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ABSTRACT

There are rich opportunities to reduce the language complexity of professional content (either
human-written or computer-generated) and make it accessible to a broad audience. As a sub-task
of natural language generation (NLG), text simplification has considerable potential to improve the
fairness and transparency of text information systems.

Recent approaches to text simplification usually complete the task in an end-to-end fashion,
employing neural machine translation models in a monolingual setting regardless of the type of
simplifications to be done. These models are limited on the one hand due to the absence of large-
scale parallel (complex → simple) monolingual training data, and on the other hand due to the lack
of interpretability of their black-box procedures. Furthermore, despite fast development of algo-
rithms, there is an urgency to fill the huge gap in evaluating NLG systems in general (including
text simplification systems). Indeed, given no clear model of text quality and no agreed objec-
tive criterion for comparing the “goodness of texts”, the evaluation of NLG systems is inherently
difficult. The present work addresses these problems: i) sample-efficient approaches to NLG that
improve the fairness and transparency of text information systems by adapting their content to the
literacy level of the target audience, ii) systematic analysis of evaluation metrics for NLG models
informed by theory and empirical evidence.

In particular, we show that text simplification can be decomposed into a compact pipeline of
tasks to ensure the transparency and explainability of the process; low-resource text simplification
can be framed from a task and domain adaptation perspective which can be decomposed into
multiple adaptation steps via meta-learning and transfer learning; and evaluators for NLG can be
evaluated at scale and compared with human judgements. Beyond the problem of low-resource text
simplification, the methodology proposed in this dissertation (explainable decomposition, chain
of adaptations to new tasks and domains, and meta-evaluation) may benefit other research areas
related to generative artificial intelligence (AI).
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CHAPTER 1

Introduction

1.1 Motivation

Over the past decade, advances in training large artificial neural networks have significantly
changed the field of Natural Language Processing (NLP), enabling superior performance in a wide
range of tasks and application scenarios. Notably, large scale pre-trained large language models
based on the Transformer [463] architecture have shown outstanding text generation capabilities,
producing realistic, coherent, and fluent texts in many downstream tasks such as dialogue genera-
tion, question answering, text summarization, machine translation, text simplification, story/poem
generation, etc. Scaling up attention-based architectures in terms of model size, training data and
training compute has been one of the key ingredients behind their predictably improved perfor-
mance, and has given rise to emergent abilities such as few-shot in-context learning [36], zero-shot
problem solving [221], chain-of-thought reasoning [477], instruction following [338], or instruc-
tion induction [170] from few demonstrations. This shows that with sufficient data, model ca-
pacity, and computational resource, text generative models possess remarkable capabilities and
an unprecedented level of generality, even referred to as “sparks of artificial general intelligence
(AGI)” [39]. Nevertheless, in stark contrast with their impressive abilities to understand and gen-
erate human-like language, the same models simultaneously fail on surprisingly simple, naive and
intuitive tasks [100], [472]. Given the rapid development of these models, a rigorous scientific un-
derstanding of their potential, mixed capabilities, reliability, risks and limitations remains elusive.

Despite changing the landscape of NLP in recent years and their widespread deployment as
foundational models for many tasks [29], the effectiveness of current large-scale neural language
models is challenged by series of open questions related to the inner workings of these models and
their ability to actually understand and process human language. Given that language modeling is
only relying on surface form as training data through self-supervised pre-training objectives such
as masked language modeling [90] or masked span infilling [249], it is conceivably difficult for
such an approach to result in learning the meaning of language from form alone or to further lead
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to the ability to ground language in the real world [22]. Besides, aspects which require implicit
reasoning such as commonsense knowledge, important for building generalizable models that can
reason about events, causes and effects, are hard to acquire from raw text only [530]. Another chal-
lenge is related to the fact that current large-scale language models can be readily used to perform
unconditional text generation, however they provide limited predictable control over attributes of
the generated texts [128]; unlike conventional text generation methods which allow fine-grained
control over many aspects of the system output including incorporating domain-specific dictionar-
ies, terminology or certain words in the generated output, neural end-to-end approaches remove
many of these knobs and switches [361]. Many natural language generation applications not only
require text that is fluent, but which also satisfies desirable attributes that govern the syntax, seman-
tics or style of the generated texts; this is particularly important in scenarios focused on the use of
NLP for social good with real world constraints, given the ultimate goal of language technologies
is to assist humans. In addition, current systems thrive in settings where plenty of data is available,
however they struggle in low-resource settings with only a handful of examples.

This raises the question of how to efficiently adapt these large language models (LLMs) to
new resource-constrained tasks and domains. By far the most common approach is to leverage
the transfer learning paradigm [51], [343], which consists in first pre-training on web-scale data
for a surrogate task, then specializing the pre-trained model to the downstream task of interest
via fine-tuning [90]. Moreover, the opacity of deep neural networks that underpin current models
is a limiting factor in better understanding these models and their capabilities; methods designed
for explaining and interpreting their behaviour are much needed to elucidate important aspects of
learned models, ensure safety and compliance with regulatory requirements, debug these models,
or reveal biases and unintended effects learnt by the model [2]. Another aspect that has been a core
research challenge is related to the evaluation of machine-generated text, in particular the lack of
consensus on how to measure the “goodness” of generated texts in the absence of a clear model of
text quality [78], [160]. Given the lack of well established evaluation measures, natural language
evaluations are carried in a rather ad-hoc manner with a lot of variability across the proposed mod-
els and tasks on inconsistent benchmarks, resulting in misleading performance measures. This is
detrimental to accurately assessing the performance of current natural language generation (NLG)
systems, correctly identifying state-of-the-art methods and making research advances.

Given the exciting advances as well as present challenges in the field, in this thesis we broadly
focus on enhancing our common understanding as far as the following themes are concerned:

• Constrained Neural Language Generation: Controlling the output of current neural
network-based models for text generation to account for specific user and task needs is
crucial not only for customizing the content and style of the generated language, but also
for their safe and reliable deployment in the real world. We present an extensive survey
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on the emerging topic of constrained neural language generation in which we formally de-
fine and categorize the problems of natural language generation (NLG) by distinguishing
between conditions and constraints, present constrained text generation tasks, and review
existing literature on methods and evaluation metrics for constrained text generation. Our
goal is to highlight recent progress and trends, informing on the most promising directions
and limitations towards advancing the state-of-the-art of constrained NLG research.

• Explaining Model Predictions for Accessibility Purposes: The explainability/ inter-
pretability of a machine learning model has been widely believed to be an indispensable
factor to its fidelity and fairness when applied to the real world [232]. Nevertheless, the
explainability aspect of text complexity prediction has been overlooked in the literature. We
argue it is crucial for improving the transparency and accessibility of text information sys-
tems, and to this end we present a promising direction towards a transparent and explainable
solution to the problem of text complexity prediction in various domains.

• Adapting Large Language Models to Low-Resource Tasks and Domains: In recent years
scaling up attention-based architectures in terms of training data and compute has led to con-
siderably improved performance for current NLG systems. Neverthless, such conditions are
unrealistic in many NLP tasks and application scenarios where abundant training examples
either do not exist or are costly to label, and the computational resource required to train
large neural language models from the scratch is a luxury. We investigate how neural lan-
guage models pre-trained on large-scale corpora can be adapted to new tasks in different
domains with limited training examples. We assess the performance of two popular vehicles
for few-shot adaptive learning in low-resource tasks and domains, namely meta-learning and
transfer learning, and how they can be used to complement each other. Our findings serve
as a novel step for bridging the two popular paradigms of few-shot adaptive learning and
towards developing more structured solutions to task and domain adaptation.

• Evaluation of Natural Language Generation: The variety of NLG models are evaluated
with different approaches. By far, human assessments are considered the gold-standard for
the evaluation of NLG systems. However, rigorously evaluating NLG systems with real
users can be expensive and time consuming, and it does not scale well. Automated evalua-
tions are widely employed for comparing natural language generations with human-written
texts, allowing developers to make rapid changes to their systems and automatically tune pa-
rameters without human intervention. Despite the benefits, the use of automated metrics in
the field of NLG is controversial and their results are often criticized as not meaningful [379].
We present a large-scale, systematic experiment that evaluates the evaluators for NLG. We
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compare three types of evaluators including human evaluators, automated adversarial eval-
uators trained to distinguish human-written from machine-generated product reviews, and
word overlap metrics in a particular scenario. Results have intriguing implications to both
the evaluation and the construction of natural language generators.

In addressing these challenges, we focus on the particular NLG task of text simplification, de-
signed to improve the fairness, accessibility and transparency of text-based information systems,
and make information accessible to broad audiences. Text simplification has many important prac-
tical applications in the real world. In healthcare, the mismatch in writing style and terminology
can be mitigated using content adaptation to enhance a layperson’s understanding of health infor-
mation conveyed in professional language by a doctor [1]. In education, adaptive language systems
improve student outcomes and bring equal opportunities for learners of all levels in teaching, learn-
ing and assessment [302]. In the literature, text simplification refers to reducing the complexity of
text at various linguistic levels, ranging all the way through replacing individual words in the text to
generating a simplified document completely through a computer agent via lexical [91], syntactic
[427] or semantic [197] changes. More recent approaches simplify texts in an end-to-end fashion,
employing machine translation models in a monolingual setting regardless of the type of simplifi-
cations [516, 153, 460]. Nevertheless, these models are limited on the one hand due to the absence
of large-scale parallel (complex→ simple) monolingual training data, and on the other hand due
to the lack of interpretability of their black-box procedures [4]. Given the ambiguity in problem
definition, there also lacks consensus on how to measure the goodness of text simplification sys-
tems, and automatic evaluation measures are perceived ineffective and sometimes detrimental to
the specific procedure, in particular when they favor shorter but not necessarily simpler sentences
[324]. While end-to-end simplification models demonstrate superior performance on benchmark
datasets, their success is often compromised in out-of-sample, real-world scenarios [79]. In this
thesis we aim to make progress towards addressing and advancing these research challenges.

1.2 Thesis Outline

Following the central research challenges outlined above, in this thesis we address topics related to
the accessibility, steerability, explainability, adaptability and evaluation of NLG systems. First, we
survey the literature on the emerging topic of constrained natural language generation, highlighting
recent progress and open problems. Second, we decompose the problem of text simplification into
several carefully designed sub-problems, and focus on the explainability aspect of text complexity
prediction. Third, we analyze ways in which large pre-trained language models can be adapted to
the low-resource tasks and domains of text simplification. Finally, we evaluate existing evaluators
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for natural language generation at scale, with the goal of establishing which automated evaluation
metrics reasonably correlate with human judgements of text quality in the context of online review
generation. In what follows we present an overview of each chapter.

• Chapter 2 – Literature Review: Why is constrained natural language generation par-
ticularly challenging? We focus on the emerging problem of neural natural language gener-
ation with constraints. We first define the problem and differentiate between the ambiguous
use of conditions and constraints in natural language generation, including examples that
represent instantiations of the constrained neural text generation problem. We then survey
approaches, learning methodologies and model architectures employed for generating texts
with desirable attributes, and corresponding evaluation metrics. We identify open research
problems and limitations of current models. Our goal is to draw clear boundaries between
the confusing terminology used in the neural language generation literature, highlight cur-
rent approaches and discuss how they suffer from the general challenges of constrained text
generation. This serves as an informative guide towards advancing meaningful, useful, and
safe constrained NLG research.

• Chapter 3 – Explainable Prediction of Text Complexity: The Missing Preliminaries
for Text Simplification We show that the ambiguous notion of text simplification can be
decomposed into a compact, transparent, and logically dependent pipeline of modular sub-
task that increase the transparency and explainability of text simplification systems, while
also improving the generalization of state-of-the-art text simplification models in out-of-
distribution settings. We present a systematic analysis of the first two steps in this pipeline,
which are commonly overlooked: 1) to predict whether a given piece of text needs to be sim-
plified at all, and 2) to identify which part of the text needs to be simplified. The second task
can also be interpreted as an explanation of the first task: why a piece of text is considered
complex. We demonstrate that by simply applying explainable complexity prediction as a
preliminary step, the out-of-sample text simplification performance of the state-of-the-art,
black-box models can be improved by a large margin.

• Chapter 4 – Adapting Pre-trained Language Models to Low-Resource Text Simplifi-
cation: The Path Matters We frame the problem of low-resource text simplification from
a task and domain adaptation perspective. We consider the everyday use of text simplifi-
cation in a wide variety of domains, including news and scientific articles (which naturally
contain many subject areas), and view parallel complex-simple English language examples
in different domains as samples drawn from a distribution over text generation tasks with
varying constraints on the level of text complexity and readability. Once such a distribution
is learned from large-scale, general purpose corpora (i.e., a pre-trained language model), it
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is fast adapted to new tasks and domains (in our case different text simplification scenarios)
with few training examples. We consider two approaches to this problem: 1) a standard
transfer learning practice that fine-tunes the general language model to the new domains of
text simplification with limited in-domain data, and 2) simulate many domain adaptation
tasks and use gradient based meta-learning to learn model parameters that can generalize to
new tasks, again with few examples. We investigate the performance of two popular vehi-
cles for task and domain adaptation: meta-learning and transfer learning (fine-tuning), in the
context of low-resource text simplification that involves a diversity of tasks and domains.
Our findings serve as a novel step bridging the two popular paradigms of few-shot adaptive
learning and towards developing more structured solutions to task and domain adaptation.

• Chapter 5 – Judge the Judges: A Large-Scale Evaluation Study of Neural Language
Models for Online Review Generation We present a large-scale, systematic experiment
that evaluates the evaluators for NLG. We compare three types of evaluators including hu-
man evaluators, automated adversarial evaluators trained to distinguish human-written from
machine-generated product reviews, and word overlap metrics in a particular scenario, gen-
erating online product reviews. The preferences of different evaluators on a dozen repre-
sentative deep-learning based NLG algorithms are compared with human assessments of
the quality of the generated reviews. Our findings reveal significant differences among the
evaluators and shed light on the potential factors that contribute to these differences. The
analysis of a post experiment survey also provides important implications on how to guide
the development of new NLG algorithms.

• Chapter 6 – Conclusion We finally conclude this thesis with a summary of our contributions
and insights we gathered, as well as open challenges and perspectives for future work.

1.3 Contributions

The contributions of this thesis are summarized as follows:

• We present an extensive survey on constrained NLG. We first define the problem and differ-
entiate between the ambiguous use of conditions and constraints in the literature, including
examples that represent instantiations of the constrained neural text generation problem. We
then survey approaches, learning methodologies and model architectures employed for gen-
erating texts with desirable attributes, and corresponding evaluation metrics.

• We formally decompose the ambiguous notion of text simplification into a compact, trans-
parent, and logically dependent pipeline of sub-tasks, where explainable prediction of text
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complexity is identified as the preliminary step. We conduct a systematic analysis of its two
sub-tasks, namely complexity prediction and complexity explanation, and show that they
can be either solved separately or jointly through an extractive adversarial network. Us-
ing complexity prediction as a preliminary step reduces the error of the state-of-the-art text
simplification models by a large margin.

• We learn how to adapt a pre-trained neural language model to new text simplification con-
texts that involve a wide diversity of real-world tasks and domains, for which only few
in-domain training examples are available. For this purpose, we use widely popular adapta-
tion strategies, namely gradient-based meta-learning and fine-tuning-based transfer learning.
We investigate the robustness and efficacy of meta-learning and transfer learning methods
in a direct adaptation setting, as well as in a two-stage adaptation setting via a pseudo-
stop. We extensively compare these two approaches to task and domain adaptation in our
low-resource adaptation settings, and demonstrate that they complement each other. More-
over, performance on out-of-distribution text simplification tasks and domains significantly
increases when consecutive stages of adaptation are employed in the correct order.

• We evaluate the evaluators for NLG at scale in the context of generating online product
reviews. We compare human-based evaluators with a variety of automated evaluation proce-
dures, including discriminative evaluators and word overlap metrics. We find that generators
that fool machine judges easily are less likely to confuse human judges, and vice versa.
Word-overlap evaluators tend to have a positive correlation with the human evaluators in
ranking the generators. Our results also suggest that when adversarial evaluation is used, the
training examples must be carefully selected to avoid false-positives. We also find that when
humans are distinguishing fake reviews from real ones, they tend to focus more on the usage
of words, expressions, emotions, and other details. This may affect the design of objectives
for the next generation of NLG models.

Beyond the problem of low-resource text simplification we are focusing on in this thesis, we believe
the methodology proposed in this dissertation (explainable decomposition, chain of adaptations to
new tasks and domains, and meta-evaluation) may benefit other areas related to generative AI.
These decomposition practices are well aligned with the philosophy of ”chain-of-thoughts” [477]
that is a corner stone of large language models, although the latter appears after our work.
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CHAPTER 2

Literature Review: Why Is Constrained Neural
Language Generation Particularly Challenging?

Recent advances in deep neural language models combined with the capacity of large scale datasets
have accelerated the development of natural language generation systems that produce fluent and
coherent texts (to various degrees of success) in a multitude of tasks and application contexts.
However, controlling the output of these models for desired user and task needs is still an open
challenge. This is crucial not only to customizing the content and style of the generated language,
but also to their safe and reliable deployment in the real world. We present an extensive survey
on the emerging topic of constrained neural language generation in which we formally define and
categorize the problems of natural language generation by distinguishing between conditions and
constraints (the latter being testable conditions on the output text instead of the input), present
constrained text generation tasks, and review existing methods and evaluation metrics for con-
strained text generation. Our aim is to highlight recent progress and trends in this emerging field,
informing on the most promising directions and limitations towards advancing the state-of-the-art
of constrained neural language generation research.

2.1 Introduction

Recent advances in the field of natural language generation (NLG) [129] have resulted in models
able to produce realistic, coherent, and fluent texts in a multitude of natural language process-
ing tasks. Powerful large scale language models can be readily used to perform unconditional
language generation, however these models provide little control over attributes of the generated

texts. Unlike conventional methods which were able to provide fine-grained control over many
aspects of the system output including incorporating domain-specific dictionaries, terminology or
certain words in the generated output, neural end-to-end approaches remove many of these knobs
and switches [361]. However, imposing constraints on the output generated by these models is
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crucial for achieving useful and safe language generation in a multitude of real world application
scenarios. For example, it can help avoid generic and meaningless responses in dialogue systems
[403], personalize dialogue agents based on user features that lead to more engaging and mean-
ingful conversations [513], ensure non-offensive sentence completion and friendly communication
[279], intervene on the system output in interactive scenarios where domain specific terminology
must be included in the generated texts [75], or aid in creative applications such as poetry gener-
ation or assisted story writing [354]. Moreover, controlling a generic pretrained language model
in order to satisfy certain desiderata helps avoid generating toxic content, prevents demographic
biases, can steer generations towards a desired topic or style [206], and helps communicate inten-
tions in suitable manners for different situations, target audiences and environments [235], [257].
Incorporating prior knowledge and target side constraints in text generative models has numer-
ous applications in many natural language processing areas, including dialogue systems, machine
translation, question answering, text summarization, text simplification, image captioning, etc. Un-
questionably, constrained text generation is important in many real-world applications, but com-
pared to other instances of natural language generation, constrained text generation using neural
networks remains an open challenge.

We identify the following reasons that explain why constrained neural text generation represents
a much harder problem compared to other instances of neural text generation: i) lack of model ex-

pressiveness: current models are not expressive enough to incorporate arbitrary constraints, defined
as testable conditions on the output text, into the objective function at training time; ii) lack of suit-

able evaluation metrics: while one can verify whether an output satisfies a constraint or not, it
is usually hard to measure to what extent an output satisfies a constraint, and it is even harder to
jointly evaluate this with other properties of the generated text (such as relevance or coherence); iii)

difficulty in constrained optimization: even if constraints can be expressed and added to the objec-
tive function, they are usually non-differentiable, especially at the token level. This is bad as most
methods model and generate text as a sequence of tokens; iv) lack of constrained text generation

datasets that are diverse and representative enough of the variety of practical constraints.
For example, commonly used sequential text generation methods and architectures assume a

rigid modeling of the output sequence based on an ordering of words, in which tokens are gen-
erated progressively one at a time in a standard left-to-right manner [54]. Such autoregressive
models cannot easily express constraints at arbitrary positions in the generated sequence or sat-
isfy constraints involving multiple input objects. In addition to these issues, it is generally more
challenging to incorporate multiple and heterogeneous constraints, which conform to given rules,
topics, sentiments, lexical constraints, or pre-defined stylistic and content attributes.

Our work focuses on the emerging problem of neural natural language generation with con-
straints. We first define the problem and differentiate between the ambiguous use of conditions and
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constraints in natural language generation, including examples that represent instantiations of the
constrained neural text generation problem. We then survey approaches, learning methodologies
and model architectures employed for generating texts with desirable attributes, and corresponding
evaluation metrics. We conclude with open research problems and limitations of current models.
The scope of our work is draw clear boundaries between the confusing terminology used in the
neural language generation literature, highlight the main approaches and discuss how they suf-
fer from the general challenges of constrained text generation, and serve as an informative guide
and an advocate for solving these general challenges and advancing meaningful, useful, and safe
constrained NLG research.

2.2 Problem Definitions

We formally define the problem of natural language generation, accounting for context, conditions,
and constraints placed on text generative models. First, we aim to articulate the key difference
between condition and constraint since the distinction between these concepts is rather blurred in
the natural language processing literature. Given a text generation task defined as g(X)→ X ′, we
define condition as a testable statement of the input X , and constraint as a testable statement of
the output X ′.

Accounting for the distinction above, we divide the text generation problem into three cate-
gories: i) generic or free-text generation which we present in Section 2.2.1, ii) conditional text

generation which we introduce in Section 2.2.2, and iii) constrained text generation which we
outline in Section 2.2.3. The focus of our work is on the particular problem of constrained text-to-
text generation, leaving aside text generation tasks from other types of inputs such as data-to-text
generation or image-to-text generation which are conditional in nature according to our definitions.

2.2.1 Generic/Free-Text Generation

The problem of generic text generation considers the intrinsic history of words generated until the
current timestep in the sequence as context, and does not place any external user-defined conditions
or constraints on the model output.

Given a discrete sequence of text tokens x = (x1, x2, . . . , xn) as input where each xi is drawn
from a fixed set of symbols, generic text generation aims to learn the unconditional probability
distribution p(x) of sequence x. This distribution can be auto-regressively factorized using the
chain rule of probability [24] into a product of conditional probabilities p(x) =

∏n
i=1 p(xi|x<i) to

perform density estimation and generation of language data. When p(x) is modeled by a neural
network with parameters θ, the neural network is trained to minimize the negative log-likelihood
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L(D) = −
∑|D|

k=1 log pθ(x
k
i |xk<i) over a collection of samples D = {x1, . . . , x|D|}. To generate

new samples, each token xi is iteratively sampled from pθ(xi|x<i) and is fed back into the model
as the input for the next timestep.

Large scale models for generic text generation show promising abilities to imitate the distribu-
tion of natural language and generate long-term realistic and coherent texts, however such free-text
generation models place a lot of burden on the generative model to capture complex semantic and
structural features underlying the data distribution; this can often result in repetitive, contradic-
tory, and largely randomized generated texts [169]. Notably, the content generated by free-text
generative models cannot be controlled with respect to particular attributes and modes of the data
distribution. This inability to control which regions of the data distribution are generated is par-
ticularly problematic considering there is significant toxicity, hate, bias, and negativity present in
the large-scale web crawled datasets text generation models are commonly trained on. Imposing
conditions or constraints on the generation process results in safer and more useful generated texts
for downstream application tasks [224].

2.2.2 Conditional Text Generation

Conditional text generation manipulates attributes of the generated content depending on specific
contexts or user needs, and allows the data generation process to focus on specific modes of the
data. Conditioning the generative model on additional information makes it possible to generate
texts which satisfy given input conditions and meet desired attributes. In the literature conditional
text generation is sometimes referred to as context-dependent text generation. While the word
context may carry different semantics for different readers, in this survey we consider as context
only attributes which are inherently external to the model itself; model intrinsic attributes such as
for example, the history of past generated words, is already included in the formulation of generic
text generation. For example, context attributes used for conditioning generated texts are the source

sentence in machine translation, the conversational history in dialogue systems, the input document

in text summarization and text simplification, the input question in question answering systems, or
contextual information such as product, time, and location in review generation.

Conditional text generation models add a contextual variable or attribute code c to the proba-
bilistic model p(x) transforming it into a conditional probability model p(x|c), which can be auto-
regressively decomposed using the chain rule of probability p(x|c) =

∏n
i=1 p(xi|x<i, c). When

p(x|c) is modeled by a neural network with parameters θ, the model minimizes the negative log-
likelihood loss function accounting for the attribute code c: L(D) = −

∑|D|
k=1 log pθ(x

k
i |xk<i, ck).

Besides generation, conditional models can also be used as generative classifiers to compute
p(c|x<i) by applying Bayes rule.
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2.2.3 Constrained Text Generation

The problem of constrained text generation is focusing on generating coherent and logical texts
that do (not) cover lexical concepts (for eg., pre-defined nouns, verbs, entities, phrases or sentence
fragments) desired to be (not) present in the output, as well as generate outputs that abide to
specific format, semantic, syntactic or utility rules to reflect the particular interests of the system
user. Constraints impose restrictions on the generative model that must be satisfied by any solution
to the optimization problem and their fulfillment can be tested accordingly. In the literature the
distinction between conditional, controlled, and constrained text generation is not clearly defined,
and these terms are often used interchangeably. In fact, the first work that proposed generating
constrained text is actually referring to the task as “controlled” generation [178]. In what follows
we formally define the problem of constrained text generation.

Let us consider we are (optionally) given an unordered or ordered set of n concepts x =

{c1, c2, . . . , cn} ∈ X , whereX denotes the space of all concepts, and ci ∈ C is a concept belonging
to the concept vocabulary C. In addition, let us assume we are also (optionally) given a set of m
rules y = {y1, y2, . . . , ym} ∈ Y , with yi ∈ R, where R denotes the space of all rules, and each yi
is a text generation constraint expressed in logical form. We formulate constrained text generation
as learning the structured predictive function f : X ∪Y → Z , where X ∪Y ≠ ϕ which maps a set
of concepts and/or constraint rules to a generated sentence. Therefore, constrained text generation
methods impose constraints on the generated sentences and produce output in the form of gram-
matical sentence z ∈ Z which contains all concepts present in x and all constraint rules specified in
y. The probability p(z|f) can still be modeled autoregressively p(z|f) =

∏n
i=1 p(zi|z<i, f); when

p(z|f) is modeled by a neural network with parameters θ, the negative log likelihood function can
be minimized while leveraging f for constraint satisfaction L(D) = −

∑|D|
k=1 log pθ(z

k
i |zk<i, f).

The matching function f manipulates the probability distribution and indicates to which extent
the constraints are satisfied. In the literature, constrained text generation methods can be either i)

Soft-constrained (priming), when the matching function f is a soft measure of semantic similarity
and only requires the generated sentences to be semantically related to the given constraints, or ii)

Hard-constrained, when the matching function f is a binary indicator which rules out the possi-
bility of generating infeasible sentences that do not meet the given constraints. Hard-constrained
text generation is notably a more challenging task compared to soft-constrained text generation,
and it requires designing specialized approaches and architectures to ensure the constraints in the
output sentence. In contrast, soft-constrained text generation models are usually easier to design,
e.g., with the use of existing copy and attention mechanisms for soft enforcing constraints and an-
notated keyword-text pairs; nevertheless, some of these soft constraints are likely to be lost during
generation, especially if multiple weakly correlated (lexical) constraints must be included [520].

Compared to generic text generation which assumes no conditions on input or output other
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than existing context, and compared to conditional text generation which places conditions on the
input which can be considered at training time, constrained text generation places conditions on
the output which is a considerably more difficult and challenging problem to solve. Unlike input
conditions, output conditions cannot be considered at training time and their satisfaction is as-
sessed after training has completed by sampling and inspecting the generated outputs. In addition,
standard sequence generation architectures are not designed to easily accommodate or incorporate
output constraints. Given the model structure itself cannot express output conditions, it becomes
challenging to evaluate the extent to which constraints are satisfied by a model, objectively com-
pare and contrast the performance of different models, and measure overall success to inform on
progress in constrained natural language generation. Due to these limitations, current methods
proposed to address constrained text generation are neither satisfactory nor sufficient. The main
machine learning challenge is that it is hard to evaluate the objective function for constrained text
generation, and very few works have approached the problem from the prism of editing the ob-
jective function to incorporate constraints at training time. Even if constraints were to be added
to the objective function itself, constrained optimization would be another challenge. In general,
reinforcement learning approaches are used in the context of text generation to optimize non-
differentiable reward functions computed at the token level, for eg., BLEU in machine translation
or ROUGE in text summarization. However, optimizing such automatic measures that focus on lo-
cal n-gram patterns often results in deteriorated textual outputs despite increased automatic scores
[32], [347]. Moreover, applying reinforcement learning to text generation at the word level leads
to difficulty in proper temporal credit assignment for long-term textual rewards [389]. Given that
the environment provides only delayed rewards as the agent executes a sequence of actions, it is
impossible to know whether the agent succeeds in achieving a task until the end of the episode, at
which point the agent needs to determine which of the actions in the sequence are to be credited
with producing the resulting reward [125]. Adding constraints on top of existing reinforcement
learning issues would be detrimental to the learning process, if not make learning close to impos-
sible: the objective function would be even harder to optimize, rewards would be delayed, sparse
and non-informative. Despite these open problems and limitations, we argue neural constrained
text generation is an important research area which deserves a lot more attention.

Constrained text generation is useful in many scenarios, such as incorporating in-domain ter-
minology in machine translation [361], improving semantic corectness [14], avoiding generic and
meaningless responses in dialogue systems using grounding facts [316], paraphrase generation in
monolingual text rewriting [177], [195], incorporating ground-truth text fragments (such as seman-
tic attributes, object annotations) in image caption generation [6], creating a story [109] or poem
[135] using a pre-defined set of keywords, or re-writing a user search query as a fluent sentence.
Typical attributes used to generate constrained natural language are the tense and the length of the
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summaries in text summarization [108], the sentiment of the generated content in review genera-
tion [318], language complexity in text simplification or the style in text style transfer applications.
In addition, constrained text generation is used to overcome limitations of neural text generation
models for dialogue such as genericness and repetitiveness of responses [403], [407].

Nevertheless, generating text under specific lexical constraints is challenging. Common models
and architectures employed for natural language generation are autoregressive in nature, generating
tokens one by one in a sequential manner from left to right; by design, these models lack fine
control over the generated sequence and cannot easily support constraints at arbitrary positions
in the output or constraints involving multiple input objects [520], [176]. While for humans it is
straightforward to generate sentences that cover a given set of concepts or abide to pre-defined
rules by making use of their commonsense reasoning ability, generative commonsense reasoning
with a constrained text generation task is more challenging for machine learning models [264].

2.3 NLG Constraints

Natural language generation models place restrictions on the generated output to produce texts
that reflect certain user preferences. In Table 2.1 we present NLG tasks distinguishing between
conditions and constraints. We broadly group existing constraints into the following categories:

Lexical constraints Lexical constraints serve with the inclusion of specific keywords, phrases
or entities at arbitrary positions in the output, and can be specified as a word (a single token) or
phrasal constraint (a multi-word phrase). They are useful in tasks such as dialogue generation,
machine translation, story telling or poetry generation.

Format constraints Format constraints such as number of sentences, length of sentences, order
of words, number of syllables, etc. serve to denote preferences on the form and appearance of the
generated output. Format constraints are particularly useful in tasks such as poetry generation to
specify the form of the generated poem, for eg. quatrain or regulated verse, length of the poem,
rhyme and rhythm. In text summarization or text simplification, length constraints define the length
of the generated output to be strictly less than the length of the input document, while in dialogue

generation they help define the level of verbosity of the dialogue agent.

Semantic constraints Semantic constraints are used to define the topic and sentiment of the
generated content, or control fine-grained aspects such as removing toxicity. Topic constraints
are particularly useful in dialogue generation, where the goal is to generate on-topic responses
that are safe, non-harmful, unbiased, relevant to the dialogue context and particular user needs; in
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Table 2.1: Overview of constrained NLG tasks, differentiating between conditions and constraints.

Task Condition Constraint
Lexical Format Semantic Syntactic Utility

Machine Translation source input words – topic paraphrase target language
phrases sentiment tense politeness
entities gender pronouns factuality/faithfulness

Dialogue Generation past utterance(s) words length topic paraphrase politeness
phrases verbosity sentiment gender pronouns personality traits
entities toxicity factuality/faithfulness

Text Summarization input document(s) words length topic paraphrase factuality/faithfulness
phrases
entities

Text Simplification input text words length topic paraphrase simpler vocabulary
phrases readability
entities factuality/faithfulness

Text Style Transfer source text words length topic paraphrase style
phrases sentiment tense factuality/faithfulness
entities gender pronouns

Question Answering input question words length topic paraphrase factuality/faithfulness
phrases tense politeness
entities gender pronouns

Narrative Generation/ – words length topic paraphrase readability
Story telling phrases sentiment tense factuality/faithfulness

entities gender pronouns style

Poetry Generation – words length topic paraphrase readability
phrases rhyme sentiment tense factuality/faithfulness
entities rhythm gender pronouns style
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story telling or poetry generation, topic constraints help define the theme. Generating language
that conveys particular positive, neutral or negative sentiment aims to endow artificial agents with
human-like traits such as compassion, empathy, and enables agents to react with appropriate emo-
tion in diverse social situations; constraining on a specific sentiment is important in many tasks
such as dialogue generation, review generation, story telling, poetry generation or text style trans-

fer. Furthermore, increasing politeness of a dialogue system or reducing toxicity of generated
language are important aspects with respect to human-centered metrics of conversation quality.

Syntactic constraints Syntactically constrained text generation produces sentences with desired
syntax by incorporating syntactic templates and rules in the training of the text generative model.
Syntactic constraints are useful in paraphrase generation, where given a sentence and a target syn-
tactic form (e.g., a constituency parse), a system must produce a paraphrase of the sentence whose
syntax conforms to the target [183]. Generating texts that convey the same meaning but with dif-
ferent expressions has numerous applications in many natural language generation tasks, including
monolingual transduction tasks such as text simplification, text compression, or text style trans-

fer, as well as in tasks like text summarization, machine translation or question answering where
alternative ways of expressing the same information capture the inherent language variations.

Utility constraints Utility constraints capture holistic properties of the generated output, for eg.,
stylistic, readability, faithfulness and politeness aspects. Preserving the information content of
texts while manipulating attributes such as style, readability level, personality traits of the user or
specific gender pronouns allows to customize generated texts to different audiences and make them
relevant in a wide variety of end-user applications. Stylistic constraints are immediately relevant
to the task of text style transfer, with applicability in many tasks, including dialogue generation,
machine translation, text simplification, story telling, poetry generation, review generation.

Constraining text generation on attributes such as readability and level of text complexity serves
to adapt the generated output to users of different age, backgrounds and educational levels. Reduc-
ing complexity of texts while preserving the information content is the main goal of text simplifi-

cation; in addition, in tasks such as dialogue generation, text summarization, story telling, poetry

generation, question answering it is important to customize texts for various literacy levels.
In many languages the degree of politeness is an important aspect of inter-personal commu-

nication, and honorifics are used to express courtesy, social distance, or the relative social status
between the speaker and their addressee(s) [406]. Politeness constraints on the output are used in
machine translation, dialogue generation, story telling, and text style transfer.

Faithfulness constraints enforce similarity between a generated text sequence and its corre-
sponding input, requiring models to generate texts that are faithful, factual and preserve the original
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information content. Such constraints are important in many tasks, including text summarization,
machine translation, text simplification or dialogue generation, where models are vulnerable to
producing hallucinated content.

Language constraints are useful when translating texts between different languages such as in
machine translation, or from complex language into simple language such as in text simplification.

2.4 Constrained Natural Language Tasks

In what follows we briefly describe natural language generation tasks, differentiating between
conditions and constraints.

Machine Translation Machine translation is focusing on the automatic translation of textual
content from one language into another language, and is a typical example of both conditional and

constrained text generation, as it conditions on the input text in the source language and constraints
the model to generate fluent and faithful output in the target language. Additional constraints can be
placed on the degree of formality and politeness, the use of gender-specific pronouns, the inclusion
in the target sentence of named entities or specific concepts from the source sentence.

Dialogue Systems A dialogue system, also known as a conversational agent, is a computer sys-
tem designed to converse with humans using natural language. Dialogue generation is an instance
of conditional text generation where the system response is conditioned on the previous user ut-
terance and frequently on the overall conversational context. Dialogue generation can also be an
instance of constrained text generation - it is desirable generated dialogues incorporate explicit per-
sonality traits [525], control the sentiment [222], topic, degree of formality and politeness of the
generated response to resemble human-to-human conversations. In addition, dialogue responses
may need to incorporate text excerpts from past dialogue history or entities such as locations, per-
sons, institutions, etc. From an application point of view, dialogue systems can be categorized into:
i) task-oriented dialogue agents, designed to help users complete a particular task, or ii) non-task

oriented dialogue agents (chat-bots) designed to carry entertaining conversations with their users
on a wide range of open domains. A common problem in dialogue generation systems is that they
tend to generate safe, universally relevant responses that carry little meaning [407], [253], [316].
Moreover, they can fail to take turns asking questions and balance specificity with genericness of
the output [403].

Text Summarization Text summarization facilitates a quick grasp of the essence of a document
and produces a condensed version of its content, by copy-pasting the relevant portions from the
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input as in extractive summarization [321], or by generating novel content as in abstractive sum-
marization [386], [322], [402], or via hybrid approaches [275] that combine both techniques. Text
summarization is a conditional text generation task where the condition is represented by the given
document(s); additional conditions are used in remainder summarization to flexibly define which
parts of the document(s) are of interest, for eg., remaining paragraphs the user has not read yet, or
in source-specific summarization to condition summaries on the specific input source and style of
writing, for eg., newspapers, books or news articles. Text summarization is also a constrained text

generation task considering that the length of the summary is fixed, pre-determined, and strictly
less than the original document; this allows to digest information at different levels of granularity
and detail according to user needs and time budgets. Moreover, constraints can be placed on spe-
cific concepts to include in the summary, such as named entities, or on explicitly picking sentences
from the original document as in extractive summarization.

Text Simplification Text simplification is designed to reduce the text complexity, while preserv-
ing its original meaning. In the literature, simplification has been addressed at multiple levels: i)

lexical simplification focused on replacing complex words or phrases with simpler alternatives; ii)

syntactic simplification alters the syntactic structure of the sentence; iii) semantic simplification

paraphrases portions of the text into simpler and clearer variants. End-to-end models attempt to
combine all these steps. Text simplification is both conditional and constrained text generation; we
are conditioning on the input complex text to generate a simpler version, accounting for constraints
such as higher readability, simpler vocabulary, and shorter sentence length than the complex input.

Text Style Transfer Style transfer has its origins in computer vision applications for image-to-
image translation and more recently has been used in natural language processing applications for
machine translation, sentiment modification to change the sentiment of a sentence from positive to
negative and vice versa, word substitution decipherment and word order recovery [178]. Text style
transfer is designed to preserve the information content of a source sentence while altering the way
it is delivered to meet desired presentation constraints. Textual content is disentangled from the
style in which it is presented, and manipulating stylistic attributes can be done without parallel
aligned data between source and target styles. Text style transfer is an instance of both conditional

and constrained text generation given that we condition on the given source text and constrain the
transferred sentences to stylistically match target examples.

Question Answering Question answering systems are designed to find and integrate information
from various sources to provide responses to user questions [122]. While traditionally candidate
answers consist of words, phrases or sentence snippets retrieved and ranked appropriately from
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knowledge bases and textual documents [223], answer generation aims to produce more natural
answers by using neural models to generate the answer sentence. Question answering is both con-

ditional and constrained text generation task; the system conditions on the user question, and si-
multaneously ensures that concepts needed to answer the question are present in the generated out-
put. Diverse question answering systems are proposed in the literature addressing for eg., medical
information needs [479], mathematical questions [400], quiz bowl questions [182], cross-lingual
and multi-lingual questions [281]. Notably, in practical applications users are not only interested
in learning the exact answer word or phrase, but also in how it relates to background information
and to previously asked questions and answers [122].

Narrative Generation/Story Telling Neural narrative generation is an important step towards
computational creativity [132] and represents a long-form open-ended text generation task which
simultaneously addresses the selection of appropriate content (“what to say”) and the surface
realization of the generation (“how to say it”)[484]. Narrative generation is a constrained text

generation task that places explicit constraints on concepts to steer the narrative in particular topic
directions and expands the few keywords specified as the story title, beginning or ending. While
existing models can generate stories with good local coherence, generating long stories is challeng-
ing. Difficulties in coalescing individual phrases into coherent plots and in maintaining character
consistency throughout the story lead to a rapid decrease in coherence as the output length in-
creases [462]. Hierarchical models for story generation break down the generation process into
multiple steps: first modelling the action sequence, then the story narrative, and finally entities
such as story characters [110]. Neural narrative generation combining story-writing with human
collaboration in an interactive way improves both story quality and human engagement [142].

Poetry Generation The poem generator operates in an interactive context where the user sup-
plies the model with a set of ordered concepts that reflect her writing intent, as well as the format
of the poem, for eg. quatrain or regulated verse. Poetry generation is a constrained text generation

problem since user defined concepts need to be included in the generated poem, and a condi-

tional text generation problem given the explicit conditioning on stylistic attributes. For a detailed
overview of poetry generation please see [331].

2.5 Constrained NLG Methods

Accounting for the different types of constraints introduced in Section 2.3, we distinguish five
methodologies commonly employed in the constrained text generation literature: i) decoding ap-
proaches, ii) fine-tuning approaches, iii) discriminative approaches, iv) edit-based approaches, and
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v) adapting existing models and architectures to accommodate constraints on the generated output.
In what follows we present each approach in detail, outlining the main associated challenges.

2.5.1 Decoding approaches

The most popular approach to text generation in the literature has been supervised learning with
task-specific datasets; nevertheless since many real-world applications require diverse and poten-
tially evolving constraints, it is infeasible to annotate task-specific training data for every combina-
tion of constraints [366]. Furthermore, even if collecting the data was not a bottleneck, re-training
large language models that are extreme in scale for each new constraint or combination of con-
straints is undesirable. The alternative to fine-tuning language models with task-specific datasets
is to enrich decoding algorithms so as to accommodate constraints on the fly. We present decoding
approaches to constrained text generation below.

Lexical constraints Lexically constrained (guided) decoding aims to restrict the search space
at decoding time to sequences which contain pre-defined lexical constraints only. These lexical
constraints can be specified in the form of a word constraint (a single token) or a phrasal constraint
(a multi-word phrase, i.e. a sequence of two or more contiguous tokens). To this end, the beam
search decoding algorithm is modified to enforce the inclusion of pre-specified words and phrases
in the generated output by allowing the model distribution to not only account for the given lexical
constraints, but also to generate parts of the output sequence not covered by the constraints. In
general, the decoder can more easily place multiple sequential tokens in a phrasal constraint (where
the permutation order is fixed) on the generated output as opposed to placing multiple separate,
independent constraints. In addition, the lexically constrained decoding approach assumes lexical
constraints are pre-determined, which may not always be the case; if so, the open question is where
to get lexical constraints from.

Early work on constrained decoding in machine translation relies on the placeholder approach
designed to recognize identifiable elements (numbers and named entities) in the source sentence,
temporarily replace these with corresponding placeholders during preprocessing, and then sub-
stitute the assigned placeholders with the original source-language strings during beam search
decoding [75]. Nevertheless, such an approach is limited and unable to model the source tokens
in target language specific terminology or the vocabulary from a new out-of-distribution domain.
Prefix decoding represents a modification of beam search to first ensure that a user defined target
prefix is generated first, and only after build hypotheses for the suffix that maximize the coverage
of the remaining source-side tokens. As decoding progresses from left to right, the decoder tran-
sitions from a constrained prefix decoding mode to unconstrained beam search. For example, the
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start of the sentence symbol <s> can be easily included as the first word of a constraint [220],
[491]. In the context of text summarization, an essential property of a summarization system is the
ability to generate a summary with desired length. Grid beam search [167] extends beam search
decoding to allow for the inclusion of arbitrary target side hard lexical constraints at any position
in the generated sequence. Given C input constraints, the algorithm maintains C + 1 separate
beams B0, B1, . . . , Bc that group together hypotheses which meet the same number of satisfied
constraints. Decoding runs similar to beam search, with an additional dimension added to keep
track of how many constraints are met by each hypothesis at every timestep; the highest scoring
hypothesis in beamBc is ultimately generated. However, grid beam search is impractical as decod-
ing complexity is linear in the number of constraints, i.e. beam size increases proportionally to the
amount of constraints and changes for every sentence. Constrained beam search [6] guarantees
the inclusion of input constraints in the generated sentences by extending beam search with a finite
state machine whose states mark completed subsets of the input set of constraints; however, decod-
ing complexity has an exponential cost in the number of constraints, making it infeasible in many
applications. Dynamic beam allocation [361] improves upon the runtime complexity of grid beam
search and constrained beam search by decoding with constant complexity O(1) in the number of
constraints. The algorithm still groups together hypotheses that have met the same number of con-
straints by using a single fixed-size beam which is dynamically divided at each time-step according
to how many constraints have been met. Despite being more efficient, dynamic beam allocation
does not necessarily outperform conventional beam search [264]. In addition, the generation of hy-
potheses that only partially satisfy a phrasal constraint needs to be aborted to unwind to the tokens
in the constraint. Neurologic decoding [286] modifies beam search to enforce the satisfaction of
lexical constraints expressed under predicate logic in conjunctive normal form (CNF). Given the
intractability of exhaustive beam search to optimize CNF constraints, the algorithm searches for
approximately-optimal output sequences in which all clauses are satisfied, including both positive
and negative constraints (i.e. words that must be generated, respectively omitted in the output se-
quence). The method is applied to cooking recipe generation, where the task is to generate cooking
instructions given a dish name and a list of ingredients, and to data-grounded dialogue response
generation where a response is generated given a query and a list of facts to convey.

In general, lexically constrained decoding methods have high computational complexity and
force the inclusion of specific words in the generated sentence at every timestep of the generation
process with no prior examination of these specific words before generation begins [236]; this
unnatural way of generating sentences can impact the quality and naturalness of the generated
output [271], [361]. In lack of suitable evaluation metrics, there is no commonly agreed criteria
for objectively assessing the quality of the generated sentences and conducting comparisons across
text generation models.
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Format constraints Fixed length decoding [211] constrains the length of generated summaries
in two ways: i) by preventing the decoder from generating the end-of-sentence tag until the length
of the generated sequence exceeds the desired length, and ii) by defining the minimum and max-
imum length range of the sequence and discarding out-of-range sequences. Non-monotonic de-
coding approaches allow tokens to be inserted at any position in the generated sequence during
decoding, therefore accommodating flexible orderings of the output. Unlike left-to-right autore-
gressive generation that produces a single word at a time, non-monotonic decoding can satisfy lex-
ical constraints at multiple locations in the output sequence allowing for highly parallel generation
and faster decoding times. Nevertheless, such approaches assume the generated sequence length is
known a priori, preventing it from being dynamically adjusted as generation proceeds. Moreover,
such models assume conditional independence between output tokens, i.e. tokens are generated
independently, may be inconsistent and agnostic to each other. Consequently, this approach may
hurt the expressiveness of the model and lead to potential performance degradation, impacting the
fluency and naturalness of the output. In addition, non-monotonic sequence decoding approaches
can terminate prematurely before constraints are satisfied in the output sequence [520], [176]. The
main limitation of this approach is the lack of model expressiveness in accommodating constraints.

Insertion Transformer [438] proposes a flexible sequence generation framework based on re-
peated insertion operations into an initially empty output sequence until a termination condition is
met. The model adopts a progressive masking approach based on token importance in the original
text and is trained to generate a missing token between every two tokens in the input. To this
end, the original Transformer [463] decoder is modified to allow insertions not just at the end but
anywhere in the output sequence. The model can decode sequences serially one token at a time,
or it can decode sequences in parallel with simultaneous insertions at multiple locations. A similar
approach is considered in InDIGO [150] which extends Transformer for insertion-based decoding
with inferred generation order. Token generation order for the output sequence is modeled as a
latent variable, and at each decoding step the model predicts both the generated word and its po-
sition in the output sequence; nevertheless, strong conditional independence is assumed between
the output tokens which hurts output quality. An iterative refinement step based on latent variables
is added to the Transformer decoder to refine a target sequence gradually over multiple steps until
a predefined stopping criterion is met [241]. Progressive Insertion Transformer [520] uses non-
autoregressive modeling based on a top-down progressive structure for lexical hard-constrained
text generation. Given lexical constraints as input, the model inserts tokens progressively accord-
ing to word importance to generate the target sequence, as follows: first it generates high-level
words in a sentence such as nouns, adjectives and verbs, then uses these as pivoting points to
insert details of finer granularity and finally completes the sentence by adding connecting words
which carry less information, such as pronouns and prepositions. Entity Constrained Insertion
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Transformer [176] builds upon previous models considering hard lexical constraints in the form of
entities in the output sequence. Similar approaches train the Transformer decoder to insert missing
tokens in a partially complete sequence without relying on a pre-specified factorization of tokens
[54], [151]; based on the information available in the sequence, the insertion-based generative
model is able to dynamically infer the remaining parts irrespective of their arbitrary order.

Syntactic and Semantic constraints Distributional constraints [12] on topic and semantic sim-
ilarity are used to incorporate source side-information at decoding time in neural conversational
systems and encourage the generation of more diverse responses. Moreover, constraints over top-
ics and syntax are used to generate matching or semantically similar statements in response to the
user input [329]. Lexically constrained decoding from pre-trained language models aims to steer
language models in useful and safe directions so as to minimize the risks associated with these
models generating biased, offensive and toxic content [417], [169]. Energy-based constrained
decoding allows the specification of style and lexical constraints through an energy function and
performs differentiable reasoning through gradient-based sampling [366]. The sampling process
uses gradients of the energy function to update a continuous relaxation of text data, which is then
mapped back to the discrete space of natural language via a discretization approach. For streering
the generation towards desired constraints, biases are applied to the logits of the pre-trained model
output layer, which is also found to improve the speed of the decoding process [276]. Nevertheless,
sampling from energy-based models requires many iterations to converge to plausible text.

2.5.2 Fine-tuning approaches

Semantic and Utility constraints Controlling the output of pre-trained language models is cru-
cial in a wide-range of safety-critical applications, including mental health support chatbots, sen-
timent controlled text generation, language detoxification, etc. To this end, fine-tuning approaches
are used for fine-grained control over individual stylistic aspects (for eg., length, professional and
descriptive style, tense, personal voice, gender) and content aspects (for eg., sentiment and topic)
of the generated texts [113], [235]. Typically, the pre-trained model is fine-tuned separately for
each attribute of interest, which poses the challenge of how to learn disentangled latent represen-
tations of style and content in neural language models [191] and isolate the desired attribute from
the distribution shift between the generative model and the fine-tuned dataset. The lack of datasets
that are diverse and representative of constrained criteria encountered in practice represents an
open challenge for fine-tuning pre-trained models.

CTRL [205] uses control codes to trigger the generation of texts that meets user-defined con-
straints on domain, style, topics, dates, entities, relationships between entities, plot points, and
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task-related behavior. The pre-defined codes are appended to the beginning of raw text sequences
to define task-specific data at training time and create controllable task-specific behaviour at sam-
pling time. Decoding Experts (DExperts) [269] is a decoding-time method for constrained text
generation which combines a pre-trained language model with both an “expert” and “anti-expert”
language model in a product of experts. The “expert” models desirable aspects of the generated
text (for eg., positive sentiment), while the “anti-expert” plays the antagonistic role of modeling
undesirable attributes to be avoided (for eg., toxicity); each one of the three language models is
conditioned on the same user prompt. While the method highlights the promise of customizing
decoding from pre-trained language models in safe and efficient ways, gathering large amounts of
toxic data to model undesirable attributes may be challenging. In general, adding negativity to a
positive prompt is a much easier task than adding a positive turn to a negative prompt [296].

Fine-tuning approaches in a reinforcement learning setting based on human preferences is used
to generate texts with desired attributes from pre-trained language models [537]. Aligning AI
models with human preferences is considered crucial for safely deploying artificial systems in the
real-world [338], [333]. The reward model is derived from human preferences on text continuations
with positive sentiment or vividly descriptive language. Importantly, a KL constraint is used to
prevent the fine-tuned model from drifting too far from the pre-trained model and encourage the
new policy to remain close to the prior policy. Similar KL control has been used in dialogue
systems to retain prior information and penalize divergence from the pre-trained model during RL
fine-tuning [187]. Controlled text generation from pre-trained language models is formalized as a
constraint satisfaction problem, where pointwise constraints focus on the quality of each individual
output while distributional constraints enforce collective statistical properties desirable over the
set of all generations [206]. Similar to prior work, a KL penalty term is used to discourage large
deviations from the pre-trained language model as a proxy for sample quality. The lack of suitable
evaluation metrics is an outstanding challenge in generating high quality outputs.

Pre-trained OpenAI-GPT2 [369] model is used to re-write a story through counterfactual rea-
soning and generate a narrative consistent with the imposed constraints [365]. In abstractive sum-
marization, OpenAI-GPT2 is used in a reinforcement learning setting which trains the summariza-
tion agent to maximize coverage and fluency of the generated content constrained on a pre-defined
length [230]. RecipeGPT [157] fine-tunes the GPT-2 pre-trained language model for generating
cooking instructions when hard constraints are placed on the recipe title and ingredients; the model
can also generate the list of ingredients for a recipe when constrained on the recipe title and specific
cooking instructions. Infilling by language modeling is used to complete variable length text spans
(e.g. words, n-grams and sentences) by fine-tuning a pre-trained language model on sentence pairs
that contain both artificially-masked text and the corresponding original text [95].

While fine-tuning models on task specific datasets has become the dominant paradigm for con-
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strained text generation from large pre-trained language models, these models generally fail to
reliably incorporate the underlying constraints in the generated texts even when supervised with
large amounts of task-specific examples [286]. Notably, fine-grained constrained text generation
is limited even with large scale pre-trained neural networks. The main challenges are the lack of
model expressiveness to incorporate constraints and the lack of constrained text generation datasets
for fine-tuning these models. Prompt-based text generation from pre-trained language models is a
recent trend in the literature, nevertheless this is beyond the scope of our work. For an overview of
constrained text generation focused particularly on pre-trained language models, please see [510].

2.5.3 Discriminative approaches

Utility constraints One of the early works to propose constrained generation and manipula-
tion of the generated text learns disentangled latent representations by combining variational auto-
encoders with attribute discriminators [178]. Semantic structure is imposed on the latent codes by
using global discriminators, one for each attribute, to guide the learning of the discrete text gener-
ator and force it to allocate one latent dimension per attribute code. The model is used to generate
sentences with constrained sentiment and tense.

Weighted decoding [168] relies on a mixture of discriminative models to guide a recurrent gen-
erator towards incorporating attributes that enhance the overall coherence, style, and information
content of the generated text. The discriminators complement each other and their weighted con-
tributions form the final decoding objective from the generator. Similarly, stylistic configurations
are revised and polished for generated poems by adding additional weights during decoding to
control the style of generated poem, including the repetition, alliteration, word length, cursing,
sentiment, and concreteness [135]. Nevertheless, modifying the scoring function used for genera-
tion as in weighted decoding often leads to sacrificing fluency and coherence of the generated text
[403]. Selective sampling [471] relies on a sample selector (multilayer perceptron for binary clas-
sification) which outputs whether the current sample should be accepted or rejected based on the
presence of desired target words that define the output style and topic in the generated sequence.
The robustness of evaluation metrics is directly correlated with model performance, therefore it is
crucial to focus on developing metrics that capture diverse aspects of text quality during training
and sampling time.

Generating texts with desirable attributes from a pre-trained unconditional language model
P (X) is a non-trivial task. Most approaches resort to either training from scratch a new condi-
tional model P (X|a) for desired attribute a, or fine-tuning P (X) on additional data representative
for the attribute a. Theoretically, rejection sampling could also be used to sample P (X|a) from
P (x), but this approach is highly inefficient in practice. Fudge [499] generates text conditioned
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on a desired attribute a (for eg., topic control in language generation, degree of formality in ma-
chine translation, poetry couplet completion) while only accessing the output probabilities P (X)

of generative model G. Given an incomplete sequence prefix, the model trains binary discrimina-
tive models for one or multiple desired attributes to predict whether the attribute(s) will be fulfilled
in the future complete sequence, therefore evaluation is an important challenge. The output prob-
abilities of the discriminator(s) are then multiplied with the output logits of the generator G to
adjust the original probabilities of G accounting for desired attribute(s) a and model P (X|a) via a
Bayesian decomposition.

PPLM [83] combines a pre-trained language model with attribute classifiers that guide gener-
ation towards specific topics and sentiment styles. These classifiers are trained on top of the last
hidden layer of the pre-trained language model, and gradients from the classifiers are backpropa-
gated to update the hidden representations of the language model and steer generation in desirable
directions. While PPLM achieves fine-grained control of content and style attributes via a simple
gradient-based sampling mechanism, the approach is computationally intensive and inefficient as
it requires multiple forward and backward passes for each generation step. Plug-and-play methods
have been used to control large pre-trained conversational models such as GPT-2 [369] using a
variety of styles (positive and negative sentiment) and topics (Question, Sport, Business, Finance)
[296]. Undoubtedly, more effort needs to be focused on collecting datasets for constrained text
generation that capture many possible real-world constraints.

GeDi [224] guides language generation from large language models towards desired attributes
by using generative discriminators to compute classification likelihoods for all candidate next to-
kens on the fly at generation time. Given a class-conditional language model conditioned both on
a desired attribute c+ and an undesired attribute c−, GeDi-guided contrastive generation uses the
two instances of the model as discriminative classifiers to contrast and filter out common attributes
between the two classes c+ and c−; then aspects of the desired attribute c+ are transferred across
domains via weighted decoding and filtering. The contrast between a positive and a negative class
conditional distribution is employed both at training and inference time to control the bias, toxicity
and negativity of GPT-2 [369] and GPT-3 [36].

2.5.4 Edit based approaches

Utility constraints Edit based approaches rely on the key idea that changing only a few words
or phrases which are indicative of a particular attribute are sufficient to alter the style of a given
piece of text. For example, the sentiment of a sentence can be altered from negative to positive by
first identifying negative attribute markers (”bad”, ”worst”, ”disappointed”), deleting these nega-
tive attributes while keeping other content words fixed, and then generating the final output via a
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recurrent decoder which conditions on the extracted content words and the target attribute [257].
Leaving from the observation that humans write text in incremental passes with multiple revisions,
a prototype-then-edit model first samples a prototype sentence from the training corpus and then
edits it conditioned on an edit vector [156]. Noticeably, text generation based on editing a prototype
is much easier compared to generating text from scratch. Also building upon the ”Delete Retrieve
Generate” framework, the Generative Style Transformer [440] incorporates a neural mechanism
to delete style attributes from the source sentence based on the attention weights of a Transformer
model (Delete Transformer), and then generates sentences in the desired target style by decoding
with a pre-trained GPT-2 [367] model.

Lexical constraints Constrained sentence generation by Metropolis-Hastings sampling [307]
first inserts all constraint keywords in a template in random order, then samples local edit op-
erations (word replacement, deletion or insertion) to perform at specific positions for improving
sentence fluency. The probability of each edit operation being accepted or rejected is determined
by a language model, however individually sampling each token results in slow convergence. In-
stead of randomly sampling edit operations, the gradient of a differentiable objective function is
used to determine where and how to edit [410].

2.5.5 Adapting existing models and architectures to accommodate con-
straints

It is non-trivial to impose constraints on existing deep learning models while maintaining high gen-
eration quality since their model architecture is designed to generate sentences sequentially from
left to right. While current deep learning models are lacking the expressiveness to incorporate
constraints at training time and at arbitrary positions in the generated sequence, well known mod-
els and architectures are adapted to accommodate constraints through a set of custom engineered
approaches. We present these methods below.

Lexical constraints Current architectures used for language generation produce texts sequen-
tially from the first word to the last word, and it is non-trivial to impose lexical constraints on
left-to-right generation while maintaining high output quality for natural and fluent texts. Cur-
rent workarounds for hard lexically constrained text generation address this limitation by generat-
ing texts in a non-monotonic fashion when employing forward-backward language models. The
backward language model takes a lexical constraint as input, considers it as the starting point and
generates the first half of the sentence backwards conditioned on the topic word, while the forward
language model takes as input the sequence generated by the backward generator and produces its
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sentence completion in normal order conditioned on the backward generated sequence. While the
topic word can occur at any position in the sentence, this approach can only generate output con-
strained on at most one lexical constraint; generating sequences with multiple lexical constraints is
an open research problem. Moreover, these approaches adapt existing frameworks for constrained
text generation by splitting a sentence into two parts, which is unnatural and also hurts fluency
when generating half of the sequence in reverse order.

Given a topic word at an arbitrary position in a scientific paper title, a recurrent language model
is tasked with generating both past and future words in the title conditioned on the given topic
[317]. Similarly, on-topic dialogue responses that satisfy hard lexical constraints are generated
with a ”sequence to backward and forward sequences” (seq2bf) model [316] which first predicts
a keyword noun that reflects the gist of the response, then decodes the response backward and
forward starting from the given word. BFGAN [271] employs GANs for lexically constrained text
generation using GANs. The model incorporates three modules, namely a backward generator
and a forward generator which collaborate on generating lexically constrained sentences, and a
discriminator which guides the joint training with policy gradient of the two generators. BFGAN
is used to generate Amazon product reviews and conversational responses with lexical constraints.

Generating a fluent sequence which simultaneously satisfies multiple lexical constraints em-
ploys a backward-forward LSTM language model to first generate the sequence from a user-defined
verb constraint and then satisfy other lexical constraints by word embedding substitution based on
cosine similarity between generated tokens and desired constraints [236]. Nevertheless, the ap-
proach assumes a verb constraint is always specified in the set of lexical constraints.

Semantic and Utility constraints Steering neural models in specific directions is achieved
by: i) adding special tokens at the beginning or end of the source text, ii) incorporating ad-
ditional conditions into the decoder hidden states and iii) connecting the conditions directly to
the decoder output layer. A topic aware sequence-to-sequence model is used to generate on-topic
conversational responses by conditioning the decoder on specific topic words [494]. Imposing
conversational goals on dialogue agents aims to guide the conversation towards a designated target
subject by combining coarse-grained topic constraints with discourse-level rules [451]. Generating
emotional responses in neural conversational systems is achieved by feeding the emotion category
embedding to a sequence-to-sequence decoder [529]. Personalized chit-chat dialogue agents that
display consistent personalities, viewpoints and are configurable depending on attributes of the
system user are used to produce more personal, specific and engaging dialogue responses [471],
[32], [513]. Nevertheless, finding the proper balance between fluency, engagement, consistency
and a persistent personality remains an open challenge for current dialogue models due to lack of
a measurable objective function and correspondingly suitable evaluation metrics. While we can
easily judge whether or not an output satisfies one constraint, it is hard to judge the extent to which
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(or “how much”) it actually satisfies the constraint, and it is even harder to jointly model/measure
multiple constraints. Moreover, accounting for repetition and diversity is important as these mod-
els often get stuck in an infinite loop of redundant, dull, generic and universally relevant responses
that carry little meaning [255], [403], [316].

For integrating factual knowledge into open-ended conversational systems, factoid and entity-
rich web documents are encoded altogether with the conversation history into the same representa-
tion which is passed to an attentional neural decoder that generates the response tokens. Similarly,
speaker-level representations are integrated into seq2seq conversational models for generating per-
sonalized conversation responses [254]. Fact-guided sentence modification for dynamically rewrit-
ing, updating or correcting articles according to changing information is an instance of constrained
text generation which presents the particular challenge that the rewritten sentence needs to be con-
sistent with an input claim while at the same time preserve non-contradicting content [411]. Given
the claim and an old sentence, an updated sentence is produced by first identifying contradictory
components in the input sentence, masking these, then using the residual sentence and the claim
as input into a two encoder sequence-to-sequence model with copy attention to produce the up-
date sentence consistent with the claim. Syntactically controlled paraphrase generation produces
paraphrases of an input sentence by constraining the system on the target syntactic form [183],
however not many syntactically constrained datasets to learn from are available.

Controllable story generation based on RNNs is used to influence the story ending valence
(whether happy or sad) and the storyline (specified as a sequence of words) [354]. Story-telling
methods commonly use a hierarchical approach to thematically consistent story generation, by
first generating a prompt describing the topic for the story, and then constraining on the prompt for
generating the story content [109]; additionally, constraints on the presence of entities are included
as well [70]. Open-domain story generation requires composing coherent natural language texts
that describe plausible sequence of events and is more challenging compared to generating stories
in a narrow domain given an existing plot.

Unsupervised machine translation methods are adapted for the task of text-style transfer by
incorporating stylistic constraints in a neural seq2seq model with attention and using a style clas-
sifier to guarantee the accuracy of style transfer [521], or for control over multiple style attributes,
including gender, sentiment or product type [235]. In machine translation, honorifics constraints
are important for producing socially appropriate forms of address and controling the level of cour-
tesy [406]; the system user defines the desired level of politeness of the translation, however these
user-defined constraints are only soft constraints and can be overridden by the attentional encoder-
decoder machine translation system whenever the source text provides strong politeness clues.

For effective imposition of semantic structure in constrained text generation, latent space rep-
resentations need to be disentangled [191], such that varying an individual latent code will only
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change a single desired attribute. VAEs can achieve meaningful latent representations with des-
ignated semantics when combined with attribute discriminators and optimized end-to-end with
differentiable softmax approximation [178]; this allows to generate sentences with constraints on
sentiment and tense. Given an input sequence and a set of labels, sequence transduction with
multi-space variational autoencoders [527] generates an output sequence that alters the content
of the input sequence according to the constraints specified by the labels; the method is used for
morphological inflection in multiple languages. In general, constrained text generation approaches
assume that constraints need to be known a priori; however, this is not always possible, for eg.,
when suggesting alternative phrases for search queries in real-time, or when generating responses
in dialogue systems according to the dynamics of the conversational context. Recent constrained
text generation approaches control attributes of a generated sequence based on another sentence
example: given two sentences X and Y , the goal is to generate a new sentence Z that follows
the semantics of X and the syntax of Y . To this end, a VAE model with two latent variables
is used to achieve disentanglement in the continuous latent space between syntax and semantics
[58], [18]. Topic guided VAEs [474] use a Gaussian mixture model prior where each mixture
component corresponds to a latent topic extracted from data as opposed to using pre-defined pa-
rameter settings which do not incorporate semantic meaning into the latent codes; the model is used
for text summarization with designated topic guidance. Abstractive and extractive sentence com-
pression with VAEs assumes the existence of a background language model from which a latent
summary sentence is drawn first, and then the observed sentence is generated conditioned on the
latent summary [308]; the model is able to balance copying a word from the source sentence with
generating it from the background distribution. Iterative refinement of a sequence to transform
it into another sequence with desired attributes exploits geometry of the latent space to produce
incremental higher-quality revisions with theoretical guarantees in the combinatorial space of se-
quence elements [318], [416]. Such latent variable manipulations allow to rewrite modern text
in the language of Shakespeare, improve sentence positivity, address word substitution and word
order recovery tasks without need for any revision examples. Constraints on the use of metaphor
and personification in poems are incorporated in a conditional VAE with a rhetorically controlled
decoder trained to emit meaningful and diverse rhetoric and overcome generic sentences [279].
Variational neural machine translation [509] incorporates a continuous latent variable to model the
underlying semantics of sentence pairs. Nevertheless, efficiently performing posterior inference
and large-scale training during the incorporation of latent variables remains an open challenge for
constrained VAEs.

Modifying textual attributes of sentences including sentiment, style, tense, voice, mood and
negation is achieved by incorporating conditioning information into a neural encoder-decoder
model, and optimizing a reconstruction loss which interpolates between auto-encoding and back-
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translation components to encourage content compatibility, as well as an adversarial loss which
encourages sentence-level stylistic attribute compatibility [280]. The model allows simultaneous
conditioning on multiple textual attributes, however the extent to which the generated sentences
match the conditioning information requires new objective evaluation metrics for attribute accuracy
and content compatibility/preservation.

Style transfer between scientific papers and newspapers is performed with separate style de-
coders, or by generating both content and style from the same decoder [123]. In poetry generation,
it is common to impose hard constraints on rhyme, rhythm, and topic [134], [135]. Given a user-
supplied topic, the poetry generation algorithm first generates a large set of on-topic words and
phrases, assigns rhyming words and phrases to specific lines, and then combines finite-state ma-
chinery with an RNN language model to score plausible poems that meet the desired constraints.
While augmenting an RNN with a working memory to explicitly maintain a limited history of
generated topics and context, coherence in meaning and topics across the overall poem remains an
important challenge [515]. Constrained recurrent models are also used to generate online product
reviews of certain topic, sentiment, style and length [113], affective dialogue responses [136], or
for modeling participant roles and topics in conversational systems [305].

Alternative non-autoregressive architectures based on continuous diffusion models are adapted
for text generation with semantic and syntactic constraints [500], [8], [144]. Diffusion-LM [258]
gradually denoises a sequence of Gaussian noise vectors into word vectors, resulting in a hierarchy
of continuous latent representations which enables gradient-based methods to steer the text gener-
ation process. Nevertheless, training of diffusion models is slower to converge and decoding from
these models takes longer time. To speed up the inference process, adaptive sampling strategies
are applied for different generation stages in the context of story generation [452].

Format and Utility constraints Text simplification models parameterized on constraints such as
length, amount of paraphrasing, degree of lexical and syntactic complexity are used for generating
texts easier to read and understand with simpler grammar and structure [298]. Towards a similar
goal of controlling the degree of lexical complexity, the training loss function is changed to assign
weights to words based on their complexity level [328]. In text summarization, constraints on the
output sequence length for neural encoder-decoder models are specified as length embeddings and
are passed as additional input to the decoder [211].

Faithfulness in abstractive text summarization is enforced in a seq2seq model by condition-
ing on both the source text and extracted factual descriptions [46]; this helps avoid generating false
facts in the output summary. Hybrid text summarization approaches combine an unsupervised sen-
tence extractor which selects salient sentences from the input document with a sentence abstractor
that paraphrases each extracted sentence to overcome limitations of parallel aligned datasets [327].
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Reinforcement learning is used in the context of constrained natural language generation to di-
rectly optimize non-differentiable reward functions and evaluation metrics. While any user-defined
reward function can be employed for training, most frequently optimized metrics with RL are
BLEU for machine translation [375], ROUGE for text summarization [375], [351], [488], [127],
or human-defined conversation metrics focused on coherence, informativeness, sentiment, polite-
ness, toxicity, question, repetition or semantic similarity [255], [389], [488]. However, manually
defined reward functions based on heuristics cannot cover all crucial aspects of a natural realistic
conversation [32], [127]. In addition, rewards are commonly modeled at the word level accounting
for the probability of generating each word in a sentence [375], [187]; such low-level control makes
credit assignment challenging since the number of actions available to the RL agent is equivalent
to the number of words in the vocabulary. Defining a global score that measures complex aspects
of text quality beyond local n-gram patterns and which can reliably approximate human judgments
of text quality remains an open challenge [32].

In the RL framework the generative model is seen as an agent with parameters that define a
policy and which interacts with an external environment by taking actions, receives a reward once
it reaches the end of a sequence and updates its internal state consequently. To this end, policy
gradient methods are used to train text generative models and alleviate issues such as exposure
bias and loss functions which do not operate at the sequence level. However, policy gradient
algorithms present large variance and generally struggle in settings with large action spaces such
as natural language generation. In addition, they take very long time to converge [64] and the
improvement in the optimized metrics is not always reflected in human evaluations of text quality.
Training RL models to optimize n-gram evaluation measures based on local patterns provides only
a limited and myopic perspective of overall text quality and does not necessarily lead to better
text quality, overall coherence or discourse structure [32]. Moreover, fine-tuning on such measures
may yield deteriorated outputs despite increased automatic scores, while difficulty in constrained
optimization with RL often leads to sparse, non-informative and delayed reward signals.

Learning RL rewards from human preferences aims to incorporate human feedback in text gen-
eration and teach models to follow human instructions [338], [333], [334]. Neural reward learning
schemes train neural teachers that learn to score an ordered sequence of sentences and formulate
rewards that guide coherent long text generation [32]; the approach is used for generating cooking
recipes given the dish title and the set of ingredients as constraints. Learning-to-rank algorithms
are used to approximate ground-truth oracle rewards in extractive multi-document summarization
to indicate the quality of a summary or preferences over summary pairs [127]. Machine learnabil-
ity of human rewards in neural machine translation models is approached by first training reward
estimators on rewards collected from offline logs, then integrating these reward estimators in an
off-policy RL setting [225]. Similarly, implicit human reactions such as sentiment or length of
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a conversation are used to learn rewards for fine-tuning off-policy RL models for dialog [187].
Nevertheless, human feedback is noisy, not well-defined, complex and inconsistent. Using RL to
improve system outputs with respect to human-centered metrics of conversation quality is highly
dependent on developing robust metrics tailored to the particular application domain, for eg. in-
creasing politeness of a technical-support system or reducing toxicity of generated language.

Hard-constrained text generation in a non-monotonic order relies on a tree-based text generation
scheme, where a word is generated at an arbitrary position in the sentence, then binary trees of
words to its left and right are recursively generated [478]. Learning proceeds in an incremental
fashion in an imitation learning framework, where the policy gradually moves from imitating the
oracle to reinforcing its own preferences and generating texts without a pre-specified word order.
Nevertheless, the time complexity of the approach is O(n), same as for autoregressive models and
the constructed tree does not reflect a high-level to low-level hierarchy of concepts.

2.5.6 Prompting Large Language Models

The paradigm of prompt-based learning, which became popular with the release of OpenAI GPT-
3 [36] model, demonstrates it is possible to elicit factual and commonsense knowledge from
large language models and steer them towards desired behaviours via a textual prompt. Instead
of adapting models to downstream tasks via objective engineering as it is common during fine-
tuning, prompt-based learning reformulates downstream tasks to resemble those encountered dur-
ing the language model pre-training phase where a fill-in-the-blanks objective is used [274]. While
prompting allows for manipulating the model behaviour to predict desired output, sometimes even
without additional task-specific training, model performance on a given task is highly dependent
on the quality of the prompt used to steer the model and how much conditioning text can fit into the
model’s input. In general, identifying the most appropriate prompt for a task is a challenge in itself.
While prompting provides a natural interface for humans to communicate with machines, human
users have little knowledge of which instructions are compatible with a given model and need to
experiment with a wide range of discrete prompts to find suitable ones that elicit desired behaviours
[531]. Given that plain language prompts do not always produce the intended results, automated
methods for prompt design are proposed in the literature, including searching over the discrete
space of words guided by training data [425], prefix tuning which optimizes a task-specific con-
tinuous vector [259], [158], prompt tuning which learns soft prompts via backpropagation [246],
[364], natural language prompt engineering where large language models themselves generate
meta-prompts for solving a wide range of tasks [382], [531] or inverse prompting which uses the
generated text to inversely predict the prompt [538]. Directional Stimulus Prompting [260] guides
black-box language models such as ChatGPT [333] towards desired outputs by optimizing a pol-
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icy model trained to maximize rewards that measure the alignment between the generated text and
desired topics and keywords on tasks such as text summarization and dialogue response generation.

While there is not much theoretical understanding behind the reasons why and how prompting
works, it is assumed that prompting provides a way to steer large language models in particular di-
rections by helping locate a specific task in the pre-trained model’s existing space of learned tasks,
phenomenon evidenced by the superior performance of some prompts over others [382]. Never-
theless, prompting large language models is far from sufficient for robust and reliable constrained
text generation. Prompting approaches must be employed with caution, as models can deviate
from the original prompt, fail to maintain the coherence and produce texts on unrelated topics
[538], and even degenerate into toxic text from seemingly innocuous prompts [130]. In improving
prompting reliability, it is important to account for generalization outside of distribution, reducing
social biases, ensuring fairness to different demographic groups, calibrating output probabilities
and updating the model’s factual knowledge and reasoning chains [426].

Prompting Considerations Large language models leverage vast amounts of information they
learn from web-scale pre-training datasets which they store in their parameters, resulting in im-
proved performance on many knowledge-intensive tasks [36], [333], [334]. Nevertheless, it is
important to understand what kind of knowledge LLMs actually capture. In factuality assessments
of LLMs, it is found that current systems tend to hallucinate and make up facts [303], [449], [528],
[267], and this behaviour becomes more predominant as the rarity of entities increases [312]. There
is a strong correlation between the correctness of answering factoid questions and the number of
pre-training documents relevant to that question [196]; models are more accurate on instances
whose terms are more prevalent in the training data, and struggle on questions containing long-tail
terms with low document count. Similarly, mathematical reasoning capabilities are correlated with
training data frequency, and the selection of the training corpus does impact the few-shot perfor-
mance of LLMs [377], [424]. These findings suggest that low-order co-occurrence statistics in
the pre-training dataset have a significant impact on model performance, leaving the open ques-
tion of the extent to which current models generalize beyond the training data. Ideally, a general
purpose language model is able to generalize not only to unseen instances of known tasks but to
new tasks as well, however current LLMs are found to rely on narrow, non-transferable procedures
for task solving specialized to tasks seen during pre-training [489]; in counterfactual settings their
performance degrades considerably, indicating overfitting to training tasks.

2.6 Constrained NLG Evaluation

Evaluation of constrained text generation is performed using the same evaluation approaches and
methodologies available in the natural language generation literature. In general, evaluation of the

34



generated text is largely an unsolved and notoriously difficult problem [31]. Currently, there is no
well-established consensus on how NLG systems should be evaluated, [461], [139], and the lack
of meaningful quantitative evaluation metrics to accurately assess the quality of trained models is
detrimental to the progress of the field. In the absence of well established evaluation measures,
natural language evaluations are carried in a rather ad-hoc manner with a lot of variability across
the proposed models and tasks on inconsistent benchmarks, resulting in misleading performance
measures. Subjective evaluations based on visual inspection of the generated samples often lack
scientific rigour, making it difficult to quantify and judge precisely the quality of a generative model
[162]. In what follows we review the main methods for constrained text generation evaluation.

Lexical constraints Measuring how many of the given lexical constraints are included in the
generated outputs is done using concept coverage [264], [286]; the metric is computed as the the
average percentage of input concepts that are present in the lemmatized outputs.

Semantic and syntactic constraints Surface similarity based on n-gram overlap metrics, such
as BLEU [345], ROUGE [265], METEOR [16] measure to what extent the generative model can
preserve content by retaining words commonly shared between the generated output and ground-
truth references. Such metrics are commonly used to measure response relevance in dialogue sys-
tems [124], [254], translation quality in neural machine translation [406], assess summary quality
in text summarization [402]. In general, the correlation between word overlap metrics and true
text quality is a widely debated topic [255]. Evaluation metrics based on local n-gram patterns
only provide a limited and myopic perspective of overall text quality and are notoriously poor at
evaluating dialogue systems [270], [403], [32].

Perplexity [189] based evaluation metrics are used to evaluate and compare language models,
and measure the fluency and diversity of the generated samples [296], [32], [254]. Reverse Per-
plexity [522] and Forward Perplexity [213] scores are calculated by training language models on
synthetic samples, respectively real samples, and then using these trained models to measure per-
plexity real samples, respectively generated samples. Nevertheless, perplexity is a model depen-
dent metric, and “how likely a sentence is generated by a given model” is not directly comparable
across different models. Moreover, numerous studies find perplexity to be an inadequate measure
of text quality [455], [111], since models with high likelihood can generate low-quality samples,
while samples of good quality can present low likelihood. In addition, infinite perplexity can still
be obtained from a perfect model even when its ability to generate test sentences is removed [162].

P, R, F1 are used to measure the distance of the generated samples to the real data manifold
[290]. When precision is high, the generated samples are close to the data manifold, and when
recall is high, the generator outputs samples that cover the manifold well. Metrics that aggregate
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precision and recall such as Fβ , a generalization of the F1 score, are used to quantify the relative
importance of precision and recall [388]. Nevertheless, the data manifold of non-synthetic data is
unknown and therefore impossible to compute in practice.

Content diversity measures how different the generated sentences are from each other, by either
considering word choice, topic and meaning [465], [138], [181], or by looking at the level of
sentence interestingness or unlikeliness [162]. Perplexity on a reference set, n-gram diversity [253]
and Self-BLEU [534] are commonly used measures of the diversity of the generated samples. In
addition, Backward-BLEU [421] evaluates test data using the generated samples as reference; the
higher the score the more diverse the generator output. Lexical diversity [9] calculates the ratio
of unique tokens to the total number of generated tokens. Similarly, Distinct-k or Dist-k [253]
measures the total number of unique k-grams normalized by the total number of generated k-
gram tokens to avoid favoring long sentences. Nevertheless, the Dist-k metric ignores the fact that
infrequent k-grams contribute more to diversity than frequent ones and assign same weight to all
k-grams that appear at least once. Distinct-1 and Distinct-2 are used to measure the diversity of
constrained conversational responses [12], [518] and rhetoric constrained generated poems [279].
Entropy based metrics such as Ent-k [518] reflect the frequency difference of k-grams and to
analyze the information content of the generated responses in dialogue systems [409], [316].

Unlike traditional evaluation metrics based on heuristics, learnable metrics train machine learn-
ing models on human annotated datasets to learn a scoring function that reproduces human judge-
ments. Fully-learnt metrics leverage existing datasets of human ratings to learn automated evalu-
ation metrics that fit the human data distribution, and can be tuned to measure specific properties
of the generated texts, such as fluency, style, grammaticality, fidelity, etc. Linear regression based
on human judgements is used to learn a model for scoring system summaries [356]. RUSE [423]
combines sentence embeddings in a multi-layer perceptron regressor model. ESIM [59], [301]
feeds the encoded representations of the candidate and the reference sentence into a feedforward
regressor. BLEURT [404] fine-tunes BERT [89] on human ratings datasets for similarity score pre-
diction. MAUDE [428] is proposed for the evaluation of online dialogue conversations and lever-
ages sentence representations from pre-trained BERT to train text encoders which can distinguish
between valid dialogue responses and fake examples. BARTScore [506] formulates the evaluation
of generated text as a text generation task from pre-trained language models and measures the
weighted probability of the generated text given another text as input or output. GPT Judge [267]
fine-tunes GPT3 [36] model on human annotated data to clasify answers of QA systems as true or
false, evaluating factuality and truthfulness. The same evaluation metric, this time based on GPT-4
[334], is used to establish via prompting whether texts generated by GPT-4 are more similar to
human-written reference answers or GPT-3 machine-generated texts. GPTScore [121] computes
the conditional probability of generating the target text given specific context. FactScore [312]
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breaks generation into atomic pieces of information and evaluates the factual precision of long-
form text by measuring the percentage of atomic facts supported by a reliable knowledge source.
Other evaluation metrics based on probabilities inferred from pre-trained masked language models
include InfoLM [73], CTRLEval [203], MaskEval [278]. Hybrid metrics combine learnt elements
with human-defined logical rules, for example, contextual embeddings with token alignment rules.
BERTscore [514] evaluates generated text against gold standard references using soft-string sim-
ilarity matches (i.e. cosine similarity) computed on pre-trained contextualized BERT [89] token
embeddings. MoverScore [523] combines contextualized representations of system and reference
texts with semantic measures of distance computed using Word Mover’s Distance [229]; the metric
is extended to evaluate multi-sentence texts [69]. Human and statistical evaluation are combined in
HUSE [162], an evaluation framework which estimates the optimal error rate of predicting whether
a piece of text is human-written or machine-generated. However, a limitation of learned evaluation
metrics is that they generally fail to generalize well across different systems [53].

Utility constraints A commonly used approach in the literature to assess whether generated
texts have desirable attributes is to rely on an attribute classifier and measure the classification
score, i.e. the fraction of outputs generated by the model having the desired attribute [178], [416],
[257]. Adversarial evaluation [33], [199] employs an evaluator trained to distinguish machine-
generated from human-written texts, analogous to the discriminator in GANs [146]. On this note,
pre-trained attribute classifiers and class-specific discriminators measure how well the generated
samples match the conditioning labels on attributes such as sentiment, tense, voice, mood and
negation [280], [256], [38], guarantee the accuracy of stylistic text transfer [521], [416], or are
used to evaluate biases against certain demographics and quantify model fairness in downstream
settings [45], [299], [228]. GLEU [323] was originally proposed for grammatical error correction,
and later adopted for the evaluation of text style transfer since both tasks require localized edits to
the input sentence; GLEU is found to present a reasonable balance between target style match and
content retention [440].

Readability metrics such as Flesch-Kincaid Grade Level [214] and Flesch Reading Ease [118]
are used to account for simplicity and measure the reading difficulty of a piece of text. Both
metrics are computed as linear combinations of the number of words per sentence and number
of syllables per word with different weighting factors. Even though these metrics are frequently
used to measure readability, are fast and easy to compute, they should not be used on their own
but in combination with metrics that capture the grammaticality and meaning preservation of the
generated output [490]. In addition, they were not designed for measuring text readability in
scientific or specialized domains, and are only available for the English language.

All constraints While automated evaluation helps assess generated texts quickly and cheaply,
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the use of automated evaluation metrics is dependent upon their correlation with human judgements
of quality [119]. Human evaluations remain the gold-standard in natural language generation
and automated evaluation metrics can only be used as a proxy for human judgements only when
there is reasonable correlation with human decisions. Ideally, automated evaluations are carried
simultaneously with human annotation studies, and not as a replacement of human evaluations.
In text style transfer, human evaluations are conducted to determine how accurately constrained
text generation methods identify stylistic textual attributes in the source input and replace these
with desired target attributes in generated sentences [440]. In conversational systems, responses
generated by open-domain chatbots are evaluated across two dimensions: i) humanness, as a proxy
for the fluency and coherence of the generated responses, and ii) attribute consistency, to determine
whether the style and topic enforced by the generation model are well captured [296]. Human
evaluations are also carried to determine the plausability of the generated response, as well as to
measure its content richness and how much new information it adds to the conversation) [12].
Outputs generated by neural conversational systems are also assessed for quality, style and topic to
determine whether the acquisition of styles of famous personalities, characters, or professionals is
achievable, and whether the conversational topic can be steered in particular directions [471].

Limitations of current evaluation metrics Given the wide diversity of evaluation paradigms
in the field of NLG, it becomes challenging to objectively compare models and research progress
when different evaluation metrics are employed in each work. By far, human-quality texts are
considered the ground-truth for evaluating the output of NLG systems, serving as an upper bound
measure of their performance. However, collecting human-quality texts and/or soliciting human
judgements of text quality is a costly and time-consuming process which requires careful design
choices. Often times automated metrics that present reasonable correlation with human evalua-
tions of text quality are used as a proxy for human judgements, however these metrics come with
their own limitations. A common complaint is the lack of good ways to encode what constitutes
human-quality output in an automated metric [68]. In addition, shortcomings of current evaluation
metrics include poor correlations with human judgements, lack of interpretability of their scores,
the presence of bias in evaluations, poor adaptability across tasks and inability to capture all nu-
ances in a task [209]. In what follows we discuss limitations of existing evaluation metrics hoping
to inform on the development of more robust evaluations for NLG systems.

Word Overlap metrics measure the lexical overlap between the model generated text and a
set of human-written references. Metrics such as BLEU [345], ROUGE [265] and METEOR [16]
allow for fast and inexpensive development cycles and have been widely adopted for evaluating
the output of natural language generation systems based on their correlation with human judge-
ments at the time they were introduced, nevertheless their use is not without problems. On the
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one hand, the choice and quality of references is critical for improving the correlation between
human and automated evaluation [120]. Current evaluation metrics are biased towards assigning
higher scores to outputs that share a similar style with the reference, therefore collecting only
a single style of references fails to reward systems that produce alternative but equally accurate
outputs [360]; besides, collecting human-written references for new tasks is costly. On the other
hand, these metrics assume that valid machine-generated responses present a significant degree of
overlap with ground-truth references; this is problematic for open-ended text generation tasks that
require diversity and creativity (for eg., dialogue generation), and in such cases their correlation
with human judgements is relatively low [277], [270], [148], [404]. For the evaluation of text
simplification, BLEU presents weak or no correlation with grammaticality and meaning preserva-
tion for sentence splitting operations, therefore penalizing simpler sentences [441]. In addition,
improvements in BLEU do not necessarily reflect an improvement in machine translation quality
and there is a huge amount of variation for identically scored hypotheses [43] (i.e. a wide variety
of candidate outputs receive the same score when they present the same degree of overlap with
the reference although they greatly vary). Word overlap metrics are also insufficient for measuring
factual correctness of text summarization and fail to correlate with human judgements of factuality
[107], [226], [342]. Even more concerning is that the great majority of automated metrics, and in
particular conventional reference-based metrics such as BLEU [345] and CIDER [464], are found
to overrate machine-generated text over human-written text even though the machine text falls
short of humans [200]. In addition, BLEU and ROUGE fail to accurately measure content quality,
capture syntactic errors and do not reflect the reliability of NLG systems [379], [437]. Using such
evaluation metrics to compare systems may lead to drawing inaccurate conclusions, gives the false
impression of progress to the research community and actively discourages the development of
stronger human-like generative models.

Since BLEU is based on n-gram precision, lexical differences between the hypothesis and refer-
ences are aggressively penalized even when they are similar or synonymous to the reference. Given
that no partial credit is given if an n-gram does not exactly match a sub-sequence of the reference,
BLEU is also hard to optimize due to the fact that learning objective is flat and cannot hill-climb
through intermediate hypotheses that have high semantic similarity or synonymy, but low n-gram
overlap [480]. Alternative metrics based on word embeddings are easier to optimize as they output
continuous values and capture fine-grained distinctions between similar outputs [480]. When used
for measuring the quality of back-translations for data augmentation, BLEU only shows signifi-
cant improvements for test examples if the source itself is a translation [101]; whenever references
are translations and the source itself is natural text, BLEU fails to capture human preference for
source original sentences. While the use of multiple references substantially improves reference-
based metrics, often times evaluations are conducted using a single human-written reference per
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instance; in such cases strong referenceless metrics frequently achieve higher correlation with hu-
man judgements [378]. Developing evaluation metrics that correlate well with human judgements
on an instance level could serve to augment and validate human annotations.

To overcome the limitations of reference-based evaluation metrics, reference-free natural lan-
guage evaluators are proposed [121], [473]. Simultaneously, evaluating the quality of generated
texts based on a form-filling paradigm leverages large language models with chain-of-thoughts
[277]: given a prompt that defines the evaluation task and desired evaluation criteria, the language
model generates a chain-of-thought with detailed evaluation instructions based on which it will
then score the generated text according to the defined criteria. While LLM-based metrics seem
to outperform reference-based and reference-free evaluation metrics in terms of correlation with
human judgements for open-ended and creative NLG tasks, they are very sensitive to the instruc-
tions and prompts given. Moreover, they tend to prefer LLM-generated texts over high quality
human-written texts, which leads to biased predictions especially when used as reward signal for
improving themselves. Using language models for “self-evaluation” indicates their predictions are
well calibrated for token probabilites in-distribution, but they struggle with calibration in settings
outside of the data distribution [194].

Model-Based Evaluation metrics are becoming increasingly popular for NLG evaluation due
to powerful representations learnt by pre-trained language models and high correlations with hu-
man judgements of text quality. However, current language models have well-known flaws and
limitations, for example they assign high likelihood to degenerate texts, i.e. output that is bland,
incoherent, or repetitive [169], can be insensitive to perturbations such as word order random-
ization [357], negation [105] or named entity replacements [15], exploit superficial cues through
the use of the self-attention mechanism [357] and exhibit naive understanding of the meaning of
sentences without complex reasoning [384]. To investigate the extent to which model-based eval-
uation metrics suffer from the same limitations as black-box pre-trained language models, stress
tests are used to complement human correlation tests and detect the blind spots of evaluation met-
rics [163]. The authors construct a noised hypothesis set by applying different synthetic errors to
ground-truth human-written references; if this noised hypothesis set is not scored worse than the
original unperturbed set, it means the evaluation metric fails the corresponding stress test. Stress
tests reveal that model-based evaluation metrics can be insensitive to errors at the start and mid-
dle of the generations when based on pre-trained models that do not encode long-range context,
their judgement can be mislead by simply injecting valueless text spans into the hypotheses, are
biased towards frequent n-grams, present a self-evaluation bias by unfairly ranking generations
from their underlying base pre-trained language model higher than better quality generations from
larger models, fail fluency tests (lemmatizing verbs, removing articles, prepositions or tokens at the
end of the hypothesis) and consistency tests (sentence switching, replacement or negation). While
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some model-based metrics perform better than others, it is important to recognize their limitations
and use each metric with awareness of its blind spots. To mitigate the risks of drawing inaccurate
conclusions based on a single metric, using combinations of evaluation metrics that cover each
other’s blind spots is recommended. For example, evaluation metrics based on pre-trained lan-
guage models that encode long range context could be more robust to errors in the beginning or
middle of the generations, valueless text span injections can be identified by word-overlap based
metrics such as ROUGE [265], biases towards frequent n-grams can be detected by using diversity
metrics, and truncation errors can be recognized via precision, recall and F1 scores. In addition,
to mitigate unfair biases it is desirable to avoid using the same pre-trained language model for
generation as well as base for the evaluation metric, or comparing different pre-trained models
using an evaluation metric that relies on one of these models. Finally, adding explainability on top
of black-box evaluation metrics can help identify system quality issues and increase trust in the
evaluation of NLG systems [244].

Human Evaluation is considered the gold standard for the evaluation of NLG systems, how-
ever there is no consensus on how these human studies should be conducted [139], [461]. The large
variability in the design of human evaluations leads to difficulty in comparing results across dif-
ferent studies and also impacts the reliability of the inferred conclusions. The lack of consistency
in human evaluation can be attributed to different factors such as the level of expertise of human
annotators, their cognitive biases, ambiguity of the annotation task itself, or the actual wording of
questions and instructions presented to participants, i.e. “how something is asked as opposed to
what is asked” [399]. Untrained human evaluators may provide inconsistent results and contra-
dictory reasons behind their judgments, leading researchers to state that ”all that’s human is not
gold” [68]. Unsurprisingly, selecting a different subset of annotators can lead to different conclu-
sions due to variations in individual annotators’ understanding of the annotation scheme [5]; in
general, it is hard to decompose, interpret and validate crowdworker evaluations [200]. Depending
on the evaluation setup, it may be sensible to use qualified evaluators who have gone through an
extended training and can provide more reliable annotations. Moreover, improving the robustness
and transparency of human evaluation guidelines is essential for increasing the reliability of hu-
man annotations. As the fluency of generated texts is improving, it is important to not only focus
on surface-level aspects of text quality when conducting human evaluations, but to also assess the
informativeness and usefulness of generated texts in downstream settings [68].

Future Outlook While so far we have reviewed limitations of existing evaluation metrics, we
would also like to note the metrics that are missing or are under-represented in the literature, par-
ticularly metrics for measuring the trustworthiness, factuality, fairness, bias, toxicity, efficiency,
diversity, uncertainty quantification, calibration and robustness of text information systems. In
addition, it is important for the community to focus on the interpretability aspect of evaluation
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metrics, particularly for model-based evaluations that currently function as a black-box [244]. In
the era of large language models, aspects such as knowledge, reasoning, memorization/copyright
and disinformation are becoming increasingly important to quantify and analyze for NLG systems
[261]. Special attention also needs to be paid to existing datasets used to evaluate the general-
ization abilities of state-of-the-art methods to ensure there is no overlap between the train set and
the test set; in such cases, evaluations inadvertently measure memorization instead of the model’s
ability to generalize, giving the false impression of improvements in performance [102]. Large lan-
guage models in particular are known to memorize parts of their training data, phenomenon which
becomes more predominant with increasing the model capacity and the repetition of training ex-
amples [47], [377]. On top of this, given that LLMs are trained on web-scale datasets, evaluations
are subject to potential data contamination issues [489], [94], [297]. Therefore, interpreting evalu-
ation results must be done with caution accounting for the source pre-training data in determining
to what extent current models generalize vs simply memorize training examples [377]; this also
highlights the need to reconsider and redefine evaluation schemes for LLMs. Finally, it is impor-
tant to consider how advances in generative models can benefit and inform the development of
more suitable evaluation techniques, and vice versa. Bidimensional leaderboards [200] that simul-
taneously track progress in language generation models and evaluation metrics can bridge the gap
between generation modeling and evaluation research. As generation models continue to improve,
it is important to keep reassessing and updating evaluation metrics so that they accurately reflect
the target objectives and correlate with human language use in the real world [507].

2.7 Constrained NLG Benchmarks and Datasets

The collection of datasets that capture a wide diversity of constraints and are representative of
many real world situations are critical for advancing safe and robust constrained text generation.
Existing benchmarks focused on politeness [294], formality [376], sentiment [416], writing style
[190] are rather limited in nature and do not offer fine-grained control over stylistic attributes.
StylePTB [292] aims to allow compositional transfer over a wider range of fine-grained stylistic
constructs, including lexical, semantic, stylistic and thematic transfers.

CommonGen [264] benchmark proposes the task of constrained text generation with gener-
ative commonsense reasoning, where given a set of concepts the task is to generate a coherent
sentence describing an everyday scenario using the given concepts. To do this successfully, the
generative model must reason over commonsense relations between the given concepts (relational
reasoning), and infer novel combinations of familiar concepts (compositional generalization). Pre-
liminary analysis shows that current state-of-the-art pre-trained models struggle at the task and
generate implausible sentences by a large margin. Other benchmarks proposed in the literature
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focus on avoiding model hallucinations and assessing the veracity and factuality of current models
[164], [27], [448]. TruthfulQA [267] benchmark is proposed for measuring the factual accuracy
and truthfulness of QA systems. Surprisingly, in their preliminary experiments the authors find
that larger language models are less truthful than smaller language models from the same family,
neverthleless they are more informative. RealToxicityPrompts [130] aims to measure the extent to
which toxic degeneration of large language models can be avoided, and the effectiveness of steer-
ing text generation algorithms away from producing racist, sexist and toxic content. Ideally, we
want to have NLG models that are controllable, truthful, informative and perform well in the real
world, however current pre-trained large language models can degenerate into toxic texts even from
seemingly innocuous prompts. Moreover, performance of current models on existing benchmarks
is not necessarily representative of their performance in practice. The research community not only
needs better evaluation metrics (as outlined in Section 2.6), but also better benchmarks. Given the
fragility of current NLG benchmarking practices, fallacious interpretations can be derived [86].
To minimize the discrepancy between model performance on a given benchmark and its actual
usefulness when deployed in real-life situations, benchmarks used for assessing the capabilities of
current NLG systems should accurately reflect the end task of interest, as well as the wide diver-
sity of scenarios and constraints encountered in practice. Motivated by the observation that new
advances in metrics and models should more directly inform and benefit each other, bidimensional
leaderboards [200] are proposed to track progress in both generative models and evaluation metrics
for constrained text generation tasks such as machine translation, text summarization and image
captioning. Nevertheless, a larger issue in terms of natural language evaluation is the gap between
how humans use language in the real world, and what current benchmarks can measure [507].
In addition, many datasets are not an effective indicator of model generalization and real world
performance, particularly in the presence of overlap between the train and test sets, leading to in-
flated evaluation results [102], [94]. Besides, since massive web-based datasets used to train large
language models are often “contaminated” with downstream test sets, it is important to conduct in-
depth analyses to disentangle genuine progress in natural language understanding/generalization
from rote memorization [297]; overlooking the impact of pre-training data can result in misleading
interpretations of model performance [377]. Finally, we would like to draw attention on the lack
of resources (datasets and evaluation metrics) for many languages other than English.

2.8 Discussion and Open Challenges

In what follows we review the main challenges associated with constrained NLG outlining why
these challenges have not been solved yet, and present the most promising research directions.

In our view, constrained text generation is a more difficult problem compared to other instances
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of text generation. The difficulty arises from a multitude of factors, including lack of model expres-
siveness which makes it difficult for current models to incorporate constraints into the objective
function, lack of suitable evaluation metrics to assess the extent to which constraints are satisfied
(which becomes even more challenging in the presence of multiple constraints), difficulty in the
constrained optimization of non-differentiable reward functions, and finally lack of constrained text
generation datasets that are illustrative of a wide diversity of constraints. Due to these pressing is-
sues, constrained text generation remains an open challenge in the research community. Advancing
the state-of-the-art requires considerable more collective and focused effort. Below we identify the
most promising directions for advancing the state-of-the-art for safe and robust constrained NLG.

Multiple constraint satisfaction Most approaches proposed for constrained text satisfaction
focus on generating sentences that meet one single desired constraint, nevertheless generating
sequences that simultaneously satisfy multiple lexical constraints is an important open research
problem in text generative models [271], [236], [176]. While incorporating one constraint is al-
ready hard enough due to lack of model expressiveness, incorporating multiple constraints poses
significant challenges in terms of defining the loss function accounting for all the desired con-
straints, difficulty in optimizing it and evaluating whether each constraint is satisfied. Approaches
that convert the multiple constraint satisfaction problem into allowing the inclusion of pre-specified
lexical constraints at decoding time are not optimal either: on the one hand, decoding complex-
ity increases exponentially or linearly in the number of constraints, and on the other hand forcing
constraints at every step of the generation process impacts the quality and naturalness of generated
texts [361]. Moreover, many model architectures are designed for sequential sentence generation
only (vs. non-monotonic text generation) and it is non-trivial to impose decoding time constraints
while maintaining optimal text generation quality [307].

Dynamically defined constraints Current approaches to constrained text generation assume
there is prior knowledge of the constrained textual attributes and the finite set of values these
attributes can take on. Nevertheless, there are situations when it may be desirable to impose con-
straints dynamically, for eg. in conversational systems depending on the system user’s statements,
reactions and emotions. When dynamically defining constraints, the main challenges are the lack
of model expressiveness and robust ways to evaluate whether these constraints are satisfied. In the
literature, controling the realization of a sentence based on another’s sentence syntax and seman-
tics is a less explored setting for constrained text generation with dynamic constraints which does
not require prior knowledge of all the values the control variable might take on [58]. Disentangled
latent space representations of syntax and semantics are essential for the manipulation sentence
attributes in tasks such as unsupervised paraphrase generation and syntax-transfer generation [18].

Generative reasoning Current large-scale text generation models display impressive ability to
generate fluent texts, nevertheless composing realistically plausible sentences in the presence of
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constraints remains a significant open challenge. This is illustrative of all challenges associated
with constrained text generation, including lack of model expressiveness, lack of suitable evalua-
tion metrics, difficulty in constrained optimization and lack of constrained text generation datasets.
Nevertheless, endowing generative models with commonsense reasoning abilities is an important
milestone towards advancing machine understanding and intelligence. Generally, the great major-
ity of models proposed in the literature only exploit superficial cues via self-attention to solve NLP
tasks, without relying on syntactic information or complex reasoning [357].

Attribute specific datasets The lack of annotated datasets for attribute specific text generation
constitutes a bottleneck in the development and adaptation of models for tasks that require fine-
grained control over style and topics. For example, in dialogue systems the absence of attribute
annotated conversational datasets that can be used for fine-tuning large scale pre-trained models
limits control over the generated responses for a desired attribute [296]. Moreover, such attribute
annotated datasets can help with the personalization of dialogue systems, make dialogues safe,
supportive and engaging [408], [513]. Personalized dialogue agents that display consistent per-
sonalities and viewpoints overcome the unsatisfying experience of a persona-free chit-chat model.
Nevertheless, imposing conversational goals on a dialogue agent for learning target-guided strate-
gies requires keyword-augmented conversation datasets for learning how to steer the conversation
towards a designated target subject [451].

Rule constraints While most research that is currently trying to address constrained text gen-
eration is focusing on the incorporation of pre-defined utility or lexical constraints, the satisfaction
of rule based constraints is equally relevant, particularly when used to define format and syntac-
tic conditions on the output. However, the lack of model expressiveness makes it challenging to
incorporate rule based constraints into the loss function at training time. We encourage more ef-
fort in this direction likely to open a plethora of new possibilities in how constraints are specified,
incorporated and satisfied in models particularly designed for constrained neural text generation.

Evaluation of constrained text generation In general, evaluation of text generative models is
an open challenge. The field is missing robust automated evaluation metrics that correlate with hu-
man judgements across multiple dimensions of text quality. Evaluation of models for constrained
text generation is currently done using the same flawed existing metrics commonly used in un-
conditional and conditional text generation evaluation, or in an informal way often times in the
absence of a rigorous evaluation procedure. Human evaluation remains the gold standard way to
assess text quality, however designing evaluation metrics tailored specifically at assessing whether
generated texts meet desired constraints altogether with new benchmark datasets for the evaluation
of constrained sequence generation are important next steps [236].

Adversarial Attacks Adversarial examples exploit vulnerabilities in text generation models
and represent an active research area. Adversarial triggers in the form of input-agnostic sequences
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of tokens concatenated to any input dataset can trigger a pre-trained language models to produce
biased, racist and discriminatory outputs even when these models are carefully fine-tuned and op-
timized against adversarial triggers [468]. Gradient-based adversarial trigger phrase search tech-
niques are used to generate input prompts to a pre-language model that induce biases in the gen-
erated output and allows to study strategies for bias mitigation [418]. Constrained text generation
models that are robust to adversarial attacks are needed for the beneficial use of machine learning
and artificial intelligence technology in real world applications, as well as to mitigate any potential
societal harms and biases associated with the deployment of large pre-trained language models.

While the above directions outline some of the most pressing research challenges associated
with constrained text generation, it is nevertheless a non-exhaustive list of all research problems
that need increased attention. Other important open challenges include the use of constrained text
generation for personalized agents in a wide variety of contexts, such as in dialogue settings [513],
and new benchmark datasets that are reflective of real-world constraints for both training/fine-
tuning and evaluating constrained text generation models.

2.9 Contributions/novelty of this dissertation

In this work, we have presented the reasons why constrained natural language generation is an
important, yet highly challenging and largely unsolved research problem. Our first contribution
consists in clarifying the difference between the ambiguous use of unconditional, conditional and
constrained terms in the natural language generation literature, and draw clear boundaries between
these concepts by exemplifying instances of natural language generation tasks with their associated
conditions and constraints. Among different paradigms of text generation, we consider constrained
text generation to be particularly challenging (if not the most challenging), yet also extremely use-
ful. We identify general reasons why constrained natural language generation deserves significant
more attention in the research community, including the lack of model expressiveness in incorpo-
rating constraints into the objective function at training time, difficulty in constrained optimization
algorithms, the lack of suitable evaluation metrics for robustly assessing, comparing model outputs
and claiming success in constrained natural language generation, as well as the lack of constrained
text generation datasets that are representative of a wide range of real-world constraints for train-
ing and fine-tuning these models. We then survey a representative body of recent literature on
constrained text generation using neural networks, presenting the main approaches and methods
used, as well as their limitations. Our work serves as an informative guide for both researchers and
practitioners to become familiar with the current methodology and main challenges, as well as an
advocate for advancing the state-of-the-art in constrained NLG. We invite future work in solving
the outlined challenges for better, useful, safer, robust constrained text generation and evaluation.
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CHAPTER 3

Explainable Prediction of Text Complexity: The
Missing Preliminaries for Text Simplification

In this chapter, we focus on the challenge of lack of interpretability of black-box procedures when
applied to the task of text simplification. Our main contribution is that we show that the ambigu-
ous notion of text simplification can be decomposed into a compact, transparent, and logically
dependent pipeline of modular sub-task that increase the transparency and explainability of text
simplification systems, while also improving the generalization of state-of-the-art text simplifica-
tion models in out-of-distribution settings. This work is presented in:

• Gârbacea, Cristina, Mengtian Guo, Samuel Carton, and Qiaozhu Mei. ”Explainable Predic-

tion of Text Complexity: The Missing Preliminaries for Text Simplification.” In Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing, vol. 1. 2021.

Text simplification reduces the language complexity of professional content for accessibility
purposes. End-to-end neural network models have been widely adopted to directly generate the
simplified version of input text, usually functioning as a blackbox. We show that text simplifi-
cation can be decomposed into a compact pipeline of tasks to ensure the transparency and ex-
plainability of the process. The first two steps in this pipeline are often neglected: 1) to predict
whether a given piece of text needs to be simplified, and 2) if yes, to identify complex parts of
the text. The two tasks can be solved separately using either lexical or deep learning methods, or
solved jointly. Simply applying explainable complexity prediction as a preliminary step, the out-
of-sample text simplification performance of the state-of-the-art, black-box simplification models
can be improved by a large margin.
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3.1 Introduction

Text simplification aims to reduce the language complexity of highly specialized textual content so
that it is accessible for readers who lack adequate literacy skills, such as children, people with low
education, people who have reading disorders or dyslexia, and non-native speakers of the language.

Mismatch between language complexity and literacy skills is identified as a critical source of
bias and inequality in the consumers of systems built upon processing and analyzing professional
text content. Research has found that it requires on average 18 years of education for a reader
to properly understand the clinical trial descriptions on ClinicalTrials.gov, and this introduces a
potential self-selection bias to those trials [486].

Text simplification has considerable potential to improve the fairness and transparency of text
information systems. Indeed, the Simple English Wikipedia (simple.wikipedia.org) has
been constructed to disseminate Wikipedia articles to kids and English learners. In healthcare,
consumer vocabulary are used to replace professional medical terms to better explain medical con-
cepts to the public [1]. In education, natural language processing and simplified text generation
technologies are believed to have the potential to improve student outcomes and bring equal op-
portunities for learners of all levels in teaching, learning and assessment [302].

Ironically, the definition of “text simplification” in literature has never been transparent. The
term may refer to reducing the complexity of text at various linguistic levels, ranging all the way
through replacing individual words in the text to generating a simplified document completely
through a computer agent. In particular, lexical simplification [91] is concerned with replacing
complex words or phrases with simpler alternatives; syntactic simplification [427] alters the syn-
tactic structure of the sentence; semantic simplification [197] paraphrases portions of the text into
simpler and clearer variants. More recent approaches simplify texts in an end-to-end fashion,
employing machine translation models in a monolingual setting regardless of the type of simplifi-
cations [516, 153, 460]. Nevertheless, these models are limited on the one hand due to the absence
of large-scale parallel (complex→ simple) monolingual training data, and on the other hand due
to the lack of interpretability of their black-box procedures [4].

Given the ambiguity in problem definition, there also lacks consensus on how to measure the
goodness of text simplification systems, and automatic evaluation measures are perceived ineffec-
tive and sometimes detrimental to the specific procedure, in particular when they favor shorter but
not necessarily simpler sentences [324]. While end-to-end simplification models demonstrate su-
perior performance on benchmark datasets, their success is often compromised in out-of-sample,
real-world scenarios [79].

Our work is motivated by the aspiration that increasing the transparency and explainability of
a machine learning procedure may help its generalization into unseen scenarios [98]. We show
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that the general problem of text simplification can be formally decomposed into a compact and
transparent pipeline of modular tasks. We present a systematic analysis of the first two steps in
this pipeline, which are commonly overlooked: 1) to predict whether a given piece of text needs

to be simplified at all, and 2) to identify which part of the text needs to be simplified. The second
task can also be interpreted as an explanation of the first task: why a piece of text is considered
complex. These two tasks can be solved separately, using either lexical or deep learning methods,
or they can be solved jointly through an end-to-end, explainable predictor. Based on the formal
definitions, we propose general evaluation metrics for both tasks and empirically compare a diverse
portfolio of methods using multiple datasets from different domains, including news, Wikipedia,
and scientific papers. We demonstrate that by simply applying explainable complexity prediction
as a preliminary step, the out-of-sample text simplification performance of the state-of-the-art,
black-box models can be improved by a large margin.

Our work presents a promising direction towards a transparent and explainable solution to text
simplification in various domains.

3.2 Related Work

3.2.1 Text Simplification

3.2.1.1 Identifying complex words

Text simplification at word level has been done through 1) lexicon based approaches, which match
words to lexicons of complex/simple words [88, 103], 2) threshold based approaches, which ap-
ply a threshold over word lengths or certain statistics [245], 3) human driven approaches, which
solicit the user’s input on which words need simplification [381], and 4) classification methods,
which train machine learning models to distinguish complex words from simple words [413].
Complex word identification is also the main topic of SemEval 2016 Task 11 [340], aiming to
determine whether a non-native English speaker can understand the meaning of a word in a given
sentence. Significant differences exist between simple and complex words, and the latter on av-
erage are shorter, less ambiguous, less frequent, and more technical in nature. Interestingly, the
frequency of a word is identified as a reliable indicator of its simplicity [245].

While the above techniques have been widely employed for complex word identification, the
results reported in the literature are rather controversial and it is not clear to what extent one
technique outperforms the other in the absence of standardized high quality parallel corpora for text
simplification [339]. Pre-constructed lexicons are often limited and do not generalize to different
domains. It is intriguing that classification methods reported in the literature are not any better than
a “simplify-all” baseline [414].
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3.2.1.2 Readability assessment

Traditionally, measuring the level of reading difficulty is done through lexicon and rule-based met-
rics such as the age of acquisition lexicon (AoA) [227] and the Flesch-Kincaid Grade Level [214].
A machine learning based approach in [401] extracts lexical, syntactic, and discourse features
and train logistic regression classifiers to predict the relative complexity of a single sentence in a
pairwise setting. The most predictive features are simple representations based on AoA norms.
The perceived difficulty of a sentence is highly influenced by properties of the surrounding pas-
sage. Similar methods are used for fine-grained classification of text readability [3] and complexity
[436].

3.2.1.3 Computer-assisted paraphrasing

Simplification rules are learnt by finding words from a complex sentence that correspond to differ-
ent words in a simple sentence [4]. Identifying simplification operations such as copies, deletions,
and substitutions for words from parallel complex vs. simple corpora helps understand how human
experts simplify text [4]. Machine translation has been employed to learn phrase-level alignments
for sentence simplification [490]. Lexical and phrasal paraphrase rules are extracted in [352].
These methods are often evaluated by comparing their output to gold-standard, human-generated
simplifications, using standard metrics (e.g., token-level precision, recall, F1), machine translation
metrics (e.g., BLEU [345] ), text simplification metrics (e.g. SARI [497] which rewards copying
words from the original sentence), and readability metrics (among which Flesch-Kincaid Grade
Level [214] and Flesch Reading Ease [214] are most commonly used). It is desirable that the
output of the computational models is ultimately validated by human judges [414].

3.2.1.4 End-to-end simplification

Neural encoder-decoder models are used to learn simplification rewrites from monolingual corpora
of complex and simple sentences [394, 460, 516, 153]. On one hand, these models often obtain su-
perior performance on particular evaluation metrics, as the neural network directly optimizes these
metrics in training. On the other hand, it is hard to interpret what exactly are learned in the hidden
layers, and without this transparency it is difficult to adapt these models to new data, constraints,
or domains. For example, these end-to-end simplification models tend not to distinguish whether
the input text should or should not be simplified at all, making the whole process less transparent.
When the input is already simple, the models tend to oversimplify it and deviate from its original
meaning (see Section 3.5.3).
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3.2.2 Explanatory Machine Learning

Various approaches are proposed in the literature to address the explainability and interpretability
of machine learning agents. The task of providing explanations for black-box models has been
tackled either at a local level by explaining individual predictions of a classifier [383], or at a
global level by providing explanations for the model behavior as a whole [247]. More recently,
differential explanations are proposed to describe how the logic of a model varies across different
subspaces of interest [232]. Layer-wise relevance propagation [7] is used to trace backwards text
classification decisions to individual words, which are assigned scores to reflect their separate
contribution to the overall prediction.

LIME [383] is a model-agnostic explanation technique which can approximate any machine
learning model locally with another sparse linear interpretable model. SHAP [291] evaluates Shap-
ley values as the average marginal contribution of a feature value across all possible coalitions by
considering all possible combinations of inputs and all possible predictions for an instance. Ex-
plainable classification can also be solved simultaneously through a neural network, using hard
attentions to select individual words into the “rationale” behind a classification decision [242]. Ex-
tractive adversarial networks employs a three-player adversarial game which addresses high recall
of the rationale [50]. The model consists of a generator which extracts an attention mask for each
token in the input text, a predictor that cooperates with the generator and makes prediction from
the rationale (words attended to), and an adversarial predictor that makes predictions from the re-
maining words in the inverse rationale. The minimax game between the two predictors and the
generator is designed to ensure all predictive signals are included into the rationale.

No prior work has addressed the explainability of text complexity prediction. We fill in this
gap.

3.3 An Explainable Pipeline for Text Simplification

We propose a unified view of text simplification which is decomposed into several carefully de-
signed sub-problems. These sub-problems generalize over many approaches, and they are logi-
cally dependent on and integratable with one another so that they can be organized into a compact
pipeline.

The first conceptual block in the pipeline (Figure 3.1) is concerned with explainable prediction
of the complexity of text. It consists of two sub-tasks: 1) prediction: classifying a given piece of
text into two categories, needing simplification or not; and 2) explanation: highlighting the part
of the text that needs to be simplified. The second conceptual block is concerned with simplifi-
cation generation, the goal of which is to generate a new, simplified version of the text that needs
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Figure 3.1: A text simplification pipeline. Explainable prediction of text complexity is the prelim-
inary of any human-based, computer assisted, or automated system.

to be simplified. This step could be achieved through completely manual effort, or a computer-
assisted approach (e.g., by suggesting alternative words and expressions), or a completely auto-
mated method (e.g., by self-translating into a simplified version). The second building block is
piped into a step of human judgment, where the generated simplification is tested, approved, and
evaluated by human practitioners.

One could argue that for an automated simplification generation system the first block (com-
plexity prediction) is not necessary. We show that it is not the case. Indeed, it is unlikely that every
piece of text needs to be simplified in reality, and instead the system should first decide whether a
sentence needs to be simplified or not. Unfortunately such a step is often neglected by existing end-
to-end simplifiers, thus their performance is often biased towards the complex sentences that are
selected into their training datasets at the first place and doesn’t generalize well to simple inputs.
Empirically, when these models are applied to out-of-sample text which shouldn’t be simplified
at all, they tend to oversimplify the input and result in a deviation from its original meaning (see
Section 3.5.3).

One could also argue that an explanation component (1B) is not mandatory in certain text sim-
plification practices, in particular in an end-to-end neural generative model that does not explicitly
identify the complex parts of the input sentence. In reality, however, it is often necessary to high-
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light the differences between the original sentence and the simplified sentence (which is essentially
a variation of 1B) to facilitate the validation and evaluation of these black-boxes. More generally,
the explainability/interpretability of a machine learning model has been widely believed to be an
indispensable factor to its fidelity and fairness when applied to the real world [232]. Since the ma-
jor motivation of text simplification is to improve the fairness and transparency of text information
systems, it is critical to explain the rationale behind the simplification decisions, even if they are
made through a black-box model.

Without loss of generality, we can formally define the sub-tasks 1A, 1B, and 2- in the pipeline:

Definition 3.3.1. (Complexity Prediction). Let text d ∈ D be a sequence of tokens w1w2...wn.
The task of complexity prediction is to find a function f : D → {0, 1} such that f(d) = 1 if d
needs to be simplified, and f(d) = 0 otherwise.

Definition 3.3.2. (Complexity Explanation). Let d be a sequence of tokens w1w2...wn and f(d) =
1. The task of complexity explanation/highlighting is to find a function h : D → {0, 1}n s.t.
h(d) = c1c2...cn, where ci = 1 means wi will be highlighted as a complex portion of d and ci = 0

otherwise. d|h(d) denotes the highlighted part of d and d|¬h(d) is the unhighlighted part of d.

Definition 3.3.3. (Simplification Generation). Let d be a sequence of tokensw1w2...wn and f(d) =
1. The task of simplification generation is to find a function g : D → D′ s.t. g(d, f(d), h(d)) = d′,
where d′ = w′

1w
′
2...w

′
m and f(d′) = 0, subject to the constraint that d′ preserves the meaning of d.

In this paper, we focus on an empirical analysis of the first two sub-tasks of explainable pre-
diction of text complexity (1A and 1B), which are the preliminaries of any reasonable text sim-
plification practice. We leave aside the detailed analysis of simplification generation (2-) for now,
as there are many viable designs of g(·) in practice, spanning the spectrum between completely
manual and completely automated. Since this step is not the focus of this paper, we intend to leave
the definition of simplification generation highly general.

Note that the definitions of complexity prediction and complexity explanation can be naturally
extended to a continuous output, where f(·) predicts the complexity level of d and h(·) predicts
the complexity weight of wi. The continuous output would align the problem more closely to
readability measures [214]. In this paper, we stick to the binary output because a binary action (to
simplify or not) is almost always necessary in reality even if a numerical score is available.

Note that the definition of complexity explanation is general enough for existing approaches. In
lexical simplification where certain words in a complex vocabulary V are identified to explain the
complexity of a sentence, it is equivalent to highlighting every appearance of these words in d, or
∀wi ∈ V, ci = 1. In automated simplification where there is a self-translation function g(d) = d′,
h(d) can be simply instantiated as a function that returns a sequence alignment of d and d′. Such
reformulation helps us define unified evaluation metrics for complexity explanation (Section 3.4).
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It is also important to note that the dependency between the components, especially complexity
prediction and explanation, does not restrict them to be done in isolation. These sub-tasks can be
done either separately, or jointly with an end-to-end approach as long as the outputs of f, h, g are
all obtained (so that transparency and explainability are preserved). In Section 3.4, we include both
separate models and end-to-end models for explanatory complexity predication in one shot.

3.4 Empirical Analysis of Complexity Prediction and
Explanation

With the pipeline formulation, we are able to compare a wide range of methods and metrics for the
sub-tasks of text simplification. We aim to understand how difficult they are in real-world settings
and which method performs the best for which task.

3.4.1 Complexity Prediction

3.4.1.1 Candidate Models

We examine a wide portfolio of deep and shallow binary classifiers to distinguish complex sen-
tences from simple ones. Among the shallow models we use Naive Bayes (NB), Logistic Re-
gression (LR), Support Vector Machines (SVM) and Random Forests (RF) classifiers trained with
unigrams, bigrams and trigrams as features. We also train the classifiers using the lexical and
syntactic features proposed in [401] combined with the n-gram features (denoted as “enriched fea-
tures”). We include neural network models such as word and char-level Long Short-Term Memory
Network (LSTM) and Convolutional Neural Networks (CNN). We also employ a set of state-of-
the-art pre-trained neural language models, fine-tuned for complexity prediction; we introduce
them below.

ULMFiT [174] a language model on a large general corpus such as WikiText-103 and then
fine-tunes it on the target task using slanted triangular rates, and gradual unfreezing. We use the
publicly available implementation1 of the model with two fine-tuning epochs for each dataset and
the model quickly adapts to a new task.

BERT [90] trains deep bidirectional language representations and has greatly advanced the
state-of-the-art for many natural language processing tasks. The model is pre-trained on the En-
glish Wikipedia as well as the Google Book Corpus. Due to computational constraints, we use the
12 layer BERT base pre-trained model and fine-tune it on our three datasets. We select the best
hyperparameters based on each validation set.

1https://docs.fast.ai/tutorial.text.html, retrieved on 5/31/2021.
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XLNeT [501] overcomes the limitations of BERT (mainly the use of masks) with a permutation-
based objective which considers bidirectional contextual information from all positions without
data corruption. We use the 12 layer XLNeT base pre-trained model on the English Wikipedia, the
Books corpus (similar to BERT), Giga5, ClueWeb 2012-B, and Common Crawl.

3.4.1.2 Evaluation Metric

We evaluate the performance of complexity prediction models using classification accuracy on
balanced training, validation, and testing datasets.

3.4.2 Complexity Explanation

3.4.2.1 Candidate Models

We use LIME in combination with LR and LSTM classifiers, SHAP on top of LR, and the extractive

adversarial networks which jointly conducts complexity prediction and explanation. We feed each
test complex sentence as input to these explanatory models and compare their performance at
identifying tokens (words and punctuation) that need to be removed or replaced from the input
sentence.

We compare these explanatory models with three baseline methods: 1) Random highlighting:
randomly draw the size and the positions of tokens to highlight; 2) Lexicon based highlighting:
highlight words that appear in the Age-of-Acquisition (AoA) lexicon [227], which contains ratings
for 30,121 English content words (nouns, verbs, and adjectives) indicating the age at which a
word is acquired; and 3) Feature highlighting: highlight the most important features of the best
performing LR models for complexity prediction.

3.4.2.2 Evaluation Metrics

Evaluation of explanatory machine learning is an open problem. In the context of complexity
explanation, when the ground truth of highlighted tokens (yc(d) = c1c2...cn, ci ∈ {0, 1}) in each
complex sentence d is available, we can compare the output of complexity explanation h(d) with
yc(d). Such per-token annotations are usually not available in scale. To overcome this, given a
complex sentence d and its simplified version d′, we assume that all tokens wi in d which are
absent in d′ are candidate words for deletion or substitution during the text simplification process
and should therefore be highlighted in complexity explanation (i.e., ci = 1).

In particular, we use the following evaluation metrics for complexity explanation: 1) Tokenwise

Precision (P), which measures the proportion of highlighted tokens in d that are truly removed in
d′; 2) Tokenwise Recall (R), which measures the proportion of tokens removed in d′ that are actually
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highlighted in d; 3) Tokenwise F1, the harmonic mean of P andR; 4) word-level Edit distance (ED)

[248]: between the unhighlighted part of d and the simplified document d′. Intuitively, a more
successful complexity explanation would highlight most of the tokens that need to be simplified,
thus the remaining parts in the complex sentences will be closer to the simplified version, achieving
a lower edit distance (we also explore ED with a higher penalty cost for the substitution operation,
namely values of 1, 1.5 and 2); and 5) Translation Edit Rate (TER) [430], which measures the
minimum number of edits needed to change a hypothesis (the unhighlighted part of d) so that it
exactly matches the closest references (the simplified document d′). Note these metrics are all
proxies of the real editing process from d to d′. When token-level edit history is available (e.g.,
through track changes), it is better to compare the highlighted evaluation with these true changes
made. We compute all the metrics at sentence level and macro-average them.

3.4.3 Experiment Setup

3.4.3.1 Datasets

We use three different datasets (Table 3.1) which cover different domains and application scenarios
of text simplification. Our first dataset is Newsela [496], a corpus of news articles simplified by
professional news editors. In our experiments we use the parallel Newsela corpus with the training,
validation, and test splits made available in [516]. Second, we use the WikiLarge corpus introduced
in [516]. The training subset of WikiLarge is created by assembling datasets of parallel aligned
Wikipedia - Simple Wikipedia sentence pairs available in the literature [202]. While this training
set is obtained through automatic alignment procedures which can be noisy, the validation and
test subsets of WikiLarge contain complex sentences with simplifications provided by Amazon
Mechanical Turk workers [497]; we increase the size of validation and test on top of the splits
made available in [516]. Third, we use the dataset released by the Biendata competition2, which
asks participants to match research papers from various scientific disciplines with press releases
that describe them. Arguably, rewriting scientific papers into press releases has mixed objectives
that are not simply text simplification. We include this task to test the generalizability of our
explainable pipeline (over various definitions of simplification). We use alignments at title level.
On average, a complex sentence in Newsela, WikiLarge, Biendata contains 23.07, 25.14, 13.43
tokens, and the corresponding simplified version is shorter, with 12.75, 18.56, 10.10 tokens.

2https://www.biendata.com/competition/hackathon, retrieved on 5/31/2021.
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Table 3.1: Aligned complex-simple sentence pairs.

Dataset Training Validation Test
Newsela 94,208 pairs 1,129 pairs 1,077 pairs
WikiLarge 208,384 pairs 29,760 pairs 59,546 pairs
Biendata 29,700 pairs 4,242 pairs 8,486 pairs

3.4.3.2 Ground Truth Labels

The original datasets contain aligned complex-simple sentence pairs instead of classification labels
for complexity prediction. We infer ground-truth complexity labels for each sentence such that:
label 1 is assigned to every sentence for which there is an aligned simpler version not identical
to itself (the sentence is complex and needs to be simplified); label 0 is assigned to all simple
counterparts of complex sentences, as well as to those sentences that have corresponding “simple”
versions identical to themselves (i.e., these sentences do not need to be simplified). For complex
sentences that have label 1, we further identify which tokens are not present in corresponding
simple versions.

3.4.3.3 Model Training

For all shallow and deep classifiers we find the best hyperparameters using random search on
validation, with early stopping. We use grid search on validation to fine-tune hyperparameters of
the pre-trained models, such as maximum sequence length, batch size, learning rate, and number
of epochs. For ULMFit on Newsela, we set batch size to 128 and learning rate to 1e-3. For BERT
on WikiLarge, batch size is 32, learning rate is 2e-5, and maximum sequence length is 128. For
XLNeT on Biendata, batch size is 32, learning rate is 2e-5, and maximum sequence length is 32.

We use grid search on validation to fine-tune the complexity explanation models, including the
extractive adversarial network. For LR and LIME we determine the maximum number of words
to highlight based on TER score on validation (please see Table 3.2); for SHAP we highlight all
features with positive assigned weights, all based on TER.

Table 3.2: Maximum numbers of most important LR features and features highlighted by LIME.

Model Newsela WikiLarge Biendata
LR 200 features 20,000 features 200 features
LIME & LR 10 features 50 features 10 features
LIME & LSTM 60 features 20 features 40 features

For extractive adversarial networks batch size is set to 256, learning rate is 1e-4, and adversarial
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weight loss equals 1; in addition, sparsity weight is 1 for Newsela and Biendata, and 0.6 for
WikiLarge; lastly, coherence weight is 0.05 for Newsela, 0.012 for WikiLarge, and 0.0001 for
Biendata.

3.5 Results

3.5.1 Complexity Prediction

In Table 3.3, we evaluate how well the representative shallow, deep, and pre-trained classification
models can determine whether a sentence needs to be simplified at all. We test for statistical
significance of the best classification results compared to all other models using a two-tailed z-test.

Table 3.3: Accuracy of representative shallow∗, deep, and pre-trained models for complexity pre-
diction. BOLD: best performing models. * Shallow models perform similarly and some are omit-
ted for space; Difference between the best performing model and other models is statistically
significant: p < 0.05 (*), p < 0.01 (**), except for †: difference between this model and the best
performing model is not statistically significant.

Classifier Newsela WikiLarge Biendata
NB n-grams 73.10 % 62.70 % 84.30 %
NB enriched features 73.10 % 63.10 % 86.00 %
LR n-grams 75.30 % 71.90 % 89.60 %
LR enriched features 76.30 % 72.60 % 91.70 %
SVM n-grams 75.20 % 71.90 % 89.50 %
SVM enriched features 77.39 % 70.16 % 88.60 %
RF n-grams 71.50 % 71.50 % 84.60 %
RF enriched features 74.40 % 73.40 % 87.00 %
LSTM (word-level) 73.31 % 71.62 % 89.87 %
CNN (word-level) 70.71 % 69.27 % 89.05 %
CNN (char-level) 78.83%† 74.88 % 88.00 %
CNN (word & char-level) 75.90 % 74.00 % 92.30 %
Extractive Adversarial Networks 72.76 % 71.50 % 88.64 %
ULMFiT 80.83%∗∗ 74.80 % 94.17 %
BERT 77.15 % 81.45%∗∗ 94.43 %
XLNeT 78.83%† 73.49 % 95.48%∗∗

In general, the best performing models can achieve around 80% accuracy on two datasets
(Newsela and WikiLarge) and a very high performance on the Biendata (> 95%). This difference
presents the difficulty of complexity prediction in different domains, and distinguishing highly
specialized scientific content from public facing press releases is relatively easy (Biendata).
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Deep classification models in general outperform shallow ones, however with carefully de-
signed handcrafted features and proper hyperparameter optimization shallow models tend to ap-
proach to the results of the deep classifiers. Overall models pre-trained on large datasets and
fine-tuned for text simplification yield superior classification performance. For Newsela the best
performing classification model is ULMFiT (accuracy = 80.83%, recall = 76.87%), which sig-
nificantly (p < 0.01) surpasses all other classifiers except for XLNeT and CNN (char-level). On
WikiLarge, BERT presents the highest accuracy (81.45%, p < 0.01), and recall = 83.30%. On Bi-
endata, XLNeT yields the highest accuracy (95.48%, p < 0.01) with recall = 94.93%, although the
numerical difference to other pre-trained language models is small. This is consistent with recent
findings in other natural language processing tasks [72].

3.5.2 Complexity Explanation

We evaluate how well complexity classification can be explained, or how accurately the complex
parts of a sentence can be highlighted.

Results (Table 3.4) show that highlighting words in the AoA lexicon or LR features are rather
strong baselines, indicating that most complexity of a sentence still comes from word usage. High-
lighting more LR features leads to a slight drop in precision and a better recall. Although LSTM
and LR perform comparably on complexity classification, using LIME to explain LSTM presents
better recall, F1, and TER (at similar precision) compared to using LIME to explain LR. The LIME
& LSTM combination is reasonably strong on all datasets, as is SHAP & LR. TER is a reliable
indicator of the difficulty of the remainder (unhighlighted part) of the complex sentence. ED with a
substitution penalty of 1.5 efficiently captures the variations among the explanations. On Newsela
and Biendata, the extractive adversarial networks yield solid performances (especially TER and
ED 1.5), indicating that jointly making predictions and generating explanations reinforces each
other. Table 3.5 provides examples of highlighted complex sentences by each explanatory model.

3.5.3 Benefit of Complexity Prediction

One may question whether explainable prediction of text complexity is still a necessary preliminary
step in the pipeline if a strong, end-to-end simplification generator is used. We show that it is. We
consider the scenario where a pre-trained, end-to-end text simplification model is blindly applied to
texts regardless of their complexity level, compared to only simplifying those considered complex
by the best performing complexity predictor in Table 3.3. Such a comparison demonstrates whether
adding complexity prediction as a preliminary step is beneficial to a text simplification process
when a state-of-the-art, end-to-end simplifier is already in place. From literature we select the
current best text simplification models on WikiLarge and Newsela which have publicly released
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Table 3.4: Results for complexity explanation. P, R and F1 - the higher the better; TER and ED 1.5
- the lower the better. BOLD & Underlined: best & second best.

Dataset Explanation Model P R F1 TER ED 1.5

Newsela

Random 0.515 0.487 0.439 0.985 13.825
AoA lexicon 0.556 0.550 0.520 0.867 12.899
LR Features 0.522 0.250 0.321 0.871 12.103
LIME & LR 0.535 0.285 0.343 0.924 12.459
LIME & LSTM 0.543 0.818 0.621 0.852 11.991
SHAP & LR 0.553 0.604 0.546 0.848 12.656
Extractive Networks 0.530 0.567 0.518 0.781 11.406

WikiLarge

Random 0.412 0.439 0.341 1.546 17.028
AoA lexicon 0.427 0.409 0.357 1.516 16.731
LR Features 0.442 0.525 0.413 0.993 17.933
LIME & LR 0.461 0.509 0.415 0.988 18.162
LIME & LSTM 0.880 0.470 0.595 1.961 25.051
SHAP & LR 0.842 0.531 0.633 1.693 22.811
Extractive Networks 0.452 0.429 0.359 1.434 16.407

Biendata

Random 0.743 0.436 0.504 1.065 12.921
AoA lexicon 0.763 0.383 0.475 1.064 13.247
LR Features 0.796 0.257 0.374 0.979 10.851
LIME & LR 0.837 0.466 0.577 0.982 10.397
LIME & LSTM 0.828 0.657 0.713 0.952 16.568
SHAP & LR 0.825 0.561 0.647 0.979 11.908
Extractive Networks 0.784 0.773 0.758 0.972 10.678

Table 3.5: Explanations of complexity predictions (in red). Extractive network obtains a higher
recall.

Explanatory Model Complexity Explanation
LIME & LR Their fatigue changes their voices , but they ’re still on the freedom highway .
LIME & LSTM Their fatigue changes their voices , but they ’re still on the freedom highway .
SHAP & LR Their fatigue changes their voices , but they ’re still on the freedom highway .
Extractive Networks Their fatigue changes their voices , but they ’re still on the freedom highway .
Simple sentence Still , they are fighting for their rights .
LIME & LR Digitizing physically preserves these fragile papers and allows people to see them , he said .
LIME & LSTM Digitizing physically preserves these fragile papers and allows people to see them , he said .
SHAP & LR Digitizing physically preserves these fragile papers and allows people to see them , he said .
Extractive Networks Digitizing physically preserves these fragile papers and allows people to see them , he said .
Simple sentence The papers are old and fragile , he said .

pre-trained models:

• ACCESS [298], a controllable sequence-to-sequence simplification model that reported the
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highest performance (41.87 SARI) on WikiLarge.

• Dynamic Multi-Level Multi-Task Learning for Sentence Simplification (DMLMTL) [153],
which reported the highest performance (33.22 SARI) on Newsela.

We apply the author-released, pre-trained ACCESS and DMLMTL on all sentences from the
validation and test sets of all three datasets. We do not use the training examples as the pre-trained
models may have already seen them. Presumably, a smart model should not further simplify an
input sentence if it is already simple enough. However, to our surprise, a majority of the out-of-

sample simple sentences are still changed by both models (above 90% by DMLMTL and above
70% by ACCESS, please see Table 4.10).

Table 3.6: Percentage of out-of-sample simple sentences changed by pre-trained, end-to-end sim-
plification models. Ideal value is 0%.

Dataset Pre-trained Model Validation Testing

Newsela
ACCESS 72.73 % 75.50 %
DMLMTL 90.48 % 91.69 %

WikiLarge
ACCESS 70.83 % 71.12 %
DMLMTL 95.20 % 95.61 %

Biendata
ACCESS 94.25 % 93.66 %
DMLMTL 98.88 % 98.73 %

We further quantify the difference with vs. without complexity prediction as a preliminary step.
Intuitively, without complexity prediction, an already simple sentence is likely to be overly simpli-
fied and result in a loss in text simplification metrics. In contrast, an imperfect complexity predictor
may mistaken a complex sentence as simple, which misses the opportunity of simplification and
results in a loss as well. The empirical question is which loss is higher. From Table 3.7, we see that
after directly adding a complexity prediction step before either of the state-of-the-art simplification
models, there is a considerable drop of errors in three text simplification metrics: Edit Distance
(ED), TER, and Fréchet Embedding Distance (FED) that measures the difference of a simplified
text and the ground-truth in a semantic space [85]. For ED alone, the improvements are between
30% to 50%. This result is very encouraging: considering that the complexity predictors are only
80% accurate and the complexity predictor and the simplification models don’t depend on each
other, there is considerable room to optimize this gain. Indeed, the benefit is higher on Biendata
where the complexity predictor is more accurate.

Qualitatively, one could frequently observe syntactic, semantic, and logical mistakes in the
model-simplified version of simple sentences. We give a few examples below.

• In Ethiopia, HIV disclosure is low→ In Ethiopia , HIV is low (ACCESS)
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Table 3.7: Out-of-sample performance of simplification models. ED, TER, FED metrics: the lower
the better. Adding complexity prediction as preliminary step reduces simplification error by a wide
margin.

Dataset Sentence Pairs Metric ACCESS DMLMTL

Newsela

No complexity prediction
ED 4.044 12.212

(simplify everything)
TER 0.175 1.611
FED 0.016 0.170

With complexity prediction
ED 2.631 (-35%) 8.677 (-29%)

(predicted simple: no change)
TER 0.089 (-49%) 1.149 (-29%)
FED 0.006 (-63%) 0.066 (-61%)

WikiLarge

No Complexity Prediction
ED 5.857 16.920

(simplify everything)
TER 0.208 2.328
FED 0.004 0.143

With Complexity Prediction
ED 4.021 (-31%) 10.566 (-38%)

(predicted simple: no change)
TER 0.132 (-37%) 1.452 (-38%)
FED 0.002 (-50%) 0.049 (-66%)

Biendata

No Complexity Prediction
ED 3.796 9.030

(simplify everything)
TER 0.254 1.348
FED 0.033 0.131

With Complexity Prediction
ED 1.887 (-50%) 5.249 (-42%)

(predicted simple: no change)
TER 0.114 (-55%) 0.819 (-39%)
FED 0.009 (-73%) 0.051 (-61%)

• Mustafa Shahbaz , 26 , was shopping for books about science . → Mustafa Shahbaz , 26
years old , was a group of books about science . (ACCESS)

• New biomarkers for the diagnosis of Alzheimer’s → New biomarkers are diagnosed with
Alzheimer (ACCESS)

• Healthy diet linked to lower risk of chronic lung disease → Healthy diet linked to lung
disease (DMLMTL)

• Dramatic changes needed in farming practices to keep pace with climate change→ changes
needed to cause climate change (DMLMTL)

• Social workers can help patients recover from mild traumatic brain injuries→ Social workers
can cause better problems . (DMLMTL)

All these qualitative and quantitative results suggest that the state-of-the-art black-box models
tend to oversimplify and distort the meanings of out-of-sample input that is already simple. Evi-
dently, the lack of transparency and explainability has limited the application of these end-to-end
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black-box models in reality, especially to out-of-sample data, context, and domains. The pitfall
can be avoided with the proposed pipeline and simply with explainable complexity prediction
as a preliminary step. Even though this explainable preliminary does not necessarily reflect how a
black-box simplification model “thinks”, adding it to the model is able to yield better out-of-sample
performance.

3.6 Conclusions

We formally decompose the ambiguous notion of text simplification into a compact, transparent,
and logically dependent pipeline of sub-tasks, where explainable prediction of text complexity is
identified as the preliminary step. We conduct a systematic analysis of its two sub-tasks, namely
complexity prediction and complexity explanation, and show that they can be either solved sep-
arately or jointly through an extractive adversarial network. While pre-trained neural language
models achieve significantly better performance on complexity prediction, an extractive adversar-
ial network that solves the two tasks jointly presents promising advantage in complexity explana-
tion. Using complexity prediction as a preliminary step reduces the error of the state-of-the-art text
simplification models by a large margin. Future work should integrate rationale extractor into the
pre-trained neural language models and extend it for simplification generation.

3.6.1 Future Outlook/Emerging Trends

The work presented in this chapter was conducted before language models became extremely large
and widely popular. Given the remarkable performance improvements achieved when scaling up
Transformer [463] based architectures, new interpretable approaches emerge to address the prob-
lem of explainable prediction of text complexity. In what follows we present the novel chain-of-
thought [477] prompting approach for eliciting reasoning in large language models. We envision
the use of this approach for generating natural language rationales that support text complexity
decisions. More specifically, LLMs can be used for both making complexity predictions, i.e.
identifying whether a piece of text needs simplification or not, and for explaining the rationale
behind their prediction, i.e. identifying the complex words and phrases in the input and providing
a step-by-step explanation of why these specific parts of the input are considered complex and
need simplification; please see Figure 3.2 and Figure 3.3. While the explainability of black-box
neural network models remains an important open research problem, such prompting techniques
can offer a glimpse into the inner workings of the model by suggesting how it may have arrived at
a particular answer. In addition, they also allow human users to better understand the knowledge
captured by a large language model and debug where mistakes may occur in the reasoning chain.
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Elicitive Prompting/Chain-of-thought More recent developments aimed at understanding rea-
soning processes in large language models propose chain-of-thought (CoT) [477] prompting tech-
niques for providing an interpretable window into the model behaviour and eliciting explicit (in-
stead of implicit) reasoning by letting the model “think things through”. A chain-of-thought rep-
resents a series of intermediate reasoning steps expressed in natural language that illustrate step
by step how the model reached its final output. CoT capabilities emerge in sufficiently large lan-
guage models and lead to improved performance on challenging tasks where simply scaling up
model size is not sufficient for achieving high performance, for example long-term/multi-step
logic, arithmetic, commonsense, symbolic or compositional reasoning tasks [370], [330]. Such
complex multi-step reasoning problems can be decomposed into sequential intermediate steps that
are solved individually (by means of generating coherent natural language rationales) given a few
examples of chain-of-thought sequences provided as part of the prompt. While this technique al-
lows to elicit multi-step reasoning behaviour in large pre-trained language models (often times with
no prompt engineering, by using a simple prompt template such as “Let’s think step-by-step” [221])
and improves performance by a large margin for many reasoning tasks, it does not answer the im-
portant question of whether the neural-network based model is actually “reasoning”. In addition,
there is no guarantee that the reasoning paths generated are correct. Greedy search or beam search
are frequently employed to decode the CoT reasoning chain [493]. Leaving from the observation
that there may be multiple reasoning paths that lead to a correct answer, self-consistency [476]
demonstrates that introducing diversity in the reasoning process can be beneficial. The method
replaces greedy decoding in CoT prompting with a “sample-and-marginalize” decoding procedure
which first samples a diverse set of reasoning paths from the language model decoder, then identi-
fies the optimal path with the most consistent answer by marginalizing out reasoning paths (taking
the majority vote over the produced answers). The intuition is that if there are multiple paths
leading to the same answer, the greater the confidence the final answer is correct. Discrimina-
tive models trained to differentiate correct reasoning steps from invalid ones are used to guide the
decoder towards valid inferences [207]. Other approaches for ensuring the correctness of the gen-
erated rationales train verifiers to evaluate the feasability of proposed solutions [71] (i.e. sample
a fixed number of candidate solutions and select the solution ranked highest by the verifier), re-
rankers given human annotations to find the highest quality response [458], or finetune the model
on annotated data for correcting reasoning errors [112], [444]. Nevertheless, creating high qual-
ity rationale-augmented sets for training or fine-tuning verifiers is expensive and time-consuming,
and such approaches can easily overfit to ground-truth solutions and ignore alternative reasoning
paths [207]. For more efficient verification, examining few local statements instead of the entire
reasoning chain is proposed [268]. Human-in-the-loop systems improve reasoning performance
by manual correction of sub-logic rationales [41].
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Despite improvements in performance reported using CoT, it is not clear how the pre-trained
model arrives at the correct answer, i.e. whether it relies on the chains-of-thought generated or
rather on shallow simple heuristics [393]; recent work suggests that models mostly make predic-
tions based on shallow rote learning instead of having a deep holistic task understanding [100]. It
is also unclear how the series of reasoning steps provided in the demonstrations contribute to its
performance. Interestingly, even when prompted with invalid demonstrations that contain incorrect
reasoning steps, large language models can still generate coherent lines of reasoning at inference
time [469]. In general, there is little understanding behind what makes CoT prompting effective,
however relevance of demonstrations to the query and the correct ordering of the reasoning steps
are found to be important factors. Moreover, while large language models are generally able to per-
form reasoning, how they acquire this ability and whether portions of the pre-training data teach
the model to reason remain important open questions. It is also unclear how much of their per-
formance is due to memorization of huge corpora as opposed to actual reasoning abilities [362].
Empirical analysis on compositional multi-hop reasoning problems finds that models can mem-
orize single-step operations and achieve near-perfect performance on in-domain instances with
low compositional complexity, however they fail dramatically on instances outside of the training
distribution and are inherently limited in solving compositionally complex tasks [100]. An essen-
tial aspect of improving reasoning abilities for LLMs is detecting and mitigating hallucinations,
given that in compositional reasoning tasks the overall solution depends on correctly composing
the answers to sub-problems and a single logical error in a multi-step reasoning problem can derail
the entire chain for arriving at the correct final answer. This is particularly true for more difficult
reasoning tasks, where the complexity and length of reasoning chains is making them susceptible
to errors and imperfections that accumulate across intermediate steps [61]. In general, refining
intermediate representations in a meaningful way that would serve to improve final performance
is an open challenge. Process supervision [263] is used for training reward models that provide
feedback for each intermediate reasoning step and is found superior to outcome supervision mod-
els that only reward the final result. However, process supervision is costly as it relies on human
annotators to label the correctness of each intermediate step; the cost can be reduced by employing
an active learning strategy to solicit human feedback for the most promising completions only. An
alternative approach is proposed by Self-ask [362], where the model itself is asking and answer-
ing follow-up questions before arriving at the final answer. Interaction-based frameworks where
a generator is producing intermediate reasoning steps and a critic provides fine-grained feedback
to the generator serve to improve the reasoning process through iterative feedback and refinement
[350], [295]. To better explore the vast reasoning space and assess alternative reasoning paths,
large language models are augmented with a world model which allows them to perform deliber-
ate planning [159].
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In general, the ability of large language models to answer compositional multi-hop questions
does not necessarily improve with scale, even when models demonstrate knowledge of individual
constituent facts. This is in contrast to their single-hop question answering performance which does
improve as more powerful models memorize and recall more factual knowledge. Interestingly, the
model confidence at recalling individual facts (as measured by perplexity) is indicative of its ability
to compose them at a much higher rate [362]. This is in line with findings on self-evaluation [194]
of large language models that measure the ability of models to propose answers to questions and
then evaluate the probability that those answers are correct, suggesting that larger models are well-
calibrated for in-distribution tasks as long as questions follow a specific format. Nevertheless, most
CoT evaluations focus only on the correctness of the final answer, which does not always align well
with the quality of the produced rationales [179]. Unsupervised metrics for the evaluation of step-
by-step reasoning when no golden reference generation exists measure aspects such as semantic
alignment to determine whether the generated reasoning is grounded within the source context,
logical inference to check for hallucinations and logical fallacies, semantic similarity to quantify
the relatedness between intermediate reasoning steps, and language coherence to establish the
naturalness of the reasoning chain [143].

Figure 3.2: Chain-of-thought prompting for explainable prediction of text complexity.
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Figure 3.3: Chain-of-thought prompting for step-by-step explainable prediction of text complexity.
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CHAPTER 4

Adapting Pre-trained Language Models to
Low-Resource Text Simplification: The Path Matters

In this chapter, we focus on the challenge of absence of large-scale parallel (complex→ simple)
monolingual training data for the task of text simplification. Our main contribution is that we
approach the problem of low-resource text simplification from a task and domain adaptation per-
spective and show there is benefit in bridging two popular paradigms of few-shot adaptive learning
(transfer learning, meta-learning). This work is presented in:

• Gârbacea, Cristina, and Qiaozhu Mei. ”Adapting Pre-trained Language Models to Low-

Resource Text Simplification: The Path Matters.” In Conference on Lifelong Learning
Agents, pp. 1103-1119. PMLR, 2022.

We frame the problem of text simplification from a task and domain adaptation perspective,
where neural language models are pre-trained on large-scale corpora and then adapted to new tasks
in different domains through limited training examples. We investigate the performance of two
popular vehicles of task and domain adaptation: meta-learning and transfer learning (in particular
fine-tuning), in the context of low-resource text simplification that involves a diversity of tasks
and domains. We find that when directly adapting a Web-scale pre-trained language model to
low-resource text simplification tasks, fine-tuning based methods present a competitive advantage
over meta-learning approaches. Surprisingly, adding an intermediate stop in the adaptation path
between the source and target, an auxiliary dataset and task that allow for the decomposition of the
adaptation process into multiple steps, significantly increases the performance of the target task.
The performance is however sensitive to the selection and ordering of the adaptation strategy (task
adaptation vs. domain adaptation) in the two steps. When such an intermediate dataset is not
available, one can build a “pseudostop” using the target domain/task itself. Our extensive analysis
serves as a preliminary step towards bridging these two popular paradigms of few-shot adaptive
learning and towards developing more structured solutions to task/domain adaptation in a novel
setting.
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4.1 Introduction

Large-scale language models (such as those adopting the Transformer [463] architectures) have
shown outstanding text generation capabilities. This demonstrates that with sufficient data, model
capacity, and computational resource, generative models can learn distributions powerful enough to
produce high-quality samples from complex domains. These conditions are however unrealistic in
many NLP tasks and application scenarios, where abundant training examples either do not exist or
are costly to label, and the computational resource required to train large neural language models
from the scratch is a luxury. Text simplification, which aims to transform specialized/complex
content into simpler text so that it is accessible to readers with low literacy skills, is such an
scenario. Despite its difficulty, text simplification is critical for providing fairness and equitable
information services to the broad population.

The predominant approach for building NLP solutions for low-resource scenarios relies on
a transfer learning paradigm, which works by first training a language model on large general-
domain datasets and then adapting or fine-tuning the pre-trained model to the downstream task in
a specific domain and/or with a specific objective functions. Nevertheless, such transfer learning
methods usually assume the source and target domains consist of the same feature space, which
limits their performance in many practical situations where the target domain is qualitatively dif-
ferent from the generic corpora used to train the original language models [84]. Furthermore,
the effectiveness of vanilla fine-tuning methods is still heavily dependent upon having adequate
amounts of in-domain training data for the target task [62]; when this pre-requisite is not met, the
generalization performance of deep models can be considerably limited, leading to model over-
fitting, catastrophic forgetting of general-domain knowledge, and negative transfer across tasks
[218], [457], [498].

New approaches have been proposed in the literature to address these challenging issues, claim-
ing various degrees of success on a diversity of benchmarks [99], [87]. Among these, meta-

learning [459], [397], [171] has emerged as a promising general learning strategy suitable for
few-shot learning and cross-domain generalization [252], [475]. A typical meta-learning approach
frames the learning problem at two levels: i) base learning, where an inner/lower/base learning al-
gorithm is focused on the quick acquisition of knowledge within each separate task it encounters,
and ii) meta-learning, where an outer/upper/meta algorithm is focused on the slower extraction of
information learned across all tasks and updates the inner learning algorithm such that the model it
learns improves an outer learning objective. To solve a few-shot learning problem, meta-learning
leverages a good number of similar few-shot tasks to learn how to adapt the base-learner to a new

task for which also only a few labeled samples are available. Different approaches to meta-learning
include metric learning [466], [429], [445], memory networks [392], [335], [313], [319] and gra-
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dient based learning [115], [512], [442]. Among them, gradient/optimization based meta-learning
has emerged as an effective approach to addressing the few-shot learning problem [374]. Such
learning settings lend themselves applicable to resource constrained problems where there is a
distribution of tasks available.

In this work, we frame the problem of low-resource text simplification from a task and domain
adaptation perspective. We consider the everyday use of text simplification in a wide variety of
domains, including news and scientific articles (which naturally contain many subject areas), and
view parallel complex-simple English language examples in different domains as samples drawn
from a distribution over text generation tasks with varying constraints on the level of text complex-
ity and readability. Once such a distribution is learned from large-scale, general purpose corpora
(i.e., a pre-trained language model), it is fast adapted to new tasks and domains (in our case dif-
ferent text simplification scenarios) with few training examples. We consider two approaches to
this problem: 1) a standard transfer learning practice that fine-tunes the general language model to
the new domains of text simplification with limited in-domain data, and 2) simulate many domain
adaptation tasks and use gradient based meta-learning to learn model parameters that can general-
ize to new tasks, again with few examples. We extensively compare these two approaches in our
low-resource adaptation settings, and our experiments reveal that when directly adapting a general
language model to the target tasks/domains, fine-tuning (i.e., domain-adaptation) remain competi-
tive compared with meta-learning (i.e., task adaptation). Surprisingly, we find that adding an inter-
mediate destination in between the source and target, i.e., first adapting the pre-trained language
model to an auxiliary task/domain and then adapt the model to the target tasks/domains, signifi-
cantly increases the performance of the target tasks. Adding a stop in the adaptation path allows
each segment to use a different adaptation strategy (akin to a transportation method, or a “vehi-
cle”), and the performance on target tasks is sensitive to which vehicle is taken in each segment. In
particular, it is essential to perform domain adaptation through transfer learning (fine-tuning) in the
second stage, and performing task adaptation via meta-learning in the first stage further improves
the performance. Interestingly, when such an intermediate dataset is not available, one can build
a “pseudostop” simply based on the target task/domain itself. Our findings serve as a novel step
bridging the two popular paradigms of few-shot adaptive learning and towards developing more
structured solutions to task/domain adaptation.

4.2 Related Work

The task of neural text simplification is similar in nature to neural machine translation, where
transfer learning and meta-learning approaches have been widely applied to low-resource settings.
Knowledge extracted from multilingual high-resource language pairs is leveraged for adapting
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machine translation systems to low-resource target languages, demonstrating the benefit of meta-
learning over conventional multilingual translation approaches when limited in-domain training
data is available [152]. Similarly, a meta-learning strategy is used to simulate many few-shot
domain adaptation tasks to learn model parameters for fast adaptation to unseen language pairs in
machine translation [412]. We consider a similar problem in a different application context.

Relevant to our work, a few-shot evaluation protocol is used to compare recent advances in
transfer learning and meta-learning on standard visual classification benchmarks for task adap-
tation [99]. The authors find that meta-learning approaches struggle to generalize to out-of-
distribution test tasks, and that their overall performance is inferior to transfer learning methods.
While pre-training then fine-tuning remains a highly competitive baseline for few-shot classifica-
tion tasks, simply scaling up the size of these pre-trained models does not result in any significant
performance gain on out-of-distribution tasks. On the contrary, meta-learning methods are data
efficient, but computational bottlenecks and implementation difficulties prohibit their use in com-
bination with large scale backbones. Furthermore, having sufficient heterogeneous training tasks
is a critical pre-requisite for meta-model training [198]; when source tasks present different char-
acteristics from target tasks, the performance of meta-learning algorithms declines and results in
poor generalization on unseen tasks. On the particular task of text classification, combining task-
adaptive pre-training with domain adaptive pre-training results in performance gains [155]. This
finding is in line with our work which confirms that multiple stages of adaptation result in im-
proved performance on the end task/domain. However, unlike our work which is focused on text
simplification in a multitude of domains (32 scientific domains and the news domain), [155] are fo-
cusing on the different task of text classification in four domains only and report that task-adaptive
pre-training yields performance gains after domain adaptive pre-training; instead, our empirical
results show the opposite order of adaptation is more effective.

Similarity between source and target (tasks and domains) represents an important predictive
factor of successful adaptation [467], while increasing the size of the source dataset does not
necessarily result in the largest transfer gains. When only scarce data is available for the target
task, transfer learning remains beneficial.

Many recent approaches combine the strengths of meta-learning with pre-training. Meta-
parameterized pre-training [372] “meta”-learns the pre-training hyperparameters, demonstrating
that optimized meta-parameters improve the learnt representations and the predictive performance
of the pre-trained model. Meta-finetuning [470] improves the fine-tuning of neural language mod-
els by meta-learning class prototypes and domain-invariant representations which are useful in
solving groups of similar natural language tasks. Moreover, feature representations meta-learnt
are clustered more tightly in the feature space than representations obtained through conventional
training of neural networks/pre-train then fine-tune approaches, demonstrating that minimizing
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within-class feature variation is critical for robust few-shot performance on complex tasks [141].
Recent Trends in Low-Resource NLP Despite the great success of large-scale pre-trained lan-

guage models on many NLP downstream tasks and benchmarks, they struggle in low-resource set-
tings where only a handful of examples are available. Few-shot learning, the challenge of learning
from a small number of examples, is critical for improving the robustness and efficiency of current
models and for bridging the sample-efficiency gap between deep learning and human learning.
It also alleviates the difficulty of collecting extensive expert-annotated datasets and reduces the
costs associated with resource-intensive compute. In the literature, the goal of learning from few
examples has been approached from different perspectives, including adaptation to new classes
[19], adaptation to new tasks and domains [17], [44] or more recently as direct applications of
large scale pre-trained language models [36], [334] via fine-tuning, in-context learning, one-shot
or zero-shot prompting. Pre-training on a large general-purpose corpus followed by fine-tuning on
a specific task requires task-specific fine-tuning datasets of (tens of) thousands examples, never-
theless recent advances in scaling up language models demonstrate great improvements that are
competitive with state-of-the-art fine-tuning approaches when just leveraging their task-agnostic
few-shot abilities. Unlike fine- tuning which involves updating the weights of a pre-trained model,
few-shot requires no weight updates and works by providing the model with k examples of context
and their corresponding completions, altogether with one final test example for which the model
itself is expected to provide the completion. One-shot is similar to few-shot, however it only allows
one demonstration and a natural language description of the task, while in zero-shot no demon-
strations are allowed except for the instruction describing the task itself. Figure 4.1 and Figure
4.2 illustrate how few-shot learning improves dramatically with increasing the model size and the
number of k-shot in-context examples provided [36]. The few-shot learning setup considerably
diminishes the need for task-specific data, and is relevant for addressing the low-resource issue for
many under-represented languages and resource-constrained settings [483].

In parallel with these advances that highlight emerging abilities of large-scale pre-trained mod-
els, other research directions explore the tradeoff between increasing the number of model parame-
ters versus the number of labeled examples across a wide variety of NLP tasks [219], [239]. When
hundreds of examples can be collected with relatively low cost and effort, the question is whether
gains obtained from enlarging the dataset are comparable to gains obtained from using larger-sized
models, since scaling up language models to hundreds of billions of parameters is not efficient and
may restrict the ability to fine-tune (for eg., GPT3 [36] is only available as a service). To this end,
the contribution of additional examples greatly varies depending on the task format [219]; please
see Figure 4.3. In general, collecting more training data for tasks where data is sparse is often a
more effective strategy than scaling to larger and more computationally demanding models. Tasks
such as text classification, multiple choice or extractive question answering greatly benefit from
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Figure 4.1: Larger models make increasingly efficient use of in-context information. The steeper
“in-context learning curves” for large models demonstrate improved ability to learn a task from
contextual information on a simple task requiring the model to remove random symbols from a
word. Figure reproduced from (Brown et al, 2020)[36].

Figure 4.2: The average accuracy vs. model size on English-Spanish Multilingual Natural Lan-
guage Understanding (NLU) dataset achieved by cross-lingual in-context learning using various
GPT and T5 models. The shaded region represents the standard deviation of three runs. Figure
reproduced from (Winata et al, 2021)[483].
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Figure 4.3: The relative importance of increasing the number of model parameters versus the
number of training examples for various NLP tasks. Higher values indicate more dependence on
parameters and less on labeled data. Figure reproduced from (Kirstain et al, 2021)[219].

additional training examples, which are considered to be “worth” billions of parameters (i.e. en-
larging the dataset results in similar gains as increasing the number of parameters). However, for
tasks such as open question answering which require the model to recall specific information seen
during pre-training, enlarging the training set will not result in performance gains; in such cases
additional model parameters are extremely important and cannot be replaced by more data.

For both fine-tuning and few-shot methods, prompting has been used in the low-data regime
to introduce a task description in natural language. Prompt-based learning allows to customize
the language model to predict output that reflects the downstream task of interest [36]. For the
supervised task of text classification, prompting provides substantial advantage in terms of data
efficiency and is found to be equivalent to hundreds of datapoints [239]. However, plain language
prompts do not always produce the desired results and human users must experiment with a wide
range of prompts to find those that elicit desired behaviours from black-box large language models
[396], [382]; even if significant effort is invested, manual prompts are still likely to be sub-optimal.
Instead of relying on human-designed prompts, approaches that automate the prompt generation
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and selection process by formulating it as a black-box optimization problem are proposed [531],
[425], [126], [274]. Interestingly, single prompts such as “Let’s think step by step” demonstrate
zero-shot capabilities of large language models and can be used to elicit step-by-step reasoning in a
zero-shot chain-of-thought manner for diverse logical tasks [221]. While zero-shot CoT yields less
good results compared to few-shot CoT, the method outperforms few-shot and zero-shot prompting
for reasoning tasks when used with large language models such as PaLM [65] with 540 billion
parameters. Notably, the zero-shot and few-shot abilities of LLMs can be increased by fine-tuning
models to follow instructions [391], [338], [396], [126], [526]. When the prompt is optionally
augmented with few examples that reflect the target task of interest (demonstrations), the pre-
trained model can solve a new test input by leveraging the in-context learning (ICL) capabilities
learnt during pre-training; ICL does not require any gradient update to the model parameters.
Nevertheless, model biases greatly influence ICL performance, causing it to vary from near random
to near state-of-the-art [524]. LLM predictions appear more sensitive to demonstrations appearing
closer to the test example, a phenomenon referred to as recency bias [524]. In addition, the order
of demonstrations does matter: some orders of the training examples are “fantastic”, while others
cause a significant drop in performance [287]. In order to compare approaches for few-shot NLP,
new benchmarks are proposed for evaluating the performance of current models [34].

4.3 Preliminaries to Few-shot Task/Domain Adaptation

We aim to learn how to adapt a pre-trained neural language model to text simplification contexts
that involve new tasks and domains, with only few in-domain training examples available. For this
purpose, we use widely popular adaptation strategies, namely gradient-based meta-learning and
fine-tuning-based transfer learning. In what follows we formally introduce these two approaches
for task and domain adaptation in the context of neural text simplification.

4.3.1 Gradient-based Meta-learning

In the context of few-shot learning, meta-learning models are designed to find parameters that can
be fine-tuned in few optimization steps and with few labeled examples to achieve fast adaptation
on a task not seen during training.

In typical machine learning settings, we are given a dataset D = {(x1, y1), . . . , (xn, yn)},
with a training split Dtrain and a testing split Dtest. The goal is to train a model ŷ = fθ(x)

parameterized by θ such that model parameters θ are optimized on the training subset Dtrain:
θ∗ = argminθ L(D; θ, ω), whereL represents the loss function measuring the error between model
predictions and ground-truth labels, and ω denotes assumptions such as the choice of the optimizer
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or function class for f . After training the model, we then evaluate its generalization performance
on the testing subset Dtest. The conventional assumption is that optimization is performed from
scratch for every dataset D.

In meta-learning, we assume a distribution over tasks p(T ) we want our model to be able to
adapt to, and that a set of tasks can be sampled from this distribution, {Ti}ni=1 ∼ p(T ). Each task
Ti = (T si , T

q
i ) consists of two small sets of labeled data, the support data T si which is used for fine-

tuning, and the query data T qi which is used for measuring the performance of the resulting fine-
tuned model. Note that for different tasks Ti and Tj , they may share the same data distribution (X)
but just deal with different labels (Y ). When the data distribution Xi and Xj are different across
tasks, we can also describe them as sampled from different “domains”. The task Ti is described
as n-way k-shot if it consists of n classes, and there are k examples available for each class. In
Algorithm 1 [140], we present the general gradient-based meta-learning framework, noting that
variations of this approach exist in the literature.

Algorithm 1 The gradient-based meta-learning framework

Require: p(T ): distribution over tasks, Fθ: base model,A: fine-tuning algorithm, γ: learning rate
Ensure: Initialize θ, the weights of F

while not done do
Sample a batch of tasks {Ti}ni=1 ∼ p(T ), where Ti = (T si , T

q
i )

for i = 1, . . . n do
Fine-tune model on task Ti and obtain new network parameters θi = A(θ, T si ) ▷ Inner

Loop
Compute gradient gi = ∇θL(Fθi , T

q
i )

end for
Update base model parameters ▷ Outer Loop
θ ← θ − γ

n

∑
i gi

end while

In general, meta-learning algorithms employ a bi-level optimization scheme consisting of an
“inner” loop and an “outer” loop, where the outer loop searches for the best global parameter
initialization and the inner loop optimizes individual models that share a common parameter ini-
tialization for a range of tasks. A meta-learning iteration starts with the outer loop, where a batch
of tasks are sampled from the distribution over tasks p(T ). Then in the inner loop, given as input
a base model Fθ parameterized by network parameters θ, Fθ is in turn fine-tuned on the support
data T si of each task; the resulting fine-tuned model Fθi is used to make predictions on the query
data T qi of each task. After the inner loop completes for all sampled tasks in the batch, the outer
loop minimizes the loss on the query data with respect to the pre-finetuned weights; this outer
optimization step is achieved by differentiating through the inner loop computation and updating
the base model parameters θ such that the inner loop fine-tuning becomes as fast and efficient as
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possible. Importantly, meta-learning algorithms differentiate through the entire fine-tuning loop,
unlike transfer learning approaches that only use simple first-order gradient information to up-
date network parameters. Nevertheless, back-propagating meta-gradients through the inner loop
comes with practical constraints such as high-order derivatives, big memory footprints, and the
risk of vanishing or exploding gradients [184]. To alleviate these issues of hierarchical optimiza-
tion where the outer optimization is constrained on the inner optimization, the number of inner
fine-tuning steps k is often set to small value, for eg., k = 1; alternatively, approximations for
higher order gradients are used when the outer/meta model and the inner/task-specific model lie in
the same space.

4.3.2 Transfer learning

Transfer learning [51], [343] focuses on knowledge transfer across domains. It aims to improve
the learning process of a target task with limited or no labeled training data by exploiting knowl-
edge acquired from a different and related source domain/task which has sufficient data available.
By enhancing the data in target domain with the additional data from the source domain, model
performance on the target task can be considerably improved. Compared to meta-learning which
includes an outer optimization loop to evaluate the benefit of prior knowledge when learning a new
task, transfer learning extracts prior knowledge by learning on the source task directly (i.e. without
the use of a meta-objective). Furthermore, while meta-learning seeks an “algorithmic” solution
to the few-shot learning problem and does not necessarily focus on datasets and architectures,
transfer learning approaches emphasize learning robust representations from large-scale datasets
and models [99]. To this end, one of the most commonly employed approaches to transfer learn-
ing is pretrain-then-finetune, which first trains a model on massive datasets and then fine-tunes a
pre-trained model on new tasks of interest that requires less data.

Numerous successes of large-scale pre-trained models on a wide variety of tasks and domains
are reported in the literature [463], [36], [90]. Nevertheless, transferred knowledge does not always
have a positive impact on new tasks. In the extremely data-scarce regime when only few samples
are available in the target domain, transfer learning is less effective and performs subpar [140].
Furthermore, when there is little in common between domains or when domain similarities are
misleading, the target learner is negatively impacted by the transferred knowledge and negative
transfer occurs [536]. The brittleness of the fine-tuning process in settings where there is data
distribution shift and different label space than seen during pre-training leads to poor out-of-domain
generalization. Therefore, the main challenge in transfer learning becomes how to distinguish
beneficial source knowledge from inherent cross-domain noise [84].

Relevant to our work, including a second stage of pre-training with intermediate supervised
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tasks is reported to improve the robustness and effectiveness of the resulting target task model
in few-shot settings [358]. Crucially, a careful selection of source tasks to fine-tune on in the
intermediate stage is still required, which is not always clear.

4.4 Experiment Setup

In our experiments we aim to investigate the robustness and efficacy of meta-learning and transfer
learning methods when applied to the scenario of neural text simplification in a wide diversity of
real-world data-constrained settings.

4.4.1 Datasets

We use three datasets which cover different domains and application scenarios of text simplifica-
tion. In particular, we focus on generating simpler and more readable versions of news articles and
scientific papers from a multitude of research fields that are disseminated to the general public. We
use a third dataset, Wikipedia, as an auxiliary.

News Simplification. Newsela [496] is a corpus of news articles simplified by professional
news editors for children of different age and grade levels for pre-college classroom use. Each
article has been rewritten four times, resulting in a parallel sentence-aligned monolingual corpus
with different reading levels. In our experiments we use the parallel Newsela dataset made avail-
able in [517], which we further divide into distinct subsets according to the ground-truth labels
provided for complex-simple sentence pairs. In other words, we consider the different degrees (or
difficulty level) of simplification as different tasks of new simplification. Table 4.6 in Appendix
4.7 summarizes our meta-train, meta-dev and meta-test splits according to the complexity level of
sentence pairs.

Scientific Press Release. Biendata 1 dataset consists of research papers from various scientific
disciplines matched with press releases that describe them. Notably, rewriting scientific papers
into press releases has mixed objectives that are not solely about text simplification. However, it
presents a valuable use-case scenario of text simplification employed in the real world and it also
provides a nice out-of-distribution test for our adaptative learning methods. The corpus consists
of alignments at the title level, and for each scientific paper we extract domain meta-data via
the Microsoft Academic Knowledge API 2. We define subsets of the Biendata corpus according to
scientific domains, so simplifying articles in each scientific domain is also considered as a different

1https://www.biendata.xyz/competition/hackathon
2https://www.microsoft.com/en-us/research/project/microsoft-academic-graph
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task; in Table 4.8 in Appendix 4.7 we present statistics regarding the data splits used for the meta-
train, meta-dev and meta-test subsets.

Auxiliary. WikiLarge [517] is a Wikipedia-based corpus created by combining existing simpli-
fication datasets. The training subset of WikiLarge is obtained by assembling datasets of parallel
aligned Wikipedia - Simple Wikipedia sentence pairs available in the literature [202], [485], [535],
while the development and test subsets contain complex sentences with simplifications provided
by Amazon Mechanical Turk workers [497]. We split the WikiLarge dataset at random ensuring
equal number of complex-simple sentence pairs in each subset; please see Table 4.7 in Appendix
4.7 for details on the meta-train, meta-dev and meta-test subsets.

WikiSmall [535] is a smaller text simplification benchmark containing 89,042 training sentence
pairs, and 100 testing complex-simple sentence pairs. We only use this corpus sparingly to augment
WikiLarge model training.

Each dataset contains a meta-train, meta-dev and meta-test set, and each set includes text sim-
plification tasks that correspond to varying complexity levels (Newsela and WikiLarge) or different
scientific domains (Biendata). As these tasks are all based on their own dataset, we can also de-
scribe them as different “domains” of text simplification.

4.4.2 Adaptation Paths

Our main goal is to investigate whether meta-learning or transfer learning is a suitable adaptation
strategy when there is a distribution of low-resource text simplification tasks/domains available,
how they compare to each other, and whether they can work as a team. In addition, we would like
to determine if doing both task adaptation and domain adaptation can improve performance on new
target tasks of interest. To answer these research questions, we design the following experiments.
In Figure 4.4, we see multiple possible paths of adaptation process.

1. Direct task adaptation: we aim to determine if it is possible to adapt a pre-trained model
(Source), either trained on general-domain knowledge or specifically designed for text sim-
plification, to text simplification tasks (Target) via meta-learning and achieve good perfor-
mance on unseen tasks (meta-test);

2. Direct domain adaptation: we would like to establish whether a pre-trained model (Source)
can be adapted to text simplification domains (Target) via fine-tuning and achieve good per-
formance on unseen domains;

3. Two-stage adaptation via an intermediate: our goal is to determine if there is any bene-
fit combining task adaptation and domain adaptation through an intermediate task/domain
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Figure 4.4: Adapting a pre-trained language model (source) to low-resource text simplification
(target).

dataset (Intermediate). We would like to find out in which order the two-stage adaptation
should be carried out;

4. Two-stage adaptation via a pseudostop: if no intermediate dataset is available, we would
like to determine if it is possible to use the Target itself as the intermediate.

Note that in each leg of a two-stage process, we have two adaptation methods (meta-learning or
transfer learning). Next, we present the specific details of the two methods in our context.

Meta-Learning (Task adaptation) For learning model parameters that facilitate adaptation to a
new text simplification task in few steps and with minimal amount of text simplification examples,
we use Model Agnostic Meta-Learning (MAML) [115]. In our experiments, we use the publicly
available MAML implementation proposed in META-MT [412] 3, originally designed for fast
adaptation in the context of neural machine translation with minimal amount of in-domain data. We
adapt META-MT for the task of text simplification and use the first-order approximation of MAML
(FOMAML) due to computational challenges associated with computing higher order gradients.
The meta-learning loss function is optimized using Adam [215] optimizer with a learning rate
α = 1e− 5 and a meta-batch size of 1. We initialize meta-parameters θ in two ways: i) by training
a Transformer [463] model on the combination of WikiLarge and WikiSmall text simplification
datasets, and ii) by leveraging the external knowledge encapsulated in the pre-trained Text-to-Text

3https://www.dropbox.com/s/jguxb75utg1dmxl/meta-mt.zip?dl=0
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Transformer (T5) [371], a general purpose language model not particularly designed for the task
of text simplification. We provide details on the hyper-parameter settings for these inner models in
the transfer learning section below.

In addition, we also use Reptile [326], a first-order meta-learning algorithm designed for fast
adaptation to new tasks. We intend to verify whether the same conclusions and insights can be
drawn if different meta-learning algorithms are used for task adaptation. Our goal is not to compare
the two meta-learning algorithms.

Transfer Learning/Fine-Tuning (Domain Adaptation) For determining the benefit of transfer
learning from large-scale general-domain corpora to low-resource text simplification, we use the
pre-trained Text-to-Text Transformer (T5) [371]. T5 is a sequence-to-sequence model with 60
million parameters pre-trained on a multi-task mixture of unsupervised and supervised tasks; each
task is converted into a text-to-text format, thus allowing us to use T5 for the purpose of text
simplification generation. We fine-tune T5 on the meta-train and meta-valid subsets of each text
simplification dataset, then generate simplified outputs for the complex inputs from the meta-test
test subset of each dataset by prompting the fine-tuned T5 with the keyphrase ”translate English to
English”; training and validation batch size are set to 16, and the learning rate α = 1e− 4.

In addition to T5, we also train a Transformer [463] model for text simplification on WikiLarge
and WikiSmall datasets. In our implementation of the Transformer model, we use the Fairseq [337]
library and following [412], we augment the Transformer architecture with adapter modules [172],
[20] after each transformer block for more efficient model fine-tuning. The model we train relies
on the transformer-base architecture with 6 encoder and 6 decoder layers and multi-head attention
with 8 attention heads, the dimensionality of word embeddings is set to 512, feed-forward layers
dimension is set to 2,048, and adapter modules have 32 hidden units; we use Adam [215] optimizer
with a learning rate α = 7e− 4.

4.4.3 Evaluation Metrics

There is no consensus on what is the single best evaluation metric for text simplification. We
therefore employ a diverse portfolio of metrics to “meta”-assess the quality of the generated sim-
plifications from different perspectives, including informativeness, relevance, fluency, readability,
and adequacy. We use SARI [497] to evaluate the quality of the simplified output by comparing it
against the source and reference simplifications, which is one of the most accepted metrics of text
simplification in literature. We use BLEU [345] to measure the similarity between the generated
text and gold standard references. We also use FKGL [214] to measure the readability of the out-
put. In addition, we also use learnable evaluation metrics that train machine learning models on
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human annotated datasets to learn a scoring function that reproduces human judgements. Mover-

Score [523] measures the semantic distance between system outputs and reference texts using se-
mantically aligned pretrained embeddings; the distance is computed using Word Mover’s Distance
[229] in the embedding space, yielding the amount of flow traveling between the contextualized
representations. MAUVE [359] rewards model-generated text which resembles human-authored
text by comparing the two distributions using Kullback-Leibler information divergence frontiers
in a quantized low-dimensional embedding space. BARTScore [506] frames the evaluation of text
generation models as a text generation problem, and uses BART [250] pre-trained sequence-to-
sequence model to assess the probability of the system output (h) being generated from the source
(s) and/or reference text (r). We apply BARTScore in different generation directions to determine
Faithfulness (s→ h) as the likelihood the hypothesis could be generated based on the source text,
Precision (r → h) as the likelihood the hypothesis could be constructed based on the gold ref-
erence, Recall (h → r) as the likelihood a gold reference could be generated by the hypothesis,
and F1 (r ↔ h) as the harmonic mean of precision and recall. Because the metric computes the
average log-likelihood for the target tokens, the resulting BARTScore values are negative. Each
of these evaluation metrics captures different aspects of text simplification generation, therefore
in our analysis we account for their overall agreement with regards to the quality of the generated
simplified output.

4.5 Experiment Results

We first intend to find out how well pre-trained language models can be directly adapted to the
task of low-resource text simplification, if it is necessary at all (than training a model directly in
the low-resource setting). If yes, we would like to understand whether the pre-trained model has to
be purposed for text simplification or it can be trained on large-scale general purpose text corpora.
If the latter, we would like to establish whether meta-learning or transfer learning works better
( via one-stage adaptation) to transfer the general knowledge to text simplification, especially to
new simplification domains with scarce data. Furthermore, we would like to determine if task
and domain adaptation can complement each other as part of a two-stage adaptation approach; if
yes, we would like to determine in which order the two-stage adaptation process should be carried
out to optimize performance on out-of-distribution text simplification tasks and domains. Finally,
when a natural intermediate dataset is not possible, we would like to determine whether using the
target dataset itself for intermediate adaptation is a sensible alternative.

Baseline (No Adaptation). As a baseline, we do not adapt any pre-trained language models but
train a Transformer model directly on Newsela or Biendata (based on meta-train and meta-dev)
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and evaluate its performance on the corresponding meta-test. Because the training data is limited,
we anticipate that the performance would be suboptimal. Results are presented in Table 4.1. While
the Transformer model generally scores high in BLEU (indicating similarity to reference) and low
in FKGL (indicating high readability), the rest of evaluation metrics all indicate a sub-par perfor-
mance to adaptation-based methods (see below), including SARI. Note that the FKGL score on
Biendata is much lower than that of the ground-truth simplifications, indicating that the model has
been oversimplifying the scientific content. For reference, we also include the results on WikiLarge
dataset, which are much better than the other two datasets. As WikiLarge is the largest dataset of
the three, this suggests that when training data is abundant, neural text simplification could yield
good performance without adaptation from a pre-trained language model.

Table 4.1: Baseline meta-test test set results for the Transformer model trained on each text simpli-
fication dataset. Baseline FKGL reference scores - Newsela: 3.733, Biendata: 9.692, WikiLarge:
5.973; ⋆ denotes over-simplification.

Dataset Method SARI (↑) BLEU (↑) FKGL (↓) MOVER (↑) MAUVE (↑) BARTScore (↑)
Faithfulness P R F1

Newsela

Transformer 38.888 10.294 4.371 0.193 0.471 -3.806 -4.770 -4.686 -4.677

ACCESS 27.062 13.501 8.097 0.250 0.326 -1.827 -4.276 -3.511 -3.793

DMLMTL 38.601 8.181 ⋆1.476 0.164 0.229 -4.004 -5.070 -4.767 -4.850

Biendata

Transformer 35.950 0.455 ⋆6.715 0.143 0.019 -6.164 -5.924 -6.517 -6.153

ACCESS 17.847 2.582 12.552 0.294 0.446 -1.747 -5.821 -5.654 -5.678

DMLMTL 32.960 0.893 ⋆9.180 0.154 0.053 -4.429 -6.655 -6.280 -6.393

WikiLarge

Transformer 47.361 41.557 ⋆5.520 0.375 0.818 -2.380 -3.408 -3.687 -3.469

ACCESS 36.075 32.577 8.536 0.356 0.325 -2.016 -3.864 -3.749 -3.734

DMLMTL 31.233 3.425 ⋆1.650 0.113 0.034 -3.731 -4.871 -5.487 -5.072

Additional Baselines (Pre-trained Text Simplification Models) In addition, we also select
the current best text simplification models from the literature which have released pre-trained mod-
els. ACCESS [298] is a controllable sequence-to-sequence simplification model reported highest
performance on WikiLarge, while Dynamic Multi-Level Multi-Task Learning for Sentence Sim-
plification (DMLMTL) [153] reported the highest performance on Newsela. We evaluate these
pre-trained text simplification models on our own data splits. The results on Newsela and Wiki-
Large are mostly consistent with literature. However, the performance of both pretrained models
degrades significantly on Biendata, which demonstrates the critical need for task/domain adapta-
tion. In fact, the Transformer model directly trained on each dataset outperforms both pretrained
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models on most metrics.

Direct task adaptation. In Table 4.2 we present results for adapting a pre-trained language
model to the target task (Newsela or Biendata) through MAML. We test two source language
models: one is the general-purpose T5 model released by Google and the other is the Transformer
model we trained on WikiLarge (Wiki), which is purposed for text simplification. We observe that
using T5 for MAML meta-parameter initialization yields better performance on new text simpli-
fication tasks according to the majority of evaluation metrics. The Transformer model trained on
WikiLarge, although already purposed for text simplification, only achieves a higher BLEU and a
better FKGL. Overall, adapting from a powerful pre-trained language model outperforms training
a model directly from the limited resource (Table 4.1). To test the robustness of the results, we re-
place MAML with Reptile and the same pattern is observed (Table 4.2). These is not a consensus
among the metrics whether MAML or Reptile is better in this task - note that our goal is not to
compare the two meta learning models but rather the paths of task/domain adaptation.

Table 4.2: Direct task adaptation results on Newsela and Biendata meta-test test set; we use meta-
learning (MAML, Reptile) for adapting an existing language model to new tasks. ⋆ denotes over-
simplification according to FKGL.

Dataset Method SARI (↑) BLEU (↑) FKGL (↓) MOVER (↑) MAUVE (↑) BARTScore (↑)
Faithfulness P R F1

Newsela MAML T5 25.343 16.038 8.096 0.276 0.785 -1.195 -3.820 -3.208 -3.419
MAML Wiki 36.025 12.310 5.184 0.204 0.172 -3.257 -4.731 -5.014 -4.784

Reptile T5 22.758 16.264 9.133 0.277 0.773 -1.068 -3.800 -3.121 -3.359
Reptile Wiki 20.391 14.892 9.171 0.267 0.624 -1.114 -3.808 -3.081 -3.339

Biendata MAML T5 25.804 1.563 16.348 0.178 0.149 -2.558 -5.702 -5.755 -5.632
MAML Wiki 35.548 0.240 ⋆7.243 0.122 0.004 -6.527 -6.584 -6.708 -6.586

Reptile T5 18.867 1.587 16.916 0.166 0.081 -1.872 -5.429 -5.712 -5.434
Reptile Wiki 10.004 1.384 18.876 0.137 0.027 -1.524 -4.980 -5.818 -5.262

Direct domain adaptation. In Table 4.3 we present results for adapting the pre-trained language
models (T5 and Wiki) through fine-tuning to new text simplification domains in Newsela and
Biendata meta-test test set. In line with our previous findings, using T5 as source yields superior
performance to the Transformer trained on WikiLarge, according to most metrics. Comparing one-
stage domain adaptation (Table 4.3) with one-stage task adaptation (Table 4.2), we observe that by
and large domain adaptation (fine-tuning) outperforms task adaptation (either MAML or Reptile);
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the benefit is more apparent on the out-of distribution scientific press release tasks and domains on
Biendata. As using T5 as the source dominates the pre-trained Transformer on WikiLarge, we use
T5 as the Source in there after.

Table 4.3: Direct domain adaptation results on Newsela and Biendata meta-test test set; we use
fine-tuning for adapting an existing language model to new domains. ⋆ denotes over-simplification
according to FKGL.

Dataset Method SARI (↑) BLEU (↑) FKGL (↓) MOVER (↑) MAUVE (↑) BARTScore (↑)
Faithfulness P R F1

Newsela Fine-tune T5 32.310 19.547 7.638 0.298 0.453 -1.624 -3.874 -3.162 -3.415
Fine-tune Wiki 35.360 18.009 4.397 0.272 0.158 -2.603 -4.847 -4.677 -4.676

Biendata Fine-tune T5 35.989 3.314 11.279 0.240 0.659 -3.324 -5.319 -5.519 -5.352
Fine-tune Wiki 37.314 1.066 ⋆6.827 0.177 0.004 -5.652 -6.094 -6.193 -6.068

Two-stage adaptation. Next, we would like to investigate whether it is possible to combine the
advantage of adapting to new domains with adapting to new tasks for more robust performance
and better generalization on new text simplification tasks and domains. As part of a two-stage
adaptation process, we aim to determine the ideal order in which to perform the adaptation, i.e.
whether task adaptation should be performed ahead of domain adaptation, or vice versa. In ad-
dition, we explore if consecutive stages of task adaptation and domain adaptation could further
improve upon one-stage adaptation results; nevertheless, our expectation is that combining task
with domain adaptation adds complementary benefits and can outperform multiple stages of the
same type of adaptation. In our analysis, we differentiate two cases: i) when there is an interme-
diate text simplification dataset available, and ii) when no other dataset is available, except for the
source and target datasets.

Intermediate dataset available. We use WikiLarge as an intermediate dataset for task and do-
main adaptation. As part of the two-stage adaptation process, we first adapt pre-trained T5 to
WikiLarge, then continue to adapt the resulting model to Newsela or Biendata; we explore possi-
ble combinations of task and domain adaptation at each stage of the pipeline, and present results
for various combinations of the two-stage adaptation process on the Newsela and Biendata target
tasks and domains in Table 4.4. Additionally, in Table 4.9 we include intermediate adaptation
results on WikiLarge.
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Table 4.4: Two-stage adaptation results on Newsela and Biendata meta-test test set when an inter-
mediate dataset (WikiLarge) is used. BOLD and Underlined: best and second best within the block
of either MAML or Reptile). ⋆ denotes over-simplification according to FKGL. Best single stage
adaptation results under each metric included for reference but not highlighted in comparison. (∗:
results duplicated for comparison purposes.)

Dataset Method SARI (↑) BLEU (↑) FKGL (↓) MOVER (↑) MAUVE (↑) BARTScore (↑)
Faithfulness P R F1

Newsela T5 domain + domain 34.722 19.376 8.319 0.284 0.079 -2.081 -4.182 -3.244 -3.596
T5 domain + task (MAML) 24.681 16.971 8.415 0.283 0.834 -1.102 -3.771 -3.133 -3.354
T5 task (MAML) + task (MAML) 28.711 15.378 7.462 0.267 0.619 -1.405 -3.821 -3.277 -3.457
T5 task (MAML) + domain 33.978 20.876 7.398 0.312 0.858 -1.226 -3.592 -3.096 -3.259

T5 domain + domain∗ 34.722 19.376 8.319 0.284 0.079 -2.081 -4.182 -3.244 -3.596
T5 domain + task (Reptile) 23.467 17.042 9.442 0.285 0.787 -1.037 -3.772 -3.095 -3.332
T5 task (Reptile) + task (Reptile) 26.337 17.098 8.727 0.278 0.818 -1.186 -3.829 -3.207 -3.432
T5 task (Reptile) + domain 34.092 20.861 8.054 0.311 0.876 -1.237 -3.613 -3.098 -3.270

best single stage 36.025 19.547 4.397 0.298 0.785 -1.195 -3.820 -3.162 -3.415

Biendata T5 domain + domain 37.850 3.342 10.932 0.230 0.580 -3.700 -5.244 -5.529 -5.315
T5 domain + task (MAML) 23.059 2.479 14.939 0.200 0.170 -2.161 -5.811 -5.671 -5.671
T5 task (MAML) + task (MAML) 27.300 1.056 16.545 0.142 0.076 -3.252 -5.658 -5.907 -5.683
T5 task (MAML) + domain 36.129 3.419 11.386 0.236 0.596 -3.270 -5.307 -5.530 -5.348

T5 domain + domain∗ 37.850 3.342 10.932 0.230 0.580 -3.700 -5.244 -5.529 -5.315
T5 domain + task (Reptile) 18.407 3.366 14.959 0.225 0.181 -1.348 -5.718 -5.532 -5.563
T5 task (Reptile) + task (Reptile) 22.274 1.982 15.043 0.182 0.118 -2.168 -5.684 -5.771 -5.651
T5 task (Reptile) + domain 37.175 3.598 11.063 0.238 0.626 -3.418 -5.263 -5.561 -5.341

best single stage 37.314 3.314 ⋆ 6.827 0.240 0.659 -2.558 -5.319 -5.519 -5.352

When an intermediate text simplification dataset is available as part of the two-stage adaptation
process, our results indicate that the most promising strategy is to adapt to new tasks (through
MAML or Reptile) in the first stage, and continue adapting to new domains (through fine-tuning)
in the second stage. The benefit of doing task adaptation first is also supported by the intermediate
results on WikiLarge, where adapting the pre-trained T5 model to the new task of text simplifica-
tion yields better results than adapting to new domains. It is critical to do domain adaptation in
the final stage (domain + domain is only second to task + domain), suggesting that the difference
over data distributions is more critical than the difference over tasks in our scenario. This is par-
ticularly true on Biendata, where the content in different scientific domains may be very different.
Repeating the same type of (task/domain) adaptation in both stages is less effective than task +

domain, demonstrating the complementary benefit of learning to adapt to both tasks and domains
for more robust generalization. Compared to one-stage task and one-stage domain adaptation, a
two-stage task and domain adaptation consistently improves the quality of the generated simpli-
fications according to the great majority of evaluation metrics. The findings are consistent when
either MAML or Reptile is used for task adaptation.

86



No intermediate dataset available. While we have established the advantage of a two-stage
adaptation procedure to address new text simplification tasks and domains, a potential limitation
of this approach is the reliance on a third text simplification dataset as the intermediate. Given
the scarcity of labels, we cannot assume the existence of such a related intermediate dataset for
adaptation is always guaranteed. In such cases, we investigate whether it is possible to circumvent
this additional requirement by using the source or target dataset itself for intermediate adaptation in
the two-stage pipeline. In our experiments, we pick the Target dataset for intermediate adaptation,
since the simplification model we aim to learn needs to be tailored specifically to target tasks and
domains, and also we do not have access to the original dataset that T5 is trained upon. In Table
4.5 we present results when we adapt from (Source→ Target)→ Target, i.e. from (pre-trained T5

→ Newsela/Biendata)→ Newsela/Biendata tasks and domains via a two-stage adaptation process.
In general, task adaptation followed by domain adaptation remains the best performing adaptation
strategy, and the benefit is considerably more pronounced on the out-of-distribution tasks and
domains from Biendata. We compare these results with Table 4.4 where an intermediate dataset is
used, and observe that using the target dataset directly for intermediate adaptation yields slightly
lower but comparable results to relying on Wikipedia for intermediate adaptation, and therefore
successfully overcomes the need for extra data. The findings are mostly consistent when either
MAML or Reptile is used for task adaptation. For interested readers, we have included sample
outputs of both one-stage and two-stage adaptation paths in Table 4.10 in Appendix.

Table 4.5: Two-stage adaptation results on Newsela and Biendata when no intermediate dataset is
available and the target dataset is used as a pseudo-intermediate. BOLD: best result within block
of either MAML and Reptile
.

Dataset Method SARI (↑) BLEU (↑) FKGL (↓) MOVER (↑) MAUVE (↑) BARTScore (↑)
Faithfulness P R F1

Newsela T5 task (MAML) + domain 34.690 19.799 7.601 0.294 0.251 -1.844 -4.012 -3.183 -3.487
T5 domain + task (MAML) 30.878 19.141 7.732 0.299 0.882 -1.323 -3.685 -3.136 -3.324

T5 task (Reptile) + domain 35.865 21.788 7.768 0.317 0.794 -1.286 -3.589 -3.112 -3.268
T5 domain + task (Reptile) 30.501 19.478 8.362 0.301 0.883 -1.172 -3.689 -3.120 -3.316

Biendata T5 task (MAML) + domain 37.945 3.354 10.681 0.238 0.634 -3.735 -5.312 -5.511 -5.343
T5 domain + task (MAML) 32.821 2.973 13.582 0.233 0.467 -3.149 -5.763 -5.508 -5.564

T5 task (Reptile) + domain 37.175 3.599 11.063 0.238 0.626 -3.417 -5.263 -5.561 -5.341
T5 domain + task (Reptile) 31.885 3.441 13.853 0.243 0.464 -2.646 -5.703 -5.431 -5.502
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In Figure 4.5 we demonstrate the effectiveness of the proposed one-stage and two-stage adapta-
tion paths compared to the Transformer baseline. When gradually increasing the number of labeled
training examples, we observe the faster convergence of the two adaptation paths compared to the
baseline for the majority of evaluation metrics.

Figure 4.5: Performance of adaptation strategies with varying number of training examples.
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4.6 Conclusion and Future Work

In this work, we frame the problem of low-resource text simplification from a task and domain
adaptation perspective and learn how to quickly adapt pre-trained language models to new tasks
and domains with few training examples. We examine the performance of state-of-the-art gradient-
based meta-learning for task adaptation, and transfer learning from large-scale pre-trained lan-
guage models for domain adaptation in a variety of tasks and domains. Our analysis reveals that
when a direct adaptation approach is used, fine-tuning pre-trained language models outperforms
meta-learning models for the task of low-resource text simplification; this trend is in line with pre-
vious findings in the literature [99], [36]. Nevertheless, decomposing the adaptation process into
multiple steps can significantly increase target performance, provided that an auxiliary dataset is
available for intermediate adaptation and careful attention is paid to performing adaptation in the
correct order, i.e. task adaptation ahead of domain adaptation. When such an intermediate auxil-
iary dataset is not readily available, a “pseudostop” based on the target task/domain itself can be
build between the source and the target.

Our findings represent preliminary foundations for proposing adaptation models that simulta-
neously perform task and domain adaptation in one goal. As we observe, the coupling of task
adaptation (difference in Y ) and domain adaptation (difference in X) is clearly beneficial compar-
ing to either meta-learning or transfer-learning alone. Therefore creating a model that explicitly
and jointly handles these two situations is a promising direction to explore. The utilization of stops
(and even pseudostops) between the source and target tasks/domains also suggests that it may be
valuable to further investigate a more structured solution of task/domain adaptation. We hope our
insights will help inform future directions towards robust adaptation of neural language models to
new tasks and domains for few-shot text simplification and other low-resource NLP tasks.
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4.7 Appendix A1

Table 4.6: Newsela splits according to complexity level. 0 denotes the most complex level, and 4
represents the simplest.

Complexity level Sentence pairs TRAIN (70%) DEV (15%) TEST (15%)

0 - 1 16,611 11,627 2,492 2,492


META-TRAIN

0 - 2 20,122 14,086 3,018 3,018
0 - 3 19,891 13,923 2,984 2,984
1 - 2 12,888 9,022 1,933 1,933
1 - 3 13,296 9,308 1,994 1,994
2 - 3 12,146 8,502 1,822 1,822

2 - 4 9,780 6,846 1,467 1,467
}

META-DEV3 - 4 10,185 7,129 1,528 1,528

0 - 4 16,086 11,260 2,413 2,413
}

META-TEST1 - 4 10,577 7,403 1,587 1,587

Table 4.7: WikiLarge random splits.

Subset Sentence pairs TRAIN (50%) DEV (25%) TEST (25%)

Wikipedia 0 20,000 10,000 5,000 5,000


META-TRAIN

Wikipedia 1 20,000 10,000 5,000 5,000
Wikipedia 2 20,000 10,000 5,000 5,000
Wikipedia 3 20,000 10,000 5,000 5,000
Wikipedia 4 20,000 10,000 5,000 5,000
Wikipedia 5 20,000 10,000 5,000 5,000
Wikipedia 6 20,000 10,000 5,000 5,000
Wikipedia 7 20,000 10,000 5,000 5,000
Wikipedia 8 20,000 10,000 5,000 5,000
Wikipedia 9 20,000 10,000 5,000 5,000

Wikipedia 10 20,000 10,000 5,000 5,000
 META-DEV

Wikipedia 11 20,000 10,000 5,000 5,000
Wikipedia 12 20,000 10,000 5,000 5,000
Wikipedia 13 20,000 10,000 5,000 5,000
Wikipedia 14 20,000 10,000 5,000 5,000

Wikipedia 15 20,000 10,000 5,000 5,000
 META-TESTWikipedia 16 20,000 10,000 5,000 5,000

Wikipedia 17 20,000 10,000 5,000 5,000
Wikipedia 18 20,000 10,000 5,000 5,000
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Table 4.8: Biendata splits according to scientific domain.

Scientific Domain Sentence pairs TRAIN (50%) DEV (25%) TEST (25%)

Medicine 7,993 3,997 1,998 1,998


META-TRAIN

Biology 10,040 5,020 2,510 2,510
Internal Medicine 1,095 547 274 274
Psychology 3,367 1,683 842 842
Chemistry 1,516 758 379 379
Cancer Research 1,044 522 261 261
Neuroscience 1,411 705 353 353
Virology 1,106 554 276 276
Pediatrics 812 406 203 203
Disease 582 292 145 145

Immunology 2,281 1,141 570 570


META-DEV

Genetics 2,151 1,075 538 538
Social Psychology 1,090 546 272 272
Surgery 1,261 631 315 315
Psychiatry 1,045 523 261 261
Cognition 662 330 166 166
Demography 992 496 248 248
Climate Change 847 423 212 212
Zoology 645 323 161 161

Endocrinology 1,582 790 396 396


META-TEST

Cell Biology 2,154 1,076 539 539
Molecular Biology 904 452 226 226
Biochemistry 640 320 160 160
Physical Therapy 1,189 595 297 297
Nanotechnology 378 188 95 95
Gerontology 649 325 162 162
Computer Science 739 369 185 185
Physics 1,108 554 277 277
Materials Science 967 483 242 242
Ecology 2,869 1,435 717 717
Geography 658 330 164 164
Economics 384 192 96 96

Table 4.9: Intermediate results on WikiLarge meta-test test set as part of the two-stage adapta-
tion process. Baseline FKGL score for WikiLarge reference sentences: 5.973, ⋆ denotes over-
simplification.

Dataset Method SARI (↑) BLEU (↑) FKGL (↓) MOVER (↑) MAUVE (↑) BARTScore (↑)
Faithfulness P R F1

WikiLarge T5 Task Adaptation 32.954 34.722 6.584 0.344 0.324 -1.286 -3.357 -3.411 -3.281
T5 Domain Adaptation 29.276 42.608 ⋆5.175 0.319 0.161 -1.816 -3.589 -3.932 -3.638
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Table 4.10: Sample text simplification outputs through different adaptation paths.

Dataset Model Output

Newsela

Complex sentence The exploration doubled the estimated gold reserves at El Dorado, within the headwaters of the
Lempa River, the nation’s most important waterway.

Transformer It found that the gold of the nation ’s most important event , the nation ’s most important event .
Direct Task Adaptation El Dorado is within the headwaters of the Lempa River, the nation’s most important waterway.
Direct Domain Adaptation El Dorado, the nation’s most important waterway, is within the headwaters of the Lempa River.
Two-stage Task + Domain Adaptation El Dorado is within the headwaters of the Lempa River, the nation’s most important waterway.
Simple sentence The dig for gold would take place at a mine known as El Dorado.

Complex sentence Here , the story of Ebola is one of worldwide public health infrastructure deficiency , delicate
trust in post-conflict nations , an exhausted health care workforce and widespread ambivalence
to our duty as a global community .

Transformer Here , the story of Ebola is one of the public worldwide worldwide worldwide worldwide .
Direct Task Adaptation Here, the story of Ebola is one of worldwide public health infrastructure deficiency,

delicate trust in post-conflict nations, an exhausted health care workforce
and widespread ambivalence to our duty as a global community .

Direct Domain Adaptation The story of Ebola is one of the biggest problems in public health.
Two-stage Task + Domain Adaptation There is a lack of trust in post-conflict nations.
Simple sentence Ebola ’s spread is about a worldwide lack of systems that support public health such as

health care workers , hospitals and equipment .

Biendata

Complex sentence The One-Two Punch of Alcoholism: Role of Central Amygdala Dynorphins
Transformer Researchers identify new way to reduce risk of childhood cancer
Direct Task Adaptation Alcoholism One-Two Punch of Alcoholism: Role of central Amygdala Dynorphins
Direct Domain Adaptation Alcoholism: How do we react to alcohol?
Two-stage Task + Domain Adaptation Alcoholism: How do we manage alcohol?
Simple sentence Alcoholism treatment: Kappa opioid receptors a new target

Complex sentence Development of an enhanced human gastrointestinal epithelial culture system to facilitate
patient-based assays

Transformer Scientists discover new insights into how to fight against cancer
One-stage Task Adaptation Development of human gastrointestinal epithelial culture system to

facilitate patient-based assayss
Direct Domain Adaptation Human gastrointestinal epithelial culture system could help treat patients
Two-stage Task + Domain Adaptation New way to test for gastrointestinal disorders
Simple sentence Growing human GI cells may lead to personalized treatments

In Figure 4.6 we present ChatGPT [333] generated simplifications for the same complex ex-
amples as in Table 4.10; in general, ChatGPT seems to follow the instruction to generate simpler
and more accessible language for complex input texts. As our work was done before large lan-
guage models as ChatGPT [333] or GPT-4 [334] were released, we leave the extensive quantitative
and qualitative evaluation of these models for future work. In addition, as of the time of writing
this thesis, the performance of these models is found to change substantially in a relatively short
amount of time, and details related to when and how these models are updated are opaque to the
general public [57]. For example, GPT-4’s accuracy dropped from 97.6% in March 2023 to 2.4%
in June 2023 on the task of identifying prime numbers, while GPT-3.5’s accuracy has improved
from 7.4% to 86.8% on the same task; variations in performance due to LLM drifts are observed
as well on other tasks, including code generation, visual reasoning, and dangerous/sensitive ques-
tion answering. This demonstrates the importance of continuously evaluating and monitoring the
behaviour of privately-owned large language models when deployed in real-word applications,
especially considering the lack of transparency and precise details for reproducing these models.

92



Figure 4.6: ChatGPT generated simplifications for the complex sentences in Table 4.10.
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CHAPTER 5

Judge the Judges: A Large-Scale Evaluation Study
of Neural Language Models for Online Review

Generation

In this chapter, we focus on the open challenge of evaluation in natural language generation. Our
main contribution consists in a a large-scale, systematic experiment that evaluates the evaluators

for NLG. We compare the preferences of different evaluators on a dozen representative deep-
learning based NLG algorithms with human assessments of text quality in the context of online
review generation. Our findings reveal significant differences among the evaluators and shed light
on the potential factors that contribute to these differences. The analysis of a post experiment sur-
vey also provides important implications on how to guide the development of new NLG algorithms.
This work is presented in:

• Gârbacea, Cristina, Samuel Carton, Shiyan Yan, and Qiaozhu Mei. ”Judge the Judges: A

Large-Scale Evaluation Study of Neural Language Models for Online Review Generation.”

In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language Processing. 2019.

We conduct a large-scale, systematic study to evaluate the existing evaluation methods for nat-
ural language generation in the context of generating online product reviews. We compare human-
based evaluators with a variety of automated evaluation procedures, including discriminative eval-
uators that measure how well machine-generated text can be distinguished from human-written
text, as well as word overlap metrics that assess how similar the generated text compares to human-
written references. We determine to what extent these different evaluators agree on the ranking of
a dozen of state-of-the-art generators for online product reviews. We find that human evaluators
do not correlate well with discriminative evaluators, leaving a bigger question of whether adver-
sarial accuracy is the correct objective for natural language generation. In general, distinguishing
machine-generated text is challenging even for human evaluators, and human decisions correlate

94



better with lexical overlaps. We find lexical diversity an intriguing metric that is indicative of the
assessments of different evaluators. A post-experiment survey of participants provides insights
into how to evaluate and improve the quality of natural language generation systems 1.

5.1 Introduction

Recent developments in neural language models [311], [379], [310], [309] have inspired the use of
neural network based architectures for the task of natural language generation (NLG). Despite fast
development of algorithms, there is an urgency to fill the huge gap in evaluating NLG systems. On
one hand, a rigorous, efficient, and reproducible evaluation procedure is critical for the develop-
ment of any machine learning technology and for correct interpretation of the state-of-the-art. On
the other hand, evaluating the quality of language generation is inherently difficult due to the spe-
cial properties of text, such as subjectivity and non-compositionality. Indeed, “there is no agreed

objective criterion for comparing the goodness of texts” [78], and there lacks a clear model of text
quality [160].

Conventionally, most NLG systems have been evaluated in a rather informal manner. [379]
divide existing evaluation methods commonly employed in text generation into three categories:
i) evaluations based on task performance, ii) human judgments and ratings, where human subjects
are recruited to rate different dimensions of the generated texts, and iii) evaluations based on com-
parison to a reference corpus using automated metrics. Task based evaluation considers that the
value of a piece of functional text lies in how well it serves the user to fulfill a specific application.
It can be expensive, time-consuming, and often dependent on the good will of participants in the
study. Besides that, it is hard to toss out the general quality of text generation from the special con-
text (and confounds) of the task, or to generalize the evaluation conclusions across tasks. Human

annotation is able to assess the quality of text more directly than task based evaluation. However,
rigorously evaluating NLG systems with real users can be expensive and time consuming, and it
does not scale well [380]. Human assessments also need to be consistent and repeatable for a
meaningful evaluation [283]. Alternative strategies which are more effective in terms of cost and
time are used more frequently.

Automated evaluation compares texts generated by the candidate algorithms to human-written
texts. Word overlap metrics and more recent automated adversarial evaluators are widely em-
ployed in NLG as they are cheap, quick, repeatable, and do not require human subjects when a
reference corpus is already available. In addition, they allow developers to make rapid changes to
their systems and automatically tune parameters without human intervention. Despite the benefits,

1The experimental setup, data, and annotations are publicly available at: https://github.com/Crista23/
JudgeTheJudges
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however, the use of automated metrics in the field of NLG is controversial [379], and their results
are often criticized as not meaningful for a number of reasons. First, these automatic evaluations
rely on a high-quality corpus of references, which is not often available. Second, comparisons
with a reference corpus do not assess the usefulness and the impact of the generated text on the
readers as in human-based evaluations. Third, creating human written reference texts specifically
for the purpose of evaluation could still be expensive, especially if these reference texts need to
be created by skilled domain experts. Finally and most importantly, using automated evaluation
metrics is sensible only if they correlate with results of human-based evaluations and if they are
accurate predictors of text quality, which is never formally verified at scale.

We present a large-scale, systematic experiment that evaluates the evaluators for NLG. We com-
pare three types of evaluators including human evaluators, automated adversarial evaluators trained
to distinguish human-written from machine-generated product reviews, and word overlap metrics
(such as BLEU and ROUGE) in a particular scenario, generating online product reviews. The
preferences of different evaluators on a dozen representative deep-learning based NLG algorithms
are compared with human assessments of the quality of the generated reviews. Our findings reveal
significant differences among the evaluators and shed light on the potential factors that contribute
to these differences. The analysis of a post experiment survey also provides important implications
on how to guide the development of new NLG algorithms.

5.2 Related Work

5.2.1 Deep Learning Based NLG

Recently, a decent number of deep learning based models have been proposed for text generation.
Recurrent Neural Networks (RNNs) and their variants, such as Long Short Term Memory (LSTM)
[166] models, Google LM [193], and Scheduled Sampling (SS) [23] are widely used for generating
textual data.

Generative Adversarial Networks [146], or GANs, train generative models through an adver-
sarial process. Generating text with GANs is challenging due to the discrete nature of text data.
SeqGAN [505] is one of the earliest GAN-based model for sequence generation, which treats the
procedure as a sequential decision making process. RankGAN [266] proposes a framework that
addresses the quality of a set of generated sequences collectively. Many GAN-based models [505],
[266], [373], [55], [256], [519] are only capable of generating short texts. LeakGAN [154] is
proposed for generating longer texts.

Deep learning architectures other than LSTM or GAN have also been proposed for text gener-
ation. [450] study NLG given particular contexts or situations and proposes two approaches based
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on the encoder-decoder framework. [96] address the same task and employ an additional soft
attention mechanism. Pre-training enables better generalization in deep neural networks [104], es-
pecially when combined with supervised discriminative fine-tuning to learn universal robust rep-
resentations [367], [89], [369]. [156] use a prototype-then-edit generative language model for
sentences.

5.2.2 Automated Evaluation Metrics

The variety of NLG models are also evaluated with various approaches. Arguably, the most natural
way to evaluate the quality of a generator is to involve humans as judges, either through some type
of Turing test [293] to distinguish generated text from human input texts, or to directly compare
the texts generated by different generators [306]. Such approaches are hard to scale and have to
be redesigned whenever a new generator is included. Practically, it is critical to find automated
metrics to evaluate the quality of a generator independent of human judges or an exhaustive set of
competing generators.

Perplexity [189] is commonly used to evaluate the quality of a language model, which has also
been employed to evaluate generators [502], [113], [133] even though it is commonly criticized
for not being a direct measure of the quality of generated text [111]. Perplexity is a model depen-
dent metric, and “how likely a sentence is generated by a given model” is not comparable across
different models. Therefore we do not include perplexity in this study.

Discriminative Evaluation is an alternative way to evaluate a generator, which measures how
likely its generated text can fool a classifier that aims to distinguish the generated text from human-
written texts. In a way, this is an automated approximation of the Turing test, where machine
judges are used to replace human judges. Discriminative machine judges can be trained either
using a data set with explicit labels [336], or using a mixture of text written by real humans and
those generated by the model being evaluated. The latter is usually referred to as adversarial

evaluation. [33] proposes one of the earliest studies that uses adversarial error to assess the quality
of generated sentences. Notably, maximizing the adversarial error is consistent to the objective of
the generator in generative adversarial networks. [199] propose an adversarial loss to discriminate
a dialogue model’s output from human output. The discriminator prefers longer output and rarer
language instead of the common responses generated. There however lacks evidence that a model
that obtains a lower adversarial loss is better according to human evaluations.

Automatic dialogue evaluation is formulated as a learning problem in [284], who train an RNN
to predict the scores a human would assign to dialogue responses. RNN predictions correlate
with human judgments at the utterance and system level, however each response is evaluated in
a very specific context and the system requires substantial human judgments for training. [256]
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employ a discriminator (analogous to the human evaluator in the Turing test) both in training and
testing and define adversarial success. Other work finds the performance of a discriminative agent
(e.g., attention-based bidirectional LSTM binary classifier) is comparable with human judges at
distinguishing between real and fake dialogue excerpts [38]. However, results show there is limited
consensus among humans on what is considered as coherent dialogue passages.

Word Overlap Metrics, such as BLEU [345], ROUGE [265], and METEOR [16], are com-
monly used to measure the similarity between the generated text and human written references.
[270] find that word overlap metrics present weak or no correlation with human judgments in non-
task oriented dialogue systems and thus should be used with caution or in combination with user
studies. In contrary, it is reported in [415] that text overlap metrics are indicative of human judg-
ments in task-oriented dialogue settings, when used on datasets which contain multiple ground
truth references. [77] find text overlap metrics too restrictive as they focus on fidelity of word-
ing instead of fidelity of semantics. [43] consider an increase in BLEU insufficient for an actual
improvement in the quality of a system and posit in favor of human evaluation.

BLEU and its variants (e.g., Self-BLEU) are used to evaluate GAN models [40, 534]. [422]
compare frameworks for text generation including MLE, SeqGAN, LeakGAN and Inverse Rein-
forcement Learning using a simulated Turing test. A benchmarking experiment with GAN models
is conducted in [285]; results show LeakGAN presents the highest BLEU scores on the test data.
Similarly, BLEU and METEOR present highest correlations with human judgements [42], [147].
However, evaluation metrics are not robust across conditions, and no single metric consistently
outperforms other metrics across all correlation levels [363].

Conventional neural language models trained with maximum likelihood can be on par or better
than GANs [40], [405], [454]. However, log-likelihood is often computationally intractable [456].
Models with good likelihood can produce bad samples, and vice-versa [145]. Generative models
should be evaluated with regards to the task they are intended for over the full quality-diversity
spectrum [67], [162], [315].

While many generators are proposed and evaluated with various metrics, no existing work has
systematically evaluated the different evaluators at scale, especially in the context of online review
generation. Our work fills in this gap.

5.3 Experiment Design

We design a large-scale experiment to systematically analyze the procedures and metrics used
for evaluating NLG models. To test the different evaluators, the experiment carefully chooses a
particular application context and a variety of natural language generators in this context. Ideally,
a sound automated evaluator should be able to distinguish good generators from suboptimal ones.
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Its preferences (on ordering the generators) should be consistent to humans in the exact application
context.

5.3.1 Experiment Context and Procedure

We design the experiment in the context of generating online product reviews. There are several
reasons why review generation is a desirable task for the experiment: 1) online product reviews are
widely available, and it is easy to collect a large number of examples for training/testing the gener-
ators; 2) Internet users are used to reading online reviews, and it is easy to recruit capable human
judges to assess the quality of reviews; and 3) comparing to tasks like image caption generation
or dialogue systems, review generation has minimal dependency on the conversation context or on
non-textual data, which reduces possible confounds.

The general experiment procedure is presented in Figure 5.1. We start from the publicly avail-
able Amazon Product Reviews dataset 2 and select three most popular domains: books, electron-

ics, and movies. After filtering rare products, inactive users, and overly long reviews, the dataset
is randomly split into three parts, to train, to validate, and to test the candidate review generators
(denoted as G-train, G-valid, and G-test). Every generative model is trained and validated using
the same datasets, and then charged to generate a number of product reviews (details are included
in the next section). These generated reviews, mixed with the real reviews in G-test, are randomly
split into three new subsets for training, validating, and testing candidate (discriminative) evalua-
tors, denoted as D-train, D-valid, and D-test. Finally, a random sample of reviews from D-test are
sent for human evaluation.

5.3.2 Review Generators

Although our goal is to evaluate the evaluators, it is critical to include a wide range of text genera-
tors with various degrees of quality. A good evaluator should be able to distinguish the high-quality
generators from the low-quality ones. We select a diverse set of generative models from recent lit-
erature. The goal of this study is not to name the best generative model, and it is unfeasible to
include all existing models. Our criteria are: (1) the models are published before 2018, when our
experiment is conducted; (2) the models represent different learning strategies and quality levels;
(3) the models have publicly available implementations, for reproducibility purposes. In Table 5.1
we list the candidate generators. It is not an exhaustive list of what are currently available. For
implementation details of these models please see Appendix 5.6.1.

Every generator (except Google LM) is trained and validated on G-train and G-valid datasets,
and used to generate the same number of machine-generated (a.k.a., fake) reviews (see Table 5.2).

2http://jmcauley.ucsd.edu/data/amazon/
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Figure 5.1: Overview of the Experiment Procedure.

We follow the best practice in literature to train these models, although it is possible that the
performance of models might not be optimal due to various constraints. This will not affect the
validity of the experiment as our goal is to evaluate the evaluators instead of the individual gener-
ators. Google LM was not trained on reviews, but it provides a sanity check for the experiment - a
reasonable evaluator should not rank it higher than those trained for generating reviews.
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Table 5.1: Candidate models for review generation. * indicates that review generation using these
models are conditional on context information such as product ids; other models are context inde-
pendent.

Generative Model Adversarial
Framework

Word LSTM temp 1.0 [166] No
Word LSTM temp 0.7 [166] No
Word LSTM temp 0.5 [166] No
Scheduled Sampling [23] No
Google LM [193] No
Attention Attribute to Sequence* [96] No
Contexts to Sequences* [450] No
Gated Contexts to Sequences* [450] No
MLE SeqGAN [505] Yes
SeqGAN [505] Yes
RankGAN [266] Yes
LeakGAN [154] Yes

Table 5.2: Number of generated reviews by each model.

Generative Model Total D-Train D-Valid D-Test
∀ model in Table 5.1 except Google LM 32,500 22,750 3,250 6,500
Google LM 6,680 4,676 668 1,336

5.3.3 Evaluators

We include a comprehensive set of evaluators for the quality of the aforementioned generators: i)

human evaluators, ii) discriminative evaluators, and iii) text overlap evaluators. The evaluators are
the main subjects of the experiment.

5.3.3.1 Human evaluators

We conduct a careful power analysis [66], which suggests that at least 111 examples per genera-
tive model should be human annotated to infer that the machine-generated reviews are comparable
in quality to human-written reviews, at a minimal statistically significance level of 0.05. Per this
calculation, we sample 150 examples for each of the 12 generators for human evaluation. This
totals 1,800 machine-generated reviews, to which we add 1,800 human-written reviews, or a to-
tal of 3,600 product reviews sent for human annotation. We markup out-of-vocabulary words
in both human-written and machine-generated reviews to control for confounds of using certain
rare words. There is no significant difference in proportion of the markup token between the two
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classes (2.5%-real vs. 2.2%-fake). We recruit 900 human annotators through the Amazon Me-
chanical Turk (AMT) platform. Each annotator is presented 20 reviews, a mixture of 10 real (i.e.,
human written) and 10 fake (i.e., machine generated), and they are charged to label each review
as real or fake based on their own judgment. Clear instructions are presented to the workers that
markup tokens are present in both classes and cannot be used to decide whether a review is real
or fake. Each page is annotated by 5 distinct human evaluators. The 5 judgments on every review
are used to assemble two distinct human evaluators: H1 - individual votes, treating all human
annotations independently, and H2 - majority votes of the 5 human judgments. For every anno-

tated review, the human evaluator (H1 or H2) makes a call which can be either right or wrong
with regard to the ground truth. A generator is high quality if the human evaluator achieves low
accuracy identifying the reviews as fake.

5.3.3.2 Discriminative evaluators

The inclusion of multiple generators provides the opportunity of creating meta-adversarial eval-
uators, trained using a pool of generated reviews by many generators, mixed with a larger number
of “real” reviews (D-train and D-valid datasets). Such a “pooling” strategy is similar to the stan-
dard practice used by the TREC conferences to evaluate different information retrieval systems
[161]. Comparing to individual adversarial evaluators, a meta-evaluator is supposed to be more
robust and fair, and it can be applied to evaluate new generators without being retrained. In our
experiment, we find that the meta-adversarial evaluators rank the generators in similar orders to
the best individual adversarial evaluators.

We employ a total of 7 meta-adversarial evaluators: 3 deep, among which one using LSTM
[166], one using Convolutional Neural Network (CNN) [240], and one using a combination of
LSTM and CNN architectures; 4 shallow, based on Naive Bayes (NB) [385], Random Forest
(RF) [262], Support Vector Machines (SVM) [74], and XGBoost [60], with unigrams, bigrams,
and trigrams as features and on balanced training sets. We find the best hyper-parameters using
random search and prevent the models from overfitting by using early stopping. For every review in
D-test (either annotated or not), a meta-adversarial evaluator makes a judgment call. A generator
is considered high quality if the meta-adversarial evaluator makes more mistakes on reviews it
generated.

5.3.3.3 Word-overlap evaluators

We include a set of 4 text-overlap metrics used for NLG evaluation: BLEU and METEOR (specific
to machine translation), ROUGE (used in text summarization), and CIDEr [464] (used in image
description evaluation). These metrics rely on matching n-grams in the target text (i.e., generated
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reviews) to the “references” (i.e., human-written reviews). The higher the overlap (similarity),
the higher the quality of generated text. For every generated review in D-test Fake, we assemble
the set of references by retrieving the top-10 most similar human-written reviews in D-test Real

using a simple vector space model. We compute 600-dimensional vector representation of reviews
using Sent2Vec [341], pretrained on English Wikipedia, and retrieve the top-k nearest neighbors
for each review based on cosine similarity of the embedding vectors. The rationale of using nearest
neighbors of each generated review as references is that to appear “real”, a generated review just
need to be similar to some real reviews instead of all. A generator is considered high quality if
its generated reviews obtain a high average score by a text overlap evaluator. In total, we analyze
and compare 13 candidate evaluators (2 human evaluators, 7 discriminative evaluators, and 4 text-
overlap metrics), based on the D-test dataset.

5.4 Results

First, we are interested in the accuracy of individual evaluators - how well they can distinguish
“fake” (machine-generated) reviews from “real” (human-written) reviews. Second, we are inter-
ested in how an evaluator assesses the quality of the 12 generators instead of individual reviews.
The absolute scores an evaluator gives to the generators are not as informative as how it ranks them:
a good evaluator should be able to rank good generators above bad generators. Last but not least,
we are interested in how the rankings by different evaluators correlate with each other. Intuitively,
an automated evaluator that ranks the generators in similar orders as the human evaluators is more
reasonable and can potentially be used as the surrogate of humans.

5.4.1 Results of Individual Evaluators

5.4.1.1 Human evaluators

Every review is annotated by 5 human judges as either “fake” or “real.” The inter-annotator
agreement (Fleiss-Kappa score [117]) is k = 0.2748. This suggests that distinguishing machine-

generated reviews from real in general is a hard task even for humans; there is limited consensus
on what counts as a realistic review. The low agreement also implies that any automated evaluator
that mimics human judges is not necessarily the most “accurate.”

In Figure 5.2 we present the accuracy of two human evaluators on individual annotated reviews,
based on either all 5 annotations or their majority votes for each review. Comparing to the ground-
truth (of whether a review is machine-generated or collected from Amazon), individual human
decisions are 66.61% accurate, while their majority votes can reach 72.63%. Neither of them
is close to perfect. We observe that human evaluators generally do better at correctly labelling
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Figure 5.2: Accuracy of human evaluators on individual reviews: H1 - individual votes; H2 -
majority votes.

human-written reviews as real (true positive rate of 78.96% for H1 and 88.31% for H2), and

they are confused by machine-generated reviews in close to half of the cases (true negative rate of

54.26% for H1 and 56.95% for H2). This trend reassures previous observations [450].
We then look at how the human evaluators rank the 12 generators, according to the accuracy of

human evaluators on all (fake) reviews generated by each of the generators. The lower the accuracy,
the more likely the human evaluator is confused by the generated reviews, and thus the better the
generator. We observe a substantial variance in the accuracy of both human evaluators on different
generators, which suggests that human evaluators are able to distinguish between generators. The
generator ranked the highest by both human evaluators is Gated Contexts to Sequences. Google
LM is ranked on the lower side, which makes sense as the model is not trained to generate reviews.
Interestingly, humans tend not to be fooled by reviews generated by the GAN-based models (MLE
SeqGAN, SeqGAN, RankGAN and LeakGAN), even though their objective is to confuse fake
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from real. GAN-generated reviews tend to be easily distinguishable from the real reviews by
human judges.

5.4.1.2 Discriminative evaluators

We then analyze the 7 meta-adversarial evaluators. Different from human evaluators that are ap-
plied to the 3,600 annotated reviews, the discriminative evaluators are applied to all reviews in
D-test.

Meta-adversarial Evaluators. On individual reviews, the three deep learning based and the
one SVM based evaluators achieve higher accuracy than the two human evaluators, indicating
that adversarial evaluators can distinguish a single machine-generated review from human-written
better than humans (Figure 5.3 and Table 5.4 in Appendix 5.6.3.2). Their true positive rates and
true negative rates are more balanced than human evaluators. Meta-discriminators commonly rank
GAN-based generators the highest. This makes sense as the objective of GAN is consistent to the
(reversed) evaluator accuracy. Interestingly, by simply setting the temperature parameter of Word
LSTM to 1.0, it achieves comparable performance to the GANs.

Figure 5.3: Accuracy of human (H1, H2) and meta-adversarial evaluators (LSTM, SVM) on re-
views generated by individual generators. The lower the accuracy, the better the generator.
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5.4.1.3 Word-Overlap Evaluators

The generators are ranked based on the average scores of their generated reviews. In Figure 5.4
we present the average scores of the 12 generators by each evaluator. Different word-overlap
evaluators also tend to rank the generators in similar orders. Interestingly, the top-ranked generator
according to three evaluators is Contexts to Sequences, while CIDEr scores highest the Gated

Contexts to Sequences model. GAN-based generators are generally ranked low; please also see
Appendix 5.6.3.3.

Figure 5.4: Text-Overlap Evaluators (BLEU and CIDEr) scores for individual generators. The
higher the better. The rankings are overall similar, as GAN-based generators are ranked low.

5.4.2 Comparing Evaluators

To what degree do the evaluators agree on the ranking of generators? We are more interested in
how the automated evaluators compare to the human evaluators, and whether there is any suitable
automated surrogate for human judges at all. To do this, we compute the correlations between
H1, H2 and each discriminative evaluator and correlations between H1, H2 and the text-overlap
evaluators, based on either their decisions on individual reviews, their scores of the generators
(by Pearson’s coefficient [114]), and their rankings of the generators (by Spearman’s ρ [433] and
Kendall’s τ [81]). Patterns of the three correlation metrics are similar; please see Figure 5.5 and

106



Table 5.5 in Appendix 5.6.3.4.

Figure 5.5: Kendall τ -b between human and automated evaluators. Human’s ranking is positively
correlated to text-overlap evaluators and negatively correlated to adversarial evaluators (∗ is p ≤
0.05).

Surprisingly, none of the discriminative evaluators have a positive correlation with the human
evaluators. That says, generators that fool machine judges easily are less likely to confuse human

judges, and vice versa. Word-overlap evaluators tend to have a positive correlation with the human

evaluators in ranking the generators. Among them, BLEU appears to be closer to humans. This
pattern is consistent in all three types of correlations. These two observations are intriguing, which
indicates that when identifying fake reviews, humans might focus more on word usage rather than
trying to construct a “decision boundary” mentally.

In summary, we find that 1) human evaluators cannot distinguish machine-generated reviews
from real reviews perfectly, with significant bias between the two classes; 2) meta-adversarial
evaluators can better distinguish individual fake reviews, but their rankings at the generator level
tend to be negatively correlated with human evaluators; and 3) text-overlap evaluators are highly
correlated with human evaluators in ranking generators.
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5.5 Discussion

We carried a systematic experiment that evaluates the evaluators for NLG. Results have intriguing
implications to both the evaluation and the construction of natural language generators. We conduct
in-depth analysis to discover possible explanations.

5.5.1 Granularity of Judgments

We charged the Turkers to label individual reviews as either fake or real instead of evaluating each
generator as a whole. Comparing to an adversarial discriminator, a human judge has not seen
many “training” examples of fake reviews or generators. That explains why the meta-adversarial
evaluators are better at identifying fake reviews. In this context, humans are likely to judge whether
a review is real based on how “similar” it appears to the true reviews they are used to seeing online.

This finding provides interesting implications to the selection of evaluation methods for dif-
ferent tasks. In tasks that are set up to judge individual pieces of generated text (e.g., reviews,
translations, summaries, captions, fake news) where there exists human-written ground-truth, it is
better to use word-overlap metrics instead of adversarial evaluators. When judgments are made on
the agent/system level (e.g., whether a Twitter account is a bot), signals like how similar the agent
outputs are or how much the agent memorizes the training examples may become more useful
than word usage, and a discriminative evaluator may be more effective than word-overlap metrics.
Our finding also implies that adversarial accuracy might not be the optimal objective for NLG if
the goal is to generate documents that humans consider as real. Indeed, a fake review that fools
humans does not necessarily need to fool a machine that has seen everything. In Appendix 5.7.2
we provide more details.

5.5.2 Imperfect Ground Truth

One important thing to note is that all discriminative evaluators are trained using natural labels (i.e.,
treating all examples from the Amazon review dataset as positive and examples generated by the
candidate models as negative) instead of human-annotated labels. Some reviews posted on Amazon
may have been generated by bots, and if that is the case, treating them as human-written examples
may bias the discriminators. To verify this, we apply the already trained meta-discriminators to the
human-annotated subset (3,600 reviews) instead of the full D-test set, and we use the majority vote
of human judges (whether a review is fake or real) to surrogate the natural “ground-truth” labels
(whether a review is generated or sampled from Amazon).

When the meta-adversarial evaluators are tested using human majority-votes as ground-truth,
the scores and rankings of these discriminative evaluators are more inline with the human evalua-
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Figure 5.6: Kendall τ -b correlation coefficients between human evaluators and automated eval-
uators, tested on the annotated subset of D-test with majority votes as ground-truth (∗ denotes
p ≤ 0.05).

tors, although still not as highly correlated as BLEU; please see Figure 5.6. Indeed, discriminative
evaluators suffer the most from low-quality labels, as they were directly trained using the imper-
fect ground-truth. Word-overlap evaluators are more robust, as they only take the most relevant
parts of the test set as references (more likely to be high quality). Our results also suggest that
when adversarial training is used, selection of training examples must be done with caution. If
the “ground-truth” is hijacked by low quality or “fake” examples, models trained by GAN may be
significantly biased. This finding is related to the recent literature of the robustness and security of
machine learning models [344]. Appendix 5.7.3 contains further details.

5.5.3 Role of Diversity

We assess the role diversity plays in rankings the generators. Diversity of a generator is measured
by either the lexical diversity [9] or Self-BLEU [534] of the samples produced by the generator.
Results obtained (see Figure 5.7) indicate generators that produce the least diverse samples are eas-
ily distinguished by the meta-discriminators, while they confuse humans the most. This confirms
that adversarial discriminators capture limitations of generative models in lack of diversity [199].

Similarly, we measure to what extent the generators are memorizing the training set G-train
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Figure 5.7: Self-BLEU scores (the lower the more diverse) and lexical diversity scores (the higher
the more diverse) are highly correlated in ranking the generators.

as the average BLEU scores of generated reviews using their nearest neighbors in G-train as ref-
erences. We observe the generators do not memorize the training set, and GAN models generate
reviews that have fewer overlap with G-train; this finding is in line with recent theoretical studies
on memorization in GANs [320].

The effects of diversity indicate that when humans are distinguishing individual reviews as real
or fake, whether or not a fake review is sufficiently different from the other generated reviews is not
a major factor for their decision. Instead, they tend to focus on whether the review looks similar
to the reviews they have seen in reality. A discriminative evaluator is more powerful in making
decisions at a system level (e.g., a dialog system or a bot account), where diversity becomes a
major factor. In Appendix 5.7.4 we provide more details.

5.5.4 User Study

Finally, we are interested in the reasons why human annotators label certain reviews as fake
(machine-written). After annotating a batch of reviews, workers are asked to explain their de-
cisions by filling in an optional free-text comment. This enables us to have a better understanding
of what differentiates machine-generated from human-written reviews from human’s perspective.
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Analyzing their comments, we identify the main reasons why human evaluators annotate a review
as machine-written. These are mainly related to the presence of grammatical errors in the review
text, wrong wording or inappropriate choice of expressions, redundant use of specific phrases or
contradictory arguments in the review. Interestingly, human evaluators’ innate biases are also re-
flected in their decisions: they are likely to categorize a review as fake if it is too formal, lacks
emotion and personal pronouns, or is too vague and generic. Please see Appendix 5.7.1.

5.5.5 Summary

In summary, our findings represent a preliminary foundation for proposing more solid and robust
evaluation metrics and objectives of natural language generation. The low inter-rater agreement
we observe suggests that judging individual pieces of text as machine- or human-generated is
a difficult task even for humans. In this context, discriminative evaluators are not as correlated
with human judges as word-overlap evaluators. That implies that adversarial accuracy might not
be the optimal objective for generating individual documents when realism is the main concern.
In contrast, GAN based models may more easily pass a Turing test on a system level, or in a
conversational context. When the judges have seen enough examples from the same generator, the
next example had better be somewhat different.

Our results also suggest that when adversarial evaluation is used, the training examples must be
carefully selected to avoid false-positives. We also find that when humans are distinguishing fake
reviews from real ones, they tend to focus more on the usage of words, expressions, emotions, and
other details. This may affect the design of objectives for the next generation of NLG models. In
future work, we would like to determine to what extent it is possible to predict human judgements
of text quality based on scores of automated evaluation metrics.

5.5.6 Future Outlook

Given the latest advancements in large language models (LLMs), it is becoming increasingly dif-
ficult for humans to distinguish machine-generated from human-written texts. The emergence of
models such as ChatGPT [333] or GPT-4 [334] further complicates the problem of chatbot detec-
tion, as these models can generate high-quality texts that mimick human behaviour to a certain
extent [472]. In line with our findings, other works in the literature report humans perform only
slightly better than chance when classifying real from fake texts [131], [508]. Unfortunately, this
may lead to the misuse of text generation models in many real-world application contexts with
negative consequences for our society (for eg., convincing but inaccurate news articles, election
manipulation campaigns, fake news, dishonesty in educational assignments, impersonating human
users, eroding trust in online interactions, etc.). To this end, giving readers confidence in the ori-
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gin of the texts they consume and minimizing the threats posed by adversaries becomes extremely
important. For establishing the authenticity of LLM-generated texts, engaging in real-time con-
versations via sets of questions designed to explore differences between how bots and humans
process and generate language are proposed [472]. Leaving from the observation that LLMs have
difficulty with skills such as symbolic manipulation, noise filtering or graphical understanding,
questions are divided into two categories: i) easy for humans but difficult for bots (counting the
number of occurrences of a character in a string, substitution of characters in a string given a spe-
cific rule, identification of a specific character in a string, noise filtering when a string is modified
with extra characters), and ii) easy for bots but difficult for humans (memorization, computation,
domain-specific questions not encountered in everyday life). If the overlap between the given an-
swer and the ground-truth is higher than a pre-set threshold, the likelihood of the answer being
machine-generated increases. DetectGPT [314] proposes zero-shot machine-generated text detec-
tion by assessing the average per-token log probability under the original model of a piece of text
before and after perturbing it. Unlike human-written text, model-generated text tends to lie in areas
of negative curvature of the log probability function. Machine-generated text detection can also be
framed as a binary classification problem [188], [13], [431], [106], however the detection model
may overfit to the training topics and needs retraining whenever a new text generation models is
released. Watermarking language model output consists in adding human imperceptible signals
to the generated texts according to specific hashing rules, but which are statistically detectable to
machine algorithms as synthetic data [217]. Interestingly, the best deep pre-trained language mod-
els for generating misinformation are found to also be the best at detecting disinformation when
used in a discriminative setting [508]. As large language models are constantly improving and be-
coming more versatile, robust and accurate methods that can differentiate machine-generated from
human-written texts are critically needed.

5.6 Appendix A2

5.6.1 Implementation Details for Review Generators

Recurrent Neural Networks (RNNs) directly model the generation process of text sequences, and
provide an end-to-end solution to learning the generating function from large quantities of data.
These networks maintain a hidden layer of neurons with recurrent connections to their own pre-
vious values, which in theory gives them the potential to model long span dependencies. For an
input sequence x = x1, x2, . . . , xt, the hidden state ht which summarizes the information of the
entire sequence up to timestep t is recursively updated as ht = f(ht−1, xt), where f(., .) denotes a
non-linear transformation function. The overall probability of the sequence is calculated as:
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p(x) =
T∏
t=1

p(xt|ht−1), (5.1)

and the probability of generating the next word xt+1 given its low dimensional continuous repre-
sentation Oxt+1 and input sequence xt is defined as:

p(xt+1|x ≤ t) = p(xt+1|ht) ∝ exp(OT
xt+1

ht) (5.2)

However, in practice the gradient computation is difficult to propagate back in time due to explod-
ing or vanishing gradients [165], [26], making the learning of arbitrarily long phenomena chal-
lenging in RNNs. Long Short Term Memory networks (LSTMs) [166] effectively address these
limitations by relying on a memory state and gating functions to control the flow of the information
throughout the network – and in particular what information is written to the memory state, what
information is read from the memory state, and what information is removed (or forgotten) from
the memory state. The mathematical formulation of LSTM units can be expressed as follows:

i(t) = σ(W (i)x(t) + U (i)h(t−1)) (Input gate)

f (t) = σ(W (f)x(t) + U (f)h(t−1)) (Forget gate)

o(t) = σ(W (o)x(t) + U (o)h(t−1)) (Output gate)

c̃(t) = tanh(W (c)x(t) + U (c)h(t−1) (New memory cell)

c(t) = f (t) ◦ c̃(t−1) + i(t) ◦ c̃(t) (Final memory cell)

h(t) = o(t) ◦ tanh(c(t))

(5.3)

In the above set of equations, the input word x(t) and the past hidden state h(t−1) are used to
generate new memory c̃(t) which includes features of the new word x(t) without prior determination
of whether x(t) is important and worth keeping. The role of the input gate is to check whether it
is sensible to store the new input word given the word x(t) itself and the past hidden state h(t−1);
the input gate produces i(t) as output, which encapsulates the worthiness decision of preserving
the input information. Similarly to the input gate, the forget gate also determines the usefulness
of a word by inferring whether the past memory cell is used to compute the current memory cell
by looking at the input word word x(t) itself and the past hidden state h(t−1); it produces f (t) as
output, which encapsulates the worthiness decision of preserving the past memory cell. In the final
memory generation stage, the advice of the input gate i(t) to gate the new memory c̃(t) and the
advice of the forget gate f (t) to forget the past memory c̃(t−1) are both considered, and the two
results are summed up to produce the final memory c(t). The output gate is used to separate the
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hidden state ht from the final memory of the network c(t). Given that every state of the LSTM is
relying on hidden states and that the final memory c(t) contains a lot of information not necessarily
required to be saved in the hidden state, the output gate discriminatively assesses which parts of
the memory c(t) should be kept inside the hidden state ht. In our experiments we employ an LSTM
generative model trained at word level. Sampling from a trained word language model can be
done in two ways: beam search [11] and random sampling [149]. Following [450], we use random
sampling with different values for the temperature parameter. Sampling from the LSTM model
with a high temperature results in the model generating diverse samples at the cost of introducing
some mistakes, while small temperatures generate conservative samples without a lot of content
diversity. In our experiments, we empirically set the temperatures to the following values: 1.0, 0.7
and 0.5.

RNNs, and LSTMs in particular, have become the standard for modeling machine learning
problems that involve temporal and sequential data including text. The data is modeled via a
fully-observed directed graphical model, where the distribution over a discrete time sequence
y1, y2, . . . , yT is decomposed into an ordered product of conditional distributions over tokens:

P (y1, y2, . . . , yT ) = P (y1)
T∏
t=1

P (yt|y1, . . . , yt−1) (5.4)

For models with recurrent connections from their outputs leading back into the model, teacher

forcing [482] is the most popular training strategy. This procedure emerges from the maximum
likelihood criterion, in which at training time t + 1 the model receives as input the ground truth
output yt:

log p(y(1), y(2)|x(1), x(2)) = log p(y(2)|y(1), x(1), x(2))

+ log p(y(1)|x(1), x(2))
(5.5)

The model in Equation 5.5 above illustrates the conditional maximum likelihood criterion at
timestep t = 2. The model is trained to maximize the conditional probability of y(2) given the
sequence x generated so far and the previous y(1) value. Therefore, maximum likelihood specifies
that at training time the previous token generated by the model is replaced with ground-truth ex-
amples yt that are fed back into the model for predicting outputs at later time steps. Feeding back
ground truth samples at training time forces the RNN to stay close to the ground-truth sequence.
However, at inference time, the ground truth sequence is no longer available conditioning, and
each yt is generated by the model itself (i.e. sampled from its conditional distribution over the
sequence given the previously generated samples). This discrepancy between training time and
inference time causes errors in the model predictions that accumulate and amplify quickly over the
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generated sequence as the model is in a part of the state space it has never seen during training
time. Small prediction errors compound in the RNN’s conditioning context, and as the generated
sample starts to diverge from sequences it has seen during training, the prediction performance of
the RNN worsens [233].

To alleviate this problem, Bengio et al [23] propose Scheduled Sampling (SS), a learning strat-
egy for training RNNs which mixes inputs from the ground-truth sequence with inputs generated
by the model itself at training time. SS relies on curriculum learning [25] to change the training
process from a fully guided scheme using the true previous token to a less guided scheme mostly
using the generated token. The choice of replacing the ground truth with the model’s prediction
is determined by a coin flip with some probability, independently for each token. The probability
of using the ground truth is set to a high value initially. As the model gradually keeps improv-
ing, samples from the model become more frequent and the model is partially fed with its own
synthetic data as prefix in a similar way to inference mode. Therefore, the training objective is
slowly changed from an easy task where the previous token is known, to a realistic task where the
previous token is provided by the model itself. The scheduled sampling training scheme is meant
to make the model more robust and forces it to deal with its own mistakes at training time, in a
similar way to inference time. However, as the model generates several consecutive tokens yt-s, it
is not clear whether the correct target distribution remains the same as in the ground truth sequence.
The authors propose two solutions: i) make the self-generated sequences short, and ii) anneal the
probability of using self-generated vs. ground-truth samples to 0, according to some schedule.

Despite its impressive empirical performance, Huszar et al [180] show that SS is an inconsistent
training strategy which pushes models towards memorising the distribution of symbols conditioned
on their position in the sequence instead of on the prefix of preceding symbols. According to the
authors, SS pays no attention to the content of the sequence prefix, and uses the hidden states
to implement a simple counter which makes the model likely to recover from its own mistakes.
Moreover, it is possible that the good performance of the model on image captioning datasets is
either due to the algorithm not running until convergence, or to a lucky combination of factors
including the model structure, early stopping, random restarts, and the annealing schedule. The
authors recommend adversarial training strategies as a much better choice for generative models.

Tang et al [450] study the the problem of NLG at particular contexts or situations. The authors
focus on user review data due to its richness of context, sentiments and opinions expressed. They
propose two approaches built on top of the encoder-decoder framework to generate user reviews
as text sequences from user product contexts. In the first approach, Contexts to Sequences, the
authors encode the product context information

−→
C = {−→c i}i=1,...,K , where −→c i denotes a type

of context and K the number of context types, into a continuous semantic representation, which
is fed into an LSTM decoder to generate text sequences. Despite promising results shown by the
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method, the authors consider that for long generated sequences the information from contexts is not
propagated to distant words. In their second approach, Gated Contexts to Sequences, the authors
add skip-connections to directly build the dependency between contexts hC and each word when
predicting the next word xt+1 in a sequence. When a new word in a sequence is generated, it does
not only depend on the current hidden state ht, but it also depends on the context representation
hC . Similar to the first model, the decoder is a vanilla recurrent neural network with LSTM unit.

Focusing on the same problem as Tang et al [450], Dong et al [96] propose Attention Enhanced

Attribute to Sequence Model. The model learns to encode product attributes into vectors by means
of an encoder network, and then generate reviews by conditioning on the encoded vectors in-
side a sequence decoder, and an attention mechanism [11], [495] which learns soft alignments
between the input attributes and the generated words. The product review generation problem is
formally defined as follows. Given input attributes a = (a1, . . . , a|a|), generate a product review
r = (y1, . . . , y|r|) which maximizes the conditional probability p(r|a):

p(r|a) =
|r|∏
t=1

p(yt|(y1, . . . , yt−1), a) (5.6)

While the number of attributes |a| is fixed for each product, the review text r is a sequence of
variable length. In our experiments we use the two models proposed by Tang et al [450] and Dong
et al [96] to generate use product reviews given the context information and the review text of each
product in the Amazon dataset.

In addition to the already mentioned models, we also employ a pre-trained model released
by Google, commonly referred to as Google LM [193]. The model is an important contribution
to the field of neural language modeling which emphasizes large scale recurrent neural network
training. The model was trained on the One Billion Word Benchmark [56], a publicly available
dataset containing mainly news data and used as a reference standard for measuring the progress
of statistical language modeling. The dataset includes 1 billion words in total with a vocabulary
of 800,000 unique words. While for count based language models it is considered a medium-
sized dataset, for neural network based language models the benchmark is regarded as a very large
dataset. In terms of the model architecture, the GoogleLM model is a 2-layer LSTM neural network
with 8,192 and respectively 1,024 hidden units in each layer, the largest Google was able to fit into
GPU memory. The model uses Convolutional Neural Networks (CNNs) character embeddings as
input, and makes predictions one character at a time, which presents the advantage that the model
does not need to learn long-term dependencies in the data. We employ GoogleLM to generate
sentences with a topic which identifies with the existing three categories (books, electronics and
movies) present in the Amazon dataset we used.

Generative Adversarial Networks (GANs) [146] represent a training methodology for genera-
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tive models via an adversarial process, and are aimed at generating synthetic data which resembles
the real data. The GAN framework works through the interplay between two feedforward neural
network models, a generative model G and a discriminative model D, trained simultaneously by
competing against each other. The generative model G aims to capture the data distribution and
generate high quality synthetic data, while the discriminative model D estimates the probability a
sample comes from the real training data and not from the synthetic data generated by G. Con-
cretely, the generator G takes as input a vector of random numbers z, and transforms it into the
form of the data we are interested in imitating; the discriminator D takes as input either the real
data x or generated data G(z), and outputs probability P (x) of the respective data being real. The
GAN framework is equivalent to a minimax two-player game between the two models G and D:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]
(5.7)

Adversarial learning algorithms iteratively sample batches from the data and noise distributions,
and use noisy gradient information to simulatenously ascend in the parameters θd of D, while
descending in the parameters θg of G. The discriminator D is optimized to increase the likelihood
of assigning a high probability to the real data x and a low probability to the fake generated data
G(z). The gradient for the discriminator can be expressed as follows:

▽θd

1

m

m∑
i=1

[
logD(x(i)) + log(1−D(G(z(i))))

]
(5.8)

Alternatively, the generator G is optimized to increase the probability the generated data G(z)
is rated highly:

▽θg

1

m

m∑
i=1

[
log(1−D(G(z(i))))

]
(5.9)

The goal of the generatorG is to maximize the probability of discriminatorD making a mistake
by generating highly realistic data, while the discriminator D is learnt to distinguish whether a
given data instance is real or not. The gradient of the training loss from the discriminator D is used
as guidance for updating the parameters of the generator G. Gradient optimization is alternated
between the two networks D and G as illustrated in Equations 5.8 and 5.9 on batches of real and
generated data until GAN converges, at which point the data produced by GAN is the most realistic
the network is capable of modeling.

However, GAN’s applicability to discrete data is limited, despite the great success at generat-
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ing realistic real valued synthetic samples in many computer vision tasks for eg., image generation
[35], [532], [447], image style transfer [288], [533] and semantic segmentation [289], [432]. Train-
ing generative models of text using GANs is challenging due to the discrete nature of text data,
which makes it difficult to backpropagate the gradient from the discriminatorD to the generatorG.
GANs are designed for generating real-valued, continuous data, and the gradient of the loss from
discriminator D w.r.t. the output of generator G is used to guide G to slightly change the generated
value to make it more realistic (i.e. the gradient of the output of the discriminator network with
respect to the synthetic data indicates how to slightly change the synthetic data to make it more
plausible). Changes can be made to the synthetic data if it is based on real numbers, however for
discrete tokens the slight change guidance is not a useful signal, as it is very likely that there is no
corresponding token to the slight change given the limited vocabulary space3. In addition, a further
reason why GANs cannot be applied to text data is because the discriminator D can only asses a
complete sequence. When having to provide feedback for partially generated sequences, it is non-
trivial to balance the current score of the partially generated sequence with the future score after
the entire sequence has been generated [505]. In the literature there are two approaches on how
to deal with the problem of non-differentiable output and finding the optimal weights in a neural
network: the REINFORCE algorithm, and Gumbel-Softmax reparameterization. We present each
method below.

REINFORCE [481] algorithms, also known as REward Increments, score-function estimators,
or likelihood-ratio methods adjust the weights of a neural network based on the log derivative
trick in a direction that lies along the gradient of expected reinforcement without explicitly com-
puting gradient estimates. It is a policy gradient method which uses the likelihood ratio trick(▽θp(X,θ)
P (X,θ)

= ▽θ log p(X, θ);
∂
∂x

log f(x) = f ′(x)
f(x)

)
to update the parameters of an agent and increase

the probability that the agent’s policy will select a rewarding action given a state. Given the tra-
jectory τt = (u1, . . . , ut−1, x0, . . . , xt) made up of a sequence of states xk and control actions uk,
the goal of policy gradient is to find policy πϑ which takes as input trajectory τt and outputs a new
control action that maximizes the total reward after L time steps. πϑ is a parametric randomized
policy which assumes a probability distribution over actions:

p(τ ;ϑ) =
L−1∏
t=0

p(xt+1|xt, ut)πv(ut|τt) (5.10)

If we define the reward of a trajectory as:

3https://www.reddit.com/r/MachineLearning/comments/40ldq6/generative_
adversarial_networks_for_text/
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R(τ) =
N∑
t=0

Rt(xt, ut), (5.11)

the reinforcement learning optimization problem becomes:

max
ϑ

J(ϑ) = max
ϑ

Ep(τ |ϑ)[R(τ)] (5.12)

Then policy gradient can be derived as follows:

▽ϑJ(ϑ) =

∫
R(τ)▽ϑp(τ ;ϑ)dτ

=

∫
R(τ)

▽ϑp(τ ;ϑ)

p(τ ;ϑ)
p(τ ;ϑ)dτ

=

∫
(R(τ)▽ϑ log p(τ ;ϑ))p(τ ;ϑ)dτ

= Ep(τ ;ϑ)[R(τ)▽ϑ log p(τ ;ϑ)]

(5.13)

From Equation 5.13 we have that the gradient of J w.r.t. ϑ is equal to the expected value of the
function G(τ, ϑ) = R(τ)▽ϑ log p(τ ;ϑ). This function provides an unbiased estimate of the gradi-
ent of J and can be computed by running policy πϑ and sampling a trajectory τ without knowing
the dynamics of the system since p(xt+1|xt, ut) does not depend on parameter ϑ. Following this
direction is equivalent to running stochastic gradient descent on J .

▽ϑ log p(τ ;ϑ) =
L−1∑
t=0

▽ϑ log πϑ(ut|τt) (5.14)

The policy gradient algorithm can be summarized:

1. Choose ϑ0, stepsize sequence αk, and set k = 0;

2. Run the simulator with policy πϑk and sample τk;

3. ϑk+1 = ϑk + αkR(τk)
∑L−1

t=0 ▽ϑ log πϑ(utk|τt);

4. k = k + 1, go to step 2.

The policy gradient algorithm can be run on any problem if sampling from πϑ can be done
efficiently. Policy gradient is simple as it optimizes over a parametric family p(u;ϑ) instead of
optimizing over the space of all probability distributions. However, there are constraints regarding
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the probability distribution, which should be easy to sample from, easy to search by gradient meth-
ods, and rich enough to approximate delta functions. In addition, the complexity of the method
depends on the dimensionality of the search space and can be slow to converge. Finally, the policy
gradient update is noisy, and its variance increases proportionally with the simulation length L.

The other solution to the problem of dealing with non-differentiable output is to use the the
Gumbel-Softmax [185] approach, and replace the non-differentiable sample from the categori-
cal distribution with a differentiable sample from a Gumbel-Softmax distribution. The Gumbel-
Softmax distribution is a continuous distribution on the simplex that can approximate categorical
samples. Parameter gradients can be easily computed by applying the reparameterization trick
[216], a popular technique used in variational inference and adversarial learning of generative
models in which the expectation of a measurable function g of a random variable ϵ is calculated by
integrating g(ϵ) with respect to the distribution of ϵ:

E(g(ϵ)) =
∫
g(ϵ)dFϵ (5.15)

Therefore, in order to compute the expectation of z = g(ϵ) we do not need to know explicitly the
distribution of z, but only know g and the distribution of ϵ. This can alternatively be expressed as:

Eϵ∼p(ϵ)(g(ϵ)) = Ez∼p(z)(z) (5.16)

If the distribution of variable z depends on parameter ϕ, i.e. z ∼ pϕ(z), and if we can assume
z = g(ϵ, ϕ) for a known function g of parameters ϕ and noise distribution ϵ ∼ N (0, 1), then for
any measurable function f :

Eϵ∼p(ϵ)(f(g(ϵ, ϕ))) = Ez∼pϕ(z)(f(z))

Eϵ∼p(ϵ)(▽f(g(ϵ, ϕ))) = ▽ϕEϵ∼p(ϵ)(f(g(ϵ, ϕ)))

= ▽ϕEz∼pϕ(z)(f(z))

(5.17)

In equation 5.17, z has been conveniently expressed such that functions of z can be defined as inte-
grals w.r.t. to a density that does not depend on the parameter ϕ. Constructing unbiased estimates
of the gradient is done using Monte Carlo methods:

▽ϕEz∼pϕ(z)(f(z)) ∼
1

M

M∑
i=1

▽f(g(ϵi, ϕ)) (5.18)

The reparameterization trick aims to make the randomness of a model an input to that model in-
stead of letting it happen inside the model. Given this, the network model is deterministic and we
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can differentiate with respect to sampling from the model. An example of applying the reparame-
terization trick is to rewrite samples drawn from the normal distribution z ∼ N (µ, σ) as z = µ+σϵ,
with ϵ ∼ N (0, 1). In this way stochastic nodes are avoided during backpropagation. However, the
re-parameterization trick cannot be directly applied to discrete valued random variables, for eg.
text data, as gradients cannot backpropagate through discrete nodes in the computational graph.

The Gumbel-Softmax trick attempts to overcome the inability to apply the reparameterization
trick to discrete data. It parameterizes a discrete distribution in terms of a Gumbel distribution,
i.e. even if the corresponding function is not continuous, it will be made continuous by applying
a continuous approximation to it. A random variable G has a standard Gumbel distribution if
G = − log(− log(U)), U ∼ Unif[0, 1]. Any discrete distribution can be parameterized in terms of
Gumbel random variables as follows. If X is a discrete random variable with P (X = k) ∝ αk

random variable and {Gk}k≤K an i.i.d. sequence of standard Gumbel random variables, then:

X = argmax
k

(logαk +Gk) (5.19)

Equation 5.19 illustrates sampling from a categorical distribution: draw Gumbel noise by trans-
forming uniform samples, add it to logαk, then take the value of k that yields the maximum. The
argmax operation that relates the Gumbel samples is not continuous, however discrete random
variables can be expressed as one-hot vectors and take values in the probability simplex:

∆K−1 = {x ∈ RK
+ ,

K∑
k=1

xk = 1} (5.20)

A one hot vector corresponds to a discrete category, and since the argmax function is not differ-
entiable, a softmax function can be used instead as a continuous approximation of argmax:

fτ (x)k =
exp(xk/τ)∑K
k=1 exp(xk/τ)

(5.21)

Therefore, the sequence of simplex-valued random variables Xτ is:

Xτ = (Xτ
k )k = fτ (logα +G)

=
exp((logαk +Gk)/τ)∑K
i=1 exp((logαi +Gi)/τ)

(5.22)

Equation 5.22 is known as the Gumbel-Softmax distribution and can be evaluated exactly for dif-
ferent values of x, α and τ , where τ is a temperature parameter that controls how closely the
samples from the Gumbel-Softmax distribution approximate those from the categorical distribu-
tion. When τ → 0, the softmax function becomes an argmax function and the Gumbel-Softmax
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distribution becomes the categorical distribution. At training time τ is a set to a value greater than 0
which allows gradients to backpropagate past the sample, and then is gradually annealed to a value
close to 0. The Gumbel Softmax trick is important as it allows for the inference and generation of
discrete objects. A direct application of this technique is generating text via GANs.

In summary, GANs have shown impressive performance at generating natural images nearly
indistinguishable from real images, however applying GANs to text generation is a non-trivial task
due to the special nature of the linguistic representation. According to Dai et al [77], the two main
challenges to overcome when using GANs with textual input are:

i) first, text generation is a sequential non-differentiable sampling procedure which samples a
discrete token at each time step (vs. image generation where the transformation from the input
random vector to the produced output image is a deterministic continuous mapping); the non-
differentiability of text makes it difficult to apply back-propagation directly, and to this end, clas-
sical reinforcement learning methods such as Policy Gradient [446] have been used. In policy
gradient the production of each word is considered as an action for which the reward comes from
the evaluator, and gradients can be back-propagated by approximating the stochastic policy with a
parametric function.

ii) second, in the GAN setting the generator receives feedback from the evaluator when the en-
tire sample is produced, however for sequence generation this causes difficulties during training,
such as vanishing gradients and error propagation. To allow the generator to get early feedback
when a text sequence is partly generated, Monte Carlo rollouts are used to calculate the approx-
imated expected future reward. This has been found empirically to improve the efficiency and
stability of the training process.

Unlike in conventional GAN settings that deal with image generation, the production of sen-
tences is a discrete sampling process, which is also non-differentiable. A natural question that
arises is how can the feedback be back-propagated from the discriminator to the generator under
such a formulation. Policy gradient considers a sentence as a sequence of actions, where each
word wt is an action and the choices of such actions are governed by a policy πθ. The generative
procedure begins with an initial state S1:0 which is the empty sentence, and at each time step t the
policy πθ takes as input the previously generated words S1:t−1 up until time t − 1, as well as the
noise vector z, and yields a conditional distribution πθ(wt|z, S1:t−1) over the vocabulary words.
The computation is done one step at a time moving along the LSTM network and sampling an ac-
tion wt from the conditional distribution up until wt will be equal to the end of sentence indicator,
in which case the sentence is terminated. The reward for the generated sequence of actions S will
be a score r calculated by the discriminator. However, this score can be computed only after the
sentence has been completely generated, and in practice this leads to difficulties such as vanishing
gradients and very slow training convergence. Early feedback is used to evaluate the expected
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future reward when the sentence is partially generated, and the expectation can be approximated
using Monte Carlo rollouts. The Monte Carlo rollout method is suitable to use when a part of the
sentence S1:t has been already generated, and we continue to sample the remaining words of the
sentence from the LSTM network until the end of sentence token is encountered. The conditional
simulation is conducted n times, which results in n sentences. For each sentence we compute an
evaluation score, and the rewards obtained by the simulated sentences are averaged to approximate
the expected future reward of the current sentence. In this way updating the generator is possible
with feedback coming from the discriminator. The utility of the policy gradient method is that
by using the expected future reward the generator is provided with early feedback and becomes
trainable with gradient descent.

Yu et al propose SeqGAN [505], a GAN-based sequence generation framework with policy
gradient, which is the first work to employ GANs for generating sequences of discrete tokens
to overcome the limitations of GANs on textual data. SeqGAN treats the sequence generation
procedure as a sequential decision making process [10]. A discriminator is used to evaluate the
generated sequence and provide feedback to the generative model to guide its learning. It is a well
known problem of GANs that for text data (discrete ouputs) the gradient cannot be passed back
from the discriminator to the generator. SeqGAN addresses this problem by treating the generator
as a stochastic parameterized policy trained via policy gradient [446] and optimized by directly
performing gradient policy update, therefore avoiding the differentiation difficulty for discrete data.
The reinforcement learning reward comes from the discriminator based on the likelihood that it
would be fooled judged on a complete sequence of tokens, and is passed back to the intermediate
state-action steps using Monte Carlo search [37].

The sequence generation problem is defined as follows. Given a dataset of human writ-
ten sequences, train a generative model Gθ parameterized by θ to output sequence Y1:T =

(y1, . . . , yt, . . . , yT ), yt ∈ Y , where Y is the word vocabulary. The current state is the sequence
of tokens (y1, . . . , yt−1) generated until timestep t, and the action a taken from this state is the
selection of next token yt. The policy model Gθ(yt|Y1:t−1) is stochastic and will select an action
according to the leant probability distribution of the input tokens. The state transition from the
current state s = Y1:t−1 to the next state s′ = Y1:t after choosing action a = y is deterministic, i. e.
δa
s,s′

= 1 for next state s′ , and δa
s,s′′

= 0 for other next states s′′ . The discriminative modelDϕ(Y1:T )

is used to guide the generator Gθ, and outputs a probability indicating how likely a sequence Y1:T
produced by Gθ comes from real sequence data. Dϕ is trained with both real and fake examples
from the real sequence data and the synthetic data generated by Gθ. The objective of the generator
model (policy) Gθ(yy|Y1:t−1) is to maximize its expected end reward RT which comes from the
discriminator Dϕ for a sequence which is generated starting from initial state s0:
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J(θ) = E[RT |s0, θ] =
∑
y1∈Y

Gθ(y1|s0)QGθ
Dϕ

(s0, y1) (5.23)

The action-value function QGθ
Dϕ

(s, a) for a sequence represents the expected cumulative reward
starting from state s, taking action a and then following policy Gθ. The action value function
QGθ
Dϕ

(s, a) is calculated as the estimated probability (reward) the discriminator Dϕ(Y
n
1:T ) assigns to

the generated sample being real:

QGθ
Dϕ

(a = yT , s = Y1:T−1) = Dϕ(Y
n
1:T ) (5.24)

In the GAN setup, the discriminatorDϕ can only provide a reward at the end of a finished sequence.
In order to evaluate the action-value function QGθ

Dϕ
(s, a) for an intermediate state s, Monte Carlo

search with roll-out policyGβ (identical to the generatorGθ policy) is used to sample the unknown
remaining T − t tokens that result in a complete sentence. The roll-out policy Gβ starts from the
current state s and is run for N times to get an accurate assessment of the action-value function
QGθ
Dϕ

(s, a) through a batch of N output samples, thus reducing the variance of the estimation:

{Y 1
1:T , . . . , Y

N
1:T} =MCGβ(Y1:t;N)

QGθ
Dϕ

(a = yt, s = Y1:t−1) =


1
N

∑N
n=1Dϕ(Y

n
1:T ),

if Y n
1:T ∈MCGβ(Y1:t;N), t < T

Dϕ(Y1:t), if t = T

(5.25)

The generator starts with random sampling at first, but once more realistic samples have been
generated, the discriminator Dϕ is updated (which will in turn improve the generator model itera-
tively):

min
ϕ
−EY∼pdata [logDϕ(Y )]− EY∼Gθ

[log(1−Dϕ(Y ))] (5.26)

The generatorGθ is updated every time a new discriminatorDϕ has been obtained. The gradient of
the generator’s objective function J(θ) w.r.t the generator’s parameters θ is expressed as follows:

∇θJ(θ) =
T∑
t=1

EY1:t−1∼Gθ

[ ∑
yt∈Y

∇θGθ(yt|Y1:t−1)·

·QGθ
Dϕ

(Y1:t−1, yt)

] (5.27)
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Expectation E can be approximated by sampling methods, and generator’s parameters are updated:

θ ← θ + αh∇θJ(θ),where αh − learning rate (5.28)

In the initial stages of training, the generator Gθ is pre-trained via maximum likelihood estima-
tion, and the discriminator Dϕ is pre-trained via minimizing the cross-entropy between the ground
truth label and the predicted probability; after the pre-training stage is over, the generator and the
discriminator are trained alternatively. The SeqGAN authors chose an LSTM [398] architecture
for the generator in order to avoid the vanishing and the exploding gradient problem of back-
propagation through time, and a CNN [240], [212] architecture with highway networks [435] as
discriminator. The evaluation metric is set to minimize the average negative log-likelihood between
the generated data and an oracle considered as the human observer:

NLLoracle = −EY1:T∼Gθ

[ T∑
t=1

logGoracle(yt|Y1:t−1)

]
(5.29)

Lin et al [266] consider that GANs restrict the discriminator too much by forcing it to be a binary
classifier. Because of this setup, the discriminator is limited in its learning capacity especially
for tasks with a rich structure, such as when generating natural language expressions. The authors
propose a generative adversarial framework called RankGAN, which is able to capture the richness
and diversity of language by learning a relative ranking model between the machine written and
human written sentences in an adversarial framework. The adversarial network consists of two
neural network models, a generator Gθ and a ranker Rϕ, where θ and ϕ are parameters. The
RankGAN discriminator Rϕ, instead of performing a binary classification task as in conventional
GANs, is trained to rank the machine-written sentences lower than human-written sentences w.r.t.
a human-written reference set. Alternatively, the generator Gθ is trained to confuse the ranker R
in such a way that machine written sentences are ranked higher than human written sentences with
regard to the reference set. The authors consider that by viewing a set of samples collectively
(instead of just one sample) and evaluating their quality through relative ranking, the discriminator
can make better judgements regarding the quality of the samples, which helps in turn the generator
better learn to generate realistic sequences. The problem can be expressed mathematically as Gθ

and Rϕ playing a minimax game with the objective function L:

min
θ

max
ϕ
L(Gθ, Rϕ) = Es∼Ph

[logRϕ(s|U,C−)]+

Es∼Gθ
[log(1−Rϕ(s|U,C+))]

(5.30)

The ranker Rϕ is optimized to increase the likelihood of assigning a high probability to the real
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sentence s and a low probability to the fake generated data Gθ. s ∼ Ph denotes that sentence s
is sampled from human written sentences, while s ∼ Gθ denotes that sentence s is sampled from
machine written sentences. U is a reference set which is used for estimating relative ranks. C+

and C− are comparison sets with regards to input sentences. When the input sentence s is sampled
from the real data, C− is sampled from the generated data, and alternatively when the sentence s
is sampled from the synthetic data generated by Gθ, C+ is sampled from human written data.

Similar to SeqGAN, the authors use policy gradient to overcome the non-differentiability prob-
lem of text data. However, unlike SeqGAN, the regression based discriminator is replaced with
a ranker and a new learning objective function. The generative model Gθ is an LSTM network,
while the ranker Rϕ is a CNN network. The rewards for training the model are encoded with rel-
ative ranking information. When a sequence is incomplete, an intermediate reward is computed
using Monte Carlo rollout methods. The expected future reward V for partial sequences is defined
as:

Vθ,ϕ(s1:t−1,U) = Esr∼Gθ
[logRϕ(sr|U,C+, s1:t−1)] (5.31)

In Equation 5.31 above, sr denotes a complete sequence sampled by using rollout methods starting
from sequence s1:t−1. A total of n different paths are sampled, and their corresponding ranking
scores are computed. The average ranking score is used to approximate the expected future reward
for the current partially generated sequence s1:t−1; the ranking score of an input sentence s given
reference sentence u and comparison set C (where C = C+ if sentence s is machine generated,
C = C− otherwise) is computed using a softmax-like formula:

P (s|u,C) = exp(γα(s|u))∑
s′∈C′ exp(γα(s′|u))

,where

α(s|u) = cos(ys, yu) =
ysyu

||ys||||yu||

(5.32)

In Equation 5.32, ys is the embedded feature vector of the input sentence, and yu is the embedded
feature vector of the reference sentence. The gradient of the objective function for generator Gθ

for start state s0, vocabulary V , and generator policy πθ is computed as:

▽θLθ(s0) = Es1:T∼Gθ

[ T∑
t=1

∑
wt∈V

▽θπθ(wt|s1:t−1)·

·Vθ,ϕ(s1:t, U)
] (5.33)
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Therefore, RankGAN deals with the gradient vanishing problem of GAN by replacing the original
binary classifier discriminator with a ranking model in a learning-to-rank framework. The ranking
score is computed by taking a softmax over the expected cosine distances from the generated
sequences to the real data.

Guo et al [154] find that a limitation of current GAN frameworks for text generation [505],
[266], [373], [55], [256], [519] is that they are only capable of generating short texts, within
a limited length of around 20 tokens. Generating longer sequences is a less studied but more
challenging research problem with a lot of useful applications, such as the auto-generation of
news articles or product descriptions. Nevertheless, long text generation faces the issue that the
binary guiding signal from generator D is sparse and non-informative; it does not provide useful
information regarding the intermediate syntactic structure and semantics of the generated text so
that the generator G could learn from that signal. Besides that, it is only available after the entire
sequence has been generated, and the final reward value does not provide much guidance on how
to alter the parameters of G at training time. Moreover, the approach of relying on binary feedback
from the discriminator requires a very large number of real and generated samples to improve
G. Aiming to make the guiding signal coming from the discriminator D more informative, the
authors propose LeakGAN [154], a GAN approach for adversarial text generation in which the
discriminative model D is allowed to leak its own high-level extracted features (in addition to
providing the final reward value) to better guide the training of the generative model G. The
authors pick a hierarchical generator for G, which is made up of two distinct modules: a high-level

manager module, and a low-level worker module. The high level manager module (or mediator)
receives the feature map representation of the discriminator D; this is not normally allowed in the
conventional GAN setup as this feature map is internally maintained by the discriminator. The
manager embeds this feature map representation coming from the discriminator and passes it over
to the worker module. The worker first encodes the current generated sequence, and combines this
resulting encoding with the embedding produced by the manager to decide what action to take at
the current state. Therefore, LeakGAN “leaks” guiding signals from the discriminator D to the
generator G more frequently and more informatively throughout the sequence generation process
and not at the end only, helping G improve better and faster.

The discriminatorDϕ is made up of a feature extractorF(.;ϕf ) and a final sigmoid classification
layer. For input sequence s, Dϕ is defined as:

Dϕ(s) = sigmoid(ϕTl F(s;ϕf )) = sigmoid(ϕTl f) (5.34)

The feature vector in the last layer of Dϕ is denoted as f = F(s;ϕf ), and it will be leaked to the
generator Gθ. A natural implication of this approach is that the reward the generator Gθ receives
for a partially generated sequence is directly related to the quality of the extracted features by the
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discriminator Dϕ. Therefore, for the discriminator Dϕ to yield a high reward, it is necessary to find
a highly rewarding region in the extracted feature space. The authors consider that compared to a
scalar signal, the feature vector f is more informative as it captures the position of the generated
words in the extracted feature space. Dϕ is implemented as a CNN network. The manager module
M(ft, h

M
t−1; θm) of the hierarchical generator Gθ receives as input the extracted feature vector ft,

which it combines with its internal hidden state to produce the goal vector gt:

g
′

t =M(ft, h
M
t−1; θm)

gt =
g

′
t

||g′
t||

(5.35)

The goal vector embedding wt of goal gt is computed by applying a linear transformation ψ with
weight matrix Wψ to the sum of recent c goals:

wt = ψ(
c∑
i=1

gt−i) = Wψ(
c∑
i=1

gt−i) (5.36)

wt is fed to the worker moduleW(.; θw), which is in charge with the generation of the next token.
The worker module takes the current word xt as input and outputs matrix Ot; this matrix is then
combined through a softmax with the goal vector embedding wt:

Ot, h
W
t =W(xt, h

W
t−1; θw)

Gθ(.|st) = softmax(Otwt/α)
(5.37)

At training time, the manager and the worker modules are trained separately – the manager is
trained to predict which are the most rewarding positions in the discriminative feature space, while
the worker is rewarded to follow these directions. The gradient for the manager module is defined
as:

▽adv
θmgt = −QF(st, gt)▽θmdcos(ft+c − ft, gt(θm)) (5.38)

QF(st, gt) defines the expected reward under the current policy and can be approximated using
Monte Carlo search. dcos computes cosine similarity between the goal vector gt(θm) produced by
the manager, and the change in feature representation ft+c − ft after c transitions. In order to
achieve a high reward, the loss function is trying to force the goal vector to match the transition
in feature space. Before the adversarial training takes place, the manager undergoes a pre-training
stage with a separate training scheme which mimics the transition of real text samples in the feature
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space:

▽pre
θm

= −▽θmdcos(f
′

t+c − f
′

t , gt(θm)) (5.39)

The worker uses the REINFORCE algorithm during training to maximize the reward when taking
action xt given the previous state is st−1:

▽θwEst−1∼G

[∑
xt

rItW(xt|st−1; θw)

]
=

Est−1∼G,xt∼W(xt|st−1)

[
rIt▽θw logW(xt|st−1; θw)

]
rIt =

1

c

c∑
i=1

dcos(ft − ft−i, gt−i)

(5.40)

During the adversarial training process, the generator Gθ and the discriminator Dϕ are trained
in alternative stages. When the generator Gθ is trained, the worker W(.; θw) and the manager
M(.; θm) modules are trained alternatively fixing each other.

Mode collapse [145] is a common problem when training GAN models, when the generator
learns to produce samples with extremely low variety, limiting the usefulness of the leant GAN
model. In mode collapse the generator network learns to output samples from a few modes of the
data distribution only, missing out on many other modes even though samples from these missing
modes can be found throughout the training data. Mode collapse can range from complete collapse,
when the generated samples are entirely identical, to partial collapse when the generated samples
present some common properties [434], [390]. Several attempts have been made to address the
problem, which include: i) directly encouraging the generator cost function to account for the
diversity of the generated batches by comparing these samples across a batch in order to determine
whether the entire batch is real or fake, ii) anticipate counterplay, in which the generator learns
to fool the discriminator before the discriminator has a chance to respond (and therefore taking
counterplay into account), iii) experience replay, which minimizes the switching between modes
by showing old fake generated samples to the discriminator every now and then, and iv) using
multiple GANs, in which a GAN is trained for each different mode so that when combined, the
GANs altogether cover all modes.

In LeakGAN, in order to address mode collapse, the authors propose an interleaved training
scheme, which combines supervised training using maximum likelihood estimation with GAN
adversarial training (instead of carrying only GAN adversarial training after the pretraining stage).
Blending two training schemes is considered useful by the authors as it helps LeakGAN overcome
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local minimums, alleviates mode collapse and acts as an implicit regularizer on the generative
model.

5.6.2 Samples produced by the review generators

Figure 5.8: Screenshot with instructions presented to Amazon Mechanical Turk workers.

Figure 5.9: Screenshot of the Amazon Mechanical Turk user study interface.

Figure 5.8 shows the instructions given to the AMT workers who participated in this study. In
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Figure 5.9 we include a screen-shot of the user interface when annotating reviews.
In what follows we present samples generated by the review generators on which human anno-

tators disagree most on whether these are human-written or machine-generated.

• Word LSTM temp 1.0

a) i so enjoyed this book . i felt though . i especially like loving horses in the . and
the story is well written .

b) one of a different type on locked paranormal / vacation book . i enjoyed the characters
and the plot . great mixture of historical fiction .

c) this first edition of the complete series 8 years over six episodes just makes you laugh .
the original tv is by far my cup of tea !

d) works out of the box ! wouldn ’ t spend the money for a better keyboard . use this with
the matching kindle screen as well .

• Word LSTM temp 0.7

a) i am looking forward to the next book . i am a and i enjoyed the story . i like
books where the characters are real .

b) this is an exciting book i could n ’ t put down . i will probably read more books by this
author . this is a must read .

c) okay , that ’ s how i expected this movie . it was okay but it was so boring . i was bored
and was disappointed .

d) this cable is not bad . it is so cheap and it works great . i ’ ve used this for a couple of
months now and on the ipad

• Word LSTM temp 0.5

a) this book was a great read ! the story was exciting and a bit . i really enjoyed the
characters and the story line .

b) this is a great cable for the price . i would recommend this product to anyone needing
a cable for a great price .

c) this is a great series . it is a must see for anyone who loves period dramas . i love the
.

d) these batteries seem to be working as expected . i have had no problems with this
product . i would recommend this to anyone .
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• Scheduled Sampling

a) like most of the ones i have ! the tablet that came starts working properly .

b) i have had any almost using keyboards with an iphone case and kept it nicely and time
. and it works well .

c) have got to watch it many times again and the seasons of each episode we can all
watch it .

d) very interesting characters and likable characters that grow when you gave me of
the because of the dog . what can i say is i absolutely loved it .

• Google LM

a) systems generally require less bandwidth and with operating systems , users
to write and edit data nearly anywhere .

b) seems all but impossible to access . is all a and gets a bad on every .

c) is based in , , with a commercial office in

d) oved this clip and the and apps were about so much fun that paid a big price .
2 and 3 like crazy .

• Attention Attribute to Sequence

a) i am always waiting for the next book to come out . i am a big fan of sean black and
will .

b) purchased this to use with my macbook pro . it worked out perfectly , as described . no
complaints .

c) great book all of the great mystery books . i enjoyed all of them and was sad when the
book ended .

d) this is a great product . i ’ ve had it for over a year now and it ’ s still going strong . i ’
m very happy with this purchase .

• Contexts to Sequences

a) i love this series . i love the characters and the story . i love the characters and the story
line .

b) a great book and a great read . i love the characters and the story . i would recommend
this book to anyone .
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c) i enjoyed the story . it was a good read . i would recommend it to anyone who likes a
good read .

d) i love this book and i love the characters . i love this book and i was not disappointed .

• Gated Contexts to Sequences

a) this is the first book i have read by this author . would recommend to anyone who likes
a good romance book .

b) one of the best books i have ever read . the chemistry between the two main characters
was a good read .

c) this book is awesome . lots of action and intrigue . i ’ m glad i bought this book . thank
you for sharing

d) great story and plot . sometimes a little slow at times but overall a good read .

• MLE SeqGAN

a) you will like this movie - get this set . . . better than expected award for the characters .
bad ending .

b) this switch converter works fine with all games and works perfect , sturdy program to
zero manual products . nice feel .

c) i could not put it down . it was an interesting clean book , but i was expecting many
more individuals in this story so i read in a long time .

d) great story . in college kids has been lost the mysteries , chris son is not better .

• SeqGAN

a) it was slow he kept me interested , and i think i thoroughly enjoyed the story .

b) i enjoyed this book and look forward to getting to larson .

c) received in excellent condition . i thought it was great but didn ’ t know that movies
were more than high ratings which i am my cup of tea .

d) awesome cute story . kudos to mr much of the sookie ’ s story .

• RankGAN

a) robin williams is ok . just a great movie with now . is a great film with three stars
! wonderful video for a very good movie .
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b) i have loved this movie so i could like the dvd sort of info . hot slow . love the old ford
shows to though . a great actor .

c) this was a very amazing . laws and oh fact she became and is very unlikely
together on the case .

d) i say so i would that originally arrived so i love the circular inch screen . i am sad how
it works .

• LeakGAN

a) i really enjoyed reading this book . the author did an excellent job in delivering for all
his writing books into us as business . a great summer read .

b) just loved it , so much could read more of this series , i like it but it was not written in
a book that is well written , but very interesting .

c) i love hockey - baseball movie coming meets hockey ’ s et addicted fear the birds
feature so popular films have developed far worse reviews .

d) a very good book with a lot of twists in this book . i will be checking out more of this
author next book .

5.6.3 Results

5.6.3.1 Human Evaluators

We chose the task of distinguishing machine-generated from real reviews because it is a straight-
forward surrogate of a Turing test. Moreover, how much their generated content can fool humans
has been a key claim of many artificial intelligence models recently. The low inter-rater agreement
suggests that this is a difficult task even for humans, which we hope would trigger the community
to rethink about these claims. There are indeed finer-grained, perhaps more agreeable aspects of
text quality (including semantic coherence, syntactic correctness, fluency, adequacy, diversity and
readability). We decided not to include them in this experiment for two reasons: 1) as the first
study, we are not sure which aspects human raters would consider when they judge for the realism
of a review; 2) we wanted to keep the experiment design simple, and many of these aspects are
harder to define. In the post-experiment survey, the raters commented on the reasons why they
considered reviews as fake.

The low inter-rater agreement (0.27) reflects the difficulty/ subjectivity of the task: identifying
individual reviews as human-written or machine-generated. Low human agreement is commonly
reported in subjective evaluation tasks. Since our goal is to evaluate the evaluators instead of the
competing algorithms, it is important to use a task neither too easy or too hard, so that there are
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distinguishable differences among the performances of competitors (including humans). When
using the majority vote of human judgements, the accuracy of humans improved to a reasonable
72.63 %.

5.6.3.2 Discriminative Evaluators

In Table 5.3 and Table 5.4 we present comprehensive results for the meta-adversarial evaluators.

5.6.3.3 Text-Overlap Evaluators

In Figure 5.10 we present detailed results for all word overlap evaluators we used in this study.

5.6.3.4 Comparing Evaluators

In Table 5.5 we present correlation results between the evaluators included in this work.

5.6.3.5 Diversity Analysis

In Table 5.6 we present results for the Self-BLEU metric, while in Table 5.7 we present the cor-
relation of Self-BLEU with the other evaluators. In addition, in Table 5.8 we present correlation

Table 5.3: Accuracy of deep (LSTM) and shallow (SVM) meta-adversarial evaluators. The lower
the better. Meta-adversarial evaluators do better than humans on individual reviews, with less bias
between the two classes. GAN-based generators are considered to be the best by meta-adversarial
evaluators.

Generators LSTM SVM
Word LSTM temp 1.0 48.29 % 50.31 %
Word LSTM temp 0.7 92.58 % 78.69 %
Word LSTM temp 0.5 99.31 % 94.74 %
Scheduled Sampling 50.09 % 51.31 %
Google LM 84.58 % 78.59 %
Attention Attribute to Sequence 90.08 % 74.37 %
Contexts to Sequences 100.00 % 100.00 %
Gated Contexts to Sequences 98.37 % 96.26 %
MLE SeqGAN 41.45 % 52.35 %
SeqGAN 50.05 % 56.20 %
RankGAN 66.28 % 70.17 %
LeakGAN 87.03 % 77.55 %
D-test (all) 77.58 % 74.50 %
D-test (human-written) 80.12 % 75.98 %
D-test (machine-generated) 75.04 % 73.01 %
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Table 5.4: Accuracy of deep (LSTM, CNN, CNN & LSTM) and shallow (SVM, RF, NB, XGBoost)
meta-adversarial evaluators. The lower the better. Meta-adversarial evaluators do better than
humans on individual reviews, with less bias between the two classes. GAN-based generators are
considered best by meta-adversarial evaluators.

Generators LSTM CNN CNN & LSTM SVM RF NB XGBoost
Word LSTM temp 1.0 48.29 % 55.22 % 45.68 % 50.31 % 53.63 % 32.77 % 48.97 %
Word LSTM temp 0.7 92.58 % 93.14 % 91.02 % 78.69 % 81.05 % 79.92 % 80.49 %
Word LSTM temp 0.5 99.31 % 99.35 % 99.08 % 94.74 % 94.29 % 96.86 % 94.71 %
Scheduled Sampling 50.09 % 48.77 % 43.37 % 51.31 % 52.88 % 20.97 % 44.12 %
Google LM 84.58 % 74.03 % 74.85 % 78.59 % 82.71 % 48.28 % 82.41 %
Attention Attribute to Sequence 90.08 % 91.78 % 89.94 % 74.37 % 77.29 % 80.02 % 71.68 %
Contexts to Sequences 100.00 % 100.00 % 99.97 % 100.00 % 99.98 % 100.00 % 99.98 %
Gated Contexts to Sequences 98.37 % 99.06 % 98.38 % 96.26 % 95.35 % 98.63 % 93.62 %
MLE SeqGAN 41.45 % 47.54 % 41.91 % 52.35 % 51.14 % 21.83 % 43.71 %
SeqGAN 50.05 % 52.91 % 47.35 % 56.20 % 54.91 % 25.60 % 48.11 %
RankGAN 66.28 % 67.23 % 59.37 % 70.17 % 61.94 % 35.98 % 61.23 %
LeakGAN 87.03 % 80.28 % 79.57 % 77.55 % 67.74 % 46.80 % 63.80 %
D-test (all) 77.58 % 74.72 % 75.18 % 74.50 % 70.31 % 70.74 % 73.79 %
D-test (human-written) 80.12 % 73.54 % 77.99 % 75.98 % 68.59 % 83.53 % 79.10 %
D-test (machine-generated) 75.04 % 75.90 % 72.38 % 73.01 % 72.04 % 57.95 % 68.48 %

Figure 5.10: Text-Overlap Evaluators (BLEU, ROUGE, METEOR and CIDEr) scores for individ-
ual generators. The higher the better. The rankings are overall similar, as GAN-based generators
are ranked low.

results for BLEU G-Train and the rest of the evaluators.
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Evaluation Method Kendall tau-b Spearman Pearson Kendall tau-b Spearman Pearson
(H1) (H1) (H1) (H2) (H2) (H2)

SVM Individual-discriminators -0.4545* -0.6294* -0.6716* -0.5455* -0.6783* -0.6823*
LSTM meta-discriminator -0.5455* -0.7552* -0.7699* -0.6364* -0.8042* -0.7829*
CNN meta-discriminator -0.6363* -0.8112* -0.8616* -0.7273* -0.8741* -0.8766*
CNN & LSTM meta-discriminator -0.6060* -0.7902* -0.8392* -0.6970* -0.8462* -0.8507*
SVM meta-discriminator -0.4545* -0.6573* -0.7207* -0.5455* -0.6993* -0.7405
RF meta-discriminator -0.5455* -0.7273* -0.7994* -0.6364* -0.7832* -0.8075*
NB meta-discriminator -0.6364* -0.8112* -0.9290* -0.7273* -0.8741* -0.9388*
XGBoost meta-discriminator -0.5455* -0.7413* -0.7764* -0.6364* -0.8042* -0.7878*
BLEU evaluator 0.7576* 0.8601* 0.8974* 0.6666* 0.8182* 0.9060*
ROUGE evaluator 0.6060* 0.7692* 0.8054* 0.5758* 0.7483* 0.8073*
METEOR evaluator 0.5758* 0.7762* 0.8225* 0.5455* 0.7622* 0.8231*
CIDEr evaluator 0.5455* 0.7413* 0.8117* 0.4545* 0.6643* 0.8203*

Table 5.5: Kendall tau-b, Spearman and Pearson correlation coefficients between human evaluators
H1, H2, and discriminative evaluators and word-overlap evaluators (* denotes statistical signifi-
cant result with p ≤ 0.05).

Generative Text Model Self-BLEU Lexical diversity
Word LSTM temp 1.0 0.1886 0.6467
Word LSTM temp 0.7 0.4804 0.2932
Word LSTM temp 0.5 0.6960 0.1347
Scheduled Sampling 0.1233 0.7652
Google LM 0.1706 0.7745
Attention Attribute to Sequence 0.5021 0.2939
Contexts to Sequences 0.8950 0.0032
Gated Contexts to Sequences 0.7330 0.1129
MLE SeqGAN 0.1206 0.7622
SeqGAN 0.1370 0.7330
RankGAN 0.1195 0.7519
LeakGAN 0.1775 0.7541

Table 5.6: Self-BLEU diversity scores per generator (the lower the more diverse), and lexical
diversity scores (the higher the more diverse). There is high correlation between the two metrics
with respect to the rankings of the generative text models.
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Self-BLEU Kendall tau-b Spearman Pearson
H1 evaluator -0.8788* -0.9301* -0.8920*
H2 evaluator -0.7879* -0.8881* -0.9001*
LSTM meta-discriminator 0.6667* 0.8252* 0.7953*
CNN meta-discriminator 0.7576* 0.8811* 0.8740*
CNN & LSTM meta-discriminator 0.7273* 0.8601* 0.8622*
SVM meta-discriminator 0.5758* 0.7413* 0.8518*
RF meta-discriminator 0.6667* 0.8112* 0.8944*
NB meta-discriminator 0.7576* 0.8811* 0.9569*
XGBoost meta-discriminator 0.6667* 0.8252* 0.8693*
BLEU evaluator -0.8788 -0.9301* -0.9880*
ROUGE evaluator -0.7273* -0.8392* -0.9299*
METEOR evaluator -0.6967* -0.8462* -0.8955*
CIDEr evaluator -0.5455* -0.7413* -0.7987*

Table 5.7: Kendall tau-b, Spearman and Pearson correlation coefficients between Self-BLEU di-
versity rankings and the three evaluation methods - human evaluatorsH1, H2, discriminative eval-
uators and word-overlap based evaluators (* denotes statistical significant result with p ≤ 0.05).
Meta-discriminators have been trained on D-train, D-valid sets and tested on the annotated D-test
set with ground-truth test labels.

BLEU G-train Kendall tau-b Spearman Pearson
H1 evaluator 0.7176* 0.8511* 0.9111*
H2 evaluator 0.6260* 0.8091* 0.9209*
LSTM meta-discriminator -0.5649* -0.7461* -0.7091*
CNN meta-discriminator -0.6565 -0.7951* -0.8213*
CNN & LSTM meta-discriminator -0.6260* -0.7811* -0.7951*
SVM meta-discriminator -0.4428* -0.6130* -0.7442*
RF meta-discriminator -0.5038* -0.6340* -0.7864*
NB meta-discriminator -0.6260* -0.7601* -0.9164*
XGBoost meta-discriminator -0.5649* -0.6550* -0.7586*
BLEU evaluator 0.9619* 0.9912* 0.9936*
ROUGE evaluator 0.5954* 0.7496* 0.8717*
METEOR evaluator 0.6260* 0.7636* 0.8477*
CIDEr evaluator 0.6565* 0.8371* 0.8318*

Table 5.8: Kendall tau-b, Spearman and Pearson correlation coefficients between BLEU G-train
rankings and the three evaluation methods - human evaluators H1, H2, discriminative evaluators
and word-overlap based evaluators (* denotes statistical significant result with p ≤ 0.05). Meta-
discriminators have been trained on D-train, D-valid sets and tested on the annotated D-test set
with ground-truth test labels.
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5.7 Discussion

5.7.1 User Study

A more detailed list of major clusters of reasons is as follows:

1. Grammar/ typo/ mis-spelling: the language does not flow well.

2. Too general/ too generic/ vagueness: generated reviews are vague, in lack of details.

3. Word choice (wording): in lack of slang, use the wrong words.

4. Flow (not fluent)/ structured/ logical: the sentences level language errors.

5. Contradictory arguments: some arguments support opposite opinions.

6. Emotion: lack of emotion, personality in the comments.

7. Repeated text: using words/ phrases repetitively.

8. Overly same as human: too advertisement, too formal, too likely to be real.

5.7.2 Granularity of Judgements

We charged the Turkers to label individual reviews as either fake or real. Each human judge only
annotates 20 reviews, and they do not know which reviews are generated by the same generator.
Comparing to an adversarial discriminator, a human judge has not seen many “training” examples
of fake reviews or generators. That explains why the meta-adversarial evaluators are better at
identifying fake reviews. In this context, humans are likely to judge whether a review is real based
on how “similar” it appears to the true reviews they are used to see online. Indeed, other works in
the literature find that annotator’s categorization decisions are guided by a small set of examples
retrieved from memory at decision time [348], [137]. That is probably why their decisions are
better correlated to text-overlap metrics that measures the similarity between a review and a set of
references. This hypothesis is supported by a post-experiment survey of the human judges; please
see Appendix 5.6.2 for user study samples.

This finding provides interesting implications to the selection of evaluation methods for dif-
ferent tasks. In tasks that are set up to judge individual pieces of generated text (e.g., reviews,
translations, summaries, captions, fake news) where there exists human-written ground-truth, it is
better to use word-overlap metrics instead of adversarial evaluators. Indeed, when the audience
are not trained by reading lots of bot-generated texts, it is more reasonable to use an evaluator that
mimics their decision-making process.
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In some scenarios, the task is to make judgments in the context of a longer conversation or
a set of documents (e.g., conversation agents, dialogue systems, social bots). The difference is
that human subjects are exposed to machine-generated text, so that they may be better trained
to distinguish fake from real. Moreover, when judgments are made on the agent/ system level
(e.g., whether a Twitter account is a bot), signals like how similar the agent outputs are or how
much the agent memorizes the training examples may become more useful than word usage, and a
discriminative evaluator may be more effective than text-overlap metrics.

Our experiment also provide implications to improving NLG models, which implies that adver-
sarial accuracy might not be the optimal objective for NLG if the goal is to generate documents
that humans consider as real. Indeed, a fake review that fools humans does not necessarily need to
fool a machine that has seen everything.

In contrast, GAN based models may perform better when judged as a whole system instead
of individual items, or in a conversational context. When the human judges have seen enough
examples from the same generator, the next example had better be somewhat different.

5.7.3 Imperfect Ground-truth

One important thing to note is that all discriminative evaluators are trained using natural labels
(i.e., treating all examples from the Amazon review dataset as positive and examples generated
by the candidate models as negative) instead of human-annotated labels. It is possible that if they
were trained with human labels, the discriminative evaluators would have been more consistent to
the human evaluators. Indeed, some reviews posted on Amazon may have been generated by bots,
and if that is the case, treating them as human-written examples may bias the discriminators.

One way to verify this is to consider an alternative “ground-truth”. We apply the already trained
meta-discriminators to the human-annotated subset (3,600 reviews) instead of the full D-test set,
and we use the majority vote of human judges (whether a review is fake or real) to surrogate the
“ground-truth” labels (whether a review is generated or sampled from Amazon).

Surprisingly, when the meta-adversarial evaluators are tested using human majority-votes as
ground-truth, both the accuracy numbers and the rankings of the generators are significantly dif-
ferent from Table 5.3 and Table 5.4 (which used natural labels as ground-truth). We note that
the scores and rankings are more inline with the human evaluators. To confirm the intuition, we
calculate the correlations between the meta-discriminators and the human evaluators using the
annotated subset only. Replacing the natural ground-truth with human annotated labels, the meta-
discriminators become positively correlated with human evaluators (Figure 5.6), although BLEU
still appears to be the best evaluator.

These results indicate that when the “ground-truth” used by an automated Turing test is ques-
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Figure 5.11: Accuracy of deep (LSTM) and shallow (SVM) meta-discriminators when tested on
the annotated subset of D-test, with majority votes as ground-truth. The lower the better.

tionable, the decisions of the evaluators may be biased. Discriminative evaluators suffer the most
from the bias, as they were directly trained using the imperfect ground-truth. Text-overlap evalu-
ators are more robust, as they only take the most relevant parts of the test set as references (more
likely to be high quality).

Our results also suggest that when adversarial training is used, the selection of training examples
must be done with caution. If the “ground-truth” is hijacked by low quality or “fake” examples,
models trained by GAN may be significantly biased. This finding is related to the recent literature
of the robustness and security of machine learning models.

5.7.4 Role of Diversity

We also assess the role diversity plays in the rankings of the generators. To this end, we measure
lexical diversity [9] of the samples produced by each generator as the ratio of unique tokens to the
total number of tokens. We compute in turn lexical diversity for unigrams, bigrams and trigrams,
and observe that the generators that produce the least diverse samples are easily distinguished by
the meta-discriminators, while they confuse human evaluators the most. Alternatively, samples
produced by the most diverse generators are hardest to distinguish by the meta-discriminators,
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while human evaluators present higher accuracy at classifying them. As reported in [199], the lack
of lexical richness can be a weakness of the generators, making them easily detected by a machine
learning classifier. Meanwhile, a discriminator’s preference for rarer language does not necessarily
mean it is favouring higher quality reviews.

In addition to lexical diversity, Self-BLEU [534] is an interesting measurement of the diversity
of a set of text (average BLEU score of each document using the same collection as reference,
therefore the lower the more diverse). In Figure 5.7 we present Self-BLEU scores for each gen-
erator, applied to their generated text in D-test fake. We also compute the correlation coefficients
between the rankings of generators by Self-BLEU and the rankings by the evaluators (please see
Figure 5.12). Results obtained indicate that Self-BLEU presents negative correlation with human
evaluators and word-overlap evaluators, and positive correlation with discriminative evaluators.
This result confirms the findings in literature [199] that discriminators in adversarial evaluation are
capturing known limitations of the generative models such as lack of diversity.

Figure 5.12: Kendall τ -b correlation coefficients between BLEU G-train and Self-BLEU rankings,
and the three evaluation methods - human evaluators H1, H2, discriminative evaluators and word-
overlap based evaluators (* denotes p ≤ 0.05). Meta-discriminators have been trained on D-train,
D-valid sets and tested on the annotated D-test set with ground-truth test labels.

Following this insight, an important question to answer is to what extent the generators are
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Generative Text Model BLEU G-Train
Word LSTM temp 1.0 0.2701
Word LSTM temp 0.7 0.4998
Word LSTM temp 0.5 0.6294
Scheduled Sampling 0.1707
Google LM 0.0475
Attention Attribute to Sequence 0.5122
Contexts to Sequences 0.7542
Gated Contexts to Sequences 0.6240
MLE SeqGAN 0.1707
SeqGAN 0.1751
RankGAN 0.1525
LeakGAN 0.1871

Table 5.9: BLEU results when evaluating the generated reviews using G-train as the reference
corpus (a lower score indicates less n-grams in common between the training set G-train and the
generated text). GAN models present low similarity with the training set.

simply memorizing the training set G-train. To this end, we assess the degree of n-gram overlap
between the generated reviews and the training reviews using the BLEU evaluator. In Table 5.9
we present the average BLEU scores of generated reviews using their nearest neighbors in G-train

as references. We observe that generally the generators do not memorize the training set, and
GAN models generate reviews that have fewer overlap with G-train. In Figure 5.12 we include
the correlation between the divergence from training and the ratings by evaluators in the study.
BLEU w.r.t. G-train presents highly positive correlation with BLEU w.r.t. D-test real, and it is
also positively correlated with the human evaluators H1 and H2.

The effects of diversity is perhaps not hard to explain. At the particular task of distinguishing
fake reviews from real, all decisions are made on individual reviews. And because a human judge
was not exposed to many fake reviews generated by the same generator, whether or not a fake
review is sufficiently different from the other generated reviews is not a major factor for their
decision. Instead, the major factor is whether the generated review looks similar to the reviews
they have seen in reality. Instead, a discriminative evaluator makes the decision after seeing many
positive and negative examples, and a fake review that can fool an adversarial classifier has to
be sufficiently different from all other fake reviews it has encountered (therefore diversity of a
generator is a major indicator of its ability to pass an adversarial judge).
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CHAPTER 6

Conclusions and Future Directions

In this dissertation, we have covered aspects related to natural language generation and evaluation,
including the accessibility, steerability, explainability, adaptability and evaluation of current text
generation models. We put forward a series of analyses and solutions to existing challenges in the
literature, hoping the present work contributes to enhancing our collective understanding of this
rapidly evolving research field. As we conclude, we first provide a summary of the work presented,
and then discuss future research directions.

6.1 Thesis Summary

• Chapter 2 – Literature Review: Why is constrained natural language generation par-
ticularly challenging? In this chapter, we presented an extensive survey focused on the
emerging problem of neural natural language generation with constraints, differentiating
between the ambiguous use of conditions and constraints in the literature. We outlined
approaches, learning methodologies, model architectures, evaluation metrics, as well as lim-
itations of current models and evaluation approaches. We hope this serves as an informative
guide towards advancing the state-of-the-art in constrained NLG and evaluation research.

• Chapter 3 – Explainable Prediction of Text Complexity: The Missing Preliminaries
for Text Simplification We decomposed the ambiguous notion of text simplification into a
compact, transparent, and logically dependent pipeline of modular sub-task that increase the
transparency and explainability of text simplification systems. We focused on the analysis
of the first two steps in this pipeline: 1) predicting whether a given piece of text needs to
be simplified at all, and 2) identifying which part of the text needs to be simplified. We
demonstrated the importance of these steps: by simply applying explainable complexity
prediction as a preliminary step, the out-of-sample text simplification performance of the
state-of-the-art, black-box models can be improved by a large margin.
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• Chapter 4 – Adapting Pre-trained Language Models to Low-Resource Text Simplifica-
tion: The Path Matters We framed the problem of low-resource text simplification from
a task and domain adaptation perspective, and explored ways in which a pre-trained large
language model can be fast adapted to new text simplification tasks and domains with few
training examples. We find that when directly adapting a Web-scale pre-trained language
model to low-resource text simplification tasks, fine-tuning based methods present a com-
petitive advantage over meta-learning approaches. Surprisingly, adding an intermediate stop
in the adaptation path between the source and target, an auxiliary dataset and task that allow
for the decomposition of the adaptation process into multiple steps, significantly increases
the performance of the target task. The performance is however sensitive to the selection and
ordering of the adaptation strategy (task adaptation vs. domain adaptation) in the two steps.
When such an intermediate dataset is not available, one can build a “pseudostop” using the
target domain/task itself. Our extensive analysis serves as a preliminary step towards bridg-
ing these two popular paradigms of few-shot adaptive learning and towards developing more
structured solutions to task/domain adaptation in a novel setting.

• Chapter 5 – Judge the Judges: A Large-Scale Evaluation Study of Neural Language
Models for Online Review Generation We conducted a large-scale, systematic experi-
ment to analyze the procedures and metrics used for evaluating NLG models, including hu-
man evaluators, automated adversarial evaluators trained to distinguish human-written from
machine-generated texts, and word overlap metrics. We find that none of the evaluators is
close to perfect. Human evaluators generally do better at correctly labelling human-written
reviews as real, and they are confused by machine-generated reviews in close to half of the
cases. Adversarial evaluators have more balanced true positive rates and true negative rates
compared to human evaluators, and rank GAN-based generators highest. Surprisingly, none
of the discriminative evaluators have a positive correlation with the human evaluators. That
says, generators that fool machine judges easily are less likely to confuse human judges,
and vice versa. Word-overlap evaluators tend to have a positive correlation with the human
evaluators in ranking the generators. Our findings represent a preliminary foundation for
proposing more solid and robust evaluation metrics and objectives for NLG.

Taken together, our contributions serve to advance our common understanding of specific NLG
challenges, inform on concrete solutions to address these challenges, and provide insights for guid-
ing the development of better NLG algorithms and evaluation metrics. Looking beyond the prob-
lem of low-resource text simplification we are focusing on in this thesis, we believe the method-
ology proposed in this dissertation (explainable decomposition, chain of adaptations to new tasks
and domains, and meta-evaluation) may benefit other areas related to generative AI. These de-
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composition practices are well aligned with the philosophy of ”chain-of-thoughts” [477] that is a
corner stone of large language models, although the latter appears after our work. We are excited
with the progress of the field over the past years, and glad to be able to contribute with the present
research. Nevertheless, we acknowledge that these contributions are far from sufficient to solve
the long-standing outstanding research challenges related to safe and robust natural language gen-
eration and evaluation. We aim to continue working on addressing these problems, and expect to
witness the emergence of brand-new models that are trustworthy, efficient, explainable and con-
trollable; this requires innovative ideas and creative approaches that go far beyond the current trend
of scaling up existing models. In what follows we outline important directions for future research.

6.2 Future Directions

With an outlook towards the future of natural language generation and evaluation, we present
below research directions that are important for further advancing the robustness, efficiency and
transparency of current systems.

• Better Model Architectures: Autoregressive architectures based on Transformer [463] are
the backbone of powerful large language models from the GPT family [367], [368], [369],
including ChatGPT [333] or GPT-4 [334]. Nevertheless, these architectures are inherently
limited in nature due to the underlying next-word prediction paradigm. Given the output
is generated in a forward left-to-right manner, the model cannot backtrack to correct its
own mistakes or make edits before reaching the final form. This also limits the ability of
the model to do far-ahead planning, which requires complex reasoning abilities and content
iterations [39]. Planning is particularly important for constrained text generation, since it
requires an organized thinking scheme at both local and global level (i.e. fast thinking vs.
slow thinking to “oversee the thought process”) [80].

Another limitation is the restricted maximum sequence length of current models which does
not allow to take longer context into account. Performance substantially decreases as the
input context gets longer, and the degradation in performance is significantly worse when
relevant information is placed in the middle of the input context, as opposed to beginning or
end [273]. This introduces spurious correlations and is detrimental to models’ ability to learn
in-context and generalize. Besides, self-attention has quadratic complexity with the input
sequence length for vanilla Transformer models. Scaling up sequence length requires finding
the right balance between computational complexity and model expressivity [93]. Moreover,
it is important to consider improving LLMs training and inference efficiency given their size
is making them challenging to use in most real-world applications [126], [175], [172].
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• Robust Natural Language Understanding and Grounding: With the increase in popular-
ity and widespread deployment of current models, it is important to assess their performance
critically. As a proxy to their ability to generalize in real-world situations, their performance
is measured on held-out data on various leaderboards. Nevertheless, these held-out datasets
are not comprehensive nor representative enough of the diversity of real-world test cases, and
may contain harmful, intended or undesirable biases, which may lead to overestimating the
actual model performance [237]. Moreover, when model performance is summarized as a
single aggregate statistic, it is difficult to understand the failure modes of the model and what
can be done to fix them [487]. Comprehensive behavioral testing of NLP models is important
not only for quantifying their linguistic abilities [194], but also for performing sanity checks
such as prediction invariance in the presence of perturbations or identifying spurious corre-
lations that affect out-of-distribution generalization [384], [192]. While LLMs demonstrate
a certain level of understanding of the physical world, the fact they are trained on written text
only leaves them unaware of essential embodied knowledge and skills; they are not robust
enough to perform many reasoning and planning tasks in physical environments, such as
navigation, interaction with objects, sensing and tracking the world state [492]. Grounding
language models to world models permits the acquisition of embodied knowledge and skills
necessary for solving tasks in physical world.

• Continual and Lifelong Learning: Current large language models are trained on static
datasets and encode world knowledge in their parameters, however this knowledge can be-
come quickly outdated as the world is non-stationary and fast-changing. When asked to
predict future utterances from beyond their training period, LLMs performance degrades
and becomes increasingly worse with time [237]; this illustrates their struggle with temporal
generalization and emphasizes the contrast between the inherent dynamic nature of language
and the current static language modelling paradigm. The challenge to update internal world
knowledge without forgetting previously learnt knowledge is nontrivial though. Pre-training
language models from scratch with a newly updated text corpus of a similar scale to the one
used during the initial pre-training is undesirable due to computational and environmental
aspects [349]. In the literature, the acquisition of new world knowledge by LLMs has been
approached from either the perspective of retrieval-augmented generation [251], [272], [30],
[208], [419] where at inference time models search for updated information from external
sources, or from a continual learning point of view which allows models to continually
update their knowledge with new information by continuing the pre-training process on a
smaller corpus that contains new knowledge [186], [238], [237]. However, both approaches
come with specific challenges: memory-augmented models may suffer from hallucination
[511], i.e. making up false information despite being presented with up-to-date knowledge
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at inference time, while continual learning approaches are known to suffer from catastrophic
forgetting [218], i.e. forgetting previously learnt knowledge as they learn new information.
Developing adaptive language models that can continually acquire incrementally available
information from non-stationary data distributions in our constantly evolving world and with
no performance degradation over time represents an important research frontier [346], [116].

• Better Evaluation Metrics: Proper evaluation of natural language generation remains par-
ticularly challenging. Human evaluations are considered the gold standard for the assess-
ment of natural language generations, nevertheless the lack of standardized setups, consis-
tency, transparency and reproducibility over time and over different annotator populations
are important challenges in the way of effective human evaluation of text generation models
[210]. In addition, conducting human evaluations is often times a time-consuming and ex-
pensive process. To this end, automated evaluation metrics are frequently used as proxy to
human judgements; their usefulness however is debatable. Word overlap metrics are found
to present low correlation with human judgements for state-of-the art NLG systems [355],
[300], [325], [92], [387] or when used as targets for optimization [43], [443]. As NLG mod-
els become increasingly powerful, evaluation metrics based on pre-trained large language
models are proposed, however their use is not without shortcomings. First, these evaluation
metrics are biased towards generations from their own underlying model [163]. Second, they
are not robust to various adversarial fooling attacks and simple perturbations, for example
lexical overlap with low semantic similarity (indicating the metric can be fooled by using the
same words but in different order) and factuality errors [387], [201], [63], [384]. Third, eval-
uation metrics based on black-box language model representations lack explainability and
interpretability of their output scores, which are important aspects for spotting quality issues
and establishing trust in model decisions [52], [244]. Given a single overall score assigned is
not informative in understanding which aspects of the text generation model need improve-
ment [387], text generation models could be leveraged as explainability tools for evaluation
metrics; ideally, a metric does not only output one or several scores, but also provides a tex-
tual explanation for the significance of the metric score [244], [201]. For both human and
automated evaluations, it is important to report scores with uncertainty estimates to better
inform comparisons across different models [210]. Moreover, NLG outputs need not only
be correct, but also diverse, however in the literature there are no principled methods for
quantifying different aspects of diversity, such as form and content diversity [453].

• Cautious Deployment of NLP Models in the Real World: As NLP models are being
increasingly deployed with significant impact in the real-world, it is imperative to consider
aspects such as factuality, explainability/trustworthiness, fairness/bias mitigation, privacy

148



preservation and alignment with human values. We discuss these challenges in turn below.

Factuality While current models can generate fluent and realistic-looking texts in many
downstream tasks and application scenarios, they are also known to generate content that
lacks in global and factual consistency, is not entailed by the original input, or is cogent-
sounding but simply wrong [303], [449], [528], [267]. Detecting model hallucinations and
factual inconsistencies is crucial for reducing the spread of misinformation and for improv-
ing trust in model outputs, particularly in real-world, mission-critical applications [231],
[353]. The main challenge in evaluating factual precision is that generated content is typi-
cally a mixture of both true and false information, therefore factuality cannot be treated as
a binary concept [342]. Moreover, not all factual errors are equally important: their num-
ber does impact the perceived factuality of a piece of text, however validating every piece
of information may not always be possible due to time and cost constraints. In general, the
ability of large language models to answer factual questions is associated with the number of
documents related to the question the model has seen during pre-training [196]. Evaluations
of factuality focus on identifying series of atomic facts and determining what percentage are
supported by a reliable knowledge source [312].

Explainability/Trustworthiness Explanations play a central role in human learning, allowing
humans to generalize and adapt to new situations [282]. For black-box AI algorithms, elab-
orating on the rationale used to solve a problem can help increase trust in the inner workings
of the model and allow to assess additional safety or non-discrimination criteria [97]. Nev-
ertheless, our understanding of how current black-box models work is still very limited. The
field is missing a clear definition of what constitutes explainability, how it connects to the
target audience, as well as standard terminology and robust evaluation metrics for measuring
the fidelity, causality and faithfulness of the claimed explanations in supporting the model’s
prediction [82]. In addition to enhancing human’s understanding of the model behaviour,
explanations may also help the model itself better “understand” the underlying task. For ex-
ample, explanations of answers in a few-shot prompt are found to improve the performance
of in-context learning task inference for LLMs [234].

Fairness/Bias Mitigation The goal of machine learning fairness is to ensure that model in-
accuracies and data biases are not going to result in the unfavourable treatment of certain de-
mographics, with negative consequences for individuals and society [417], [45]. Examples
of such sensitive attributes in the data include age, race, gender, disabilities, sexual or po-
litical orientation, marital status, income, geographical location, etc. Definitions of fairness
in the literature account for properties of model outputs with respect to sensitive attributes,
as well as relationships among other relevant variables in the data. In general, unfairness
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in machine learning arises from two sources: biases in the data and biases in algorithms
[304]. Approaches for ensuring fairness in the predictions of machine learning models in-
clude removing biases from the extracted data representations during pre-processing before
using them as model inputs, imposing fairness constraints at training time, or post-processing
model outputs to make them fair [332]. Measuring bias in NLP models is done via fairness
metrics which quantify differences in the model behaviour across different social categories
based on the notions of group and counterfactual fairness [76]. While bias mitigation is a
pressing problem, in the literature the notion of bias is conceptualized differently, making it
hard to compare across methods and evaluations. Moreover, motivations for analyzing bias
are often times vague and inconsistent, terminology is imprecise, and assumptions are being
made about what kinds of system behaviors are harmful, to whom, and why [28].

Privacy Large language models can memorize sensitive parts of their training data, which
then becomes susceptible to adversarial attacks [49], [47], [468]. Many attacks find overfit-
ting a sufficient condition for privacy leakage, as it often indicates the memorization of train-
ing set examples [503]. Using only black-box query access, unique and secret sequences can
be extracted with serious negative consequences, such as credit card/ssn numbers, or names
of individuals and their contact information. Protecting NLP models from leaking private
data is becoming increasingly important given their widespread adoption in real-world prod-
ucts [420]. In the literature, training with differential privacy, fine-tuning an additional small
set of parameters with private data and curating datasets are used to prevent leakage of sen-
sitive information from the model training set [48], [504], [21].

Alignment with Human Values For artificial intelligence technologies to be beneficial to
our society, it is important that their goals are in line with human values. Nevertheless,
the behaviour alignment problem is challenging due to difficulty in precisely defining and
measuring human preferences, undesired secondary behaviour that may arise as a result of
the primary alignment goal, and a narrowing window of opportunity to correct problems
as artificial agents become increasingly more capable [204]. For NLP in particular, current
models often violate human preferences and display unintended behaviours, for example
they can easily degenerate into biased, offensive and toxic language [130], make up facts
and output factually incorrect information [439], or simply not follow user instructions [29].
One of the reasons behind this misaligned behaviour in current LLMs is that the language
modeling objective of predicting the next token does not reflect the implicit goal of staying
helpful, honest and harmless while following user instructions [36], [369]. In the literature,
aligning language models with user intent has been approached from the perspective of fine-
tuning with human feedback using reinforcement learning algorithms that leverage human
preferences as a reward signal [338], [395], [370], [333], [334]. However, designing suitable
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reward functions requires more than just large datasets of human labeled preferences; encod-
ing the right inductive biases is equally important [243]. Other challenges include training
agents in the lack of well-specified rewards, robustness to distribution shifts and preventing
unacceptable outcomes before they even occur. Finally, as language technologies are be-
ing increasingly deployed in the real world, the social and ethical impact of NLP research
requires careful thought and consideration [173].
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[25] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learn-
ing. In Proceedings of the 26th annual international conference on machine learning, pages
41–48. ACM, 2009.

[26] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

[27] Sumithra Bhakthavatsalam, Daniel Khashabi, Tushar Khot, Bhavana Dalvi Mishra, Kyle
Richardson, Ashish Sabharwal, Carissa Schoenick, Oyvind Tafjord, and Peter Clark. Think
you have solved direct-answer question answering? try arc-da, the direct-answer ai2 rea-
soning challenge. arXiv preprint arXiv:2102.03315, 2021.

[28] Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach. Language (technology)
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[48] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The se-
cret sharer: Evaluating and testing unintended memorization in neural networks. In 28th
USENIX Security Symposium (USENIX Security 19), pages 267–284, 2019.

[49] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss,
Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting
training data from large language models. In 30th USENIX Security Symposium (USENIX
Security 21), pages 2633–2650, 2021.

[50] Samuel Carton, Qiaozhu Mei, and Paul Resnick. Extractive adversarial networks: High-
recall explanations for identifying personal attacks in social media posts. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3497–
3507, 2018.

[51] Rich Caruana. Learning many related tasks at the same time with backpropagation. Ad-
vances in neural information processing systems, 7, 1994.

[52] Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao. Evaluation of text generation: A
survey. arXiv preprint arXiv:2006.14799, 2020.

[53] Arun Tejasvi Chaganty, Stephen Mussman, and Percy Liang. The price of debiasing auto-
matic metrics in natural language evaluation. arXiv preprint arXiv:1807.02202, 2018.

[54] William Chan, Nikita Kitaev, Kelvin Guu, Mitchell Stern, and Jakob Uszkoreit. Ker-
mit: Generative insertion-based modeling for sequences. arXiv preprint arXiv:1906.01604,
2019.

[55] Tong Che, Yanran Li, Ruixiang Zhang, R Devon Hjelm, Wenjie Li, Yangqiu Song, and
Yoshua Bengio. Maximum-likelihood augmented discrete generative adversarial networks.
arXiv preprint arXiv:1702.07983, 2017.

[56] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn,
and Tony Robinson. One billion word benchmark for measuring progress in statistical lan-
guage modeling. arXiv preprint arXiv:1312.3005, 2013.

[57] Lingjiao Chen, Matei Zaharia, and James Zou. How is chatgpt’s behavior changing over
time? arXiv preprint arXiv:2307.09009, 2023.

[58] Mingda Chen, Qingming Tang, Sam Wiseman, and Kevin Gimpel. Controllable paraphrase
generation with a syntactic exemplar. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 5972–5984, 2019.

156



[59] Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen. Enhanced
lstm for natural language inference. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1657–1668,
2017.

[60] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data mining,
pages 785–794. ACM, 2016.

[61] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts
prompting: Disentangling computation from reasoning for numerical reasoning tasks. arXiv
preprint arXiv:2211.12588, 2022.

[62] Xinyang Chen, Sinan Wang, Bo Fu, Mingsheng Long, and Jianmin Wang. Catastrophic
forgetting meets negative transfer: Batch spectral shrinkage for safe transfer learning. Ad-
vances in Neural Information Processing Systems, 32, 2019.

[63] Yanran Chen and Steffen Eger. Menli: Robust evaluation metrics from natural language
inference. arXiv preprint arXiv:2208.07316, 2022.

[64] Leshem Choshen, Lior Fox, Zohar Aizenbud, and Omri Abend. On the weaknesses of
reinforcement learning for neural machine translation. arXiv preprint arXiv:1907.01752,
2019.

[65] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
et al. Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311,
2022.

[66] Erik Christensen. Methodology of superiority vs. equivalence trials and non-inferiority
trials. Journal of hepatology, 46(5):947–954, 2007.
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[73] Pierre Jean A Colombo, Chloé Clavel, and Pablo Piantanida. Infolm: A new metric to
evaluate summarization & data2text generation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 10554–10562, 2022.

[74] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[75] Josep Crego, Jungi Kim, Guillaume Klein, Anabel Rebollo, Kathy Yang, Jean Senellart,
Egor Akhanov, Patrice Brunelle, Aurelien Coquard, Yongchao Deng, et al. Systran’s pure
neural machine translation systems. arXiv preprint arXiv:1610.05540, 2016.

[76] Paula Czarnowska, Yogarshi Vyas, and Kashif Shah. Quantifying social biases in nlp: A
generalization and empirical comparison of extrinsic fairness metrics. Transactions of the
Association for Computational Linguistics, 9:1249–1267, 2021.

[77] Bo Dai, Sanja Fidler, Raquel Urtasun, and Dahua Lin. Towards diverse and natural image
descriptions via a conditional gan. In Proceedings of the IEEE International Conference on
Computer Vision, pages 2970–2979, 2017.

[78] Robert Dale and Chris Mellish. Towards evaluation in natural language generation. In
In Proceedings of First International Conference on Language Resources and Evaluation,
1998.

[79] Alexander D’Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex
Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D Hoffman, et al.
Underspecification presents challenges for credibility in modern machine learning. arXiv
preprint arXiv:2011.03395, 2020.

[80] Kahneman Daniel. Thinking, fast and slow. 2017.

[81] Wayne W Daniel et al. Applied nonparametric statistics. Houghton Mifflin, 1978.

[82] Marina Danilevsky, Kun Qian, Ranit Aharonov, Yannis Katsis, Ban Kawas, and Prithviraj
Sen. A survey of the state of explainable ai for natural language processing. In Proceed-
ings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational

158



Linguistics and the 10th International Joint Conference on Natural Language Processing,
pages 447–459, 2020.

[83] Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino,
Jason Yosinski, and Rosanne Liu. Plug and play language models: a simple approach to
controlled text generation. arXiv preprint arXiv:1912.02164, 2019.

[84] Oscar Day and Taghi M Khoshgoftaar. A survey on heterogeneous transfer learning. Journal
of Big Data, 4(1):1–42, 2017.

[85] Cyprien de Masson d’Autume, Shakir Mohamed, Mihaela Rosca, and Jack Rae. Training
language gans from scratch. In Advances in Neural Information Processing Systems, pages
4302–4313, 2019.

[86] Mostafa Dehghani, Yi Tay, Alexey A Gritsenko, Zhe Zhao, Neil Houlsby, Fernando
Diaz, Donald Metzler, and Oriol Vinyals. The benchmark lottery. arXiv preprint
arXiv:2107.07002, 2021.

[87] Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis,
Greg Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in
classification tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.
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[360] Maja Popović. On reducing translation shifts in translations intended for mt evaluation.
In Proceedings of Machine Translation Summit XVII: Translator, Project and User Tracks,
pages 80–87, 2019.

181



[361] Matt Post and David Vilar. Fast lexically constrained decoding with dynamic beam alloca-
tion for neural machine translation. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1314–1324, 2018.

[362] Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis.
Measuring and narrowing the compositionality gap in language models. arXiv preprint
arXiv:2210.03350, 2022.

[363] Mark A. Przybocki, Kay Peterson, Sebastien Bronsart, and Gregory A. Sanders. The NIST
2008 metrics for machine translation challenge - overview, methodology, metrics, and re-
sults. Machine Translation, 23(2-3):71–103, 2009.

[364] Guanghui Qin and Jason Eisner. Learning how to ask: Querying lms with mixtures of soft
prompts. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL-HLT),
2021.

[365] Lianhui Qin, Antoine Bosselut, Ari Holtzman, Chandra Bhagavatula, Elizabeth Clark, and
Yejin Choi. Counterfactual story reasoning and generation. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5046–5056,
2019.

[366] Lianhui Qin, Sean Welleck, Daniel Khashabi, and Yejin Choi. Cold decoding: Energy-
based constrained text generation with langevin dynamics. Advances in Neural Information
Processing Systems, 35:9538–9551, 2022.

[367] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving lan-
guage understanding by generative pre-training. URL https://s3-us-west-2. amazonaws.
com/openai-assets/research-covers/languageunsupervised/language understanding paper.
pdf, 2018.

[368] Alec Radford, Jeffrey Wu, Dario Amodei, Daniela Amodei, Jack Clark, Miles Brundage,
and Ilya Sutskever. Better language models and their implications. OpenAI blog, 1(2),
2019.

[369] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI Blog, 1:8, 2019.

[370] Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Fran-
cis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scal-
ing language models: Methods, analysis & insights from training gopher. arXiv preprint
arXiv:2112.11446, 2021.

[371] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal of Machine Learning Research, 21:1–67,
2020.

182



[372] Aniruddh Raghu, Jonathan Lorraine, Simon Kornblith, Matthew McDermott, and David K
Duvenaud. Meta-learning to improve pre-training. Advances in Neural Information Pro-
cessing Systems, 34, 2021.

[373] Sai Rajeswar, Sandeep Subramanian, Francis Dutil, Christopher Pal, and Aaron Courville.
Adversarial generation of natural language. arXiv preprint arXiv:1705.10929, 2017.

[374] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning
with implicit gradients. Advances in neural information processing systems, 32, 2019.

[375] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence
level training with recurrent neural networks. arXiv preprint arXiv:1511.06732, 2015.

[376] Sudha Rao and Joel Tetreault. Dear sir or madam, may i introduce the gyafc dataset: Corpus,
benchmarks and metrics for formality style transfer. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pages 129–140, 2018.

[377] Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pre-
training term frequencies on few-shot reasoning. arXiv preprint arXiv:2202.07206, 2022.

[378] Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon Lavie. Comet: A neural framework
for mt evaluation. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2685–2702, 2020.

[379] Ehud Reiter and Anja Belz. An investigation into the validity of some metrics for au-
tomatically evaluating natural language generation systems. Computational Linguistics,
35(4):529–558, 2009.

[380] Ehud Reiter, Roma Robertson, A Scott Lennox, and Liesl Osman. Using a randomised con-
trolled clinical trial to evaluate an nlg system. In Proceedings of the 39th Annual Meeting on
Association for Computational Linguistics, pages 442–449. Association for Computational
Linguistics, 2001.

[381] Luz Rello, Ricardo Baeza-Yates, Stefan Bott, and Horacio Saggion. Simplify or help?: text
simplification strategies for people with dyslexia. In Proceedings of the 10th International
Cross-Disciplinary Conference on Web Accessibility. ACM, 2013.

[382] Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Be-
yond the few-shot paradigm. In Extended Abstracts of the 2021 CHI Conference on Human
Factors in Computing Systems, pages 1–7, 2021.

[383] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should I trust you?”: Ex-
plaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
August 13-17, 2016, pages 1135–1144, 2016.

183



[384] Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond accu-
racy: Behavioral testing of nlp models with checklist. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. Association for Computational
Linguistics, 2020.

[385] Irina Rish. An empirical study of the naive bayes classifier. In IJCAI 2001 workshop on
empirical methods in artificial intelligence, volume 3, pages 41–46. IBM, 2001.

[386] Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstrac-
tive sentence summarization. arXiv preprint arXiv:1509.00685, 2015.

[387] Ananya B Sai, Tanay Dixit, Dev Yashpal Sheth, Sreyas Mohan, and Mitesh M Khapra. Per-
turbation checklists for evaluating nlg evaluation metrics. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Processing, pages 7219–7234, 2021.

[388] Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly.
Assessing generative models via precision and recall. In Advances in Neural Information
Processing Systems, pages 5228–5237, 2018.

[389] Abdelrhman Saleh, Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, and Ros-
alind Picard. Hierarchical reinforcement learning for open-domain dialog. arXiv preprint
arXiv:1909.07547, 2019.

[390] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training gans. In Advances in Neural Information Pro-
cessing Systems, pages 2234–2242, 2016.

[391] Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid
Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask
prompted training enables zero-shot task generalization. In ICLR 2022-Tenth International
Conference on Learning Representations, 2022.

[392] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap.
Meta-learning with memory-augmented neural networks. In International conference on
machine learning, pages 1842–1850. PMLR, 2016.

[393] Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal
analysis of chain-of-thought. arXiv preprint arXiv:2210.01240, 2022.

[394] Carolina Scarton and Lucia Specia. Learning simplifications for specific target audiences.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 712–718, 2018.
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