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ABSTRACT

In this dissertation, we propose novel Deep Neural Network (DNN) based statistical learning
models that can provide accurate predictions and clear interpretations simultaneously. Chapter
1 presents an introduction to the DNN as a nonparametric approximator to complex, non-linear
functions.

Chapter 2 introduces the Interpretable Neural Network Regression (INNER), a logistic regression
model with nonparametric covariate-dependent coefficients constructed by DNNs. Applied to the
individualized risk assessment of preoperative opioid use, the proposed INNER model can predict
preoperative opioid use based on the preoperative characteristics and estimate the individual-level
odds of opioid use induced by overall body pain, leading to straightforward interpretations of the
tendency to use opioids. Applying INNER to Analgesic Outcomes Study (AOS), we identify patient
characteristics strongly associated with opioid use.

Chapter 3 develops the Penalized Deep Partially Linear Cox Model (Penalized DPLC) that
incorporates the SCAD penalty to select significant features and employs the DNN to estimate the
nonparametric component of the partially linear Cox model. An efficient alternating optimization
algorithm is used for model estimation. We also prove the convergence and asymptotic properties
of the estimator. The merits of this method are shown through intensive simulations. Finally, the
Penalized DPLC is applied to the National Lung Screening Trial (NLST) to uncover the effects of
critical clinical and imaging risk factors on patients’ survival.

Chapter 4 presents the Deep Survival Learner (DSL) for estimating the Conditional Average
Treatment Effects (CATEs) in survival settings. DSL adapts the Doubly-Robust Learner to right-
censored data by Inverse Probability of Censoring Weights (IPCW). DNNs are used as base learners
to account for the complex relationships between baseline characteristics and survival outcomes.
Large-scale simulation experiments are conducted to assess the performance of the proposed model
under various scenarios. We then use DSL to study the treatment heterogeneity of perioperative
chemotherapy for patients from the Boston Lung Cancer Study (BLCS).

x



CHAPTER 1

Introduction

1.1 Review of Deep Neural Network

The explosion of large-scale datasets with complex structures in biomedical research creates
challenges unmet by existing statistical and computational methods [33, 127, 81]. For example, the
strict parametric assumptions of traditional regression models are often invalid for these complex
structured data, resulting in a lack of representational power and prediction performance [137, 25].
On the other hand, Deep Neural Network (DNNs), a machine learning algorithm inspired by the
connectivity of neurons and structures within the human brain, have achieved much success in
nonparametric approximation with high dimensional predictors [10, 138]. A DNN has multiple
layers, with neurons being the basic processing units [93]. For example, in the commonly used
feedforward neural network [142], starting from the first layer (input layer), neurons in one layer
are connected to and may “activate” those in the adjacent and higher layers. Specifically, the
inputs of each neuron are multiplied by some weights, added with respective bias terms, and
summed up [142, 51]. The sums are passed onto some transformation functions, called “activation”
functions, such as linear, Sigmoid, hyperbolic tangent, or rectified linear unit (ReLU) activation
functions [82, 99]. The outputs returned by these activation functions are fed to neurons in the
next layer as inputs. Passing all of the layers, the outputs of the final layer (output layer) will
be used for prediction. It has been shown that a shallow neural network can approximate any
continuous function to any degree of accuracy, given enough training samples and computation
resources [38]. Furthermore, DNNs with multiple layers can achieve similar accuracy with fewer
parameters [108]. Following these remarkable, significant results in nonparametric approximation,
DNNs have achieved great success in computational phenotyping [26, 101], medical imaging
analysis [86, 157] and predictive modeling [30]. However, the black-box nature of DNNs prevents
us from interpreting and explaining the results as regression models [2, 124, 18]. Motivated by
these challenges, this dissertation proposes three novel statistical learning models that combine
traditional regression models with DNNs to provide accurate predictions and clear interpretations
simultaneously.
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1.2 An Example of Nonparametric Approximation using DNN

To illustrate the promise of DNN for nonparametric approximation, we consider a simple
simulation experiment where we use DNN to approximate a polynomial function. Consider the
following data generating process, where the data is simulated from a polynomial function of degree
five adding the noise ϵ.

f(x) = 9.45x5 − 10.5x3 − 2x2 + 4.25x+ ϵ (1.1)

x is generated from 200 grid points from -1 to 1, and the noise ϵ follows a Gaussian distribution
with a mean of 0 and a standard deviation of 0.15. The true generating function and the simulated
noisy data are shown in Figure 1.1. In this experiment, DNNs with different numbers of hidden
layers and different numbers of neurons in each hidden layer are used to recover the true function
from the noisy data. First, we use DNN with one hidden layer to approximate the polynomial

Figure 1.1: Simulated Data from Polynomial Function of Degree Five

function. We vary the number of neurons in the hidden layer to be 4, 16, or 64 so that the number
of parameters in the DNN is 13, 49, or 193. Additionally, DNNs with two hidden layers are used
to recover the true function. The number of neurons in the two hidden layers is (2,2), (8,2), or
(14,10), indicating that the number of parameters in the DNN is 13, 37, or 189. The results of the
simulation study are shown in Figure 1.2, where Mean Squared error (MSE) is reported to evaluate
the approximation error. The upper three panels are the estimated functions using DNNs with one
hidden layer, and the lower three panels are the estimated functions from DNNs with two hidden
layers. The approximation error decreases as the number of parameters in the DNN increases. For
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example, the MSE of DNNs with one hidden layer decreases from 0.333 to 0.126 as the number
of parameters increases from 13 to 193. What’s more, DNNs with two hidden layers can achieve
similar or better approximation accuracy with fewer parameters. In this experiment, DNNs with
two hidden layers with achieves the MSE of 0.184 to 0.116.

Figure 1.2: DNN Approximation to Polynomial Function. The upper three panels are estimated
functions by DNNs with one hidden layer varying the number of neurons. The lower three panels
are estimated functions by DNNs with two hidden layers varying the number of neurons in each
hidden layer.

1.3 Overview of the Work

In this chapter, we give the literature review of DNNs and provide an example of applying DNNs
with various structures to approximate a polynomial function. Most of the papers we cite here focus
on the prediction performance of DNNs. There has been little work in explaining and interpreting
the results of DNNs. In the following chapters, we are going to propose novel statistical learning
methods that address these challenges by combining DNN with traditional statistical models.

In Chapter 2, we develop a novel Interpretable Neural Network Regression (INNER). The
proposed INNER model is a logistic regression model with nonparametric covariate-dependent
coefficients constructed by DNNs. We use the proposed INNER to conduct an individualized risk
assessment of preoperative opioid use. Intensive simulations and an analysis of patients expecting
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surgery in the Analgesic Outcomes Study (AOS) show that the proposed INNER not only can
accurately predict preoperative opioid use by preoperative characteristics as DNN but also can
estimate the patient-specific odds of opioid use induced by overall body pain, leading to more
straightforward interpretations of the tendency to use opioids than DNN. Furthermore, our results
identify the patient characteristics strongly associated with opioid use. They are consistent with
the previous findings, showing that INNER is a valuable tool for individualized risk assessment of
preoperative opioid use.

In Chapter 3, we propose a Penalized Deep Partially Linear Cox Model (Penalized DPLC),
which incorporates the SCAD penalty to select significant features and employs the DNN to estimate
the nonparametric component of the partially linear Cox model accurately. An efficient alternating
optimization algorithm for numerical implementation is provided. We also prove the convergence
and asymptotic properties of the estimator and compare it to other methods through extensive
simulation studies, evaluating its performance in risk prediction and feature selection. Finally, the
proposed method is applied to the texture analysis of Chest CT scans from National Lung Screening
Trial (NLST) to uncover the effects of critical clinical and imaging risk factors on patients’ survival.
Our findings provide valuable insights into the relationship between these factors and survival
outcomes.

In Chapter 4, we develop a Deep Survival Learner (DSL) for estimating the heterogeneous
treatment effects in survival settings. DSL is an adaption of Doubly Robust Learner to right-censored
data by Inverse Probability of Censoring Weights (IPCW). DNNs are used as base learners to account
for the complex relationships between baseline characteristics and survival outcomes. DSL estimates
the conditional average treatment effects (CATEs) as a function of pre-treatment characteristics
and given time of interest. We apply the fusion penalty to promote similarity between contiguous
time points in the estimates. In the simulation studies, we assess the numerical performance of
DSL under various scenarios, comparing it to other metalearners. We then apply DSL to the
Boston Lung Cancer Study (BLCS) to investigate the treatment heterogeneity of perioperative
chemotherapy for patients with Non-Small Cell Lung Cancer (NSCLC). Our findings contribute to
a deeper understanding of the heterogeneous treatment effects of perioperative chemotherapy across
individuals and contexts.
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CHAPTER 2

Individualized Risk Assessment of Preoperative Opioid Use by Interpretable
Neural Network Regression

2.1 Introduction

The drastic increase in the use of opioids has led to an epidemic in the U.S., with more than
46,000 estimated overdose deaths in 2018 [19]. As an effort to combat this crisis, researchers
have begun to study preoperative opioid use because it is a major factor associated with opioid
misuse [132], higher postoperative opioid demand [3, 139], worse postoperative outcomes [94,
144, 114, 78], and increased postoperative healthcare utilization and expenditures [35, 160, 78].
Understanding preoperative opioid use among patients expecting surgical services can help surgeons
establish effective pain management for patients [67], including postoperative opioid management
[129].

What has often been overlooked is that a sizeable portion of patients consumed opioids preopera-
tively even with no reported pains [129], which might hint at possible opioid misuse. As part of the
Analgesic Outcomes Study (AOS) [20], a large observational cohort study investigating associations
between preoperative pain and opioid use, individualized risk of preoperative opioid use is assessed
to identify patients who tend to use preoperative opioids even when there is little pain as well as
those who tend to take preoperative opoids even when the pain increases only slightly [21]. With
opioid use (yes or no) as the outcome and pain level as the covariate, a logistic regression model
with an intercept and a slope that depend on patients’ other characteristics may help delineate the
subgroups of patients who are at high risks of opioids misuse; see model (2.1). However, because of
the curse of dimensionality, traditional nonparametric methods of fitting varying coefficient logistic
models may not fare well [119, 63, 24], even when the number of patient characteristics is only
moderately large.

On the other hand, deep neural network (DNN), a machine learning algorithm inspired by
the structure of brains, has achieved much success in nonparametric approximation with high
dimensional predictors [10, 138]. It has found applications in computational phenotyping [26, 101],
medical imaging analysis [86, 157] and predictive modeling [30], among many others. It is

5



challenging to explain the decision rules of DNN with the input variables, due to the black-box
nature; directly applying DNN to the aforementioned AOS data cannot pinpoint the subgroup of
patients who may be at high risks of opioid misuse.

For example, [42] use the Gini importance index from the random forest model to rank features,
while [103] use the boosting decision tree. However, neither of these methods can give the direction
of the association between features and opioid dependence. On the other hand, [27] use a weight
matrix of each layer in the DNN model to generate “importance scores” to detect important features.
The scores not only rank different features in terms of opioid overdose prediction but also inform
the direction of the association. However, the method may not directly decipher the relationship
between opioid use and pain, or, in particular, identify subpopulations who are likely to be sensitive
to pain or be opioid dependent even without reported pains.

Bridging the gap between the statistical and machine learning fields, we propose an interpretable
neural network regression (INNER) that combines the strengths of logistic regression and DNN
models. We propose a logistic regression model with individualized coefficients, wherein the
regression coefficients are functions of individual characteristics. We utilize DNN to estimate
these individualized coefficients and construct two metrics, Baseline Opioid Tendency (BOT) and
Pain-induced Opioid Tendency (POT), which are useful for the individualized assessment of opioid
use for each patient. In particular, BOT refers to the odds of using preoperative opioids when
the patient does not report pain and POT is the odds ratio of using preoperative opioids for a unit
increase in the reported overall body pain. These two metrics can be used to identify subgroups
of patients, whose characteristics are associated with preoperative opioid use: patients with high
POT are more likely to get preoperative opioids when pain increases, and patients with high BOT
have a high risk of preoperative opioid use even with no reported pain. To demonstrate the utility of
our proposal, we conduct simulations and apply the INNER model to analyze the AOS study. Our
analysis identifies patient characteristics that are associated with opioid tendency, as quantified by
BOT and POT, and is largely consistent with the literature, evidencing the usefulness of INNER for
individualized risk assessment of preoperative opioid use.

2.2 Interpretable Neural Network Regression

Our proposed INNER model is a logistic regression model with covariate-dependent coefficient
functions constructed by DNN. The general formulation is similar to that of a DNN. Specifically,
let Rd be a d-dimensional Euclidean vector space. To construct a prediction based on input x ∈ Rkl

via a neural network with L layers, where the lth (l = 1, . . . , L) layer consists of kl neurons, we
adopt an L-fold composite function FL : Rk1 → RkL+1 with the parameter θ, i.e.,

FL(·;θ) = fL ◦ fL−1 ◦ · · · ◦ f1(·),

6



where fl(x) = σl(Wlx + bl) ∈ Rkl+1 and “◦” indicates the composition of two functions. The
function σl : Rkl+1 → Rkl+1 is a (non)linear activation function for the lth layer. The parameter
θ = {Wl,bl}Ll=1, where Wl is the weight matrix of dimension kl+1 × kl and bl ∈ Rkl+1 is the bias
vector. Typical choices of σl(x) include a linear function of x, a ReLU function, i.e., max(0,x),
and a softmax function, i.e., exp(x)/∥ exp(x)∥1, where max and exp operate componentwise.

Let D = {(Xi,Zi, Yi), i = 1, . . . , N} be a dataset consisting of N independent patients. For
patient i ∈ {1, . . . , N}, let Yi ∈ {0, 1} be a binary variable indicating whether the patient uses
opioids preoperatively. Let Xi ∈ [0, 10] represent the overall body pain score and Zi ∈ Rp represent
a vector of p preoperative characteristics. We model the conditional probability of preoperative
opioid use given the preoperative characteristics and the overall body pain score via

logit{P(Yi = 1 | Xi,Zi)} = FL(Zi;α) + FL(Zi;β) ·Xi, (2.1)

where logit(p) = log{p/(1 − p)}, with p ∈ (0, 1), is the logit link function. The two covariate-
dependent coefficient functions are constructed by two neural networks with the same network
architecture but different parameters: α and β. Model (2.1) is termed an INNER model, wherein
the number of neurons in the input layer is k1 = p and the output layer has only one neuron, i.e.,
KL+1 = 1. Figure 2.1 shows an example of three layers (L = 3), where the first two layers have
250 and 125 hidden neurons, respectively, with a ReLU activation function, and the third layer has
one hidden neuron with a linear activation function. During training, we may randomly select a
certain number of neurons in a layer and ignore them in order to overcome overfitting [145]. The
proportion of such ignored neurons in a layer is called the dropout rate with that layer. During
testing, dropout is set to be inactive with no neurons ignored.

We use the Sigmoid activation function, i.e., Sigmoid(x) = {1 + exp(−x)}−1, for the output
layer of the INNER model. Here, x comes from the affine combination of the two sub-networks
whose final layers have a linear activation function, and the Sigmoid function returns a value
between 0 and 1, ensuring numerical stability. The number of hidden layers, along with the number
of hidden neurons and the dropout rate in each layer, are hyperparameters to be selected based on
the prediction performance.

Our proposed INNER is interpretable within the traditional logistic regression framework, and
can assess the individualized risk of preoperative opioid use via two derived metrics: Baseline
Opioid Tendency (BOT), the odds of taking opioid with no reported pain, and Pain-induced Opioid
Tendency (POT), the odds ratio of taking opioid for a unit increase in overall body pain. In
particular, BOT and POT can be represented by the output of the two neural networks with the input

7



Figure 2.1: Example of INNER. Input: overall pain score (X) and other characteristics (Z).
Two neural networks for FL(Z;α) and FL(Z;β): the same network architecture with different
parameters, α and β; three hidden layers in each network, with the first layer having 250 neurons
with a ReLu activation function, the second layer having 125 neurons with a ReLu activation
function, and the last layer having one neuron with a linear activation function. Ouput: estimated
probability of preoperative opioid use.

Z respectively:

Baseline Opioid Tendency (BOT) := exp{FL(Z;α)},

Pain-induced Opioid Tendency (POT) := exp{FL(Z;β)}.

Therefore, a high Baseline Opioid Tendency (BOT) or a high Pain-induced Opioid Tendency (POT)
indicates a potential high risk of taking preoperative opioids.

The estimates of parameters, denoted by α̂ and β̂, are obtained by minimizing the negative log
likelihood or the cross entropy loss function

L(α,β;D) = −
N∑
i=1

Yi log{P(Yi = 1 | Xi,Zi)}+ (1− Yi) log{1− P(Yi = 1 | Xi,Zi)}, (2.2)

where P(Yi = 1 | Xi,Zi) is as defined in (2.1). We use stochastic gradient descent (SGD) [15] for
optimization. In our later data analysis and out of a total of 34,186 patients, we randomly assign
23,931 (70%) patients to be training samples (T ) and the rest 10,256 (30%) patients to be validation
samples (V) when computing the training and validation loss.

In general, classical stochastic gradient descent is sensitive to the choice of learning rates; a large
learning rate gives fast convergence but may induce numerical instability [102, 39], while a small
learning rate may ensure stability, though at the price of more iterative steps. In our implementation,
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Algorithm 1: Stochastic Gradient Descent
Input: learning rate (η), maximum difference (∆), batch size (M )
Output: α̂, β̂
Data: Partition full data D to training (T ) and validation (V) samples
Initialization α0, β0, training loss = validation loss
while validation loss - training loss ≤ ∆ do

for mini-batch m← 1 to M do
Draw random samples without replacement (Xi,Zi, Yi) ∈ T

end
Compute gradients∇αL and ∇βL of mini-batch
Update parameters α = α− η∇αL and β = β − η∇βL
Compute training loss: L(α,β; T )
Compute validation loss: L(α,β;V)

end

we use grid search to tune the learning rates. For the real data analysis, we tune the learning
rate over the range between 0.005 to 0.1 with 20 equally spaced grid points, and set the batch
size to be 64 and the maximum difference between the training and validation loss to be 10−2.
We obtain the estimates, α̂ and β̂, after 200 iterations. We also conduct sensitivity analysis to
assess the robustness of SGD towards the choices of these hyperparameters, and find the model’s
predictiveness performance is fairly robust to them; see Appendix B.

With α̂ and β̂, BOT and POT can be estimated by plugging in these estimates: for a patient with
Zi, the estimated BOT and POT are exp{FL(Zi; α̂)} and exp{FL(Zi; β̂)}, respectively.

2.3 Simulation Study

We compare the prediction power and robustness of the proposed INNER with the existing
methods, including decision trees, random forests, Bayesian additive regression trees regression
(BART), support vector machine (SVM), logistic regression and DNN. Under various scenarios
examined, we find that INNER outperform these competing methods. The prediction power of
INNER is similar to or even better than DNN when the model assumptions of INNER hold, whereas
INNER achieves a performance comparable to DNN even when the model assumptions are violated.
Codes for the simulation study are provided in the Supplementary Material.

2.3.1 Prediction Power

We simulate data from a logistic regression model with non-linear varying-coefficient functions:

logit{P(Y = 1 | X,Z)} = sin(Z⊤α) + cos(Z⊤β) ·X.
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The simulation study is designed with varying signal strengths, noise variances, number of covariates
and sample sizes. The signal strength is measured by a signal-to-noise ratio, i.e.,

Var{P(Y = 1 | X,Z)}
Var(Y )− Var{P(Y = 1 | X,Z)}

.

We assess the prediction power of INNER by varying the signal-to-noise ratio to be 0.2, 0.8 or 3.2,
and setting the sample size and the number of signal covariates to be 40,000 and 16, respectively.

We next increase the noise variance by adding various numbers of noise covariates (8, 12 and
16) into the data, while fixing the signal-to-noise ratio, the number of samples and the number
of covariates at 3.2, 40,000 and 16 respectively. We finally consider several combinations of the
numbers of covariates (9, 16, 32) and samples (5,000; 10,000; 20,000), with a signal-to-noise ratio
of 3.2 and in the absence of noise covariates.

For each simulation configuration, we conduct a total of 500 experiments. In each experiment,
we randomly allocate 80% of the samples to the training data and the rest to the testing data, and
compare seven methods: the INNER model [equation (2.1), DNN, decision trees, random forests,
BART and SVM models with combined Z and X as the input, and the logistic regression model
with a two-way interaction between Z and X . For the logistic regression, we present it as a special
case of INNER with only one layer and a linear activation function, that is,

logit{P(Y = 1 | X,Z)} = Z⊤Wα + bα + (Z⊤Wβ + bβ) ·X, (2.3)

where Wα and Wβ are the weight parameters, and bα and bβ are the bias terms.
For INNER, the number of hidden layers in the neural network for FL(Zi;α) is set to be 3. The

first two layers have 200 and 10 hidden neurons with a dropout rate of 0.5 and 0.3, respectively.
These two layers are equipped with a ReLu activation function. The final layer has only one neuron
with a linear activation function. The neural network for FL(Zi;β) is similar and has 3 layers, each
with 100, 90 and 1 hidden neurons but with no dropouts. The learning rate for both networks is
0.0014. For DNN, we use a network architecture with 4 layers: the first 3 layers have 160, 120 and
160 hidden neurons, respectively, and ReLu activation functions; the first and the third layers are
with a dropout rate of 0.1 and 0.3, respectively; the last layer has one hidden neuron and a Sigmoid
activation function. The loss function and the optimizer are the same as in the INNER model, but
with a learning rate of 0.0007. These network hyperparameters are chosen to yield good prediction
performances under the specified simulation configurations.

For decision trees, the maximum depth of a tree is 10 and the minimum number of samples
required to split an internal node is 2. The minimum number of samples required to be at a leaf
node for the decision is 4. For random forests, the number of features considered for the best split is
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the square root of the number of features, the minimum number of samples required to be at a leaf
node is 2, the minimum number of samples required to split an internal node is 2 and the number of
trees in a forest is 1,000. For SVM, we use a radial basis function kernel and set the regularization
parameter to be 10. For BART, the number of trees to be grown in a sum-of-trees model is 80.

Summarizing the results of 500 simulations for each setting, Table 2.1 shows that most of the
models achieve better model performances as the signal-to-noise ratio increases. For example, the
C-statistics of decision trees and BART increase from 0.5 to more than 0.6 when the signal-to-noise
ratio increases from 0.2 to 3.2, while the C-statistic increases to more than 0.8 for random forests
and SVM. The performance of INNER and DNN is comparable across different signal strengths
and is better than that of the other models. The C-statistics of DNN and INNER are 0.96 when the
signal-to-noise ratio is 3.2.

Moreover, the performances of all the models deteriorate with more noise covariates added
(Table 2.1). For instance, the C-statistic of BART decreases to around 0.6 with 16 added noise
covariates, while the C-statistics for random forests and SVM, though slightly better, decrease to
around 0.7 when we add 16 noise covariates. In contrast, the performances of INNER and DNN are
consistently better than those of the other models. Moreover, INNER slightly outperforms DNN
with noise covariates added; with 16 added noise covariates, INNER achieves a C-statistic of 0.95,
slightly better than 0.93 achieved by DNN.

With various combinations of the number of covariates and sample size, the performance of each
model improves when we use more samples to train the model or decrease the number of covariates
(Table 2.1). DNN, INNER, random forests, BART and SVM achieve a C-statistic of more than 0.9
when the number of covariates is 8. Moreover, the C-statistics of DNN and INNER are 0.97 with
20,000 samples. However, when the number of covariates is 18, only random forests, SVM, DNN
and INNER can achieve a C-statistic of more than 0.6 with 20,000 samples. Also, INNER performs
much better than DNN with smaller sample sizes and larger numbers of covariates. The C-statistic
of INNER is 0.92, larger than 0.84 for DNN when the number of covariates is 18 and the sample
size is 20,000.
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2.3.2 Robustness

We assess the robustness of INNER when the INNER model (2.1) deviates from the true
data-generating model, which is

logit{P(Y = 1 | X,Z)} = −X · sin(Z⊤α) +
√
| cos(Z⊤β) ·X|.

The model structures of DNN and INNER used here differ from those in the prediction power study.
DNN has four layers: the first two layers each have 100 hidden neurons with a ReLu activation
function; the third layer has 160 neurons with a ReLu activation function and a dropout rate of 0.3;
the last layer has one neuron with a Sigmoid function and a learning rate of 0.00046. For INNER,
there are 3 hidden layers in the neural networks of FL(Zi;α) and FL(Zi;β). There are 200, 10 and
1 neurons in each layer of FL(Zi;α), and 180, 90 and 1 neurons in each layer of FL(Zi;β). The
learning rate is set to be 0.004. Decision trees used here have a similar structure as those in the
prediction power study, except that the minimum number of samples required to split an internal
node is 10. For random forests, the maximum depth of a tree is 50, the minimum number of samples
required to split an internal node is 2 and the number of trees in a forest is 2,500. For SVM, we use
a radial basis function kernel and set the kernel coefficient to be 0.1. For BART, the number of trees
to be grown in a sum-of-trees model is 90.

Based on 500 simulations for each setting, Table 2.2 reveals that, even under a misspecified
model, INNER is able to achieve a performance as good as DNN and continues to outperform the
other models. For example, when the signal-to-noise ratio is 3.2, both DNN and INNER achieve a
C-statistic of 0.97, while the C-statistics of all the other models are less than 0.9. With 16 noise
covariates added, DNN and INNER still achieve a C-statistic of 0.96, but the C-statistics for the
other models are less than 0.8. When we increase the number covariates and decrease the number
of samples, the C-statistics of DNN and INNER are still comparable and are higher than those of
the other models.
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2.4 Analgesic Outcomes Study

We use the proposed INNER model to study the associations between patient characteristics
and preoperative opioid use.

2.4.1 Data Preparation and Descriptive Analysis

The data are collected from the Analgesic Outcomes Study, an observational cohort study
of acute and chronic pain [22, 20, 79, 21, 79, 58], with patients recruited from the preoperative
assessment clinic before the surgery or in the preoperative waiting area on the surgery day during
daytime hours (approximately 5:30 AM to 5 PM). Patients are excluded if they do not speak English,
are unable to provide written informed consent, or are incarcerated. The institutional review board
of the University of Michigan, Ann Arbor, approved this study, and all participants provided written
informed consent. A total of 34,186 patients have been recruited and included in this analysis, and
7,894 (23.09%) of them are identified to have used opioids at least once. Preoperative opioid use
is dichotomized and used as the response variable in this study. Preoperative characteristics are
collected using self-report measures of pain, function and mood. A total of 6,819 (19.95%) patients
have missing values of preoperative characteristics, and we impute the missing data with the mean
(for continuous variables) or the mode (for categorical variables).

Sixteen preoperative characteristics are used to predict preoperative opioid use. Pain severity is
measured with the Brief Pain Inventory [149], which assesses overall, average and worst body pain
(11-point Likert-type scale, with higher scores indicating greater pain severity). Briefly, among all
the patients in the analysis, 54.2% of them are female, most of them are white (89.06%), the mean
age is 53.2 with a standard deviation (SD) of 16.2, and 7,984 (23.09%) of these patients have taken
opioids preoperatively (Table 2.3).

It appears that some preoperative characteristics are associated with preoperative opioid use.
Patients with more severe overall body pain (mean: 5.39, SD: 2.64) are more likely to use pre-
operative opioids. Smokers (4,341 [55.13%]) are more likely to use preoperative opioids than
non-smokers (10,142 [39.02%]) (P < 0.0001). Patients with illicit drug use history (614 [7.80%])
and no alcohol consumption (4,677 [59.42%]) are at higher risks of preoperative opioid use (P <

0.0001). Patients with anxiety (3,324 [47.98%]), depression (2,409 [34.79%]) or less satisfied with
life (mean: 6.02, SD: 2.63) tend to use preoperative opioids (P < 0.0001 for all). Patients who have
poor physical conditions, e.g., those with American Society of Anaesthesiologists (ASA) score of 3
or 4 (3,755 [47.57%]) or high Fibromyalgia Survey Score (mean: 8.34, SD: 5.25), are more likely
to use preoperative opioids (P < 0.001 for all). Preoperative opioid use is also associated with high
BMI (mean: 30.74, SD: 7.74), sleep apnea (2,250 [29.15%]), race (Asian: 39[0.49%]) and surgical
type (P < 0.0001 for all).
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Table 2.3: Comparisons of Baseline Characteristics

Overall
(N=34,186)

Opioid Use
(N=7,894)

No Opioid Use
(N=26,292) P Value

BMI 29.90 (7.18) 30.74 (7.74) 29.64 (6.98) <0.0001
Age 53.19 (16.15) 53.37 (14.97) 53.14 (16.49) 0.2441
Fibromyalgia Survey Score 5.47 (4.63) 8.34 (5.25) 4.61 (4.05) <0.0001
Satisfaction with Life 7.03 (2.57) 6.02 (2.63) 7.33 (2.47) <0.0001
Charlson Comorbidity Index 1.68 (3.30) 1.65 (3.32) 1.69 (3.29) 0.3037
Overall BPI Score 3.21 (2.86) 5.39 (2.64) 2.55 (2.58) <0.0001
Gender 0.2605

Female 18,530 (54.20) 4,323 (54.76) 14,207 (54.04)
Male 15,656 (45.80) 3,571 (45.24) 12,085 (45.96)

Race <0.0001
White 30,445 (89.06) 6,979 (88.41) 23,466 (89.25)
African American 1,780 (5.21) 529 (6.70) 1,251 (4.76)
Asian 467 (1.37) 39 (0.49) 428 (1.63)
Other 1,494 (4.37) 347 (4.40) 1,147 (4.36)

Tobacco use <0.0001
No 19,384 (57.24) 3,533 (44.87) 15,851 (60.98)
Yes 14,483 (42.76) 4,341 (55.13) 10,142 (39.02)

Alcohol consumption <0.0001
No 18,755 (55.39) 4,677 (59.42) 14,078 (54.17)
Yes 15,105 (44.61) 3,194 (40.58) 11,911 (45.83)

Illicit drug use <0.0001
No 32,382 (95.61) 7,260 (92.20) 25,122 (96.65)
Yes 1,486 (4.39) 614 (7.80) 872 (3.35)

Sleep apnea <0.0001
No 25,210 (75.96) 5,468 (70.85) 19,742 (77.51)
Yes 7,977 (24.04) 2,250 (29.15) 5,727 (22.49)

Depression <0.0001
No 24,278 (80.40) 4,515 (65.21) 19,763 (84.91)
Yes 5,920 (19.60) 2,409 (34.79) 3,511 (15.09)

Anxiety <0.0001
No 19,368 (64.15) 3,604 (52.02) 15,764 (67.77)
Yes 10,822 (35.85) 3,324 (47.98) 7,498 (32.23)

ASA Score <0.0001
1-2 21,898 (64.06) 4,139 (52.43) 17,759 (67.55)
3-4 12,288 (35.94) 3,755 (47.57) 8,533 (32.45)

Body Group <0.0001
Head 3,714 (11.06) 745 (9.52) 2,969 (11.53)
Neck 4,150 (12.36) 806 (10.30) 3,344 (12.99)
Thorax 2,167 (6.45) 363 (4.64) 1,804 (7.01)
Intrathoracic 15,53 (4.62) 244 (3.12) 1,309 (5.08)
Shoulder/Axilla 1854 (5.52) 321 (4.10) 1,533 (5.95)
Upper Arm & Elbow 245 (0.73) 88 (1.12) 157 (0.61)
Forearm, Wrist, Hand 1359 (4.05) 348 (4.45) 1,011 (3.93)
Upper Abdomen 3,298 (9.82) 765 (9.77) 2,533 (9.84)
Lower Abdomen 4,963 (14.78) 962 (12.29) 4,001 (15.54)
Spine/Spinal Cord 1,472 (4.38) 841 (10.74) 631 (2.45)
Perineum 3497 (10.41) 728 (9.30) 2,769 (10.75)
Pelvis (Except Hip) 125 (0.37) 53 (0.68) 72 (0.28)
Upper Leg (Except Knee) 1,582 (4.71) 567 (7.24) 1,015 (3.94)
Knee/Popliteal 1,933 (5.76) 401 (5.12) 1,532 (5.95)
Lower Leg 772 (2.30) 309 (3.95) 463 (1.80)
Other 896 (2.67) 287 (3.67) 609 (2.36)

a. mean (SD) for each continuous characteristic is reported
b. frequency (percentage) for each categorical characteristic is reported
c. χ2 test or unpaired 2-tailed t test is used to assess the univariate differences between non-users and
opioid users as appropriate
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2.4.2 Prediction Performance Evaluation

We compare the prediction performance of INNER with that of DNN and the logistic regression.
We randomly split the data into the training and testing parts. Data imputation is then performed
for the training and testing data separately. After training the INNER model using the training
data, we test the prediction performance on the testing data. We conduct 100 independent trials
by repeating the same procedure. We compare INNER with DNN and the logistic regression in
accuracy, C-statistic, sensitivity, specificity and balance accuracy (the average of sensitivity and
specificity).

Since the outcome data are unbalanced, we further propose a balanced subsampling strategy to
avoid overfitting. That is, we split each training dataset into the opioid user and non-user groups.
Among the non-user group, we randomly select the same number of patients as in the user group,
append them to the user group and form a “balanced” dataset. We repeat the same procedure five
times, generating five datasets and training five models on them. We then apply these five models
to the testing data and compute the probability of taking opioids by averaging the probabilities
estimated by these models. We also use different thresholds to predict whether a patient takes
opioids. For example, the threshold can be 50.00% or 23.09%, the prevalence of taking opioids in
the original data; patients with estimated probabilities of taking opioids higher than the threshold
are predicted as using opioids.

The architecture of INNER is the same as the example shown in Figure 2.1. There are multiple
hidden layers in each of the neural network, FL(Zi;α) and FL(Zi;β). The last hidden layer has
a linear activation function while the other layers have a ReLu activation function. We tune the
number of layers and the number of hidden neurons in each layer based on the metrics we mentioned
above. The best architecture has three hidden layers, each with 250, 125 and 1 hidden neuron,
respectively.

When tuning the architecture of INNER, we vary the number of hidden layers and the number
of neurons in each layer for FL(Zi;α) and FL(Zi;β) and compare the different architectures based
on accuracy, C-statistic, sensitivity, specificity and balance accuracy. We vary the number of hidden
layers from 2 to 5, and the number of neurons in the first layer to be 125, 250 or 500. We set the
number of neurons in the last layer to be 1. Each of the rest hidden layers has half of the previous
layer’s neurons. In Section B of the Supplementary Material, we show the performance of the best
architecture and two other more complicated architectures.

For DNN, we define multiple inputs based on the nature of preoperative characteristics. We
classify the characteristics into three categories, un-modifiable such as gender and race, modifiable
such as BMI, alcohol and smoking status, and directly pain-related such as pain severity and
Fibromyalgia Survey Score. As shown in Appendix A, each input is passed to the same structure
of hidden layers by a ReLu activation function with different parameters, and is concatenated and

17



passed to the output layer. We tune the number of hidden layers and the number of neurons in
each layer before concatenation. The best architecture before concatenation has two layers and the
number of hidden neurons in each of the corresponding layers is 500 and 250. After concatenation,
there is one hidden layer with 15 neurons. The loss function and optimizer of DNN is the same as
that of INNER. In Section B of the Supplementary Material, we shows the performance of the best
architecture and two other more complicated architectures.

The INNER model achieves similar prediction power as DNN and is better than the logistic
regression. We assess the performance of the three models with the best architectures using different
sampling strategies and different; see Section B of the Supplementary Material. All the three models
achieve the best balance accuracy with balance sampling and 0.5 as the threshold. Table 2.4 report
the best performance of three models. The INNER and DNN achieve better performance in all four
metrics (accuracy, sensitivity, specificity and balance accuracy) compared to the logistic regression.
Moreover, there is no significant difference between the performance of INNER (accuracy: 0.72,
SE: 0.0029; sensitivity: 0.69, SE: 0.0052; specificity: 0.73, SE: 0.0052; and balance accuracy: 0.71,
SE: 0.0008) and DNN (accuracy: 0.72, SE: 0.0017; sensitivity: 0.694, SE: 0.0043; specificity: 0.73,
SE: 0.0034; and balance accuracy: 0.71, SE: 0.0007).

Table 2.4: Comparisons of Model Goodness-of-fit with the AOS data

Deep Neural Network Logistic Regression INNER
C-statistic 0.78 (0.0006) 0.76 (0.0027) 0.78 (0.0006)
Accuracy 0.76 (0.0017) 0.63 (0.0129) 0.72 (0.0029)
Sensitivity 0.69 (0.0043) 0.67 (0.0261) 0.69 (0.0052)
Specificity 0.73 (0.0034) 0.62 (0.0238) 0.73 (0.0052)
Balance Accuracy 0.71 (0.0007) 0.64 (0.0049) 0.71 (0.0008)

a. the results are obtained under the best architecture (for DNN and INNER) with the
balanced subsampling strategy and a threshold of 0.5. For the performance of different
sampling strategies, thresholds or structures, refer to Appendix B
b. based on 100 random splits.

2.4.3 Subgroup Analysis

We identify different subgroups based on the local false discovery rates [45, 47, 46] by looking
at the distributions of the estimated POT and BOT. We then perform descriptive analysis on each of
the subgroups and report the means (standard deviations) for continuous preoperative characteristics,
and the frequencies (percentages) for categorical preoperative characteristics. We also estimate the
probability of taking preoperative opioids for each patient with different pain scores and plot the
average probability of taking preoperative opioids for each subgroup.

18



Our results lead to six subgroups (Fig 2.2) by controlling the local false discovery rate at 0.2.
These subgroups include normal BOT & low POT (4,889 patients), normal BOT & normal POT
(25,581 patients), normal BOT & high POT (3,579 patients), high BOT & low POT (67 patients),
high BOT & normal POT (47 patients) and high BOT & high POT (6 patients). We estimate the
probability of taking preoperative opioids with different pain scores stratified by subgroups in Fig
2.2. For the high BOT & high POT subgroup and the high BOT & normal POT subgroup, the
probability of taking opioids exceeds 0.5 when the pain score is relatively low (high BOT & high
POT: 0.2; high BOT & normal POT: 1.1), indicating these two subgroups have a high risk of taking
preoperative opioids. The probability of taking opioids only exceeds 0.5 at the pain score of 6.0 for
the high BOT & low POT subgroup and 6.3 for the normal BOT & high POT subgroup, and these
two subgroups are considered as a moderate risk group. Finally, the normal BOT & normal POT
subgroup has probability of taking opioids higher than 0.5 only when the pain score is larger than
8.6, and the probability for normal BOT & low POT is lower than 0.5 even when the pain score
is 10. Thus, the normal BOT & normal POT subgroup and normal BOT & low POT subgroup are
considered as a low risk group.

Figure 2.2: Estimated Probability of Taking Preoperative Opioids Against Pain Score Stratified
by Risk Groups

Tables 2.5 and 2.6 show the characteristics for each subgroup. Patients in the high risk group
(high BOT & normal and high BOT & high POT) and the moderate risk group (normal BOT & high
POT and high BOT & low POT) tend to be more obese, younger, and have higher Fibromyalgia
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Survey Scores and higher Charlson Comorbidity Indices than those in the low risk group. African
Americans constitute about 17% of patients in the high risk group, while there are only 5% African
Americans in the low risk group. Most of patients (100% for high BOT & normal POT group and
83% for high BOT & high POT group) in the high risk group have tobacco consumption. Patients
are more likely to have illicit drug use history and sleep apnea in the high and moderate risk groups
than in the low risk group. A large portion of patients in the high risk group (high BOT & normal
POT: 97.83%, high BOT & high POT: 66.67%) have an ASA score of 3 or above, indicating a very
poor overall physical condition.

We also perform an ANCOVA-type analysis to understand the importance of each covariate’s
contributions to the developed risk scores (Table 2.5, Table 2.6). Specifically, we use the log-
transformed POT and BOT as response variables to fit separate linear models and calculate R2

for each preoperative characteristic. Based on the R2, Fibromyalgia Survey Score and ASA
Score explain the most variations of BOT, while Fibromyalgia Survey Score, age and Charlson
Comorbidity Index explain the most variations of POT.
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2.5 Discussion

The proposed INNER model achieves predictability comparable to DNN, but with more in-
terpretability. The model leads to two metrics, BOT and POT, that may decipher the patterns
of preoperative opioid use and explain the association between preoperative characteristics and
preoperative opioid use. Patients with higher BMI and worse physical conditions (higher Charlson
Comorbidity Indices, higher Fibromyalgia Survey Scores and higher ASA Scores) are more likely
to consume preoperative opioids, and African American patients are more likely to be in the high
and moderate risk groups. Patients with illicit drug use history and tobacco consumption are more
likely to take preoperative opioids, while patients with alcohol consumption are less likely to have
preoperative opioids. Patients with sleep apnea have a higher risk of taking preoperative opioids,
as do patients expecting upper abdomen surgery. Detailed discussions of these subgroups can be
found in the Appendix C.

Our results are largely consistent with the literature, which shows, for example, that patients with
worse physical conditions are more likely to use preoperative opioids [146, 164, 57, 107]. [126]
find that high BMI and Black race are preoperative risk factors for opioid use. Younger patients
are reported to have a higher risk of preoperative opioid use controlling for sociodemographics and
clinical variables [147]. Similarly, [103] find that age is the among the most important features for
opioid overdose prediction. [61] report that patients with poor sleep quality are more likely to have
preoperative opioid use. Tobacco use is reported to be a risk factor of preoperative opioid use by
many studies [164, 107]. As for substance abuse, many studies find that subjects with drug use have
higher risks of opioid use [147, 146]. Both [42] and [27] find that substance abuse history is among
the most important features for opioid dependence prediction. [147] find that there is no significant
association between problem alcohol use and opioid prescription (OR: 0.63; 95% CI: 0.35-1.15).
The direction of OR in their study is consistent with our results. [146] report a non-significant
association between alcohol use and opioid prescription, though the direction is opposite from our
study (OR: 1.32, P = 0.479). More studies are warranted to identify the association between alcohol
consumption and preoperative opioid use.

Finally, our proposed model can be extended to accommodate generalized linear models (GLMs)
as discussed in [156]. Specifically, let g(·) be a link function to link the conditional mean E(y |
x) = g−1{η(x)} to covariates of interest (e.g., treatment or exposure), say, x, where η(x) =

β0 + β⊤x. In order to model the nonlinear effects of additional features z (e.g., demographics,
biomarkers) on η and achieve model flexibility, we can extend deep neural network to model the
individualized intercepts and coefficients, namely, β0(z) and β(z). As such, the predictor can be
written as η(x, z) = β0(z) + β(z)⊤x, which is to be linked to the conditional mean E(y | x, z) via
E(y | x, z) = g−1{η(x, z)} = g−1{β0(z) + β(z)⊤x}.
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2.6 Conclusion

. Beyond preoperative outcomes, we could use this approach to better predict and understand
important postoperative outcomes such as opioid refill [140], new chronic opioid use [22], hospital
readmission, and opioid overdose. However, the best way to quantify the uncertainty of the estimates
is still unknown. We will pursue this later.
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CHAPTER 3

Penalized Deep Partially Linear Cox Models with Application to CT Scans of
Lung Cancer Patients

3.1 Introduction

Lung cancer, as the leading cause of cancer mortality globally, yielded 2.09 million new cases
and 1.76 million deaths worldwide in 2018 [16]. In the United States, lung cancer is the second most
common cancer after prostate cancer [41], and there were about 229,000 new lung cancer cases in
the country in 2020 [152]. Even with the advent of modern medicine, lung cancer mortality remains
high, with a 5-year survival rate lower than 20% among advanced patients [6]. Identifying risk
factors relevant to death among lung cancer patients is essential for establishing patient-centered
therapy, which can improve patient survival [111].

The National Lung Cancer Screen Trial (NLST), 5. More than 53,000 participants were enrolled
from August 2002 through April 2004 in the NLST, and around 26,000 subjects were randomly
assigned to receive low-dose CT [151]. In addition, clinical information, such as age, gender,
smoking history, and cancer stage, was collected for each patient. The study found a 20% decrease
in lung cancer mortality for patients screened by low-dose CT [151]. It is of substantial interest to
examine whether low-dose CT confers valuable features to help predict lung cancer survival and
design efficient disease management strategies.

Due to the complexity of the features obtained by CT, it remains difficult to extract information
from CT scans [128] and use such information to predict mortality among NLST patients. Several
studies developed quantitative measurements of texture patterns on the CT scans related to patients’
physiopathology characteristics [123]. CT texture analysis (CTTA) provides objective assessments
of the texture patterns of the tumor by evaluating the distribution and relationship of voxel inten-
sities [104], achieving promising prediction performances [53]. NLST utilized CTTA to analyze
the diverse chest CT scans of patients, as CTTA can extract texture features of the same dimension
for each patient, enabling comparison of these features across different patients [29]. Identifying
reproducible and robust texture features in the presence of other clinical factors affecting patients’
outcomes remains a challenge due to the sensitivity of radiomic features to factors such as scanner
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type, segmentation, and organ motion [92]. Thus, addressing this challenge is still a task that needs
to be tackled [53].

Partially linear Cox models have gained popularity as a useful extension of the classic Cox
models [34] for survival analysis. This model offers more flexibility in the risk function by separating
the hazard function into parametric relative risks for certain covariates and nonparametric relative
risks for the remaining covariates [71, 170]. In the NLST analysis, we have chosen to adopt this
model by assigning the parametric risks to the texture features and the nonparametric risks to the
clinical features such as age, gender, and race. This setup provides a clear interpretation of texture
features like in regular Cox models, facilitates the selection of crucial radiomic features, and allows
for extra flexibility in modeling the effects and potential interactions of the well-known clinical
features.

To estimate the nonparametric risk function, researchers have proposed various methods, in-
cluding spline-based approximation [135] and polynomial splines [71]. Recently, [170] made a
breakthrough by using deep neural networks (DNN) to estimate the nonparametric risk function
in partially linear Cox models and established an optimal minimax rate of convergence for the
DNN-based estimator, and showed that DNN approximates a wide range of nonparametric functions
with faster convergence. However, the performance of this method remains unknown when dealing
with a large number of texture features, which is the case in the NLST study.

In many applications, the neural network has proven to be a powerful tool for approximating
complex functions by providing accurate approximations of continuous functions [38, 97]. Under
some smoothness and structural assumptions, [138] showed that DNN estimators may circumvent
the curse of dimensionality and achieve the optimal minimax rate of convergence. With limited
samples, however, a complex DNN can still lead to overfitting [12]. Various methods such as early
stopping during training [98], adding dropout layers [145], and imposing penalties [141] have been
proposed to address overfitting, but these methods have not been widely studied in the survival
context.

To fill this gap, we introduce the Penalized Deep Partially Linear Cox Model (Penalized DPLC),
a framework that identifies valuable radiomic features and models the complex relationships between
survival outcomes and established clinical features such as age, body mass index (BMI), and pack
years of smoking. Our work offers several benefits. Firstly, it employs the Smoothed Clipped
Absolute Deviation (SCAD) penalty to select texture features that influence survival outcomes
while avoiding overfitting, combining feature selection and deep learning in one solution. Secondly,
we demonstrate the asymptotic properties of the estimator, determine its convergence rate, and
provide theoretical guarantees. Additionally, we perform comprehensive simulations to validate the
proposed model’s theoretical properties and compare it with other methods in risk prediction and
feature selection.
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The structure of the paper is as follows. In Section 2, we introduce the Penalized DPLC model
and the penalized log partial likelihood. Section 3 presents an efficient alternating optimization
algorithm for minimizing the loss function. Theoretical guarantees for our estimator are provided in
Section 4, where we prove its convergence rate to the true parameters. In Section 5, we conduct
simulations to evaluate the performance of the Penalized DPLC and compare it with other state-of-
the-art models. We apply the Penalized DPLC to a dataset from the NLST study in Section 6 to
identify important texture features related to patient survival and find that the selected features are
clinically interpretable and align with previous research findings.

3.2 SCAD-penalized Deep Partially Linear Cox Models

A partially linear Cox model assumes a hazard function:

λ(t|x, z) = λ0(t) exp(β
⊤
0 x+ g0(z)), (3.1)

where x ∈ Rp and z ∈ Rr are two covariate vectors, and λ0(t) is the baseline hazard. This class of
models contains the Cox proportional hazards model as a special case if g0(z) is a linear function
of z. In the context of NLST, x represents texture features, while z represents known clinical
features such as age, BMI, gender, race and cancer stage. The coefficients measuring the impact of
texture features are represented by β0, while the non-parametric risk function of clinical features
is represented by g0 and is to be approximated by a function in a deep neural network (DNN).
We consider a high dimensional setting for where p, the dimension of x can be larger than the
sample size, while r, the dimension of known clinical features, is moderate. We assume that β0 is a
sβ-sparse vector, i.e., ∥β0∥0 = sβ < p.

For an integer L ≥ 1, we consider a DNN with L + 1 layers, including an input layer, L − 1

hidden layers and an output layer, and let each component of p = (p1, p2, . . . , pL+1), a vector of
positive integers, be the number of neurons in the corresponding layer, where layers 1 and L+ 1 are
the input and output layers, respectively; in our case, the dimension of the input features, p1 = r,

and the dimension of output, pL+1 = 1. As such, an (L + 1)-layered neural network with an
architecture (L,p) can be expressed as a composite function, g : Rr → R1, with L folds, i.e.,
g = gL ◦ gL−1 ◦ · · · ◦ g1, where ‘◦” denotes the composition of two functions, and the lth fold
function

gl(·) = σl(Wl ·+bl) : Rpl → Rpl+1 with l = 1, . . . , L.

Here, Wl is a pl+1 × pl weight matrix, bl is a pl+1-dimensional bias vector and “·” represents an
input from layer l. In the following, we use Θ to denote the set of parameters for the neural network
containing all the weight matrices and bias vectors to be estimated. The function σl : Rpl+1 → Rpl+1
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is an activation function, possibly nonlinear, that operates component-wise on a vector.
Different activation functions exist, with ReLU, i.e., max(0, a), being a commonly used one.

Our focus is on neural networks that utilize ReLU functions for all layers, although it can be easily
altered. We also concentrate on a specific class of DNNs, commonly used in the literature [170].

First, define a class of DNNs, say, G(L,p), which contains DNNs with architecture (L,p) such
that maxl=1,...,L{∥Wl∥∞, ∥bl∥∞} <∞, where ∥ · ∥∞ denotes the sup-norm of a vector or matrix.
DNNs with complex network architectures and a high number of parameters are prone to overfitting.
To combat this issue, regularization techniques can be employed, such as adding a penalty term
to the loss function (Setiono, 1997) or incorporating a dropout layer (Srivastava, 2014). Another
option is to consider a class of s-sparse DNNs, imposing sparsity constraints on the weight matrices
to improve interpretability and reduce overfitting:

G(L,p, s, G) = {g ∈ G(L,p) :
L∑
l=1

∥Wl∥0 + ∥bl∥0 ≤ s, ∥g∥∞ ≤ G}.

Here, s ∈ N+ (the set of positive integers), G > 0, ∥g∥∞ = sup{|g(z)| : z ∈ D ⊂ Rr} is the
sup-norm of function g, and D is a bounded subset of Rr.

With right censoring, we let Ui and Ci denote the survival and censored times for subject i,
respectively. We observe Ti = min(Ui, Ci), and ∆i = 1(Ui ≤ Ci), where 1(·) is the indicator
function, and assume the observed data D = {(Ti,∆i,xi, zi), i = 1, . . . , n} are independently
and identically distributed (IID). To estimate g0 in (3.1), we suggest using a DNN, denoted as
G(L,p, s,∞), which takes z ∈ Rr as input features and produces a scalar output. To handle the
high-dimensional nature of β0, we propose a penalized estimation approach.

To proceed, we define the partial likelihood as

ℓ(β, g) =
1

n

n∑
i=1

∆i

[
β⊤xi + g(zi)− log

{∑
j∈Ri

exp
(
β⊤xj + g(zj)

)}]
, (3.2)

where Ri = {j : Tj ≥ Ti}, the at-risk set at time Ti, and g ∈ G(L,p, s,∞). We would estimate
β and g(·) by maximizing (3.2), where, to accommodate sparsity, we propose to use the SCAD
penalty [49, 50] defined as

p′λ(|β|) = λ
{
I(|β| ≤ λ) +

(aλ− |β|)+
(a− 1)λ

I(|β| > λ)
}
, a > 2,
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yielding a penalized log partial likelihood,

PL(β, g) = ℓ(β, g)−
p∑

j=1

pλ(|βj|).

The SCAD penalty is indeed a quadratic spline function with knots at λ and aλ, where λ > 0 is
viewed as the tuning parameter controlling the sparsity of β, and is assumed to converge to 0 as
n→∞.

3.3 Estimation Procedure

We estimate (β0, g0) by maximizing PL(β, g), or, equivalently, minimizing the loss function
which is defined as the negative penalized log partial likelihood:

Q(β, g) = q(β, g) +

p∑
j=1

pλ(|βj|), (3.3)

where q(β, g) = −ℓ(β, g). That is, the estimate of (β0, g0) is obtained via

(β̂, ĝ) = arg min
β,g∈Rp×G

Q(β, g). (3.4)

We present an optimization algorithm for solving (3.4) alternately. Our approach involves
using the adaptive moment estimation (Adam) algorithm to estimate g given an estimate of β.
Subsequently, we use the resulting estimate ĝ to estimate β via coordinate descent. The outline of
our algorithm is as follows.

Step 1. Initialize β with β̂
(0)

.

Step 2. Denote by β̂
(k−1)

the estimate of β at the (k − 1)th iteration. Solve (3.4) for g, with β fixed
at β̂

(k−1)
, by using Adam (see Algorithm 2 below). Denote by ĝ(k) the estimate at the current

iteration.

Step 3. With g fixed at ĝ(k), solve (3.4) for β by using the coordinate descent algorithm (see Algorithm
3 below). Denote by β̂

(k)
be the estimate at the current iteration.

Step 4. Repeat Steps 2 and 3 until convergence.

In Step 2, we employ an adapted Adam algorithm (Algorithm 1), a form of stochastic gradient
descent [85], to estimate Θ (the weight matrices and bias vectors) in the neural network. To ensure
numerical stability, a small positive constant ϵ0 is added to the denominator. The learning rate
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for each parameter is determined adaptively based on estimates of the first and second moments
of the gradients. Algorithm 1 is distinct from the traditional Adam method in that it updates
the parameters in the neural network while maintaining β at its previous iteration, rather than
updating all parameters simultaneously, as done in standard Adam. In Step 3, the coordinate descent

Algorithm 2: Adam in alternating optimization

Input :r1, r2, γ, β̂
(k−1)

, ι
Initialize m(0) ← 0, v0 ← 0, Θ(0) ← 0 and t← 1
while ∥Θ̂(t) − Θ̂(t−1)∥2 > ι do

m(t) ← r1 ·m(t−1) + (1− r1) · ∇ΘQ(β̂
(k−1)

, ĝ(t))

v(t) ← r2 ·m(t−1) + (1− r2) · ∇ΘQ(β̂
(k−1)

, ĝ(t))2

m̂(t) ← m(t)/(1− rt1), v̂
(t) ← v(t)/(1− rt2)

Θ̂(t) ← Θ̂(t−1) − γm̂(t)/(
√
v̂(t) + ϵ0)

t← t+ 1

Output : ĝ(k) ← g(· | Θ̂(t))

algorithm for the Penalized DPLC can be derived following the method in [17]. Let ξ = Xβ ∈ Rn,
where X = (x1, . . . ,xn)

⊤ is the covariate (x) matrix of the n subjects in the data. We denote the
gradient and Hessian of the function q with respect to β and ξ given the current estimate of the
neural network, ĝ(k), as q′(β; ĝ(k)), q′′(β; ĝ(k)), q′(ξ; ĝ(k)), and q′′(ξ; ĝ(k)). To simplify notation, we
will omit ĝ(k) in the following. The function q(β) is approximated using a second order Taylor
expansion around β̂(t):

q(β) ≈ q(β̂(t)) + (β − β̂(t))
⊤q′(β̂(t)) + (β − β̂(t))

⊤q′′(β̂(t))(β − β̂(t))/2

= q(β̂(t)) + (ξ − ξ̂
(t)
)⊤q′(ξ̂

(t)
) + (ξ − ξ̂

(t)
)⊤q′′(ξ̂

(t)
)(ξ − ξ̂

(t)
)/2

=
1

2
(y(ξ̂

(t)
)− ξ)⊤q′′(ξ̂

(t)
)(y(ξ̂

(t)
)− ξ) + C(ξ̂

(t)
, β̂(t)),

where y(ξ̂
(t)
) = ξ̂

(t)
− q′′(ξ̂

(t)
)−1q′(ξ̂

(t)
) and C(ξ̂

(t)
, β̂(t)) does not depend on β. The equalities

hold as q′(β) = X⊤q′(ξ) and q′′(β) = X⊤q′′(ξ)X by the chain rule. Then the loss function (3.3) at
iteration t can be approximated by the penalized weighted sum of squares:

Q(β) ≈ 1

2
(y(ξ̂

(t)
)− ξ)⊤q′′(ξ̂

(t)
)(y(ξ̂

(t)
)− ξ) + C(ξ̂

(t)
, β̂

(t)
) +

p∑
j=1

pλ(|βj|).

To speed up the algorithm, we may replace q′′(ξ̂
(t)
) by a diagonal matrix, W(ξ̂

(t)
), with the
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diagonal entries of q′′(ξ̂
(t)
)[143]:

W(ξ̂
(t)
)m,m = q′′(ξ̂

(t)
)m,m =

1

n

∑
i∈Cm

∆i

{
eξ̂

(t)
m +ĝ

(k)
m
∑

j∈Ri
eξ̂

(t)
j +ĝ

(k)
j − (eξ̂

(t)
m +ĝ

(k)
m )2

(
∑

j∈Ri
eξ̂

(t)
j +ĝ

(k)
j )2

}
,

where Cm = {i : Ti ≤ Tm} and Ri = {j : Tj ≥ Ti}. In this case,

y(ξ̂
(t)
)m = ξ̂

(t)

m +
1

nW(ξ̂
(t)
)m,m

{
∆m −

∑
i∈Cm

∆i

(
eξ̂

(t)
m +ĝ

(k)
m∑

j∈Ri
eξ̂

(t)
j +ĝ

(k)
j

)}
.

In the iteration of coordinate descent, the parameters are updated individually; each parameter
has a closed-form solution, making the computation manageable. We employ an adaptive rescaling
technique [17]; with the SCAD penalty, the following SCAD-thresholding operator returns the
univariate solution for the SCAD-penalized optimization:

fSCAD(h, v; a, λ) =


S(h,λ)

v
, if |h| ≤ 2λ

S(h,aλ/(a−1))
v(1−1/(a−1))

, if 2λ < |h| ≤ aλ

h/v, if |h| > aλ,

where S(·, λ) is the soft-thresholding operator with a threshold parameter, λ > 0 [43], i.e., S(h, λ) =
sign(h)(|h| − λ)+. Here, the sign function sign(h) equals h/|h| if h ̸= 0, and 0 if h = 0;
(h)+ = max(h, 0). Let r = y(ξ) − ξ and vj = x⊤

j W(ξ)xj . We define the following input at the
t-th iteration for the SCAD-thresholding operator

hj = x⊤
j W(ξ̂

(t)
)r+ vjβ

(t)
j .

The coordinate descent algorithm is presented in Algorithm 3.

3.4 Regularity Conditions and Statistical Properties

We impose sparsity on β0 = (β10, . . . , βp0)
⊤. Without loss of generality, write β0 = (β⊤

10,β
⊤
20)

⊤

and assume β20 = 0. To restrict the nonparametric function g0, we assume that it belongs to a
composite Hölder class of smooth functions [138]. First, with constants a,M > 0 and a positive
integer d, we define a Hölder class of smooth functions as

Ha
d(D,M) = {f : D ⊂ Rd → R :

∑
υ:|υ|<a

∥∂υf∥∞ +
∑

υ:|υ|=⌊a⌋

sup
x,y∈D,x ̸=y

|∂υf(x)− ∂υf(y)|
∥x− y∥a−⌊a⌋

∞
≤M},

31



Algorithm 3: Coordinate Descent in alternating optimization

Input :a, λ, β̂(0) = β̂
(k−1)

, ĝ(k), ι

Initialize t← 1, ξ̂
(0)
← Xβ̂(0), and r← y(ξ̂

(0)
)− ξ̂

(0)

while ∥β̂(t) − β̂(t−1)∥2 > ι do
for j ← 1 to p do

hj ← x⊤
j W(ξ̂

(t−1)
)r+ vjβ(t−1),j

β̂(t),j ← fSCAD(hj, vj; a, λ)

r← r− (β̂(t),j − β̂(t−1),j)xj

ξ̂
(t)
← Xβ̂(t)

t← t+ 1

Output : β̂
(k)
← β̂(t)

where D is a bounded subset of Rd, ⌊a⌋ is the largest integer smaller than a, ∂υ := ∂υ1 . . . ∂υr with
υ = (υ1, . . . , υd) ∈ Nd, and |υ| :=

∑d
j=1 υj .

For a positive integer q, let α = (α1, . . . , αq) ∈ Rq
+, and d = (d1, . . . , dq+1) ∈ Nq+1

+ , d̃ =

(d̃1, . . . , d̃q) ∈ Nq
+ with d̃j ≤ dj . We then define a composite Hölder smooth function class as

H(q, α,d, d̃,M) = {f = fq◦· · ·◦f1 : fi = (fi1, . . . , fidi+1
)⊤, fij ∈ Hαi

d̃i
([ai, bi]

d̃i ,M), |ai|, |bi| ≤M},
(3.5)

where [ai, bi] is the bounded domain for each Hölder smooth function. There are two types of
dimensional parameters, d and d̃. The latter is defined as the intrinsic dimension [170], often
much smaller than the feature dimension d. We will prove that the convergence rate of DNN
depends on the intrinsic dimension, d̃, instead of d, meaning a faster convergence rate than the
other nonparametric estimators.

Throughout, E denotes the expectation of random variables; unless otherwise specified, for any
function (random or nonrandom) f and a random vector, v, we define E{f(v)} :=

∫
f(t)fv(t)dt,

where fv(·) is the density function of v. Thus, the expectation is taken with respect to only the
arguments of the f function. For a vector a, define ||a|| = (a⊤a)1/2, and for a function g, define
∥g∥2L2 = E{g2(z)}. We denote α̃i = αi

∏q
k=i+1(αk ∧ 1) and γn = maxi=1,...,q n

−α̃i/(2α̃i+d̃i), and
assume the following conditions.

1. Considering a class of s-sparse DNNs or G(L,p, s, G), we assume L = O(log n), s =

O(nγ2
n log n) and nγ2

n < minl=1,...,L pl ≤ maxl=1,...,L pl < n.

2. With slightly overuse of notation, denote by x and z the random vectors underlying the
observed IID copies of xi and zi, respectively. Assume (x⊤, z⊤)⊤ take values in a bounded
subset of Rp+r with a joint probability density function bounded away from zero, and β0 lies
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in a compact set, i.e., β0 ∈ {β ∈ Rp : ∥β∥ ≤ B}.

3. Assume that the nonparametric function g0 belongs to a mean 0 composite Hölder smooth
class, i.e., g0 ∈ H0 := {g ∈ H(q, α,d, d̃,M) : E{g(z)} = 0} and the matrix E{x −
E(x|z)}⊗2 is nonsingular, where a⊗2 = aa⊤ for a column vector a.

4. Let τ be the maximal followup time. We assume that there exits a δ > 0 such that P (∆ =

1|x, z) > δ and P (U > τ |x, z) > δ almost surely.

Condition 1 imposes a restriction on the architecture of neural networks, balancing the network’s
flexibility with the estimation accuracy [8, 9, 109, 120]. Condition 2 is commonly assumed for
semiparametric partially linear models [68]. The Hölder smoothness in Condition 3 ensures that
the function can be approximated by a DNN, while the zero expectation assumption ensures the
identifiability of the deep partially linear Cox model [170]. In Condition 4, P (∆ = 1|x, z) > δ

ensures that there is a non-zero probability of observing an event, and P (U > τ |x, z) > δ ensures
that there are subjects still alive at the end of the study. Both of these assumptions guarantee that
the partially linear Cox model can be estimated using the observed data.

For the SCAD penalty, we define an = max{p′λ(|βj0| : βj0 ̸= 0)} and bn = max{p′′λ(|βj0| :
βj0 ̸= 0)}. The following theorem establishes the existence and the convergence rates of β̂ and ĝ.

Theorem 1 Under Conditions 1-4, and if bn → 0 (with properly chosen λ), then there exists a local

maximizer (β̂, ĝ) of PL(β, g) satisfying E{ĝ(z)} = 0, such that

∥β̂ − β0∥ = Op(γn log
2 n+ an)

and

∥ĝ − g0∥L2 = Op(γn log
2 n+ an).

The theorem shows that the rate of convergence does not depend on the number of input features,
but rather on the intrinsic dimension and smoothness of the function g0, unlike other nonparametric
estimators whose convergence rate also depends on the feature dimension. As a result, the DNN
estimator may have an advantage when the intrinsic dimension of the true function is low.
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3.5 Simulations

We conducted a series of simulations to assess the finite sample performance of our proposed
estimator. For i = 1, . . . , n, we generated (xi, zi) from a multivariate Gaussian distribution,

Np+r

{
0,


1 0.2 . . . 0.2
...

... . . . ...
0.2 0.2 . . . 1


}
,

and then generated the true survival time Ui from an exponential distribution with a hazard

µ exp(βT
0 xi + g0(zi)),

where µ was chosen to be 0.003 and β0 ∈ Rp was a sparse vector simulated from the uniform
distribution. The number of nonzero elements in β0 was sβ, chosen to be much less than the
dimension of β0. The censored time Ci was simulated from a uniform distribution on [0, C], where
C was chosen so that the censoring rate in the simulated data is around 30%.

We simulated data sets with varying sample sizes and feature sizes. Specifically, we fixed the
clinic feature size, r, to be 8 and the number of nonzero radiomic features, sβ, to be 10, while
varying the training sample size, n, to be 500 or 1500 and radiomic feature size, p, to be 600 or
1200. We assessed the performance of the model under these four scenarios with different numbers
of training samples and feature sizes. For each simulation setup or configuration, a total of 100
independent simulated datasets were generated.

We set g0 : R8 → R to be

g0(z) = 0.68 exp(z1)− 0.45 log{(z2 − z3)
2}+ 0.32 sin(z4z5)− 0.45(z6 − z7 + z8)

2 − 0.32,

and used a function from a neural network to approximate it. In our implementation, we tuned the
number of hidden layers and the number of neurons in the hidden layers over a grid of values, i.e., 1
to 4 for the number of hidden layers and 2 to 16 for the number of neurons in the hidden layers. For
the SCAD penalty, we set a = 3.7 as suggested by [49] from a Bayesian point of view and used
grid search over [0.5, 5] to find the best λ based on the Bayesian Information Criterion (BIC):

−2nℓ(β̂, ĝ) + log n · ŝβ,

where ŝβ is the number of nonzero coefficient estimates. Figure B.1a displays the selection of λ for
ten simulated datasets consisting of 500 training samples and 1200 features, and Figure B.1b shows
the solution path for β̂ at various values of λ based on one randomly selected dataset.
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In order to visually evaluate the accuracy of the DNN estimator in approximating g0, Figure 3.1
displays contour plots of the true function and the average DNN estimates based on 100 simulated
datasets with n varying from 500 to 1,500 and p ranging from 600 to 1,200. To create these plots,
we fixed the values of the last six arguments of the function at their population means and varied the
first two arguments. The results indicate that the DNN estimates provided a good approximation of
the true function, with increasing accuracy observed as n increased for a fixed value of p.

We next compared the performance of the Penalized DPLC in prediction and selection to
that of the SCAD-penalized Cox model [50], SCAD-penalized partially linear Cox model using
polynomial splines [70], Cox boosting [13], random forests [76] and deep survival model [83]. The
prediction performance was assessed using the C-Index [62], as shown in Figure 3.2. Our Penalized
DPLC model outperformed other methods across various scenarios. The highest C-Index of 0.865
(IQR: 0.012) was achieved with 1500 samples and 600 features. As the feature size increased, the
prediction performance decreased slightly, e.g., the median C-Index for Penalized DPLC decreased
from 0.850 (IQR: 0.011) to 0.846 (IQR: 0.017) when the feature size increased from 600 to 1200
with 500 samples. Conversely, the prediction performance improved with more samples; the median
C-Index for Penalized DPLC rose to 0.861 (IQR: 0.011) when the sample size increased to 1500,
compared to 500 samples with 1200 features.

To evaluate the selection performance, we reported the number of selected features, false
positive number (FPN), false positive rate (FPR), false negative number (FNN), and false negative
rate (FNR). Let S represent the actual support of β, Ŝ the estimated support of β̂ (i.e., the
selected features), and Card(·) the cardinality of a set. Then we define FPN = Card(Ŝ\S),
FPR = FPN/{p− Card(S)}, FNN = Card(S\Ŝ), and FNR = FNN/Card(S).

As seen in Table 3.1, the Penalized DPLC had an FNN ≤ 2 under the considered settings,
indicating that less than two ‘active’ features among ten are missed, outperforming other methods
(except for Cox Boosting) across all scenarios. Cox Boosting had an FNN of 1.22 (SE: 0.14),
while the Penalized DPLC reported an FNN of 1.44 (SE: 0.10) with 500 samples and 1200 features.
However, Cox Boosting had a higher FPN of 24.98 (SE: 1.21) compared to Penalized DPLC’s FPN
(Mean: 3.58, SE: 0.50), indicating an over-selection of features by Cox Boosting. The Penalized
DPLC had a better FPN than other methods, except for the SCAD-penalized partially linear Cox
model using polynomial splines. The average number of falsely selected features using Penalized
DPLC was 1.90–3.58, compared to 1.42–4.38 for the partially linear Cox model with polynomial
splines. The selection performance of Penalized DPLC improved with more samples and fewer
features, achieving the best performance with 1500 samples and 600 features, with an FPR of 0.32%
and FNR of 13.00%.
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3.6 Application

We applied the Penalized DPLC to analyze a dataset from the NLST study, investigating what
and how low-dose CT features were related to the mortality of lung cancer patients. The dataset
includes a total of 368 subjects from NLST who were diagnosed with lung cancer and screened
with low-dose CT; see Table 3.2. Out of these, 96 patients died during follow-up. The median age
in the overall population was 63.5 years old (IQR: 59.0, 68.0), with 55% being male and over 90%
being white. Most patients were in the early cancer stage, and hypertension was the most prevalent
comorbidity (36%), followed by obstructive lung disease (24%) and prior pneumonia (21%).

To extract features from CT scans, we followed the image processing pipeline as outlined in
Figure B.2. We first removed noise from the images through gray-scale normalization and adaptive
histogram equalization. We then normalized the voxel intensity of each image to a standard range of
0 (black) to 255 (white) units and improved the contrast with adaptive histogram equalization [122].
Next, we identified the regions of interest (ROIs) and segmented the tumor regions based on their
location and size. Finally, we used pyradiomics to extract texture features from the ROIs [159],
including first-order features, shape-based features, and higher-order features [31]. Additionally,
we applied image filtration using the Laplacian of Gaussian filter and a 3D LBP-based filter. The
Laplacian of Gaussian filter highlights areas of gray level change [88], and the 3D LBP-based filter
computes local binary patterns in 3D using spherical harmonics [7]. In total, 320 image features
were extracted.

To compare the prediction and selection accuracy of the Penalized DPLC with other competing
methods, we conducted 100 experiments. In each experiment, we tuned the number of hidden
layers and the number of neurons in each hidden layer over the grids of [1, 2, 3, 4] and [2, 4, 8, 16],
respectively, when constructing the DNN, and randomly divided the data into 80% for training and
the remaining 20% for testing. To ensure that the censoring rate in the training and testing data
remained the same as in the entire population, we split the data by stratifying the vital status of the
patients.

As shown in Figure 3.4, the median C-Index for Penalized DPLC is 0.708 (IQR: 0.043),
outperforming the other competing methods. Deep Survival (Median: 0.672, IQR: 0.065), Random
Forests (Median: 0.656, IQR: 0.080), and Cox Boosting (Median: 0.668, IQR: 0.066) all had better
prediction performance than the SCAD-penalized Cox model (Median: 0.655, IQR: 0.068) and the
SCAD-penalized partially linear Cox model (Median: 0.633, IQR: 0.065).

Figures 3.3d– 3.3f illustrate the estimated effects of age, BMI, and pack years of smoking while
holding other variables constant at their mean (for continuous variables) or mode (for categorical
variables), as derived from the estimated ĝ function. These contour plots clearly reveal the nonlinear
relationships between age, BMI, and pack years of smoking and survival. The gradients of ĝ for age,
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BMI, and pack years, stratified by gender, are presented in Figures 3.3a –3.3c, reflecting the local
change in the log hazard for small changes in the corresponding variables. Figures 3.3a and 3.3c
exhibit positive gradients for age and pack years, indicating that mortality increases with increasing
age and pack years, consistent with the literature [155]. In contrast, Figure 3.3b shows that BMI
has a protective effect on patient survival, in agreement with the obesity paradox [95]. Moreover,
we observe that gender has a significant impact on lung cancer survival. As seen in the gradient
figures, male patients exhibit a steeper increase in mortality risk compared to female patients for
small increments in age and pack years, as shown in Figures 3.3a and 3.3c. On the other hand,
Figure 3.3b highlights that an increased BMI has a stronger protective effect for female patients
compared to male patients, consistent with previous findings of better survival outcomes for female
patients [48].

The Penalized DPLC method has selected five radiomic features as risk factors: large dependence
low gray level emphasis (LDLGLE), large area emphasis (LAE), large area low gray level emphasis
(LALGLE), cluster shade, and contrast. Figure B.3 demonstrates the reproducibility of feature
selection by the Penalized DPLC and the hazard ratios for the selected features. LDLGLE (HR: 1.07)
and cluster shade (HR: 1.09) were selected 71 and 57 times out of 100 experiments, respectively.
Although LALGLE (Frequency: 51, HR: 1.02) and contrast (Frequency: 41, HR: 1.02) were
selected less frequently than the other texture features, they were still more frequently selected by
the Penalized DPLC than by the alternative methods.

The use of CT scans to extract texture patterns from tumors has been shown to provide valuable
information about their physiological properties [123, 112]. Radiomic features extracted from CT
scans have been studied as predictors of survival outcomes in lung cancer patients in several studies,
with promising results [116]. To address the analytical needs of the National Lung Screening Trial
(NLST), we propose the Penalized DPLC model, which simultaneously selects and models the
effects of prognostic radiomic features. Our adopted partial linear model assumes a log-linear
relationship between radiomic features and hazards, allowing us to use the SCAD penalty to identify
important image features. Meanwhile, clinical features with known associations with survival
outcomes are modeled using a nonparametric function to account for their nonlinear effects. Despite
this structured approach, we maintain the flexibility to model selected radiomic features using
nonparametric functions like the clinical features. Our method provides a convenient and effective
way to explore new predictors while fully characterizing the impact of established risk factors.

An application of the Penalized DPLC to the NLST provides insight into the relationship
between CT scan texture patterns and patient survival outcomes. The model identifies several
texture features that are related to survival outcomes with biologically interpretable results. The
Penalized DPLC demonstrates a C-Index of 0.7, which is comparable to other reported values of
0.68 to 0.72 for survival prediction using radiomic and clinical features [53, 72].
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There is significant potential for future work. Our modeling framework can be extended to
incorporate alternative penalties, such as the LASSO and MCP [153], and can handle competing risk
scenarios where multiple events are of interest [118]. We are currently utilizing a DNN estimator
with a fixed and moderate dimension, which is suitable for our dataset where the number of clinical
variables is moderate. However, it is feasible to develop DNN estimators that can handle high-
dimensional predictors. Moreover, quantifying the uncertainty of the estimates remains a significant
challenge. Further explorations in these areas are necessary.

Table 3.1: Selection Performance of Different Algorithms using Simulated Dataset

Model Selected Features1 FPN2 FPR (%)3 FNN4 FNR(%)5

n = 500, p = 600

Penalized DPLC 11.40 (0.38) 2.78 (0.36) 0.47 (0.06) 1.38 (0.10) 13.80 (1.03)
SCAD 12.32 (0.59) 4.46 (0.48) 0.76 (0.08) 2.14 (0.17) 21.40 (1.74)
SCAD spline 11.28 (0.48) 3.16 (0.40) 0.54 (0.07) 1.88 (0.14) 18.80 (1.42)
Cox Boosting 34.92 (1.56) 26.14 (1.56) 4.43 (0.26) 1.22 (0.13) 12.20 (1.25)
Random Forest 11.28 (0.48) 5.00 (0.46) 0.85 (0.08) 3.72 (0.16) 37.20 (1.64)

n = 500, p = 1200

Penalized DPLC 12.14 (0.53) 3.58 (0.50) 0.30 (0.04) 1.44 (0.10) 14.40 (0.95)
SCAD 14.52 (0.89) 6.40 (0.83) 0.54 (0.07) 1.88 (0.16) 18.80 (1.56)
SCAD spline 12.70 (0.56) 4.38 (0.49) 0.37 (0.04) 1.68 (0.15) 16.80 (1.47)
Cox Boosting 33.76 (1.25) 24.98 (1.21) 2.10 (0.10) 1.22 (0.14) 12.20 (1.38)
Random Forest 12.70 (0.56) 7.18 (0.53) 0.60 (0.04) 4.48 (0.15) 44.80 (1.46)

n = 1500, p = 600

Penalized DPLC 10.60 (0.34) 1.90 (0.33) 0.32 (0.06) 1.30 (0.09) 13.00 (0.87)
SCAD 10.48 (0.42) 2.24 (0.36) 0.38 (0.06) 1.76 (0.13) 17.60 (1.30)
SCAD spline 9.82 (0.30) 1.42 (0.23) 0.24 (0.04) 1.60 (0.13) 16.00 (1.34)
Cox Boosting 33.18 (1.59) 24.30 (1.58) 4.12 (0.27) 1.12 (0.09) 11.20 (0.89)
Random Forest 9.82 (0.30) 2.78 (0.31) 0.47 (0.05) 2.96 (0.16) 29.60 (1.56)

n = 1500, p = 1200

Penalized DPLC 10.74 (0.75) 2.64 (0.69) 0.22 (0.06) 1.90 (0.17) 19.00 (1.74)
SCAD 10.18 (0.45) 2.28 (0.34) 0.19 (0.03) 2.10 (0.19) 21.00 (1.88)
SCAD spline 10.24 (0.45) 2.26 (0.37) 0.19 (0.03) 2.02 (0.18) 20.20 (1.82)
Cox Boosting 33.10 (1.64) 24.60 (1.61) 2.07 (0.14) 1.50 (0.15) 15.00 (1.46)
Random Forest 10.24 (0.45) 3.86 (0.42) 0.32 (0.04) 3.62 (0.20) 36.20 (1.98)

1
The true number of ‘active’ features in the simulated data sets is ten.

2
False Positive Number (FPN) is the number of features that are ‘inactive’ but selected by the model as ‘active’

features. The mean and standard error of 100 experiments is reported.
3

False Positive Rate (FPR) is the FPN divided by the true number of ‘inactive’ features. The number reported in
the table is a percentage (×100).The mean and standard error of 100 experiments is reported.
4

False Negative Number (FNN) is the number of features that are ‘active’ but selected by the model as ‘inactive’
features. The mean and standard error of 100 experiments is reported.
5

False Negative Number (FNR) is the FNN divided by the true number of ‘active’ features. The number reported
in the table is a percentage (×100).The mean and standard error of 100 experiments is reported.
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Figure 3.1: The Average Estimates of the Nonlinear Function using Simulated Data with
Varying n, p. The plots are made by varying the first two arguments fixing the other six arguments.

Figure 3.2: Prediction Performance Based on 100 Simulated Data.
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Table 3.2: Clinical Characteristics of Patients from the National Lung Cancer Screen Trial

Characteristic Overall, N = 3681 Alive, N = 2721 Dead, N = 961

Median Follow-up Time (days) 2072 (1962, 2151)
Age (yrs.) 63.5 (59.0, 68.0) 63.0 (59.0, 67.0) 66.0 (60.0, 70.0)
BMI 26.3 (24.3, 29.2) 26.3 (24.3, 29.2) 26.1 (24.1, 29.2)
Gender

Male 201 (55%) 137 (50%) 64 (67%)
Female 167 (45%) 135 (50%) 32 (33%)

Race
White 339 (92%) 251 (92%) 88 (92%)
Black 14 (3.8%) 11 (4.0%) 3 (3.1%)
Asian 8 (2.2%) 6 (2.2%) 2 (2.1%)
Other 6 (1.6%) 3 (1.1%) 3 (3.1%)
Unknow 1 (0.3%) 1 (0.4%) 0 (0%)

Cigarette Smoking Status
Former 171 (46%) 135 (50%) 36 (38%)
Current 197 (54%) 137 (50%) 60 (62%)

Pack Years of Smoking 58 (46, 80) 57 (45, 80) 60 (49, 84)
Histology

Adenocarcinoma 185 (50%) 137 (50%) 48 (50%)
Squamous Cell Carcinoma 73 (20%) 50 (18%) 23 (24%)
Large Cell Carcinoma 16 (4.3%) 9 (3.3%) 7 (7.3%)
Adenosquamous Carcinoma 8 (2.2%) 3 (1.1%) 5 (5.2%)
Neuroendocrine/Carcinoid Tumors 1 (0.3%) 1 (0.4%) 0 (0%)
Bronchioloalveolar Carcinoma 70 (19%) 59 (22%) 11 (11%)
NSCLC NOS 15 (4.1%) 13 (4.8%) 2 (2.1%)

Pathologic Stage
IA 230 (62%) 188 (69%) 42 (44%)
IB 49 (13%) 36 (13%) 13 (14%)
IIA 11 (3.0%) 8 (2.9%) 3 (3.1%)
IIB 39 (11%) 26 (9.6%) 13 (14%)
IIIA 33 (9.0%) 13 (4.8%) 20 (21%)
IIIB 3 (0.8%) 1 (0.4%) 2 (2.1%)
IV 3 (0.8%) 0 (0%) 3 (3.1%)

Radiotherapy 27 (7.3%) 9 (3.3%) 18 (19%)
Chemotherapy 83 (23%) 49 (18%) 34 (35%)
Surgery Type

Wedge/Multiple Wedge Resection 45 (12%) 30 (11%) 15 (16%)
Segmentectomy 14 (3.8%) 8 (2.9%) 6 (6.2%)
Lobectomy 287 (78%) 222 (82%) 65 (68%)
Bilobectomy 15 (4.1%) 9 (3.3%) 6 (6.2%)
Pneumonectomy 7 (1.9%) 3 (1.1%) 4 (4.2%)

Asthma 27 (7.3%) 18 (6.6%) 9 (9.4%)
Bronchitis 35 (9.5%) 23 (8.5%) 12 (12%)
COPD 39 (11%) 24 (8.8%) 15 (16%)
Diabetes 33 (9.0%) 20 (7.4%) 13 (14%)
Emphysema 48 (13%) 32 (12%) 16 (17%)
Heart Disease 52 (14%) 35 (13%) 17 (18%)
Hypertension 134 (36%) 98 (36%) 36 (38%)
Prior Pneumonia 77 (21%) 53 (19%) 24 (25%)
Obstructive Lung Disease 88 (24%) 58 (21%) 30 (31%)

1
Median (IQR); n (%)
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(a) Gradient for ĝ of age (b) Gradient for ĝ of BMI (c) Gradient for ĝ of pack years of
smoking

(d) ĝ of age and BMI (e) ĝ of pack years of smoking and
BMI

(f) ĝ of age and pack years of
smoking

Figure 3.3: Estimated Nonlinear Function and Gradients using NLST: The gradients for ĝ of
age, BMI, and pack years smoking history stratified by gender are plotted in (a), (b), and (c). ĝ of
age, BMI, and pack years of smoking is plotted in (d) and (e). The other variables are fixed at their
sample means (for continuous variables) or modes (for categorical variables)

Figure 3.4: Prediction Performance of 100 Experiments using Data from the National Lung
Cancer Screen Trial: During each experiment, 80% data is randomly selected as training data,
and 20% data is selected as testing data. The censoring rate in the testing data and training data is
controlled to be the same as that in the entire population.
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CHAPTER 4

Estimating Heterogeneous Treatment Effects with Survival Outcomes via
Deep Survival Learner

4.1 Introduction

Lung cancer is the leading cause of cancer-related deaths, resulting in over 1.8 million deaths
worldwide in 2021 [161]. The primary subtype of lung cancer is non-small cell lung cancer
(NSCLC), which accounts for 85% of all cases [115, 110]. For many years, surgery has been the
standard treatment for patients with early-stage NSCLC [158]. However, numerous studies have
demonstrated that the use of neoadjuvant (preoperative) or adjuvant (postoperative) chemotherapy
can significantly improve survival rates after surgery [163, 32, 121, 54, 14, 106]. Therefore, several
studies have suggested that adjuvant chemotherapy should become the standard treatment for
patients with stage II to III cancer [32, 54]. The efficacy of perioperative chemotherapy can vary
among different patients. For instance, Sandler et al. reported improved 5-year survival rates in
women compared to men after adjuvant chemotherapy [134], while Morgensztern et al. observed
higher mortality rates in patients over the age of 70 with adjuvant chemotherapy [113]. A better
comprehension of the heterogeneous treatment effects across individuals and contexts can help
clinicians tailor treatment regimens and optimize treatment decisions for each patient [11].

The Boston Lung Cancer Study (BLCS) is a prospective cohort study of lung cancer that has been
ongoing since 1992 [65]. It has enrolled over 12,000 cases of lung cancer at Massachusetts General
Hospital (MGH) and Dana-Farber Cancer Institute (DFCI). The BLCS cohort has collected extensive
information on demographics, smoking history, occupational history, dietary habits, pathology,
imaging, treatments, oncogenic (somatic driver) mutation status, and biosamples [66, 105, 162]. It
is the first and most comprehensive survivor cohort, with the longest follow-up period, allowing for
a thorough investigation of the factors influencing lung cancer treatment outcomes. The follow-up
rate for the BLCS cohort has been high, approximately 95%, with near-complete ascertainment
of deaths using the National Death Index and other resources [66, 162]. The BLCS provides a
unique opportunity to estimate the heterogeneous treatment effects of perioperative chemotherapy
in patients with early-stage (stage II/III) non-small cell lung cancer due to the availability of detailed
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individual-level patient information [60, 125, 165, 69, 148, 91, 80].
As BLCS is an observational study, it is challenging to establish causal relationships between

treatments and outcomes directly. Instead, we can use the counterfactual framework proposed by
Imbens and Rubin [74] to analyze the heterogeneous causal treatment effects. This framework
involves estimating the Conditional Average Treatment Effect (CATE), which is defined as the con-
ditional expectation of the Individual Treatment Effect (ITE) given the pre-treatment characteristics
[1, 52]. In other words, the CATE describes how the treatment effect varies based on the patient’s
characteristics before treatment. Estimating CATE as a function of pre-treatment characteristics
essentially estimates the interactions between treatment and these characteristics [77, 73]. However,
the functional forms of CATE are very complex and difficult to be estimated using traditional
statistical methods [4, 89].

Recent studies have explored flexible machine learning techniques for causal inference, known
as causal machine learners, which offer promising ways of decomposing the estimation of CATE into
sub-problems solvable using regression or machine learning methods [36, 37, 89]. Popular causal
machine learners include S-, T-, X-, M-, and R-Learners. The S-Learner utilizes a single machine
learning model fitted on the whole dataset to construct the estimator of CATE [167], whereas
the T-Learner considers the heterogeneity between treatment and control groups and employs
two machine learning models fitted separately on the treatment and control groups to estimate
CATE [89]. Similarly, the X-Learner fits two models on the treatment and control groups, uses them
to impute the Individual Treatment Effects (ITE) for each patient, and develops an estimator for
CATE by regressing the imputed ITE on the patient characteristics [89]. The M-Learner applies
inverse propensity weighting to modify the outcome and then uses the modified outcome to develop
the estimator of CATE [125]. The R-Learner constructs the estimator based on a characterization
of CATE in terms of the residual of treatment assignment and outcome [117]. In survival settings,
Xu et al. [166] applied causal machine learners to estimate CATE from right-censored data and
conducted extensive simulation studies to evaluate model performance under various scenarios.
However, one significant limitation of these methods is their reliance on model structures and
their vulnerability to model misspecifications that can lead to large error rates from underlying
misspecified regression estimators [89]. Furthermore, when estimating CATE in survival settings,
these methods tend to focus on the estimation of survival benefits at a single time point, ignoring the
temporal dependence across different time points, which can result in an inefficient estimation of
CATE over a time period [166]. Incorporating temporal dependence into these methods to improve
the estimation of CATE in survival settings remains a challenging task.

In this work, we propose a new Deep Survival Learner (DSL) to address these challenges of
estimating CATE in right-censored survival outcomes. The proposed DSL is an adaptation of the
doubly-robust method, which incorporates Inverse Probability of Censoring Weights (IPCW) and
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develops a CATE estimator that is robust to model misspecifications [84, 87, 90]. Our contributions
are as follows: First, we extend a doubly-robust learner to the survival setting and develop an
estimator of CATE that is robust to model misspecifications using IPCW. Second, we jointly estimate
CATE over an interval of time by applying the fusion penalty to the pseudo-outcome regression
in DSL. This approach exploits the temporal structure of CATE in survival analysis by promoting
similarity in successive estimates [154]. Third, we use Deep Neural Networks (DNNs) to model
the complex relationships between CATE and baseline characteristics. DNNs can approximate
any continuous function, and their convergence rate only depends on the characteristics of the
true function. Therefore, they may have an advantage over other nonparametric estimators given
the desirable properties of the true functions [38, 108, 138]. Fourth, we conduct a comprehensive
simulation study to evaluate the performance of DSL under different scenarios. We systematically
vary sample size as well as the model specifications of survival time and propensity score models to
assess the robustness of DSL. Finally, we apply DSL to the BLCS dataset to study the heterogeneous
causal treatment effects of perioperative chemotherapy for patients with NSCLC [65]. Our results
are largely consistent with existing research.

In summary, the proposed DSL approach offers a promising estimation of CATE in right-
censored survival outcomes. Our method is robust to model misspecifications, considers the
temporal structure of CATE, and leverages DNNs to model the complex relationship between
CATE and patient-level characteristics. We envision these features make DSL a valuable tool for
identifying heterogeneous treatment effects in observational studies.

4.2 Methods

4.2.1 Notation

To accommodate the right censoring, we let T and C denote survival and censored time,
respectively, and we observe U = min(T,C), and ∆ = I(T ≤ C), where I(·) is the indicator
function. We assume the observed data D = {(Ui,∆i, Xi,Wi), i = 1, . . . , n} contain i.i.d. copies
of (U,∆, X,W ), where Xi ∈ Rd denotes the pre-treatment characteristics, and Wi ∈ {0, 1}
denotes the treatment received (e.g., 0 = surgery alone and 1 = surgery plus chemotheorapy). We
are interested in estimating the causal effect of treatment on the survival probability at a given
time t0 given X = x. Following the causal inference framework [74], we define the potential
outcomes {T 0

i , T
1
i } for each patient, where Tw

i is the potential outcome had the patient received
treatment w = 0, 1; in practice, only Ti = WiT

1
i + (1−Wi)T

0
i is observable. We further define the

individualized treatment effect is τi(t0) = I(T 1
i > t0)− I(T 0

i > t0) and the CATE of the survival
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probability is a function of pre-treatment characteristics and time t0,

τ(x, t0) = E{τi(t0)|Xi = x} = E{I(T 1
i > t0)− I(T 0

i > t0)|Xi = x}. (4.1)

For notational ease, we denote by Yi(t0) = I(Ti > t0), and by Y w
i (t0) = I(Tw

i > t0) for w = 0, 1.

4.2.2 Construction of A Pseudo-outcome and Regularity Conditions

As for each individual T 0
i , T

1
i cannot be observed simultaneously and because of censoring,

the outcome τi(t0) at any given t0 is not observable. Under the conditions listed below, we aim to
construct a pseudo-outcome so that it is computable and has the same expectation as τi(t0), based
on which we can estimate the CATE. Before proceeding, we make the following assumptions to
ensure the estimability of τ(x, t0).

Assumption 4.2.1 (Consistency) The observable survival time, Ti is the same as the potential

outcome with the actual treatment received, TWi
i . That is, Ti = TWi

i .

Assumption 4.2.2 (Unconfoundedness/Ignorability) The treatment to be received does not de-

pend on the potential outcomes given pre-treatment characteristics, i.e.,

{T 0
i , T

1
i } ⊥⊥ Wi|Xi, where ⊥⊥ denotes independence.

Assumption 4.2.3 (Overlap) The propensity score e(x) = P (Wi = 1|Xi = x) is bounded away

from zero and 1, i.e., 0 < e(x) < 1, almost surely.

Assumption 4.2.4 (Noninformative Censoring) Censoring time is independent of survival time

given treatment and pre-treatment characteristics, Ti ⊥⊥ Ci|Wi, Xi.

Assumption 4.2.5 (Positivity) There is a positive probability that subjects can be observed beyond

time t0, i.e., P (Ci > t0|Wi, Xi) > 0

Assumptions 4.2.1 - 4.2.3 are the standard causal assumptions to identify the conditional
average treatment effects of Wi. These assumptions have been widely used in the literature on the
heterogeneous treatment effects [89, 117]. Assumptions 4.2.4 and 4.2.5 are with respect to the
censoring and ensure the estimability of the survival probability at t0, which are commonly assumed
in the survival literature [55].

Then we first consider a pseudo-outcome (in the theoretical sense) defined as

φi(t0) = S(Xi, t0, 1)− S(Xi, t0, 0) +
Wi − e(Xi)

e(Xi)(1− e(Xi))
{Yi(t0)− S(Xi, t0,Wi)} (4.2)
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where S(x, t0, w) and e(x) are working models for E{Yi(t0)|Xi = x,Wi = w} and P (Wi =

1|Xi = x), respectively. We show that if either of them is correctly specified, that is, either
S(x, t0, w) = E{Yi(t0)|Xi = x,Wi = w} or e(x) = P (Wi = 1|Xi = x) holds, E{φi(t0)|Xi =

x} = E{τi(t0)|Xi = x}, justifying the use of φi(t0) for estimating τ(x, t0). To see this, we write
φ(t0) as

φi(t0) = S(Xi, t0, 1)− S(Xi, t0, 0) +
Wi − e(Xi)

e(Xi)(1− e(Xi))
{Yi(t0)− S(Xi, t0,Wi)} (4.3)

=
WiYi(t0)

e(Xi)
− (1−Wi)Yi(t0)

1− e(Xi)
+

e(Xi)−Wi

e(Xi)
S(Xi, t0, 1) +

e(Xi)−Wi

1− e(Xi)
S(Xi, t0, 0).

(4.4)

If S(x, t0, w) is correctly specified, i.e., S(x, t0, w) = E{Yi(t0)|Xi = x,Wi = w} = E{Y w
i (t0)|Xi =

x}, where the last equality is due to Assumptions 4.2.1 and 4.2.2, then it follows by Equation (4.3)
that

E{φi(t0)|Xi = x} = E{S(Xi, t0, 1)− S(Xi, t0, 0)|Xi = x}

+ E
[ Wi − e(Xi)

e(Xi)(1− e(Xi))
{Yi(t0)− S(Xi, t0,Wi)|Xi = x}

]
= E{S(Xi, t0, 1)− S(Xi, t0, 0)|Xi = x}

= E{I(T 1
i > t0)− I(T 0

i > t0)|Xi = x} = E{τi(t0)|Xi = x},

which holds because E
[

Wi−e(Xi)
e(Xi)(1−e(Xi))

{Yi(t0)−S(Xi, t0,Wi)|Xi = x}
]
= E

[
Wi−e(Xi)

e(Xi)(1−e(Xi))
E{Yi(t0)−

S(Xi, t0,Wi)|Wi, Xi = x}|Xi = x
]

and E{Yi(t0) − S(Xi, t0,Wi)|Wi, Xi = x} = 0 when
S(x, t0, w) is correctly specified.

On the other hand, if e(Xi) is correctly specified, i.e., e(x) = P (Wi = 1|Xi = x), then
according to Equation (4.4),

E{φi(t0)|Xi = x} = E
{WiYi(t0)

e(Xi)
− (1−Wi)Yi(t0)

1− e(Xi)
|Xi = x

}
+ E

{e(Xi)−Wi

e(Xi)
S(Xi, t0, 1) +

e(Xi)−Wi

1− e(Xi)
S(Xi, t0, 0)|Xi = x

}
= E

{WiYi(t0)

e(Xi)
− (1−Wi)Yi(t0)

1− e(Xi)
|Xi = x

}
= E

{WiY
1
i (t0)

e(Xi)
− (1−Wi)Y

0
i (t0)

1− e(Xi)
|Xi = x

}
= E{τi(t0)|Xi = x},

where the second-to-last equality holds because of Assumption 4.2.1 and the last equality holds
because of Assumption 4.2.2.
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Therefore, when either S(x, t0, w) or e(x) is correctly specified (which can be well approximated
by DNN in the next section), regressing φi(t0) on patient characteristics may give an unbiased
estimate of CATE. Furthermore, t0 can take values over an interval, giving a comprehensive
evaluation of CATE over a range of time points (e.g. 1, 2 and 5 years) or an interval (e.g. from 1
to 5 years). We can construct a series of pseudo-outcomes at the grid points in the time interval
of interest for each patient. A joint estimation of CATE across all the time points can leverage
the similarity of CATE at the contiguous time points, because the treatment effects on the same
patient are likely to be similar at these contiguous points. We will propose to apply the fusion
penalty to promote the similarities between successive estimates of CATE [154], which confers
much numerical stability and accuracy as shown in our simulations.

4.2.3 Deep Survival Learner of CATE

As the pseudo outcome φi(t0) involves unknown quantities, we propose to use DNN to estimate
them and construct a DNN version of pseudo outcomes over a range of t0 values, e.g., tmin = t0,0 <

t0,1 < . . . < t0,j < . . . t0,J = tmax over an interval [tmin, tmax], where tmin, tmax are pre-chosen.
That is, for a grid point of t0,j , we compute an DNN estimate of φi(t0,j), denoted by φ̂i(t0,j),
by plugging the DNN estimates of the survival function and the propensity score, Ŝ(Xi, t0,Wi)

and ê(Xi), into (4.2). We further apply DNN to regress φ̂i(t0,j) on patient characteristics and
estimate CATE. We term our procedure a Deep Survival Learner (DSL), which essentially adapts a
doubly-robust learner to survival settings [84].

We utilize DNN to learn the complex relationships between treatment received, survival out-
comes, and patient characteristics. In addition, we propose adapting the fusion penalty to the DNN’s
loss function to promote the continuity of the CATE estimate with respect to time. To prevent
overfitting, we employ K-fold cross-fitting during the estimation process, following the approach
outlined in Kennedy et al. [84]. Specifically, we randomly partition the data into K folds and then
sequentially construct the CATE estimator on each fold. The final CATE estimate is the average of
the obtained estimates on each fold. The detailed algorithm for implementing DSL is presented
below.

Stage 1. Divide the dataset D into K folds (D1, D2,. . . ,DK).

For k = 1, . . . , K, let D−k = (D1, . . . ,Dk−1,Dk+1, . . . ,DK)

Stage 2. (a) Use DNN to compute ê(x), the estimated propensity score P (Wi = 1|Xi = x), on D−k.

(b) Use DNN to compute Ŝ(x, t0, w), the estimated survival function E{Yi(t0)|Xi =

x,Wi = w}, on D−k.
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(c) Use DNN to compute ŜC(x, c, w), the estimated survival function of censoring time,
i.e., E{I(Ci > c)|Xi = x,Wi = w}, on D−k.

Stage 3. Pseudo-outcome regression: Compute the pseudo-outcomes for each subject at t0,j on Dk:

φ̂i(t0,j) = Ŝ(Xi, t0,j, 1)− Ŝ(Xi, t0,j, 0) +
Wi − ê(Xi)

ê(Xi)(1− ê(Xi))
{Yi(t0,j)− Ŝ(Xi, t0,j,Wi)}.

(4.5)
Then use DNN to regress them on patient characteristics Xi and time t0,j on Dk, yielding an
estimator, τ̂k(x, t0), of τ(x, t0) on Dk.

Stage 4. Cross-fitting: Repeat Stage 2 to Stage 3 until all the K folds data have been used to construct
the estimator τ̂k(x, t0). Use the average of K estimators τ̂(x, t0) = 1/K

∑K
k=1 τ̂k(x, t0) as

the final estimator of τ(x, t0).

Stages 2 and 3 involve the use of DNNs and will be detailed in the next section. In particular,
we will detail the construction of pseudo outcomes via DNNs, i.e., φ̂i(t0), and the DSL estimate
of CATE, τ̂k(x, t0), by regressing φ̂i(t0) on the baseline characteristics and time. We will also
introduce a fusion penalty to promote the continuity of the CATE estimate with respect to time,
which proves to perform well. Our DNN-based estimator may achieve better convergence rates than
other nonparametric estimators for CATE [38, 108, 138], as confirmed by our simulations.

4.3 Implementation of Deep Survival Learner

4.3.1 A general formulation of a DNN

We briefly introduce the general formulation of a feedforward neural network which is used in
the Deep Survival Learner to construct the estimators. For an integer L ≥ 1, we consider a neural
network with L+1 layers, including one input layer, L−1 hidden layers, and one output layer. Let pl
be the number of neurons in the lth layer (l = 1, . . . , L+1), where layer 1 and layer L+1 are the input
layer and output layer, respectively. Accordingly, we define the width vector p = (p1, p2, . . . , pL+1).
Then an (L + 1)-layered neural network with the architecture (L,p) is essentially an L-fold
composite function, τ : Rp1 → RpL+1 . It can be written as g = gL ◦ gL−1 ◦ · · · ◦ g1, where ”◦”
denotes the composition of two functions. The lth fold function is

gl(·) = σl(Wl ·+bl) : Rpl → Rpl+1 with l = 1, . . . , L

Here, Wl is a pl+1 × pl weight matrix, bl is a pl+1 dimensional bias vector, and “·” represents the
input from the previous layer. In the following, we use Θ to denote the set of parameters for the
neural network containing all the weight matrices and bias vectors, which depend on the network
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structures, including the number of hidden layers and the number of neurons in each layer. In
practice, we tune the layer and neuron numbers by cross-validation. The function σl : Rpl+1 → Rpl+1

is an activation function. Typical choices of σl(x) include a linear function of x, a ReLU function,
i.e., max(0,x), and a softmax function, i.e., exp(x)/∥ exp(x)∥1, where max and exp operate
componentwise. Figure 4.1 gives an example of a four-layered DNN.

Figure 4.1: An Example of Four-Layered DNN.

We define a class of DNNs, G(L,p), with architecture (L,p) such that
maxl=1,...,L{∥Wl∥∞, ∥bl∥∞} <∞, where ∥·∥∞ denotes the sup-norm of a vector or matrix. DNNs
with complex network architectures and a high number of parameters are prone to overfitting. We
therefore consider a class of s-sparse DNNs, imposing sparsity constraints on the weight matrices
to improve interpretability and reduce overfitting:

G(L,p, s, G) = {g ∈ G(L,p) :
L∑
l=1

∥Wl∥0 + ∥bl∥0 ≤ s, ∥g∥∞ ≤ G}.

Here, s ∈ N+ (the set of positive integers), G > 0, ∥g∥∞ = sup{|g(z)| : z ∈ D ⊂ Rp1} is the
sup-norm of function g, and D is a bounded subset of Rp1 .

When using DNNs to approximate the nonparametric functions in the models, we assume
that these functions belong to a composite Hölder class of smooth functions [138] for theoretical
convenience. First, with constants a,M > 0 and a positive integer d, we define a Hölder class of
smooth functions as

Ha
d(D,M) = {f : D ⊂ Rd → R :

∑
υ:|υ|<a

∥∂υf∥∞ +
∑

υ:|υ|=⌊a⌋

sup
x,y∈D,x ̸=y

|∂υf(x)− ∂υf(y)|
∥x− y∥a−⌊a⌋

∞
≤M},

where D is a bounded subset of Rd, ⌊a⌋ is the largest integer smaller than a, ∂υ := ∂υ1 . . . ∂υr with
υ = (υ1, . . . , υd) ∈ Nd, and |υ| :=

∑d
j=1 υj . For a positive integer q, let α = (α1, . . . , αq) ∈ Rq

+,
and d = (d1, . . . , dq+1) ∈ Nq+1

+ , d̃ = (d̃1, . . . , d̃q) ∈ Nq
+ with d̃j ≤ dj . We then define a composite
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Hölder smooth function class as

H(q, α,d, d̃,M) = {f = fq◦· · ·◦f1 : fi = (fi1, . . . , fidi+1
)⊤, fij ∈ Hαi

d̃i
([ai, bi]

d̃i ,M), |ai|, |bi| ≤M},
(4.6)

where [ai, bi] is the bounded domain for each Hölder smooth function. There are two types of
dimensional parameters, d and d̃. The latter is defined as the intrinsic dimension [170], often much
smaller than the feature dimension d.

4.3.2 DNN estimation of survival functions

In Stage 2 of the DSL algorithm, we utilize a DNN approach [83] to construct the estimator
Ŝ(x, t0, w). Specifically, we use DNN to estimate the nonparametric risk function in a Cox model:

λ(t|Xi = x,Wi = w) = λ0(t) exp{gw(x)} (4.7)

We assume that the nonparametric risk function gw(x) belongs to the class of composite Hölder
smooth function, i.e., gw(x) ∈ H(q, α,d, d̃,M). For identifiability, we assume gw(0) = 0 for
w = 0, 1. We use the s-sparse DNNs, g(x;Θw) ∈ G(L,p, s, G), to approximate gw(x), where
g(x;Θw) is the DNN-constructed risk function governed by the parameter of Θw under treatment
w = 0, 1. That is, we estimate two DNNs, where g(x;Θ0), and g(x;Θ1) are the log relative risk
functions for patients in the control and treatment group, respectively. To estimate Θ = (Θ0,Θ1)

using data D−k (as specified in the DSL algorithm), we minimize the negative partial likelihood
defined (4.8) associated with the Cox proportional hazards model:

ℓ(Θ) = −
∑

i∈D−k

∆i

[
g(Xi;ΘWi

)− log
{ ∑

j∈D−k∩R(Ui)

g(Xj;ΘWj
)
}]

, (4.8)

where R(t) = {j : Uj ≥ t} is the at-risk set at time t. Let Θ̂ = (Θ̂0, Θ̂1) be the minimizer of
(4.8). For simplicity, we write the estimated risk function as ĝw(x) = g(x; Θ̂w). We use Adam to
minimize the negative partial likelihood function [85]. To estimate the baseline hazard λ0, we use
the Breslow estimator [100]

Λ̂0(t) =
∑

i∈D−k:Ui≤t

∆i∑
j∈D−k∩R(Ui)

exp{ĝWj
(Xj)}

(4.9)

where Λ̂0(t) is the cumulative baseline hazard function. Then the estimator for S(Xi, t0,Wi) can
be written as Ŝ(Xi, t0,Wi) = exp{−eĝWi

(Xi)Λ̂0(t0)}. Similarly, we can construct a DNN-based
estimator, ŜC(Xi, t0,Wi), of the survival function of censoring time by “flipping” the event indicator
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∆ to censoring indicator ∆c = 1−∆.

4.3.3 DNN estimation of propensity score

To estimate the propensity score, we employ a DNN extension of logistic regression given by:

logitP(Wi = 1 | Xi = x) = g(x).

Here, logit(p) = log p/(1− p) with p ∈ (0, 1), represents the logit link function, and g ∈
H(q, α,d, d̃,M), where we use a deep neural network, g(Xi,Θ) ∈ G(L,p, s, G), to approxi-
mate g. To train this network using data D−k, we minimize the cross-entropy loss function given
by:

ℓ(Θ) = −
∑

i∈D−k

[
Wi

1 + exp{−g(Xi;Θ)}
+

1−Wi

1 + exp{g(Xi;Θ)}

]
. (4.10)

We use the Adam optimizer [85] to minimize the loss function and denote by Θ̂ the minimizer. We
estimate the propensity score by ê(Xi) = 1/[1 + exp{−g(Xi; Θ̂)}].

4.3.4 DNN estimation of CATE

In the third stage of the DSL algorithm, the pseudo-outcomes, φi(t0,j) in (4.5), need to be
computed for each patient. However, we cannot construct the pseudo-outcome for every patient at
each given time point because Yi(t0,j) is not computable at each t0,j due to censoring. Introduce
the effective censoring indicator ∆i(t0,j) = I{Ci ≥ (Ti ∧ t0,j)} = ∆i ∨ I{Ui ≥ t0,j}. If and only if
∆i(t0,j) = 1, that is, if the patient is observed to be alive at t0,j or the exact failure time is observed,
can Yi(t0,j) ≡ I(Ti > t0,j) be determined. Therefore, we focus on the cases with ∆i(t0,j) = 1 when
computing CATE at t0,j and use IPCW to adjust for the effective censoring [87, 90].

Assuming the true CATE belongs to Hölder class of smooth function, τ(x, t0) ∈ H(q, α,d, d̃,M),
we use DNN to construct the estimator of CATE. Unlike the other causal machine learners, our pro-
posed DSL estimator is a function of both pre-treatment characteristics and time. That is, the input
of DNN is (x, t0) ∈ Rd × R+. With slight overuse of notation, we let τk(x, t0;Θ) ∈ G(L,p, s, G)

denote the DNN trained on the Dk fold of data with parameters Θ. To promote the continuity of
τk(x, t0;Θ) with respect to t0, we apply the fusion penalty to the loss function(4.11) where λf is the
tuning parameter for fusion penalty [154]. The intuition behind this is that the treatment effects at
two contiguous time points should be similar. We propose to estimate the parameters in the DNNs,
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Θ, by minimizing the fusion penalized loss function

ℓ(Θ) =
∑
i∈Dk

J∑
j=1

∆i(t0,j)

ŜC(Xi, Ui ∧ t0,j,Wi)

{
φi(t0,j)− τk(Xi, t0,j;Θ)

}2

+λf

∑
i∈Dk

J−1∑
j=1

∆i(t0,j+1)∆i(t0,j)|τk(Xi, t0,j+1;Θ)− τk(Xi, t0,j;Θ)|.

(4.11)

We again use Adam for optimization and tune the penalization parameter λf by cross-validation. We
will exemplify the choice of tuning parameters in the simulation study and the real data application.

4.4 Simulation

To examine the double robustness property of DSL, we conducted simulations to evaluate its
performance when either the survival model or the propensity score model is misspecified. In cases
where both models are correctly specified, we compared the efficiency of DSL to other causal
machine learners, including the S-, T-, X-, M-, and R-Learners mentioned in the introduction section.
Furthermore, we evaluated the robustness of DSL in situations where both models are misspecified.
We assessed the model performance in each scenario by varying the training sample size.

For i = 1, . . . , n, we generated Xi = (Xi,1, . . . , Xi,7) ∈ R7 from a multivariate Gaussian
distribution,

N7

{
0,


1 0.2 . . . 0.2
...

... . . . ...
0.2 0.2 . . . 1


}
,

Specifically, consider the following four data-generating processes.
Case 1 Both the survival time model and propensity score model are correctly specified. Specifi-

cally, the survival time is generated from a Cox-exponential model.

λ(t|Xi,Wi) = λ0 exp[−0.85− 1.2I(Xi,1 > 0) + 1.5
√
|Xi,2|+ 0.2Xi,3

+ {1.7− 0.8I(Xi,1 > 0)− 0.7
√
|Xi,2|}Wi]

The propensity score is e(Xi) = 1/{1 + exp(−Xi,7 + 1)}. The treatment rate is around 0.3.
Case 2 The survival time model is incorrectly specified, but the propensity score model is

correctly specified. Specifically, the survival time is generated from an accelerated failure time
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model

log(Ti) = −1− 1.2I(Xi,1 > 0) + 1.5
√
|Xi,2|+ 0.2Xi,3

+ {1.7− 0.8I(Xi,1 > 0)− 0.7
√
|Xi,2|}Wi + ϵi

where ϵi follows a standard Gaussian distribution. The propensity score is e(Xi) = 1/{1 +

exp(−Xi,7 + 1)}. The treatment rate is around 0.3.
Case 3 The survival time model is correctly specified, but the propensity score model is

incorrectly specified. The survival time is generated from a Cox-exponential model

λ(t|Xi,Wi) = λ0 exp[−0.85− 1.2I(Xi,1 > 0) + 1.5
√
|Xi,2|+ 0.2Xi,3

+ {1.7− 0.8I(Xi,1 > 0)− 0.7
√
|Xi,2|}Wi]

The propensity score is e(Xi) = ϕ(1.3Xi,7;µ, σ), where ϕ(x;µ, σ) is the probability density
function of gaussian distribution with mean µ and variance σ2. We set µ = 0 and σ2 = 6.25 so the
treatment rate is around 0.3.

Case 4 Both the survival time model and propensity score model are incorrectly specified. The
survival time is generated from an accelerated failure time model

log(Ti) = −1− 1.2I(Xi,1 > 0) + 1.5
√
|Xi,2|+ 0.2Xi,3

+ {1.7− 0.8I(Xi,1 > 0)− 0.7
√
|Xi,2|}Wi + ϵi

where ϵi follows a standard Gaussian distribution. The propensity score is e(Xi) = ϕ(1.3Xi,7;µ, σ)

and µ is set to be 0 and σ2 is set to be 6.25.
In all the scenarios, the censoring time is generated from a Cox-exponential model.

λC(t|Xi,Wi) = λC
0 exp[−0.33− 0.6I(Xi,4 > 0) + 0.4

√
|Xi,5|+ 0.2Xi,6

+ {1.2 + 0.5I(Xi,4 > 0)− 0.5
√
|Xi,5|}Wi]

The baseline hazards for survival time, λ0, and censoring time, λC
0 , are set so that the censoring

rate is around 0.45. In each case, the model is fitted on the training samples and assessed on the
testing samples. The training sample sizes vary between 270, 800, and 2400, while the testing
sample size is 600. We estimate τ(x, t0) from the 20th percentile of the observed time to the
80th percentile of the observed time. We use the integrated mean squared error (IMSE), defined
as
∫ tmax

tmin
1/n{τ(x, t0) − τ̂(x, t0)}2dt0, to assess the model performance. For each simulation
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configuration, a total of 100 datasets were simulated.
In the numerical implementation, we use 2-fold (K = 2) cross-fitting to train DSL. We choose

K = 2-to balance the computational burden and performance. We tune the structure of DeepSurv
using cross-validation. Specifically, we tuned the number of hidden layers and the number of
neurons in the hidden layers over a grid of values, i.e., 1 to 2 for the number of hidden layers
and 2 to 16 for the number of neurons in the hidden layers. Each hidden layer is followed by a
dropout layer, and we tune the dropout rate to be 0.3 or 0.5. Finally, we tune the learning rate of the
Adam optimizer over the grids from 0.001 to 0.01. For the DNN-based estimator τ̂(x, t0), we tune
the hyperparameters, including the number of hidden layers, the number of neurons in the hidden
layer, the dropout rate and learning rate using the same strategy as we do for the DeepSurv model.
Additionally, we tune the parameter λf for the fusion penalty over a grid of points from 0.005 to 5.
The DNNs are implemented using PyTorch.

We compare the DSL to other causal machine learners, including S-, T-, and X-Learner [89,
166]. For S-Learner, we use penalized Cox model with the elastic net penalty to model the
survival probability at time t0 given pre-treatment characteristics (X) and treatment received (w),
Ŝ(X, t0,W ). Then the CATE, τ(X, t0), is estimated by Ŝ(X, t0, 1) − Ŝ(X, t0, 0). The penalized
Cox model is implemented using the R package glmnet [150]. The penalization parameter is
tuned over the grids from 0.007 to 0.9. For T-Learner, we trained two random survival forests
models on the treatment group and control group [76]. Then we estimate the survival probability
at time t0 given pre-treatment characteristics on the treatment group (Ŝ1(x, t0)) and control group
(Ŝ0(x, t0)). τ̂(x, t0) is then estimated as the difference of survival probability between the treatment
group and control group, Ŝ1(x, t0)− Ŝ0(x, t0). The random survival forests model is implemented
using the R package randomForestSRC [75]. We tune the minimum size of the terminal node
in the random forests over the grids from 1 to 100. The number of variables to possibly split at
each node is tuned from 1 to 7. Similar to T-Learner, X-Learner also uses random survival forests
to fit the model for survival probability on the treatment group and control. We then calculate the
pseudo-outcomes and use the XGBoost to fit the pseudo-outcome regression [28]. The XGBoost is
implemented using the R package xgboost. We tune the learning rate of XGBoost from 0.01 to
0.99.

The results of the simulation study are shown in Table 4.1 based on 100 experiments for each
setting. Models are trained using the training samples with various sizes and tested on the testing
data. We report the mean and 95% confidence interval of IMSE. In the first case, where both
the model of survival time T and the model of propensity score W are correctly specified, DLS
outperforms other models across various scenarios. The model performance increases as the sample
size increase. The best performance is achieved when the model is trained on 2,400 samples with
an average IMSE of 0.234 (95% CI: 0.229, 0.239).
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When the survival model is correctly specified, but the propensity score model is incorrectly
specified, the performance of DSL is also better than the other models. The IMSE decreases from
0.297 (95% CI: 0.289, 0.305) to 0.214 (95% CI: 0.210, 0.218) as the training sample size increases.
Similarly, DSL trained on 270 (mean: 0.240, 95% CI: 0.234, 0.247) or 800 (mean: 0.210, 95% CI:
0.206, 0.214) samples achieves better performance than the other methods when the propensity score
is correctly specified, but the survival model is incorrectly specified. Except that the RSF-T-Learner
achieves slightly better performance (mean: 0.185, 95% CI: 0.179, 0.191) than DSL (mean: 0.191,
95% CI: 0.188, 0.194) when the number of training samples is 2,400.

Finally, when both the survival model and the propensity score model are incorrectly specified,
DSL achieves better performance than the Cox-S-Learner and the XGBoost-X-Learner. There is
no significant difference between DSL and RSF-T-Learner (mean: 0.259, 95% CI: 0.249, 0.270
vs. mean: 0.253, 95% CI: 0.237, 0.269) when the training sample size is 270. However, the
performance of RSF-T-Learner is better than that of DSL when we increase the training sample
size to 800 and 2,400, respectively. The IMSE of DSL is 0.221 (95% CI: 0.215, 0.227) when the
training sample size is 800 and 0.206 (95% CI: 0.202, 0.210) when the training sample size is 2400.
On the other hand, RSF-T-Learner achieves the IMSE of 0.195 (95%: 0.182, 0.208) and 0.193 (95%
CI: 0.191, 0.195) trained on 800 and 2,400 samples, respectively.

To summarize, larger training samples lead to better DSL performance. Correctly specified
survival and propensity score models result in DSL providing a more efficient estimator with less
variation in IMSE over time, due to incorporating temporal dependence of CATE in estimation.
DSL outperforms other methods, even with misspecified models, thanks to its double-robustness
and use of DNNs as base learners.

4.5 Boston Lung Cancer Study

We apply the proposed method to study the heterogeneous treatment effects of perioperative
chemotherapy using data from the Boston Lung Cance Study. We are interested in the causal
effect of perioperative chemotherapy on the survival time of patients with early-stage (Stage II/III)
NSCLC. According to the descriptive analysis shown in Table 4.2, we observe 521 (66%) of death
among the 784 patients. The median survival time in the study population is 1,951 days (95% CI:
1,699, 2,219). Let the group of patients who received surgery + chemotherapy be the treatment
group and the group of patients who only received surgery be the control group. There are 214
patients (27%) in the treatment group. Patients in the treatment group are younger than patients in
the control group (median: 64, IQR: 58, 71 vs. median: 68, IQR: 60, 75). There are more male
patients in the treatment group (116, 54%) compared to the control group (274, 48%). Overall,
we find better survival outcomes for the treatment group than the control group. More death is
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Table 4.1: Integrated Mean Squared Error using Different Methods

Deep Survival Learner Cox-S-Learner RSF-T-Learner XGBoost-X-Learner

Correct T
Correct W

n = 270 0.330 (0.315, 0.344) 0.363 (0.339, 0.386) 0.442 (0.413, 0.472) 0.595 (0.583, 0.608)
n = 800 0.261 (0.255, 0.268) 0.292 (0.281, 0.304) 0.351 (0.326, 0.376) 0.479 (0.473, 0.484)
n = 2400 0.234 (0.229, 0.239) 0.278 (0.271, 0.286) 0.256 (0.253, 0.260) 0.463 (0.456, 0.470)

Correct T
Wrong W

n = 270 0.297 (0.289, 0.305) 0.339 (0.319, 0.360) 0.409 (0.385, 0.433) 0.579 (0.569, 0.589)
n = 800 0.244 (0.238, 0.250) 0.292 (0.279, 0.305) 0.352 (0.333, 0.372) 0.477 (0.470, 0.484)
n = 2400 0.214 (0.210, 0.218) 0.264 (0.258, 0.270) 0.260 (0.256, 0.263) 0.469 (0.460, 0.478)

Wrong T
Correct W

n = 270 0.240 (0.234, 0.247) 0.291 (0.272, 0.309) 0.267 (0.256, 0.278) 0.523 (0.502, 0.543)
n = 800 0.210 (0.206, 0.214) 0.244 (0.234, 0.253) 0.218 (0.211, 0.224) 0.382 (0.372, 0.392)
n = 2400 0.191 (0.188, 0.194) 0.227 (0.222, 0.233) 0.185 (0.179, 0.191) 0.321 (0.316, 0.326)

Wrong T
Wrong W

n = 270 0.259 (0.249, 0.270) 0.258 (0.241, 0.274) 0.253 (0.237, 0.269) 0.415 (0.407, 0.423)
n = 800 0.221 (0.215, 0.227) 0.230 (0.221, 0.238) 0.195 (0.182, 0.208) 0.327 (0.322, 0.332)
n = 2400 0.206 (0.202, 0.210) 0.238 (0.233, 0.243) 0.193 (0.191, 0.195) 0.337 (0.328, 0.345)

1 Four different scenarios are presented, corresponding to different combinations of correct or incorrect survival time T and
propensity score W models.
2 The average and 95% confidence interval of IMSE across 100 experiments are reported.

observed in the control group (411, 72%) than in the treatment group (110, 51%). The median
survival time for patients in the treatment group is 2,379 days (95% CI: 1,928, 3,145), while it is
1,736 (1,478, 2,121) in the control group. The Kaplan-Meier curves (Figure 4.2) also show a better
survival probability for the treatment group.

We apply DSL to this dataset and use 2-fold cross-fitting to train the model as we did in
the simulation study. We choose to split data into two folds instead of more folds to reduce
the computation burden of the estimation procedure. Additionally, the results of the simulation
experiments show that 2-fold cross-fitting can already give good results, and there is no need to
increase the number of folds. We tune the hyperparameters in DSL as we did in the simulation study.
The DeepSurv model for survival time trained on the first fold has two hidden layers. Each layer
has two neurons. The two dropout layer following the hidden layers have dropout rates of 0.5 and
0.3, respectively. In the second fold, the model for survival time also has two layers. Both hidden
layers have 16 neurons. The following dropout layers have a dropout rate of 0.3. The learning rate
is 0.05. For the DeepSurv model of censoring time, the model trained on the first fold has two
hidden layers. The first hidden layer has two neurons, and the second hidden layer has 16 layers.
The dropout layers have a dropout rate of 0.3. The learning rate is 0.001. In the second fold, the
model has two hidden layers. The first layer has four neurons, and the second layer has two neurons.
The dropout layer has a dropout rate of 0.3. The learning rate is 0.001. Finally, the DNN-based
estimator of CATE trained on the first fold has two layers. The first layer has four neurons, and the
second layer has 16 neurons. The following dropout layers have a dropout rate of 0.3. The fusion
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Table 4.2: Clinical Characteristics of Patients from the Boston Lung Cancer Cohort

Characteristic
Overall

(N = 784)1
Surgery

(N = 570)1
Surgery + Chemotherapy

(N = 214)1

Death 521 (66%) 411 (72%) 110 (51%)
Median Survival Time (years) 5.4 (4.7, 6.1) 4.8 (4.1, 5.8) 6.5 (5.3, 8.6)
Age at disgonsis (yrs) 67 (59, 74) 68 (60, 75) 64 (58, 71)

Unknown 19 12 7
Height (m) 1.69 (1.61, 1.75) 1.68 (1.60, 1.75) 1.70 (1.63, 1.78)

Unknown 57 52 5
Weight (kg) 75 (64, 86) 74 (64, 86) 76 (65, 88)

Unknown 60 53 7
Smoking Intensity (cigarettes/day) 20 (15, 30) 20 (15, 30) 20 (10, 30)

Unknown 24 22 2
Tumor Stage

II 445 (57%) 333 (58%) 112 (52%)
III 339 (43%) 237 (42%) 102 (48%)

Gender
Female 394 (50%) 296 (52%) 98 (46%)
Male 390 (50%) 274 (48%) 116 (54%)

Race
American Indian/Alaska Native 2 (0.3%) 2 (0.4%) 0 (0%)
Asian 15 (1.9%) 7 (1.2%) 8 (3.8%)
Black 8 (1.0%) 5 (0.9%) 3 (1.4%)
Mixed 3 (0.4%) 1 (0.2%) 2 (0.9%)
Other 4 (0.5%) 4 (0.7%) 0 (0%)
White 746 (96%) 547 (97%) 199 (94%)
Unknown 6 4 2

Ethnicity
Hispanic 18 (2.6%) 12 (2.4%) 6 (3.1%)
Non-Hispanic 671 (97%) 482 (98%) 189 (97%)
Unknown 95 76 19

Smoking Status
Current Smoker 213 (27%) 166 (29%) 47 (22%)
Former Smoker 490 (62%) 353 (62%) 137 (64%)
Never Smoker 81 (10%) 51 (8.9%) 30 (14%)

1
Median (IQR); n (%)
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Figure 4.2: Kaplan-Meier curves by treatment group

penalty parameter is 2.3, and the learning rate is 0.001. Trained on the second fold, the model has
the same structure as the model in the first fold, except that the fusion penalty parameter is 0.23.

We estimate CATE at the time points ranging from the 10th percentile of the survival time (1
year) to the 90th percentile of the survival time (12 years). Figure 4.3 shows the estimated CATE
with respect to pre-treatment characteristics, including gender, tumor stage, race, age, BMI, and
smoking intensity. The estimated CATE at time t0 is the difference in t0 survival rate comparing
the patient when he receives surgery and perioperative chemotherapy to when he only receives
surgery. We find positive CATE over time of interest across different characteristics, indicating that
perioperative chemotherapy can improve the survival probability of early-stage NSCLC patients.
Fixing other variables at their mean or mode, the increment in the 1-, 3-, and 5-year survival rate
after perioperative chemotherapy is 6.7%, 6.4%, and 6.0% for female patients, while it is 6.2%,
5.9%, and 5.7% for male patients (Figure 4.3(a)). When it comes to the cancer stage (Figure 4.3
(b)), the increment in the 1-, 3-, and 5-year survival rate after perioperative chemotherapy is 6.8%,
6.4%, and 6.0% for patients with stage II NSCLC. However, for patients with stage III NSCLC,
the increment in the 1-, 3-, and 5-year survival rate is 5.6%, 5.4%, and 5.2%, respectively. In
Figure 4.3 (c), Black patients show the highest increment in the 1-, 3-, and 5-year survival rate
(7.2%, 6.9%, 6.6%) compared to White (6.8%, 6.4%, 6.0%) and Asian patients (5.7%, 5.3% and
5.2%). Additionally, our study shows that the increment of 1-, 3-, and 5-year survival rate after
perioperative chemotherapy for patients at the age of 65 years old is 7.0%, 6.7%, and 6.3% fixing
other variables at their mean or mode, while it is 5.1%, 5.0%, and 5.0% for patients at the age of 75
years old (Figure 4.3 (d)). Furthermore, patients with higher BMI have higher estimated CATE, as
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shown in Figure 4.3 (e). Patients with a BMI of 22 show a 4.8%, 4.9%, and 4.9% increment in 1-,
3-, and 5-year survival rates, respectively, after perioperative chemotherapy. In contrast, patients
with a BMI of 32 show a 7.6%, 7.4%, and 7.1% increment in 1-, 3-, and 5-year survival rates.
Finally, Figure 4.3 (g) shows that the increment of 1-, 3-, and 5-year survival rate after perioperative
chemotherapy for patients who smoke 10 cigarettes per day is 7.3%, 7.0%, and 6.7%, while it is
6.2%, 5.9%, 5.5% for patients who smoke 30 cigarettes per day.

Our findings are consistent with the existing literature. For example, our results show that
perioperative chemotherapy is more effective for female patients than male patients, which is
consistent with the existing literature. Leiter et al. found more benefits for female patients after
adjuvant chemotherapy than their male counterparts [96]. Sandler et al. also found improved
survival with adjuvant chemotherapy for women relative to men [134]. Additionally, our study
shows that younger patients have a better survival improvement after perioperative chemotherapy
than older patients. Morgensztern et al. found a more increased risk of early mortality with adjuvant
chemotherapy and a prolonged stay postoperatively for older patients [113]. This may be because
the toxicity of chemotherapy is more pronounced in elderly patients [136]. Furthermore, we find
that patients with higher BMI benefit more from perioperative chemotherapy. This finding is in
agreement with the obesity paradox for lung cancer patients [133]. We also find that patients
with less smoking intensity have a higher increment in survival probability after perioperative
chemotherapy, which is confirmed by other studies [169]. In addition, black patients show a better
treatment effect than White and Asian patients in our study. However, many studies have shown
higher mortality from lung cancer among black patients [59, 5]. Therefore, the high mortality for
black patients may be due to the racial disparities in the treatment of lung cancer [23, 5].

4.6 Conclusion

In this chapter, we develop a new causal deep learning algorithm, Deep Survival Learner
(DSL), by adapting a doubly-robust estimator of conditional average treatment effects with survival
outcomes in observational studies. Extensive simulation studies have been conducted to understand
the finite sample behaviors of the proposed method. DSL outperforms other competing metalearner
algorithms when either the survival model or the propensity score model is correctly specified. The
simulation results also show that the performance of DSL is comparable to other methods when
both of the models are incorrectly specified.

Applying DSL to the Boston Lung Cancer study, we study the heterogeneous treatment effects
of perioperative chemotherapy for early-stage lung cancer patients. We find that young female
patients with Stage II NSCLC benefit more from perioperative chemotherapy than others. We also
find that the treatment effects of perioperative chemotherapy are better for patients with higher
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Figure 4.3: Estimated conditional treatment effects

BMI and lower smoking intensity. What’s more, black patients have better survival outcomes after
perioperative chemotherapy. The results are largely consistent with the existing literature [131, 130,
96, 134, 113, 136, 133, 169].

Large-scale simulation studies and applications to the Boston Lung Cancer Study have demon-
strated the ability of the proposed DSL to estimate the heterogeneity of treatment effects across
different patients and contexts. In this chapter, a simple feedforward neural network with numerical
inputs is used to estimate CATE. However, other complex-structured neural networks can be used
to analyze more complicated biomedical data. For example, we can apply convolutional neural
networks (CNN), which take imaging inputs, to extract useful information regarding treatment
effects from medical images. Additionally, it is interesting to apply the proposed model to high-
dimensional settings and select important pre-treatment characteristics regarding the treatment
effects. Finally, the best way to quantify the uncertainty of the estimates is still unknown. We will
pursue this in the future.
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APPENDIX A

Individualized Risk Assessment of Preoperative Opioid Use by Interpretable
Neural Network Regression

A.1 Architecture of DNN

Figure A.1: Architecture of DNN for the AOS Data. Input: preoperative characteristics are
classified into three inputs: Z1 are un-modifiable characteristics, such as gender and race; Z2 are
modifiable characteristics, such as BMI and smoking; Z3 are pain-related characteristics, such as
Fibromyalgia Survey Score and pain severity. Layers: each category of inputs goes through the
same structure: two hidden layers with a ReLu activation function. The first hidden layer has 500
neurons and the second hidden layer has 125 neurons. The three structures are concatenated and
passed onto a layer with 15 hidden neurons and a ReLu activation function. Output: estimated
probability of preoperative opioid use.
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A.2 Sensitivity Analysis

Because stochastic gradient descent is sensitive to the choice of learning rates (LR), we use grid
search to tune the learning rate. For the real data analysis, we tune the learning rate over a range from
0.005 to 0.1 with 20 equally spaced grid points, and find that LR = 0.01 seems to strike a balance
between stability and computational readiness. We also implement the adaptive SGD to analyze our
data. Specifically, we have implemented three popular adaptive SGD algorithms, namely, “Adagrad”,
“Adadelta” and “Adam.” Adagrad adapts the learning rate based on a sequence of subgradients
[44] to improve the robustness of SGD and avoid tuning the learning rate manually [40], while
Adadelta [168] and Adam [85] only store an exponentially decaying average of subgradients [168].
We conduct 100 experiments to compare the prediction performance using different optimizers. In
each experiment, we randomly split data into the training and testing parts, and use the balanced
subsampling strategy described in Section 5.2 to assess the performance on the testing data. The
means and standard errors (se) of different metrics are summarized in Table A.1. We find that all
four methods give similar performances, though SGD with a fixed LR = 0.01 and Adam give the
same C-statistic and sensitivity, slightly better than those obtained by Adagrad and Adadelta; all of
these methods give the same balance accuracy.

Table A.1: Prediction Performance of INNER Using different Optimizers

SGD (LR=0.01) Adagrad Adadelta Adam
C-statistic 0.78 (0.0006) 0.77 (0.0005) 0.76 (0.0006) 0.78 (0.0006)
Accuracy 0.72 (0.0029) 0.73 (0.0011) 0.73 (0.0006) 0.72 (0.0009)
Sensitivity 0.69 (0.0052) 0.66 (0.0022) 0.66 (0.0012) 0.69 (0.0020)
Specificity 0.73 (0.0052) 0.76 (0.0019) 0.76 (0.0010) 0.73 (0.0017)
Balance Accuracy 0.71 (0.0008) 0.71 (0.0006) 0.71 (0.0005) 0.71 (0.0006)

a. used the balanced subsampling strategy and a threshold of 0.5
b. based on 100 random splits

The number of iterations is chosen to ensure the convergence of the algorithm (as shown in
Fig A.2). We have also varied the batch sizes and number of iterations to examine the stability of
the results and find a batch size of 64 and an epoch of 200 give a reasonable performance. We
have conducted sensitivity analysis to assess the robustness of SGD towards the choices of these
hyperparameters, and we find that the model’s C-statistic is fairly robust to them. Specifically, by
varying the learning rate from 0.0075 to 0.0125, the batch size from 32 to 128 and the number of
iterations from 200 to 250, the C-statistic of the obtained INNER model is around 0.78.

We have conducted additional sensitivity analyses to examine the performance of the model
under various initialization schemes for the weights W and the biases b in the neural networks. We
have explored using different weights, such as uniform and normal weights, for the initial weights
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Table A.2: Average C-statistics (se) of INNER with Various Learning Rates,
Batch Sizes and Epochs

LR =0.0075 LR = 0.01 LR = 0.0125

BS = 32
Epoch = 150 0.78 (0.0005) 0.78 (0.0006) 0.78 (0.0006)
Epoch = 200 0.78 (0.0005) 0.78 (0.0007) 0.78 (0.0006)
Epoch = 250 0.78 (0.0005) 0.78 (0.0007) 0.78 (0.0006)

BS = 64
Epoch = 150 0.78 (0.0006) 0.78 (0.0007) 0.78 (0.0007)
Epoch = 200 0.78 (0.0005) 0.78 (0.0006) 0.78 (0.0006)
Epoch = 250 0.78 (0.0005) 0.78 (0.0006) 0.78 (0.0005)

BS =128
Epoch = 150 0.78 (0.0006) 0.78 (0.0006) 0.78 (0.0006)
Epoch = 200 0.78 (0.0006) 0.78 (0.0006) 0.78 (0.0006)
Epoch = 250 0.78 (0.0006) 0.78 (0.0005) 0.78 (0.0006)

a. used the balanced subsampling strategy and a threshold of 0.5
b. used SGD for optimization
c. based on 100 experiments

[56, 64]. In particular, we have studied two versions of uniform weights: for a weight matrix
Wl ∈ Rkl+1×kl , where kl and kl+1 are the numbers of input and output units of the lth layer, we
initialize it with Uniform{−

√
6/(kl + kl+1),

√
6/(kl + kl+1)} following [56] (labeled as “Glorot

uniform” in Table A.3, which reports the sensitivity analysis results); we also initialize the weight
matrix with Uniform(−

√
6/kl,

√
6/kl) following [64] (labeled as “He uniform” in Table A.3). For

the normal weights, we use Normal(0, 2/(kl + kl+1)) as the initial weights following [56] (labeled
as “Glorot normal” in Table A.3). Finally, for the bias vector b, we initialize it to be either all 0’s or
1’s for its components (labeled as “Zeros” or “Ones” in the column of bias initialization in Table
A.3). For each set-up, we find that the C-statistic of the model is fairly constant, which is 0.78 with
varied initialized values of weights and biases.

Table A.3: Average (se) C-statistics with different Initializa-
tions of Weights and Biases

Weight Initialization Bias Initialization C-statistic

Glorot uniform
Zeros 0.78 (0.0006)
Ones 0.78 (0.0006)

Glorot normal
Zeros 0.78 (0.0005)
Ones 0.78 (0.0005)

He uniform
Zeros 0.78 (0.0008)
Ones 0.78 (0.0006)

a. used the balanced subsampling strategy and a threshold of
0.5
b. used SGD for optimization
c. based on 100 experiments
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Figure A.2: Learning Curve of INNER: Cross Entropy Loss Against Iteration For Training
and Validation Data

A.3 Subpopulations with High Risks

We have made scatter plots of log(POT) and log(BOT) (Fig A.3) for the three groups mentioned
in Section 5.4. The population means (standard deviation (std)) of log(POT) and log(BOT) are 0.26
(0.09) and -2.32 (0.63) respectively. In Fig A.3(a), we focus on a group of patients identified by
demographic risk factors, i.e., African American male patients younger than 20 years old; these
patients on average have a higher log(POT) (mean: 0.29, std: 0.14) but a lower log(BOT) (mean:
-2.64, std: 0.46), indicating their sensitivity to pain but lower tendency to take opioids without
pains. Fig A.3(b) depicts BOT and POT for patients who have worsened physical conditions, i.e.,
with BMI greater than or equal to 32, ASA scores between three and four, Fibromyalgia survey
scores greater than 13, Charlson comorbidity index greater than or equal to one, and sleep apnea;
these patients have a higher log(BOT) (mean: -1.33, std: 0.46) and higher log(POT) (mean: 0.29,
std: 0.07) compared to the entire population, indicating they are both sensitive to pain and likely
to take preoperative opioids even with no pains reported. Finally, Fig A.3(c) focuses on patients
who have substance use and co-occurring mental disorders, such as illicit drug use history, tobacco
consumption, anxiety and depression. These patients have a smaller log(BOT) (mean: -1.51, std:
0.46) on average compared to those in Fig A.3(b) and the highest log(POT) (mean: 0.30, std: 0.07)
among the three groups.
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(a) (b) (c)

Figure A.3: Distributions of BOT and POT for three groups. (a): Patients are chosen based on
demographics, including gender, race and age;(b): Patients are chosen based on physical condition
risk factors, including BMI, ASA scores, Fibromyalgia survey scores, Charlson comorbidity index
and sleep apnea;(c): Patients are chosen based on substance use and co-occurring mental disorders,
including illicit drug use history, tobacco consumption, depression and anxiety. The horizontal and
vertical lines represent the population means of log(POT) and log(BOT), respectively; the numbers
in each plot refer to the means and standard deviations.
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Table A.4: Comparisons of the Prediction Performance using the AOS Data

Deep Neural
Network

Logistic
Regression

Interpretable Neural
Network Regression

Preoperative Opioid Prevalence: 0.23
C-statistic 0.78 (0.0006) 0.62 (0.0094) 0.78 (0.0006)
Threshold = 0.50

Accuracy 0.80 (0.0004) 0.70 (0.0116) 0.80 (0.0004)
Sensitivity 0.33 (0.0049) 0.43 (0.0331) 0.31 (0.0057)
Specificity 0.94 (0.0016) 0.78 (0.0238) 0.94 (0.0018)
Balance Accuracy 0.63 (0.0017) 0.61 (0.0071) 0.63 (0.002)

Threshold = 0.23
Accuracy 0.72 (0.0021) 0.69 (0.0123) 0.73 (0.0030)
Sensitivity 0.69 (0.0039) 0.44 (0.0336) 0.68 (0.0055)
Specificity 0.73 (0.0038) 0.77 (0.025) 0.74 (0.0054)
Balance Accuracy 0.71 (0.0006) 0.61 (0.007) 0.71 (0.0007)

Preoperative Opioid Prevalence: 0.50
C-statistic 0.78 (0.0006) 0.73 (0.0027) 0.78 (0.0006)
Threshold = 0.50

Accuracy 0.73 (0.0017) 0.63 (0.0129) 0.72 (0.0029)
Sensitivity 0.69 (0.0043) 0.67 (0.0261) 0.69 (0.0052)
Specificity 0.73 (0.0034) 0.62 (0.0238) 0.73 (0.0052)
Balance Accuracy 0.71 (0.0007) 0.64 (0.0049) 0.71 (0.0008)

Threshold = 0.23
Accuracy 0.46 (0.0044) 0.50 (0.0130) 0.41 (0.0056)
Sensitivity 0.93 (0.0024) 0.84 (0.0154) 0.95 (0.0022)
Specificity 0.31 (0.0064) 0.39 (0.0211) 0.24 (0.0080)
Balance Accuracy 0.62 (0.0021) 0.61 (0.0047) 0.60 (0.0030)

a. prediction power of each model with the best architectures (DNN and INNER)
under different sampling strategies and threshold; for the comparison of different
architectures, refer to Appendix Table A.5 and Appendix Table A.6
b. based on 100 experiments for each metric
c. in the AOS data, the prevalence of preoperative opioid is 0.23, and the prevalence
is around 0.23 for the training data; we use the balanced subsampling strategy to
adjust the prevalence of preoperative opioid to be 0.50 in the training data
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Table A.5: Tuning the Architecture of INNER with the AOS Data

Three Layers
250 Neurons

Four Layers
500 Neurons

Five Layers
500 Neurons

Preoperative Opioid Prevalence: 0.23
C-statistic 0.78 (0.0006) 0.78 (0.0007) 0.77 (0.0005)
Threshold = 0.50

Accuracy 0.80 (0.0004) 0.79 (0.0005) 0.79 (0.0004)
Sensitivity 0.31 (0.0057) 0.32 (0.0063) 0.32 (0.0061)
Specificity 0.94 (0.0018) 0.94 (0.0021) 0.93 (0.0019)
Balance Accuracy 0.63 (0.0020) 0.63 (0.0021) 0.63 (0.0021)

Threshold = 0.23
Accuracy 0.73 (0.0030) 0.72 (0.0031) 0.72 (0.0022)
Sensitivity 0.68 (0.0055) 0.68 (0.0054) 0.68 (0.0043)
Specificity 0.74 (0.0054) 0.73 (0.0055) 0.74 (0.0041)
Balance Accuracy 0.71 (0.0007) 0.71 (0.0008) 0.71 (0.0005)

Preoperative Opioid Prevalence: 0.50
C-statistic 0.78 (0.0006) 0.78 (0.0006) 0.78 (0.0006)

Threshold = 0.50
Accuracy 0.72 (0.0029) 0.73 (0.0026) 0.72 (0.0020)
Sensitivity 0.69 (0.0052) 0.69 (0.0048) 0.69 (0.0037)
Specificity 0.73 (0.0052) 0.75 (0.0047) 0.73 (0.0036)
Balance Accuracy 0.71 (0.0008) 0.71 (0.0008) 0.71 (0.0005)

Threshold = 0.23
Accuracy 0.41 (0.0056) 0.42 (0.0057) 0.43 (0.0050)
Sensitivity 0.95 (0.0022) 0.95 (0.0023) 0.94 (0.0021)
Specificity 0.24 (0.0080) 0.26 (0.0081) 0.28 (0.0071)
Balance Accuracy 0.60 (0.0030) 0.60 (0.0030) 0.61 (0.0026)

a. the first column is for the best INNER architecture as reported in Table
2.4 and Appendix Table A.4
b. the other columns refer to the other more complicated INNERs, with more
hidden layers or more neurons in each hidden layers
c. the column names are the number of hidden layers and the number of
neurons in the first hidden layers for FL(Zi;α) and FL(Zi;α)
d. in the AOS data, the prevalence of preoperative opioid use is 0.23; uses a
balanced subsampling strategy by over-sampling cases; adjusts the preva-
lence of preoperative opioid use to be 0.50 in the training data
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Table A.6: Tuning the Architecture of DNN for AOS Data

Two Layers
500 Neurons

Three Layer
250 Neurons

Three Layer
500 Neurons

Preoperative Opioid Prevalence: 0.23
C-statistic 0.78 (0.0006) 0.79 (0.0006) 0.79 (0.0005)
Threshold = 0.50

Accuracy 0.80 (0.0004) 0.79 (0.0004) 0.79 (0.0004)
Sensitivity 0.33 (0.0049) 0.34 (0.0054) 0.32 (0.0068)
Specificity 0.94 (0.0016) 0.93 (0.0018) 0.94 (0.0020)
Balance Accuracy 0.63 (0.0017) 0.63 (0.0018) 0.63 (0.0024)

Threshold = 0.23
Accuracy 0.72 (0.0021) 0.72 (0.0022) 0.72 (0.0024)
Sensitivity 0.69 (0.0039) 0.70 (0.0038) 0.69 (0.0049)
Specificity 0.73 (0.0038) 0.72 (0.0040) 0.73 (0.0046)
Balance Accuracy 0.71 (0.0006) 0.71 (0.0006) 0.71 (0.0005)

Preoperative Opioid Prevalence: 0.50
C-statistic 0.78 (0.0006) 0.78 (0.0006) 0.78 (0.0005)

Threshold = 0.50
Accuracy 0.73 (0.0017) 0.72 (0.0025) 0.72 (0.0023)
Sensitivity 0.69 (0.0043) 0.70 (0.0039) 0.70 (0.0043)
Specificity 0.73 (0.0034) 0.72 (0.0043) 0.73 (0.0042)
Balance Accuracy 0.71 (0.0007) 0.71 (0.0007) 0.71 (0.0005)

Threshold = 0.23
Accuracy 0.46 (0.0044) 0.45 (0.0044) 0.45 (0.0052)
Sensitivity 0.93 (0.0024) 0.94 (0.0020) 0.93 (0.0023)
Specificity 0.31 (0.0064) 0.30 (0.0062) 0.31 (0.0074)
Balance Accuracy 0.62 (0.0021) 0.62 (0.0022) 0.62 (0.0026)

a. the first column is for the best DNN architecture as reported in Table 2.4
and Appendix Table A.4
b. the other columns refer to the other more complicated DNNs, with more
hidden layers or more neurons
c. the column names are the number of hidden layers and the number of
neurons in the first hidden layers before concatenation
d. in the AOS data, the prevalence of preoperative opioid use is 0.23; uses a
balanced subsampling strategy by over-sampling cases; adjusts the preva-
lence of preoperative opioid use to be 0.50 in the training data

68



APPENDIX B

Penalized Deep Partially Linear Cox Models with Application to CT Scans of
Lung Cancer Patients

B.1 Notation

Denote an ≲ bn as ab ≤ cbn for some c > 0 when n is sufficiently large; an ≍ bn if an ≲ bn

and bn ≲ an. Let η(·, ·) = (β⊤·, g(·)) : Rp × Rr → R2 denote the collection of a linear operator
and a nonlinear operator. In this section, denote by v = (x⊤, z⊤)⊤ the random vector underlying
the observed IID data of vi = (x⊤

i , z
⊤
i )

⊤, and (T,∆) the random vector underlying the observed
IID data of (Ti,∆i), i = 1, . . . , n. Define ξη(v) = β⊤x + g(z). Denote the truth of η(·, ·) by
η0(·, ·) = (β0

⊤·, g0(·)). For two operators, say, η1(·, ·) = (β⊤
1 ·, g1(·)) and η2(·, ·) = (β⊤

2 ·, g2(·)),
define their distance as

d2(η1, η2) := E[{ξη1(v)− ξη2(v)}2] =
∫
{ξη1(t)− ξη2(t)}2fv(t)dt,

and the corresponding norm

∥η∥2 := E[ξ2η(v)] =
∫

ξ2η(t)fv(t)dt.

For the notational ease, we write η = (β, g) in the following.
With Y (t) = 1(T ≥ t) and Yi(t) = 1(Ti ≥ t), define

S0n(t, η) =
1

n

n∑
i=1

Yi(t) exp{ξη(vi)}, S0(t, η) = E[Y (t) exp{ξη(v)}],

and for any vector function h of v define

S1n(t, η,h) =
1

n

n∑
i=1

Yi(t)h(vi) exp{ξη(vi)}, S1(t, η,h) = E[Y (t)h(v) exp{ξη(v)}],

where the expectation is taken with respect to the joint distribution of T and v.
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Let

ln(t,v, η) = ξη(v)− logS0n(t, η), l0(t,v, η) = ξη(v)− logS0(t, η).

Then the partial likelihood in (4.8) can be written as

ℓ(η) =
1

n

n∑
i=1

{∆iln(Ti,vi, η)−∆i log n}.

Since
∑n

i=1 ∆i log n does not involve unknown parameters and can be dropped in optimization, we
replace below ℓ(η) by 1

n

∑n
i=1{∆iln(Ti,vi, η)}.

Finally, for any function h of (v,∆, T ), where (∆, T ) is the random vector underlying (∆i, Ti),
define

Pn{h(v,∆, T )} = 1

n

n∑
i=1

h(vi,∆i, Ti), P{h(v,∆, T )} = E{h(v,∆, T )},

and in particular, we define Ln(η) = Pn{∆ln(T,v, η)} and L0(η) = P{∆l0(T,v, η)}. Here, the
expectation is taken with respect to the joint distribution of T,∆ and v.

B.2 Proof of Theorem 1

Define αn = γn log
2 n + an = τn + an. For some D > 0, let Rp

D := {β ∈ Rp : ∥β∥∞ < D}
and GD := G(L,p, s,D), and define

η̂D = argmax
η∈Rp

D×GD

PL(η).

Further, denote by η̂ = (β̂, ĝ) a local maximizer of PL(η) over Rp × G, that is, by setting D =∞
in Rp

D and GD. As in [170], it can be shown that if max(||β||, ||g||∞)→∞, PL(η)→ −∞; hence,
when D is sufficiently large, η̂ = η̂D almost surely. Therefore, in the following, we show that
d(η̂D, η0) = Op(αn), when D is sufficiently large.

To do so, it suffices to show that for any ϵ > 0, there exists a C such that

P

{
sup
η∈Nc

PL(η) < PL(η0)

}
≥ 1− ϵ, (B.1)

where Nc = {η ∈ Rp
D × GD : d(η, η0) = Cαn}. If it holds, it implies with probability at least 1− ϵ

that there exists a C > 0 such that a local maximum exists and is inside the ball Nc. Hence, there
exists a local maximizer such that d(η̂, η0) = Op(αn).
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Without loss of generality, we assume that η satisfies E{ξη(v)} = E{ξη0(v)}, implying
E{g(z)} = 0; if not, we can always centralize it. To see this, consider any η = (β, g) in the
ball BC = {η ∈ Rp

D × GD : d(η, η0) ≤ Cαn}, its centralization η′ = (β, g − E{ξη(v)− ξη0(v)})
is also in the ball BC , satisfying E{ξη′(v)} = E{ξη0(v)} and PL(η′) = PL(η).

Because of the sparsity of the β-coefficients, we arrange the indices of the covariates (x1, . . . , xp)

so that βj0 = 0 when j > sβ . We consider

PL(η)− PL(η0)

= {Ln(η)− Ln(η0)} −
p∑

j=1

{pλ(|βj|)− pλ(|βj0|)}

≤ {Ln(η)− Ln(η0)} −
sβ∑
j=1

{pλ(|βj|)− pλ(|βj0|)}, (B.2)

where the inequality holds because pλ(|βj|)− pλ(0) > 0 when j > sβ .
We first deal with

Ln(η)− Ln(η0) ={L0(η)− L0(η0)}

+ {Ln(η)− L0(η)} − {Ln(η0)− L0(η0)}.
(B.3)

According to Lemma 2 in [170], we know that

L0(η)− L0(η0) ≍ −d2(η, η0).

Since d(η, η0) = Cαn, the first term in the right hand side of B.3 is of the order C2α2
n.

After some calculation,

(Ln − L0)(η)− (Ln − L0)(η0) =(Pn − P){∆l0(T,v, η)−∆l0(T,v, η0)}

+ Pn

{
∆ log

R0(T, η)

R0(T, η0)
−∆ log

R0n(T, η)

R0n(T, η0)

}
=I + II.

(B.4)

According to the proof of Theorem 3.1 in [170], with Aδ = {(β, g) ∈ Rp
D × GD : δ/2 ≤

d(η, η0) ≤ δ}, it follows that

sup
η∈Aδ

|I| = O(n−1/2ϕn(δ)),

sup
η∈Aδ

|II| ≤ O(n−1/2ϕn(δ)),
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where ϕn(δ) = δ
√

s log U
δ
+ s√

n
log U

δ
and U = L

∏L
l=1(pl + 1)

∑L
l=1 plpl+1.Then by Assumption

1, when δ = C(τn + an), we can show that n−1/2ϕn{C(τn + an)} ≤ C(τn + an)
2 = Cα2

n.
By the Taylor expansion and the Cauchy-Schwarz inequality, the second term on the right-hand

side of (B.2) is bounded by

√
sβan∥β − β0∥+

1

2
bn∥β − β0∥2.

Since d(η, η0) = Cαn, and therefore ∥β − β0∥ is of the order Cαn. Hence, this upper bound is
dominated by the first term in (B.3) as bn → 0 by the assumption.

Therefore, for any ϵ > 0, there exist sufficiently large C,D > 0 so that (B.1) holds, and hence
d(η̂D, η0) = Op(αn), which gives d(η̂, η0) = Op(αn), where we recall η̂ is the local maximizer of
PL(η) over Rp × G. We note that

d2(η̂, η0) = E[(β̂ − β0)
⊤{x− E(x|z)}+ (β̂ − β0)

⊤E(x|z) + {ĝ(z)− g0(z)}]2

= E[(β̂ − β0)
⊤{x− E(x|z)}]2 + E[{ĝ(z)− g0(z)}+ (β̂ − β0)

⊤E(x|z)]2,

where the second equality holds because, by the definition of d(·, ·), E is taken with respect to the
joint density of v = (x⊤, z⊤)⊤, which is independent of the observed data, and hence, β̂ and ĝ. By
Assumptions 2-4, it follows ∥β̂ − β0∥ = Op(αn) and ∥ĝ − g0∥L2 = Op(αn).

(a) Selection of λ for 10 simulated datasets (b) Selection path for the non-zero coefficients

Figure B.1: Selection of λ in Penalized DPLC using BIC.
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Figure B.2: Image Preprocessing Pipeline

Figure B.3: Selection Frequency and Hazard Ratio of Selected Features: The selection frequency
of the most frequently selected five texture features is reported. The hazard ratio is the average of
100 experiments
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[118] Marlies Noordzij, Karen Leffondré, Karlijn J van Stralen, Carmine Zoccali, Friedo W Dekker,
and Kitty J Jager. When do we need competing risks methods for survival analysis in
nephrology? Nephrology Dialysis Transplantation, 28(11):2670–2677, 2013.

[119] Byeong U Park, Enno Mammen, Young K Lee, and Eun Ryung Lee. Varying coeffi-
cient regression models: a review and new developments. International Statistical Review,
83(1):36–64, 2015.

[120] Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta numerica,
8:143–195, 1999.

[121] Katherine MW Pisters and Thierry Le Chevalier. Adjuvant chemotherapy in completely
resected non–small-cell lung cancer. Journal of Clinical Oncology, 23(14):3270–3278, 2005.

[122] Stephen M Pizer, E Philip Amburn, John D Austin, Robert Cromartie, Ari Geselowitz,
Trey Greer, Bart ter Haar Romeny, John B Zimmerman, and Karel Zuiderveld. Adaptive
histogram equalization and its variations. Computer vision, graphics, and image processing,
39(3):355–368, 1987.

83



[123] Marco Pota, Elisa Scalco, Giuseppe Sanguineti, Alessia Farneti, Giovanni Mauro Cattaneo,
Giovanna Rizzo, and Massimo Esposito. Early prediction of radiotherapy-induced parotid
shrinkage and toxicity based on ct radiomics and fuzzy classification. Artificial Intelligence
in Medicine, 81:41–53, 2017.

[124] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa Reyes,
Mei-Ling Shyu, Shu-Ching Chen, and Sundaraja S Iyengar. A survey on deep learning:
Algorithms, techniques, and applications. ACM Computing Surveys (CSUR), 51(5):1–36,
2018.

[125] Scott Powers, Junyang Qian, Kenneth Jung, Alejandro Schuler, Nigam H Shah, Trevor Hastie,
and Robert Tibshirani. Some methods for heterogeneous treatment effect estimation in high
dimensions. Statistics in Medicine, 37(11):1767–1787, 2018.

[126] Heather A Prentice, Maria CS Inacio, Anshuman Singh, Robert S Namba, and Elizabeth W
Paxton. Preoperative risk factors for opioid utilization after total hip arthroplasty. JBJS,
101(18):1670–1678, 2019.

[127] Zhen Qin, Qingliang Zeng, Yixin Zong, and Fan Xu. Image inpainting based on deep
learning: A review. Displays, 69:102028, 2021.

[128] Ramon Rami-Porta, John J Crowley, and Peter Goldstraw. Review the revised tnm staging
system for lung cancer. Ann Thorac Cardiovasc Surg, 15(1):5, 2009.

[129] Laurie-Anne Roeckel, Glenn-Marie Le Coz, Claire Gavériaux-Ruff, and Frédéric Simonin.
Opioid-induced hyperalgesia: cellular and molecular mechanisms. Neuroscience, 338:160–
182, 2016.

[130] Rafael Rosell, Jose Gomez-Codina, Carlos Camps, Jose Maestre, Jose Padille, Antonio
Canto, Jose Luis Mate, Shanrong Li, Jorge Roig, Angel Olazabal, et al. A randomized
trial comparing preoperative chemotherapy plus surgery with surgery alone in patients with
non-small-cell lung cancer. New England Journal of Medicine, 330(3):153–158, 1994.

[131] Jack A Roth, Frank Fossella, Ritsuko Komaki, M Bernadette Ryan, JB Putnam Jr, Jin Soo Lee,
Hari Dhingra, Louis De Caro, Marvin Chasen, Malcoln McGavran, et al. A randomized trial
comparing perioperative chemotherapy and surgery with surgery alone in resectable stage iiia
non-small-cell lung cancer. JNCI: Journal of the National Cancer Institute, 86(9):673–680,
1994.
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