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ABSTRACT

Autonomous humanoid robots have the potential to perform critical and labor-

intensive tasks that could go a long way to improve upon the quality of human life.

To realise this potential, an autonomous humanoid robot must be capable of planning

the right set of long-horizon actions under the conditions of uncertainty and geometric

constraints that characterize real-world environments.

This thesis proposes long-horizon planning approaches for humanoid robots un-

der conditions of uncertainty and geometric constraints that are typical of real-world

environments. The specific contributions of this thesis are, 1) A reactive and efficient

task planning approach for planning under low-entropy conditions in the robot’s be-

lief of the state of the world, 2) A reactive and probabilistic long-horizon planning

approach for long-horizon tasks under state estimation and action uncertainty and 3)

An optimal long-horizon planning approach for geometrically constrained tasks based

on mixed integer convex programming.

We demonstrate the effectiveness of the approaches presented in this thesis on

object rearrangement and mobile manipulation tasks in a domestic environment us-

ing the Agility Robotics Digit Bipedal Humanoid Robot and evaluate the presented

approaches on planning time and task success rate metrics.

xii



CHAPTER I

Introduction

1.1 Motivation

The dream of autonomous robots doing useful work and relieving humans from

the qualms of tedious chores has long existed in the collective minds across humanity

[71]. Our society has long yearned for autonomous robots capable of performing a

wide variety of tasks ranging from the mundane household chores and elderly care

to the more critical tasks like emergency medical surgeries, fire-fighting and disaster

relief.

For a robot designed to interact with the world and function in human spaces, the

humanoid form-factor is arguably the ideal morphology of an autonomous robot. Hav-

ing a human form allows robots to seamlessly occupy and function in human spaces,

avoiding the need for robot-friendly structural alterations of social spaces. Though

considered a very challenging problem due to their kinematic and dynamic complex-

ity, the control of humanoid bipedal robots has seen significant advances in recent

years both in terms of low-level control algorithms [104, 103, 39, 30, 50] and robot

hardware [17, 13, 63, 81, 38] (demonstrated in Figures 1.1 and 1.2). Furthermore,

robot perception systems that enable robots to sense and estimate their environments

have also seen similar advances both in terms of inexpensive hardware [60] and fast

and efficient algorithms [91, 111, 92, 113, 114].
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Figure 1.1: The Agility Robotics Digit Bipedal Humanoid Robot autonomously per-
forming a number of manipulation and mobile manipulation tasks, including: (a)
pick a package from the ground and toss it into the bin[4], (b) pick a package from an
elevated bin [4], (c) pack assorted items into a cluttered bin [5], (d) lift a large box
from the ground [4]

Given these significant advances in the low-level control and perception systems

of humanoid robots, the next step on the path to complete autonomy is to equip

humanoid robots with robust long-horizon planning capabilities to enable them plan

and execute long-horizon tasks in the world. A unique challenge that robots face

when performing long-horizon planning in real-world environments is the uncertain

state estimation of their environment from their perception systems due to unavoid-

able factors like poor lighting conditions, occlusion or their partial knowledge of the

environment. A successful task execution requires that robots account for this un-

certainty when planning for long-horizon tasks. In addition to accounting for uncer-

tainty, robots also have to account for physical geometric constraints when planning

for long-horizon tasks. How far down the robot should squat in order to stably pick

up a package on the ground? How high should the robot stretch in order to reach and

pick a plate at the top shelf while maintaining balance? How close to a table should

the robot stand in order to pick up a mug resting on the table? These questions take

the form of geometric constraints that must be satisfied optimally in order for the

robot to successfully plan for and execute long-horizon tasks. This thesis proposes

approaches to enable autonomous humanoid robots to plan for long-horizon tasks

under uncertainty and geometric constraints.

2



Figure 1.2: The Agility Robotics Digit Bipedal Humanoid Robot stocking a shelf
with a cookie box. Figure adapted from Adu-Bredu et. al. [2]

1.2 Problem Statement

We seek to address the problem of long-horizon planning under uncertainty and

geometric constraints by autonomous humanoid robots. Given a state xt at time t,

task boundary constraints C and task goals G, we seek to infer a plan πt that satisfies

constraints C and achieves goals G. The state xt is a random variable estimated

from uncertain and partial observation zt at time t. The inferred plan πt consists

of sequential actions a1t , a
2
t , . . . , a

N
t where N is the length of the horizon of the plan.

Each action ait is made up of an action symbol σi
t and a set of continuous parameters

ϵit needed to execute the action. This problem exhibits the Markov property because

at time t, the future state xt+1 depends on the present state xt but not on the past

state xt−1

States, actions, task goals and constraints are defined using the Hybrid Plannning

3



Domain Definition Language Description(HPD) described in detail in Chapter 2.1.

We assume the existence of a perception system that estimates the state st from

perceptual observation zt. We also assume the existence of low-level controllers that

can translate the current action ait to a motor command ut.

1.3 Contributions

The main contributions of this thesis are long-horizon planning approaches that

account for uncertainty and geometric constraints inherent in real-world tasks.

The remainder of this thesis is structured as follows.

• Chapter II provides a literature review of long-horizon planning under uncer-

tainty and geometric constraints. It also establishes connections between prior

works and the contributions of this thesis.

• Chapter III presents a probabilistic reactive task planning approach for occa-

sions of uncertainty in the composition of the world. This work demonstrates

the relative efficiency and effectiveness of reactive planning strategies under

partial observability compared to planning approaches that perform intricate

probabilistic modelling and reasoning.

• Chapter IV presents a probabilistic reactive long-horizon planning approach

that employs probabilistic inference on factor graphs in planning for partially

observable problems. These partially observable problems exist in domains

where there is uncertainty in the estimation of the state of the composition of

the world.

• Chapter V presents a long-horizon planning approach that is capable of planning

the optimal sequence of grounded actions to optimize a specific objective while

satisfying numerical constraints. The proposed approach is able to account for

4



geometric constraints and other continuous constraints when performing high-

level symbolic task planning.

• Chapter VI presents some ideas for extensions of the work presented in this

dissertation.

5



CHAPTER II

Background and Related Work

We desire for autonomous humanoid robots to perform useful long-horizon tasks in

human environments. Long-horizon tasks are temporally extended tasks that involve

taking a sequence of coherent, inter-dependent actions to achieve the task goal. A

typical example of a long-horizon task is a kitchen cleaning task. To clean up your

kitchen after a day of Thanksgiving dinner meal preparation, one would first load all

the dirty dishes into the dish washer, wipe up the bits of food from the stove and

the kitchen cabinet, sweep and mop the floor, unpack the clean dishes from the dish

washer, pick up the remaining unused groceries, walk to the dish and food shelves

and finally stow the dishes and groceries on the shelves. This narrated sequence of

actions is a long-horizon plan a human would generate to accomplish the long-horizon

task of cleaning the kitchen. Our goal is to develop long-horizon planning approaches

that will enable robots to autonomously generate and execute action sequences to

accomplish tasks assigned to them. This chapter is structured as follows. Section

2.1 describes the form of inputs to a long-horizon planning approach. It describes

the various formal representations of long-horizon tasks, their unique features and the

assumptions these representations make. Section 2.2 describes the form of the solution

outputs of a long-horizon planning approach and expounds on the means by which a

robot can receive and execute solution long-horizon plans. Finally Section 2.3 provides
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Figure 2.1: A comparison of selected long-horizon planning approaches based on their
formulation (as either Sampling-Based Constraint Satisfaction or Optimization-based
Constraint Satisfaction) and the extent of uncertainty they assume about their tasks.
In bold are the contributions of this thesis

a survey of the various approaches for long-horizon planning, the assumptions they

make and their relation to the works presented in this dissertation.

2.1 Inputs to Long-Horizon Planning

In this section, we present the various formal representations of long-horizon tasks,

their features and the assumptions they make.

2.1.1 Planning Domain Description Language (PDDL)

Long-Horizon Planning problems can represented using a formal language called

the Planning Domain Description Language (PDDL)[6]. The assumptions made by

the PDDL representation are 1) The states of the world are finite and fully-observable.

A state is fully-observable if the robot has absolute knowledge of all the properties

of the state. 2) The actions available to the robot are instantaneous, finite and have
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deterministic effects. 3) The robot is the only entity in the world that can change the

state of the world.

Consider the ”Degas Heist” as an example of a Long-Horizon Task. This problem

is made up of one agent, Robot, who looks to steal a painting by the French impres-

sionist Edgar Degas [22] that is hanging on a wall in an art gallery. After lifting it,

Robot intends to escape with the painting in his car and hide it in a storage container.

The objects in this domain are Painting and Bust whilst the locations are Gallery,

Car, ParkingLot, Wall and Storage. The state variables of the problem are

• (holding ?obj), which indicates that Robot is holding the object obj

• (stolen ?obj), which indicates that object obj is stolen

• (atRob ?loc), which indicates that Robot is at location loc

• (at ?obj ?loc), which indicates that object obj is at location loc

Actions are characterized by a set of parameters, preconditions and effects. Parame-

ters are usually objects or locations relevant to the action’s purpose. Preconditions

are conjunctions and/or disjunctions of state variables of the world that have to hold

true in order for the action to be executable. Effects is the resulting state after the

action is executed. Actions for the ”Degas Heist” domain are

(:action pick

:parameters (?obj ?loc)

:precondition (and (atRob ?loc) (not (stolen ?obj)) (not (holding ?obj)) (at

?obj ?loc)

:effect (and (holding ?obj) (stolen ?obj) (not (at ?obj ?loc))))

(:action place

:parameters (?obj ?loc)
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:precondition (and (holding ?obj) (atRob ?loc))

:effect (and (not (holding ?x)) (at ?obj ?loc)) (not (stolen ?obj)))

(:action move

:parameters (?loc1 ?loc2)

:precondition (and (atRob ?loc1) (not (atRob ?loc2)))

:effect (and (not (atRob ?loc1)) (atRob ?loc2)))

(:action drive

:parameters (?loc1 ?loc2)

:precondition (and (atRob ?loc1) (not (atRob ?loc2)))

:effect (and (not (atRob ?loc1)) (atRob ?loc2)))

The initial state of the problem so can be

so = {((and (at Painting Wall) (atRob Storage) (not (stolen Painting)) (not

(holding Painting)))}

and the goal state, g, can be described as

g = {((atRob storage) (at Painting Storage) (not (at Painting Wall)) (not

(atRob Gallery))) }.

Given the problem description in PDDL and the initial state, the job of a task

planning approach is to plan a sequence of actions that transition the state of the

world from the initial state so to the goal state g. This problem can be reduced to

a graph traversal problem and solved using graph-search algorithms like AStar [43],

Breadth First Search, Depth-First Search, Goal regression, etc. [18]. The solution

sequence of actions, π, also called the plan, for the instantiation of the ”Degas Heist”

problem above is

π = {((move Storage Gallery) (move Gallery Wall) (pick Painting Wall) (move
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Wall Gallery) (move Gallery ParkingLot) (move ParkingLot Car) (place Painting

Car) (drive ParkingLot Storage) (place Painting Storage))}

2.1.2 Probabilistic Planning Domain Definition Language (PPDDL)

In the real world, it is often the case that certain actions have probabilistic/uncertain

effects. For instance, once Robot filches the painting and is driving to the storage

container location, there is a chance that he is chased by the cops and apprehended,

resulting in him ending up in a Siberian prison instead of at the storage location. A

language that can be used to represent such uncertainty in Long-Horizon Tasks is the

Probabilistic Planning Domain Definition Language (PPDDL) [110]. The probabilis-

tic (drive) action is described in PPDDL as follows;

(:action drive

:parameters (?loc1 ?loc2 ?loc3)

:precondition (and (atRob ?loc1) (not (atRob ?loc2)))

:effect (and (not (atRob ?loc1)) (probabilistic 0.6 (atRob ?loc2) 0.4 (atRob

?loc3))

The probabilistic effect reads as follows; there is a 0.6 probability at Robot ends

up at loc2, which is the storage area and there is a 0.4 probability that the robot

ends up in loc3, which is the Siberian prison.

2.1.3 Hybrid PDDL Description (HPD)

Hybrid PDDL Description (HPD) [2] is a novel Long-Horizon Task representation

introduced in one of the contributions of this thesis. It is discussed in detail in Chapter

V.

HPD is an extension of PDDL that allows for the specification of long-horizon tasks

with numerical action and task constraints, numerical initial values of continuous
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task variables, numerical objective functions, numerical action dynamics functions,

numerical preconditions and numerical effects. Similar to PDDL, an HPD description

of a task planning problem is made up of two files; the domain.hpd file and the

problem.hpd file.

The domain.hpd file describes the action primitives that the robot can execute.

An action primitive has fields

• :action to specify the name of the action primitive

• :parameters to specify the symbolic and continuous parameters the action

takes.

• :precondition to specify a conjunction of symbols whose truth-values must be

true in order for the action to be executable.

• :continuous precondition to specify continuous constraints on the continu-

ous variables that must be satisfied in order for the action to be executable.

• :dynamics to specify dynamics functions that compute the state of the contin-

uous variables after the action is executed.

• :continuous effect to specify the numerical values of continuous variables

after the action is executed.

• :effect to specify a conjunction of symbols that represent the state of the

world after the action is executed.

The problem.hpd file describes the initial symbolic and continuous states as well

as the goal symbolic and continuous states of the task. It also describes the task-

specific constraints and the objective function to be optimized.
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2.2 Outputs of Long-Horizon Planning

The output of a long-horizon approach is a grounded plan made up of a sequence

of logically consistent actions, each associated with continuous parameters needed for

the action to be executable. For instance, a pick action in a grounded plan can be

associated with continuous parameters like object grasp pose, robot stance pose, etc.

This grounded plan can be fed into the whole-body control architecture [61] of an

autonomous humanoid robot for execution.

2.3 Overview of Long-Horizon Planning Approaches and their

Assumptions

Long-horizon planning approaches can be classified under two main categories;

Sampling-based methods and Optimization-Based methods. These categories can

further be sub-divided based on the assumptions of uncertainty they make about

the task and whether or not they can explicitly handle geometric task constraints.

In the following sub-sections, we will provide an overview of Sampling-based and

Optimization-based methods, their abilities to handle uncertainty and geometric con-

straints and their relation to the works proposed in this thesis. Figure 2.1 provides

a summary of the assumptions and attributes of selected long-horizon planning ap-

proaches.

2.3.1 Sampling-based Long-Horizon Planning

In general, sampling-based long-horizon approaches interleave continuous param-

eter sampling routines with symbolic search over the state space. Srivastava et. al.

[87] introduces an interface layer between a symbolic search routine and a sampling-

based motion planning routine. This interface layer allows the sampling routine to

evaluate and validate continuous action preconditions during the symbolic search pro-
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Figure 2.2: The robot pulls open a drawer to detect whether the spam object is at a
continuous pose particle within the drawer. Figure adapted from Garrett et. al. [37]

cess. This interleaving between symbolic search and continuous parameter sampling

ensures that output plans are physically realizable by a robot. Garrett et. al. [34, 36]

devise symbolic predicates to represent geometric preconditions for actions. These

symbolic predicates can then be evaluated on-demand using continuous sampling

routines like sampling-based motion planning, for reachability predicates, or grasp

sampling for graspability predicates.

Sampling-based long-horizon planning approaches assume that the agent has full

knowledge of its deterministic domain and that the agent’s actions have deterministic

outcomes on its environment. These assumptions are however not representative of

the kinds of domains robots operate in the real world, which are often uncertain

and partially observable. There exists only a few extensions to sampling-based long-

horizon planning approaches to account for the uncertainty of real-world domains.

Garrett et. al. [37], depicted in Figure 2.2, introduce SS-Replan as an extension

to sampling-based long-horizon planning to account for uncertainty in object pose

estimation. SS-Replan represents and updates the belief over object poses using
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particle filtering and uses the inferred object poses to perform sampling-based long-

horizon planning. SS-Replan also incorporates information-gathering actions in its

plan to update its belief of the state of the world. SHY-COBRA [3], which is one of

the contributions of this thesis, is a long-horizon planning approach that accounts for

uncertainty in the state estimation and robot actions. SHY-COBRA takes as inputs

the robot’s noisy belief of the state of the world and a plan skeleton composed of

symbolic actions that achieve a specified goal. SHY-COBRA then infers satisfying

parameter values for the actions needed to execute the plan successfully in partially

observable domains. SHY-COBRA is discussed in detail in Chapter IV. LESAMPLE

[5], which is also a sampling-based long-horizon planning approach that accounts for

uncertainty in the composition of the robot’s environment is discussed in detail in

Chapter III.

2.3.1.1 Drawbacks of Sampling-Based Long-Horizon Planning

Sampling-based long-horizon planning approaches are only able to satisfy geo-

metric tasks constraints implicitly through the sampling of continuous variables in

satisfiable regions. This satisfiability criterion only guarantees that sampled contin-

uous variables satisfy geometric constraints. It does not guarantee optimality. This

lack of optimality guarantees of sampling-based long-horizon planning approaches can

often lead to the generation of feasible but sub-optimal plans. Another drawback of

sampling-based long-horizon planning approaches is that, sampling as an inference

strategy for constraint satisfaction is inefficient in handling geometric constraints in

significantly high-dimensional spaces like the generalized coordinates of a bipedal hu-

manoid robot. A more explicit handling of such challenging geometric constraints is

needed. It is also worth noting that, due to its reliance on symbolic search meth-

ods, sampling-based long-horizon planning approaches only allow for the expression

of symbolic task goals.
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2.3.2 Optimization-based Long-Horizon Planning

A less-explored alternative approach for solving long-horizon tasks is to formulate

them as constrained optimization problems. A constrained optimization problem

takes the form

min
x,u

J(x, u)

subject to

f(x, u) = b

g(x, u) ≤ c

(2.1)

where x and u are decision variables to be solved for, J(x, u) is an objective

function to be minimized and f(x, u) = b and g(x, u) ≤ c are equality and inequality

constraints that have to be satisfied by the optimal x and u solutions.

Formulating long-horizon tasks as constrained optimization problems allows for

the explicit and efficient representation of geometric constraints as either equality or

inequality constraints. This also allows for the global or local optimality guarantee

of solution long-horizon plans. Unlike with sampling-based long-horizon planning

approaches, the formulation of the long-horizon task as a constrained optimization

problem allows for the expression of both symbolic and continuous task goals .

Logic Geometric Programming (LGP) [96] is an optimization-based long-horizon

planning approach that seeks to solve a long-horizon task by decomposing it into

two sub-problems; a symbolic planning problem specified using first-order logic and a

nonlinear constrained optimization problem that operates on the continuous variable

values. LGP solves the symbolic planning problem using Monte Carlo Tree Search.

The solution plan is then used to constrain the nonlinear constrained optimization

problem to solve for optimal continuous variable values needed to execute the plan.
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Figure 2.3: The Atlas bipedal humanoid robot planning footsteps across a set of
stepping stones using a Mixed Integer Programming planner. Figure adapted from
Deits and Tedrake [23]

Although LGP provides all the benefits of optimization-based long-horizon planning,

the decomposition of the logical reasoning and numerical optimization into two sepa-

rate problems results in an inefficient and hyper-specialized approach that is difficult

to apply to new problems. A general and more efficient formulation of the problem

is to encode the long-horizon planning problem as a Mixed Integer Program.
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Figure 2.4: The Big Dog planar quadruped robot computes bounding motions over un-
even terrain with gaps using a Mixed Integer Programming planner. Figure adapted
from Valenzuela et. al. [97]

2.3.2.1 Robot Planning as Mixed Integer Programming

Mixed Integer Programs are mathematical optimization programs that have both

integer- and real-valued variables. They often take the form

min
x,u

J(x, u)

subject to

C(x, u) ≤ D

x ∈ Zm, u ∈ Rn

where x is an Integer variable, u is a Real variable, J is an objective function of x

and u and C(x, u) is an inequality constraint function that depends on both x and u.

The ability of Mixed Integer Programs to have both Integer and Real variables

makes them convenient for formulating sequential planning problems that involve

taking discrete actions which are subject to continuous constraints [1, 23, 48, 97].
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Mixed Integer Programs have been applied to hybrid problems like footstep planning

for bipedal robots [23] as shown in Figures 2.3 and 2.4 as well as contact-implicit

trajectory optimization for grasp planning [1], [48]. A Mixed Integer Program is

solved using algorithms like branch-and-bound [75], cutting-plane [40] and branch-

and-cut [76]. There exists excellent off-the-shelf software like Mosek [74], CPLEX

[51], Juniper [54], SCIP [82] and Gurobi [41] that provide efficient implementation of

these algorithms for solving Mixed Integer Programs.

GTPMIP [2] which is a contribution of this thesis, formulates the entire long-

horizon task as a single Mixed Integer Program and solves it to optimality to

output geometrically feasible and optimal long-horizon plans that can be successfully

executed with a robot. GTPMIP is discussed in detail in Chapter V.

2.3.2.2 Drawbacks of Optimization-based Long-Horizon Planning

Optimization-based Long-Horizon Planning approaches like GTPMIP do not ac-

count for uncertainty in the robot’s state estimates. As such, they are likely to

perform poorly in situations where the robot’s state estimates have high uncertainty.

Re-formulating the Mixed Integer Program in GTPMIP as a Probabilistic Mixed In-

teger Program as proposed by Vielma et. al. [99] will enable GTPMIP to account

for uncertainties in both continuous variables and in geometric constraints.

18



CHAPTER III

Elephants Don’t Pack Groceries: Robot Task

Planning for Low Entropy Belief States

Recent advances in computational perception have significantly improved the abil-

ity of autonomous robots to perform state estimation with low entropy. Such advances

motivate a reconsideration of robot decision-making under uncertainty. Current ap-

proaches to solving sequential decision-making problems model states as inhabiting

the extremes of the perceptual entropy spectrum. As such, these methods are ei-

ther incapable of overcoming perceptual errors or asymptotically inefficient in solving

problems with low perceptual entropy. With low entropy perception in mind, we aim

to explore a happier medium that balances computational efficiency with the forms of

uncertainty we now observe from modern robot perception. We propose an approach

for efficient task planning for goal-directed robot reasoning. Our approach combines

belief space representation with the fast, goal-directed features of classical planning

to efficiently plan for low entropy goal-directed reasoning tasks. We compare our

approach with current classical planning and belief space planning approaches by

solving low entropy goal-directed grocery packing tasks in simulation. Our approach

outperforms these approaches in planning time, execution time, and task success rate

in our simulation experiments. We also demonstrate our approach on a real world

grocery packing task with physical robot.
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3.1 Introduction

Sequential decision-making problems have often been modelled as either fully-

observable or partially observable. Fully observable models have no entropy in states

and actions whilst partially observable models have high entropy in states and ac-

tions. With these models have come classical planning approaches [33, 56, 44, 46] for

solving zero entropy problems and belief space planning approaches [85, 37, 58] for

solving high entropy problems. Visualizing entropy as a spectrum, classical planning

approaches plan with models on one extreme end of the entropy spectrum whilst belief

space planning approaches plan with models on the other extreme. Recent advances

in robot perception systems, both in terms of inexpensive hardware [60] and fast

and efficient algorithms [91, 111, 92, 113, 114] have significantly reduced the state

estimation entropy when used for robot manipulation. When a robot is equipped

with such a low entropy perception system, the robot’s sequential decision-making

problem does not fall at either extremes of the entropy spectrum. The problem falls

in an intermediate region on the spectrum where neither family of approaches are

equipped to exploit the low entropy nature of the problem to solve it efficiently.

Classical planning approaches do not account for uncertainty so they often fail to

generate feasible plans in uncertain domains. Some belief space planning approaches

attempt to exactly solve for the optimal policy that maps belief states to actions [93].

Since solving for the optimal policy exactly becomes intractable for realistic prob-

lems, other belief space planning approaches approximate the belief space through

sampling [85, 86]. Although these approximate methods are tractable, they tend to

be inefficient for low entropy state spaces.

Results from early work in Embodied Intelligence by Brooks et. al. [11, 12]

demonstrate that, methods that plan and act on loose models of the world and rely

on sensor feedback to adjust their behavior are often more efficient and practical than

their counterparts that perform explicit modelling of all possibilities before taking
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Figure 3.1: A sequential grocery packing task using LESAMPLE. Digit robot
equipped with parallel grippers is able to efficiently pack the groceries under low
perceptual entropy to satisfy given goal constraints.

an action. These results are also echoed in more recent work [109, 69] that show

replanning approaches to be more efficient in domains with stochastic action effects

than probabilistic planning approaches. Inspired by these results, we hypothesize

that for a state space with low perceptual entropy, a simple replanning approach that

samples from the belief space and plans using this sample will be more efficient than

belief space planning in solving the task at hand.

In light of this, we propose a decoupled approach to goal-directed robotic manip-

ulation that builds on the respective strengths of classical and belief space planning.

As motivated by Sui et al. [91], task planning can be performed on state estimates
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from perceived belief distributions, and updated when the perceptual probability mass

shifts to a different state estimate. Building on this idea and recent work in replanning

algorithms [109], we propose Low Entropy Sampling planner (LESAMPLE) as

a simple and efficient online task planning algorithm for solving problems with low

entropy in state estimation and deterministic action effects.

The concept of replanning with estimates from the belief space is not novel and

has been employed in works like Yoon et. al. [109]. This paper does not claim to

propose an entirely new algorithm. We instead aim to demonstrate the efficiency

benefits a simple replanning approach could have over belief space planning methods,

when used to solve low entropy planning problems.

We benchmark LESAMPLE against current classical planning and belief space

planning approaches by solving low entropy goal-directed grocery packing tasks in

simulation as shown in Figure 3.1. LESAMPLE outperforms these approaches with

respect to planning time, execution time, and task success rate in our simulation

experiments.

3.2 Related Work

3.2.1 Classical Planning

Classical planning approaches [43, 18, 89] are used to solve fully-observable and

deterministic problems. These approaches are fast and usually come with conver-

gence and optimality guarantees, making them convenient to use on suitable prob-

lems. They however do not account for entropy when planning so they often generate

infeasible plans in uncertain domains.

To solve problems of a sequential nature such as grocery packing, the robot has

to be able to reason over both symbolic states of the world as well as continuous

states. This family of problems is known as Task and Motion Planning Problems [87,

22



Figure 3.2: An illustration comparing the relative the computational tractability of plan-
ning algorithms and the level of perceptual entropy in problems they are designed to solve.
Classical planning algorithms are computationally tractable (fast) and are designed to solve
problems with no entropy in their state space. Belief space planning algorithms are gen-
erally slow on reasonably complex problems and are designed to solve problems with high
perceptual entropy in their state space. Our algorithm, LESAMPLE, is designed to effi-
ciently solve problems with low perceptual entropy.

58, 105, 33, 77, 36]. Works such as Kaelbling et. al. [56], Srivastava et. al. [87]

and Garrett et. al. [36] have focused on ways to interleave the symbolic planning

involved in task planning with the continuous-space planning involved in motion

planning in order for the robot to generate feasible plans and actions. In our proposed

LESAMPLE method, we first generate a symbolic plan and later use continuous

parameter sampling and sampling based motion planning [53] to generate continuous

trajectories for performing the task at hand.

3.2.2 Belief Space Planning

Sequential decision-making problems with high entropy in state estimation and

action effects are often modelled as Partially Observable Markov Decision Processes

(POMDP) [55]. The states in a POMDP are probability distributions called be-

lief states. To solve a POMDP is to find an optimal policy that maps belief states

to actions. However solving POMDPs exactly is intractable due to the curse of
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dimensionality [55] and the curse of history [79]. As such, belief space planning

methods such as POMCP [85] and DESPOT [86] are used to solve POMDPs ap-

proximately. POMCP [85] uses Monte Carlo Sampling to sample the belief state and

belief transitions and uses Monte Carlo Tree Search [16] to search for an optimal

policy. DESPOT [86] improves upon POMCP’s worst case behavior by sampling a

small number of scenarios and performing search over a determinized sparse partially

observable tree. Our proposed approach represents each state as a set of hypotheses

which are weighted based on the robot’s observation. We use weighted sampling [106]

to sample from the weighted hypotheses to get a reliable estimate of the states. We

evaluate LESAMPLE against POMCP and DESPOT in our experiments.

3.2.3 Integrating Belief Space Representation with Classical Planning

FF-Replan [109], a classical planning approach, attempts to solve problems with

no entropy in state estimation but high entropy in action effects by constantly re-

planning. FF-Replan determinizes the action effects through choosing the effect with

the highest confidence. It then applies Fast-Forward [46] to plan in the determinized

domain and re-plans whenever there is an inconsistency caused by the disregard of the

entropy in the domain. This algorithm is shown to work quite well for certain prob-

lems and terribly for others depending on how well the determinization reflects the

true action effects of the domain. Other approaches such as BeliefPDDLStream [37]

use particles to represent the belief space and update the particles after each ob-

servation using a particle filter and replans using this estimate of the belief space.

Our proposed approach represents each state as a set of weighted hypotheses and

use weighted sampling [106] to sample from the weighted hypotheses to get a reliable

estimate of the states. We then employ symbolic planning to plan in the sampled

states and reweight, resample and replan when needed. Figure 3.2 shows a graphical

comparison of LESAMPLE with other classical and belief space planning methods.
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We also evaluate LESAMPLE against FF-Replan and BeliefPDDLStream in our ex-

periments.

3.2.4 Embodied Intelligence

Early research in Embodied Intelligence [12, 11] demonstrated the efficiency of

methods that plan and act on loose models of the world and rely on sensor feedback

to adjust their behavior. These approaches worked best for domains where execution

errors were reversible. More recent work in planning under uncertainty [109, 69] have

also produced results that show the efficiency of replanning approaches over deliberate

probabilistic planning methods in partially observable domains. These early work also

gave rise to approaches [49, 15, 107] that explicitly perform information gathering

actions and decide the next best action based on the obtained sensory information.

LESAMPLE updates its belief after every action taken and replans whenever the

updated belief doesn’t match the predicted effect of the executed action.

3.2.5 Bin Packing

A vast body of work has addressed the robot bin packing problem [102, 101, 108].

Amongst these, Wang and Hauser [102], Weng et. al. [108] consider the problem from

a geometric perspective and try to find the optimal packing arrangement of objects

such that they use up a minimum number of bins and a minimum amount of space.

Wang and Hauser [101] goes further to optimize for space-efficient packing arrange-

ments that result in stable object piles. With the grocery packing task considered

in this work, our proposed approach, LESAMPLE, does not explicitly optimize for

efficient space usage when packing. We mainly just sample free placement poses in

the destination bin that are large enough for the item in hand to be placed at.
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3.3 Problem Formulation

The state space is represented as an object-centric scene graph. The scene graph,

Ψ(V,E), represents the structure of the scene. Vertices V in the scene graph represent

the objects present in the scene whilst the edges E represent spatial relations between

the objects.

We assume a perception system that takes robot observations and returns a belief

B(Ψ) over scene graphs for the current scene. An example of such perception system

is described in Section 3.5. Given the task goal conditions G and the current scene

belief B(Ψ), the goal for the robot is to plan a sequence of actions {a0, a1, . . . } to

achieve the goal conditions G under the perceptual uncertainty, and replan when

needed.

3.4 LESAMPLE

The proposed planning algorithm, LESAMPLE, takes in goal conditions, G, and

the belief over the current scene graph B(Ψ), efficiently plans out a sequence of actions

to achieve G and replans when necessary. LESAMPLE is developed to solve problems

with partially observed states and deterministic action effects.

As described in Algorithm 1, LESAMPLE takes in goal conditions G and the

current belief over scene graphs B(Ψ) as input. LESAMPLE first samples a scene

graph Ψs from B(Ψ) (as described in section 3.5), and formulates Ψs and G as a

PDDL[6] problem . LESAMPLE then uses a symbolic planner (Fast Downward [44]

in our implementation) to solve the PDDL problem and generate a task plan π. After

taking each action in π, the robot takes a new observation Φ. A validation function,

V alidate(Ψs, a,Φ), checks for inconsistency in the action effects. In particular, the

validation returns True if the new observation Φ after executing action a matches

the predicted observation based on a and sampled scene graph Ψs, and returns False
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otherwise. In our experiments, V alidate(.) checks if the object picked up by the robot

matches the sampled scene graph hypothesis after every pick action. If the V alidate

function returns True, robot continues to execute the next action in π. Otherwise,

π is discarded, the scene belief B(Ψ) is updated based on the observation Φ and

LESAMPLE is then called recursively with the original goal condition G and the

updated B(Ψ) as parameters. LESAMPLE runs until either the last action in the

current plan π is successfully executed or timeout is reached.

We provide details on the continuous motion parameters used in action execution

in Section 3.5.4. By combining belief samples from belief space representation with

the fast, goal-directed classical planning, LESAMPLE is able to efficiently plan for

sequential decision making tasks with low entropy belief states.

Algorithm 1: LESAMPLE algorithm

Input: Goal conditions, G, and Belief of current scene graph, B(Ψ)
1 Function LESAMPLE(G, B(Ψ)):
2 Ψs ← sample from B(Ψ)
3 π ← FastDownward (Ψs, G)
4 foreach a ∈ π do
5 take action a
6 take new observation Φ
7 valid ← V alidate(Ψs, a,Φ)
8 if valid = False then
9 update belief B(Ψ) given Φ

10 LESAMPLE (G,B(Ψ))
11 return

12 end

13 end
14 return

15 End Function
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3.5 Implementation

3.5.1 Belief over Scene Graphs

For our experiments, we build a perception system that returns a B(Ψ) belief

over scene graphs given robot observation. We trained a Faster R-CNN [80] detector

for the 8 grocery object classes that we considered in the simulation experiments.

For the ith detected object, the detector returns a confidence vector, which is then

interpreted as the belief over object classes, Bi(c), c ∈ C. C is the set of all possible

object classes. The spatial relations between detected objects given their detected

locations are deterministically derived. With the assumption that the objects are

independent from one another, we approximate the belief over scene graphs B(Ψ) as

B(Ψ) ∝
N∏
i

Bi(c)

where N is the number of detected objects.

The belief over ith detected object, Bi(c), is approximated by a set of weighted

object hypotheses {(ok, pk)|k = 1, . . . , |C|}, where ok = (ck, ak, rk). For each hypoth-

esis, ck is the object class, ak is object attributes, rk is its spatial relations with other

objects in the scene graph, and pk is the weight of the hypothesis, which is equivalent

to the detection confidence score corresponding to ck. The object attributes ak (e.g.

heavy or light) are deterministically associated with object class.

In order to draw one scene graph sample Ψs from B(Ψ), we individually draw one

object hypothesis ok from each Bi(c), such that

Ψs = {oik|i = 1, . . . , N}

where again N is the number of detected objects. We used weighted sampling [106]

to sample the individual object hypothesis.
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3.5.2 Grocery Packing Goal Conditions

For the grocery packing task in our experiments, for each object hypotheses ok =

(ck, ak, rk) in the scene graph, we consider the object to be either a heavy or light,

i.e. ak ∈ {heavy, light}. The goal condition for the grocery packing task, which

is specified as symbolic predicates in PDDL, is to have all objects packed into the

box such that, heavy grocery objects are placed at the bottom of the box, and light

grocery objects are placed on top of them.

3.5.3 Action schemas

A plan is made up of a sequence of action schemas. An action schema con-

sists of a set of free parameters (:parameters), conjunctive boolean pre-conditions

(:precondition) that must hold for the action to be applicable and conjunctive

boolean effects (:effect) that describe the changes in the state after the action is

executed. Boolean conjunctive operators used are or, not, and. The pick and place

action schemas used in our experiments are described below:

(:action pick

:parameters (?x)

:precondition (and (topfree ?x) (handempty))

:effect (and (holding ?x) (not (handempty)) (not (topfree ?x)))

)

(:action place

:parameters (?x ?y)

:precondition (and (holding ?x) (topfree ?y))

:effect (and (not (holding ?x)) (on ?x ?y) (handempty) (not (topfree ?y)) (topfree

?x))

)
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3.5.4 Continuous Variables

In executing actions in a plan, the robot requires certain continuous values such

as collision-free arm trajectories, object grasp poses and object placement poses. We

use the BiRRT [53] motion planning algorithm to generate collision-free trajectories

for pick and place actions. We determine the grasp pose of an object by querying its

6D pose from the simulator and computing a corresponding grasp configuration of the

robot’s gripper to pick the object from the top. The place actions specify destination

surfaces on which to place the picked item. For example, the action (place banana

bowl), requires that the banana is placed on the surface of bowl. We query the

Axis-Aligned Bounding Box (AABB) of both the item in hand (banana) and the

destination surface (bowl) and sample legal placement poses on the surface of the

AABB of the destination surface where we can place the item in hand. The first

sampled legal placement pose is chosen as the placement pose of the object in hand.

3.6 Quantifying Entropy

The state space of all possible scene graphs is beyond tractability for modern

computing. This space can be composed of all possible classes of objects, all possible

number of objects, all possible enumerations of the 6D pose of objects, all possible

spatial relations between objects and the attributes of objects. To be computationally

tractable, we make the following assumptions to constrain the state space:

• The set of all possible object classes is finite and known.

• The perception system detects objects that are not fully occluded by other

objects from the robot’s field of view. Note that, the robot does not have prior

knowledge of the total number of objects to expect. Thus the scene graph is

made up of only detected objects and their spatial relations.
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• The perception system can deterministically infer the 6D pose of detected ob-

jects. Note that, there is uncertainty in the recognition of the class of detected

objects.

• The perception system can deterministically infer spatial relations between de-

tected objects from a 3D observation. In this work, we only consider the stacking

spatial relations. In the PDDL problem description, the stacking relations are

represented with axiomatic assertions (on oi oj) for the assertion that object

oi is stacked on object oj and (topfree oi) for the axiomatic assertion that no

objects are stacked on object oi.

• We deterministically associate detected objects with their respective attributes

(either heavy or light).

As a result, the constrained state space of scene graphs, Ψ, will include scene

graphs that have the same number of vertices as the number of detected objects,

with each graph consisting of all possible enumerations of the object classes.

We quantify the entropy of the belief over scene graphs B(Ψ) as the normalized

sum of Shannon entropies [68] of the beliefs of detected objects, i.e.

H = − 1

Hmax

·
N∑
i=1

∑
c∈C

pci log2 p
c
i (3.1)

where C is the set of all possible object classes, N is the number of detected objects,

pci is the probability of class c of ith detected object in belief Bi(c), as explained in

Section 3.5.1. Hmax is the maximum possible entropy occurring when the belief over

scene graphs is uniformly distributed. i.e.

Hmax = −
N∑
i=1

∑
c∈C

pci log2 p
c
i (3.2)

where pci follows a uniform distribution.
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For the grocery packing task we consider in this work, we use Equation 3.1 to

classify the perceptual entropy levels of grocery packing tasks. On one extreme,

H = 0 for a scene graph estimate with no uncertainty. On the other extreme, H = 1

for a scene graph with high uncertainty. In our experiments, we perform grocery

packing on scene graphs with H values from 0.1 to 0.9.

3.7 Experiments

We compare the performance of LESAMPLE with replanning and belief space

planning methods on low entropy grocery packing tasks (H values between 0.3 and

0.5), shown in results in Table 3.1 and Figures 3.4, 3.5 and 3.6 and a broader range

of entropy values (H values from 0.1 to 0.9), shown in results in Figure 3.7. The

simulation environment we use is depicted in Figure 3.1. The goal condition for the

grocery packing task is to have all items packed into the box such that, heavy grocery

items are placed at the bottom of the box, and light grocery items are placed on top

of them. Experiments were run in the Pybullet simulation [19]. We use a simulated

Digit robot [81] equipped with suction grippers on both arms. 8 3D models of grocery

items from the YCB dataset [14] were used as grocery items in the experiments. A

Faster R-CNN [80] object detector is trained to detect these grocery items and return

a confidence score vector for each detected object. We normalize these confidence

scores, add entropy based on the specific H value of the task, as prescribed in Equation

3.1, and form the belief over scene graphs B(Ψ). The experiments were run on a

laptop with 2.21GHz Intel Core i7 CPU, 32GB RAM and a GTX 1070 GPU. We also

demonstrate our approach on a real world grocery packing task with a physical Digit

robot. A summary of our approach as well as the real world demo can be seen in the

accompanying video and at this url: https://youtu.be/im6tve9-9A0.

The following methods are benchmarked in this experiment:
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• FF-REPLAN: This algorithm [109] performs symbolic planning on a deter-

minized belief over detected objects. It determinizes the belief over scene graphs

by choosing the hypothesis with the highest probability in Bi(c) for each de-

tected object, i. The algorithm then formulates the determinized scene graph

and the goal conditions (Section V-B) as a PDDL [6] problem and solves it

using Fast Downward [44] to generate a plan to pack objects into the box. The

algorithm uses the Validate function (same as in LESAMPLE in Algorithm 1)

to check if the object picked up by the robot matches the determinized scene

graph after every pick action. If Validate returns True, the next action in the

plan is executed. If Validate returns False, a replan request is triggered. The

belief over detected objects is updated and determinized again. A new plan is

generated accordingly. The robot plans and executes until either all the objects

are packed or the 15-minute timeout is reached.

• LESAMPLE: This algorithm performs LESAMPLE on the belief over detected

objects to pack them into the box. LESAMPLE terminates either when all the

objects are packed into the box or when the 15-minute timeout is reached.

• BPSTREAM*: This algorithm is a variation of BeliefPDDLStream [37] adapted

to suit our grocery packing task. We replace the streams in the original Belief-

PDDLStream with simple parameter samplers for sampling motion plans and

other continuous action parameters as described in Section 3.5.4. We use a set

of 8 weighted particles to represent the belief of each detected object.

• POMCP-ER: POMCP-ER is a variation of the POMCP [85] belief space plan-

ning algorithm with episodic rewards. Here, the robot receives a reward of 10

whenever an item is packed into the container, a reward of 100 when the arrange-

ment satisfies the packing conditions and a reward of -10 when the arrangement

fails to satisfy the packing conditions. POMCP-ER is also restricted to 10 it-

33



((a)) ((b))

Figure 3.3: Examples of initial cluttered scenes

erations, each with a rollout depth of 10 and represents the belief set with 10

particles. Since grocery packing is a goal-directed task, we set the discount fac-

tor to 1, thus future rewards are just as valuable as immediate ones. To narrow

the focus of the Monte Carlo Tree Search in POMCP, as prescribed by [85],

we use domain knowledge by specifying the subset of preferred actions at each

node in the search tree.

• DESPOT: We use an anytime and regularized version of the DESPOT belief

space planning algorithm[86]. DESPOT improves upon POMCP’s poor worst

case behavior by sampling a small number of scenarios (3 scenarios in our im-

plementation) and searching over a determinized sparse partially observable

tree. Here, we use the same reward function, maximum number of iterations,

maximum rollout depth and discount factor as POMCP-ER.

The methods are benchmarked on low-entropy Grocery Packing tasks. Their

performance results are displayed in Table 3.1 and Figures 3.4, 3.5 and 3.6.

We run each planning method on 5 different initial arrangements of the grocery

items, examples of which are showin in Figure 3.3. In Figure 3.4, we show planning

time and execution time averaged across 5 initial scenes. For each initial scene, we

run each method 5 times.
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As shown in Table 3.1 and Figures 3.4, 3.5 and 3.6, across all tasks in our exper-

iments, LESAMPLE outperforms other baseline methods by having the least com-

pletion times, making the least number of mistakes and as such requiring the least

number of pick-and-place actions to complete the task. BPSTREAM* has a slightly

higher execution time than LESAMPLE and a significantly higher planning time than

both FF-REPLAN and LESAMPLE. The belief space planning algorithms, DESPOT

and POMCP-ER, have the worst results for every metric. DESPOT and POMCP-ER

make fewer number of mistakes because they spend majority of the time planning and

are only able to take a few actions before the 15 minute timeout is reached. DESPOT

however performs slightly better than POMCP-ER and is able to successfully pack

over half of the groceries before the 15 minute timeout.

FF-REPLAN chooses the most likely hypothesis and disregards the inherent en-

tropy in the state space. As a result, FF-REPLAN makes a mistake when the most

likely hypothesis does not correspond to the true state. On the other hand by em-

ploying the belief space representation of belief space planning, LESAMPLE is able to

maintain a belief of the various scene hypotheses and update this belief in the next re-

planning cycle even after it samples a false hypothesis. This makes LESAMPLE more

robust to noisy state estimation. It is worth noting that, in scenarios where the most

likely hypothesis of the scene estimate represents the true scene graph, FF-REPLAN

performs less number of actions than LESAMPLE. This is because LESAMPLE does

not always sample the true scene graph hypothesis and could potentially perform more

actions than necessary. Such scenarios however do not occur often enough in the low

entropy tasks to make FF-REPLAN a more efficient approach than LESAMPLE.

BPSTREAM* aggressively performs online planning. It only executes the first

action in the generated plan and replans even when no mistake is committed. As

such, even thoug h BPSTREAM* employs the belief space representation and samples

from the belief space, it ends up planning much more often LESAMPLE, resulting
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Algorithm Total time spent(s) Avg. time per action Avg. num. packed items

LESAMPLE 411.3 11.5 8.0
FF-Replan 658.3 13.2 8.0

BPSTREAM* 770.4 20.3 8.0
DESPOT 900.0** 71.0 4.5

POMCP-ER 900.0** 539.9 1.0

Table 3.1: Summary of results from experiments for low entropy tasks (H values
between 0.3 and 0.5). **DESPOT and POMCP-ER could not complete the tasks
before the 900 second timeout so we set their total time spent to 900 seconds

Figure 3.4: Planning and Execution time results for LESAMPLE and the bench-
marked algorithms from performing the low entropy Grocery Packing Tasks (H values
between 0.3 and 0.5). Error bars represent one standard deviation from the mean.
The maximum time allocated for each task is 900 seconds.

in its higher planning time. Because it samples from the belief space, BPSTREAM*

commits less mistakes than FF-REPLAN.

POMCP-ER performs the worst in planning time, execution time and number of

items packed. It is unable to complete any of the packing tasks. It also packs signifi-

cantly fewer objects than LESAMPLE, FF-REPLAN and BPSTREAM*. This is be-

cause of the high branching factor in the Monte Carlo search tree. DESPOT searches

over a sparser tree than POMCP-ER, making it faster and better performing than

POMCP-ER. DESPOT however still falls short when compared with BPSTREAM*,

FF-REPLAN and LESAMPLE which perform symbolic planning on a determinized

belief space.
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Figure 3.5: Experimental results for Number of Mistakes for LESAMPLE and the
benchmarked algorithms from performing the low entropy Grocery Packing Tasks (H
values between 0.3 and 0.5). Error bars represent one standard deviation from the
mean. Note that POMCP-ER and DESPOT make few mistakes because the planning
time takes up most of the allocated time per task. Hence they barely take any actions
before timeout is reached.

Figure 3.6: Experimental results for Number of Actions for LESAMPLE and the
benchmarked algorithms from performing the low entropy Grocery Packing Tasks (H
values between 0.3 and 0.5).

Belief Space Planning approaches like POMCP-ER and DESPOT are developed

to solve problems with high entropy state spaces. As such, they spend a lot of

computation in deciding the approximately optimal action to take next. This makes

them inefficient for state spaces with low entropy. By adopting the fast, goal-directed

features of classical planning through the use of a symbolic planner, LESAMPLE is

able to efficiently solve low entropy problems by directly acting upon a sampled scene

graph. This makes LESAMPLE a favorable choice for solving low perceptual entropy

tasks.
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Figure 3.7: Experimental results for the Planning Times and Execution Times
for LESAMPLE and the benchmarked algorithms from performing the Grocery Pack-
ing Task for increasing entropy values (H values from 0.1 to 0.9). The maximum time
allocated for each task is 900 seconds. DESPOT and POMCP-ER do not complete
any of the tasks before the 900 second time-out for any of the H values.

We also compare the average planning and execution times of LESAMPLE with

the benchmarked algorithms for tasks with increasing perceptual entropy as shown

in the results in Figure 3.7. FF-REPLAN has the least planning time at the lowest H

value because at such entropy levels, FF-REPLAN makes little to no mistakes and as

such, does not have to re-plan often. As the H value increases however FF-REPLAN

expends more planning and execution time than LESAMPLE because it makes more

mistakes and replans more often. BPSTREAM* consistently spends more planning

time than LESAMPLE across all H values because it, by design, replans after every

action, whether or not a mistake is committed. DESPOT and POMCP-ER do not

complete any of the tasks across the H values before the 900 second time-out, resulting

in their relatively lower execution times. Even though DESPOT and POMCP-ER

are belief space planning approaches designed for high entropy state spaces, they still

spend significant amounts of time to plan for a single action and are, as a result,
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out-performed by fast replanning approaches even in high entropy scenarios in our

experiments. As such, for reversible tasks like grocery packing where action effects

could be reversed through taking other actions, it is more efficient in the long run to

employ fast replanning approaches that are able to quickly plan actions and replan to

recover from mistakes. This resonates with results by Little et. al. [69]. However, for

tasks where action effects are irreversible or where the penalty for making mistakes

is significant, the more deliberative belief space planning approaches like DESPOT

and POMCP-ER are more appropriate.

3.8 Conclusion

We presented LESAMPLE as an online planning method for efficiently solving

sequential decision-making tasks with low perceptual entropy. The key idea is to use

classical planning on estimates resulting from belief space inference over perceptual

observations. As a result, LESAMPLE can perform more efficient goal-directed rea-

soning under scenarios of low-entropy perception. We demonstrated the efficiency

of this method on grocery packing tasks. LESAMPLE demonstrated advantages in

low-entropy scenarios where classical planning cannot handle uncertainty and belief

space planning is unnecessarily computationally expensive.
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CHAPTER IV

Probabilistic Inference in Planning for Partially

Observable Long-Horizon Problems

For autonomous service robots to successfully perform long horizon tasks in the

real world, they must act intelligently in partially observable environments. Most

Task and Motion Planning approaches assume full observability of their state space,

making them ineffective in stochastic and partially observable domains that reflect

the uncertainties in the real world. We propose an online planning and execution

approach for performing long horizon tasks in partially observable domains. Given

the robot’s belief and a plan skeleton composed of symbolic actions, our approach

grounds each symbolic action by inferring continuous action parameters needed to

execute the plan successfully. To achieve this, we formulate the problem of joint

inference of action parameters as a Hybrid Constraint Satisfaction Problem (H-CSP)

and solve the H-CSP using Belief Propagation. The robot executes the resulting

parameterized actions, updates its belief of the world and replans when necessary.

Our approach is able to efficiently solve partially observable tasks in a realistic kitchen

simulation environment. Our approach outperformed an adaptation of the state-of-

the-art method across our experiments.
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Figure 4.1: Given vague goals to make a snack, the robot generates and executes a
coherent plan to successfully complete the assigned task.

4.1 Introduction

Autonomous service robots have the potential to perform long horizon tasks such

as cooking meals in restaurants and homes and setting tables. In order for this

potential to be realized, such robots would have to plan actions over large state

and time horizons. They would also have to account for the uncertainties in their

perception and knowledge of their environment. To ensure tractability, planning for

such long horizon tasks is often decomposed into planning for symbolic actions and for

continuous motions. The class of approaches that interleave symbolic and continuous

planning is called integrated Task and Motion Planning (TAMP) [57, 34, 88, 35, 96,

32].

Major challenges that robots planning and acting in the real world face are the

uncertainty in the robot’s knowledge of the current state of the world and uncertainty

in the effects of the robot’s actions on the future state of the world. If these uncer-
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tainties are not accounted for when planning, the robot is likely to fail to accomplish

the task at hand. Most Task and Motion Planning approaches [57, 34, 88, 35, 96, 32]

assume full observability of their state space leading them to fail in stochastic and

partially observable domains that reflect the uncertainties in the real world.

We propose Satisfying HYbrid COnstraints with Belief pRopAgation (SHY-COBRA)

as an approach for planning for long horizon partially observable TAMP problems.

SHY-COBRA takes as inputs the robot’s noisy belief of the state of the world and

a plan skeleton composed of symbolic actions that achieve a specified goal. SHY-

COBRA then infers satisfying parameter values for the actions needed to execute the

plan successfully in partially observable domains.

Given the robot’s noisy belief of the state of the world and a plan skeleton com-

posed of symbolic actions, SHY-COBRA formulates the problem of joint inference of

action parameters as a Hybrid Constraint Satisfaction problem (H-CSP)[70], which

is represented as a factor graph. The factors in the factor graph are the action con-

straints whilst the variables are the symbolic and continuous action parameters to

be inferred. The continuous parameters are initialized by the robot’s noisy belief

of its environment. In most TAMP approaches [57, 34, 88, 35, 96, 32], the H-CSP

is solved either by sampling or by constrained optimization. Neither of these ap-

proaches explicitly accounts for the uncertainty distributions of the continuous action

parameters such as uncertainty in the pose estimates and in the robot’s joint con-

figurations. SHY-COBRA instead solves the H-CSP using Pull Message Passing for

Nonparametric Belief Propagation [25, 24] because of its natural ability to account

for the arbitrary uncertainty models of the continuous variables. The robot executes

the actions in turn and replans when necessary.

We demonstrate our approach on several simulated partially observable long hori-

zon tasks in a realistic simulation environment as shown in Figure 4.1.
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4.2 Related Work

Our work focuses on the problem of planning for long horizon tasks. The class

of approaches that interleave symbolic and continuous planning is called Task and

Motion Planning (TAMP). Fully observable TAMP algorithms [34, 57, 64, 70, 96, 35]

assume that the agent has full knowledge of its deterministic domain and that the

agent’s actions have deterministic outcomes on its environment. These assumptions

are however not representative of the kinds of domains robots operate in the real

world, which are often stochastic and partially observable. In such domains, robots

require the ability to plan in the face of incomplete knowledge and stochasticity in the

effects of their actions. Relatively few methods in TAMP literature have attempted

to solve these types of TAMP problems [59], [42], [78], [37].

Partially observable TAMP problems are often formulated as Hybrid Constraint

Satisfaction Problems[70] and solved either through sampling [37, 42] or constraint-

optimization methods [78]. Such approaches will often attempt to determinize the

belief via the Maximum Likelihood Observation [42, 90] rather than incorporating

the entire distribution which provides richer information. Garrett et. al.(SS-Replan)

[37] represent and update the belief over object poses using particle filtering. How-

ever, their approach limits the scope of partial observability to that of object poses.

In contrast, through the use of Nonparametric Belief Propagation [25, 24] on the

constraint network, our approach provides the avenue for incorporating arbitrary un-

certainty models on any of the variables whose value is to be inferred. We evaluate

our approach against SS-Replan [37] in our experiments.

A number of prior works [73, 72] have successfully solved Constraint Satisfaction

Problems using Belief Propagation. Moon et. al. [73] formulates Sudoku Solving

as a Constraint Satisfaction Problem and encodes it as a factor graph. The factors

in this factor graph are row, column and 3x3 cell constraints and the variables are

individual cells. They successfully infer satisfying cell values for empty cells in the
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Figure 4.2: Outline of our approach. {e1, e2, . . . , en} are the symbolic effects of actions
{a1, a2, . . . , an}. {τ1, τ2, . . . , τn} are inferred trajectories sent to the robot controller
for execution.

sudoku puzzle.

There exists much work in the domain of structuring planning problems as ones

of inference [95, 10, 8]. Toussaint et. al. [95] uses structured Dynamic Bayesian

Networks to represent structured planning domain and employs loopy belief propaga-

tion to solve short-horizon reaching tasks under collision avoidance constraints with

a humanoid upper body. Our approach formulates Task and Motion Planning as

a Hybrid Constraint Satisfaction Problem (H-CSP) and uses Pull Message Passing

Nonparametric Belief Propagation (PMPNBP) [25] to infer maximum joint beliefs

that solve the H-CSP.

4.3 Problem Formulation

Given an initial belief B0 = {BO
0 ,B

ϕ
0} of object poses and robot joint angles, and

a symbolic plan skeleton {a1, · · · , an}, we aim to jointly ground each symbolic action

ak into a robot pose ϕk in configuration space, along with the robot trajectory τk,k+1
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that takes the robot from pose ϕk to ϕk+1. The robot can then sequentially execute

the generated τk,k+1 to achieve the end effect of each symbolic action ak. After each

trajectory execution, the robot perceives and updates the belief Bk, and replans if the

updated belief does not satisfy the desired end effect of the corresponding symbolic

action.

We formulate the problem of jointly grounding a symbolic plan skeleton into a

sequence of target robot poses {ϕ1, · · · , ϕn} along with the in-between trajectories

{τk,k+1|k = [1, n − 1]} as a Hybrid Constraint Satisfaction Problem [70], where the

constraints are imposed by the desired end effects of each symbolic action in the given

plan, as well as other task-agnostic constraints such as collision-free and motion cost

constraints.

Algorithm 2: SHY-COBRA

Input: High-level Goals, G, Initial Belief, B0
1 Π ← SymbolicPlanner (G) Generate a plan skeleton Π that achieves goal

G using a symbolic planner
2 Function SHY-COBRA(Π, B0):
3 G ← ConstraintNetwork(Π) Convert Π into Constraint Network G
4 Ginit ← Initialize (G,B0) Initialize variable nodes in G with B0
5 Gconv ← PMPNBP (Ginit) Pass messages across Ginit using PMPNBP

algorithm until convergence
6 Πs ← MaxSamples (Gconv,Π) Set variable params in Π with the

max-product assignment from corresponding nodes in Gconv

7 foreach a ∈ Πs do
8 o← ExecuteAction(a) Receive observation o
9 Bcurrent ← UpdateBelief(a, o)

10 if o ̸= ExpectedEffect(a) then
11 Π ← UpdatePlanSkel. (Πs, a) Update plan skeleton to reflect

current state after executing a
12 SHY-COBRA(Π,Bcurrent)
13 return

14 end

15 end
16 return

17 End Function
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Figure 4.3: A Constraint Network. Given a task plan {a1, a2} composed of actions to
pick up the pear (a1), and to transport the pear to the basin of a sink (a2), we form
a factor graph that imposes constraints (rectangular nodes) as factors on the variable
nodes (circular nodes) that represent object poses, robot configurations and grasp
poses. In this example, ϕ0, ϕ1, ϕ2 represent the initial robot configuration and target
robot configuration for action a1, a2, respectively. o0, o2 represents the initial pear
pose and target pear pose after the execution of action a2. g1 represents a grasp pose
to grasp the pear. Note that o1 is not included in this factor graph because it has the
same value as o0. Each target robot pose is also connected with factors that express
the kinematic feasibility and collision-free constraints. We do not show these factors
for clarity. The grasp stability constraint on g1 is also not shown in this diagram.
The motion constraint node connected to variable nodes ϕ0, ϕ1 and τ(0,1) encourages
τ(0,1) to be the shortest trajectory between configurations ϕ0 and ϕ1. PMPNBP is
run on this factor graph to jointly infer satisfying action parameters.
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4.4 Methodology

4.4.1 Satisfying Hybrid Constraints with Belief Propagation (SHY-COBRA)

As described in Algorithm 2 and Figure 4.2, SHY-COBRA takes as input, the

robot’s noisy belief of the state of the world and a plan skeleton [70] composed of

symbolic actions. The plan skeleton is obtained by a symbolic planner that plans

actions to achieve specified goal(s). Actions in this plan skeleton have free parameters

like grasp poses and arm trajectories whose values are needed to be able to execute

these actions in the world. We formulate the problem of inferring the values of the

free parameters as a Hybrid Constraint Satisfaction Problem (H-CSP) (Section 4.4.2)

and represent it as a constraint network as shown in Figure 4.3. The variable nodes

in the constraint network are initialized with uniformly weighted sets of samples that

represent the robot’s noisy belief of the value of the corresponding variable. For

instance, a variable node representing a target object’s pose is initialized by a set of

uniformly weighted poses that represent the uncertainty distribution of the pose as

estimated by the robot’s noisy perception system.

The H-CSP is solved by inferring the satisfying maximum joint belief of the vari-

able nodes using a max-product version of Pull Message Passing Nonparametric Belief

Propagation (PMPNBP)[25] (Section 4.4.3). We then assign each free parameter in

the plan skeleton with the max-product assignment of the belief of its corresponding

variable node and execute the plan in the world.

If there is an unexpected effect of the robot’s action while executing the plan, we

update the plan skeleton and the constraint network and perform message passing

using PMPNBP to infer the variable assignments for the new constraint network.

This process continues until the robot successfully completes the task.

The following subsections describe the components of SHY-COBRA in detail.
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4.4.2 Hybrid Constraint Satisfaction Problem

Finding values for action parameters in a plan skeleton that satisfy all the sets

of constraints is a Hybrid Constraint Satisfaction Problem (H-CSP). The joint set

of action parameters and constraints of a plan skeleton form a factor graph called a

constraint network [21, 64]. A constraint network is a factor graph with constraints

as Factor nodes and action parameters as Variable nodes. Edges exist between con-

straints and their corresponding action parameters as depicted in Figure 4.3. For-

mally, an H-CSP is represented as

G(X1, X2, ..., Xr) ∼
N∏
j=1

fj(Sj) (4.1)

where Sj ⊆ {X1, ..., Xr}, a subset of action parameter variable nodes that are subject

to constraint factor node fj, G is the factor graph and N is the number of factors.

To solve the H-CSP is to infer values for all action parameters that satisfy their

corresponding constraints. In this work, we propose to solve the H-CSP by perform-

ing max-product Nonparameteric Belief Propagation on the constraint network that

represents the plan skeleton. The following subsections describe the Nonparametric

Belief Propagation algorithm we use, our message-passing scheme and how the values

of the action parameters are inferred from noisy observations and partial knowledge

of the robot’s environment.

4.4.3 Solving the H-CSP using PMPNBP

To solve the H-CSP, we use PMPNBP to infer action parameter values that satisfy

all the constraints in the constraint network. Mathematically, this is equivalent to

inferring the action parameter assignments that maximize the joint probability

P (X) =
1

Z
·

N∏
j=1

fj(Sj), Sj ⊆ {X1, ..., Xr} (4.2)
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Figure 4.4: The kitchen simulation environment. The area annotated (A) is the
dining area, (B) is the grocery cabinet, (C) is the cooking area and (D) is the sink
area. To make a pear dinner according to an optimal plan from the SHY-COBRA
planner, the robot first moves to the grocery cabinet, opens one of the drawers in the
cabinet and inspects it for the pear. If the pear is not found in the drawer, the robot
updates its belief of the location of the pear and replans to inspect a different drawer.
If the pear is found, the robot (1) picks up the pear, (2) moves to the sink, turns
on the tap and washes the pear. The robot then (3) moves to the stove and cook
the pear. After cooking the pear, the robot (4) finally moves to the dining table and
serves the meal.

49



where Z is a normalizing constant, Sj ⊆ {X1, ..., Xr}, a subset of action parameter

variable nodes that are subject to constraint factor node fj and N is the number of

factors. In the context of our work, Xs include the robot pose ϕks in configuration

space as well as robot trajectories τk,k+1 as discussed in Section 4.3.

To infer satisfying variable assignments, we perform message passing on the con-

straint network with max-product PMPNBP [25]. At the beginning, the belief of each

variable node is initialized with uniformly weighted samples generated by specialized

generators operating on the robot’s initial belief. These generators used in this work

are described in detail in Section 4.5.3.

Message passing on a constraint network involves two kinds of messages; the

Constraint-to-variable message and the Variable-to-constraint message.

The Constraint-to-variable message msgf(x)→x for iteration m is computed as

{µ(i)
x }Mi=1 ∼ belm−1(x)

{w(i)
x }Mi=1 = {maxy∈ρ(f)\{x}

j∈1,··· ,M
σf (µ

(i)
x , µ(j)

y )}Mi=1

msgmf→x = {(µ(i)
x , w(i)

x ) : 1 ≤ i ≤M} (4.3)

where y ∈ ρ(f) \ {x} represents the messages from variable nodes with edges to

constraint node f except variable node x

As formulated above, M samples are drawn from the belief distribution of node

x from the previous iteration, m − 1. The constraint function σf of the constraint

node f is then used to compute weights for each of these samples. These weighted

samples, which are now the Constraint-to-variable message are then passed to

node x. Details on constraint functions can be found in Section 4.4.4.
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The Variable-to-constraint message msgx→f(x) for iteration m is computed as

msgmx→f =
⋃

y∈ρ(x)\{f}

msgm−1
y→x (4.4)

Where ρ(x)\{f} are all the constraint nodes with edges to the variable node x except

constraint node f .

As formulated above, to approximate the product of incoming messages, we take

the union of all incoming messages from neighboring constraint nodes except con-

straint node f and normalize their weights. The resulting messages are then resam-

pled and passed to constraint node f .

One iteration of message passing on the constraint network follows the following

sequence:

1. Pass Variable-to-constraint messages from all variables to their correspond-

ing constraints

2. Pass Constraint-to-variable messages from all constraints to their corre-

sponding variables

After each iteration of message passing, the belief of each variable node is updated

by taking the union of all incoming messages to the variable node, normalizing their

weights and resampling a new set {µ(i)
x }Mi=1 to represent the belief of the variable node.

Message passing is performed for several iterations until the maximum joint belief

of each variable node converges.

After convergence, each action parameter xi is assigned with the max-product

assignment of the belief of its variable node.
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4.4.4 Constraints and Constraint functions

4.4.4.1 Constraints

The constraints used in this work are

• Motion constraints that enforce that τ is the shortest trajectory from one robot

configuration ϕ0 to another robot configuration ϕ1

• Kin constraints that enforce kinematic feasibility of the robot in configuration

ϕ holding an object with grasp g

• CfreeH constraints that enforce that when the robot is holding an object in

grasp g, the trajectory τ that the object is moved through is collision free

• GraspH constraints that enforce that a grasp g is a stable grasp pose

• grasp constraints that enforce that at a configuration ϕ0, when a robot picks

an object at position p0 with grasp g0, the grasp g0 will be feasible at a later

time when the robot at configuration ϕ1 places the object at position p1.

• Stable constraints that enforce that a placement pose p of an object is stable

and won’t cause the object to fall off.

• inBasin constraints that enforce that the object is placed in a stable pose in

the basin

• inSaucepan constraints that enforce that the object is placed in a stable pose

on the saucepan.

4.4.4.2 Constraint functions

A constraint function assigns weights to samples drawn from the belief distribution

of the target variable node when the Constraint-to-variable message is computed.
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The weight of each sample drawn from a variable node a is computed as follows:

wi
a = σf (x

i
a, x̂1, x̂2, . . . , x̂T−1) (4.5)

where wi
a is the weight of sample i drawn from variable node a, σf is the constraint

function of constraint node f , T is the number of variable nodes connected by an

edge to the constraint node f and x̂1, x̂2, . . . , x̂T−1 are the highest weighted samples

from messages received from the T − 1 other variable nodes connected to f .

Each type of constraint node has a unique constraint function for assessing the

weight of a sample.

Constraint function example: Consider a collision-free constraint node fCfree

sending a message to an arm-trajectory variable node XTraj. The collision-free con-

straint node has edges to both an arm-trajectory variable node and a grasp pose

variable node. To compute the Constraint-to-variable message to be sent to

the arm-trajectory variable node, M samples are first drawn from the belief of

the arm-trajectory variable node. To weight each arm-trajectory sample, the con-

straint function σCfree takes as inputs the sample arm-trajectory xi
traj and the highest

weighted grasp pose sample x̂grasp. σCfree then computes the weight of the sample

arm-trajectory as

wi
traj = C1 · ϵ1(xi

traj) + C2 ·
1

ϵ2(xi
traj, x̂grasp)

(4.6)

where wi
traj is the computed weight of sample xi

traj, C1 and C2 are user-defined con-

stants, ϵ1 is a routine that computes the cumulative distance along xi
traj from obstacles

in its environment and ϵ2 is a routine that computes the distance between the end-

effector pose after travelling along xi
traj and the highest weighted grasp pose x̂grasp.

The weights for all arm-trajectory samples are computed and normalized, con-

stituting the Constraint-to-variable message sent to the arm-trajectory variable
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node.

Some other constraint functions used in this work are the

• Kinematic constraint function (σkin), which weights robot joint configuration

samples and grasp poses based on how kinematically feasible a joint configu-

ration of the robot’s arm is if it is holding an object with a particular grasp

pose.

• Stable constraint function (σstable), which weights placement poses based on how

stable they are. i.e. how geometrically stable an object placed on a surface in

a specific pose is.

• Grasp constraint function (σgrasp), which weights robot configurations, initial

object poses and grasp poses based on how well they are jointly feasible and

how well they satisfy later target object poses.

• Motion constraint function (σmotion), which weights trajectories, initial configu-

ration and final configuration based on how short the trajectory from the initial

configuration to the final configuration is.

• Grasp stability constraint function (σGraspH), which weights grasp poses based

on how geometrically stable they are.

• inBasin constraint function, which weights placement poses in the basin based

on how stable they are.

• inSaucepan constraint function, which weights placement poses in the saucepan

based on how stable they are.
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4.5 Implementation

4.5.1 Action Schemas

Actions that make up a plan are described by continuous action parameters, con-

straints, preconditions and effects. preconditions are the conditions that need to

be True before an action can be executed. effects describe the changes in a subset

of the state after an action is executed. Continuous action parameters are the con-

tinuous values needed by the robot to execute the action in the world. These include

object poses, grasps, robot configurations and trajectories. constraints must hold

true for all continuous parameters for the action to be executed successfully in the

world. We used Fast Downward [45] as the symbolic planner for planning action

schemas. The types of constraints used in the composition of action schemas in this

work are described in Section 4.4.4.

Some examples of action schemas [83] used in this work are as follows:

(:action pick[obj]

:parameters (ϕ, p, g, τ)

:constraints CFree(τ), Stable[obj](p), GraspH[obj](g) Kin[obj](ϕ, p, g)

:preconditions (and (at robot ϕ) (at obj p) (handempty))

:effects (and (holding obj) (not (handempty)))

)

(:action place[obj]

:parameters (ϕ, p, g, τ)

:constraints CFree(τ), Stable[obj](p), GraspH[obj](g) Kin[obj](ϕ, p, g)

:preconditions (and (holding obj) (at robot ϕ) (at obj p))

:effects (and (not holding obj) (handempty))

)

(:action wash[obj]

:parameters (p)
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((a)) ((b))

Figure 4.5: (a) Noisy pose estimate of a single pear in the cabinet drawer. (b) Noisy
joint configuration estimate of the robot’s right arm. Each pear in (a) and arm
configuration in (b) represents a likely pose of the pear or arm joint configuration
sampled from their respective estimated noise distributions.

:constraints Stable[obj](p), InBasin[obj](p)

:preconditions (at obj p)

:effects (clean obj)

)

where obj represents the target object and ϕ, p, g, τ represent robot joint-configuration,

object pose, grasp and joint trajectory respectively.

4.5.2 Uncertainty sources and uncertainty distributions

The major advantage of SHY-COBRA over Garrett et. al. [37] is the ability

of SHY-COBRA to concurrently and seamlessly incorporate arbitrary uncertainty

sources and distributions. In our experiments, we consider pose estimation uncer-

tainty and robot arm joint-configuration uncertainty as depicted in Figure 4.5. We

assume that the uncertainties in pose estimation and joint configuration estimation

are Gaussian distributed with zero means and variances δ2p and δ2c respectively. It is

worth noting that SHY-COBRA is agnostic to the type of uncertainty distribution of

an action parameter variable.

The robot is equipped with a perception system that updates the robot’s belief
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after every action.

4.5.3 Computing initial samples

We compute initial samples for the various free variables by using their correspond-

ing specialized generators. Each free variable comes with a generator that computes

samples for the free variable given the initial belief.

Consider an action that picks up a target object, as described in Section 4.5.1

above. This action takes as parameters a pose variable, a grasp variable, an arm-

trajectory variable and a joint configuration variable.

The initial samples for the pose variable node in the corresponding plan skeleton

consist of uniformly weighted poses received from the robot’s perception system’s

noisy estimation of the pose of the object.

Likewise, the initial grasp samples are also generated by a grasp generator which com-

putes valid uniformly weighted grasps of the object at each of the initial sample poses.

The initial arm-trajectory samples are generated by a specialized arm-trajectory gen-

erator equipped with the RRT-Connect [62] motion planner. This generator generates

uniformly-weighted joint trajectories to each of the grasp samples.

Finally, to generate robot joint configuration samples, the joint-configuration gen-

erator, which is equipped with the IKFast [26] inverse kinematics solver, generates

joint configuration samples to each of the grasp samples. With each of these joint

configuration samples as a mean, we further sample sub joint configurations from

the Gaussian distributed joint configuration noise with variance δ2c . During message

passing, the weight wi of each sample ϕi is computed as

wi =
∑
j

p(ϕj
i ) ∗ σf (ϕ

j
i , x̂1, x̂2, . . . , x̂T−1)
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where ϕj
i is the joint configuration sampled from the Gaussian distribution with mean

ϕi and variance δ2c , p(ϕ
j
i ) is the Gaussian probability of ϕj

i , σf is the constraint function

of the constraint node connected to ϕi and x̂1, x̂2, . . . , x̂T−1 are the highest weighted

samples from messages received from the T −1 other variable nodes connected to f .

4.6 Experiments

We performed experiments on 12 randomly generated problems for 4 different

tasks as described in Section 4.6.1. The experiments were performed with a simulated

Digit robot [81] with the PyBullet simulation software [20] as shown in Figure 4.4.

We used IKFast [26] to compute inverse kinematics solutions for the robot arms and

used the pybullet planning package [31] for motion planning.

We quantitatively compare SHY-COBRA with SS-Replan*, a variation of the SS-

Replan algorithm [37] which uses off-the-shelf RRT-Connect [62] and IKFast [26] for

motion planning and inverse kinematics respectively.

For each cycle of planning, we generate 100 samples from the uncertainty distribu-

tions of object pose estimate and 100 samples from the joint configuration estimate.

We run PMPNBP for 10 iterations on each cycle. The pose estimate noise is Gaussian

distributed with zero mean and δp = 10cm standard deviation. The joint configu-

ration estimate noise is Gaussian distributed with zero mean and δc = 0.25 radians

standard deviation. The experiments were run on a laptop with 2.21GHz Intel Core

i7 CPU, 32GB RAM and a GTX 1070 GPU.

4.6.1 Tasks

We evaluated SHY-COBRA and SS-Replan* on 12 randomly generated problems

of 4 different tasks. See the accompanying video for demonstrations of the tasks in

simulation. The tasks are described as follows:
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4.6.1.1 Retrieve

The high-level goal for this task is to retrieve the pear. The prior location of the

pear is uniformly distributed across the 3 grocery drawers. Because of occlusion and

poor lighting in the drawer, the robot has to deal with the noisy estimates of the pose

of the pear as well. A successful plan opens a drawer at random and inspects it. If

the pear is located, its done. Else, it updates its belief of the location of the pear and

repeats the process until the pear is located. It then picks up the pear.

4.6.1.2 Wash

The high-level goal for this task is to retrieve the pear and wash it. This task has

the same prior belief as the task above. A successful plan performs the Retrieve task

as described above, sends the pear to the sink and turns on the tap to wash it.

4.6.1.3 Cook

The high-level goal for this task is to retrieve the pear, wash it and cook it. The

main challenge in this task is to infer grasps and trajectories that allow the robot

to pick up a cup in a specific grasp pose that makes later actions like filling the cup

with water and pouring the water in the saucepan feasible during the execution of

the cooking task. This task has the same prior belief as the tasks above. A successful

plan performs the Wash task as described above, takes the pear to the stove, puts it

in the saucepan, picks up a cup, fills it with water, pours the water in the saucepan

and presses the cook button on the stove to cook the pear.

4.6.1.4 Serve-meal

The high-level goal for this task is to retrieve the pear, wash it, cook it and serve

it. This task has the same prior belief as the tasks above. A successful plan performs

the Cook task as described above, picks up the cooked pear from the saucepan and
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Alg: SHY-COBRA SS-Replan*

Task: Planning Time N.E Planning Time N.E
Retrieve 9.37± 5.25 1.33± 1.52 16.61± 5.68 8.67± 4.93
Wash 15.72± 6.91 2.67± 3.06 21.32± 8.53 7.00± 3.60
Cook 25.15± 5.16 3.50± 2.12 29.28± 13.61 6.33± 0.58
Serve-meal 37.24± 10.04 7.00± 2.83 52.75± 16.82 15.5± 0.71

Table 4.1: Results from evaluation of SHY-COBRA and SS-Replan*. The table shows
the mean planning duration in seconds (Planning Time) and the number of errors
(N.E) for all 12 randomly generated problems for the 4 tasks

sets it on a tray, carries the tray to the dining table and distributes the cooked pear

to the plates on the table.

4.6.2 Results

Table 4.1 shows the experimental results for SHY-COBRA and SS-Replan* on

the tasks described above.

An error occurs when the robot misses its target when picking or placing an object

due to noise in the object’s pose or joint configuration estimate. Based on the results,

SHY-COBRA was consistently more efficient than SS-Replan* across all 4 tasks and

made slightly less errors across all 4 tasks. Since SS-Replan* is only capable of

considering object pose uncertainty and doesn’t account for the uncertainty in the

robot arm’s joint configurations, it misses its target more often and as a result makes

more errors and takes longer to plan.

In spite of its ability to concurrently incorporate arbitrary uncertainty sources

and distributions due to the use of PMPNBP for inference, SHY-COBRA has a time

complexity that grows with the magnitude of noise in the estimation. We demonstrate

this by comparing the planning times for SHY-COBRA and SS-Replan* for increasing

noise in object pose estimation and joint configuration estimation as indicated in the

results in Figure 4.6.
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Figure 4.6: Plots comparing the planning times and number of errors of SHY-COBRA
and SS-Replan* for increasing uncertainties in the pose estimation and joint config-
uration when performing the Retrieve task. δp represents the standard deviation of
the zero mean object pose estimation noise and δc represents the standard deviation
of the zero mean joint configuration estimation noise

4.7 Conclusion

We proposed a planning approach for long horizon planning under uncertainty.

Our approach jointly infers satisfying action parameter values for a plan skeleton

that are needed to successfully execute the plan in a stochastic, partially observable

environment. Our approach outperformed an adaption of the SS-Replan algorithm

across all tasks in our experiments.
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CHAPTER V

Grounded Task Planning as Mixed Integer

Programming

For robots to successfully execute tasks assigned to them, they must be capable of

planning the right sequence of actions. These actions must be both optimal with re-

spect to a specified objective and satisfy whatever constraints exist in their world. We

propose an approach for robot task planning that is capable of planning the optimal

sequence of grounded actions to accomplish a task given a specific objective function

while satisfying all specified numerical constraints. Our approach accomplishes this

by encoding the entire task planning problem as a single mixed integer convex pro-

gram, which it then solves using an off-the-shelf Mixed Integer Programming solver.

We evaluate our approach on several mobile manipulation tasks in both simulation

and on a physical humanoid robot. Our approach is able to consistently produce

optimal plans while accounting for all specified numerical constraints in the mobile

manipulation tasks. Open-source implementations of the components of our approach

as well as videos of robots executing planned grounded actions in both simulation and

the physical world can be found at this url: https://adubredu.github.io/gtpmip
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5.1 Introduction

The successful execution of manual tasks often requires the satisfaction of certain

physical constraints. For instance, to retrieve a sugar canister from a seven-foot high

shelf in a kitchen, the average person would have to stand close enough and stretch

their hands far enough to not only reach the sugar, but to grasp it stably and lift it.

Here, close enough and far enough are physical constraints that need to be satisfied

to guarantee the success of their efforts to retrieve the sugar. Similarly, for a robot

to successfully perform this sugar retrieval task, it would have to account for similar

physical constraints when deciding the right actions to take. While deciding the right

actions, this shrewd robot would also have to bias its decisions towards actions that

optimize certain quantities like energy consumed or distance travelled. We call this

problem the Optimal Constrained Task Planning problem.

The predominant way to solve a task planning problem is to formulate it as a sym-

bolic AI planning problem, represent it in a graph structure and employ graph search

algorithms to find paths from a start state to a goal state. However, this approach is

purely symbolic and provides no avenues for incorporating numerical constraints in

the planning process or to bias the search to choose actions that optimize numerical

objective functions [7, 45, 9]. As such, these approaches only allow the specification

of symbolic task goals and are unable to support the specification of continuous goals.

It is often up to the human expert to introduce symbols that aptly represent desired

continuous goals. A few works have proposed extensions to graph search algorithms

to enable them to handle constraints and objective functions [28]. However, these

approaches are only capable of handling simple additive objective functions with soft

linear constraints.

In this work, we propose an approach for task planning that is capable of handling

both linear and non-linear constraints and optimizes for convex objective functions

to global optimality. We take a unique approach to the task planning problem by

63



Figure 5.1: Given a constrained task planning problem, our approach (GTPMIP)
plans a sequence of coherent actions with optimal parameters needed to accomplish
the task.
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encoding the entire task planning problem as a single Mixed Integer Convex Program

(MICP). By doing this, we gain the flexibility of subjecting the problem to arbitrary

action constraints that need to be satisfied in order for the resulting plan to be

physically realizable by a robot. We also escape the restriction of having to specify

planning goals symbolically as this encoding enables the specification of continuous

planning goals. We then use an off-the-shelf Mixed Integer Programming solver to

solve the MICP to optimality, extract the grounded plan and its optimal parameters

and execute the plan with a robot. The unique contributions of this work are as

follows:

• Firstly, we extend the Planning Domain Definition Language (PDDL) to allow

for the specification of numerical action and task constraints, numerical initial

values of continuous task variables, numerical objective functions, numerical

action dynamics functions, numerical preconditions and numerical effects. We

call this extension the Hybrid PDDL Description (HPD).

• Secondly, we propose a unique representation of continuous actions as Funnels

and propose an approach for representing the continuous plan space, which we

call the Hybrid Funnel Graph.

• Finally, we describe an approach for encoding the Hybrid Funnel Graph as a

single Mixed Integer Convex Program which we solve using an off-the-shelf MIP

solver.

We evaluate our approach in simulation on several 2-D object rearrangement task

planning problems subject to unique geometric constraints. We also demonstrate our

approach on real-world mobile manipulation tasks involving kinematic constraints

using the Digit humanoid robot, as shown in Figure 5.1.
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Figure 5.2: An overview of GTPMIP. Given a task, our approach represents the plan
space as a Hybrid Funnel Graph, encodes the task and the Hybrid Funnel Graph as a
Mixed Integer Convex Program and solves it to produce an optimal action sequence
which is executed by the robot.

5.2 Related Works

5.2.1 Mixed Integer Programming

A Mixed Integer Program (MIP) is a mathematical optimization problem with

both integer and real-valued variables [66]. The ability of MIPs to have both discrete

and continuous variables makes them ideal for formulating sequential planning prob-

lems that involve taking discrete actions which are subject to continuous constraints

[1, 23, 48, 97]. This work encodes the optimal constrained task planning problem as

a Mixed Integer Convex Program (MICP).

5.2.2 Symbolic AI Planning

The state-of-the-art methods in STRIPS-style [29] Symbolic AI Planning first

decompose the planning problem into a causal graph and employ graph search tech-

niques like A* [43] to find plans from some initial node in the graph to a desired goal

node [47, 45, 5]. Although these approaches thrive for purely symbolic domains, they

do not naturally allow for the incorporation of numerical constraints and objective

functions [52]. The formulation of AI Planning problems as Integer Programs has

been explored a few times in the planning and scheduling literature [100, 98].

In this work, we build up on Vossen et. al’s [100] Integer Programming formulation
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by encoding the AI Planning problem as a MIP and solving it using off-the-shelf MIP

solvers. This MIP encoding is convenient because it naturally allows for the incorpora-

tion of numerical constraints and objective functions into the planning problem. This

ability is essential because real world problems often involve numerical constraints

and objectives.

5.2.3 Integrated Task and Motion Planning

The class of approaches that interleave symbolic AI planning and continuous plan-

ning is called Task and Motion Planning [34, 3, 35, 96, 88]. Among these, approaches

like Garrett et. al. [34, 35] and Srivastava et. al. [88] devise symbols to describe

continuous constraints for actions. These symbols are used as action preconditions in

the symbolic AI planning process and are evaluated on demand. In addition to the

chore of having to devise symbolic abstractions for every continuous constraint, these

approaches are hampered by their requirement of symbolic goal descriptions. They

are incapable of planning for continuous goal descriptions that can only be evaluated

by an objective function. By formulating the planning problem as a Mixed Inte-

ger Convex Program, our proposed approach is able to both reason on the symbolic

level using integer-valued variables and integer inequalities and optimize for contin-

uous objective functions using the real-valued variables, and convex equations and

inequalities.

5.2.4 Combined symbolic and continuous planning as Mathematical Pro-

grams

Works like Toussaint [96] and Li and Williams [67] have sought to solve the com-

bined symbolic and continuous planning problem by formulating them as Mathe-

matical Programs. Toussaint [96] uses an iterative 3-level Nonlinear Constrained

Optimization to optimize for continuous robot configurations over discrete action se-
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quences it acquires from running Monte Carlo Tree Search. Our approach differs from

Toussaint [96] in that, we formulate the entire planning problem as a single Mixed

Integer Program, solving for both the discrete action sequences and the continuous

robot configurations in a single run. Li and Williams [67] employ hybrid flow graphs

to represent the entire plan space and formulate the planning problem as a Mixed

Logic Nonlinear Program in planning actions for autonomous underwater vehicles in

ocean exploration tasks. Our representation of continuous actions as funnels and our

formulation of Hybrid Funnel Graphs to represent the plan space are inspired by Li

and Williams’s work.

5.3 Problem Formulation

In this work, we tackle the problem of optimal task planning under numerical

constraints. Our goal is to generate a grounded plan made up of a logically consistent

sequence of actions, with each action associated with its corresponding optimal contin-

uous parameters. We will use the task of package rearrangement within a warehouse

environment (The Warehouseman’s Problem [84]) by a mobile manipulator robot as

a running example for the remainder of this paper.

The inputs to our approach are:

• A set of initial symbolic propositions, I, that describe the initial symbolic state

of the world. For example, the set

I = {(hand-empty),(not (packed boxA))}

represents a world where the robot is not holding any package and boxA has not

been packed.

• A set of initial continuous variable values, X I
r and X I

b , where X I
r represents the

robot’s initial configuration in SE(2) space and X I
b represents the configurations

of the packages, also in SE(2) space.
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• A set of action primitives, A, that can be executed by a robot. An action

primitive is comprised of:

– Symbolic preconditions: A conjunction of symbols whose truth-value must

be true in order for the action to be executable.

– Continuous preconditions: Continuous constraints on the continuous vari-

ables (Xr and Xb) that must be satisfied in order for the action to be

executable.

– Action Dynamics: A dynamics function that computes the state of the

continuous variables (Xr and Xb) after the action is executed.

– Symbolic effects: A conjunction of symbols that represent the state of the

world after the action is executed.

– Continuous effects: The numerical values of continuous variables (Xr and

Xb) after the action is executed.

• A set of task-specific numerical constraints H on the continuous variables.

• A set of goal symbolic propositions, G, that must hold true at the end of the

plan execution. For example, the symbolic propositions

G = {(hand-empty),(packed boxA)}

would represent a world where the robot is not holding any package and boxA

is packed.

• A set of goal continuous variable values, XG
r and XG

b .

• An objective function J(Xr,Xb) to be optimized.

The output of our approach is a grounded plan π∗ made up of a sequence of log-

ically consistent actions {a1(X 1∗
r ,X 1∗

b ), a2(X 2∗
r ,X 2∗

b ), . . . , aN(XN∗
r ,XN∗

b )}, with each

action associated with its corresponding optimal continuous parameter values.
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Figure 5.3: A funnel representation for the move action. The input region is formed
by the intersection of continuous precondition inequality constraints (g1 to g4) on the
robot position. The action dynamics compute the next robot position, xt+1, yt+1 after
the action is applied to the poses in the input region. The output region represents
the space of resulting poses.

5.4 Methodology

In this section, we describe each component of our approach, as illustrated in

Figure 5.2. We name our approach Grounded Task Planning as Mixed Integer Pro-

gramming (GTPMIP). As stated in the previous section, GTPMIP takes as input a

description of the optimal constrained task planning problem including descriptions

of action primitives the robot is capable of executing. GTPMIP then builds a Hybrid

Funnel Graph from this description to represent the entire plan space. Finally, it

encodes the Hybrid Funnel Graph and the planning problem as an MICP, which it

then solves using an off-the-shelf MIP solver. Each of these components are described

in the following subsections.

5.4.1 Hybrid PDDL Description

Hybrid PDDL Description (HPD) is an extension of PDDL that allows for the

specification of task planning problems with numerical action and task constraints,

numerical initial values of continuous task variables, numerical objective functions,
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numerical action dynamics functions, numerical preconditions and numerical effects.

Similar to PDDL, an HPD description of a task planning problem is made up of two

files; the domain.hpd file and the problem.hpd file.

The domain.hpd file describes the action primitives that the robot can execute.

An action primitive has fields

• :action to specify the name of the action primitive

• :parameters to specify the symbolic and continuous parameters the action

takes.

• :precondition to specify a conjunction of symbols whose truth-values must be

true in order for the action to be executable.

• :continuous precondition to specify continuous constraints on the continu-

ous variables that must be satisfied in order for the action to be executable.

• :dynamics to specify dynamics functions that compute the state of the contin-

uous variables after the action is executed.

• :continuous effect to specify the numerical values of continuous variables

after the action is executed.

• :effect to specify a conjunction of symbols that represent the state of the

world after the action is executed.

The problem.hpd file describes the initial symbolic and continuous states as well

as the goal symbolic and continuous states of the task. It also describes the task-

specific constraints and the objective function to be optimized.

5.4.2 Funnels and Hybrid Funnel Graphs

We represent action primitives as funnels. A funnel is made up of three com-

ponents; an input region, a dynamics function and an output region. The input
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region is the region of intersection of all the continuous constraints that need to be

satisfied before the action can be executed (the continuous preconditions). The dy-

namics function computes the state of the continuous variables after the action is

executed. We apply the dynamics function on the peripheries of the input region to

result in a new region which we call the output region. The geometric representa-

tion of this abstraction takes the shape of a funnel as shown in Figure 5.3; hence its

name. The representation of action primitives as funnels helps in determining which

action primitives are applicable given the state of the robot. If the values of the

continuous variables of the current state intersects with the input region of a funnel

and the symbolic preconditions of the corresponding action hold true for the sym-

bolic propositions of current state, then the action is applicable. The output region

of the funnel also determines the continuous state after the corresponding action is

executed. In addition to action funnels, No-op funnels are identity operations which

represent actions that make no changes to the symbolic state of the world and whose

set of symbolic preconditions are equal to their set of symbolic effects.

Given this representation of actions as funnels, we build up the Hybrid Funnel

Graph by alternating between state levels and action levels. A state level is a set

of all possible states (both symbolic and continuous) at a specific time instance. An

action level is a set of all applicable funnels at a specific time instance. The first state

level is a set of all the symbolic propositions I and continuous variables X I
b where

X I
r that make up the initial state. The continuous variables could take the form

of either singular continuous values or intervals of continuous values that represent

regions in the continuous space (SE(2) space in our package rearrangement problem

formulation). We then compute all funnels that are applicable given the symbolic and

continuous state variables in the first state level. These funnels constitute the first

action level. As noted in the previous paragraph, a funnel is applicable to a state level

if the continuous state variables in the state level intersect with the input region of
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the funnel and the symbolic preconditions of the action corresponding to the funnel

hold true for the symbolic propositions of the state level. We also include to the

first action level, No-op funnels for each symbolic proposition in the state level. The

second state level is then computed as the set of all symbolic effects of actions and

output regions of their corresponding funnels in the first action level. These output

regions are computed by applying the funnel’s dynamics function to the region of

intersection of the continuous variables of the first state level and the funnel’s input

region. Likewise, the second action level is computed in the same manner as the first

action level.

After the computation of each state level, we check if the goal symbolic propo-

sitions G hold true in the state level and if the goal continuous variable values XG
b

where XG
r intersect the continuous variable regions in the state level. If both of these

conditions are true, we have a valid Hybrid Funnel Graph for the task and terminate

the graph building process. If not, we keep building the graph by adding additional

state and action levels. Each action level represents a single time step in the resulting

plan. Hence the total number of action levels represents the total period of the en-

tire resulting plan. Note that, since the Hybrid Funnel Graph starts with the initial

state level and ends with the terminal state level, the total number of state levels is

greater than the total number of action levels by 1. This process is similar to the

process of building planning graphs in GraphPlan [9] except that planning graphs in

GraphPlan are made up of only symbolic propositions and symbolic actions. Hybrid

Funnel Graphs are made up of both symbolic propositions and continuous variables,

hence its name.

Unlike with GraphPlan where the graph building process is guaranteed to termi-

nate if the planning problem is valid, our approach to building Hybrid Funnel Graphs

is not guaranteed to terminate due to our inclusion of continuous variables. How-

ever in this work we observe GTPMIP successfully terminate graph building in every
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planning problem it is applied to.

5.4.3 Encoding as a Mixed Integer Convex Program

Before we encode the Hybrid Funnel Graph and the planning problem as an MICP,

we first define a set of useful variables.

• Let T represent the total number of action levels in our Hybrid Funnel Graph,

which is also the total planning period.

• Let F represent the set of all instantiated symbolic propositions in our planning

domain. Hence I ⊆ F and G ⊆ F

• Let A represent the set of all instantiated actions in our planning domain.

• Let pref represent the set of all actions that have symbolic proposition f as a

symbolic precondition.

• Let addf represent the set of all actions whose symbolic effects affirm symbolic

proposition f . (the truth-value of f in the action’s symbolic effect is True).

• Let delf represent the set of all actions whose symbolic effects negate symbolic

proposition f . (the truth-value of f in the action’s symbolic effect is False)

Next, we define integer variables. For all f ∈ F and t ∈ 1 . . . T ,

pf,t =


1, if proposition f holds true at time t

0, otherwise

qa,t =


1, if action a is taken at time t

0, otherwise

Given these variable definitions, we now build the constraints into our MICP.
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The first set of constraints to be added are the initial and terminal constraints.

The initial constraint,

pf,1 =


1, ∀f ∈ I

0, ∀f /∈ I
(5.1)

ensures that all initial symbolic propositions hold true in the first state level.

The terminal constraint,

pf,T+1 = 1, ∀f ∈ G (5.2)

ensures that all goal symbolic propositions hold true in the last state level.

The next set of constraints are the precondition constraints

qa,t ≤ pf,t, ∀a ∈ pref ,∀t ∈ 1 . . . T, f ∈ F (5.3)

These inequality constraints encode the implication constraint that if action a, which

has symbolic proposition f as its precondition, is taken in action level t, then f should

also hold true in state level t. This constraint is called the precondition constraint

because it ensures that all preconditions of an action hold true before the action can

be taken.

The next set of constraints are the effect constraints

pf,t+1 ≤
∑

a∈addf

qa,t, ∀t ∈ 1 . . . T, f ∈ F (5.4)

These inequality constraints encode the implication constraint that if symbolic propo-

sition f holds true in state level t + 1, then at least one action a which has f as a

positive effect should be taken in action level t.

The next set of constraints are the mutual exclusion constraints

qa,t + qa′,t ≤ 1 (5.5)
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for all t ∈ 1 . . . T and all a, a′ for which there exists an f ∈ F such that a ∈ delf and

a′ ∈ pref ∪ addf .

These inequality constraints ensure that two actions a and a′ that cancel each other

are not both taken in action level t.

The next set of constraints are the task-specific numerical constraints

qa,t ≤ h(X t
r ,X t

b ), ∀h ∈ H, t ∈ 1 . . . T (5.6)

that ensure that if action a is taken in action level t, the continuous variable param-

eters of a satisfy all the task-specific numerical constraints H.

The final set of constraints are the initial and terminal constraints

X 1
r = X I

r , X 1
b = X I

b
(5.7)

and

X T+1
r = XG

r , X T+1
b = XG

b
(5.8)

that ensure that the values of continuous variables at the first and final levels are equal

to the problem-specified initial and goal continuous variable values respectively.

The objective function to be optimized

J(X t
r ,X t

b ) ∀t ∈ 1 . . . T (5.9)

is a convex function on all continuous variables for the entire planning period. For

a warehouseman’s problem, a suitable objective function would be to minimize the

total Euclidean distance the robot travels while rearranging the packages.

Putting together Equations 1 - 9, our entire MICP can now be summarized as

76



min
Xr,Xb

J(X t
r ,X t

b ), ∀t ∈ 1 . . . T

subject to

pf,1 =


1, ∀f ∈ I

0, ∀f /∈ I

pf,T+1 = 1, ∀f ∈ G

qa,t ≤ pf,t, ∀a ∈ pref , ∀t ∈ 1 . . . T, f ∈ F

pf,t+1 ≤
∑

a∈addf

qa,t, ∀t ∈ 1 . . . T, f ∈ F

qa,t + qa′,t ≤ 1

qa,t ≤ h(X t
r ,X t

b ), ∀h ∈ H, t ∈ 1 . . . T

X 1
r = X I

r , X 1
b = X I

b

X T+1
r = XG

r , X T+1
b = XG

b

p ∈ {0, 1}, q ∈ {0, 1},X ∈ SE(2)

(5.10)

We solve this MICP using an off-the-shelf MIP solver which returns the grounded

plan π∗ made up of a sequence of logically consistent actions

{a1(X 1∗
r ,X 1∗

b ), a2(X 2∗
r , X 2∗

b ), . . . , aT (X T∗
r ,X T∗

b )}

with each action associated with its corresponding optimal continuous parameter

values.
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5.5 Implementation

5.5.1 Open-source software implementations

We provide open-source software implementations for each of the components of

our approach. We provide

• HPD.jl as a software package for reading and parsing HPD files. It also contains

example HPD files for the warehouse rearrangement problem.

url: https://github.com/adubredu/HPD.jl

• HybridFunnelGraphs.jl as a software package for building complete Hybrid Funnel

Graphs when given HPD files of an optimal constrained Task Planning Problem. url:

https://github.com/adubredu/HybridFunnelGraphs.jl

• gtpmip.jl as a software package for encoding Hybrid Funnel Graphs and HPD files

of an optimal constrained task planning problem as an MIP and solving the MIP to

output the optimal plan. url: https://github.com/adubredu/gtpmip.jl

• westbrick.jl as a simulator for a 2D version of the Warehouse rearrangement prob-

lem. url: https://github.com/adubredu/westbrick.jl

5.5.2 Solving the Mixed Integer Convex Program

Throughout our experiments, we use the Gurobi Optimization software [41] to

solve all MICPs. We use Gurobi because it has state-of-the-art MIP solver imple-

mentations and is empirically the fastest MIP solver amongst all solvers considered.

5.6 Experiments

We evaluate the capabilities of GTPMIP on a series of experiments both in sim-

ulation and on a physical robot.
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Algorithm Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

Fast Downward [45] 0.102± 0.0003 0.104± 0.002 0.214± 0.001 0.218± 0.002 0.216± 0.008
Pyperplan [7] 0.167± 0.008 0.169± 0.012 0.169± 0.014 0.183± 0.012 0.190± 0.007

Forward Search [65] 0.0006± 0.004 0.0011± 0.001 0.0021± 0.0014 0.004± 0.002 0.008± 0.004
GTPMIP (ours) 0.039± 0.011 0.033± 0.0004 0.062± 0.009 0.172± 0.011 0.719± 0.014

Table 5.1: Comparison of planning times (in seconds) of GTPMIP with those of
state-of-the-art symbolic planners on purely symbolic block stacking problems with
increasing number of objects.

5.6.1 Pure Symbolic Task Planning evaluation

First, we compare the symbolic task planning capabilities of GTPMIP to the

state-of-the-art symbolic planning approaches Fast-Downward [45], Pyperplan [7] and

Forward Search with A* [65]. We compare the planning times of these approaches

on purely symbolic block stacking tasks with increasing number of objects, with

Problem 1 having 4 objects and Problem 5 having 9 objects. Table 5.1 shows the

average planning times of each approach.

As can be seen from results in Table 5.1, GTPMIP is slightly faster than Fast

Downward and Pyperplan on the smaller Problems 1 - 4. GTPMIP however gets much

slower than the other symbolic planning algorithms as the size of the problem increases

in Problem 5. This significant reduction in planning speed can be attributed to the

increase in number of variables and constraints in the resulting MIP that GTPMIP

solves. However, the unique capabilities of GTPMIP that are lacking in the other

symbolic planning approaches are its ability to account for numerical constraints

and optimize for numerical objective functions. This is demonstrated in the next

experiment.

5.6.2 2D Warehouse package rearrangement Problem

Next, we evaluate GTPMIP on a series of 5 tasks to evaluate its ability to perform

optimal task planning under numerical constraints. Each task is setup with a virtual

robot in a 2D warehouse simulator. For each Warehouse package rearrangement
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Task Constraints

Task 1
x = 0.0 ∩ 0.0 ≤ y ≤ 4.0
0.0 ≤ x ≤ 4.0 ∩ y = 0.0
x = 4.0 ∩ 0.0 ≤ y ≤ 4.0

Task 2

x = 0.0 ∩ y = 5.0
x = 6.0 ∩ y = 5.0

4.5 ≤ y + 1.6x ≤ 5.0 ∩ . . .
0.0 ≤ x ≤ 3.0 ∩ 0.0 ≤ y ≤ 4.0
−5.0 ≤ y − 1.6x ≤ −4.5 ∩ . . .
3.0 ≤ x ≤ 6.0 ∩ 0.0 ≤ x ≤ 4.0

Task 3 x = 3.0 ∩ 0.0 ≤ y ≤ 6.0

Task 4
x = 0 ∩ 0.0 ≤ y ≤ 4.0
0.0 ≤ x ≤ 3.0 ∩ y = 4.0
0.0 ≤ 3.0 ∩ y = 0.0

Task 5
x = 0.0 ∩ 0.0 ≤ y ≤ 5.0
0.0 ≤ x ≤ 3.0 ∩ y = 4.0
x = 3.0 ∩ 0.0 ≤ y ≤ 5.0

Table 5.2: The set of geometric constraints on package placements for each of the
Warehouse package rearrangement tasks.

problem, the goal is to plan for the optimal action sequence with optimal continuous

parameters that rearrange the packages by satisfying a specific set of linear geometric

constraints on package placements in SE(2) space. The set of constraints for the five

tasks are listed in Table 5.2.

We evaluate the time to build the Hybrid Funnel Graph as well as the time to

solve the resulting MICP for each of these tasks. Quantitative experimental results

for each task are presented in Table 5.3, with the corresponding qualitative results

shown in Figure 5.4. The experiments were run in westbrick.jl, a 2D package

rearrangement simulator we developed.

Videos of the robot executing the plans generated for each task can be found on

the project’s webpage at this url: https://adubredu.github.io/gtpmip
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Task HFG Building Time(s) MICP Solving Time(s)

Task 1 21.12± 1.230 0.26± 0.100
Task 2 87.41± 10.160 0.60± 0.084
Task 3 5.20± 0.140 0.12± 0.004
Task 4 29.92± 0.450 0.31± 0.044
Task 5 32.06± 0.330 0.30± 0.046

Table 5.3: Times (in seconds) for building the Hybrid Funnel Graphs(HFG) and for
solving the resulting Mixed Integer Convex Program for each of the tasks.

Figure 5.4: Qualitative results from the execution of plans generated by solving the
package rearrangement problems in Tasks 1-5 with GTPMIP
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5.6.3 3D Box Rerarrangement

5.6.3.1 Problem Description

We extend the package rearrangement problem to a 3D environment where the

task is to plan an optimal action sequence for a simulated Digit humanoid robot

to rearrange a pile of boxes of different masses and sizes into a pre-specified goal

configuration in simulation as depicted in Figure 5.5. As this plan is to be executed

by a humanoid robot, the GTPMIP problem for this task is subjected to kinematic

constraints on the robot’s center of mass, stance pose, end-effector position and static

balance constraint.

The center of mass constraint, expressed in Equation 5.11 is a quadratic constraint

that constrains the center of mass 3D position xcom to a desired offset δcom relative

to the 3D position xbox of the box being lifted by the robot.

(xcom − xbox)
⊤Qcom(xcom − xbox) ≤ δcom

xcom, xbox, δcom ∈ R3

(5.11)

where Qcom is a 3x3 diagonal matrix of weights. We set Qcom to the identity

matrix in the experiments.

Similarly, the stance constraint, expressed in Equation 5.12 is a quadratic con-

straint on the SE2 pose xstance of the feet of the humanoid robot to the SE2 pose

xbox2D of the box to be lifted by the robot. Since both feet must be in contact with

the ground when the robot lifts the box, we only constrain the SE2 pose of the robot’s

feet. i.e. the x, y and yaw components of the pose of the feet.

(xstance − xbox)
⊤Qstance(xstance − xbox) ≤ δstance

xstance, xbox, δstance ∈ SE2
(5.12)
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where Qstance is a 3x3 diagonal matrix of weights. We set Qstance to the identity

matrix in the experiments.

The end-effector position constraints are also quadratic constraints on the posi-

tions of the wrists of the robot with respect to the box to be lifted. The desired offset

δee is a user defined parameter that represents how close the lifted box should be

from the torso of Digit. For the lighter boxes, the magnitude of δee is large because

Digit can afford to hold them without significantly changing the position of the total

center of mass of the robot and the box and cause an imbalance. However, for heavier

objects, the magnitude of δee is small to ensure that Digit holds the box closer to its

torso and maintains balance as it lifts and transports the box.

The final constraint is the static balance constraint which is a constraint on the

center of mass and the stance pose of Digit. This constraint ensures that the horizontal

projection of the center of mass remains within the convex hull of Digit’s feet while

it lifts the box. This is the condition for static stability of a bipedal humanoid robot.

Combining these quadratic kinematic constraints with the integer constraints of

the planning problem results in a Mixed Integer Quadratically-Constrained Quadratic

Program (MIQCQP). As with the all experiments in this chapter, we solve this

MIQCQP using the Gurobi Mathematical Program solver.

5.6.3.2 Implementation

We used the MuJoCo Physics Simulation software[94] to simulate the Digit hu-

manoid robot as well as the box rearrangement environment setup. Given the plan

output from GTPMIP, we use the ALIP walking controller [38] to generate foot place-

ment locations to computed stance poses from the plan and the Kinodynamic Fabrics

whole-body controller [4] to track the foot placements from ALIP and the center of

mass and posture parameters from the GTPMIP plan.
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Problem Num. Boxes HFG Building Time(s) MIQCQP Solving Time(s)

Problem 1 6 0.33 0.095
Problem 2 6 0.18 0.103
Problem 3 8 3.47 6.167
Problem 4 8 2.52 4.700
Problem 5 9 5.99 10.315

Table 5.4: Times (in seconds) for building the Hybrid Funnel Graphs(HFG) and for
solving the resulting Mixed Integer Quadratically-Constrained Quadratic Program
for each of the 3D Box Rearrangement problems.

5.6.3.3 Results

We formulate 5 different constrained box rearrangement problems as described

above and solve them with GTPMIP. Figure 5.5 shows the initial and goal configura-

tion of the boxes in each of the constrained box rearrangement problems. Table 5.4

presents the Hybrid Funnel Graph build times and the corresponding MIQCQP solve

times for the various problems.

The experimental results show a general increase in Hybrid Funnel Graph building

time and Problem solving time with increasing number of boxes. As the number of

boxes increases, the total number of actions that could be taken at any time by the

robot also increases. This leads to an increase in the number of integer and continuous

constraints in the planning problem and by extension, an increase in the time it takes

the solver to find an optimal solution. Figure 5.6 shows a step-by-step execution of

grounded actions in the plan generated by GTPMIP for Problem 2.

5.6.4 Mobile Manipulation tasks with Physical Robot

Finally, we employ GTPMIP in planning for optimal constrained tasks in the real

world. We use the Digit [81] humanoid robot platform to execute output plans. We

focus on 2 main tasks; the shelf-stocking task (pictured in Figure 5.7) and the table

serving task.

The shelf-stocking task requires that the robot stock a shelf with a predefined set
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of grocery items at specific positions on the shelf. The table serving task requires

that the robot collects a specified set of grocery items from a shelf and distributes

them to a dinner table in predefined desired configurations.

The kinematic constraints we consider in these tasks are the robot stance pose

constraint and the grasp angle constraint. The robot stance pose constraint constrains

the robot’s standing pose to a desired region in SE(2) space from which the object

to be grasped is kinematically reachable by the robot. The grasp angle constraint

ensures that the angle of approach of the robot’s grippers results in a stable grasp.

Video demonstrations of the robot performing all these tasks can be found on the

project’s website at this url: https://adubredu.github.io/gtpmip

5.7 Discussion

5.7.1 Comparison with other approaches

Ultimately, GTPMIP seeks to solve the problem of task planning with continuous

constraints. The output of GTPMIP is a grounded plan made up of actions with

continuous parameters. These actions can then be executed by a Robot equipped

with motion controller that can generate motor commands given the actions. Task

and Motion planning (TAMP) approaches [88, 35] solve a slightly different problem

albeit generating a similar kind of output as GTPMIP. They interleave symbolic task

planning with conditional sampling of continuous parameters for actions generated

from task planning. These sampled continuous parameters are only feasible with no

guarantee of optimality. As such, TAMP is restrained to only solving tasks with

symbolic goals and cannot solve tasks with a continuous objective and continuous

explicit constraints.

Logic Geometric Programming (LGP) [96], proposed by Marc Toussaint, is an

alternative approach for solving TAMP problems with continuous objectives. LGP
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formulates the TAMP problem as a nonlinear optimization problem where symbolic

actions are used to formulate constraints over continuous parameters. LGP solves the

nonlinear optimization problem in 3 stages, with the first stage being an optimization

of the final state of the continuous parameters given a symbolic plan planned sepa-

rately using Monte Carlo Tree Search and the final stage being an optimization over

the full continuous parameters of the entire plan. Even though this layered approach

allows LGP to optimize for continuous constraints and objectives, this separation of

symbolic planning and continuous parameter search loses the tight coupling of sym-

bolic search and continuous parameter search that TAMP approaches possess. As

such, LGP poses a risk of planning logically-consistent symbolic actions that may be

geometrically infeasible. GTPMIP, in contrast, formulates the entire TAMP prob-

lem as a single Mixed Integer Program, jointly solving for both symbolic actions

and continuous parameters, while optimizing a continuous task objective. This joint

optimization removes the risk of geometrically-infeasible symbolic actions.

5.8 Conclusion

We tackled the problem of optimal constrained task planning by proposing an

approach that encoded the entire task planning problem as a single MICP and solved

it using an off-the-shelf MIP solver. We evaluated our approach on a set of optimal

constrained task planning problems and demonstrated its ability to generate optimal

plans including on a physical robot platform under kinematic constraints.
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Figure 5.5: Initial and Goal box rearrangements for each of the 5 3D Box Rearrange-
ment tasks
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Figure 5.6: Subfigures (a) - (h) show snapshots of the Digit robot executing a GTP-
MIP generated plan to rearrange large Amazon boxes.
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Figure 5.7: Plan execution sequence for the shelf-stocking task on a physical Digit
robot
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CHAPTER VI

Future Work

6.1 Relaxing GTPMIP assumptions

The primary assumption made with GTPMIP in Chapter V is that the robot had

knowledge of the best constraints to satisfy and the right set of action primitives to

accomplish a given task. However, robots operating in most interesting real world

settings do not often have access to these capabilities.

An exciting avenue for future work would be to ease the expense of predefining

constraints. Could a robot learn to derive numerical constraints from natural lan-

guage or from user demonstrations? They have been a few recent efforts in this

direction. A recent work by Ding et. al. [27] proposes the use Large Language

Models to generate semantically-valid object arrangements and inter-object geomet-

ric relationships which are then used to describe task goals for a downstream Task

and Motion Planning approach. Such learned language models can be fine-tuned to

generate plausible semantic and geometric constraints for Grounded Task Planning

approaches like GTPMIP.

Another potential avenue for future work would be to enable robots to autonomously

learn the right set of action primitives needed to complete a given task. The action

primitives used in the various works described in this dissertation were hand-designed

for the various tasks. Even though the hand-designed action primitives were sufficient
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for the limited tasks considered in this dissertation, it is likely that a general purpose

robot may encounter tasks in different environments were the hand-designed action

primitives may not be sufficient at accomplishing the assigned tasks. For example,

the bimanual side-ways lifting action primitive used in Chapter V to lift amazon

boxes may not be appropriate for a box made up of fragile cardboard that should

instead be lifted from the bottom. It will be more desirable for the robot to learn

the right set of action primitives for a particular task through observing an expert

demonstration. How should this robot learning problem be formulated? What is the

right medium for expressing expert demonstrations? What sequence of motions from

the demonstration constitutes an action primitive? Should the robot mimic the exact

motions of the expert demonstration or should it be able to infer more subtle cues

from the demonstration? These are certainly interesting questions to explore.

6.2 Inferring task goals from human demonstrations

A common way for humans to teach each other how to perform manual tasks is

through demonstration. Kids learn how to walk, brush their teeth, and tie their shoe-

laces through observing how adults perform these tasks. Likewise, a seamless way to

instruct robots to perform manual tasks could be through demonstration. However,

the question about what exactly the robot should derive from a human demonstration

still remains. Zeng et. al. in [112] proposed that the robot derive inter-object

relationships from the user demonstration. These inter-object relationships are then

used to formulate the task goals of a task planning problem which can be solved and

executed using an approach like Lesample from Chapter III. For longer, temporally-

extended demonstrations like cleaning an entire apartment or cooking or assembling

car parts, deriving inter-object relationships alone may not suffice. Endowing robots

with the ability to learn to predict task goals from human demonstrations, particularly

from ubiquitous media like video recordings and plan grounded actions to achieve the
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predicted task goals would be a big step towards the development of highly capable

and teachable robots.
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APPENDIX A

Manipulation with Digit

A.1 Gripper Hardware

We use the Digit robot extensively in robot experiments throughout this thesis.

The Digit robot, pictured in Figure A.1a, is a humanoid robot with two arms and two

legs. It however does not have any grippers for object pick-and-place tasks. In order to

use it to perform mobile manipulation tasks that involved pick-and-place operations,

we designed specialized claw grippers for Digit. The claw grippers, pictured in Figure

A.1b, were actuated by two high-torque, 2.4 Newton-meter servomotors which run

at 9v each. The servomotors were controlled using a tiny micro-controller encased

in the gripper assembly. The micro-controller had a Radio-Frequency receiver that

intercepted transmitted signals from a transmitter module connected via a serial port

to Digit’s central computer. This wireless setup ensured that there were no dangling

wires around the torso and arms of the robot, as wires could end up tangling as Digit’s

walked about and swung its arms.
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Figure A.1: (a) The Digit Bipedal Humanoid Robot with custom claw grippers at-
tached (b) Custom claw grippers grasping a plastic water bottle

A.2 Gripper Software

The actuation of the gripper was controlled through code running on Digit’s cen-

tral computer. To close or open the gripper, the code sends a stream of bytes via the

serial port to the transmitter module’s micro-controller. The micro-controller then

encodes the input bytes and transmits them wirelessly over a 2.4GHz radio frequency

channel to the receiver module encased in each gripper assembly attached to Digit’s

wrists. The micro-controller of the receiver module interprets the received bytes and

sends the corresponding Pulse-width modulation signal to the servomotors of the claw

gripper to drive them to the specified positions.
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planning in belief space. The International Journal of Robotics Research, 32(9-
10):1194–1227, 2013.

[59] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Integrated task and motion
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