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ABSTRACT

Structures that move, deploy, and reconfigure offer many advantages, such as advanced func-
tionality, the ability to stow and transport, and adaptability. Despite these advantages, traditional
civil engineering structures such as bridges, shelters, and domes are not typically designed to re-
configure, due to several challenges that arise when designing at a civil engineering scale. These
challenges include that the effect of gravity can hinder the actuation of a reconfigurable structure,
the inherent flexibility of structures with multiple degrees of freedom (DOFs), and the difficulty of
ensuring stability and stiffness in the final deployed state. This dissertation explores the design of
reconfigurable structures to address these challenges and make the structures feasible for use at a
civil engineering scale.

First, an open-source design framework for reconfigurable structures that are stable under grav-
ity at any global orientation is established. Optimization is used to design springs that offset the
potential energy due to gravity and transform reconfigurable structures into systems with contin-

uous equilibrium. One set of springs can be designed to maintain continuous equilibrium, even
when the structure is reoriented with respect to a global reference frame. Next, the design frame-
work is extended to systems with more than one DOF. The spring properties are computed such
that the multi-DOF system follows a specific motion path while remaining globally stable and in
continuous equilibrium. Next, the practical implementation of continuous equilibrium structures
in real-world applications is discussed. Mechanical models and physical prototypes are used to
investigate the behavior of continuous equilibrium structures, and a reduction in actuation forces
is observed when springs are used to counteract gravity. Finally, a novel dome-like reconfigurable
structure is introduced. Despite having multiple DOFs, this structure has a unique infinitesimal
mechanism which allows it to deform into a dome-like shape with high out-of-plane stiffness. The
optimization framework is used to design the dome-like structure to have continuous equilibrium,
making it stable under gravity and reducing the forces needed for deployment.

This dissertation presents methods for designing reconfigurable structures to have lower actua-
tion forces, inherent stability, and robust stiffness. These methods are of importance in scenarios
where gravity cannot be neglected, and in particular to the realization of large deployable and
reconfigurable structures at the civil engineering scale.

xiii



CHAPTER 1

Introduction

Reconfigurable structures are systems with components that move, or reconfigure, along a pre-
scribed path in order to achieve one or more functions. They are versatile and offer benefits in
many fields, including civil engineering. Civil engineering scale reconfigurable structures, such
as a retractable roof (Figure 1.1(A)) or deployable pedestrian bridge (Figure 1.1(B)) can enable
the multi-purpose use of a space. Reconfigurable components can be incorporated into building
facades and change in response to the environment, adjusting the amount of sunlight let into the
building (Figure 1.1(C)).

For decades, research has focused on the kinematics, mobility, and stress states of reconfig-
urable structures [1, 2, 3, 4]. A fundamental challenge that remains is actuating them efficiently
while preserving stiffness and stability, especially in applications where gravity has a significant
effect, as it does for in civil engineering structures. In many cases, reconfiguration requires a large
input of energy, resulting in inefficient, over-designed, and costly structures that are impractical to
fabricate and operate.

In this dissertation, a framework is introduced to design structures that maintain stability as they
reconfigure though their kinematic path and are reoriented with respect to a global reference frame.
The method involves computing properties of springs that directly offset the potential energy due
to gravity. Systems designed using this framework do not collapse due to gravity and can move
along their kinematic path with only a small input force.

1.1 Linkage Systems

Linkages are reconfigurable structures consisting of rigid links connected by revolute pin joints.
Such systems are used widely in engineering to transmit forces and enable complex motions. The
simplest type of linkage is the planar four-bar linkage. Four-bar linkages are ubiquitous in engi-
neering, found in robotics [6], biomechanics and bio-inspired design [7, 8, 9], automotive steering
[10], surgical instruments [11], and many other fields. A planar four-bar linkage consists of four
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Figure 1.1: Examples of civil-scale reconfigurable structures. (A) The retractable roof of
Mercedes-Benz Stadium in Atlanta, GA. (B) Heatherwick’s rolling bridge in London [5]. (C)
The adaptive facade of the Al Bahr towers in Dubai.

rigid members connected with pinned joints, resulting in a one-DOF mechanism [12]. Although
the kinematics [13, 14, 15], dynamics [16, 17], design [18], and inertia loads [19, 20] of four-bar
linkages have been studied, the effect of gravity and self-weight on their mechanics is rarely con-
sidered in the literature. Static balancing of four-bar linkages involves counteracting gravity with
springs, but previous approaches to static balancing are limited to specific linkages in a static orien-
tation [11, 21, 22, 23]. Linkages made up of scissorlike elements (SLEs), or pantographs, are often
used to create structures that deploy from a compact state [24, 25], such as a platform scissor lift
(Figure 1.2(A)). Bipedal robots mimic the motion of human limbs and joints using linkages (Fig-
ure 1.2(B)). Some linkages can serve as a frame for a curved surface, such as the Bennett linkage
(Figure 1.2(C)) and the Hoberman Sphere (Figure 1.2(D)). Linkages are essential in automotive
design, where they are used in applications such as steering (Figure 1.2(E)).

1.2 Origami and Kirigami Systems

In recent years, origami has emerged as a way to rapidly assemble complex structural geometries
from flat sheets [30, 31]. Origami-inspired reconfigurable structures are comprised of panels made
from thin sheets connected by flexible crease lines. Origami principles are also scale independent,
viable at the micro-scale in systems such as grippers [32, 33, 34, 35] (Figure1.3(A)), and at a civil
engineering scale in systems such as deployable canopies [30, 36, 37] (Figure 1.3(B)). Assembling
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Figure 1.2: Examples of linkage-based reconfigurable structures. (A) A scissor lift [26]. (B)
Bipedal Cassie robot [27]. (C) Bennett linkage [28]. (D) Hobermann sphere. (E) Ackermann
steering linkage [29].

structures out of thin, flat sheets can also simplify the fabrication of complex structures, such as
walking robots [38] (Figure 1.3(C)). Foldable structures inspired by origami and designed using
engineering principles can be deployed quickly from compact or stowed configurations [39, 40,
41], as seen in the design of a deployable solar array which deploys in orbit [42] (Figure 1.3(D)).
Kirigami, a related discipline where cuts are used in addition to folding, has been an inspiration
for novel metamaterials [43], crawling robots [44], inflatables with programmed shapes [45], and
pop-up dome-like structures [46] (Figure 1.3(E)).

Several challenges arise when fabricating origami-based structures at a civil engineering scale.
First, it is difficult to reach high stiffness using origami and kirigami methods, because thin sheets
are prone to bending and folding. Origami-based systems are inherently flexible due to their high
number of degrees of freedom, and external supports or locking are often required to create load-
bearing structures. Additionally, accommodations must be made for the finite thickness of struc-
tural materials in order to achieve the desired folding motions [47, 48]. Thin-sheet origami can be
used to achieve complex geometries, such as curved surfaces [49], but many methods used are not
viable for materials with significant thickness.

1.3 Multi-DOF Systems

Systems with multiple degrees of freedom (multi-DOFs) are multi-functional structures with ap-
plications in a wide variety of fields. Multi-DOF structures have a range of motion associated
with each DOF, which allows for drastic and functional change in the geometry, as seen when an
excavator digs and transports material (Figure 1.4(A)). Multiple DOFs can also enable complex
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Figure 1.3: Examples of origami-based reconfigurable structures. (A) An origami micro-gripper
[32]. (B) A deployable canopy consisting of Miura-ori zipper tubes [30]. (C) A centimeter-scale
robot, fabricated from a flat sheet and assembled using origami principles [38] (D) A solar array
designed to be deployed in orbit [42]. (E) A pop-up kirigami dome [46].

and varied motions, as seen in robotic arms that can stretch, bend, twist, and grasp objects (Fig-
ure 1.4(B)). Multi-DOF systems can also consist of one-DOF components connected in parallel,
achieving multi-DOF motion as they work together, such as in the 6-DOF Stewart platform (Fig-
ure 1.4(C)). Mechanical metamaterials have also been fabricated to have multiple DOFs, leading to
tunability in shape and stiffness [50] (Figure 1.4(D)). Multi-DOF systems are also found in robotic
exoskeletons [51], space-saving furniture [52], in next-generation aircraft [53], and more.

From a technical perspective, while one-DOF systems have only one kinematic path, adding
even a single other DOF results in a system with infinite paths for possible reconfiguration. As
such, multi-DOF systems with a range of motion associated with each DOF have a kinematic
space with dimension n for an n-DOF system. While multi-DOF reconfigurable structures offer
enhanced motions and functionality, their implementation is hindered by two main challenges.
First, the effect of gravity acting on these reconfigurable structures can result in destabilizing ef-
fects with unwanted motions (or even collapse), so counteracting gravity requires costly, complex,
and inefficient actuation systems. Second, while infinite configurations are possible with multi-
DOF systems, obtaining motion along a desired path or in a particular sequence is often difficult,
requiring dedicated control to ensure motion and stability.

Programming motions into a multi-DOF reconfigurable structure allows certain paths to be
favored and prohibits motion along unwanted directions. Programming can be achieved using dis-
crete components, such as magnets and springs, or through continuous factors such as strain [57].
One type of motion path programming is self-assembly, which is often realized using origami-
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Figure 1.4: Examples of multi-DOF reconfigurable structures. (A) A construction excavator [54].
(B) A robotic arm that can stretch, bend, twist, and grasp objects [14]. (C) A 6-DOF Stewart
platform [55]. (D) A mechanical metamaterial with tunable shape and stiffness [56].

inspired designs [34, 58, 59]. At the micro-scale, residual stresses [33, 60], thermal and chem-
ical stimuli [61], hydrogel swelling [62], and Joule heating [32] combined with origami design
principles have been shown to enable self-folding. Motion paths can also be programmed into
reconfigurable structures through purposeful self-contact [63]. In soft material systems, shape pro-
gramming has been achieved using stimuli-responsive materials [64, 65], and compressive buck-
ling [66]. Most of these techniques are not viable beyond the micro-scale because gravity causes
unwanted deformations in soft materials [67] and the forces developed for self-folding are not
large enough to overcome gravity. Additionally, fabrication methods such as lithography are not
applicable for the large components needed to build reconfigurable structures at a civil-engineering
scale.

1.4 Continuous Equilibrium

Continuous equilibrium systems are a subset of reconfigurable structures with a kinematic mode
that allows them to reconfigure with a negligible input of energy. Continuous equilibrium is also
described as neutral stability or zero stiffness, and is characterized by a constant potential energy
curve throughout reconfiguration [68, 69, 70]. Advantages of systems with continuous equilibrium
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Figure 1.5: Examples of continuous equilibrium systems. (A) Anglepoise desk lamp [71]. (B)
Fremont bascule bridge in Seattle, WA [72]. (C) Zero-gravity recliner [73]. (D) Zero-stiffness
tensegrity structure [74]. (E) Totimorphic assemblies [75]. (F) Neutrally stable cylindrical shell
[76]. (G) Reconfigurable linkage made with neutrally stable helicoidal shell joints [77]. (H) A
simple statically balanced system [70].

include low energy required for actuation and an inherently stable reconfiguration path that avoids
instabilities and dynamic snap-through behaviors.

Under gravity, most reconfigurable structures do not have a constant potential energy curve;
rather, the potential energy is affected by gravity as the structure moves through its kinematic path.
The potential energy curve of a system is also affected by elements such as counterweights, springs,
or magnets [57, 78]. Continuous equilibrium is attained when the potential energy contributions of
these components offset the potential energy due to gravity. Examples include the Anglepoise desk
lamp, in which pre-stressed springs allow the lamp to be easily repositioned [79] (Figure 1.5(A)),
bascule bridges which utilize a counterbalance to open [80, 81] (Figure 1.5(B)), and chairs which
can be easily adjusted to recline at any angle [73] (Figure 1.5(C)).

Continuous equilibrium has been attained in structures through the addition of springs, where
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the potential energy of the springs counteract each other and large shape changes can occur [74, 75]
(Figure 1.5(D-E)). Structures can be designed to match a prescribed energy landscape (including
a landscape corresponding to continuous equilibrium) by numerically computing the appropriate
spring properties [43] An initial plastic deformation can also be used to imbue pre-stress into
material [76, 82], such as a cylindrical shell that is stable as it unwinds and winds again in the
opposite direction (Figure 1.5(F)). Coupled components with offsetting deformations can also be
used to achieve continuous equilibrium [83, 77], particularly in the design of linkage joints (Fig-
ure 1.5(G)). A temperature gradient [84] or thermal residual stresses [85] have also been used
to obtain continuous equilibrium. Despite these examples, there is currently no comprehensive
framework to transform structures into systems with continuous equilibrium while considering
gravity. In most previous studies, gravity has been ignored, systems are trivial to design (such
as the simple rigid link shown in Figure 1.5(H)), are designed by trial and error, or only achieve
continuous equilibrium for a small range of motion [70]. Additionally, all previous work has fo-
cused on achieving continuous equilibrium in only one specific orientation. If the entire structure
is reoriented with respect to the ground (thus changing the potential energy curve due to gravity),
continuous equilibrium is not maintained. Finally, continuous equilibrium has not been explored
for origami structures or systems with multiple DOFs.

1.5 Scope of Thesis

In this dissertation, we present a framework to design structures that maintain continuous equilib-
rium as they reconfigure though their kinematic path and are reoriented with respect to a global
reference frame. The method involves using optimization to compute properties of springs that
directly offset the potential energy due to gravity. The open-source computer codes used to gen-
erate the results presented in Chapters 2 and 3 are made available on GitHub. The dissertation is
organized as follows:

Chapter 2 introduces the design framework for transforming reconfigurable structures into
systems with continuous equilibrium. We first use planar four-bar linkages to demonstrate our
method. We formulate an objective function that minimizes the fluctuation in potential energy
over the entire kinematic path. When torsional springs are added to the linkages, the total potential
energy curve is flattened and continuous equilibrium is attained. The framework can be used
to design structures that maintain continuous equilibrium even as the system is reoriented with
respect to a global reference frame. We explore the effects of four types of springs: torsional,
extensional, internal, and external, investigate the effect of symmetry on the final total potential
energy curve, and establish guidelines for choosing the most effective spring types. Finally, we
expand the framework to the design of more complex structures that carry external loads and to a
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three-dimensional origami arch.
Chapter 3 expands the continuous equilibrium design framework to systems with more than

one DOF. First, we use the framework to design Watt’s linkages with one-, two-, and three-DOFs
that are in continuous equilibrium throughout their entire kinematic space. Next, we explore vari-
ous ways to program motions in multi-DOF systems using the principle of continuous equilibrium.
The result is systems that have continuous equilibrium along desired motion paths which are glob-
ally stable. Multiple paths can be programmed, along with stable configurations, for sequential
motion. We conclude this chapter with design examples where the framework is used to design
more complex multi-DOF structures.

Chapter 4 discusses considerations for the practical implementation of continuous equilibrium
reconfigurable structures. We use mechanical models to quantify the forces required for reconfig-
uration under gravity when optimized springs are added. These concepts are demonstrated further
through the fabrication of physical models. In this chapter we discuss the fabrication methods used
and some preliminary results from experimental testing.

Chapter 5 presents a culminating example of a reconfigurable, three-dimensional, multi-DOF
system: a novel pop-up, dome-like kirigami structure. The structure is made from flat panels and
can be fabricated with thickness. When deployed, it forms a domed surface that has high stiffness.
We discuss variations of the geometry of the initial kirigami pattern and perform a parametric study
to investigate the effect on the final dome-like structure. Next, we use an established mechanism
analysis method to identify the internal mechanism that results in the dome-forming motion. By
activating the dome-forming motion, all other flexible deformation modes are eliminated, and the
result is a structure with high stiffness. A stiffness analysis shows that the structure has 1,000 to
5,000 times higher stiffness as compared to a singly-curved sheet with the same material thickness.
Finally, the design framework presented in chapters 2 and 3 is used to design the pop-up dome with
continuous equilibrium.

Chapter 6 concludes the dissertation with a discussion of the main findings and outlines areas
for future work.
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CHAPTER 2

Designing Continuous Equilibrium Structures that
Counteract Gravity in any Orientation

This chapter presents a framework to transform reconfigurable structures into systems with contin-
uous equilibrium. The method involves adding springs that counteract gravity to achieve a system
with a nearly flat potential energy curve. The resulting structures can move, or reconfigure, ef-
fortlessly through their kinematic paths and remain stable in all configurations. Remarkably, the
framework can design systems that maintain continuous equilibrium during reorientation, so that
the system maintains a nearly flat potential energy curve even when it is rotated with respect to
a global reference frame. This ability to reorient while maintaining continuous equilibrium en-
hances the versatility of deployable and reconfigurable structures by ensuring they remain efficient
and stable for use in different scenarios. In this chapter, the framework is applied to several planar
linkages and the effect of spring placement, spring types, and system kinematics on the optimized
potential energy curves is explored. Next, the generality of the method is demonstrated through
more complex linkage systems that carry external masses and with a three-dimensional origami-
inspired deployable structure. The framework introduced in this chapter enables the stable and
efficient actuation of reconfigurable structures under gravity, regardless of their global orientation.
These principles have the potential to revolutionize the design of robotic limbs, retractable roofs,
furniture, consumer products, vehicle systems, and more.

The work presented in this chapter is adapted from [86].

2.1 Introduction

In this chapter, we present a framework to design structures that maintain continuous equilibrium
as they reconfigure though their kinematic path and are reoriented with respect to a global reference
frame. The method involves using optimization to compute the properties of springs that directly
offset the potential energy due to gravity. We first discuss the optimization setup used to find
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Figure 2.1: Designing the Watt’s linkage to have continuous equilibrium. (A) The kinematics of
the linkage are defined by the angle of the input link ϕ. We define four locations for torsional
springs, with angles θA, θB, θC , and θD. (B) The angles of the four springs vary with ϕ. (C)
Illustration of the fluctuation in potential energy for an arbitrary PET curve. The fluctuation is
equal to ∆PE1 + ∆PE2 + ∆PE3. (D) Potential energy contributions of four internal torsional
springs (A, B, C, and D). When the spring contributions are summed with the contribution from
gravity, the fluctuation of the potential energy curve is reduced.

spring properties that transform a simple linkage into a continuous equilibrium system. Next, we
explore how continuous equilibrium can be maintained as systems are reoriented with respect to a
global reference frame. Finally, we apply the method to more complex systems and demonstrate
how it can be used to design practical structures. The computer codes used to generate the results
presented in this chapter are provided on GitHub.

2.2 Potential Energy of a Four-bar Linkage

A four-bar linkage is a simple reconfigurable mechanism used in many engineering fields. The
four-bar linkage that we focus on in depth is the Watt’s linkage. This variation of the Watt’s
linkage consists of three bars of equal length (the imaginary fourth “bar,” or fixed link, connects
the two support nodes). The four bars are identified as the input link, output link, coupler (floating)
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link, and ground (fixed) link, which is an imaginary bar connecting the two support nodes (Figure
2.1(A)). The left end of the input link is pinned one bar length above the right end of the output
link. The kinematics of the Watt’s linkage are defined by the angle ϕ, and we consider only a
section of the kinematic path: ϕmin = 145◦ ≤ ϕ ≤ ϕmax = 215◦ (Figure 2.1(B)). We focus on
this range of ϕ because within this range, the midpoint of the floating link traces a nearly straight
vertical path, a property which is exploited in applications such as vehicle suspension systems. In
this dissertation, we limit the kinematics of all linkages to a range where no link rotates a full 360◦

with respect to an adjacent link.
The potential energy of a bar i due to gravity is defined as PEGi(ϕ) = mi ∗ g ∗ hi(ϕ), where mi

is the mass of bar i, g = 9.81 m/s2, and hi is the height of the center of mass of bar i. The height
is computed from a reference point 1 m below the support point of the output link. As the linkage
moves through its kinematic path, the height of each bar changes, and so does the potential energy
due to gravity; thus, PEGi is a function of ϕ. We assume the bars of all linkages have a length of
0.3 m and a uniform mass distribution of 1 kg/m unless otherwise noted.

Our approach to achieving continuous equilibrium is to offset the potential energy due to gravity
by adding springs, thus resulting in a flat total potential energy curve. We first add a torsional
spring j, which has a linear stiffness kj (units: N-m/rad) and a rest angle αj (units: rad). The
potential energy contribution of a torsional spring j is PESj(ϕ) =

1
2
kj(θj(ϕ)− αj)

2. The potential
energy in the spring is zero when the current angle of the spring θj is equal to the rest angle αj .

For a given configuration (ϕ), the total potential energy of a linkage system with n bars and m
springs is expressed as

PET(ϕ) =
n∑
i

PEGi(ϕ) +
m∑
j

PESj(ϕ). (2.1)

For an ideal system in continuous equilibrium, the PET curve is perfectly flat. To quantify the
”flatness” of the total potential energy curve, we first compute the change in potential energy along
the kinematic path, expressed as

∆PET =
d PET(ϕ)

dϕ
. (2.2)

To compute the total change in potential energy, we integrate the absolute value of the difference
along the kinematic path, expressed as

Σ
∣∣∆PET

∣∣ = ∫ ϕmax

ϕmin

∣∣∣d PET(ϕ)

dϕ

∣∣∣dϕ. (2.3)

The quantity Σ|∆PET| is a measure of the fluctuation in the PET curve, where Σ|∆PET| = 0

corresponds to a perfectly flat line. Figure 2.1(C) illustrates how Σ|∆PET| is calculated.
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2.3 Optimizing Spring Properties for Continuous Equilibrium

We aim to minimize the Σ|∆PET| of a system by finding appropriate spring properties (stiffnesses
and rest angles) that result in springs that counteract the effect of gravity. To compute the spring
properties, we minimize the Σ|∆PET| using the MATLAB function fmincon. We identify four
possible locations for internal torsional springs on the Watt’s linkage, labelled A, B, C, and D in
Figure 2.1(A). The design parameters for the optimization problem are the four spring stiffnesses
(kA, kB, kC , kD) and four rest angles (αA, αB, αC , αD). The lower bound for the stiffness terms is
0 N-m/rad, and the range for the rest angle αj is limited to the range of the corresponding angle θj
(Figure 2.1(B)). There are no additional constraints placed on the optimization problem, which is
expressed as

min
(∑∣∣∆PET(ϕ)

∣∣) (2.4)

s.t. kj > 0

αj ϵ [θjmin, θjmax].

The result of the optimization for the Watt’s linkage with internal torsional springs at all four
locations is shown in Figure 2.1(D). The individual plots show the potential energy contributions
of each spring and the total PE plot shows the aggregate result of all contributions, including
gravity. The optimized spring parameters are kA = 0.396 N-m/rad, αA = 199◦; kB = 1.18 N-
m/rad, αB = 142◦; kC = 1.23 N-m/rad, αC = 158◦; and kD = 2.04 N-m/rad, αD = 139◦.
Qualitatively, the potential energy curve due to bar gravity appears flattened with the addition of
the potential energy stored in the springs. Quantitatively, we compare the optimized Σ|∆PET|
to the same measure considering only gravity, Σ|∆PEG|. The Σ|∆PEG| = 2.07 is reduced to
Σ|∆PET| = 0.065 with the addition of springs; the fluctuation in PET curve is reduced by 96.9%
from the fluctuation in the PEG curve.

We compare all possible combinations of springs at locations A, B, C, and D that can be
used in the design of the Watt’s linkage (Figure 2.2(A)). Certain combinations are more effective
than others at flattening the potential energy curve. For example, when designing the linkage
with only a single spring, placing the spring at location D reduces Σ|∆PET| more than placing
it at locations A or B (Figure 2.2(B)). As a result, when designing a linkage with more than one
spring, the stiffness of springs A and B approach zero for combinations AD, BD, and ABD; the
same Σ|∆PET| can be achieved by placing a spring only at location D. Combination BCD offers
effectively the same level of reduction as using all four springs. Results for all combinations are
included in Table 2.1.
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Watt’s linkage. Placing springs at only locations B, C, and D is as effective as using all four
springs. (B) Bar graph of the measure of the fluctuation in potential energy, Σ|∆PET|, for each
spring combination case.
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Table 2.1: Spring properties and Σ|∆PET| values for all possible location combinations of internal
torsional springs on the Watt’s linkage.

Rest Angle Stiffness [N-m/rad]
αA αB αC αD kA kB kC kD Σ|∆PET| [N-m]

No Springs 2.07
A 145.2◦ 1.96 1.03
B 76.9◦ 1.02 1.58
C 159.2◦ 1.40 0.75
D 137.5◦ 1.93 0.73

AB 146.1◦ 115.8◦ 2.01 0.071 1.06
AC 145.2◦ 159.2◦ 1.32 0.87 0.27
AD 168.5◦ 138.3◦ 0.072 1.93 0.77
BC 88.6◦ 158.7◦ 1.17 1.44 0.21
BD 130.3◦ 137.5◦ 0.031 1.95 0.74
CD 158.8◦ 137.8◦ 0.73 1.33 0.32

ABC 159.8◦ 133.3◦ 156.7◦ 2.18 1.40 1.75 0.19
ABD 168.4◦ 130.2◦ 137.5◦ 0.014 0.030 1.94 0.74
ACD 145.2◦ 159.2◦ 153.4◦ 1.31 0.866 0.0084 0.27
BCD 141.4◦ 157.8◦ 138.7◦ 1.01 1.01 2.00 0.064

ABCD 198.9◦ 142.2◦ 158.2◦ 138.5◦ 0.396 1.18 1.23 2.04 0.065

2.4 Reorientation of Linkages

In addition to reconfiguration through the kinematic path, structures can be reoriented, or rotated
with respect to a global reference frame. For applications that require smooth motion in more than
one orientation, such as robotics, it would be ideal to have one set of springs that ensure continuous
equilibrium at all desired orientations. As the orientation of a system changes, the effect of gravity
changes as well. Take for example a car door which opens effortlessly when the car is parked on
flat ground, but swings closed when parked on a steep hill. To maintain functionality at multiple
orientations, this change in gravity must be taken into account. We define an orientation angle ψ
to describe the angle between a horizontal ground reference and the direction in which ϕ = 0◦

(Figure 2.3(A)). To change the orientation, the linkage is rotated about the support attached to the
input link. In this chapter, we consider a range of orientations ψ = 0◦ to 90◦.

Figure 2.3(B) shows the potential energy curves and contributions for the Watt’s linkage at
three orientations: ψ = 0◦, 45◦, and 90◦. The potential energy due to gravity (gray plots) now
changes with the orientation of the linkage as well as the configuration (i.e., PEG(ϕ, ψ)). For
ψ = 0◦ and 45◦, the system has a potential energy minimum at the end of the kinematic path; thus,
the linkage collapses under gravity (Videos A.3 and A.5, Appendix A). For ψ = 90◦, the linkage

14



0º 90º45º
ψ

Σ|
ΔP

E|

0.5

1.5

2.5

φ

ψ

PE
PE

PE

0º
45

º
90

º

No Springs

0.12

φ

φ

2.5

φ

2

Internal
4

φ

φ

  3

4

φ

External

2

φ

4

φ

φ

2.5

Both

16

φ

14

φ

20

φ

A B

C D

No Springs
Internal
External
Both Int. & Ext.

0

0.5

1

1.5Mean Σ|ΔPE|

φ = 0°

Anchor

Figure 2.3: Reorientation of the Watt’s linkage. (A) The orientation of the Watt’s linkage is defined
by the angle ψ. An external torsional spring is connected to the input link and to an external
horizontal anchor. (B) Potential energy curves for three orientations of the Watt’s linkage (ψ = 0◦,
ψ = 45◦, ψ = 90◦). The linkage is optimized for cases with four internal torsional and/or one
external torsional spring. (C) The measure of the fluctuation in the potential energy curve over the
kinematic path with respect to orientation ψ. (D) When considering more than one orientation, the
mean(Σ|∆PET|) is minimized. The case with both internal and external torsional springs results in
the lowest mean(Σ|∆PET|).
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has a region of constant potential energy in the middle of the kinematic path. However, if the
linkage is pushed outside of this range, it also collapses (Video A.6).

To evaluate the system performance over different orientations, we plot the value of Σ|∆PET|
with respect to the orientation ψ (Figure 2.3(C)). Taking the mean of Σ|∆PET| over the range of ψ
gives a measure of how close the structure is to continuous equilibrium at multiple orientations. As
such, mean(Σ|∆PET|) = 0 indicates a structure with flat potential energy curves in all orientations.
First, we use four internal torsional springs at locations A, B, C, and D to counteract gravity across
multiple orientations. We define the optimization problem as:

min
(

mean
(∑∣∣∆PET(ϕ, ψ)

∣∣)) (2.5)

s.t. kj > 0

αj ϵ [θjmin, θjmax].

The design variables for the optimization problem are again the spring stiffnesses kj and the
rest angles αj . The potential energy in the internal springs does not change with respect to ψ,
so their energy contributions are always the same, regardless of the orientation of the linkage
(’Internal’ column in Figure 2.3(B)). As a result, Σ|∆PET| is reduced more for some orientations
than for others. The internal springs minimize Σ|∆PET| most effectively for ψ = 45◦, where the
resulting PET curve is nearly flat (Figure 2.3(B-C)). For ψ = 90◦, however, adding internal springs
makes the potential energy curve less flat than it was initially (Σ|∆PET| is increased). Because
the objective is to minimize the mean(Σ|∆PET|), the optimization does not necessarily lead to
the smallest Σ|∆PET| for each individual orientation. However, across the range of orientations,
adding internal springs reduces the mean(Σ|∆PET|) by 58%, from 1.382 N-m when no springs are
used to 0.578 N-m with internal springs (Figure 2.3(D)).

Because the potential energy due to gravity is dependent on ψ, it would be beneficial to add
a spring that also depends on ψ. Thus, we next add a single external torsional spring with one
end attached to an external, horizontal anchor and one end attached to the input link of the Watt’s
linkage (Figure 2.3(A)). The potential energy of this external spring depends on both ϕ and ψ,
because the rest angle αE is defined with respect to the horizontal ground reference. The potential
energy in the external spring is PEE = 1

2
kE(ϕ − α∗)2, where α∗ = αE + ψ accounts for the

orientation of the linkage. The total potential energy for a system with an external torsional spring
under gravity is expressed as

PET(ϕ, ψ) =
n∑
i

PEGi(ϕ, ψ) + PEE(ϕ, ψ), (2.6)
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and the optimization problem can be rewritten as

min
(

mean
(∑∣∣∆PET(ϕ, ψ)

∣∣)) (2.7)

s.t. kE > 0

αE ϵ [0, 2π],

where the design variables are the stiffness of the spring kE and the rest angle αE . The stiffness
is required to be > 0, and the range of αE is limited to the range between 0 and 2π. The Watt’s
linkage optimized with one external torsional spring leads to a more effective minimization of the
mean(Σ|∆PET|) than the case with only internal torsional springs (Figure 2.3(B)). For ψ = 90◦,
Σ|∆PET| is still higher than the case with no springs (Figure 2.3(C)), but not as high as the internal
spring case. The case with only one external spring reduces the mean(Σ|∆PET|) by 67.8% to 0.445
N-m (Figure 2.3(D)).

Finally, we consider adding both the four internal torsional springs and one external torsional
spring. The total potential energy in the system for this case is expressed as

PET(ϕ, ψ) =
n∑
i

PEGi(ϕ, ψ) +
m∑
j

PESj(ϕ) + PEE(ϕ, ψ). (2.8)

The design variables of the optimization problem are the stiffnesses and rest angles of all
springs, internal and external, and the objective is again to minimize the mean(Σ|∆PET|) over
all desired orientations.

min
(

mean
(∑∣∣∆PET(ϕ, ψ)

∣∣)) (2.9)

s.t. kj > 0

αj ϵ [θjmin, θjmax]

kE > 0

αE ϵ [0, 2π]

Adding both internal and external torsional springs significantly improves upon the results from
the other two cases. The potential energy curves are nearly flat for ψ = 0◦, 45◦, and 90◦ (Figure
2.3(B)), and the Σ|∆PET| is decreased for nearly all orientations (Figure 2.3(C)). By adding both
sets of torsional springs, we reduce mean(Σ|∆PET|) to 0.137 N-m, a 90% reduction from the case
with no springs (Figure 2.3(D)). The optimized spring properties for all cases are included in Table
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Table 2.2: Spring properties and mean(Σ|∆PET|) values for the Watt’s linkage, optimized for
ψ = 0◦ to 90◦ with four internal torsional springs, one external torsional spring, and both four
internal and one external torsional spring. For the structure with no springs, the mean(Σ|∆PEG|) =
1.382 N-m.

Springs Rest Angle Stiffness [N-m/rad]
Int. Tors. Ext. Tors. αA αB αC αD αE kA kB kC kD kE Mean(Σ|∆PET|)

✓ 202.3◦ 139.3◦ 155.3◦ 147.7◦ 3.01 3.69 3.49 2.61 0.578 N-m
✓ 22.1◦ 0.569 0.445 N-m

✓ ✓ 203.5◦ 143.9◦ 159.2◦ 137.3◦ 306.8◦ 4.64 5.66 5.50 6.68 1.10 0.137 N-m

Table 2.3: Spring properties and mean(Σ|∆PET|) values for the Watt’s linkage, optimized for
various ranges of ψ.

Rest Angle Stiffness [N-m/rad]
Range αA αB αC αD αE kA kB kC kD kE Mean(Σ|∆PET|)
0◦ to 90◦ 203.5◦ 143.9◦ 159.2◦ 137.3◦ 306.8◦ 4.64 5.66 5.50 6.68 1.10 0.137 N-m
0◦ to 60◦ 209.9◦ 144.0◦ 159.2◦ 137.3◦ 333.0◦ 4.12 5.16 5.02 6.48 0.77 0.0905 N-m
0◦ to 30◦ 214.3◦ 144.0◦ 159.3◦ 137.3◦ 355.4◦ 2.86 3.80 3.72 5.12 0.42 0.0602 N-m

2.2.
It is possible to reduce the mean(Σ|∆PET|) further by limiting the system to a smaller range of

ψ; for instance, the mean(Σ|∆PET|) is 0.0602 N-m for a range of ψ = 0◦ to 30◦. The optimized
spring properties for several ranges of ψ are included in Table 2.3.

2.5 Effect of Spring Kinematic Relationships on System Per-
formance

This section explores how system kinematics influence the performance of different spring types
when optimizing for continuous equilibrium. We use the MATLAB function fit to determine the
order of the spring kinematics when they are plotted against the kinematic angle ϕ. We use the
coefficient of determination (R2 value) to determine the polynomial that best fits the kinematic
curve. The maximum possible R2 value is 1.

The angle kinematics for the Watt’s linkage are plotted in Figure 2.1(A). We define θA as equal
to ϕ, so a linear fit provides an R2 value of 1. The angles θB, θC , and θD reach R2=1 with a fourth-
order polynomial fit (Table 2.4). As we will see in this section, the lack of symmetry in the Watt’s
linkage leads to an effective minimization of Σ|∆PET|.

18



Table 2.4: R2 values for polynomial fits of Watt’s Linkage angle kinematics.

Fit Type θA θB θC θD
Linear 1 0.8935 0.8738 0.9946

Quadratic 0.9989 0.9970 0.9990
Cubic 0.9998 0.9987 0.9993

Quartic 1 1 1

Table 2.5: R2 values for polynomial fits of Scissor Mechanism angle kinematics.

Fit Type θA θB θC θD
Linear 1 1 1 1

Quadratic
Cubic

Quartic

Scissor Mechanism

The Scissor Mechanism is another simple four-bar linkage that is often found in construction and
engineering [25]. On the Scissor Mechanism, internal torsional springs can be placed in four
locations, (A, B, C, and D in Figure 2.4(A)). When optimized, the PET curve is not as flat as the
optimal result for the Watt’s linkage, and quantitatively Σ|∆PET| is only reduced by 88%, from
1.77 N-m to 0.214 N-m (Figure 2.4(B)). This smaller reduction is because the Scissor Mechanism
is a symmetric linkage with all spring angles being linearly related: θA = θB, θC = θD, and
θC = 180◦ − θA (Figure 2.4(A), Table 2.5). Thus, the potential energy due to the internal springs
consists of four quadratic (2nd-order) terms; in fact, using any combination of springs results in
roughly the same overall performance (Figure 2.4(C) and Table 2.6).

Due to symmetry in the system kinematics, this is the best result that we can achieve with
torsional springs. For further improvement to the continuous equilibrium performance, we
can also add extensional springs. The potential energy of an internal extensional spring x is
PEx = 1

2
kx(Lx − L0x)

2, where k is the spring stiffness (units: N/m), Lx(ϕ) is the length of the
spring which depends on the kinematics of the structure, and L0 is the rest length (units: m). On
the Scissor Mechanism, there are two locations for internal extensional springs: one connecting
adjacent nodes, and one spanning across the linkage (Springs 1 and 2, Figure 2.5(A)). The exten-
sional springs have sinusoidal relationships with ϕ and are not symmetric with each other (Table
2.7). The length of extensional spring 1 is directly related to ϕ: l1 = L sinϕ, where L is the mem-
ber length, so a one-term sinusoidal fit results in an R2 value of 1. The length of extensional spring
2 requires a three-term sinusoidal fit for an R2 value of 1. This variation in kinematic relationships
allows the extensional springs to minimize Σ|∆PET| to 0.004 N-m (a 99.8% reduction), a much
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Figure 2.4: Designing the Scissor Mechanism to have continuous equilibrium. (A) The Scissor
Mechanism has two sets of symmetric angles that are linearly related. (B) Adding four internal
torsional springs at locations A, B, C, and D reduces the fluctuation in potential energy by 88%.
(C) Potential energy breakdowns for all possible location combinations of internal torsional springs
on the Scissor Mechanism, optimized for ψ = 0◦. Due to symmetry in the system geometry, the
total potential energy curve is nearly equivalent for all cases.
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Table 2.6: Spring properties and Σ|∆PET| values for all possible location combinations of internal
torsional springs on the Scissor Mechanism.

Rest Angle Stiffness [N-m/rad
αA αB αC αD kA kB kC kD Σ|∆PET| [N-m]

No Springs 1.77
A 179.5◦ 0.36 0.202
B 179.5◦ 0.36 0.202
C 0.49◦ 0.36 0.202
D 0.49◦ 0.36 0.202

AB 179.0◦ 179.0◦ 0.18 0.18 0.206
AC 179.0◦ 0.98◦ 0.18 0.18 0.206
AD 179.0◦ 0.98◦ 0.18 0.18 0.206
BC 179.0◦ 0.98◦ 0.18 0.18 0.206
BD 179.0◦ 0.98◦ 0.18 0.18 0.206
CD 0.98◦ 0.98◦ 0.18 0.18 0.206

ABC 173.2◦ 173.2◦ 6.76◦ 0.13 0.13 0.13 0.255
ABD 173.2◦ 173.2◦ 6.76◦ 0.13 0.13 0.13 0.255
ACD 173.2◦ 6.76◦ 6.76◦ 0.13 0.13 0.13 0.255
BCD 173.2◦ 6.76◦ 6.76◦ 0.13 0.13 0.13 0.255

ABCD 178.1◦ 178.1◦ 1.93◦ 1.93◦ 0.09 0.09 0.09 0.09 0.214

Table 2.7: R2 values for sinusoidal fits of the Scissor Mechanism internal extensional spring
lengths.

Fit Type L1 L2

Sinusoidal (1-term) 1.0000 0.9886
Sinusoidal (2-term) 0.9992
Sinusoidal (3-term) 1.0000

more effective minimization than with torsional springs.
Another possibility is adding an external extensional spring, with one end attached to the Scis-

sor Mechanism and the other end anchored to an external support (Spring 3, Figure 2.5(B)). In
this case, the design parameters of the optimization problem are the (X,Y) coordinates of the ex-
ternal anchor point along with the stiffness and rest length of the spring. The potential energy of
the external extensional spring is PEX = 1

2
kX(
√

(u−X)2 + (v − Y )2 − L0X)
2, where kX is the

spring stiffness (units: N/m), L0X is the rest length (units: m) and (u(ϕ), v(ϕ)) is the point where
the spring is attached to the Scissor Mechanism. Adding only this external extensional spring
reduces Σ|∆PET| from 1.77 N-m to 0.0065 N-m (a 99.6% reduction). Table 2.8 provides the de-
sign variable values for the optimized Scissor Mechanism with internal torsional springs, internal
extensional springs, and an external extensional spring.

We also consider the reorientation of the Scissor Mechanism from ψ = 0◦ to 90◦ (Figure 2.6).
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Figure 2.5: Scissor Mechanism with extensional springs. (A) Adding two internal extensional
springs or (B) one external extensional spring to the Scissor Mechanism results in total potential
energy curves that are flatter than the case with four internal torsional springs.

Similar to the Watt’s linkage, adding an external torsional spring and attaching it to a horizontal
ground reference is more effective than internal torsional springs at providing continuous equi-
librium at different orientations because its potential energy is dependent on both configuration ϕ
and orientation ψ (Figure 2.6(A)). The same is true when considering extensional springs, where a
single external extensional spring provides a substantial advantage for obtaining continuous equi-
librium in all orientations (Figure 2.6(B-D)). Using all potential spring types in the optimization
framework allows for near perfect continuous equilibrium performance in all orientations of the
Scissor Mechanism (note the logarithmic scale in Figure 2.6(C)). In reality, the case with only the
external torsional spring and external extensional spring may suffice, as this combination provides
a 89% reduction in the mean(Σ|∆PET|). Table 2.9 provides the design variable values for the op-
timized Scissor Mechanism from ψ = 0◦ to 90◦ with internal torsional springs, external torsional
springs, internal extensional springs, and an external extensional spring.

Double Rocker Linkage

A contrasting example is a non-symmetric Double Rocker linkage, a four-bar linkage with unequal
bar lengths. The Double Rocker linkage has four angles with kinematic paths that are not symmet-
ric nor linearly related (Figure 2.7(A)). The angle θA is linearly related to ϕ: θA = π−ϕ, so the R2

value for the linear fit is equal to 1. The angles θB and θC have third-order (cubic) fits with respect
to ϕ, and θD has a fourth-order (quartic) fit (Table 2.10).

This variety of higher order terms in PET gives the system more freedom to offset the effect
of gravity and leads to a more effective minimization of Σ|∆PET|. Adding four internal torsional
springs to the Double Rocker linkage reduces the Σ|∆PET| by over 99%, from 0.372 N-m to
0.003 N-m (Figure 2.7(B)). Because there is no symmetry, adding more internal torsional springs
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Figure 2.6: Reorientation of the Scissor Mechanism. (A) The external torsional spring is better at
minimizing the mean(Σ|∆PET|) than internal torsional springs; when both are added, the internal
springs do not have an effect. (B) An external extensional spring is more effective at minimizing
mean(Σ|∆PET|) than internal extensional springs. (C) When torsional and extensional springs are
both used, the case with an external extensional spring and an external torsional spring is the best
combination. (D) When all springs are added, Σ|∆PET| is significantly reduced for all orientations
(note the log scale). (E) Bar plots of the mean(Σ|∆PET|) for all cases.

Table 2.10: R2 values for polynomial fits of Double Rocker angle kinematics.

Fit Type θA θB θC θD
Linear 1 0.9965 0.9916 0.9792

Quadratic 0.9965 0.9949 0.9992
Cubic 0.9995 0.9987 0.9993

Quartic 1.0000 1.0000 1.0000
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Figure 2.7: Designing the Double Rocker linkage to have continuous equilibrium. (A) The Double
Rocker linkage is a four-bar linkage with three links of unequal lengths. Four locations for internal
torsional springs are defined with angles θA, θB, θC , and θD. There is no symmetry in the spring
angle kinematics. (B) Adding four internal torsional springs reduces the Σ|∆PET| by over 99%.
(C) Potential energy breakdowns for all possible location combinations of four internal torsional
springs on the Double Rocker linkage.

generally improves the result, but some combinations are better than others. Table 2.11 contains
the optimized rest angles αj , stiffnesses kj , and Σ|∆PET| values for all location combinations
for internal torsional springs added to the Double Rocker linkage. Figure 2.7(C) illustrates the
potential energy contributions for each location combination.

Similarly to the Scissor Mechanism, we can add internal extensional springs to the Double
Rocker linkage (Springs 1 and 2, Figure 2.8(A)). The internal extensional springs have sinusoidal
relationships with respect to ϕ (Table 2.12), and they minimize Σ|∆PET| to 0.0018 N-m (a 99.5%
reduction).

We can also an external extensional spring in a similar manner as the Scissor Mechanism
(Spring 3, Figure 2.8(B)). Adding only this external extensional spring reduces Σ|∆PET| from
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Table 2.11: Spring properties and Σ|∆PET| values for all possible location combinations of internal
torsional springs on the Double Rocker linkage.

Stiffness [N-m/rad] Rest Angle
αA αB αC αD kA [N-m/rad] kB [N-m/rad] kC [N-m/rad] kD [N-m/rad] Σ|∆PET| [N-m]

No Springs 0.372
A 101.6◦ 0.91 0.0598
B 136.8◦ 0.19 0.073
C 69.6◦ 0.20 0.0998
D 100.1◦ 0.98 0.073

AB 92.9◦ 172.3◦ 0.66 0.069 0.018
AC 97.8◦ 45.9◦ 0.702 0.058 0.014
AD 97.4◦ 95.8◦ 0.53 0.46 0.004
BC 140.6◦ 124.7◦ 0.18 0.012 0.073
BD 91.2◦ 94.2◦ 0.049 0.75 0.045
CD 162.6◦ 94.0◦ 0.033 0.88 0.054

ABC 98.1◦ 107.9◦ 45.8◦ 0.70 0.0033 0.056 0.015
ABD 108.7◦ 132.3◦ 116.5◦ 0.50 0.042 0.41 0.003
ACD 109.4◦ 83.9◦ 120.2◦ 0.57 0.048 0.31 0.002
BCD 95.6◦ 118.0◦ 94.2◦ 0.048 0.0039 0.74 0.046

ABCD 111.4◦ 129.8◦ 86.9◦ 122.4◦ 0.53 0.023 0.028 0.35 0.003

BA
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1

1
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(X,Y)

Spring 3(u,v)

PE
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φ

Figure 2.8: Adding extensional springs to the Double Rocker linkage. (A) Adding internal exten-
sional springs reduces the Σ|∆PET| by 99.5%. (B) Using an external extensional spring reduces
the Σ|∆PET| by 92%.
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Table 2.12: R2 values for sinusoidal fits of Double Rocker internal extensional spring lengths.

Fit Type L1 L2

Sinusoidal (1-term) 0.9992 1.0000
Sinusoidal (2-term) 0.9998
Sinusoidal (3-term) 1.0000
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Figure 2.9: The Double Rocker linkage at orientations ψ = 0◦ to 90◦. (A) When consid-
ering torsional springs, the case with both internal and external torsional springs minimizes
mean(Σ|∆PET|) most effectively. (B) Adding an external torsional spring and an external ex-
tensional spring improves the minimization. (C) Using every type of spring marginally reduces
the mean(Σ|∆PET|) from the case with external torsional and extensional springs. (D) Bar plot
showing the mean(Σ|∆PET|) for each case.

0.372 N-m to 0.03 N-m (a 92% reduction). Table 2.13 provides the design variable values for the
optimized Double Rocker linkage with internal torsional springs, internal extensional springs, and
an external extensional spring.

We can also explore which type of springs are most effective when the Double Rocker linkage
is reoriented between ψ = 0◦ to 90◦. For the system with only torsional springs, the combination of
internal and external torsional springs reduces the fluctuation in potential energy the most (Figure
2.9(A)). Due to the lack of symmetry in the kinematics, the internal torsional springs have an
effect, unlike the Scissor Mechanism (Figure 2.6(A)). The case with external torsional and external
extensional springs reduces the mean(Σ|∆PET|) nearly as much as the case with all springs (Figure
2.9(C-D)). Table 2.14 contains the spring parameters for all spring cases of the Double Rocker
linkage for orientations ψ = 0◦ to 90◦.
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2.6 Extension to Various Design Cases

The optimization method can be expanded from simple four bar linkages to more complex struc-
tures. We use the framework to design a scissor lift, a model of a knee, and an origami arch. These
examples add complexity by including an external mass carried along a linear path, radial path,
and expanding the principles to a three-dimensional origami structure, respectively.

2.6.1 Scissor Lift

The scissor lift is a larger version of the Scissor Mechanism at ψ = 90◦ with equivalent kinematics
and the addition of an external mass. We model the linkage with all member lengths of 1 m,
uniform mass distribution equal to 10 kg/m, and an external mass that is carried along a linear
path (to represent the weight of the basket and occupants) of M = 200 kg, with its center located
at the midpoint of the last scissor unit (Figure 2.10(A)). Based on the results in Figure 2.6, we
chose to use an external torsional spring and two internal extensional springs to obtain continuous
equilibrium. This combination of springs reduces the mean(Σ|∆PET|) for orientations between
45◦ and 90◦ by 96.5% (Figure 2.10(B)). The mean(Σ|∆PET|) for the case with no springs is 9640
N-m, and the mean(Σ|∆PET|) with springs is 336.2 N-m. The spring properties are as follows:
k1 = 5043.5 N/m, L1 = 0.235 m, k2 = 639.8 N/m, L2 = 0.284 m, kE = 3665.0 N-m/rad,
αE = 0◦. The same set of springs reduces the fluctuation in potential energy at each orientation
(Figure 2.10(C)).

2.6.2 Knee Exoskeleton

Next, we model a knee exoskeleton as a planar linkage with two members of equal length (45 cm)
resembling the human leg connected to a “foot” which is anchored to the ground. We add four
shorter bars of equal length (15 cm) positioned at the knee joint (Figure 2.11(A)). The lower “calf”
member defines the orientation ψ of the system, while the upper ”thigh” member reconfigures with
kinematics defined by the angle ϕwith respect to the calf member. The self-weight of the members
(2.5 kg each) is applied at their centroids and an external mass M = 30 kg is applied at the top
of the thigh member and is carried along a radial path. After exploring different combinations, we
chose to use four internal torsional springs and one internal extensional spring to obtain continuous
equilibrium. The internal extensional spring is connected to location B on the linkage and to the
heel joint of the structure. The internal torsional springs have kinematics that are symmetric and
linearly related while the internal extensional spring has a sinusoidal relationship with ϕ (Figure
2.11(B)). The magnitude of the potential energy due to gravity of the system changes with the
orientation ψ, but the shape of the PEG curve does not, so internal springs are sufficient to minimize
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Figure 2.10: A scissor lift designed to have continuous equilibrium in any orientation between ψ =
45◦ and 90◦. (A) The scissor lift carries an external mass along a linear path. (B) Adding internal
extensional springs and an external torsional spring significantly reduces the mean(Σ|∆PET|) over
the range of orientations. (C) The Σ|∆PET| curve is flattened at each orientation.
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the mean(Σ|∆PET|). Adding springs reduces the mean(Σ|∆PET|) by 98% for orientations 70◦ <
ψ < 105◦, from 128.7 N-m to 2.65 N-m. Figure 2.11(C) shows the plot of the potential energy
contributions at several orientations. The optimized spring parameters for the knee model at ψ =

70◦ to 105◦ are αA = 88.3◦, αB = 90.9◦, αC = 86.1◦, αD = 90.9◦, kA = 16.8 N-m/rad, kB = 33.8

N-m/rad, kC = 7.11 N-m/rad, kD = 33.7 N-m/rad, L1 = 0.354 m, k1 = 3856.2 N/m. With
the structure optimized for continuous equilibrium, the external mass is now counterbalanced both
during reconfiguration of the knee joint and as the structure reorients about the ankle joint.

2.6.3 Origami Arch

The three-dimensional origami arch is made from a variation of the Miura-ori unit cell, which
is the base for many origami structures [87]. The arch is a single DOF mechanism consisting of
sixty-four origami panels that fold from a flat state, with kinematics defined by the fold angle
ϕ [88]. We consider a range of 100◦ < ϕ < 175◦ (Figure 2.12(A)). The potential energy for a
three-dimensional system with n panels is PEG =

∑n
i mi ∗ Ai ∗ g ∗ hi, where mi is the mass

distribution (units: N/m2), Ai is the area, g = 9.81 m/s2, and hi is the height of the center of mass
of panel i. We model the structure with a uniform mass distribution of 1 kg/m2 and panel areas of
approximately 0.1 m2. To keep the design simple, we limit possible spring connection points to
locations within each cell made up of four panels, and we choose to use three internal torsional
springs at the fold lines of the pattern (θA, θB, and θC) and two internal extensional springs on
each cell. The kinematics of the fold angles are not symmetric or linearly related to each other,
and the length of the extensional spring has a quadratic relationship with ϕ (Figure 2.12(B)).
These factors result in the internal springs effectively minimizing the Σ|∆PET| by 96.1%, from
43.0 N-m to 1.69 N-m as it deploys from ϕ = 175◦ to 100◦ (Figure 2.12(C)) The optimized
spring parameters are αA = 140.1◦, kA = 0.3572 N-m/rad, αB = 123.9◦, kB = 0.6526 N-m/rad,
αC = 81.0◦, kC = 1.443 N-m/rad, L1 = 0.136 m, k1 = 12.4 N/m. This example demonstrates
that the principles from our work can be readily extended to an arbitrary three-dimensional
system. While we limit the design to springs internal to each unit cell, the arch structure could be
optimized using springs that interconnect any of the sixty-four panels. All of the possible spring
connection points could be explored using a method similar to the ground structure approach used
in topology optimization [89]. While we have not optimized this system for reorientation, the
origami arch could also be rotated about a given axis and optimized for a range of orientations.
When considering a range of orientations, we expect that external springs would be needed.
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Figure 2.11: A model of a knee exoskeleton designed to have continuous equilibrium. (A) The ex-
oskeleton supports a vertical load for different radial paths that change with orientation. The knee
is modeled as two members connected to a ”foot” which is anchored to the ground. A symmetric
four-bar linkage is placed at the knee. (B) The internal torsional springs are linearly related to ϕ,
while the internal extensional spring has a sinusoidal relationship with ϕ. (C) The magnitude of the
potential energy due to gravity changes slightly for different orientations, but the overall shape of
the curve remains constant. (D) The mean(Σ|∆PET|) is reduced by 98% for orientations between
70◦ < ψ < 105◦.
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Figure 2.12: Designing a three-dimensional origami arch to have continuous equilibrium. (A) The
arch structure deploys from a flat state. Three internal torsional springs are added to the system
at θA, θB, and θC , and two extensional springs are included in each cell. (B) The angles of the
origami arch are not symmetric or linearly related. The length of the extensional spring is also not
linearly related to the angles with respect to the kinematics defined by ϕ. (C) The fluctuation in
potential energy is reduced by 96%.

2.7 Concluding Remarks

In this chapter, we introduced a comprehensive method for designing reconfigurable structures that
maintain continuous equilibrium under gravity. Our method involves optimizing the properties of
internal, external, torsional, and extensional springs that counteract gravity to minimize the fluctu-
ation of the potential energy curve throughout the kinematic path. The optimization framework can
be used to design structures for a range of orientations, leading to one design that has continuous
equilibrium properties even as the orientation of the structure changes. Combinations of springs
with asymmetric kinematics tend to result in better performance, and external springs are the most
effective when considering a structure at multiple orientations. We demonstrated how our design
framework can be applied to real-world systems including a linkage with an external mass carried
along a linear path, a linkage with a mass carried along a radial path, and a three-dimensional
deployable origami arch. Using optimization to design for continuous equilibrium results in re-
configurable structures that are more stable, efficient, and versatile for any application scenario.
The framework presented in this work will expand the ability of designers and engineers to create
versatile, multi-functional systems to be used in many engineering fields.
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CHAPTER 3

Programming Stable Motions in Multi-DOF Systems

Many reconfigurable structures, such as retractable roofs, robotic exoskeletons, and deployable
bridges, have more than one degree of freedom (DOF) which allows for enhanced, sequential, and
varied motions. However, designing such systems at a civil engineering scale is difficult because
the effect of gravity is significant. Multi-DOF systems require complex controls to achieve desired
motion paths and ensure stability, and their actuation requires large energy inputs to counteract
gravity, often resulting in over-engineered designs. This chapter presents a method for transform-
ing multi-DOF reconfigurable structures into systems with continuous equilibrium, allowing them
to be unconditionally stable and reconfigured with a negligible input of energy. The continuous
equilibrium systems are achieved through the addition of springs with properties that are opti-
mized to directly counteract gravity as the structure moves with respect to the different DOFs. The
method can design a multi-DOF system to have continuous equilibrium throughout its entire kine-
matic space, or alternatively, to program specific continuous equilibrium paths so that the structure
can move in a desired way while maintaining stability. Planar linkages and three-dimensional
origami structures are used to demonstrate the method and show that the principles are applicable
to structures with any number of DOFs. This chapter furthers the ability of structural designers to
create reconfigurable structures that are efficient to actuate, achieve desired motions, and remain
stable under gravity.

The work presented in this chapter has been submitted for publication and is under review [90].

3.1 Introduction

In this chapter, we use springs with optimized properties to program stable configurations, stable
paths, and sequential stable paths into multi-DOF structures by using the principle of continuous

equilibrium. An n-DOF structure in continuous equilibrium has a potential energy space with
dimension n that is nearly constant. This property results in a system that is perpetually stable and
requires negligible energy to move from one configuration to another. Examples in the literature
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[74, 75, 43, 76, 77, 91] are limited to single-DOF systems, and most do not consider the effect
of gravity. In this chapter, we extend our previous work on one-DOF systems [86] to multi-DOF
reconfigurable structures and demonstrate how desired paths can be programmed as continuous
equilibrium motions.

This chapter is organized as follows: Section 3.2 describes the design method for creating
multi-DOF structures with continuous equilibrium. Section 3.3 focuses on designing structures
with programmed continuous equilibrium states, such as stable configurations and paths. Section
3.4 gives examples of how the design method can be expanded to practical and more complex
structures. The computer codes used to generate the results presented in this chapter are provided
on GitHub.

3.2 Designing a Multi-DOF Planar Linkage for Continuous
Equilibrium

In this section, we discuss how springs can be designed and added to a multi-DOF linkage to
convert it into a system that counteracts gravity. We design variations of the Watt’s linkage such
that they will have continuous equilibrium by adding torsional springs that counteract the effect of
gravity. We assume the structure is a planar linkage made of rigid bars and rotational joints. For
an n−DOF system, the kinematics are defined by independent parameters ϕ1, ..., ϕn. The potential
energy due to gravity for a planar system with B bars is

PEG(ϕ1, ..., ϕn) =
B∑
b

mb ∗ Lb ∗ g ∗ hb(ϕ1, ..., ϕn), (3.1)

where mb is the uniform mass distribution (units: N/m), Lb is the bar length, g = 9.81 m/s2, and
hb is the height of the center of mass of bar b. For the Watt’s linkage examples, we assume that all
bars have a length of 1 m and a uniform mass distribution of 1 kg/m.

We use optimization to compute the torsional spring properties (rest angle and stiffness) that
counteract gravity most effectively. The potential energy in a torsional spring depends on one
or more of the degrees of freedom (ϕ1, ..., ϕn for an n-DOF system); as the configuration of the
structure changes, each spring will move towards or away from its rest position and will release or
store energy. In a system with S torsional springs, the potential energy stored in the springs is

PES(ϕ1, ..., ϕn) =
S∑
s

1

2
ks(θs(ϕ1, ..., ϕn)− αs)

2, (3.2)

where ks is the linear stiffness (units: N-m/rad), θs is the kinematic angle of the spring (which
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can be a function of one or more of the DOFs, depending on the system kinematics), and αs is the
rest angle of the spring, where the stored potential energy is zero. The total potential energy of the
system of bars and springs is

PET(ϕ1, ..., ϕn) = PES(ϕ1, ..., ϕn) + PEG(ϕ1, ..., ϕn). (3.3)

3.2.1 Optimization Setup

A system in continuous equilibrium has constant potential energy. To formulate an objective func-
tion for our design problem, we elect to minimize the fluctuation in total potential energy (PET) of
the system across the entire kinematic space.

In Chapter 2, we used the quantity Σ|∆PET| to measure the fluctuation in potential energy along
the kinematic path of a one-DOF structure. In this chapter, we use a root-mean-square deviation
(RMSD) to quantify the fluctuation in potential energy. The formula for RMSD is:

RMSD =

√∑
(PET − mean(PET))2

N
, (3.4)

whereN is the number of points used to sample PET. With adequate discretization in sampling, the
normalized sum in Equation 3.4 is equivalent to the integral over the entire PET space, regardless
of the dimension. Thus, this formulation is applicable to any n-DOF system. The two measures
of fluctuation are both valid objective functions, but we found that using the RMSD led to more
consistent convergence for multi-DOF systems. For example, using the Σ|∆PET| to design the
three-DOF Watt’s linkage (discussed in detail in section 3.2.4) requires four rounds of optimization
to converge (Figure 3.1(A)), and using RMSD requires only one (Figure 3.1(B)). After one round
of optimization, the fluctuation in potential energy is significantly more reduced when using RMSD
(Figure 3.1(C-D), note that the contour lines are equivalently spaced at 2 N-m in both (C) and (D)).
Therefore, all examples in this chapter use RMSD as the objective function.

The bounds placed on the design variables ensure that the stiffness of each spring is positive
(ks ≥ 0) and restricts the rest angle of a torsional spring to the interval [0, 2π]. There are no
additional constraints placed on the optimization problem, which is defined as:

min

(√∑
(PET − mean(PET))2

N

)
(3.5)

s.t. ks ≥ 0 (3.6)

αs ϵ [0, 2π]. (3.7)
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Figure 3.1: Comparing two objective functions used to minimize the fluctuation in total potential
energy in a three-DOF system. (A) Using the objective function Σ|∆PET| requires four rounds of
optimization to converge. At the end of each round, the design variable output is used as the
input for the next round. (B) Using the RMSD as the objective function converges after one
round of optimization. (C) The total potential energy for a three-DOF system after one round
of optimization using the Σ|∆PET| objective function (contour line interval = 2 N-m). (D) The
total potential energy for a three-DOF system after one round of optimization using the RMSD
objective function (contour line interval = 2 N-m).
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Figure 3.2: Optimizing the one-DOF Watt’s linkage for continuous equilibrium. The one-DOF
Watt’s linkage has kinematics defined by ϕ1. Adding internal torsional springs at locations A, B,
C, and D reduces the fluctuation in PET by 99.97%.

3.2.2 One-DOF Watt’s linkage

The system kinematics of the one-DOF Watt’s linkage are defined by the angle ϕ1 (Figure 3.2.
The fluctuation in potential energy due to gravity is equal to 6.8 N-m. To achieve continuous
equilibrium, we add four internal torsional springs at locations A, B, C, and D. The optimization
problem given in Equation 3.5 is used to compute the spring properties (ks, αs) that minimize
the fluctuation in PET. Adding the four springs results in a fluctuation of 0.0021 N-m, a 99.97%
reduction from the fluctuation without springs. The resulting PET curve is nearly flat, indicating
that the system is in continuous equilibrium. The spring properties for the one-DOF Watt’s linkage
are given in Table 3.1.

3.2.3 Two-DOF Watt’s linkage

The two-DOF Watt’s linkage has kinematics defined by the independent angles ϕ1 and ϕ2. The
potential energy due to gravity varies with both DOFs and can be visualized as a two-dimensional
surface (Figure 3.3). To achieve continuous equilibrium, we add five internal torsional springs at
locations A, B, C, D, and E. The total potential energy of the system is written as
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PET(ϕ1, ϕ2) =
1

2
kA(θA(ϕ1,��ϕ2 )− αA)

2 +
1

2
kB(θB(ϕ1, ϕ2)− αB)

2 +
1

2
kC(θC(ϕ1, ϕ2)− αC)

2+

(3.8)
1

2
kD(θD(ϕ1, ϕ2)− αD)

2 +
1

2
kE(θE(��ϕ1 , ϕ2)− αE)

2 + PEG(ϕ1, ϕ2).

Springs B, C, and D have kinematics that depend on both DOFs, while spring A depends only
on ϕ1 and spring E depends only on ϕ2. Using Equation 3.5, we compute the spring properties that
will counteract gravity and result in continuous equilibrium throughout the entire two-dimensional
potential energy space. With the springs, the fluctuation in PET is reduced by 97.3% from 10.8
N-m to 0.29 N-m, resulting in a nearly flat surface. Two cross-sections of the PET surface are
shown in Figure 3.3 for ϕ1 = 180◦ and ϕ2 = 90◦. Along the cross-section where ϕ1 = 180◦, the
fluctuation in PET is reduced by 97.9% from 2.62 N-m to 0.05 N-m. For ϕ2 = 90◦, the fluctuation
is reduced by 99.8% from 1.36 N-m to 0.003 N-m. The optimized spring stiffnesses and rest angles
for the two-DOF Watt’s linkage are given in Table 3.1.

3.2.4 Three-DOF Watt’s linkage

The three-DOF Watt’s linkage has kinematics defined by three independent angles, ϕ1, ϕ2, and ϕ3

(Figure 3.4. The potential energy due to gravity PEG depends on all three DOFs and is visualized
as a volume. To achieve continuous equilibrium, we add internal torsional springs at locations A,
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Table 3.1: Optimized spring properties for the one-, two-, and three-DOF Watt’s linkage.

Rest Angle Stiffness [N-m/rad]
αA αB αC αD αE αF kA kB kC kD kE kF

One-DOF 108◦ 81◦ 184◦ 26◦ 4.29 0.51 3.55 3.08

Two-DOF 157◦ 197◦ 166◦ 196◦ 116◦ 35.3 0 26.5 0 23.6

Three-DOF 0◦ 142◦ 360◦ 197◦ 0◦ 159◦ 12.0 0 8.21 0 7.64 12.8

B, C, D, E, and F and optimize their properties. Springs B, C, and D depend on all three DOFs,
while spring A depends only on ϕ1, spring E depends only on ϕ2, and spring F depends only on ϕ3.
The fluctuation in PET throughout the entire volume is reduced by 94.2%, from 18.1 N-m to 1.06
N-m with the addition of optimized springs. Three cross-sections of the potential energy volume
are shown in Figure 3.4, showing that the potential energy surfaces corresponding to ϕ1 = 180◦,
ϕ2 = 90◦, and ϕ3 = 120◦ are nearly flat; the fluctuation in PET is reduced across the surfaces by
91.9%, 95.4%, and 96.5%, respectively. Extracting further, cross-sections of the surfaces illustrate
that the PET curves are nearly flat for several combinations of ϕ1, ϕ2, and ϕ3. For the cross-section
where ϕ1 = 180◦ and ϕ3 = 110◦ (where ϕ2 varies), the fluctuation in PET is reduced from 11.4
N-m to 1.3 N-m; for ϕ3 = 120◦ and ϕ2 = 100◦, it is reduced from 26 N-m to 0.33 N-m. However,
for the case where ϕ2 = 90◦ and ϕ1 = 200◦, the fluctuation increases from 1.04 N-m to 1.44 N-m.
Along this path, the potential energy due to gravity is nearly constant, meaning that the linkage is
already counterbalanced simply based on the bar masses and the geometry of the structure. The
optimized spring properties for the three-DOF Watt’s linkage are given in Table 3.1.

3.3 Programming Continuous Equilibrium Motions

Programming specific motions into a reconfigurable structure allows certain paths to be favored and
prohibits motion in unwanted directions. Programming a continuous equilibrium motion would al-
low a highly flexible system with many DOFs to navigate effortlessly along a desired path without
requiring external forces to keep it on the path. We use a similar approach as described in Sec-
tion 3.2 to design systems that, with the addition of springs with optimized properties, follow a
programmed continuous equilibrium motion under gravity.

In this section, we begin by demonstrating how adding springs with optimized properties to the
two-DOF Watt’s linkage can be used to program a stable, continuous equilibrium path. Next, we
show how additional springs can be used to program a stable configuration along a path. Finally, we
explore how sequential continuous equilibrium paths can be programmed. The optimized spring
properties for all examples in this section are provided in Table 3.2.
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Figure 3.5: Designing the two-DOF Watt’s linkage to have different stable paths. (A) To program
a stable path along ϕ2 = 90◦, we add five internal torsional springs. Along the path, the fluctuation
in potential energy has been reduced by 99.7% (contour line interval = 5 N-m). Perpendicular to
the path, the potential energy has a valley centered on ϕ2 = 90◦. The gradient of the potential
energy is aligned with the desired gradient field ∇d. (B) Stable path along the line ϕ2 = 300◦ − ϕ1

(contour line interval = 1 N-m). The fluctuation in potential energy is reduced by 98.9% along
the path. The potential energy valley is shallow, but the gradient of the potential energy is aligned
with ∇d. (C) For a curved path, we add two identical extensional springs to the linkage, and the
fluctuation in potential energy along the path is reduced by 99.5% (contour line interval = 1 N-
m). (D) Designing the two-DOF Watt’s linkage to have two sequential stable paths, one along
ϕ1 = 180◦ and one along ϕ2 = 90◦. The paths are placed into potential energy valleys by splitting
∇d into four regions. Along the paths, the fluctuation is reduced by 93% (contour line interval = 1
N-m).
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3.3.1 Programming a Stable Path

The objective for designing the two-DOF Watt’s linkage with a stable path is to minimize the
fluctuation of the PET along the path. We again use the RMSD as the objective function, formulated
as:

min

(√∑
(PETpath − mean(PETpath))

2

Npath

)
(3.9)

s.t. ks ≥ 0

αs ϵ [0, 2π]

whereNpath is the number of sampling points along the path. Using this objective function, the path
is designed to have continuous equilibrium, but the stability of the path is not enforced. For exam-
ple, a system could be designed to have a perfectly flat path, but a small perturbation moving the
system off of the path would lead to collapse. In order to ensure that the programmed continuous
equilibrium path is stable, we implement additional constraints to the optimization problem.

To be stable, the desired path must be a global potential energy minimum (valley in two-
dimensional space); the gradient of the potential energy (∇PET) must be orthogonal to the path
[78]. To ensure a stable path, we use constraints to align ∇PET with a desired gradient field, de-
noted as ∇d. For a two-DOF system with a given path defined as ϕ2 = f(ϕ1), where [u, v] is the
tangent vector to the path, ∇d is formulated as

∇d =

[v,−u] ϕ2 < f(ϕ1)

[−v, u] ϕ2 > f(ϕ1),
(3.10)

describing the gradient field pointing orthogonal to the path. Once we have established ∇d, we
can compute the angle between it and ∇PET at points across the entire PET space. The constraint
requires the angle to be smaller than some positive value δ. The constraint is formulated as

cos−1(∇PET · ∇d)− δ ≤ 0, (3.11)

and is applied to all sampled points in the kinematic design space. If ∇PET is perfectly aligned
with ∇d, then the angle between them is zero, the constraint is satisfied, and the path is stable. The
results presented in Figure 3.5 use a tolerance of δ = π/2, meaning that the PET vector will point
anywhere from orthogonal to the path (the ideal case) to parallel to the path. Further improvements
to the optimization method could likely allow for smaller values of δ to be used in the constraint
and thus provide a stricter assurance of path stability. Nevertheless, the results illustrate good
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Table 3.2: Optimized spring properties for the two-DOF Watt’s linkage, for various stable paths.

Rest Position Stiffness

Angle Rest [m] [N-m/rad] [N/m]

Path αA αB αC αD αE L01 L02 kA kB kC kD kE k1 k2

ϕ2 = 90◦ 0◦ 0◦ 199◦ 0◦ 94◦ 0 6.3 5.9 8.7 200

ϕ2 = 300◦ − ϕ1 0◦ 201◦ 266◦ 180◦ 93◦ 11.1 5.9 6.2 20.9 13.8

ϕ2 = (212◦ − ϕ1)
2 + 86◦ 21.2◦ 77.5◦ 0.84 1.4 26.7 209 34.3 49.9

ϕ2 = 105◦; ϕ1 = 195◦ 0◦ 360◦ 136◦ 235◦ 65◦ 20.8 6.5 14.6 0 24.5

agreement between ∇PET and ∇d despite the large δ used. Equations 3.10 and 3.11 are presented
here for a two-DOF system and could be extended for higher-DOF systems in the future.

Using the objective function given in Equation 3.9 and the constraint in Equation 3.11, we
designed the two-DOF Watt’s linkage to have a stable path at ϕ2 = 90◦ (Figure 3.5(A)). The
desired gradient field ∇d is written as

∇d =

[0,−1], ϕ2 < 90◦

[0, 1], ϕ2 > 90◦,
(3.12)

to enforce the stability of the path. We add five internal torsional springs, and the fluctuation
in potential energy along the path is reduced by 99.7% compared to the system without springs.
Comparing the plots of ∇PET and ∇d shows that these vectors are aligned, and there is a global
potential energy valley along the path where ϕ2 = 90◦. If the system experiences a small perturba-
tion, it will naturally return to the path along ϕ2 = 90◦.

For a path where ϕ2 = 300◦ − ϕ1 (Figure 3.5(B)), ∇d is defined as:

∇d =

[−1,−1], ϕ2 < 300◦ − ϕ1

[1, 1], ϕ2 > 300◦ − ϕ1

(3.13)

With five internal torsional springs, the potential energy is reduced by 98.9% along the path and
there is a PET valley centered on the path. For this path, the valley is less pronounced than the
previous example, but the stability of the path is still ensured due to the alignment of ∇PET and
∇d.

In addition to linear paths, we can design a curved path to have continuous equilibrium (Figure
3.5(C)). The equation of the path is ϕ2 = (212◦ − ϕ1)

2 + 86◦. The tangent vector [u, v] is thus
equal to [1, 2u− 424◦] and ∇d is defined as
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∇d =

[2ϕ1 − 424◦,−1], ϕ2 < (212◦ − ϕ1)
2 + 86◦

[−2ϕ1 + 424◦, 1], ϕ2 > (212◦ − ϕ1)
2 + 86◦

(3.14)

For this example we placed two identical extensional springs on the two-DOF Watt’s linkage
(Figure 3.5(C)) in addition to two torsional springs and used the optimization method to compute
their properties. The potential energy in an extensional spring x is PEx = 1

2
kx(Lx − L0x)

2, where
kx is the spring stiffness (units: N/m), Lx is the deformed length of the spring, and L0x is the
rest length, where the energy stored in the spring equals zero. With the extensional springs, the
fluctuation in potential energy is reduced by 99.5% along the curved path, and the path is placed
in a global PET valley. The gradient plot shows good agreement between ∇PET and ∇d.

3.3.2 Programming a Stable Configuration Using Superposition

For certain applications, it may be beneficial to add a stable configuration to a system that has
already been designed to have a stable continuous equilibrium path. For one-DOF systems, con-
straints can be used to create one or more stable states at target configurations [78], and a similar
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Table 3.3: Optimized spring properties for the two-DOF Watt’s linkage, designed to have a stable
configuration along a stable path.

Rest Angle

Path Configuration αA αB αC αD αE

ϕ2 = 90◦ ϕ1 = 210◦, ϕ2 = 90◦ 210◦ 128◦ 77.5◦ 200◦ 90◦

ϕ2 = 300◦ − ϕ1 ϕ1 = 190◦, ϕ2 = 110◦ 190◦ 105◦ 70.5◦ 205◦ 110◦

approach could be adapted to design multi-stable states in the multi-DOF systems. Here, we
discuss a method for adding a stable configuration to a multi-DOF system with a continuous equi-
librium path using superposition. To add a stable configuration, we implement an additional set
of springs and set their rest angles to correspond with the desired configuration. The potential
energy contribution of the additional set of springs is then superimposed with the potential energy
due to gravity and the original optimized springs, resulting in a PET surface with a stable path and
a stable configuration along that path. The stiffness of the additional springs affects how steeply
PET increases when moving away from the stable configuration; high stiffness results in a steeper
gradient. We designed the two-DOF Watt’s linkage for a stable configuration where ϕ1 = 210◦

and ϕ2 = 90◦ along the path ϕ2 = 90◦ (Figure 3.6(A)). While the path is still globally stable as
originally designed, there is now a minimum in PET at the desired configuration. We also designed
the Watt’s linkage to have a stable configuration at ϕ1 = 190◦ and ϕ2 = 110◦ along the path
ϕ2 = 300◦ − ϕ1 (Figure 3.6(B)). The spring properties for these examples are given in Table 3.3.

3.3.3 Programming Sequential Stable Paths

Being able to design multiple paths that occur in sequence is critical for the design of multi-
functional systems, where distinct motions involving different combinations of DOFs are needed
to accomplish a task. We designed the two-DOF Watt’s linkage to have continuous equilibrium
along two paths: first, ϕ1 increases from 170◦ to 195◦ while ϕ2 remains constant at 105◦, then ϕ1

stays at 195◦ as ϕ2 decreases to 80◦ (Figure 3.5(D)). For this case, the desired gradient field ∇d is
divided into four regions:

∇d =



[−1,−1], ϕ1 < 195, ϕ2 < 105

[0, 1], ϕ1 < 195, ϕ2 > 105

[1, 0], ϕ1 > 195, ϕ2 < 105

[1,−1], ϕ1 > 195, ϕ2 > 105.

(3.15)

We add five internal torsional springs to the Watt’s linkage and use the optimization framework
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Table 3.4: Toolbox for various design scenarios.

Objective Function Bounds Constraints

Continuous Equilibrium Eqn. 3.5

Eqn. 3.6, Eqn. 3.7

-

Stable Configuration - -

Stable C.E. Path Eqn. 3.9 Eqn. 3.11

Seq. Stable C.E. Paths Eqn. 3.9 Eqn. 3.11

to compute their properties. While the potential energy along the two paths is not perfectly con-
stant, the fluctuation is still reduced to 93% of the case with no springs. Actuating the structure
along these paths will require less energy, and the system will remain stable, as ∇PET is aligned
with ∇d. This example focuses on designing two sequential paths for continuous equilibrium and
does not specify the order or directionality of the paths, which can be controlled by adding stable
states into the potential energy landscape as well as stable paths (this concept is explored more in
Chapter 5).

3.4 Design examples

In this section, we demonstrate our design methodology through two examples. The first example
expands upon the planar linkage results discussed in Section 3.3, where we model an excavator
as a linkage with a continuous equilibrium path. The next example is a three-dimensional, five-
fold origami vertex. Origami serves as design inspiration for many deployable and reconfigurable
structures, and these examples demonstrate how such systems could be designed to have contin-
uous equilibrium properties. These examples show how we can program a combination of stable
states and stable paths. Table 3.4 summarizes the various design scenarios and which objective
functions and constraints are used for each.

3.4.1 Excavator

A typical excavator has three DOFs, with hydraulic actuators used to move the boom, arm, and
bucket [92]. We model an example of an excavator as a two-DOF linkage (Figure 3.7). We ap-
proximate the members of the excavator arm as rigid links connected by a four bar linkage. We
designed the system to have continuous equilibrium along the path ϕ2 = 5/12 ∗ ϕ1 + 99.17◦, a
typical motion that would be used for digging (Figure 3.7(B)). We added four torsional springs and
two extensional springs to the system and optimized their properties to minimize the fluctuation of
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PET along the path. The desired gradient field (used to formulate the stability constraint) is written
as

∇d =

[−1, 1], ϕ2 > 5/12ϕ1 + 99.17◦

[1,−1], ϕ2 < 5/12ϕ1 + 99.17◦.
(3.16)

The dimensions of the excavator linkage are given in Figure 3.7(A). The members are modeled
as rigid links with masses mBoom = 1710 kg and mArm = 1300 kg respectively. The bucket is
modeled as a lumped mass of mBucket = 787 kg. The weights of the four bar linkage and springs
are neglected. The springs used to achieve continuous equilibrium (labels shown in Figure 3.7(C))
have the following properties: αA = 0◦, αB = 146◦, αC = 360◦, αD = 360◦, αE = 13◦, kA = 0

N-m/rad, kB = 24506 N-m/rad, kC = 0 N-m/rad, kD = 15733 N-m/rad, kE = 88464 N-m/rad,
L01 = 1.95 m, L02 = 15 m, k1 = 20759 N/m, k2 = 4385 N/m.

The resulting PET surface is flat compared to PEG, with a shallow valley along the desired
path (Figure 3.7(B). Along the path, the fluctuation in PET is reduced by 66% from 22,152 N-m to
7,543 N-m. While the desired gradient is not matched well by ∇PET, the constraint is still satisfied,
meaning that PET is in the range of directions from parallel to orthogonal to the path. While the
path is not perfectly flat, the overall kinematic space is flattened, meaning reconfiguration along
the path will require lower energy than the case without springs; additionally, if motions away from
the path are desired, they can be reached with a small external force and the system will return to
the path when the force is removed.

3.4.2 Five-fold Origami Vertex

The five-fold origami vertex shown in Figure 3.8 is a rigid-foldable origami structure with two
DOFs defined by crease angles ϕ1 and ϕ2. We assume the structure consists of rigid panels con-
nected by frictionless rotational hinges. The potential energy for a three-dimensional system with
n panels is PEG =

∑n
i mi ∗ Ai ∗ g ∗ hi, where mi is the mass distribution (units: N/m2), Ai is the

area, g = 9.81 m/s2, and hi is the height of the center of mass of panel i. Certain combinations
of ϕ1 and ϕ2 are not viable due to panel contact (Figure 3.8(B)). The five-fold origami vertex is
modeled as a 2 m-by-2 m sheet with uniform thickness. We assume the material to have a uniform
mass density of 1 kg / m2.

To design the five-fold vertex to have continuous equilibrium, we added four internal torsional
springs along its crease lines, at locations A, B, C, and D (Figure 3.8(A)). Adding a spring along
the fifth crease does not improve results and thus is omitted from this design. The optimized spring
rest angles are αA = 273◦, αB = 129◦, αC = 89◦, and αD = 62◦; the optimized stiffnesses are
kA = 7.99, kB = 1.60, kC = 0.00, and kD = 2.64 N-m/rad. The resulting PET surface is nearly
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Figure 3.7: Designing a two-DOF excavator to have a continuous equilibrium path. (A) We model
the excavator using rigid links with kinematics defined with ϕ1 and ϕ2. (B) We specify a path
that represents a typical digging motion. (C) We add internal torsional, external torsional, internal
extensional, and external extensional springs to the system and optimize their properties to achieve
continuous equilibrium. (D) The total potential energy PET has a shallow valley along the desired
path. The fluctuation in PET along the path is reduced by 66% (contour line interval = 10 kN-m).
(E) The gradient field ∇d represents the constraint applied to the optimization problem to ensure
the stability of the path. The gradient of PET is aligned with ∇d, especially for small ϕ1 and large
ϕ2.
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flat (Figure 3.8(C)), and the fluctuation in potential energy is reduced by 90% from the case with
no springs.

3.5 Concluding Remarks

In this chapter, we presented a method for programming continuous equilibrium motions in multi-
DOF systems. Using optimization, we can compute spring properties that minimize the fluctuation
in potential energy throughout the kinematic space or along a desired path. The method can be
used to design systems with stable paths, stable configurations, and sequential stable paths. We
first demonstrate the method on one-, two-, and three-DOF Watt’s linkages and design them to have
continuous equilibrium throughout their entire kinematic space. We then focus on the two-DOF
system, demonstrating the capability to program stable paths and configurations. We formulate
an optimization constraint that is used to ensure the stability of a path by aligning the gradient of
the potential energy space with a desired gradient field. With this constraint, small perturbations
away from the path will not cause the system to deviate from the desired path and collapse. The
examples shown in Section 3.4 demonstrate how the method can be used to design practical two-
and three- dimensional systems.

The concepts in this paper provide a foundation for the design of multi-DOF reconfigurable
structures that require significantly less energy for stable deployment and reconfiguration. Using
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our design method, designers can take advantage of the complex, functional motions that multi-
DOF systems provide while maintaining stability and avoiding collapse. Programming a set of
stable paths and configurations can help limit the infinite possibilities for motion and result in a
system that gravitates back to a desired path without external forcing. Programming of continuous
equilibrium can greatly improve the design, fabrication, and operation of multi-DOF reconfig-
urable structures by ensuring efficient actuation, desired motions, and stability under gravity. The
principles presented here are scale-independent and relevant to multiple disciplines with potential
applications in robotics, architecture, consumer goods, vehicle systems, and more.

51



CHAPTER 4

Applications of Continuous Equilibrium to Physical
Linkages and Origami Systems

The optimization method presented in Chapter 2 of this dissertation can be used to design large-
scale deployable and reconfigurable structures with reduced forces needed for actuation. However,
aspects beyond the potential energy curve need to be considered to inform the practical implemen-
tation of these systems. In this chapter, mechanical models of linkages and origami systems are
used to study the reduction in actuation forces when optimized springs are added. Physical pro-
totypes support the computational results and demonstrate the effectiveness of the design method.
Preliminary experimental results verify the reduction in forces needed for reconfiguration.

4.1 Simulations for Mechanical Modeling

The design framework used to transform reconfigurable structures into systems with continuous
equilibrium is based on the potential energy contributions of gravity and adding springs. In reality,
other components of a system will have an effect on the forces, stability, and deformation behavior.
In this section, we use mechanical models that take into account effects such as stretching and
bending of the linkage elements. From these models, we obtain the actuation force required to
reconfigure a structure throughout its kinematic path. The mechanical models are formulated for
systems with and without springs, and the spring properties are set to the values obtained from the
continuous equilibrium optimization.

4.1.1 Mechanical Modeling of Linkage Systems with Torsional Springs

A variety of methods can be used for the structural analysis of linkages [93, 94, 95, 96] and here we
take a traditional structural engineering approach using the stiffness method. To use the stiffness
method to analyze linkages with springs, we constructed a stiffness matrix [K] with an additional
rotational DOF. The formulation of the stiffness matrix is an adaptation of the formulation for
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Figure 4.1: Using the stiffness method for modeling linkage systems. (A) To model the linkages
with torsional springs, we use a frame member with an additional rotational degree of freedom
(DOF) at one end. Each member has seven DOFs. (B) The DOFs for the Watt’s linkage with four
internal torsional springs. Members 1 and 2 have an additional rotational DOF at the i-node, and
members 3 and 4 at the j-node.

flexible connections presented in McGuire et al [97]. Figure 4.1(A) shows the DOFs for one
member with a flexible connection at the i-node. The dimensions of the local stiffness matrix for
each member is 7x7. We use a de-coupled approach so that moments can be applied at the added
rotational DOFs, representing the stress that is developed in the springs.

As an example, the DOFs of the Watt’s linkage modeled with springs is shown in Figure 4.1(B).
Say that member 1 has a spring at its i-node with stiffness kA. The local stiffness matrix for member
1 is then:

53



DOF : 14 15 16 1 2 3 4

[k̂1] =



EA
L

0 0 0 −EA
L

0 0

0 12EI
L3 0 6EI

L2 0 −12EI
L3

6EI
L2

0 0 kA −kA 0 0 0

0 6EI
L2 −kA 4EI

L
+ kA 0 −6EI

L2
2EI
L

−EA
L

0 0 0 EA
L

0 0

0 −12EI
L3 0 −6EI

L2 0 −12EI
L3 −6EI

L2

0 6EI
L2 0 2EI

L
0 −6EI

L2
4EI
L


where E is the Young’s Modulus, A is the member cross-sectional area, I is the moment of inertia,
and L is the member length. For a member with a spring at its j-node, such as member 4, the
additional DOF is included at that node. The local stiffness matrix for member 4 with a spring
stiffness of kD is then:

DOF : 9 10 11 17 18 19 13

[k̂4] =



EA
L

0 0 −EA
L

0 0 0

0 12EI
L3

6EI
L2 0 −12EI

L3 0 6EI
L2

0 6EI
L2

4EI
L

0 −6EI
L2 0 2EI

L

−EA
L

0 0 EA
L

0 0 0

0 −12EI
L3 −6EI

L2 0 12EI
L3 0 −6EI

L2

0 0 0 0 0 kD −kD
0 6EI

L2
2EI
L

0 −6EI
L2 −kD 4EI

L
+ kD


These local stiffness matrices are assembled into the global stiffness matrix [K] and used to

solve for the nodal displacements and rotations {δ} = [K]−1{F}, where {F} is a vector of applied
loads. The external loads applied to the Watt’s linkage are the gravity forces, which act downward
at the center of mass of each of the bars, and the spring moments at each of the four spring locations.
The total gravity force for a bar is −mg, where m is the mass of the bar and g = 9.81 m/s2 is the
acceleration due to gravity. The total gravity force on the bar is divided in two, where half of
the force is applied at node i and half is applied at node j. The moment at spring j is equal to
kj(θj − αj), where kj and αj are found using optimization. The spring moment changes as the
linkage moves through its the kinematic path, reflecting the spring moving toward or away from
its rest angle.

The properties of the members are assumed to be A = 0.0254 m2, I = 1
12
(0.0254)(0.02543)

m4, and E = 200 GPa unless otherwise noted. For the Watt’s linkage, members 1 and 4 have a
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length of 0.3 m, and members 2 and 3 have a length of 0.15 m.

4.1.2 Reduced Actuation Forces

We used the stiffness matrix formulation to compute the forces required to reconfigure the Scissor
Mechanism and Watt’s linkage. Since the stiffness method assumes small displacements, we use
an iterative approach. First, we apply the gravity load and compute the resulting displacements.
We then incrementally increase an external load (representing the actuation force) until the dis-
placements are negligible. This external force is thus the force required for the system to be in
equilibrium at the desired configuration. To obtain actuation force values for the systems without
springs, we implement a small spring stiffness of 0.005 N-m/rad and use the same stiffness matrix
formulation. This fictitious spring stiffness is much smaller than a typical spring stiffness used to
enable continuous equilibrium.

We first investigate the actuation force needed to reconfigure the Scissor Mechanism, comparing
the structure with no springs to the structure with four internal torsional springs at locations A, B,
C, and D (Figure 4.2(A)). For the Scissor Mechanism, we apply an external actuation force Fx at
the top right node (node 4 in Figure 4.2(B)). Gravity is modeled as two lumped forces at nodes 2
and 3. For the Scissor Mechanism without springs, we can calculate the analytical solution for Fx

using equilibrium. First, setting the sum of the forces in the y-direction equal to zero, we see that
Fy = Fg/2. Next, we can solve for Fx using the method of joints at node 1:

Fy + F12 sinϕ = 0 (4.1)

F12 =
Fg

2 sinϕ
(4.2)

Fx + F12 cosϕ = 0 (4.3)

Fx =
Fg

2 tanϕ
(4.4)

This analytical solution is plotted as the dashed line in Figure 4.2(C). Using the stiffness
method, the computed Fx for the system without springs matches the expected force value. We
compared the actuation force without springs to the force needed to reconfigure the Scissor Mech-
anism with four internal torsional springs, with properties equivalent to those given in Table 2.8.
With the optimized springs, Fx is reduced by 45% on average compared to the case without springs
(Figure 4.2(C)). For the Scissor Mechanism with and without springs, we confirmed that the force
value matches with the first derivative of the potential energy (F = −δPE/δx) (Figure 4.3).

For the Watt’s linkage, we apply a vertical actuation force Fy at the top node (location B in
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Figure 4.2: Actuation forces needed to reconfigure the Scissor Mechanism. (A) The Scissor Mech-
anism is modeled without springs and with internal torsional springs at locations A, B, C, and D.
(B) Free-body diagram of the Scissor Mechanism. The actuation force is applied as an external
horizontal load at node 4. (C) Actuation force for the Scissor Mechanism. The computed Fx for
the system without springs matches the analytical solution derived from the free-body diagram.
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Figure 4.4: Actuation forces needed to reconfigure the Watt’s linkage. (A) The Watt’s linkage is
modeled without springs and with itnernal torsional springs at locations A, B, C, and D. (B) The
actuation force is applied as an external vertical load. (C) Actuation force for the Watt’s linkage.
With springs, Fy is reduced for most of the kinematic path. As ϕ approaches 145◦, the path of the
Watt’s linkage is no longer vertical and Fy approaches infinity. (D) For the center of the kinematic
path, the actuation force is reduced by 59% on average for the system with springs.

Figure 4.4(A-B)). Gravity is modeled as a lumped force at each node. Using the stiffness method,
we compare the actuation force needed to reconfigure the Watt’s linkage without springs and with
four internal torsional springs at locations A, B, C, and D. With springs, Fy is reduced for the
majority of the kinematic path when compared to the system without springs. As ϕ approaches
145◦, Fy increases exponentially. This is because as ϕ → 145◦, the center of the Watt’s linkage
deviates from a straight vertical path. For small ϕ, a vertical force is not sufficient to reconfigure
the linkage, and a horizontal component (not captured in the model) is needed.In the center of the
kinematic path (ϕ = 170◦ to 200◦, the actuation force is reduced by an average of 59%. For the
Watt’s linkage with and without springs, we confirmed that the force value matches with the first
derivative of the potential energy (Figure 4.5).

4.1.3 Mechanical Modeling of Origami Systems

For the mechanical modeling of origami structures, we use the Sequentially Working Origami
Multi-Physics Simulator (SWOMPS) package because it enables sequential loading with multiple
numerical loading methods [98]. It is based on the bar and hinge model, which models origami
and kirigami structures as pin-jointed assemblages [31]. It can capture in-plane deformations,
crease folding, and panel bending seen in origami structures [99, 100, 101]. The stiffness of the
system, used to formulate equilibrium equations and solve for a force or displacement response,
is comprised of contributions from the following three components: bar elements that capture in-
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Figure 4.5: Force compared to differential of the potential energy for the Watt’s Linkage with (A)
no springs, and (B) with springs.

plane stretching and shearing deformations; folding hinges that capture folding at the crease lines;
and bending hinges that capture bending in the origami panels. The total strain energy U of the
system is a sum of these three contributions:

U = US + UF + UB,

where US is the strain energy due to bar stretching, UF is the energy due to crease folding, and UB

is the energy due to panel bending. In this section, we use the bar and hinge model to confirm our
findings from the optimization framework, where panels are assumed to be rigid. Additionally, we
use the mechanical model to explore the forces required to reconfigure origami structures that have
been designed to have continuous equilibrium. We are able to directly define the stiffness of the
origami crease lines to equal the optimized stiffness of the springs. For a crease where a spring is
added, the spring stiffness is incorporated by defining the crease thickness t as:

t = (4 ∗W ∗ k/E)1/3,

where W = 0.01 m is the width of the crease, k is the spring stiffness (obtained from the opti-
mization), and E = 2 GPA is the Young’s modulus. The origami panels are modeled using the
following material properties: E = 2 GPa, ρ = 1200 kg/m3, and thickness = 0.0105 m. The rest
angle α of a torsional spring is also specified in the bar and hinge model. Typically, the model
assumes that crease lines have zero bending energy at the flat state, but any angle can be specified,
so we set the rest angle to equal the value obtained from the optimization.

To capture the effects of both gravity and external loads, we use two loading phases. First,
the entire structure is supported and gravity is applied using a Newton-Raphson iterative scheme.
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Next, the reconfiguration is modeled using a displacement controlled method. The gravity load
remains applied during this second step. The resultant force developed at the prescribed nodes
during the second loading step is the force required for reconfiguration, or actuation force.

4.1.4 Reduced Actuation Forces

The first origami structure we investigated was a single origami crease (Figure 4.6). We model
the crease as two panels with side length L = 0.3 m, connected by one crease line. One panel is
pinned at four corners and the other is free to fold about the crease line (Figure 4.6(A)). A free-body
diagram of the structure is shown in Figure 4.6(B). The gravity of the free panel can be represented
as a lumped force Fg, acting at the top two nodes. As the displacement controlled scheme is used
to move the free panel through its kinematic path (defined by ϕ), a moment develops at the crease
line (Ms) and a resultant force Fr develops at the top nodes. With this simple example, we can
solve analytically for Fr in the case where the crease line has no stiffness (i.e., a typical origami
crease) and the case where it does have stiffness (when a spring is added). Setting the sum of the
moments about the crease equal to zero, we can solve for equilibrium as

↶+
∑

Mcrease = 0 (4.5)

Ms + FrL cosϕ− FgL cosϕ = 0. (4.6)

If the crease line has no stiffness (no spring), then Ms = 0 and Fr = Fg; the resultant force
is equal to gravity acting on the panel. If the crease line has some stiffness and Ms > 0, then
Fr < Fg. We can interpret the resultant force Fr as the actuation force needed to reconfigure the
structure through its kinematic path from 0◦ < ϕ < 90◦.

We added a torsional spring along the crease line and used the optimization framework to design
it to have continuous equilibrium. The spring stiffness is 1.42 N-m/rad and the rest angle is 90◦.
These properties are specified in the bar and hinge model, so that the mechanical behavior of the
structure includes the effect of the spring. Figure 4.6(C) shows Fr obtained using the SWOMPS
package for the crease with and without a spring. When the system does not have a spring, the
plot shows good agreement with the analytical solution, with Fr = Fg. When the spring is added,
Fr is indeed lower than Fg; it is reduced by 90% on average. In addition to the displacement
controlled method, we also used the Newton-Raphson solver for the second loading step (NR in
Figure 4.6(C)) which gives the same result.

We can also extract the potential energy of the system from the bar and hinge model and com-
pare it to the optimized potential energy curve (Figure 4.6(D)). The bar and hinge model computes
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energy due to bar stretching, crease folding, and panel bending. For the single origami crease with
a spring, the model shows negligible energy due to stretching and bending, with the only energy
(other than gravity) resulting from crease folding. These results match well with the optimized PE
curve, even when taking into consideration the mechanical effects of a physical system. For the
origami crease with and without springs, we confirmed that the force value matches with the first
derivative of the potential energy (Figure 4.7).

The second origami structure we studied was the Miura-ori unit cell, the base of many origami
structures [88]. The Miura-ori cell consists of four parallelogram panels with side lengths L = 0.3

m (Figure 4.8(A)). The structure begins as a flat sheet and can be folded into a second flat state
(Figure 4.8(B)). Using the SWOMPS package, we use the displacement controlled scheme to apply
a vertical displacement at the center node, where the resultant force Fr develops.

For continuous equilibrium, we add torsional springs to two crease lines of the Miura-ori cell.
The springs are identical and have a stiffness of 0.62 N-m/rad and a rest angle of 0◦, corresponding
to a fully folded state. The force output from the bar and hinge model shows similar trends to those
seen with the single crease origami. When no springs are added, Fr = Fg; the force required to
move the structure through its kinematic path is equal to the force of gravity acting on it (Figure
4.8(C)). When springs are added with proper rest angles and stiffness, Fr < Fg. Thus, adding
optimized springs reduces the actuation force required for reconfiguration. We again confirm these
results with the Newton-Raphson (NR) solver. As the structure is folded there is no stretching or
bending energy developed in the structure, and the potential energy output matches well with the
optimized PE curve (Figure 4.8(D)). For the Miura-ori cell with and without springs, we confirmed
that the force value matches with the first derivative of the potential energy (Figure 4.9).

4.2 Prototype Fabrication

In this section, we apply the continuous equilibrium design method to design and fabricate physical
prototypes. In general, there are many sets of springs that can achieve the desired continuous
equilibrium behavior for any one system. For example, using one spring with stiffness k has the
same effect as using four springs with stiffness k/4 in a fully symmetric system, such as the Scissor
Mechanism. All of the springs that were chosen for the prototypes in this chapter are one possible
set and have properties that are approximate. In theory, custom springs with exact properties could
be fabricated to perfectly achieve continuous equilibrium.
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D E

Figure 4.10: Linkage prototype fabrication. (A) Components of the Scissor Mechanism and Watt’s
linkage prototypes. The members and attachment pieces are cut from acrylic sheets. The members
are connected using bolts. (B-C) Spring attachment methods for the Scissor Mechanism. (D) For
the Watt’s linkage, two springs were used at locations B, C, and D to achieve the required spring
stiffness. (E) For the system that can be re-oriented, an external torsional spring was installed
with one end connected to the Watt’s linkage at location A and one end connected to a horizontal
bar (shown in black). An internal spring was not used at location A, because it does not add a
significant influence on the overall system behavior (see Figure 2.1)

4.2.1 Design Method

The following steps were used to implement the continuous equilibrium design method to design
physical prototypes.

1. Compute system kinematics. First, obtain the system kinematics using geometric relation-
ships. For systems with more complex motion, kinematics can be obtained by simulating
the system using the bar and hinge model.

2. Estimate potential energy due to gravity. Based on the material properties and geometry, cal-
culate the potential energy due to gravity (PEG) due to the structure and springs.

3. Run optimization to compute spring properties. The inputs to the optimization problem are
the system kinematics, spring locations, and PEG. The outputs are the spring rest positions
and stiffnesses.

4. Compare optimized spring properties with available inventory and choose springs. For
the physical models shown in this chapter, the springs were purchased online from
McMaster-Carr. Naturally, this limited the available spring properties. At this stage, if there
is not a close match available in the inventory, return to step 2 and adjust the design. The
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most common adjustment is to increase the weight of the system by adding more material to
each component, or to utilize symmetry to increase or decrease the total number of springs.

5. Design spring connections. Once springs have been chosen, use the spring geometry (rest po-
sition, diameter, and wire thickness) to design connections. Estimate the weight of the
springs and connections using material properties and geometry.

6. Refine design. Return to step 3, using the potential energy due to gravity including the weights
of the springs and spring connections as the input to the optimization. Compare the new op-
timized spring properties with those of the springs chosen in step 4. If they are significantly
different, repeat steps 4 and 5. If they are sufficiently similar, continue to step 7.

7. Assemble system with springs. At this point, the system can be reconfigured through its kine-
matic path and the quality of the continuous equilibrium behavior can be evaluated.

4.2.2 Linkage Prototype Fabrication

Physical prototypes of the Watt’s linkage and Scissor Mechanism were fabricated as proof-of-
concept 2D continuous equilibrium systems. Linkage members were cut from acrylic sheets. Tor-
sion springs were purchased from McMaster-Carr and attached using acrylic pieces.

4.2.2.1 Scissor Mechanism

We fabricated two models of the Scissor Mechanism: one without springs and one with four inter-
nal torsional springs. The members of the linkages were fabricated using acrylic sheets with thick-
ness = 2.7 mm (0.106”), length = 0.3048 m (12”) and width = 0.0381 m (1.5”) (Figure 4.10(A)).
The sheets were glued together to create members with a total thickness of 0.0162 m (0.638”). Ad-
ditional acrylic pieces were used to attach the springs. Members were connected using bolts and
nuts and a low-friction frame was built to support the linkages. The computed optimized stiffness
of the springs was 0.09 N-m/rad, and we used springs with a stiffness of 0.1 N-m/rad in the pro-
totype. Two of the springs have a rest angle (optimized and used values) of 180◦ (Figure 4.10(B))
and two have a rest angle of 0◦ (Figure 4.10(C)). Note that although the dimensions of the two
types of springs are different, they have equivalent torsional stiffness.

The potential energy analysis of the Scissor Mechanism (discussed in Section 2.5) showed that
adding optimized springs reduces the fluctuation in potential energy by 88% (Figure 2.4). While
the prototype without springs collapses due to gravity (Video A.1), the prototype with optimized
springs can be reconfigured easily and is stable at any position along its kinematic path (Video
A.2). From a practical perspective, the 88% improvement for the Scissor Mechanism is sufficient
to improve stability.
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Table 4.1: Spring properties (calculated and used values) for the physical model of the Watt’s
linkage with four internal torsional springs, optimized for ψ = 0◦.

Stiffness [N-m/rad] Rest Angle
Location Calculated Used Calculated Used

A 0.315 0.376 192◦ 200◦

B 1.07 1.51 142◦ 135◦

C 1.12 1.51 158◦ 135◦

D 1.87 2.45 139◦ 135◦

4.2.2.2 Watt’s Linkage

We fabricated three versions of the Watt’s linkage: one with no springs, one with four internal
torsional springs, and one with four internal and one external torsional spring. The members of the
linkages were fabricated using acrylic sheets with thickness = 2.7 mm (0.106”), length = 0.3048
m (12”) and width = 0.0381 m (1.5”). The sheets were glued together to create members with a
total thickness of 0.0081 m (0.329”). Additional acrylic pieces were used to attach the springs.
Members were connected using bolts.

Without springs, the Watt’s linkage collapses under gravity when a supporting force is removed
(Video A.3). When the internal torsional springs with optimized properties are installed at locations
A, B, C, and D, the linkage can be easily reconfigured into any position along its kinematic path
(Video A.4). With springs, the linkage remains in the configuration in which it was placed and
needs no additional forces to maintain its position. The spring properties for the model with four
internal torsional springs are presented in Table 4.1. For the springs at locations B, C, and D, two
springs of equal stiffness were used to create a composite spring with the total stiffness needed
(Figure 4.10(D)).

The Watt’s linkage can be reoriented by rotating the system about the left-side support, as
discussed in Section 2.4. Without springs, the Watt’s linkage at ψ = 45◦ and 90◦ collapses under
gravity when a supporting force is removed (Videos A.5 and A.6). At different orientations, the
potential energy due to gravity changes, but the potential energy contributions of internal springs do
not. Therefore, we add an external torsional spring to allow continuous equilibrium to be reached
at orientations from 0◦ to 90◦. The spring parameters are presented in Table 4.2. Despite using
springs with some deviation from the calculated parameters, our results show that the system with
springs exhibits continuous equilibrium properties and the system remains stable throughout its
kinematic path in different orientations (Figure 4.11, Videos A.7 and A.8).
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Table 4.2: Spring properties (calculated and used values) for the physical model of the Watt’s
linkage with four internal torsional springs and one external torsional spring, optimized for 0◦ ≤
ψ ≤ 90◦.

Stiffness [N-m/rad] Rest Angle
Location Calculated Used Calculated Used

A 0.267 - 187◦ -
B 1.87 1.51 144◦ 135◦

C 1.64 1.51 159◦ 135◦

D 2.48 2.45 137◦ 135◦

External 1.04 1.22 191◦ 135◦

Figure 4.11: Physical prototype of the Watt’s linkage. With internal and external torsional springs,
the Watt’s linkage can be reconfigured at ψ = 0◦, 45◦, and 90◦ without collapsing.
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4.2.3 Origami Prototype Fabrication

Physical prototypes of a single origami crease and a Miura-ori unit cell were fabricated as proof-
of-concept 3D continuous equilibrium systems. Origami panels were cut from acrylic sheets and
torsion springs were purchased from McMaster-Carr and attached using acrylic pieces. The crease
lines are connected using tape to create an origami structure with flexible, frictionless creases.

4.2.3.1 Origami Crease

A single origami crease was fabricated using two panels (thickness = 1/8”) with side lengths equal
to 12” (Figure 4.12). Using the optimization framework presented in Chapter 2, we computed the
stiffness and rest angle of the torsional spring added to the crease. The stiffness is 0.3 N-m/rad and
the rest angle is 90◦. One panel is fixed and the other is free to rotate about the crease line. Without
the spring, the crease has no stiffness and the panel collapses. With the spring, the panel can be
easily reconfigured to any position and remains stable.

4.2.3.2 Miura-ori Cell

The origami panels are made from 1/8” thick acrylic sheets, with side lengths equal to 8”. The
crease lines are connected using tape, creating a crease line with negligible stiffness. We use
a hinge shift technique [48] with added material along two crease lines in order to achieve the
correct folding motions with the thick material and to give clearance for the spring attachments
(Figure 4.13(A)). The springs are held in place using built-up acrylic pieces (Figure 4.13(B)).

Using the optimization framework, we computed the properties of the two identical springs
added to the crease lines. The stiffness is 0.5 N-m/rad and the rest angle is 0◦. The full system
assembled with springs has full mobility to reconfigure from a flat sheet to a folded state, remaining
stable at all intermediate configurations (Figure 4.13(C)).

4.3 Experimental Testing

Preliminary experimental testing of several linkages and origami systems demonstrates the reduc-
tion in energy required to reconfigure systems which are in continuous equilibrium. In each case, a
load cell is used to measure the force needed to move the system through a portion of its kinematic
path.
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Figure 4.12: Physical prototype of a single origami crease. The spring was added to the crease and
attached using built up acrylic pieces.

(A) (B)

(C) (D)

Figure 4.13: Physical prototype of the Miura-ori unit cell. (A) The Miura-ori was designed using
a hinge shift method with added material along two crease lines. The creases are connected with
tape. (B) Springs were added to two creases and attached with acrylic pieces. (C) The assembled
Miura-ori cell with springs can reconfigure from a flat sheet to a fully folded state (D).
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Figure 4.14: Testing of the Scissor Mechanism prototype. A force gauge was used to apply a
horizontal force to reconfigure the Scissor Mechanism. The measured force of the system without
springs matches the analytical solution (Fg/(2 tan(ϕ))) well for ϕ > 45◦. With springs, the actua-
tion force is reduced even more than predicted by the computational model.

4.3.1 Scissor Mechanism

To reconfigure the Scissor Mechanism, we applied a horizontal force. The force required to re-
configure the model with springs are lower than those required to reconfigure the model without
springs (Figure 4.14). We can calculate the analytical solution for the horizontal force required to
prevent the Scissor Mechanism from collapsing: Fx = Fg

2 tanϕ
(dotted line in Figure 4.14). The data

matches this solution well for 45◦ ≤ ϕ ≤ 90◦. For ϕ < 45◦, the load cell is not able to capture the
increase in Fx, which tends towards infinity as ϕ −→ 0. In the physical testing of the system with
no springs, we have to hold the load cell at an angle so that we can move the system, and this angle
reduces the recorded force for ϕ < 45◦. The experimental results for the Scissor Mechanism with
springs give lower forces for actuation than the simulation using the stiffness method.

4.3.2 Watt’s Linkage

To reconfigure the Watt’s linkage, we apply a vertical force (pulling or pushing). The direction of
reconfiguration (up or down along the kinematic path) affects the magnitude of the force. The force
increases as the Watt’s linkage moves further from ϕ = 180◦ and the center point of the floating
link no longer traces a vertical line. The force for the system with springs is nearly centered
around 0 N, with higher forces developing at both ends of the kinematic path (positive force for
pulling up, negative force for pushing down), where the linkage deviates from a straight vertical
path. Friction in the system also contributes to the increase in force at the ends of the kinematic
path; improved fabrication methods could minimize the effect of friction. On average, the forces
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Figure 4.15: Testing of the Watt’s linkage prototype. (A) To reconfigure the Watt’s linkage, a
vertical force was applied to the top node and the force was measured using a force gauge. (B)
With springs, the force is reduced by approximately 70% on average compared to the case without
springs. There is a hysteresis in the force with springs based on the movement direction. (C)
The computational model and experimental results agree well for 160◦ ≤ ϕ ≤ 200◦, where the
computational model traces the average value for the system with springs.

for the system with springs are reduced by approximately 70% than the system without springs
(Figure 4.15). The simulation results obtained from the stiffness method are shown along with the
experimental results in Figure 4.15(C). For 160 ≤ ϕ ≤ 200◦, the computational results trace the
center of the hysteresis that occurs in physical testing of the system with springs. The simulation
underestimates the forces required to actuate the system without springs. The higher forces in the
physical prototype are likely due to friction and fabrication imperfections.

4.3.3 Origami Crease

To measure the actuation force required to reconfigure the origami crease, the bottom panel was
fixed to a frame and the vertical force was applied to the top of the free panel (Figure 4.16(A)).
Additional weight was added to the free panel of the crease in order to increase PEG so that a
spring from our available inventory could be used to achieve continuous equilibrium. The weight
was added using black binder clips. The spring added to the prototype has a stiffness of 0.3 N-
m/rad and rest angle of 90◦. The measured force to reconfigure the system with springs matches
the force obtained from the SWOMPS simulation (Figure 4.16(B)).
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Figure 4.16: Testing the origami crease prototype. (A) A vertical force was applied to the free panel
to reconfigure the crease. (B) The experimental results match well with the simulation results and
are reduced compared to the gravity load.
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Figure 4.17: Testing the Miura-ori cell prototype. (A) A vertical force was applied to reconfigure
the Miura-ori cell. (B) Although results were only obtained for a small portion of the kinematic
path, the preliminary experiment shows reduced forces for the structure with springs.

4.3.4 Miura-ori Cell

The Miura-ori unit cell prototype was testing by applying a vertical force to the center node (Figure
4.17(A)). A low-friction surface was created by placing a sheet of Mylar plastic on the testing
surface. The center node only moved in the z-direction during testing, and the six nodes in contact
with the low-friction surface are free to move in the x- and y- directions. Two internal torsional
springs were added to the prototype, each with stiffness 0.5 N-m/rad and rest angle equal to 0◦.
Additional weight was added to the prototype to accommodate the use of available springs. For
testing, we were only able to capture a small portion of the kinematic path, but the forces required
to actuate the system with springs are close to those predicted by the simulation (4.17(B)).
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4.4 Stiffness and Locking

One possible use for continuous equilibrium structures is to provide stable deployment of load-
bearing structures. Such structures could be fabricated off-site, transported, and assembled on
site. Designing the assembly motion to be a continuous equilibrium path would be beneficial for
improving the ease of construction and reduce the need for external supports. Once deployed, the
structure could then be locked in place and be used in load-bearing applications.

We use the Watt’s linkage as an example to explore the concept of deploying a continuous
equilibrium structure and then locking its rotational DOFs to provide stiffness. To compute the
stiffness of the Watt’s linkage, we applied unit loads P = 1.0 to the centroid of the floating link,
along with the gravity load and spring moments. Using the stiffness method described in Section
4.1.1, we solved for the resulting displacements {δ} and calculated a structural stiffness equal to
{δ}/{F}.

Figures 4.18(A) and (B) show the structural stiffness of the Watt’s linkage in the horizontal and
vertical directions, respectively. With the addition of springs, the linkage has high stiffness for a
load perpendicular to its kinematic path. For a load parallel to its kinematic path, the Watt’s linkage
has low stiffness, and thus is easily reconfigured. The Watt’s linkage without torsional springs has
no structural stiffness and collapses under gravity.

Fixing all of the rotational DOFs of the Watt’s linkage results in an increase in stiffness in
both the horizontal and vertical directions (Figure 4.19(A) and (B)). When all rotational DOFs are
locked, the horizontal stiffness of the Watt’s linkage depends on both the member cross-sectional
area (A) and the moment of inertia (I) (Figure 4.19(C)). This is because when the structure is
locked, the load results in axial and bending deformations. The vertical stiffness, however, only
depends on the moment of inertia when the Watt’s linkage is fully locked (Figure 4.19(D)). The
structure experiences bending as a result of the vertical load and there is no axial dependence.
These results show that when the rotational DOFs are locked, external loads are transferred to the
members of the linkage, rather than being resisted by the added springs.

The number and combination of locked nodes will also affect the structural stiffness. In the
horizontal direction, locking locations BC, ABC, and BCD all result in the same stiffness as locking
at all locations (Figure 4.20). In the vertical direction, locking more nodes always leads to a higher
stiffness, although the structure remains more flexible than in the horizontal direction.

The most effective combination of rotational DOFs to lock varies along the kinematic path.
For all configurations, locking all rotational DOFs (at locations A, B, C, and D) leads to a system
with the highest stiffness in the vertical direction. For horizontal stiffness, however, locking at
location combinations BC, ABC, or BCD lead to the same stiffness as combination ABCD for all
configurations (Figure 4.20).
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Figure 4.18: Structural stiffness of the Watt’s linkage with optimized springs. (A) Stiffness of the
Watt’s linkage in the horizontal direction (perpendicular to the kinematic path). The linkage with
springs has stiffness in the horizontal direction near the center of the kinematic path (at ϕ = 180◦),
where the midpoint of the floating bar traces a straight line. Towards the ends of the kinematic
path, the stiffness nears zero. (B) Stiffness in the vertical direction (parallel to the kinematic path)
is several orders of magnitude lower than in the horizontal direction.

4.5 Concluding Remarks

Designing reconfigurable structures is a complex task, and one important aspect is to investigate the
forces and displacements that develop as they reconfigure. In this chapter we used the traditional
stiffness method to study the actuation of linkage systems, with a modified stiffness matrix that
takes the effects of torsional springs into account. The results from this method confirm that the
forces required for reconfiguration are reduced when optimized springs are added. For origami
systems, we utilize the well-established bar and hinge model to compute the forces required for
actuation and confirm that, even with optimized springs, the effects of bending and stretching are
not significant.

We also explore physical prototype fabrication in this chapter. The design fabrication method
is discussed and videos of the systems are provided in Appendix A. Preliminary tests of linkage
and origami systems show that real reconfigurable structures can be designed to have continuous
equilibrium and require lower actuation forces.
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Figure 4.19: Structural stiffness of the Watt’s linkage, with locking. (A) The stiffness of the
Watt’s linkage in the horizontal direction is increased when all rotational DOFs are locked. (B)
In the vertical direction, locking increases the stiffness by several orders of magnitude. (C) The
horizontal stiffness of the Watt’s linkage depends on the member cross-sectional area (A) and the
moment of inertia (I) when all rotational DOFs are locked. (D) The vertical stiffness of the Watt’s
linkage depends on the moment of inertia and does not depend on the cross-sectional area when
all rotational DOFs are locked.
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Figure 4.20: Stiffness of the Watt’s linkage at ψ = 0◦ for different locking combinations. The
stiffness of the Watt’s linkage can be increased by locking one or more rotational DOFs, at locations
A, B, C, and D. The stiffness also changes as the structure reconfigures along its kinematic path.
The highest vertical stiffness can be obtained by locking rotations at all locations (ABCD). The
largest horizontal stiffness, however, can be achieved by locking location combinations BC, ABC,
ACD, or ABCD.
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CHAPTER 5

Pop-up Kirigami for Stiff, Dome-like Structures

This chapter presents a culminating example that addresses many of the challenges that arise when
designing a reconfigurable structure for use at a civil engineering scale: it has high stiffness, can
be fabricated using material with thickness, and has stable deployment when it is transformed into
a system with continuous equiibrium. In architecture and engineering, curved surfaces such as
arches and domes make excellent structural systems due to their high stiffness to weight ratio and
efficiency in enclosing a volume. Domes made using material systems such as block masonry,
poured concrete, and prestressed cables have been used for centuries as efficient roofs that can
enclose large areas [102, 103, 104, 105]. Such surfaces can be used to focus, refract, or attenuate
signals, making them useful in the design of antenna reflectors, solar thermal systems, and audito-
riums [106, 107, 108, 109]. These curved shapes are difficult to create due to time-consuming or
scale-limited processes. In recent years, origami and kirigami have risen as viable routes for the
rapid fabrication of complex surfaces from flat sheets; however, these methods typically lead to
systems that are overly flexible due to their high number of degrees of freedom.

This chapter presents a novel design for a pop-up kirigami system that achieves dome-like
curvature and high stiffness by taking advantage of an internal infinitesimal mechanism. The
system is fabricated from flat sheets using a hexagonal pattern, and the sheets remain flat locally as
the system deforms into a doubly curved shape. The internal mechanism and deformation modes
of the system are computed, revealing the flexible mode that creates dome-like curvature. Next,
a parametric study based on changing the geometry of the system illustrates the possible shapes
that result from changing the initial pattern. Finally, the high stiffness of the system in its final,
dome-like shape is demonstrated. The proposed pop-up kirigami system offers a novel method for
fabricating doubly curved surfaces with potential applications as deployable enclosures, concave
reflectors, and more.

The work presented in this chapter is adapted from [46].
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5.1 Introduction

It is a well-known phenomenon that adding curvature to a thin, flat sheet greatly increases its stiff-
ness [110]. Any surface created from a flat sheet without stretching or tearing has zero Gaussian
curvature; such surfaces are classified as developable [111]. It follows that introducing double
curvature to a developable surface would be desirable; however, achieving positive Gaussian cur-
vature from a flat sheet is difficult because it requires stretching, shrinking, crumpling, or tearing
the sheet [112, 113]. Instead, doubly curved surfaces are typically fabricated using processes such
as casting, molding, additive manufacturing, or assembly from individual pieces. These processes
have several drawbacks: casting materials such as concrete is a slow process and often relies on ex-
tensive formwork; molding and additive manufacturing are limited by scale and material while also
requiring internal support; and assembling a structure from individual pieces leads to complicated
and expensive construction requirements.

Several origami methods have been explored to approximate curved surfaces, as reviewed by
Callens and Zadpoor (2008). Periodic tesselations, such as the Miura-ori pattern, can be deformed
out-of-plane into surfaces with nonzero Gaussian curvature if the flat facets of the sheet, or pan-

els, are allowed to bend [87, 114]. Variations on the Miura-ori pattern have been designed to
approximate complex curvatures while maintaining rigid folding characteristics, but the resulting
structure remains flexible because of the possibility for bending [115]. Concentric pleating, as
seen in the origami hypar, can also result in negative Gaussian curvature (saddle shape), but this
technique also requires panels to bend and twist [116, 117]. Tachi’s origami bunny [118, 119] uses
a tucking technique to achieve highly complex surfaces with nonzero Gaussian curvature, but this
method is only possible with extremely thin materials and quickly becomes untenable as systems
are scaled up. Kirigami methods, which allow for cutting of material, have been explored as well.
Curved kirigami surfaces often require a nonuniform tesselation pattern [120] and do not lead to a
structurally robust system [121]. In summary, creating surfaces with curvature, especially double
curvature, from a flat sheet is a unique challenge that often requires significant panel deformation,
infinitesimally thin materials, or nonuniform cutting and folding patterns.

In this chapter, we present a novel pop-up kirigami system that deforms into a doubly curved
surface while the panels remain nearly flat. The system begins as a kirigami structure with many
flexible modes and stiffens as it deforms into a shape with positive Gaussian curvature. We show
that the pop-up kirigami can accommodate thickness, lending it to future exploration as a system
that can be built at a civil engineering scale. The structure’s pattern is a repeating array of hexagons
and trapezoids, beginning from two flat sheets that have been cut and fastened together. Its ability to
achieve a doubly curved shape is due to an intrinsic infinitesimal mechanism that leads to synclastic

(dome-forming) behavior.
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Figure 5.1: A novel pop-up kirigami structure that assembles and forms a dome-like shape. (A)
The pop-up kirigami penguin by Haruki Nakamura inspired the structure presented in this chapter
(Images used with permission of the artist). (B) Pop-up kirigami structure in flat state, assembling
into 3D array, and deforming into a dome-like structure. (C) Paper prototype of pop-up structure,
shown in flat, assembled, and curved states. The prototype has a mass of 17 grams and supports a
500 g load with no noticeable deformation.

78



This chapter introduces and explores the properties of the pop-up structures and is organized
as follows: In Section 5.2, we define the system geometry, including how thickness can be incor-
porated for practical designs. The intrinsic properties of the system, including the infinitesimal
mechanism that allows for the positive double curvature deformation, are discussed in Section 5.3.
Next, we explore the possible geometric variations of the system and the effects of the pattern ge-
ometry on the resulting shape (Section 5.4). Finally, in Section 5.5 we demonstrate the stiffening
properties of the resulting structure.

5.2 Geometric Definition

The inspiration for this novel system is a pop-up kirigami penguin toy made by Japanese artist
Haruki Nakamura (Figure 5.1(A)) [122]. In his work, simple internal springs (usually made of
rubber bands) are prestretched and locked when the toy is flat and are released when the toy is
dropped, making the toy pop up into its 3D shape. We were intrigued by the structure of these toys
because they begin as flat sheets and pop up into a 3D structure, a feature that is widely sought after
in origami and kirigami engineering, especially for self-assembly at small scales [60, 123, 124].
The penguin body (which holds the internal spring mechanism) is a cell constructed from two
sheets of paper cut into a central hexagonal panel and six surrounding trapezoidal panels, which
are fastened together along their outer edges [125]. Our design is an array made up of these cells
connected along those same outer edges, so that in places, four trapezoidal panels meet along one
crease line. The result is a structure that can “pop up” into 3D as shown as the assembly step in
Figure 5.1(B). In Section 5.6, we explore how this structure can be designed to have continuous
equilibrium paths that aid with deployment.

5.2.1 Planar Geometric Definition

The base of the pop-up system presented in this chapter is a single cell made of two sheets cut into
hexagonal and trapezoidal panels and connected along the bottom trapezoid edges. The pattern
geometry of a cell is determined by the panel angle, γ and the panel length, L (Figure 5.2(A)).
We assume the hexagon side length is always equal to 1 and scale all other units from this value.
The possible range of the panel angle γ is 0 ≤ γ < 30◦. The assembled (3D) shape of a single
cell is defined by the folding angle between two trapezoidal panels, θ, along with the trapezoid
dimensions γ and L. The range of θ depends on γ; a pattern with a larger γ has a smaller range of
θ (Figure 5.2(B)). When γ = 30◦, the pattern cannot assemble into a 3D shape and remains a flat
sheet. We define the folding angle when the cell is closed as the closed angle θc. The closed angle
can be computed from the panel angle as: θc = 2 cos−1 (tan (π/3) tan (γ)).
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Figure 5.2: Geometric properties of the pop-up structure. (A) Geometry of a unit cell with γ = 20◦

and L = 1.5. The angle between two trapezoidal panels connected along their bottom edges is the
folding angle θ, and when the cell becomes closed it is defined as θc. (B) Two examples of the
seven cell structure with different geometries.

Individual cells are tessellated to create a larger cellular structure. The smallest of these struc-
tures has seven cells, and larger structures (with nineteen cells, thirty-seven cells, etc.) are made
by adding cells radially outward from the center cell. In this and the following section, we primar-
ily focus on the properties and behavior of a sample geometry of the seven-cell structure where
γ = 20◦ and L = 1.5; in Section 4, we explore variations in γ, L, and the number of cells.

5.2.2 Modified Design of the Pop-up Kirigami Structure with Thickness

In this subsection, we introduce a modified design of the pop-up kirigami structure that can ac-
commodate finite thickness. The design adds thickness on both sides of the initially flat planes of
the panels. To allow for folding without restricting the kinematics, we implemented a hinge-shift
technique, which moves the rotational hinges to the edges of the panels [48] (Figure 5.3(A)). The
structure with thickness can fully assemble from flat into 3D with the addition of an angled cut
along the bottom edge of each trapezoidal panel, as shown in Figure 5.3. The angle of the cut β
depends on the panel angle as: β = tan−1[tan[π/2 − cos−1(

√
3 tan γ)] cos γ]. This modification

with an angled cut applies for any thickness and any geometric definition of the cell. The angled
cut allows for uninhibited rigid folding kinematics, where the adjacent cells come into contact only
when the cell is fully closed.

We fabricated a prototype with thickness using foam board (Figure 5.3(C)). The geometric
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Figure 5.3: Modified design with thickness. (A) A 3D model of a single cell with the angled cut
β shown on the trapezoidal panels. (B) A subset of the seven-cell system modeled with thickness.
The angled cut β allows for the cells to fully assemble. (C) A prototype of the pop-up structure
fabricated with foam board (thickness = 3/16”).
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Figure 5.4: Bar and hinge model used to simulate the pop-up dome-like structure. (A) Bars are
used to capture the in-plane stiffness of the trapezoidal and hexagonal panels. Bending hinges
(shown in dashed gray lines) capture bending stiffness of the panels. Folding hinges (black lines)
represent the folding stiffness of the crease lines. The additional bars included on the sides of
the trapezoidal panels (dashed black lines) are the only ones that do not overlap with bending or
folding hinges. (B) Contact angle used in bar and hinge simulations. As the distance between
nodes 3 and 4 approaches zero, the contact energy and stiffness grow toward infinity.

parameters of the prototype are γ = 20◦, hexagon side length = 1”, L = 1.5”, and thickness
t = 3/16”. The angled cut allows for the cells to fully assemble into the 3D shape, and the
structure can deform into a dome-like shape, similar to the paper prototypes.

5.3 Intrinsic Properties of Pop-Up Kirigami System

In this section, we used the bar and hinge method to simulate the pop-up system and explore
several interesting intrinsic properties. We first investigated the internal mechanism of the seven-
cell structure (Section 5.3.2). Next, we utilized the bar and hinge method to simulate the system
assembling from flat to 3D and deforming into a doubly curved shape (Section 5.3.3). Finally,
we conducted an eigenvalue analysis to confirm the existence of an infinitesimal mechanism and
explore other modes of deformation (Section 5.3.4).

5.3.1 Bar and Hinge Model for Pop-Up System

We use the bar and hinge model to simulate the structure as it assembles from a flat state and
deforms into a dome-like shape. The bar and hinge model used in this chapter is based on the
MERLIN 2 origami modeling package because it can perform large-displacement, highly nonlinear
analyses [101]. We model bars using a material with Young’s modulus E = 108, thickness t =
0.01, and Poisson ratio ν = 1/3. We use these arbitrary units of realistic relative magnitudes to
demonstrate the fundamental characteristics of the pop-up structures. The panel bending stiffness
KB depends on the material parameters E, t, ν and the panel geometry, as follows:

82



KB =
(
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)1/3
, (5.1)

where Σα is the sum of the internal angles of the panels and DS is the length of the shortest
diagonal bar [100]. We use average values of Σα = 0.9π and DS =

√
2 for all panels.

The stiffness of the fold lines KF is defined as KB/1000 in order to simulate a structure with
panels that are stiff and folds that provide near zero contribution to the rigidity of the structure.
The axial (stretching) bar stiffness KS is EA/L, where A is the bar cross-sectional area and L is
the bar length. Formulations of bar cross-sectional areas for quadrilateral panels, including skewed
(parallelogram) panels, have been established in the literature [100], and a general approximation
for polygonal panels has also been proposed [101]. Our novel system includes hexagonal and
trapezoidal panels, which require new bar area definitions for accurate modeling of their in-plane
stiffness. We derive appropriate bar areas and present them in Sections 5.3.1.1 and 5.3.1.2 for
hexagonal and trapezoidal panels, respectively.

An important and challenging aspect of origami modeling is capturing when panels come into
contact [126]. To avoid panel intersections, we implement a simplified contact model using a
penalty function applied to a rotational spring [99]. Contact rotational springs were defined be-
tween adjacent trapezoidal panels (Figure 5.4(A)). Six of these springs were defined per cell, with
axes spanning between the top and bottom sheets. The hinges connect nodes 1, 2, 3, and 4 shown
in Figure 5.4(B) to measure the contact angle, such that as nodes 3 and 4 approach each other,
contact is engaged. The initial stiffness of the contact hinge is KC = 20 ∗ KF and the stiffness
increases toward infinity as the distance between nodes 3 and 4 approaches zero. This increase in
stiffness avoids panel intersection and simulates the effect of the panels coming into contact.

5.3.1.1 Bar Area Formulations for Hexagonal Panels

The hexagonal panels are modeled using the bar and hinge method with 15 bars, shown in Figure
A.1. Six bars connect the nodes along the perimeter of the panels and have bar cross-sectional area
Aext. Three bars with area Aint1 connect the major diagonals of the hexagon, and six bars with
area Aint2 connect the shorter diagonals of the hexagon.

The bar areas were chosen such that the stretching and shearing behavior of the hexagonal
panel matches the behavior of a block of material with length and width s, the side length of the
hexagonal panel. The theoretical stretching stiffness of the block of material is K = EA/L =

Est/s = Et. The theoretical shear stiffness is Ksh = Gst/s = Gt, where G = E/(2(1 + ν)).
We assume the following material properties: Young’s modulus E = 108, thickness t = 0.01, and
Poisson’s ratio ν = 1/3.

We found the stretching and shearing behavior of the hexagonal panel by assembling a stiff-
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Figure 5.5: Bar area formulation for hexagonal panels. The stretching and shearing stiffness of the
hexagonal panels was defined to match the stiffness of a square block of material with comparable
dimensions.

ness matrix, applying a force of 0.5 on the top two nodes (vertical for stretching, horizontal for
shearing), and solving for the nodal displacements ∆. The stiffness of the bar and hinge panel
is then calculated as KB&H = 1.0/∆. Conducting this process where we systematically varied
the bar areas, we found that the following definitions led to stretching and shearing behaviors that
matched the theoretical solutions:

Aext = 0.13 ∗ t ∗ s (5.2)

Aint1 = 0.13 ∗ 0.5 ∗ t ∗ s (5.3)

Aint2 = 0.13 ∗ 60 ∗ t ∗ s (5.4)

These definitions allow the bar areas to be scaled with the side length of the hexagonal panel
and panel thickness.

5.3.1.2 Bar Area Formulations for Trapezoidal Panels

Trapezoidal panels were modeled using the bar and hinge method with 6 bars. Four of the bars
connect the nodes around the panel perimeter and two diagonal bars connect opposite corner nodes.
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Figure 5.6: Bar area formulation for trapezoidal panels. The stretching and shearing stiffness of
the trapezoidal panels was defined to match the stiffness of a rectangular block of material with
the same total area. The plots on the right show the performance of different models for different
panel angles γ.

We calculated cross-sectional areas for the bars that match the stretching and shearing behavior of
the panel to the theoretical stretching and shearing of a block of material. As an additional check,
we also compared the bar and hinge model results to a discretized finite element model using
S4 elements. The following material properties were used for all 3 models: Young’s modulus
E = 108, thickness t = 0.01, and Poisson’s ratio ν = 1/3.

We started with a block of material with a height ofL, thickness t, and widthWavg = (W+s)/2,
where L is the length of the trapezoidal panel and W is its bottom width. We applied an upward
force Fy = 1.0 on the top surface of the block. The resulting vertical displacement ∆y can be
calculated using stress-strain relationships:

σy =
Fy

Wavgt
ϵy =

σy
E

=
Fy

EWavgt
∆y = ϵyL =

FyL

EWavgt
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The horizontal displacement ∆x and strain ϵx are found using the Possion’s ratio, ν:

∆x = −ν∆y
Wavg

L
ϵx =

∆x

Wavg

We applied these displacements and strains to the bars of the trapezoidal panel and found the
change in length ∆ of each bar. Next we found the forces in each bar: F = K∆ = EA∆/L,
with the bar cross-sectional area A still unknown. From this stretching case, we obtained two
independent equilibrium equations by summing the forces in the x- and y-directions at the nodes.

Using a similar process to the stretching case, we also applied a horizontal shear force to the
top surface of the block of material, calculated the displacements and strains, applied them to the
bars and nodes, and solved for the bar forces. The shearing case led to one additional independent
equilibrium equation after summing the forces at the nodes. We obtain the fourth independent
equation needed to solve for the 4 bar areas by assuming that the top and bottom bar areas are
equal.

Solving the 4 equations gives expressions for the bar cross-sectional areas in terms of geometric
dimensions of the trapezoid (W,L, s, t) and material parameters (E, ν). The expressions for the bar
areas are lengthy; we encourage interested readers to contact the authors for the full formulations.
We performed a patch test to compare the behavior of the bar and hinge trapezoidal panel with
the theoretical solution and a discretized FE model. The results (shown in Figure A1) show that
the bar and hinge model with the calculated areas matches the behavior of the theoretical and FE
models well. The bar and hinge model follows the same trends as the FE results, and only slightly
overestimates the shear stiffness. The bar and hinge model cannot capture the local deformations
that make the realistic shear case more flexible.

5.3.2 Mechanism Analysis

Through informal experimentation with paper models of the pop-up structure, we observed that
the system has the ability to deform into a shape with dome-like curvature (Figure 5.1(C)). While
initially flexible, the models begin to stiffen as the curvature develops. Using the bar and hinge
method along with several resources on the analysis of internal mechanisms, we verified that this
stiffening does occur and is the result of a single infinitesimal mechanism.

Pin-jointed assemblages (such as a structure modeled using bars and hinges) can be described
mechanically in terms of the number of inextensional mechanisms (m) and states of self-stress (s)
that are possible for the structure [4]. A mechanism is defined as a displacement that does not
cause internal forces to develop in the structure (excluding rigid body motions of the full system
in space). A state of self-stress is a condition where nonzero internal forces in a structure can
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exist in equilibrium without the application of external forces. The quantities m and s are also
referred to as the degrees of kinematic (m) and static (s) indeterminacy [127, 128, 129]. In certain
cases, activating a structure’s state of self-stress leads to a stiffening effect in one or more of its
mechanisms. These cases are known as infinitesimal mechanisms, in contrast to finite mechanisms,
which allow for large nodal displacements with no stiffening [3].

The equilibrium and kinematic equations of a pin-jointed structure involve the following quan-
tities: the internal bar forces t, the external loads applied at the joints f, the joint displacements d,
and the bar elongations e. These quantities are related to each other by the equilibrium matrix A:

At = f,

and its transpose, the compatibility matrix B = AT:

Bd = e.

The quantities m and s are related to the number of bars (b), non-support joints (j), and support
reactions (k) in a structure through an extension of Maxwell’s rule, which is typically used to
determine a structure’s degree of static indeterminancy: s − m = b − 3j + k [3]. However, the
exact values of m and s for a given structure cannot be found simply by counting the bars and
joints. They require computing the four vector subspaces of the structure’s equilibrium matrix:
the null space, left null space, column space, and row space. The null space of the equilibrium
matrix contains the structure’s independent states of self-stress (and therefore s), and the left null
space gives the mechanism displacements D (and therefore the number of mechanisms m). The
column space identifies the non-redundant bars of a structure, essentially describing the statically
determinate structure that would result if the redundant bars were removed. The row space gives
the set of geometrically compatible bar elongations.

Pellegrino and Calladine developed an algorithm that evaluates whether a pin-jointed structure’s
internal mechanisms are infinitesimal or finite [3, 4]. The algorithm involves constructing a modi-
fied equilibrium matrix A’ comprised of the structure’s original equilibrium matrix and the product
force vectors (A’ = [A|P]) and evaluating whether the new matrix is full rank. The product force
vectors P give the loads that occur at the joints as the structure moves into a mechanism displace-
ment and is no longer in equilibrium under zero external load. An additional check for positive
definiteness verifies the stability of the infinitesimal mechanism.

Following the algorithm approach, we discovered that the seven-cell pop-up kirigami structure
has one infinitesimal mechanism. Using the bar and hinge model, we obtained the structure’s
equilibrium matrix and its four vector subspaces. The left null space contains one set of mechanism
displacements, thus giving a value of m = 1. When the mechanism displacements D are applied
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Figure 5.7: Analysis of the pop-up structure using the bar and hinge model. (A) We use two metrics
to quantify the change in geometry of the system during the two-step analysis: clear rise and clear
span. We define the clear rise as the vertical distance from the bottom nodes of the outer cells to
the bottom nodes of the center cell, and the clear span as the horizontal distance between bottom
nodes of opposite outer cells. (B)-(C) As bar strains increase during the analysis, the clear span
decreases and the clear rise increases. (D) The ratio of clear rise to clear span is used to describe
the increasing curvature of the structure during the analysis. (E) Distribution of bar strains at the
end of the two-step analysis.

to the structure, the resulting shape resembles a dome, as we expected and as shown in Figure 5.1.
We then followed the procedure outlined in the literature to compute the product force vectors and
assemble the modified equilibirium matrix A’, we verified that it is full rank, and performed the
stability check. The seven-cell structure has 432 degrees of freedom and 18 of them are restrained
at the bottom center hexagonal panel. The structure has 714 bars, and the equilibrium matrix A has
dimensions (714 x 432). The modified equilibrium matrix A’ has dimensions (414 x 413), and there
are 301 possible independent states of self-stress (s = 301). These quantities, along with m = 1

for the structure, satisfy the extension of Maxwell’s rule. The result of the algorithm confirms that
the mechanism is infinitesimal, indicating that as the structure develops positive double curvature,
the assemblage stiffens.
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5.3.3 Achieving Double Curvature

The mechanism analysis presented in Section 5.3.2 reveals that the pop-up system has the ability
to achieve positive double curvature, thanks to an internal infinitesimal mechanism. In this section,
we study the system as it follows the infinitesimal mechanism and deforms into a doubly curved
shape. We used the bar and hinge method described in Section 5.3.1 to perform a two-step, dis-
placement controlled analysis to simulate the structure as it assembles from flat and subsequently
deforms. The first step (assembly) runs until the contact angle between the trapezoidal panels is
sufficiently small (< 3◦). This angle limit ensures that the spaces between cells are nearly closed
and that adjacent trapezoidal panels are engaging the contact hinges. The second step (mechanism)
deforms the structure into a doubly curved shape using a follower displacement applied at the 12
nodes along the outer perimeter of the structure and runs until the maximum bar strain (regardless
of whether in tension or compression) exceeds 0.01%. This threshold was chosen to emulate re-
alistic strain values that structural materials can experience without failure. The structure has the
ability to curve more if higher strains are allowed.

Figure 5.7 illustrates the two-step analysis for the pop-up structure. We use two metrics to
quantify how the geometry of the structure changes during the analysis (shown in Figure 5.7(A)):
the clear rise, defined as the vertical distance from the bottom nodes of the outer cells to the
bottom nodes of the center cell, and the clear span, the horizontal distance between bottom nodes
of opposite outer cells. During the assembly step, the clear rise remains zero and the clear span
shortens as the structure comes together into its 3D shape. Bar strains remain near zero during
this step. During the mechanism step, the system takes on the curved shape of the infinitesimal
mechanism discussed in Section 5.3.2. As the bar strains increase, the clear span decreases and the
clear rise increases. A more descriptive parameter that we use to understand the curvature of the
structure is the ratio of clear rise to clear span. The ratio increases during the mechanism step as
the structure becomes more curved.

For the seven-cell system with γ = 20◦ and L = 1.5, the clear span shortens from 11 to 8
during the two-step analysis. During the mechanism step, the clear rise grows to 0.9, resulting in a
final clear rise to clear span ratio of 0.11. As the clear rise increases and the clear span decreases
during the deformation, the structure begins to take the shape of a spherical cap. A practical limit
to the clear rise to clear span ratio is 0.5, corresponding to a hemisphere.

The mechanism displacements can occur without significant panel bending, as can be shown
using the two-step analysis. During the analysis, the bending angles of all panels remain less than
3◦ while the majority of the bending angles remain below 1◦ (Figure 5.8). These small bending
angles confirm that the panels remain nearly flat, especially when the infinitesimal mechanism
is first applied. As the analysis progresses, small stretching and bending energies develop in the
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Figure 5.8: Small bending angles develop in the structure during the two-step analysis. Most of the
angles are less than 1◦. Some panels experience bending angles up to ≈ 3◦ (highlighted in blue).

panels and lead to the observed stiffening effect.

5.3.4 Eigenvalue Analysis

In addition to the mechanism analysis, we investigated the eigenvalues and eigenmodes of the pop-
up structure. The eigenmodes provide information on the structure’s infinitesimal mechanism, de-
formation characteristics, and self-stiffening property. The eigenvalues and modes are found using
the equation Kϕi = λiϕi, where K is the structure’s full stiffness matrix, ϕi is the ith eigenmode
vector, and λi is the ith eigenvalue. The magnitude of an eigenvalue λ scales directly with the
energy required to deform a structure into the shape described by the corresponding eigenmode. A
higher eigenvalue indicates a stiffer (more energetically expensive) deformation. An eigenvalue of
zero indicates a deformation that does not produce any internal forces in a structure – either a rigid
body motion or an internal mechanism.

The eigenvalues and eigenmodes of the pop-up structure in various configurations are shown in
Figure 5.9. In addition to the flat structure, we conducted the eigenvalue analysis for the assembled
structure (Figure 5.9(B)) and curved structure (Figure 5.9(D)). These geometries were found using
the two-step analysis described in Section 5.3.3. We also explored how the eigenvalues of these
configurations change when the nodes of adjacent cells are connected (Figure 5.9(C) and (E)). For
the connected cases, the nodes that come into contact during assembly are connected by bars with
high stiffness. The connected design represents a practical scenario where the individual cells of
the structure are connected after assembly. This scenario accounts for the increased stiffness due to
contact which can be captured by the large displacement analyses (Figure 5.7), but is not captured
in the infinitesimal eigenvalue simulations without connections.

The first six eigenvalues of the flat (unassembled) structure are zero, and they represent the six

90



λ7 = 0.0021 λ8 = 0.0356 λ9 = 2.02

A  Flat structure

λ1 = -0.0042 λ2 = 25.5 λ3 = 25.5

B  Assembled structure

λ1 = 34.1 λ2 = 17742 λ3 = 17742

C  Assembled & Connected

λ1 = 0.397 λ2 = 30.9 λ3 = 30.9

D  Curved Structure

λ1 = 8756 λ2 = 23562 λ3 = 23562

E  Curved & Connected

Figure 5.9: Eigenvalues and eigenmodes of the pop-up structure. (A) Modes of the flat, unassem-
bled structure. Eigenvalues λ1 − λ6 of this configuration are the rigid body motions in space. The
next eigenvalue λ7 is ≈ 0, indicating that it is an internal mechanism. (B) Modes of the assembled
structure with the outer perimeter constrained. The eigenvalue corresponding to the infinitesimal
mechanism λ1 remains near zero. (C) Connection bars are added to the nodes which come into
contact for the assembled structure, increasing the eigenvalues. The first eigenvalue λ1 remains
small compared to λ2 and λ3. (D) Modes of the structure after it is deformed into a dome-like
shape. The first eigenvalue λ1 is again near zero, reflecting the infinitesimal mechanism, and the
other modes remain relatively flexible. (E) Modes of the curved structure with connections. All
eigenvalues are high, indicating a stiff structure.
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rigid body motions in space. The next eigenvalue (λ7) is very close to zero, meaning it is an internal
mechanism. The 7th eigenmode of the flat structure is the doubly curved shape, as we found in
the mechanism analysis (Section 5.3.2). The 8th eigenmode is the assembly motion, where the
structure “pops up” from flat to 3D. The 9th eigenvalue is representative of the energy of a higher
mode, where some cells are squeezed.

For all configurations other than flat, additional boundary constraints were included to restrict
the structure’s rigid body motions in space; thus, in Figure 5.9(B) - (E) the eigenvalues begin at λ1.
For these configurations, the first eigenvalue λ1 is significantly lower than λ2 and λ3. The jump
between eigenvalues indicates a large increase in stiffness between the modes; the first eigenmode
(which resembles the dome-like shape) is significantly more flexible than other modes. The first
eigenvalues λ7 and λ1 in parts (A)-(D) of Figure 5.9 represent the infinitesimal mechanism and
are much lower than the subsequent eigenvalues. These eigenmodes require only folding along the
crease lines and minor bending in the panels. In contrast, some of the eigenvalues for the connected
structures are several orders of magnitude higher because they require stretching and shearing
of the sheet. By itself, deforming the structure into the curved shape only results in a modest
increase in eigenvalues because the infinitesimal eigenmodes can still exhibit self-intersection and
local squeezing deformations (λ2 and λ3 of Figure 5.9(D)). When we place a perimeter boundary
and internal connections (representing adjacent panels in contact) in the structure, all eigenmodes
are significantly stiffened as shown in Figure 5.9(E). These eigenvalue simulations show that the
flexible infinitesimal mechanism can be used to assemble the kirigami into the dome-like shape
which can then be stiffened by internal contacts and perimeter constraints.

5.4 Geometric Properties from Parameter Variations

We use several metrics in addition to the clear rise and clear span defined in Section 5.3.3 to
compare the final deformed shapes of the kirigami structures with different parameters (illustrated
in Figure 5.10(A)). The clear volume is the volume underneath the structure, calculated using the
volume of a spherical cap (V = 1/6πh(3a2 + h2)) where the height h is equal to the clear rise and
the base radius a is equal to half of the clear span. The enclosed volume is the volume within all
cells of the structure, and the % clear volume is the ratio of the clear volume to the total volume
(clear plus enclosed). We compared these metrics as we varied γ, L, and the number of cells.

5.4.1 Changing Panel Angle and Panel Length

The two-step analysis described in Section 5.3.3 was conducted for structures with various panel
angles (γ = 10◦-25◦) and panel lengths (L = 0.75, 1, 1.25, 1.5). Shown in Figure 5.10, these
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parameters drastically influence the final appearance and geometric properties of the final shape.
We found that the clear rise depends on the panel length L, with larger L resulting in a larger clear
rise. As γ increases, the clear rise stays fairly constant for a given L, with a small decrease as
γ approaches 25◦ (Figure 5.10(B)). The clear span increases with both γ and L (Figure 5.10(C)).
This increase in clear span is somewhat intuitive, because we increase the overall pattern size by
increasing L and make a shallower assembled structure by increasing γ. The clear rise to clear
span ratio of all geometries ranges between 0.07 and 0.14 (Figure 5.10(D)). Many classical domes
used in architecture have a clear rise to clear span ratio near to 0.5. One way to increase the clear
rise to clear span ratio of the proposed kirigami structures is to add more cells, as discussed in
Section 5.4.2.

Geometries with larger γ and L result in structures with larger clear volume, and for larger
panel lengths an increase in γ leads to a more dramatic increase in clear volume (Figure 5.10(E)).
Interestingly, the relationship between % clear volume and L is flipped; a larger L gives a smaller

% clear volume. This relationship indicates that we can construct a structure with a higher fraction
of usable space to total occupied volume (larger % clear volume) using less material (smaller L).

5.4.2 Adding Cells

In addition to the seven-cell system, we also studied a larger system with 19 cells. The nineteen-cell
structure assembles and deforms into a doubly curved surface in the same manner as the seven-
cell version, as demonstrated by the bar and hinge simulations and physical prototypes (Figure
5.11(A)). We were interested in whether adding cells would result in a more curved structure, and
we use the clear rise to clear span ratio as a measurement of curvature for comparison. Figure
5.11(B) shows that for a structure with γ = 20◦ and L = 1.5, when deformed to reach the same
bar strains, the nineteen-cell system reaches a higher clear rise to clear span ratio: 0.15 up from
0.11. This increase is a good indication that by continuing to add cells, our design could reach the
curvature levels of typical domes found in architecture and structural engineering. Additionally,
this structure has a clear volume of 214 in comparison to the clear volume of 24 for the seven-cell
structure with the same geometric parameters. This is about a nine (8.9) times increase in usable
clear volume for only about a three (2.7) times increase in the total material used to construct the
structure.

5.5 Dome Stiffness

To investigate the stiffness of the pop-up kirigami structure, we constrained the structure along the
outer perimeter in the x-, y-, and z-directions and applied small vertical displacements (∆ = −0.1)
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Figure 5.10: Parametric study of the pop-up kirigami structure. (A) Geometric properties mea-
sured for the curved pop-up kirigami structures: clear rise, clear span, clear volume, and enclosed
volume. (B) Larger panel lengths result in systems with larger clear rise. Clear rise is less influ-
enced by the panel angle γ. (C) Larger clear spans result from systems with larger L and γ. (D)
The ratio of clear rise to clear span decreases as γ increases, and is mostly independent of L. (E)
Larger L and γ result in structures with larger clear volumes. (F) Interestingly, structures with
smaller L results in higher % clear volumes.
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the same geometry when curved to reach the same magnitude of bar strains.

at the interior points where the cells meet (Figure 5.12(A)). The bar and hinge method was used to
apply the displacement in 10 steps and calculate the resulting vertical forces (F ) at the supports.
The force-displacement relationship was linear in this range of deformation. A stiffness value
representing the full structure was found using the relationship K = ΣF/∆.

Overall, we found that the stiffness of the curved structures mostly depends on γ, and the
stiffness varies less significantly with L (Figure 5.12(C)). To better understand the characteristics
of the pop-up kirigami, we compare its stiffness with a curved sheet restrained on two edges with
clear rise and clear span values averaged from the results in Section 4 and twice the material
thickness of the kirigami panels (to account for the two sheets used in the pop-up structures). An
analytical approximation for the stiffness of the curved sheet is found using Castigliano’s theorem
and provides a base point comparison for the stiffness values, as discussed in Section 5.5.1.

The comparison shows that our structures, with any γ or L, are as stiff as a curved sheet made of
material with 10 to 17.5 times the total pop-up kirigami thickness (tc = 10∗2∗t to tc = 17.5∗2∗t).
Because the bending rigidity of the sheet scales with t3c , the pop-up kirigami is in fact ≈ 1,000 to
5,000 times stiffer than a simple sheet supported only along two edges. These results demonstrate
the stiffening from the internal infinitesimal mechanism and the doubly curved shape which allow
for high stiffness to be achieved using panels made from thin sheets.
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Figure 5.12: Stiffness analysis of the pop-up kirigami dome. (A) In the stiffness analysis, the
outer perimeter was pinned and small vertical displacements were applied to the interior nodes of
the structure. (B) The stiffness of the pop-up kirigami structures decreases as γ increases. For
comparison, the stiffness of curved sheets with thickness tc are shown in dashed lines, where t is
the thickness of the pop-up kirigami. (C) From left to right: 7-cell paper structure (mass = 17 g),
19-cell paper structure (mass = 28 g), and 7-cell foam board structure (mass = 57 g). Each holds a
500 g load without a noticeable deformation.
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5.5.1 Analytical Solution for Stiffness of a Curved Sheet

The analytical solution for the stiffness of a curved sheet restrained along two edges (5.13(A)) can
be calculated using Castigliano’s Theorem. The theorem states that the displacement (or rotation)
at a point on a beam due to a load (or moment) Q is calculated as:

δq =
δU

δQ
=

∫ l

0

M

EI

δM

δQ
dx (5.5)

where U is the potential energy, M is the bending moment, E is the Young’s modulus, and x
is the distance along the beam. We can use Castigliano’s Theorem in cylindrical coordinates to
solve for the vertical displacement of a curved sheet due to a load applied at the centerline (Figure
5.13(A)). Due to symmetry, we look at only half of the sheet subjected to a vertical force F and
compute the shear at the free end to be V = F/2. We consider a curved sheet with a height equal
to the average clear rise of the pop-up structures (= 0.7), denoted as CR. We assume the width and
length of the sheet is equal to the average clear span of the structures, CS (= 7). To transform into
cylindrical coordinates, we need to relate these quantities to the radius of curvature (ρ) of the sheet
(Figure 5.13(B)).

ρ2 = (ρ− CR)2 +
(CR
2

)2 (5.6)

ρ =
1

2
CR +

1

8

CS2

CR
(5.7)

We need expressions for δMθ

δV
and δMθ

δM0
to use Castigliano’s Theorem, so we sum the moments at
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point A:

−Mθ + V ρ sin θ −M0 = 0 (5.8)

Mθ = V ρ sin θ −M0 (5.9)
δMθ

δV
= ρ sin θ

δMθ

δM0

= −1 (5.10)

Now we can use the theorem to get an expression for the rotation due to the end moment
M0. We integrate from θ = 0 to θ = θB, where θB is the angle at the support: θB = π/2 −
sin−1 ((ρ− CR)/ρ). The expression for the rotation due to M0 is

δM0 =

∫ θB

0

V ρ(sin θ −M0)

EI
(−1)ρ dθ =

V ρ2

EI

[
cos θB − 1

]
+
M0ρ

EI
θB, (5.11)

and the expression for the displacement due to the end force V is

δV =

∫ θB

0

(V ρ sin θ −M0)

EI
ρ2 sin θdθ =

V ρ3

2EI

[
θB − sin θB cos θB

]
+
M0ρ

2

EI

[
cos θB − 1

]
.

(5.12)

Due to symmetry, the rotation due to the moment M0 is zero at the free end:

V ρ2

EI
[cos θB − 1] +

M0ρ

EI
θB = 0 (5.13)

−V ρ
θB

[cos θB − 1] =M0 (5.14)

We can plug Equation 5.14 into Equation 5.12 to solve for the end displacement in terms of
V, ρ, E, I, and θB, all of which are known geometric or material properties. The stiffness of the
curved sheet is found using K = F/∆, where F = 1 and ∆ = δV .

5.5.2 Changing the Loading Direction

We also investigated the stiffness of the seven-cell structure with γ = 20◦ and L = 1.5 for different
loading directions (Figure 5.14). The loads were applied at the same six interior nodes as the
previous analysis, and the load direction was changed in the x-z and x-y planes. The structure
exhibits the highest stiffness in response to horizontal loads in the x-y plane. While there are three
axes of radial symmetry for the structure, the stiffness is uniform in all x-y directions, meaning there
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Figure 5.14: The stiffness of the pop-up structure in the x-z and x-y planes shown as radial plots
where the distance from the center indicates the stiffness magnitude. The angles ϕ and ψ represents
the loading direction in a given plane. The structure exhibits the largest stiffness in the x-y plane
(horizontal loading).

will be a high stiffness regardless of how horizontal loads are applied. When loaded vertically in
the z-direction, the structure has about half the stiffness in comparison to the horizontal directions,
but this stiffness is still high, as shown in Figure 5.14. These results indicate that the pop-up
structures are adaptable to loads that change directions, such as wind loads.

5.6 Continuous Equilibrium for Pop-up Kirigami Domes

The pop-up dome structure has two DOFs, one corresponding to each step: assembly from a
flat sheet (defined by ϕ1) and a dome-forming motion (ϕ2) (Figure 5.15(A)). Under gravity, the
structure would collapse to a flat state where ϕ1 = 0◦ and ϕ2 = 0◦. To aid in deployment, we can
program a specific set of motions using springs using the framework presented in Chapters 2 and 3.
The desired motion that we focus on is to first fully assemble the structure (increasing ϕ1 while ϕ2

remains at 0) and then forming a dome shape (increasing ϕ2). We assume that the panels are made
from a material with uniform thickness and mass density equal to 1 kg/m. The panel dimensions
are given in Figure 5.15(B).

We used a set of torsional springs placed within the hexagonal cells (Spring 1 Figure 5.15(C))
to program the desired motion of full assembly and torsional springs placed between the cells for
the dome-forming step (Spring 2). Since the assembly step must be completed before the dome-
forming step begins, we programmed two sequential paths: the assembly path which ends with
a stable state, and the dome-forming path which is designed to have continuous equilibrium. To
enforce that the dome-forming path will be stable, we used a constraint that requires ∇PET to be
aligned with a desired gradient.
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∇d =
{
[−1, 0], ϕ1 < 100◦. (5.15)

This constraint inherently requires there to be a local potential energy minimum at the end of
path 1. To ensure that the local minimum is a stable state, we introduce an additional constraint to
control the concavity of PET along path 1.

−
d2PETpath 1

dϕ2
1

≤ 0 (5.16)

Figure 5.15(D) shows the potential energy of the system. Without springs, the pop-up structure
collapses to the configuration where ϕ1 = 0◦ and ϕ2 = 0◦ (minimum in PEG). With springs,
there is a potential energy valley at the end of the assembly step (Path 1, Figure 5.15(E)). The
fluctuation in potential energy along the dome-forming step (Path 2) has been reduced by 95.7%;
without springs, the fluctuation is 519 N-m and with springs it is 22.3 N-m. The optimized spring
properties are L01 = 2.65 m, k1 = 197 N/m; L02 = 2.3 m, k2 = 149 N/m; α3 = 3.68, k3 = 200
N-m/rad.

We also investigated the actuation force needed to reconfigure the structure into its dome-like
shape (moving along path 2). External forces are required to keep the structure in its dome-like
shape; with the implementation of continuous equilibrium, lower forces will be required. We used
the method described in Chapter 4 to move the structure through path 2 and obtain the resultant
force (Fr in Figure 5.15(F)). Roller supports were added at the outer nodes of the bottom hexagonal
panels (excluding those of the center cell) and the nodes of the top center hexagonal panel. With
the addition of optimized springs, Fr is reduced by 82% on average.

5.7 Concluding Remarks

In this chapter, we presented a novel design for a pop-up structure that achieves dome-like cur-
vature from flat panels. The system starts with a kirigami-inspired pattern of two sheets, cut into
hexagonal and trapezoidal panels and fastened to create an array of cells that assemble into a 3D
structure. We demonstrated that the system can accommodate finite thickness and maintain nearly
rigid panels as it deforms into a structure with positive Gaussian curvature. With this design,
we have the potential to create large, dome-like structures from flat sheets, taking advantage of
the simplified fabrication and rapid deployment that are made possible by origami and kirigami
designs.

We identified the internal mechanism that leads to the formation of a doubly curved shape
and showed that the higher deformation modes of the structure become restricted as the curvature
increases. We studied geometric variations of the structure by changing the panel angle γ and panel
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Figure 5.15: Designing the pop-up kirigami dome to have continuous equilibrium. (A) The pop-up
kirigami dome has two DOFs: an assembly motion, defined by ϕ1, and a dome-forming motion,
defined by ϕ2. (B) Dimensions of the panels used in the pop-up kirigami dome. (C) We added two
sets of torsional springs: one set within each of the six outer cells for the assembly step, and one set
connecting the cells for the dome-forming step. (D) The first path (assembly) is moving to a stable
state at ϕ1 = 100◦, where the cells are fully closed. The second path (dome-forming) is designed
to have continuous equilibrium, where ϕ2 increases to 20◦ (contour line interval = 100 N-m). (E)
Potential energy of the structure along the paths. At the end of path 1, there is a local minimum
in potential energy, indicating a stable state. Along path two, the fluctuation in potential energy is
reduced by 95.7%. (F) Force analysis of the pop-up structure. To investigate the actuation force
required in the dome-forming step, we applied a vertical force Fr on the center cell and applied
roller supports. The actuation force for the system with springs is reduced by 82% on average
when compared to the system without springs.
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length L. Structures with smaller γ result in a higher clear rise to clear span ratio, a metric we use
to describe curvature. When studying the volume of the systems, we found that structures with
large γ and small panel length L result in more geometrically efficient designs that can enclose a
larger volume for a smaller volume of total structure. We also found that by adding more cells,
the shape trends towards the classic dome shape used in architecture. A stiffness analysis showed
that the dome-like shape and infinitesimal mechanism makes the pop-up kirigami structure 1,000
to 5,000 times stiffer than a curved sheet with the same total thickness that is supported only along
two edges. We also showed that the structure has high stiffness regardless of the loading direction.

Finally, we implement the design framework presented in Chapters 2 and 3 to program desired
motions into the pop-up kirigami structure. The resulting design reduces the fluctuation in potential
energy during the dome-forming step by 95.7%. This system is the first self-stiffening kirigami
structure that can deform into a dome-like shape. By integrating continuous equilibrium properties
into the design, the structure has potential to be used for rapidly deployable enclosures, reflectors,
architectural components, and other robust structures with positive double curvature.
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CHAPTER 6

Conclusions and Future Work

The purpose of this dissertation is to present a framework for designing reconfigurable structures to
have continuous equilibrium such that they are stable and can be efficiently actuated. This chapter
highlights the main contributions of the dissertation as well as several areas for future work.

In Chapter 2, we introduced a framework for transforming reconfigurable structures into sys-
tems with continuous equilibrium. Using simple four-bar linkages, we demonstrate how an opti-
mization scheme can design the addition of springs that minimize the fluctuation in potential energy
throughout the kinematic path of a structure. We explore several types of springs and discuss how
symmetry affects which spring types are most effective at obtaining continuous equilibrium. We
are able to design systems to have continuous equilibrium even as they are reoriented with respect
to a global reference frame, thus maintaining functionality at multiple orientations. The framework
can be used to design more complex structures as well, such as linkages that carry external loads
or three-dimensional structures.

Chapter 3 extends the work of Chapter 2 to reconfigurable systems with more than one degree
of freedom. We begin by optimizing springs to achieve continuous equilibrium throughout the
potential energy space of multi-DOF systems. We demonstrate how springs can enable continuous
equilibrium for a one-, two-, and three-DOF Watt’s linkage. Next, we discuss how the framework
can be adapted to program specific motions in multi-DOF systems, including adding stable paths
and stable configurations. We apply these methods to an excavator linkage system and a five-fold
origami vertex to show how more complex, practical structures can be designed.

The applications of continuous equilibrium to physical systems are explored in Chapter 4. Me-
chanical models of both linkage systems and origami systems are used to compute the forces re-
quired to actuate reconfigurable structures through their kinematic path. The computational results
show that by adding optimized springs, we can reduce the actuation forces needed to reconfigure
the structures. We then discuss the methods used for physical prototype fabrication and testing.
The preliminary results show good agreement with the computational models. We conclude this
chapter with a brief discussion of the stiffness and locking of continuous equilibrium structures.
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Chapter 5 presents a novel pop-up kirigami structure that deploys into a dome-like shape and
has high stiffness. The structure starts as two flat sheets, assembles into 3D, and deforms into
a shape with dome-like curvature thanks to an internal infinitesimal mechanism. Changing the
initial kirigami pattern has a dramatic effect on the final shape, and these properties were explored
through a parametric study. The bar and hinge method is used to investigate the stiffness of the
structure, and it is shown to have high stiffness in its doubly curved shape. Finally, we apply
the continuous equilibrium framework to the dome-like structure and design it to have sequential
stable paths to aid with deployment.

6.1 Key Contributions of this Dissertation

The following items are the key contributions of the research presented in this dissertation.

Universal design framework for systems with continuous equilibrium. The design framework
presented in this dissertation can be applied to any two- or three-dimensional reconfig-
urable system. The inputs to the optimization problem are simply the system kinematics
and spring locations. Any number of springs can be used in the design problem, and the
optimization can handle combinations of different types of springs in one structure. The
optimization framework was written in MATLAB and is made open-access on GitHub at
(https://github.com/mariared-DRSL/Continuous-equilibrium-examples).

Reorientation. The framework can be used to design reconfigurable structures that stay in con-
tinuous equilibrium even as they are reoriented with respect to a global reference frame.
Even as the effect of gravity changes, the system will remain stable and can be easily moved
through its kinematic path. This ability to maintain functionality at multiple orientations
extends the benefits of continuous equilibrium to systems with complex ranges of motion.

Efficient actuation under gravity. For applications in civil engineering, gravity has a major ef-
fect on reconfiguration and stability. Typically, large forces are required to move a recon-
figurable structure when gravity is acting on it. By adding springs that put the system in
continuous equilibrium, the forces needed for actuation are significantly reduced. We verify
this phenomenon through computational mechanical models and physical prototypes.

Programming stable motion in multi-DOF systems. Many real-life reconfigurable structures
have more than one degree of freedom (DOF). Using the design framework, optimized
springs can be used in multi-DOF systems to create motion paths that are in continuous
equilibrium and are globally stable. Sequential paths can be programmed so that desired
motions take place in a specific order, enabling multi-functionality.
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Dome-like kirigami structures with high stiffness. Origami and kirigami structures made from
flat sheets are inherently flexible, due to their high number of DOFs. One way to improve
stiffness of a flexible sheet is to add positive Gaussian (dome-like) curvature, but this phe-
nomenon is difficult to achieve using origami and kirigami methods. In this dissertation, we
introduce a novel pop-up, dome-like structure that is made from a flat kirigami pattern and
has high stiffness. When the design framework is used to program a sequential set of motion
paths, the dome can be assembled and deployed in a stable manner and the actuation forces
are reduced. The pop-up kirigami dome is just one example of the functional reconfigurable
structures that can be designed using the framework presented in this dissertation.

6.2 Future Work

This dissertation leads to several avenues for future work.

Multi-objective optimization. The results presented in this dissertation are largely based on ideal
cases where the design is focused only on obtaining continuous equilibrium. For real-world
applications, limitations on material and cost would have a significant impact on the design
and could be incorporated into the optimization scheme. It would be beneficial to utilize
multi-objective optimization to weigh factors such as cost, material weight, stiffness, actua-
tion force, spring type, and spring locations. We envision that such a tool could be integrated
into our design framework to make it more applicable to real systems.

Systematic experimental testing with actuators. The preliminary experimental results shown in
Chapter 4 and Appendix A could be expanded upon. This work would benefit from more
systematic experimental testing to quantify the deviation from the idealized computational
results. Friction plays a large role in physical reconfigurable structures, so further investi-
gation into the friction caused by springs and spring attachments - as well as solutions for
mitigating its effects - would be beneficial. Different methods of attaching springs could
be explored as well. Installing actuators onto physical prototypes would be a major step
towards the actualization of civil engineering-scale continuous equilibrium reconfigurable
structures. Systems could be reconfigured using linear actuators which apply a force or tor-
sional actuators which apply a moment. With actuators installed, data could be collected
about the forces, range of motion, and actuation energy required for motion. This presents a
fruitful area of research for quantifying the benefits of transforming structures into continu-
ous equilibrium systems. Additionally, the techniques used to install the actuators is an area
in need of further study.
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Nonlinear and custom springs. The potential energy formulation used in the design framework
is based on the assumption that all springs have a linear stiffness, i.e., that the force required
to deform the spring scales linearly with the amount of deformation. It is possible to use
nonlinear springs, where the force required to deform the spring follows a desired nonlinear
relationship with the deformation [130]. If the force-deformation relationship of nonlinear
springs were tailored precisely, it could allow the spring potential energy to directly offset
the potential energy due to gravity. This may result in a system which needed multiple linear
springs to obtain continuous equilibrium to instead only require one nonlinear spring, thus
reducing the complexity and cost of a system. We envision that the design framework could
be adapted to compute the nonlinear spring stiffness behavior as a function of the system
kinematics. Custom springs could then be fabricated to match the optimized nonlinear stiff-
ness. For the physical prototypes shown in this dissertation, we purchased springs from an
online retailer and often had to choose springs that did not perfectly match the optimized
properties that were obtained using the design framework. A possibility for improvement
is to fabricate custom springs with properties tailored to a specific system. This could aid
in designing sleeker spring attachments and minimize the difference between computational
and experimental results.

Application to bi- and multi-stable structures. The optimization problem used to minimize the
fluctuation in potential energy could be used to reduce the forces that bi-stable structures
experience during snap-though instabilities. Rather than minimizing the fluctuation in po-
tential energy due to gravity, the strain energy fluctuation could be minimized, leading to
shallower energy valleys. A similar method to adding a stable configuration in Chapter 3
could also be implemented to program the precise locations of the energy valleys. Utilizing
the optimization method could enable the design of shape changing structures with more
controlled motion while still taking advantage of multi-stability.

Scaling up. The physical prototypes of systems with springs provide a starting point for the fabri-
cation of larger structures designed to have continuous equilibrium. At a larger scale, adding
discrete torsional springs may not be feasible. Other ways to incorporate programmable stiff-
ness at the joints or hinges of a structure, such as material deformation, could be explored.
The effect of coulomb friction also increases as systems scale up in size and weight, and the
effect of friction on continuous equilibrium behavior could be studied. Finally, designers are
more likely to see a nonlinear structural response when larger systems reconfigure through
their kinematic path under gravity. It may be possible to harness this nonlinear response to
aid with achieving continuous equilibrium.
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APPENDIX A

Continuous Equilibrium Videos

The PDF version of this document contains videos which can also be accessed at
www.youtube.com/@deployableandreconfigurabl988.

Video A.1: Scissor Mechanism at ψ = 0◦ with no springs. The system requires a constant force to
avoid collapse due to gravity.
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Video A.2: Scissor Mechanism at ψ = 0◦ with internal torsional springs. This system exhibits
continuous equilibrium system behavior and remains stable at all configurations.

Video A.3: Watt’s linkage prototype at ψ = 0◦ with no springs. The system requires a constant
force to avoid collapse due to gravity.

Video A.4: Watt’s linkage prototype at ψ = 0◦ with internal torsional springs. This system exhibits
continuous equilibrium system behavior and remains stable at all configurations.
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Video A.5: Watt’s linkage prototype at ψ = 45◦ with no springs. This system requires a constant
force to avoid collapse due to gravity.

Video A.6: Watt’s linkage prototype at ψ = 90◦ with no springs. This system is in continuous
equilibrium in a small range in the center of the kinematic path, but collapses when moved outside
of this range.
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Video A.7: Watt’s linkage prototype at ψ = 45◦ with internal and external torsional springs.
This system has been reoriented and maintains continuous equilibrium, and remains stable at all
configurations.

Video A.8: Watt’s linkage prototype at ψ = 90◦ with internal and external torsional springs.
This system has been reoriented and maintains continuous equilibrium, and remains stable at all
configurations.
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