parameters
given the expected log-likelihood and updated frailty estimates. Substituting the discretized jump
sizes, ΔΛ01, for _01, we rewrite 𝑄1 as
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𝑄1 =

𝑛∑︁
𝑖=1

𝛿𝑖1E[log(𝛾𝑖) |D,𝝍 (𝑚)] + 𝛿𝑖1 log [ΔΛ01 (𝑌𝑖1)] + 𝛿𝑖1ℎ1(𝒙𝑖)

− E[𝛾𝑖 |D,𝝍 (𝑚)]Λ01 (𝑌𝑖1) exp{ℎ1(𝒙𝑖)}.

For a fixed 𝑡, differentiating 𝑄1 with respect to ΔΛ01(𝑡), we have the score function for ΔΛ01(𝑡),

𝜕𝑄1
𝜕ΔΛ01(𝑡)

=

𝑛∑︁
𝑖=1

𝛿𝑖1𝐼 (𝑌𝑖1 = 𝑡)
ΔΛ01(𝑡)

− E[𝛾𝑖 |D,𝝍 (𝑚)] 𝐼 [𝑌𝑖1 ≥ 𝑡] exp{ℎ1(𝒙𝑖)}.

Setting this equal to zero, we can show that the update, ΔΛ(𝑚+1)
01 (𝑡) is

ΔΛ
(𝑚+1)
01 (𝑡) =

∑𝑛
𝑖=1 𝛿𝑖1𝐼 [𝑌𝑖1 = 𝑡]∑𝑛

𝑖=1 E[𝛾𝑖 |D,𝝍 (𝑚)] 𝐼 [𝑌𝑖1 ≥ 𝑡] exp
{
ℎ
(𝑚)
1 (𝒙𝑖)

} ,
where the numerator reflects the observed number of non-terminal events.

Update for 𝚫𝚲02(𝒕): As before, substituting ΔΛ02 for _02, we rewrite 𝑄2 as

𝑄2 =

𝑛∑︁
𝑖=1

𝛿𝑖2E[log(𝛾𝑖) |D,𝝍 (𝑚)] + (1 − 𝛿𝑖1) 𝛿𝑖2 log [ΔΛ02 (𝑌𝑖2)]

+ (1 − 𝛿𝑖1) 𝛿𝑖2ℎ2(𝒙𝑖) − E[𝛾𝑖 |D,𝝍 (𝑚)]Λ02(𝑌𝑖2) exp{ℎ2(𝒙𝑖)}.

Differentiating 𝑄2 with respect to ΔΛ02, we have the score function

𝜕𝑄2
𝜕ΔΛ02(𝑡)

=

𝑛∑︁
𝑖=1

(1 − 𝛿𝑖1) 𝛿𝑖2𝐼 [𝑌𝑖2 = 𝑡]
ΔΛ02(𝑡)

− E[𝛾𝑖 |D,𝝍 (𝑚)] 𝐼 [𝑌𝑖2 ≥ 𝑡] exp{ℎ2(𝒙𝑖)}.

Setting this equal to zero, we can show that the update, ΔΛ(𝑚+1)
02 (𝑡), is

ΔΛ
(𝑚+1)
02 (𝑡) =

∑𝑛
𝑖=1 (1 − 𝛿𝑖1) 𝛿𝑖2𝐼 [𝑌𝑖2 = 𝑡]∑𝑛

𝑖=1 E[𝛾𝑖 |D,𝝍 (𝑚)] 𝐼 [𝑌𝑖2 ≥ 𝑡] exp
{
ℎ
(𝑚)
2 (𝒙𝑖)

} ,
where the numerator is the number of terminal events observed prior to non-terminal events.

Update for 𝚫𝚲03(𝒕): Lastly, substituting ΔΛ03 for _03, we rewrite 𝑄3 as

𝑄3 =

𝑛∑︁
𝑖=1

𝛿𝑖1𝛿𝑖2 log [ΔΛ03 (𝑌𝑖2 − 𝑌𝑖1)] + 𝛿𝑖1𝛿𝑖2ℎ3(𝒙𝑖)

− E[𝛾𝑖 |D,𝝍 (𝑚)]𝛿𝑖1Λ03 (𝑌𝑖2 − 𝑌𝑖1) exp{ℎ3(𝒙𝑖)}.

Differentiating 𝑄3 with respect to ΔΛ03, we have the score function
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𝜕𝑄3
𝜕ΔΛ03(𝑡)

=

𝑛∑︁
𝑖=1

𝛿𝑖1𝛿𝑖2𝐼 [𝑌𝑖2 − 𝑌𝑖1 = 𝑡]
ΔΛ03 (𝑡)

− E[𝛾𝑖 |D,𝝍 (𝑚)]𝛿𝑖1𝐼 [𝑌𝑖2 − 𝑌𝑖1 ≥ 𝑡] exp{ℎ3(𝒙𝑖)},

and equating this to zero, we have that the update, ΔΛ(𝑚+1)
03 (𝑡), is

ΔΛ
(𝑚+1)
03 (𝑡) =

∑𝑛
𝑖=1 𝛿𝑖1𝛿𝑖2𝐼 [𝑌𝑖2 − 𝑌𝑖1 = 𝑡]∑𝑛

𝑖=1 E[𝛾𝑖 |D,𝝍 (𝑚)]𝛿𝑖1𝐼 [𝑌𝑖2 − 𝑌𝑖1 ≥ 𝑡] exp
{
ℎ
(𝑚)
3 (𝒙𝑖)

} ,
where the numerator reflects the number of terminal events observed after non-terminal events.
These closed form updates in the M-step are Breslow-type estimators. As such, to seed the EM
algorithm, we initializeΛ01,Λ02, andΛ03 with their respective, unadjusted Nelson-Aalen estimators.
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APPENDIX C

Technical Details for Chapter 4

C.1 Supplemental Simulation Information

C.1.1 Data Generation Procedure

In the following, we detail the the data generation procedure for our simulation studies.

Proportional Hazards Model, Linear Risk Function
Given the formulation of the Clayton copula, we can express the bivariate surival function of the
non-fatal, 𝑇𝑖1, and fatal, 𝑇𝑖2, event times as

𝑆(𝑡1, 𝑡2) = Pr(𝑇𝑖1 > 𝑡1, 𝑇𝑖2 > 𝑡2) =
[
𝑆1(𝑡1)1−\ + 𝑆2(𝑡2)1−\ − 1

] 1
1−\ ; 0 ≤ 𝑡1 ≤ 𝑡2,

where 𝑆1(𝑡1) is the marginal survival function of the non-fatal event, 𝑆2(𝑡2) is the marginal survival
function of the fatal event, and \ is the copula parameter which measures the dependence between
the non-fatal and fatal event times. In the first simulation setting, we generated non-fatal (𝑇𝑖1) and
fatal (𝑇𝑖2) event times from marginal models specified by

log(𝑇𝑖1/3) = −(𝛽1𝑍𝑖 + 𝛽1𝑋𝑖1 + 𝛽1𝑋𝑖2) + Y𝑖1
log(𝑇𝑖2/3) = −(𝛽2𝑍𝑖 + 𝛽2𝑋𝑖1 + 𝛽2𝑋𝑖2) + Y𝑖2,

where 𝑍𝑖 is a Bernoulli random variable with a success probability of 0.5, 𝑋𝑖1 and 𝑋𝑖12 are
independent truncated normal random variables with mean 1, variance 0.5, and truncation bounds
of [0, 2], and (Y𝑖1, Y𝑖2) are correlated random errors. To induce dependence between the simulated
event times, we simulate Y𝑖1 and Y𝑖2 from the Clayton copula model,[

Pr (Y𝑖1 > 𝑡1)−\ + Pr (Y𝑖2 > 𝑡2)−\ − 1
]− 1

\ ,

where Y𝑖1 and Y𝑖2 follow the extreme value distribution, i.e., Pr (Y𝑖1 > 𝑡1) = exp{− exp(𝑡1)} and
Pr (Y𝑖2 > 𝑡2) = exp{− exp(𝑡2)} [116]. The data generation procedure is as follows:
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1. Draw two independent uniform random variables,𝑈𝑖1, 𝑉𝑖2 ∼ Unif (0, 1)

2. Set Y𝑖1 = log{− log(𝑈𝑖1)}

3. Set𝑈𝑖2 =

[(
𝑉
−\/(1+\)
𝑖2 − 1

)
× exp {\ exp(Y𝑖1)} + 1

]−1/\

4. Set Y𝑖2 = log{− log(𝑈𝑖2)}

5. Draw a Bernoulli random variable, 𝑍𝑖, with success probability 0.5

6. Draw 𝑋𝑖1, 𝑋𝑖2 from independent N(1, 0.5) distributions with truncation bounds [0, 2]

7. Set 𝑇𝑖1 = 3 × exp{−(𝛽1𝑍𝑖 + 𝛽1𝑋𝑖1 + 𝛽1𝑋𝑖2) + Y𝑖1} with 𝛽1 = 1

8. Set 𝑇𝑖2 = 3 × exp{−(𝛽2𝑍𝑖 + 𝛽2𝑋𝑖1 + 𝛽2𝑋𝑖2) + Y𝑖2} with 𝛽2 = 0.2

9. Draw 𝐶𝑖, from a mixture of uniforms, where 𝐶𝑖 ∼ b𝑖Unif (0, 1) + (1 − b𝑖)Unif (1, 1.2) with
b𝑖 ∼ Bern(0.2)

10. Set 𝑌𝑖2 = min(𝑇𝑖2, 𝐶𝑖), 𝛿𝑖2 = I(𝑇𝑖2 ≤ 𝐶𝑖), 𝑌𝑖1 = min(𝑇𝑖1, 𝑌𝑖2), 𝛿𝑖1 = I(𝑇𝑖1 ≤ 𝑌𝑖2)

11. Repeat steps (1) - (10) for 𝑖 = 1, . . . , 𝑛

12. Return {(𝑌𝑖1, 𝛿𝑖1, 𝑌𝑖2, 𝛿𝑖2, 𝑍𝑖, 𝑋𝑖1, 𝑋𝑖2); 𝑖 = 1, . . . , 𝑛}

Proportional Hazards Model, Non-Linear Risk Function

In this setting, we repeat the same data generation procedure as listed above, except

• In step (6), we draw 𝑋𝑖1, 𝑋𝑖2 from independent N(0, 0.5) distributions with truncation bounds
[-1, 1]

• In step (7), we set 𝑇𝑖1 = 3 × exp{−(𝛽1𝑍𝑖 + 𝛽1𝑋
2
𝑖1 + 𝛽1𝑋

2
𝑖2) + Y𝑖1}

• In step (8), we set 𝑇𝑖2 = 3 × exp{−(𝛽2𝑍𝑖 + 𝛽2𝑋
2
𝑖1 + 𝛽2𝑋

2
𝑖2) + Y𝑖1}.

Accelerated Failure Time Model, Proportional Hazards Violated

In the third setting, we generated data from a complex model which violates the proportional hazard
assumption and includes non-linear effects and interactions as follows:

1. Draw two independent uniform random variables, Y𝑖1, 𝑉𝑖2 ∼ Unif (0, 1)

2. Set Y𝑖2 =

[
Y−\
𝑖1

(
𝑉
−\/(1+\)
𝑖2 − 1

)
+ 1

]−1/\
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3. Draw 𝑿 = (𝑋1, . . . , 𝑋12)′ ∼ 𝑁12(0, Σ), where

Σ12×12 =

[
𝐷6×6 06×6

06×6 𝐷6×6

]
with elements (𝑑𝑖 𝑗 ) = 0.5|𝑖− 𝑗 |

4. Set 𝑍𝑖 = I(𝑋𝑖1 ≥ 0)

5. Set 𝑎1 = 0.5 + 2𝑍𝑖

6. Set 𝑏1 = 10 + |5𝑍𝑖 + (𝑋𝑖2 − 0.5)2 + 2𝑍𝑖𝑋𝑖2 + 𝑋𝑖3 + 𝑋𝑖4 + 𝑋𝑖5 + 𝑋𝑖6 + 𝑋𝑖7 + 𝑋𝑖8 + 𝑋𝑖9 |

7. Set 𝑎2 = 2𝑎1 and 𝑏2 = 2𝑏1

8. Given 𝑆(𝑡 |𝑍, 𝑋) = exp{−(𝑡/𝑏)𝑎} and 𝐹 (𝑡 |𝑍, 𝑋) = 1 − 𝑆(𝑡 |𝑋) = 1 − exp{−(𝑡/𝑏)𝑎}

(a) Set 𝑇𝑖1 = 𝐹−1(Y𝑖1 |𝑍, 𝑋) = 𝑏1 × [− log(1 − Y𝑖1)]1/𝑎1

(b) Set 𝑇𝑖2 = 𝐹−1(Y𝑖2 |𝑍, 𝑋) = 𝑏2 × [− log(1 − Y𝑖2)]1/𝑎2

9. Draw 𝐶𝑖 ∼ Exp(_) with _ = 1

10. Set 𝑌𝑖2 = min(𝑇𝑖2, 𝐶𝑖), 𝛿𝑖2 = I(𝑇𝑖2 ≤ 𝐶𝑖), 𝑌𝑖1 = min(𝑇𝑖1, 𝑌𝑖2), 𝛿𝑖1 = I(𝑇𝑖1 ≤ 𝑌𝑖2)

11. Repeat steps (1) - (10) for 𝑖 = 1, . . . , 𝑛

12. Return {(𝑌𝑖1, 𝛿𝑖1, 𝑌𝑖2, 𝛿𝑖2, 𝑍𝑖, 𝑋𝑖1, 𝑋𝑖2); 𝑖 = 1, . . . , 𝑛}
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Clegg, MP Eisner, Marie-Josèphe Horner, Nadia Howlader, et al. Seer cancer statistics
review, 1975-2003. National Cancer Institute, 2006.

[115] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and orga-
nization in the brain. Psychological Review, 65(6):386, 1958.

[116] Federico Rotolo, Catherine Legrand, and Ingrid Van Keilegom. A simulation procedure
based on copulas to generate clustered multi-state survival data. Computer methods and
programs in biomedicine, 109(3):305–312, 2013.

[117] Jacqueline E Rudolph, Catherine R Lesko, and Ashley I Naimi. Causal inference in the face
of competing events. Current Epidemiology Reports, 7(3):125–131, 2020.
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