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Abstract 

This work focuses on the computational investigation and phenomenological model development 

of atomic-scale transport properties in glasses and glass forming liquids. Specifically, we study 

ion diffusion and viscous processes as they arise from phenomenologically similar elementary 

mechanisms. A greater understanding of ionic mobility in glasses can elucidate important 

materials design criteria for the development of solid-state electrolyte batteries while 

improvements in viscosity modeling of glass formers is vital to advancing the development and 

manufacturing of novel glasses. These endeavors work toward providing insight into essential 

characteristics of the glass transition phenomenon. 

We begin with a study of diffusivity in a simple two-component model solid electrolyte using 

molecular dynamics (MD) simulations. This model system is composed of lattice elements, 

forming a covalent support structure for solute particles that exhibit weaker non-bonding 

interactions with the network. The solute species size is systematically varied, while the network 

atoms are unchanged and a constant system volume is maintained. The atomic mobility increases 

by orders of magnitude in conjunction with cohesive rupture between solute and network and 

enhanced anharmonicity, as revealed by analyzing the internal pressure, compressibility, and 

vibrational spectra as a function of solute size. This finding inspires using ion-exchange to 

enhance ionic mobility in oxide glasses. Replacing cesium in a MD simulation-generated melt-

quench cesium silicate glass with the smaller sodium cation results in a 4.5 to 6-fold increase in 

diffusivity compared to the melt-quenched sodium silicate control. This increase results from a 



 xiii 

greater free volume of the ion-exchanged glass. Similarly, subjecting the control glass to 

isotropic volumetric strains, a sodium mobility increase is observed, peaking at 25% strain, 

which corresponds to the tensile limit of the simulated glass. Expansion causes the potential 

energy topography to flatten, allowing sodium to readily access transition pathways between 

neighboring sites.  Greater strain causes cavitation of the silica network, creating non-traversable 

gaps for sodium migration. 

A hallmark of thermally activated transport processes in glass forming materials is the non-

Arrhenius temperature dependence above Tg. This applies to ionic conductivity and 

viscoelasticity. Conjecturing that this behavior is rooted in a variable free energy topography 

associated with structural changes occurring in a system upon traversing the glass transition 

regime, we juxtapose the complex mechanical modulus of a sodium borate melt measured at 

GHz frequencies and its zero Hz viscosity. Modifying the Maxwell-Wiechert model to account 

for a temperature dependent activation free energy, the high-frequency and steady-state 

quantities are perfectly reconcilable with one another, thus validating the underlying atomic scale 

mechanisms. Expanding on this framework, we develop a workflow for analyzing steady-state 

viscosity data of 847 oxide glass formers using our new variable activation free energy (VAFE) 

model in case the adiabatic complex mechanical modulus is not available. We compare the 

performance of the VAFE model with those of the established VFT and MYEGA equations and 

find our model to be more robust to extrapolation and possessing more reasonable behavior in 

the infinite-temperature. Furthermore, our model encodes a relationship between fragility and the 

temperature-dependent change in the ground-state potential energy associated with structural 

changes in glass formers between the glassy and liquid states. It also allows one to estimate the 
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number of atoms onto which the activation energy is imparted per elementary viscous dissipation 

event. 
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Chapter 1 Introduction 

1.1 Atomic-Scale Transport Processes in Glass Forming Systems 

1.1.1 Ionic Mobility and Solid-State Electrolytes 

Efficient, on-demand energy storage in the form of battery technology has become vital to 

society, and its importance will only increase with the ever-growing prevalence of portable 

electronic devices, the trend towards hybrid electric and fully electric vehicles, and the push for 

renewable energy resources.1,2 With respect to the latter, solar and wind energy are both variable 

power sources and cannot be relied upon to consistently match power supply to demand without 

grid-scale energy storage systems. Grid load leveling can be used to shift electrical energy 

supply requirements from peak to off-peak times.1,3 This means that energy generated beyond 

demand can be stored in batteries and released later to supplement supply when demands are 

high. Battery technology in support of these endeavors provides a clear path toward the reduction 

of environmental damage, greenhouse gas emissions, and depletion of fossil fuels.4 The 

development of solid-state electrolytes is key to achieving the energy and power densities for 

batteries required to outcompete gasoline and diesel powered vehicles.5 The increased energy 

density results in an improved travel range, while the increased power density enables rapid 

recharging, approaching refueling rates of gasoline vehicles. Similarly important are the 

improvements to battery capacity, charging rate, lifetime, and safety afforded to the smartphones, 

smartwatches, tablets, laptops, and other consumer electronics. These devices have come to be 

extensions of ourselves, providing us with instant access to communication, information, 

navigation, entertainment, and more. 
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Solid-state electrolytes (SSE) are projected to replace the liquid electrolyte technology that is 

prevalent today. Batteries based on SSE do not bear the same fire and explosion hazards 

associated with organic liquid electrolytes that can leak out of the cell and catch fire or simply 

combust due to overheating during operation or as the result of a short circuit.5,6 While aqueous 

electrolytes consisting of metal ionic salts dissolved in water also mitigate this explosion hazard, 

possess a high ionic conductivity, and are economically favorable to produce, these electrolytes 

are excluded from use in rechargeable high energy density batteries due to the inherently low 

electrochemical window of 1.23 volts at which water decomposes.7 SSE boast a larger 

electrochemical stability window (typically on the order of 5 volts) and higher achievable energy 

densities than those of liquid electrolyte batteries.4 All liquid electrolyte batteries are subject to 

dendrite growth on the anode that occurs over many charge-discharge cycles, which results in 

efficiency loss through polarization and eventual failure via short circuit. The rigid structure of 

solid electrolytes greatly increases their resistance to dendritic penetration.8 Unfortunately, 

mechanical stiffness tends to counteract atomic mobility, and hence, finding ways to increase the 

ionic conductivity in SSE is a primary research focus. 

Solid-state electrolytes can be broadly categorized into three groups: inorganic solid electrolytes 

(ISE), solid polymer electrolytes (SPE), and composite solid electrolytes (CSE). ISE are 

typically composed of an inorganic network cation with either an oxide, sulfide, or nitride 

network anion, include a conducting network modifier, such as Li2O, and may also contain 

various intermediates and dopants. ISE typically have lithium transference numbers near unity 

largely because the anion counter to lithium is immobilized by being part of the network 

structure. The lithium transference number quantifies the fraction of conducting lithium ions as 

opposed to other conducting cations or anions in the system. A value of unity signifies that the 
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electrolyte is highly efficient because all ionic conduction can be attributed to the diffusion of 

lithium in the electrolyte. ISE can be crystalline or amorphous, of which each exhibit specific 

advantages. A subclass of crystalline ISE known as “superionic conductors” have shown 

superior ionic conductivity compared to their amorphous counterparts. For example, Li1+xAlxGe2-

x(PO4)3 (LAGP) exhibits room temperature conductivities near 10–2 S/cm,4 about two orders of 

magnitude higher than competitive amorphous ISE. Superionic conducting ISE are believed to 

conduct anisotropically through ordered conduction channels in the lattice, while in most other 

crystalline materials, ion transport is believed to occur due to defects or disorder in the material. 

Group 1 and 2 halides and select oxides have a compact crystalline structure in which interstitial 

ions and vacancies enable ionic migration. Figure 1-1 shows a model of fast lithium-ion 

conductor ISE of composition La0.62Li0.16TiO3. 

 

Figure 1-1 Crystal structure La0.62Li0.16TiO3 generated using crystal parameters from neutron-diffraction data. The 

pink, green, and blue spheres and red ellipsoids denote Li, La, Ti, and oxygen ions, respectively.9 

Crystalline compounds like beta-alumina contain one ionic species that provides structural 

rigidity while a sublattice of energetically equivalent cation sites, separated by small energy 
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barriers and only partially occupied, allows for frequent jumps between sites.10 Despite the 

mechanical rigidity of these crystalline lattices, ISE are brittle and possess high grain boundary 

resistance, and they establish poor contact with electrode surfaces that is exacerbated by 

electrode volume changes during cycling.11 

SPE consist of a polymer phase with salt dissolved in it. The polymer has polar groups to form 

coordination bonds with the cations and anions of the salt. SPE can be crystalline, semi-

crystalline, or amorphous. The general consensus is that ionic conduction occurs 

overwhelmingly in the amorphous phase where segmental motion of polymer chains aids the 

transport of weakly coordinated ions as they diffuse from site to site through the polymer matrix 

and that crystalline regions are an obstacle to this conduction. However, a dissenting view 

proposes that crystalline phase polymer chains form ordered helical channels for lithium ions to 

move through.12 A schematic of these proposed conduction mechanisms is shown in Figure 1-2. 

 

Figure 1-2 Ion transport mechanism in polymer PEO in (a) amorphous and (b) crystalline region.13 
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Polyethylene oxide (PEO) is the most thoroughly studied polymer for SPE applications due to its 

excellent salt solvation properties. The mechanical compliance and adhesive property of 

polymers help to form intimate contact with electrodes, but they possess poor mechanical and 

thermal stability. Lithium transference numbers are well below unity due to other mobile ions. 

PEO is 80% crystalline and therefore possesses a low room temperature ionic conductivity on the 

order of 10–5 S/cm. As a result, researchers pursue strategies to reduce the formation of 

crystalline domains, such as adding chemical plasticizers or inorganic nano-particles.14 

CSE contain both inorganic ceramic and organic polymer components, which opens the 

possibility of synthesizing an electrolyte that exhibits the distinct advantages offered by each of 

these components, while compensating for inherent disadvantages. CSE are often viewed as a 

polymer matrix to which inorganic filler particles or fibers are added. Fillers are classified as 

either passive or active. Passive fillers, such as SiO2, Al2O3, and TiO2, are not directly involved 

in the lithium transport process but still enhance the ionic conductivity by disrupting polymer 

crystallization and improving Li+ dissociation via Lewis acid-base interactions. Active fillers, 

such as LAGP, Li3N, and LiAl2O3, contain lithium and can therefore provide conduction 

pathways of their own.10,11 On the other hand, crossing the interface between the matrix and the 

filler particles in order to take advantage of these incurs extra resistance, which may all but 

eliminate the advantage of conductive fillers. Figure 1-3 depicts possible complex structures in 

the CSE containing poly(vinylidene fluoride) polymer and the active crystalline filler 

Li6.75La3Zr1.75Ta0.25O12 (PVDF/LLZTO). 
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Figure 1-3 Possible complex structures in the PVDF/LLZTO CSE, where blue clusters denote LLZTO.15 

In a recent study we demonstrated that a highly conductive interfacial layer develops around 

active filler particles, which extends several tens of nm into the polymer and changes its 

constitution. When filler particles are nanosized and spatially well dispersed, percolation across 

this interphase can be achieved with particle loading of only a few vol.%. The exact nature of 

this interphase is difficult to determine, but it appears to involve a significant degree of distortion 

of the polymer backbone while the chemical composition is essentially unchanged. A major draw 

of CSE is that their properties can be adjusted and fine-tuned through varying their chemical 

composition, without concern for which compositions are thermodynamically or kinetically 

viable, as with crystalline ISE. They lack grain boundaries that are resistive and sensitive to 
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corrosion, have promising ionic conductivities, and have good flexibility and electrode 

interfacial contact when compared to crystalline counterparts.4 

Though some ISE compositions have been reported to have room temperature conductivities of 

10-3 S/cm, solid state electrolytes with commercially overall attractive properties are still a work 

in progress, and improvements have been slow since explorations are largely based on trial and 

error. Practical solid-state electrolytes should have both high ionic conductivity as well as 

structural rigidity in order to achieve necessary energy and power densities, but little is known 

quantitatively about the relationship between structure and ionic mobility to date. The fact that 

singularly well performing materials have been discovered in each of the above SSE categories 

suggests that the ionic conductivity of a material cannot be simply gauged from the constituting 

elements and the type of bonding between them, but that structural subtleties are equally 

responsible for the creation of low-activation energy passageways. To identify these outstanding 

electrolytes more reliably requires a better understanding of what constitutes a low-activation 

energy pathway in a molecular structure. 

1.1.2 Non-Arrhenius Temperature Relationship for Transport Processes in Glass Formers 

A notable phenomenon of interest identified in the study of solid-state electrolytes is the peculiar 

temperature-dependence of the structure and resulting atomic transport dynamics. This can be 

seen in the non-Arrhenius form of the relationship between ionic conductivity and temperature 

when SSE are studied at elevated temperatures. The typical temperature-dependence of ionic 

conductivity in solids is of Arrhenius form described well by the following expression, 

ln(𝜎𝑇) = ln(𝐴) −
𝐸𝑎

𝑘𝐵𝑇
,         (1.1) 

where σ is the ionic conductivity, T is the temperature, A is often referred to as the frequency 

factor and is related to the entropy of activation for the elementary process, kB is the Boltzmann 
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constant that acts as a proportionality factor between thermal energy and thermodynamic 

temperature, and Ea is the activation energy required for the process to occur. The relationship 

between ln(𝜎𝑇) and 1 𝑇⁄  is linear. However, the conductivity of glass forming SSE only follow 

the Arrhenius law at low temperatures while deviating from this linear relationship as the 

temperature increases, and at high temperatures the conductivity appears to saturate, resulting in 

non-Arrhenius ionic conductivity as a whole.16 This type of non-Arrhenius ionic conductivity has 

been observed in numerous glass forming SSE systems.17–21 Some example SSE compositions 

exhibiting this type of behavior are shown in Figure 1-4. 

 

Figure 1-4 The temperature dependencies of the ionic conductivity in a selection of solid electrolytes. The symbols 

represent experimental data and the solid curves are fits.16 

This behavior for ionic conductivity and, as a result of the Nernst–Einstein relation, ionic 

diffusivity is identical to the temperature-dependence observed for another important transport 
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property of these glass forming systems – viscosity. In the following work, we investigate 

viscosity in addition to solid-state diffusion due to its similarities with diffusion and the 

availability of extensive experimental data sets. 

After considering the atomic dynamics from which these macroscopic properties arise, it should 

not be surprising that they possess similar dependencies with respect to temperature. Diffusivity 

and viscosity are quantitatively related via the Stoke-Einstein equation, 

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑟
,           (1.2) 

where η is the viscosity coefficient and r is the radius of the particle. This equation applies best 

to spherical particles in flow characterized by a low Reynolds number, i.e., the viscous forces are 

comparable or greater than inertial forces. Qualitatively, both particle diffusion and viscous 

dissipation are characterized by particle hopping mechanisms and thus are emergent properties of 

many of the same fundamental dynamical processes. This relationship breaks down for 

supercooled liquids as the dynamics governing the two processes diverge.22–25 As will be shown 

in the following section, the viscosity-temperature profiles for glass forming liquids look very 

much like mirror images of the ionic diffusivity profiles. Even though the viscosity coefficient is 

a linear response rate coefficient for the transport of momentum, its magnitude depends inversely 

on the atomic mobility. Consider Newton’s law of viscous flow where the shear stress, 

representing the flux of momentum, is proportional to the velocity gradient in the shear flow. 

Considering that achievable shear flow rates are much smaller than the instantaneous velocities 

of atoms moving about their potential wells, the relative velocities between two adjacent 

molecular layers is but a minute bias in this motion. Inherently high atomic mobility results in a 

large bias velocity for a given applied shear stress, and consequently, a low shear viscosity. This 

is why the curvature temperature dependence of viscosity is inverted. 
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1.1.3 Viscosity and Viscous Relaxation of Glass-Forming Liquids 

Accurate knowledge of the viscosity of glass forming liquids and its variation with temperature, 

pressure, and chemical environment is a fundamental aspect of numerous fields of study and 

technologies, which include macromolecular and polymeric sciences26,27, ionic and complex 

liquids28,29, geophysics30,31, food and drug sciences32–34, ceramics35,36, and metallurgy37,38. The 

ability to navigate the regime of state variables in which the molecular system must be 

conditioned to prevent it from accessing its thermodynamically stable crystalline state is key to 

achieving the unique properties associated with materials that are amorphous and monolithic at 

all length scales. Reliable prediction of the viscosity is essential for regulating working 

temperatures, establishing proper annealing conditions, suppressing crystal growth, and carrying 

out physical processing, molding, and shaping of glass and glass-ceramics products.39–41 

Furthermore, the rapid increase in viscosity with decreasing temperature is perceived to reflect 

an essential characteristic of the glass transition phenomenon and has therefore spurred a distinct 

field of scientific study.27,32,37,42–45 In particular, there are aspirations that a better understanding 

of what causes such an accentuated change in the structural relaxation rates of glass forming 

systems may provide insights into the nature of the amorphous state of matter, a mystery that has 

thus far remained impervious to conventional structural probes. To this end, it is necessary to 

connect viscosity with the underlying molecular scale processes. In the early 1930s, Eyring 

derived his model for the viscosity coefficient, which provides a formalism that can be used to 

quantify the elementary mechanisms of this complex process on the basis of transition state 

theory.46 Calculation of viscosity requires the evaluation of the relaxation rate where the system 

must overcome and activation barrier from one equilibrium state to another. The relaxation rate 

is shown to principally depend on the factors described in the following equation, 
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𝛤 ∝ (
𝑄𝑎

𝑄𝑔
) 𝑒

−𝐸𝑎
𝑘𝐵∙𝑇,          (1.3) 

where Qg is the ground-state partition function, Qa is the activated-state partition function, Ea is 

the activation energy required for the process to occur, and T is the temperature.46 The difference 

between the natural logarithms of the activated and ground state partition functions is equal to Sa, 

or the entropy of activation. This is the difference in entropy, or difference in the number of 

equivalent energy microstates, between the activated and grounds states. The amount of energy 

dissipated in viscous flow is inversely proportional to the relaxation rate, so Eyring’s equation 

for viscosity is written as, 

𝜂 = ℎ
𝜆𝑧

𝜆𝑥𝜆𝑦𝜆2
𝑒
−𝑆𝑎
𝑘𝐵 𝑒

𝐸𝑎
𝑘𝐵∙𝑇 = ℎ𝜌𝑁𝑒

−𝑆𝑎
𝑘𝐵 𝑒

𝐸𝑎
𝑘𝐵∙𝑇,       (1.4) 

where h is Planck’s constant and ρN = λz/( λx λy λ
2). The various l-parameters represent the 

characteristic length scales on which the elementary relaxation mechanism takes place. 

Specifically, Eyring conceived of two layers of a liquid being sheared passed one another in 

opposite directions as a result of an applied shear stress ±τzx. Rather than sliding past one another 

steadily and simultaneously as a collective, the molecular entities jump individually from one 

equilibrium position to the next in a stochastic fashion. In due course all molecules jump 

eventually with an average bias in the direction of the applied shear stress. In this description, λz 

is the distance between the liquid layers, λx and λy make up the per atom contact area of the 

layers, and λ is the atomic jump distance of the mechanism. The length parameters λ, λx, λy, and 

λz are all on the order of the interatomic spacing and together can be combined to represent the 

reciprocal volume, ρN, involved in the jump mechanism. Equations 1.3 and 1.4 assume that the 

energy and entropy of activation are constant. That is that these values, and therefore the 

potential energy surface of the structure they arise from, do not change as a function of 
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temperature. This formalism adequately describes the temperature dependence of the viscosity 

coefficient for simple liquids, resulting in a linear relationship between the logarithm of the 

viscosity and inverse temperature, 1/T. However, this equation is unable to capture the complex 

viscous characteristics of most glass-forming liquids. 

For most glass forming liquids, the temperature dependence of viscosity deviates from the 

semilogarithmic linearity of Eyring’s equation in ways reflected by a steeper slope at low 

temperatures and a shallower slope at high temperatures. The underlying reason for the deviation 

from Arrhenius behavior in the temperature dependence of the viscosity has been a factor of 

intense scrutiny.43,45,47,48 Austen Angell plotted viscosity data for various types of glass forming 

liquids vs. reciprocal temperature normalized with respect to the glass transition temperature, Tg, 

thereby devising the so-called Angell plot shown in Figure 1-5, which casts the viscosity 

profiles onto a set of master curves. Based on this observation, he conceived the concept of 

strong vs. fragile behavior to categorize the temperature dependence of the viscosity for glass 

forming systems.49–53 This paradigm has enabled researchers to better gauge, label, and interpret 

their findings. The more the log10(η) vs. Tg/T data deviates from linearity, the more “fragile” the 

liquid is said to be, while nearly linear, or Arrhenius, behavior is designated as “strong”.54 To 

quantify this phenomenon, various fragility indices have been suggested to date. The most 

commonly utilized of these is the kinetic fragility, m, which is based on the slope of the log 

viscosity versus inverse temperature relationship at the glass transition temperature.55 

𝑚 = lim
𝑇→𝑇𝑔

𝜕 log10 𝜂

𝜕(
𝑇𝑔

𝑇
⁄ )

          (1.5) 
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Figure 1-5 Angell Plot depicting the pattern of liquid viscosity-temperature relations for Tg-based normalization 

showing contrast between network and molecular or simple ionic liquid behavior.49 

Despite the progress made towards the development of theoretical frameworks, categorization, 

and quantitative tools, the structural and physicochemical origin of this non-Arrhenius behavior 

remains an open question. Early investigations revealed correlations between fragility and the 

size of the heat capacity jump at the glass transition. While this remains a strong connection 

between kinetic and thermodynamic fragility,20 the continued accruing of data suggests that this 

may not be comprehensive indicator across different types of materials.21 Conversely, the rate of 

change of the excess configurational and vibrational entropy, as the liquid approaches its glass 

transition, appears to yield a more universal measure and stronger connection between kinetics 
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and thermodynamics.21–25 Finally, the role of configurational entropy in characterizing fragility 

has also been identified among the quantities used in the topological constraint theory describing 

network glasses, e.g., the mean field connectivity within a coarse-grained representation of the 

intermediate-range order in these structures.26, 27 The most widely used models to date are very 

successful at interpolating the viscosity-temperature relationship and have some success in 

extrapolation but yield little insight into the microscopic structural and mechanistic processes 

affecting viscosity in these glass-forming liquids when relaxation takes on non-Arrhenius 

character. 

1.2 Computational Methods and Frameworks 

1.2.1 Classical Molecular Dynamics Simulations 

Classical molecular dynamics (MD) is a computational method that enables the simulation of 

materials at atomic-scale resolution. This refers not only to the spatial resolution but the 

femtosecond temporal resolution as well. This method is complementary to experimental 

characterization methods in pursuit of investigating materials properties and characteristics. 

Molecular dynamics simulations are often utilized for one of two purposes: (1) property-driven 

materials prediction and design or (2) materials structural and/or dynamics investigation. The 

first use case utilizes the often more rapid and lower cost of computer simulation when compared 

to experimental materials synthesis and characterization to search for material compositions 

and/or structural motifs that possess properties of interest for an engineering design solution. In 

this case, MD simulations precede experimental validation in the research and development 

process. The second use case involves computer simulations as a characterization tool, often in 

addition to experimental characterization methods, for known materials that have already been 

synthesized. In this case, the MD simulations act as a “computational microscope” enabling the 
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user to peer into nanostructure of the material and probe the atomic-scale features and 

mechanisms from which the macroscopic properties of interest arise. This gives the ability to 

investigate materials on length and timescales that are beyond the resolution of experimental 

techniques. 

The methods used in the following work are categorized as classical MD simulations, as opposed 

to ab initio MD (AIMD). Classical MD generally utilizes empirical interatomic potential energy 

functions to govern atomic interactions while AIMD methods use density functional theory or 

other quantum chemistry methods to calculate atomic interactions. The calculations for AIMD 

explicitly calculate electron interactions and, while often more accurate, are much more 

computationally expensive than the calculations for classical MD. This dramatically limits both 

the spatial extent and the time of the simulation that can be reasonably attained. AIMD 

simulations are usually limited to hundreds or thousands of atoms and picosecond timescales 

while classical MD can typically simulate thousands to millions of atoms and nanosecond to 

microsecond timescales depending on the complexity of the empirical potential used. Figure 1-6 

shows a comparison between the length and timescales of typical computational methods used in 

materials science and engineering. 
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Figure 1-6 Comparison of length and time scales for computational methods utilized in materials science.56 

Due to the many-body nature of essentially all systems of interest for materials engineering, 

describing the resultant dynamics of the component particles for their mutual interactions cannot 

be done analytically. However, leveraging the computational power of computer processors, 

solutions can be approximately to a high degree of accuracy using numerical methods to 

integrate Newton’s equations of motion with respect to time based on empirical interatomic 

potential functions that govern the interactions of atoms within the system. A general, simplified 

scheme for the MD algorithm describing the steps for calculating a new velocity and position for 

an atom i based on potential energy for a given discrete time step is shown in Figure 1-7. 
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Figure 1-7 Basic MD algorithm for updating atomic velocities and positions from time t to time t + dt.57 

In the scheme, Epot is the interatomic-potential energy function that describes the energy of atom 

i based on its position Xi. The forces, Fi, on atom i are calculated from the spatial derivative of 

the potential energy Epot. Knowing the mass of atom i and having calculated the forces on the 

atom, Newton’s second law can be used to calculate the acceleration, ai. Then a numerical 

integration method is used to integrate the velocity-time equation of motion with respect to time 

to yield an updated atomic position from that at time t to that at time t + dt. This process is used 

for all atoms in the system and repeated for as many discrete time steps, dt, as desired. 

The interatomic potential is the vital component of MD simulations, which encodes the 

interactions between particles within the simulated material, enabling the emulation of specific 
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atomic species and their chemical bonding behavior to reproduce structural features and 

mechanical and transport properties. 

 

Figure 1-8 Example of Lennard-Jones interatomic pair-potential.58 The solid line represents the energy of the 

bonding interaction as a function of distance. The variable σ dictates the zero-energy location while ε sets the 

magnitude of the energy at equilibrium. The dashed line represents the force on the atom as a function of distance 

due to the interaction. A positive force represents atomic repulsion while a negative force is indicative of attraction. 

The interatomic potential function is generally composed of a pairwise bonding term describing 

energy, and therefore forces, as a function of interparticle distance but may also include a three-

body term for angular constraints, four-body term for torsional constraints, and/or other many-

body terms. Figure 1-8 shows how the potential energy and force varies with distance for a 

Lennard-Jones pair potential, one of the oldest and simplest interatomic potentials used in 

molecular simulation to represent van der Waals interactions. Both the energy and force are 

weak for long distances but increase in magnitude as the distance decreases. The minimum in the 
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energy curve represents the most stable location as this is also the location where forces are 

neither attractive nor repulsive. At distances closer than the minimum energy location, the forces 

become positive, indicating a repulsive force. This repulsive force represents nuclear core 

repulsion and becomes very strong with small decreases in interatomic distance as atomic nuclei 

impinge on one another. 

Interatomic potentials may also contain terms pertaining to non-bonded interactions such as 

electrostatic or van der Waals interactions. While the bonded interactions only occur locally and 

therefore only involve a few atoms at a time, non-bonded interactions are non-local. This means 

that while the energetic contribution to the energy may diminish with increasing interatomic 

distances, it never decreases to zero. Also, while the energy decreases with increasing distance, 

the number of particles with which to interact increases as the surface area of a spherical shell at 

that distance, 4πr2, where r is the distance from the particle. In fact, unless the potential energy 

contribution decays faster than r-3 the energy diverges in the infinite limit, removing simple 

truncation and tail-correction as an option.59 This problem is avoided by utilizing the Ewald 

summation, or equivalent subsequently developed methods. The Ewald sum applies a fictitious 

charge screening, typically gaussian in form, to particles with is set cutoff distance. This 

artificially removes charged interactions beyond the cutoff allowing for a rapidly converging 

sum of charged interactions. Then the previously screened charge contributions beyond the 

cutoff distance are summed as a rapidly converging Fourier series in reciprocal space and the 

spurious self-interaction energy from this method is later corrected.60 

Even with the increasing capability in recent years to simulate more and more atoms 

simultaneously, the largest simulations of ~ 106 atoms are still dwarfed by the size of real 

engineering materials of ~ 1023 atoms. This means that the ratio of surface atoms to total atoms 



 20 

in simulations would be approximately 5 orders of magnitude greater than for common human-

scale materials. Atoms at the surface of a material are of higher energy and less stable than those 

within the bulk due to dangling and distorted bonds. This can have a significant effect on the 

structure and dynamics of small systems. While there are some reasons to simulate surfaces, 

most MD simulations utilize periodic boundary conditions such that atoms at one face of the 

simulation box are bound to atoms at the opposing face of the simulation box. In this way, a 

system with no surfaces is created that better approximates the bulk properties of real materials, 

so long as the simulation size is large enough, typically a few thousand atoms, that the periodic 

boundary conditions do not result in atoms interacting with themselves through the periodic 

boundary. 

So now that we’ve briefly discussed how to run an MD simulation, how does one extract 

meaningful measurements and results from a simulated material? Microscopic quantities such as 

particle potential energies, forces, accelerations, velocities, and positions values that come 

directly from the simulation as a part of the time integration loop procedure do not correspond to 

any experimentally measured macroscopic properties. To enable comparison between MD 

simulations and experimental measurements, one must bridge the large disparity in both time and 

length scales. This can be accomplished using the formalism of statistical mechanics by which 

macroscopic thermodynamic, mechanical, and transport properties can be calculated using 

quantities pertaining to individual atoms that are ensemble and/or time averaged. Here, we 

forego any extensive discussion of statistical mechanical methods and formulae and instead 

briefly introduce a few select formulae that are important for later analyses in the present work, 

which focuses on transport properties, specifically diffusion for the sections involving MD 

simulation. Evaluation of diffusion coefficients is perhaps the most common approach to 
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characterizing atomic mobility in MD simulations. This can be accomplished based on 

calculating the mean squared displacement (MSD) or the velocity auto-correlation function 

(VACF) associated with atomic trajectories. 

1.2.2 Particle Mean Squared Displacement 

The ensemble-averaged MSD of particles collected over the course of a simulation yields the 

diffusivity based on the following relationship, 

𝐷 = lim
𝑡→∞

⟨|𝑟(𝑡)−𝑟(0)|2⟩

2𝑑∙𝑡
,          (1.6) 

where r(0) is the particle position at the time origin, r(t) is the particle position at a subsequent 

time t, and d is the dimensionality of the system. For adequately sampled atomic trajectories, the 

MSD typically exhibits a ballistic regime at short times and a diffusive regime at times when 

correlation between atomic jumps is effaced by randomization of trajectories. Accordingly, the 

diffusivity is obtained from the slope of the MSD vs. time in the diffusive regime, characterized 

by compelling linearity in the relationship between MSD and time. This method breaks down for 

temperatures near and below the glass transition temperature as the relationship is no longer 

linear and the movement of ions between adjacent sites becomes a rare event. Figure 1-9 shows 

the MSD for sodium in simulated sodium borosilicate as a function of time for various 

temperatures that exemplify this behavior. 
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Figure 1-9 MSD as a function of time for sodium ions in simulated sodium borosilicate representing different 

diffusive regimes. 

To calculate the MSD in MD simulations with periodic boundary conditions, particle position 

data for the “unwrapped” particle coordinates must be incrementally stored for the duration of 

the production run. Unwrapped particle coordinates refer to those for which the simulation box 

length is not subtracted when the particles pass through a periodic boundary and reenter the 

opposite side of the simulation box. 

1.2.3 Particle Velocity Auto-Correlation Function 

Provided knowledge of the velocity of each particle as a function of time, the MSD can be 

expressed by integrating these velocities over time. Further manipulation of the resulting 

expression yields the VACF formalism, which given adequate statistics, yields the same result as 

the analysis of MSD. Interestingly, though, MSD and VACF produce this information by 

examining different time regimes.61 Specifically, with the VACF analysis of a dynamical 

processes we quantify the decay in correlation of a particle’s velocity with itself over time, i.e., 

the loss of predictability in the particles’ motion. In other words, we tally the buildup towards 

randomness in particle trajectories during the ballistic regime until trajectories transition from 
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periodic to diffusive. Accordingly, adding up incremental losses from the harmonic oscillatory 

character of motion is sufficient to account for a species’ capacity for random drift. Hence, MSD 

and VACF are complementary in the way they assess atomic mobility, and discrepancies 

between the obtained with each construct may be indicative of systemic non-idealities. 

Numerically, computing the VACF involves taking the ensemble average across multiple time 

origins of the inner products of each particle’s velocity vector at the time origin with its velocity 

vector at each subsequent timestep. The decorrelation in this value results from the transfer of 

momentum between the reference particle and its surrounding particles. The time integration of 

the VACF yields the diffusion coefficients as 

𝐷 =
1

𝑑
∫ ⟨𝑣⃗(0) ∙ 𝑣⃗(𝑡)⟩𝑑𝑡
∞

0
,         (1.7) 

where v(0) is the velocity vector of a particle at the time origin, v(t) is the velocity vector of the 

same particle at a subsequent time t, and d is, again, the dimensionality of the system. A simple 

example VACF and graphical depiction of the integration to calculate the diffusivity is shown in 

Figure 1-10. Equation 1.7 is one of the Green-Kubo relations that connect the integration of 

time correlation functions to transport coefficients. Since the VACF can neither be collected nor 

integrated to infinite time, the method relies on the oscillatory character of the VACF to 

substantially subside within accessible times, typically a few picoseconds. This also allows for 

more averaging since, with the same amount of velocity data, a greater number of time origins 

can be used for shorter VACFs. 
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Figure 1-10 Scheme depicting the integration of a velocity auto-correlation function. Blue sections are positive 

contributions to the integral and red are negative. 

1.2.4 The Vibrational Density of States 

In the zero-temperature limit, the Fourier Transform of the VACF yields the vibrational density 

of states (VDOS) for the system equivalent to that obtained using normal mode analysis 

𝜑(𝜔) = ∫ ⟨𝑣⃗(0) ∙ 𝑣⃗(𝑡)⟩𝑒−𝑖𝜔𝑡𝑑𝑡
∞

0
,        (1.8) 

where i is the imaginary unit and ω is the angular frequency. However, at finite temperature, 

where diffusion can occur, this relationship is not strictly true. The Fourier Transform of the 

VACF in this case still results in a vibrational spectrum, but it is only an approximation of the 

vibrational density of states as translational motion of particles is present and the anharmonicity 

of the interatomic potentials governing particle interactions is not negligible, i.e., the harmonic 

approximation is not valid.62 The zero-frequency value of the spectrum divided by the 
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dimensionality also yields the diffusion coefficient as it results in an expression identical to 

Equation 1.7. This finite intercept at zero frequency is a consequence of damping or decay in 

velocity correlation function. If not for this damping, the frequency spectrum would be 

composed solely of delta functions. An example vibrational spectrum calculated from the Fourier 

transform of the VACF in Figure 1-10 is shown in Figure 1-11. 

 

Figure 1-11 The vibrational spectrum of the VACF in Figure 5 obtained via Fourier transform. 

1.2.5 Prony Analysis 

An interesting prospective method for extracting dynamical information relevant to particle 

diffusion is through partitioning and analysis of the vibrational spectrum into component modes 

of motion. This can be done by leveraging Prony’s Method, which is a signal processing method 

developed by Gaspard de Prony in France in 1795 around the same time that Joseph Fourier 
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presented the Fourier Series.63 This method decomposes functions into a series of damped 

complex exponentials shown as follows, 

∑
1

2
𝐴𝑘𝑒

(−Γ𝑘±𝑖𝜔0,𝑘)𝑡±𝑖𝜑𝑘𝑁
𝑘=1 .          (1.9) 

This allows for the estimation of frequency 𝜔0,𝑘, amplitude 𝐴𝑘, damping coefficient Γ𝑘, and 

phase shift 𝜑𝑘 for each component k in the series where i is the imaginary unit. Using this 

method, one can extract component modes from the VACF and VDOS. When applying the 

Prony analysis to the VACF, however, the damped complex exponential terms can be simplified 

by removing the phase shift and replacing the damped complex exponential with a damped 

cosine function using Euler’s formula. This is due to the physical nature and meaning of the 

VACF. For all component modes of motion that the VACF may be decomposed into, the 

temporal self-correlation that occurs at the time origin for a particle should always be the 

maximum value of the function with respect time as the velocity is perfectly correlated. This 

means that a shift in phase would be unphysical, and the oscillatory portion of the function can 

always be represented by a simple cosine function like so, 

∑ 𝐴𝑘𝑒
−Γ𝑘 𝑡 cos⁡(𝜔0,𝑘𝑡)

𝑁
𝑘=1 .         (1.10) 

The Fourier transform of Equation 1.10 yields the component spectral function, often referred to 

as a Lorentzian, which can be applied to the VDOS. The form of this function is as follows: 

∑
𝐴𝑘

𝜋

1

2
Γ𝑘

(𝜔−𝜔0,𝑘)
2
+(

1

2
Γ𝑘)

2
𝑁
𝑘=1 .         (1.11) 

An example application of this method is shown in Figure 1-12 with MD data from a simple 

simulation of a Lennard-Jones system. 
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Figure 1-12 Application of Prony analysis to VACF and VDOS of a simple Lennard-Jones system. The VDOS was 

fit with a series of 8 Lorentzian functions (b) and these functions were Fourier transformed as summed to rebuild the 

original VACF (a). 
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The Fourier transform of the VACF is calculated to produce a vibrational spectrum. Upon 

deconstruction, the vibrational spectrum is partitioned into 8 component modes seen as a 

spectrum of Lorentzian functions. These Lorentzian functions are then inverse Fourier 

transformed to produce 8 damped harmonic oscillators that can be summed to reproduce the 

original velocity auto-correlation function demonstrating the equivalence of these functional 

forms and their fits in the time and frequency domains. The extraction of these component 

vibrational modes may be able to provide insight into the relative contribution of each mode of 

motion to the diffusivity of the particles and can act as a compass in directing our inspection 

towards the important dynamics affecting diffusion in glasses, such as the number of relevant 

modes, their relationship to structural vibrations, and the influence of topology and bonding 

character. Unfortunately, to date applications of this method to VACF and VDOS data for the 

purpose of elucidating dynamics of ionic transport have not been fruitful. Lorentzian fits of the 

VDOS do not yield unique results as fits can always be improved by increasing the number of 

terms in the series. While the use of 8 to 15 terms usually provides good fits throughout the bulk 

of the frequency range encompassed by a given vibrational spectrum, the worst-fit region is 

always the zero-frequency intercept value. The intercept value from all attempted fits thus far 

overestimates the magnitude when compared to the zero-frequency value from the Fourier 

transform of the VACF. Increasing the number of Lorentzian terms in the series improves the 

convergence at zero-frequency but never satisfactorily before the number of terms and 

corresponding fitting parameters cause the fitting methods to become unstable. While there may 

still be some value in Prony analyses of VACFs and VDOSs for the investigation of materials 

properties, without improvements in the fits at zero-frequency implementation of this method for 

analyzing ion diffusion is unreliable since the zero-frequency value of the VDOS is the location 
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directly corresponding to the particle diffusion coefficient. For this reason, Prony analyses are 

not included in the following chapters. 
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Chapter 2 Diffusive Behavior in a Lattice-Solute Model Solid-State Electrolyte and the 

Importance of Anharmonicity 

Original Publications Information 

The work in this chapter was published in Computational Materials Science as: 

Beg, C. & Kieffer, J. Anharmonicity and the emergence of diffusive behavior in a lattice-solute 

model solid-state electrolyte. Comput. Mater. Sci. 228, 112359 (2023). 

Abstract 

We have investigated atomic transport properties in a simple two-component solid-state material 

using molecular dynamics simulations. This model system is composed of a lattice element and a 

solute. The former is modeled after carbon, which forms a covalent diamond lattice that provides 

the supporting structure for the solute, which interacts with carbon and with itself via Lennard-

Jones potentials. The size of the solute species is systematically varied while maintaining a 

constant system volume. The change in solute particle size is quantified using an atomic packing 

fraction, which is used as a mediator variable to find relationships between the internal pressure 

of the system, its vibrational properties, and the change in diffusivity of the mobile species. The 

data imply a causal relationship between structural instabilities, reflected in the internal pressure 

and compressibility curves, the vibrational spectra, and the onset of a diffusive regime manifest 

in an increase in atomic mobility by orders of magnitude. 
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2.1 Introduction 

The fact that singularly well performing materials have been discovered in category of solid-state 

electrolyte suggests that the ionic conductivity of a material cannot be simply gauged from the 

constituting elements and the type of bonding between them, but that structural subtleties are 

equally responsible for the creation of low-activation energy passageways. To identify these 

outstanding electrolytes more reliably requires a better understanding of what constitutes a low-

activation energy pathway in a molecular structure. To this end, it is helpful to begin by 

exploring a simpler model system that reduces the number of confounding variables and 

interactions that make analysis and understanding of more complex materials so elusive.  Hence, 

the purpose of the current work is to explore how the interactions between the mobile species 

and the supporting structure affect the mobility of the former. This is accomplished by studying 

atomic diffusion in a simple lattice-solute model system using molecular dynamics (MD) 

simulations. We begin by using standard methods to calculate and characterize diffusion rates 

while varying the solute site occupancy fraction and size of the mobile species, before moving on 

to investigating the relationship between internal pressure and diffusion. Then we explore the 

vibrational spectrum for this system and how key features of the spectra relate to local particle 

dynamics before tying everything together through the revelation of a necessary structural 

condition for the emergence of high solute mobility is a solid material. 

2.2 Methodology 

2.2.1 Lattice-Solute System 

The model system we study is designed to reduce structural complexity to a minimum and 

therefore consists of just two components: one species that forms a continuous covalent network, 
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providing a supporting structure for the second mobile species with which it interacts non-

covalently. The network is composed of an 8 x 8 x 8 supercell of 4096 carbon atoms in a 

diamond lattice governed by a Tersoff bond order potential.1 The solute species is a set of atoms 

with the mass of lithium, 6.941 amu, that interact with one another and with the network as 

described by a Lennard-Jones potential, 

𝑉𝑖𝑗 = 4𝜀 ((
𝜎

𝑟𝑖𝑗
)
12

− (
𝜎

𝑟𝑖𝑗
)
6

)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑟𝑖𝑗 < 𝑟𝑐 (2.1) 

where σ is the zero-crossing distance for the potential relating to the size of the particle, ε is the 

dispersion energy corresponding to the depth of the potential well, rij is the interparticle distance 

between interacting particles i and j, and rc is the cutoff distance beyond which particles i and j 

do not interact. While the dispersion energy, ε, is 15 kcal/mol (62.76 kJ/mol) for all simulations, 

both the number of solute atoms and the other interaction parameters are varied throughout the 

study. The solute atoms interact with one another in a purely repulsive manner using a Lennard-

Jones potential with the cutoff distance set equal to the location of the potential minimum, which 

is essentially a soft sphere potential.2 This ensures that solute atoms do not exhibit the tendency 

to form clusters, while prohibiting spatial overlap at close distances. This system can be viewed 

as an interspersion of two lattices, the principal lattice being formed by the rigid network of 

covalent species and the sublattice being occupied by the conductive modifier, without the added 

complexity of a charge-compensating third species. All MD simulations are performed using the 

Large-scale Atomic/Molecular Massively Parallel Simulator code (LAMMPS).3 Simulations are 

initialized with carbon atoms positioned at lattice positions characteristic of diamond and solute 

atoms generated at random positions within the supercell. A conjugate gradient energy 

minimization is performed to move solute atoms to a more stable low energy configuration and 

ensure stability upon starting the simulation.4 Boltzmann distributed velocities are assigned to all 
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atoms corresponding to a temperature of 300 K. A time step of 1 femtosecond is used for time 

integration of the equations of motion. The system is relaxed for 700 picoseconds in the NPT 

ensemble, followed by another 300 picoseconds in the canonical ensemble, before a production 

run for 300 picoseconds also in the canonical ensemble. Temperature and pressure, where 

necessary, are regulated via a Nose-Hoover thermostat and barostat and with periodic boundary 

conditions are applied.5–8 

To familiarize with the system, we first describe its key physical characteristics. While 

algorithmically all MD simulations to collect statistical measures for analysis are carried out in 

the canonical ensemble (constant number of particles, volume, and temperature, or NVT-

ensemble), the principal parameter we change for each simulation is the size of the solute 

species. In isolation, the size of an atom or ion is difficult to ascertain, and hence atomic sizes are 

commonly derived from the space they occupy in crystalline compounds, which does not yield a 

universally applicable measure, but suffices in the present context, as we are only considering 

two elements in this study. For this purpose, we define the ideal space required for an atom as the 

one where it is neither attracted to nor repelled by its neighbors, that is, the lowest possible 

ground state where all interatomic forces are zero (not just balanced). Practically, this entails 

adjusting the volume of the system until the pressure vanishes. This is the volume we are using 

for all simulations described in the following. Furthermore, in this configuration, the radius of 

the carbon atom is 0.77 Å (half of the carbon-carbon bond distance).  When all tetrahedral 

interstices are occupied by a solute atom, this turns out to also be the radius of the solute atom 

under the requisite zero-pressure condition since it occupies tetrahedral interstices in a diamond 

lattice. 
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As described by the Lennard-Jones potential, the solute-carbon interatomic spacing is 

predominantly determined by the  parameter. Evidently,  does not directly translate into the 

atomic radius, since in a condensed phase multiple atoms interact simultaneously. Therefore, the 

lowest energy fully occupied configuration and at zero pressure,  = 1.4436 Å, corresponds to a 

solute particle radius of 0.77 Å, based on the size of the interstice it fills. We consider this to be 

the reference size of the solute species.  For our parametric study we vary the size of the solute 

species from 0.26 Å to 0.80 Å, simply by scaling the  parameter, thus creating structures whose 

internal stresses change between tensile to compressive. Note that, throughout these changes, the 

size of carbon atoms, the volume of the system, and therefore its density, remain constant. By 

scaling the size of the solute particle, while that of the covalently bonded species remains 

constant, we create conditions that predominantly affect the dynamics of the solute atom. This is 

because the covalent bond is much stronger than the solute-carbon interactions, so that the 

carbon-carbon distances are essentially unchanged as the solute particle size is varied. 

Consequently, when the solute atom is large its location becomes strongly constrained, whereas 

when it is small, the solute atom has nominally more space to move within and between sites. 

The fact that, depending on its size, the environment of the solute atom is more or less spacious, 

is quantified by using the concept of solute atom packing fraction S, defined as 

𝜙𝑆 =
4𝜋

3

(𝑁𝑆∙𝑟𝑆
3)

𝑉
 (2.2) 

where we assume a spherical shape for the atoms, NS is the number of solute atom sites per unit 

cell, respectively, rS is the solute atom’s radius, and V is the volume of the crystalline unit cell. 

Note that this packing fraction is a nominal quantity designed to account for the local space 

accessible by the solute; it does not consider actual site occupation probabilities. Because of the 
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rigid carbon-carbon bonds, solute sites retain their shape and size, regardless of whether they are 

occupied or not. 

2.2.2 Internal Energy and Structural Disorder 

To ascertain the uniqueness of the above definition of the solute reference size, we conduct a 

more in-depth analysis. When determining the reference value of rS, one choice is to initialize the 

conjugate gradient energy minimizations with solute atoms at their ideal lattice positions, where 

each solute is surrounded by a first coordination shell of 4 carbon atoms forming a tetrahedron 

and a second coordination shell of 6 carbon atoms forming an encompassing octahedron. This 

solute sublattice is identical, though spatially offset, from the carbon diamond lattice. A perfect 

sublattice also requires that it be fully occupied, i.e., the number of solute atoms is equal to the 

number of network atoms. With this starting configuration, the energy minimization procedure, 

performed using the Hessian-free truncated Newton algorithm, yields no significant shift in 

solute positions, regardless of the solute size.9 This means that these sublattice positions are local 

energy minima. Alternatively, when initializing configurations with the same number of solute 

atoms at random positions, as revealed in Figure 2-1, the sublattice positions only constitute the 

minimum energy configuration for sufficiently large S. In fact, for the large solute sizes, starting 

the energy minimization from random positions, the procedure no longer reaches the lowest 

possible energy because solute atoms become jammed with the covalent lattice slightly distorted. 

Conversely, for low S, minimization from a random configuration produces a disordered solute 

structure that is characterized by a lower energy than that of the ordered sublattice. 
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Figure 2-1 Potential energy of the system as a function of atomic packing fraction (Equation 2.2). Energies are 

calculated both for configurations where the solute species are located at lattice sites (blue) and where they are 

repositioned upon energy minimization from random initial positions (red). 

The most stable configurations are achieved at S = 0.337 for the ordered sublattice and 0.307 for 

the random system. The atomic packing fraction for the ordered sublattice is approximately half 

that of a body-centered cubic (BCC) crystal lattice. This is because filling the sublattice of a 

diamond crystal results in particle positions equivalent to that of a BCC lattice. The crystal unit 

cell is not truly a BCC lattice, however, because the species of atoms that occupy each lattice 

position reverse in each adjacent unit cell. 

2.2.3 Internal Pressure and Equation of State 

Reducing the size of atoms based on the way they interact with others is equivalent to increasing 

the amount of void space in the structure, and consequently, lowering their number density as 

measured by their contributions to the virial expansion describing the system. These changes are 
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manifest in the calculated internal pressure, as shown in Figure 2-2 where the pressure is plotted 

vs. S for both energy-minimized systems. 

 

Figure 2-2 Internal pressure of the system as a function of atomic packing fraction (Equation 2.2). Pressures are 

calculated both for configurations where the solute species are located at lattice sites (blue) and where they are 

repositioned upon energy minimization from random initial positions (red). The black curves fitting each data set are 

calculated using the Anton-Schmidt equation of state (Equation 2.3). 

Both curves have a similar shape, though the system obtained from random initial positions 

possesses a shallower negative pressure region. At high S values the repulsion between atoms 

gives rise to large positive pressures, i.e., compressive stress. With decreasing S the pressure 

drops, eventually turning negative, indicating tensile stress. The zero-pressure locations where 

the systems are neither under tensile nor compressive stress coincide with the minima in the 

energy curves. As S continues to decrease, the pressure reaches a minimum corresponding to the 

largest tensile stress, or tensile limit. At this point, the solute ceases to contribute to the cohesive 

fabric across the structure, i.e., it no longer transmits forces across the interstice in which it 



 43 

resides in a balanced way. Instead, the solutes settle near one facet of the interstice, which allows 

them to lower their potential energy, releasing tensile interactions and causing the internal 

pressure to rise. In the limit of very low S, the pressure asymptotically approaches zero as the 

fragments reach mechanical equilibrium.  

The pressure vs. S curves are fit using the Anton-Schmidt equation of state. This equation is 

chosen for its demonstrated success in reproducing the pressure-volume relationship for 

crystalline solids even for large deviations from the reference volume.10,11 For our purposes, the 

volume ratio terms in the equation are replaced with the ratios of atomic packing fractions. The 

modified expression is 

𝑃(𝜙𝑆) = 𝐾 (
𝜙𝑆

𝜙𝑆
0)

(
1

6
+𝛾)

∙ ln (
𝜙𝑆

𝜙𝑆
0)        (2.3) 

where P is the internal pressure of the system, 𝜙𝑆
0 is the reference atomic packing fraction at 

𝑃(𝜙𝑆
0) = 0, K is the bulk modulus at the reference atomic packing fraction, and γ is the Grüneisen 

parameter. The Grüneisen parameter is a factor describing how the vibrational frequencies of 

atoms in a solid change with the volume of the material 

𝛾𝑖(𝑞) = −
𝜕 ln𝜔(𝑞𝑖)𝑖

𝜕 ln𝑉
          (2.4) 

where q is the phonon wavevector, ω(q)i is the frequency of the ith mode of vibration, and V is 

the volume.12,13 For a harmonic system where the restoring force is linear with displacement, the 

Grüneisen parameter is exactly zero. The values of K, 𝜙𝑆
0, and γ for the random system are 629 

GPa, 0.3044, and 2.643 and for the ordered system they are 1299 GPa, 0.3361, and 2.829, 

respectively. The bulk modulus of diamond at standard conditions is 445 GPa. It is apparent that 

the bulk moduli for the systems presented here are considerably larger. This is because the 

structures we are exploring here represent stuffed diamond lattices, possessing double the atomic 
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number density of a true diamond. This is apparent in the values of 𝜙𝑆
0 which are of the same 

order as the atomic packing fraction of pure diamond (0.34). It is known that elastic moduli 

increase with density so one should expect this doubling of density to result in a substantial 

increase in stiffness and a higher bulk modulus.14  

By design, the solute-solute interactions are purely repulsive. By themselves, the solute species 

do not exhibit any cohesive quality. However, they can propagate compressive impulses, the 

extent to which being determined by the value of  in the truncated Lennard-Jones potential 

governing solute-solute soft-sphere interactions. Here we briefly discuss the choice of the value 

of , which is based on a thorough preliminary investigation and is henceforth kept constant at a 

value of 1 Å. In Figure 2-3, the pressure vs. S curves for systems minimized from random 

initial configurations with solute-solute  values of 0.9, 1.0, and 1.1 Å are shown. Note that 

changes in the solute-solute  value for the system minimized from the ordered sublattice have 

no effect on internal pressure for the range investigated and are therefore not displayed in the 

figure. This is because the solute atoms in the ordered system are placed in local minima 

separated by a greater distance than of the repulsive cutoff distance. Conversely, for the system 

minimized from a random initial configuration, it is apparent that changing the solute-solute  

value does influence the pressure for sufficiently high packing densities, those at or greater than 

approximately S = 0.194, beginning in the vicinity of the internal pressure minimum. In this 

range, increasing the solute-solute repulsive distance raises the overall stiffness of the structure, 

as impinging solute particles push one another toward the walls of their local network cavity. We 

show below that these effected densities are well outside the diffusive regime and the 

configurations of interest for this study are insensitive to the solute-solute σ value. 
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Figure 2-3 Internal pressure of the system for different atomic packing fractions as a function of the parameter, σ, in 

the Lennard-Jones potential. This value governs the extent of solute-solute repulsion. The solute species are at 

positions reached upon energy minimization from a random initial configuration. 

2.2.4 Methods of Analysis 

Our main interest is in the transport properties of the solute species. Perhaps the most common 

approach to characterizing atomic mobility in MD simulations is to evaluate the diffusion 

coefficients. This is accomplished based on calculating the mean squared displacement (MSD) or 

the velocity autocorrelation function (VACF) associated with atomic trajectories. 

Mean Squared Displacement — The ensemble-averaged MSD of particles collected over the 

course of a simulation yields the diffusivity based on the following relationship, 

𝐷 = lim
𝑡→∞

⟨|𝑟(𝑡)−𝑟(0)|2⟩

2𝑑∙𝑡
,          (2.5) 

where r(0) is the particle position at the time origin, r(t) is the particle position at a subsequent 

time t, and d is the dimensionality of the system.  For adequately sampled atomic trajectories, the 
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MSD typically exhibits a ballistic regime at short times and a diffusive regime at times when 

correlation between atomic jumps is effaced by randomization of trajectories. Accordingly, the 

diffusivity is obtained from the slope of the MSD vs. time in the diffusive regime, characterized 

by compelling linearity in the relationship between MSD and time. For our system of interest, 

particle position data for the “unwrapped” particle coordinates is stored every ten femtoseconds 

for the duration of the production run. Unwrapped particle coordinates refer to those for which 

the simulation box length is not subtracted when the particles pass through a periodic boundary 

and reenter the opposite side of the simulation box. 

Velocity Auto-Correlation Function — Provided knowledge of the velocity of each particle as a 

function of time, the MSD can be expressed by integrating these velocities over time. Further 

manipulation of the resulting expression yields the VACF formalism, which given adequate 

statistics, yields the same result as the analysis of MSD. Interestingly, though, MSD and VACF 

produce this information by examining different time regimes.15 Specifically, with the VACF 

analysis of a dynamical processes we quantify the decay in correlation of a particle’s velocity 

with itself over time, i.e., the loss of predictability in the particles’ motion. In other words, we 

tally the buildup towards randomness in particle trajectories during the ballistic regime until 

trajectories transition from periodic to diffusive. Accordingly, adding up incremental losses from 

the harmonic oscillatory character of motion is sufficient to account for a species’ capacity for 

random drift.  Hence, MSD and VACF are complementary in the way they assess atomic 

mobility, and discrepancies between the obtained with each construct may be indicative of 

systemic non-idealities. 

Numerically, computing the VACF involves taking the ensemble average across multiple time 

origins of the inner products of each particle’s velocity vector at the time origin with its velocity 
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vector at each subsequent timestep. The decorrelation in this value results from the transfer of 

momentum between the reference particle and its surrounding particles. The time integration of 

the VACF yields the diffusion coefficients as 

𝐷 =
1

𝑑
∫ ⟨𝑣⃗(0) ∙ 𝑣⃗(𝑡)⟩𝑑𝑡
∞

0
         (2.6) 

where v(0) is the velocity vector of a particle at the time origin, v(t) is the velocity vector of the 

same particle at a subsequent time t, and d is, again, the dimensionality of the system. Equation 

2.6 is one of the Green-Kubo relations that connect the integration of time correlation functions 

to transport coefficients. Since the VACF can neither be collected nor integrated to infinite time, 

the method relies on the oscillatory character of the VACF to substantially subside within 

accessible times, typically a few picoseconds. This also allows for more averaging since, with 

the same amount of velocity data, a greater number of time origins can be used for shorter 

VACFs. For the system at hand, 5,120,000 velocity vectors are stored where this value is the 

product of the number of solute particles in the system with the number of timesteps over which 

velocity data was collected. The accrued velocity data is post-processed in MATLAB version 

9.10.0.1669831 (R2021a) where the VACF is calculated. The number of time origins used is 

modulated to maximize the amount of averaging while maintaining a solute VACF length of 

approximately 2.5 picosecond by which time sufficient decorrelation has occurred. 

Vibrational Spectrum — In the zero-temperature limit, the Fourier Transform of the VACF 

yields the vibrational density of states for the system 

𝜑(𝜔) = ∫ ⟨𝑣⃗(0) ∙ 𝑣⃗(𝑡)⟩𝑒−𝑖𝜔𝑡𝑑𝑡
∞

0
        (2.7) 

where i is the imaginary unit and ω is the angular frequency. However, at finite temperature, 

such as in these simulations, this relationship is not strictly true. The Fourier Transform of the 

VACF in this case still results in a vibrational spectrum, but it is only an approximation of the 
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vibrational density of states as translational motion of particles is present and the anharmonicity 

of the interatomic potentials governing particle interactions is not negligible, i.e., the harmonic 

approximation is not valid.16 The zero-frequency value of the spectrum divided by the 

dimensionality also yields the diffusion coefficient as it results in an expression identical to 

Equation 2.6. Diffusion can only occur in a system with an anharmonic potential because this 

type of potential allows for the energy-induced escape of particles while true harmonic 

potentials, binding particles in potential wells whose energies tend toward infinity in all 

directions, do not exist in nature. The vibrational frequency of an oscillator is related to the 

second derivative of the governing potential energy function and its mass. When the oscillator is 

harmonic, this second derivative of the potential energy is referred to as the force constant and is 

a proportionality constant between the force felt by the oscillator and its position. However, for 

an anharmonic potential the relationship between the force on a particle and its position within 

the potential is nonlinear. In this case, simple vibrational frequency analyses based on Hooke’s 

law are not valid, and the oscillator frequency becomes amplitude dependent. For atomic 

systems, this means the vibrational frequency of a given atom will be a function of its kinetic 

energy or, viewed macroscopically, its temperature. For an atom existing in a truly static 

environment this would be the full story, but for real systems, the local environment around an 

atom is moving on average often just as much as the reference atom. Therefore, the picture 

becomes much more complicated due to the chaotic motion that occurs from the persistent 

collisions of the atom with its neighboring particles. Equivalently, this can be viewed as an atom 

moving through a tumultuous, dynamic potential energy surface resulting from the chaotic 

motion of the surrounding particles that constitute its local environment. 
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2.3 Results and Discussion 

2.3.1 Solute Diffusivity vs. Solute Site Occupancy Fraction 

To determine the extent to which solute site occupancy fraction affects diffusion, we vary the 

number of solute atoms between 64 and 2048, while the number of network atoms is held 

constant at 4096. The diffusivity is calculated using both the MSD and VACF formalisms, and 

the results show good agreement between the methods. From Figure 2-4 it is apparent that the 

diffusivity decreases severalfold, approximately linearly, with increasing solute concentration for 

the range studied.  

 

Figure 2-4 Solute diffusivity as a function of the lattice site occupancy fraction. Unit occupancy corresponds to an 

equal number of solute and network atoms. 

This decrease in diffusivity with increasing solute site occupancy likely results from the 

increased probability of solute-solute collisions leading to more failed diffusive jumps and 
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increased solute confinement.17 The linear relationship between diffusion coefficient and solute 

concentration becomes noisier for low solute concentrations in part due to poor statistics from 

the limited number of solute atoms. For the remainder of the dynamics simulations in the study, 

we chose to fix the number of solute atoms at 1024, or a ratio of solute to network atoms of 0.25, 

because this represents a favorable tradeoff between good statistics and lower compute time. 

2.3.2 Diffusivity 

We next explore how variation in the effective size of the solute particles impacts diffusion. As 

is evident in the semi-log plot of Figure 2-5, changes in value of S have a much greater effect 

on diffusion than variation in the concentration of solute atoms, with diffusivities spanning 

several orders of magnitude for the range studied. 

 

Figure 2-5 Solute diffusivity as a function of atomic packing fraction (Equation 2.2), calculated using both MSD 

(blue) and VACF (red) methods. 
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Specifically, descending in S values, we observe a sharp onset of diffusion around S ~ 0.149. 

Maximum diffusivity is reached in the vicinity of S = 0.104. The effect of S on atomic mobility 

is so pronounced because this parameter controls both the total number of particles a solute 

particle interacts with at a given time, as well as the overlap of those pair potentials and, 

therefore, the shape and depth of the effective potential well. This means that even with the 

pairwise bonding energy held constant, varying solute size has a dramatic effect on the potential 

energy landscape and therefore the energy felt by each solute particle. As is already known, the 

relationship between energy of activation and diffusion is of exponential form, giving a rationale 

for the trend seen in Figure 2-5. 

2.3.3 Velocity Auto-Correlation Functions and Vibrational Spectra 

The abrupt change in solute mobility near S = 0.149 is reflected in the features of the VACF and 

of the vibrational spectrum for the system containing 1048 mobile solute atoms and 4096 carbon 

network atoms as well. In Figure 2-6 (a) we compare a series of solute VACFs for S values 

bracketing the mobility transition towards higher and lower values. At the transition, the VACF 

oscillates slowly and decays smoothly, whereas the farther away from the transition, the more 

strongly VACFs exhibit higher frequency modes that persist for longer times, giving the VACFs 

a visually complex appearance. This effect seems corollary to features in the corresponding 

vibrational spectra in Figure 2-6 (b). The vibrational spectrum corresponding to the VACFs near 

the mobility transition possesses a single maximum with a peculiar-shaped tail stretching 

towards high frequencies (further discussed below). This apparent simplicity results from the 

presence of a large number of vibrational modes, closely stacked in frequency, and whose 

intensities decrease gradually the further the frequency is from that of the most prominent mode. 
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Figure 2-6 Velocity auto-correlation functions for the solute species at various atomic packing fractions (a), and 

corresponding vibrational spectra(b). 

Conversely, the spectra corresponding to VACFs to either side of the mobility transition have 

multiple distinct maxima with comparably narrower band widths, suggesting that in these 

systems a smaller number of vibrational modes dominate the dynamics of the solute atoms. 

Finally, systems that exhibit the highest solute mobility, around S = 0.104, exhibit vibrational 

modes at very low frequencies, providing for a large intercept with the ordinate, which 

corroborates the high solute diffusivities determined for these systems. 
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Anharmonicity — The shape of the vibrational spectrum for the system at S = 0.149 stands out. 

To tease out the underlying reason for this spectral shape we devised a drastically simplified and 

dynamically transparent system consisting of a single particle, able to move in one dimension but 

constrained by two fixed particles on either side. This allows us to isolate the spectral elements 

and essential dynamics from the behavior of our complex three-dimensional many-particle 

simulations. In the one-dimensional system the mobile particle interacts with each of the two 

fixed particles via identical Lennard-Jones potentials. In effect, the single central particle simply 

exists within a composite potential of its two stationary neighbors. The dynamics of this system 

are explored using a simple MD algorithm. All simulations are initiated with the particle at a 

distance of 1.54 Å from either of its neighbors as this mirrors the solute-network interparticle 

distance at stable sublattice positions for the three-dimensional system. The particle is then given 

a small initial velocity to allow adequate exploration of the potential energy landscape. The 

system possesses no damping so this initial velocity along with the potential energy represents 

the total energy of the system, which is constant. Hence, the particle oscillates within the 

potential with a constant period forever. Therefore, the simulations were allowed to run for 50 

oscillatory cycles to collect adequate velocity data to construct VACFs and vibrational spectra 

with good resolution. Multiple simulations are run with differing values for the σ parameter of 

the Lennard-Jones potential while keeping interparticle spacing constant, much like what was 

done previously for the three-dimensional system. The variation of σ modifies the composite 

potential experienced by the particle, allowing one to adjust the degree of anharmonicity and 

negative curvature (region of instability) it encounters. For small values of σ, the separate 

Lennard-Jones potentials overlap minimally producing a composite double-well potential with a 

high degree of anharmonicity. Upon increasing σ, the component Lennard-Jones potentials 
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overlap to an increasing degree causing the anharmonicity to decrease and the separate minima 

in the potentials to eventually merge into a single near-harmonic potential. Values for σ range 

from 0.5 to 1.5 Å in increments of 0.1 Å. The change in the composite potential energy with σ is 

shown in Figure 2-7. 

 

Figure 2-7 Potential energy surface for the solute species in a one-dimensional analog system, with network atoms 

fixed at ±1.54 Å. σ represents the size of the solute atom within this space. 

Inspecting the resultant VACFs in Figure 2-8 (a), a few observations can be made. Because the 

moving particle is not subject to friction, the VACFs are indefinitely periodic and do not decay. 

A single particle oscillating in a harmonic potential would produce a single pure cosine wave as 

its VACF. For large values of σ where the composite potential is nearly harmonic, we can see 

how this is true. The VACF exhibits one inflection point in between consecutive extrema. 

However, for decreasing values of σ and, therefore, increasing anharmonicity and regions with 

negative curvature in the energy landscape, the VACF deviates more and more from that of a 



 55 

cosine wave. The time between extrema of the VACFs becomes greater and two additional 

inflections appear between consecutive extrema, giving rise to a very gradual crossing of the 

abscissa, which reflects how the particle motion during the slow traversing of the maximum in 

the center of the composite potential correlates with its motion at the turnaround points. 

Accordingly, the motion of the particle in the unstable regime of the oscillator is largely 

decorrelated from that near the potential minima. 

 

Figure 2-8 (a) Velocity auto-correlation functions for the solute species as a function of its size in the frictionless 

one-dimensional simulation, and (b) the corresponding vibrational spectra. Discrete peaks result from the periodic 

nature of the solute motion and the lack of friction. 
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The vibrational spectra shown on the right side of Figure 2-8 are obtained via Fourier 

transformation of the VACFs on the left. The first notable feature is that the spectra all consist of 

sets of discrete, equally spaced delta functions. Secondly, the number of peaks present in each 

spectrum decreases with increasing value of σ, i.e., the number of peaks decreases with 

decreasing anharmonicity of the composite potential. Upon further inspection, it is apparent that 

all peaks are odd integer multiples of the lowest frequency peak in each spectrum, and as a result 

the spacing between subsequent peaks increases with the value of the lowest frequency peak. 

The lowest frequency peak corresponds to the particle’s period of oscillation within the 

composite potential. All of this makes sense given that the vibrational frequency spectrum 

recontextualizes motion in terms of harmonic modes. This is explicit in the formulation of the 

Fourier transform. Therefore, to reconstruct periodic anharmonic motion depicted in the VACF 

from a series of harmonic modes, the amplitude and frequency for each constituent harmonic 

mode must take on specific values. It quickly becomes obvious that to maintain the periodic 

nature of the motion, the frequency values of all constituent harmonic modes can only take on 

values that are integer multiples of the fundamental frequency. Furthermore, because of the 

mirror symmetry in particle motion relative to the center point, even multiples are excluded. The 

set of discrete, regularly spaced peaks whose magnitudes decay towards increasing frequency 

seen in the vibrational spectra for this one-dimensional system is a telltale signature of 

anharmonicity in the system dynamics, referred to as higher harmonics.  

Compared to this one-dimensional analogue, a three-dimensional molecular structure possesses 

almost infinitely more degrees of freedom. The motion of any given atom is non-deterministic 

because momentum is constantly exchanged through collisions with other atoms, and hence, the 

trajectories of atoms are much more stochastic than that of our one-dimensional oscillator. To 
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approximate these perturbations, the two outer carbon atoms are made to oscillate sinusoidally 

with up to a 15% change in their relative positions, and a velocity damping coefficient of 0.01 is 

imposed on the motion of the mobile solute atom to compensate for the energy added by driving 

the system boundaries. The imposed harmonic oscillation of the surrounding carbon atoms 

modulates the topology of the potential energy surface by mimicking, in a simplified way, the 

constrained but constant motion of the local environment in solid state materials. The extent of 

this variation in potential energy surface is shown in the inset of Figure 2-9. The velocity 

damping also helps to continuously vary the solute particle’s amplitude, and therefore period, of 

oscillation in a manner more consistent with the chaotic particle dynamics present in real 

materials. The VACF and vibrational spectrum for this system in Figure 2-9 are much more in 

line with what one expects from a mobile phase in the solid state. Even with the system 

modifications described above, it is apparent that the VACF still does not completely 

decorrelate. This is primarily a limitation of the dimensionality of this system. In a one-

dimensional system, the VACF can only take on a value of zero if one of the particle’s velocities 

in the inner product is precisely zero. This is because there are no orthogonal spatial dimensions 

in which the particle can move so the particle’s velocity can only be correlated or anticorrelated 

with itself, not uncorrelated. For our purpose here, which is to develop a qualitative 

understanding of the effect that dynamic variation of the potential shape and vibrational 

amplitude has on the spectrum, this does not pose an issue. It is apparent from the vibrational 

spectrum in Figure 2-9, that what had previously been a spectrum of equally spaced delta 

functions when the shape of the potential energy surface and the vibrational amplitude was 

constant has become a continuous distribution of frequencies analogous to those of our three-

dimensional many-particle simulations. 
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Figure 2-9 Velocity auto-correlation function (top) and vibrational spectrum (bottom) for the solute particle in the 

one-dimensional analog system with applied velocity damping. Inset: Extent of potential energy surface modulation 

due to a sinusoidal oscillation by network atoms. 

Based on these observations, we submit that many of the higher frequencies present in the 

spectra for the three-dimensional simulations correspond to higher harmonic modes of a lower 

fundamental frequency representative of a specific oscillatory amplitude and local potential 

energy surface state. This is also consistent with the notion that oscillatory particle motion that is 

more harmonic in nature, produces spectral peaks that appear more symmetric while more 

anharmonic oscillatory motion produces asymmetric spectral peaks with tails towards high 

frequencies. 
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Another aspect that may be inferred from the behavior of the one-dimension model to that of our 

more complex three-dimensional system is that, as apparent in Figure 2-7, for sufficiently small 

particle sizes local potential minima are deep and located too far apart for particles to travel 

between without being imparted with large kinetic energies, resulting in low diffusivity. 

Conversely, for sufficiently large particles would-be local potential minima are located so close 

together that they actually merge, confining the particle and resulting in a jammed system that 

also exhibits low diffusivity. It is only for a specific range of intermediate particle size that the 

local potential minima are both shallow enough and close enough that particles can move 

between adjacent potential minima with relative ease resulting in high diffusivity. In fact, the 

adjacent minima merge (the composite possesses no negative curvature) between the values of σ 

equals 1.2 and 1.3 Å in the one-dimensional system. This corresponds to the minimum in the 

pressure vs. S curve (S ~ 0.214 or σ ~ 1.24 Å) for the three-dimensional system; the location 

pertaining to the onset of instability. 

2.3.4 Cohesive Rupture as the Reason for the Onset of Diffusion 

Now, we revisit the pressure vs. S curves for the energy-minimized configurations both starting 

solute atoms at sublattice positions and random positions. Since we have an analytical expression 

for the internal pressure relationship to atomic packing fraction in the form of the Anton-Schmidt 

equation of state, taking the derivative with respect to the atomic packing fraction for both 

systems at an arbitrary value of S, yields a measure akin to the bulk modulus, K(S).  The 

inverse of this quantity corresponds to the compressibility, (S). However, it is important to 

keep in mind that these measures do not describe the system as a whole; instead, they single out 

the system’s mechanical response to changes in the solute-network interactions. Important for 

the following discussion, the compressibility exhibits negative values in certain regions of S. 



 60 

Generally, a negative compressibility is physically not meaningful, as it implies an increase in 

volume as a result of applying a compressive stress, and they are therefore associated with 

regions of instability (e.g., the two-phase region predicted by the van der Waals equation of 

state). In the present context, we attribute negative compressibility to instabilities in the cohesive 

quality of the solute species inside the network interstices. The pressure and compressibility 

curves are overlaid in Figure 2-10 as a function of atomic packing fraction. 

 

Figure 2-10 System compressibility as a function of atomic packing fraction (solids lines, left axis) for the solute at 

lattice positions (blue) and at energy-minimized positions reached from a random initial configuration (red) overlaid 

with corresponding internal pressure curves (dotted lines, right axis). 

Moving from high to low packing fraction, the minimum in the pressure curve represents the 

transition to instability at which point cohesive rupture begins to occur. Specifically, this rupture 

pertains to solute-network bonds such that the solute atoms snap toward one side of their local 

network cavity resulting in local density fluctuations in the system. The transition to instability 

becomes more obvious when looking at the compressibility curves since the compressibility 
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diverges at the pressure minimum. Meanwhile, the inflection points in the pressure curves 

represent the location within this unstable region where the system transitions to the high-

diffusivity regime. Consequently, the mobility transition occurs at the maximum in the 

compressibility vs. S curve. Diffusivity is maximized towards lower S values with respect to 

this compressibility maximum. Accordingly, the solute mobility is highest when (1) the 

compressibility is negative, i.e., its contribution to cohesion in the structure deteriorates, and (2) 

when local density fluctuations in S, for as long as they create more space for the solute, further 

destabilize the configuration (compressibility becomes more negative with decreasing atomic 

packing fraction). In other words, not only does decreasing the packing fraction result in lower 

internal tensile stress because it is easier for solutes to leave their local potential energy minima 

in the centers of the interstices, but that past the mobility transition this effect is self-catalyzed 

because the energy landscape changes in such a way that the solutes attain the mobility to do so 

more easily. Similarly, the trends that can be observed in Figure 2-5 corroborate the above 

arguments: the inflection point in the log diffusivity vs. S relationship coincides with that in the 

pressure vs. S relationship, and thus with the maximum in the compressibility vs. S curve. 

The vibrational spectrum for the value of S nearest the inflection point, S = 0.149, in Figure 2-

6, is the one with the single asymmetric peak, whose high-frequency wing is evocative of closely 

stacked higher harmonics from a range of fundamental modes. As mentioned previously, 

diffusion can only occur in a system with an anharmonic potential. Our analysis suggests the 

onset of diffusion occurs at a packing fraction where the vibrational spectrum of the system 

shows the strongest evidence for anharmonicity, i.e., S = 0.149, which also coincides with the 

inflection point in the pressure as a function of S. Solute particles in the system at this packing 

fraction appear to possess large vibrational amplitudes, greatly exploring their local potential 
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energy wells and spending significant time in highly anharmonic, negatively curved regions of 

the potential energy surface. As the packing fraction is decreased further, these dynamics cease, 

and their corresponding signature in the vibrational spectra are no longer present. This shift in 

dynamics is due to the cohesive rupture of the system as solute atoms break bonds with some of 

their neighboring carbon atoms and are pulled toward one side of their local network cavity, 

captured more closely by their remaining carbon neighbors, constituting a dramatic evolution of 

the potential energy landscape. 

2.4 Conclusions 

To better understand atomic transport mechanisms, we studied this phenomenon in a simple 

model system consisting of a covalently bonded species that forms a continuous three-

dimensional network and mobile species that occupies and moves about the interstices of this 

network. This approach reduces the structural complexity from that of actual materials that are 

being considered as potential solid electrolytes, with the expectation to expose the essential 

attributes of atomic mobility. We observe that the solute diffusivity decreases linearly with the 

site occupancy fraction, likely due to solute-solute collisions. By systematically varying the size 

of the mobile solute particles, while keeping that of carbon in the supporting structure constant, 

different diffusive regimes have been identified. At large solute sizes, the diffusivity of this 

species is limited by the comparably large energy barriers corresponding to narrow apertures in 

the network it must cross to move from one interstice to the next. Similarly, the diffusivity of 

very small solutes is diminished, because the energetics of this species has transitioned from 

cohesive to adhesive, which is associated with large activation barriers for the solute to 

overcome to even migrate within an interstice. The interesting behavior in terms of the solute 

mobility is observed in between these two extremes. The thermodynamic quantity best 
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associated with this transition is the internal pressure of the system. Descending from high to low 

solute packing fractions, the internal pressure decreases from positive values, where each solute 

particle overfills its interstice, to negative values, where solutes experience a net tensile pull from 

the carbons. The internal tensile limit is crossed at the pressure minimum, S = 0.236, below 

which solute detaches at least from some of the supporting network elements. For as long as the 

curvature in the internal pressure vs. packing fraction is positive, fluctuations in the solute sub-

system density would tend to reconstitute the cohesive state. Below the inflection point, S < 

0.149, the solute sub-system would tend towards separation, i.e., it has entered the adhesive 

regime. 

In this context, we found that solute diffusivity starts to rise at S = 0.149, coinciding with the 

inflection point in the pressure vs. packing fraction. The vibrational spectrum for the 

configuration at S = 0.149 is different from the spectra at other packing fractions in that it 

possesses a single broad continuous peak with a tail towards high frequency. Further analysis 

reveals that the features of this spectrum are indicative of the motion of particles exploring 

locations on the potential energy surface characterized by highly anharmonic particle dynamics. 

However, the maximum solute diffusivity occurs at S = 0.104. Note that below the minimum in 

the pressure curve, S < 0.236, the compressibility of the system is negative, which signifies that 

the configurations of solute species inside the network interstices are unstable, i.e., cohesive 

rupture begins to occur. Here, rupture means breaking of some solute-network bonds such that 

the solute atoms snap toward one side of their local network cavity. The onset of solute diffusion 

occurs well within instability region and coincides with the maximum in the compressibility vs. 

S curve. Furthermore, the solute mobility peaks when (1) the compressibility is negative, i.e., as 

the free volume available to the solute increases (corresponding to a shrinking solute size) the 
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pressure in the system increases (corresponding to a reduction in tensile stress due to decohesion 

between solute and network elements), and (2) decohesion is self-catalyzed because the 

compressibility becomes more negative with decreasing atomic packing fraction, i.e., the 

increase in free volume is accompanied by decreasing changes in the tensile stress due to 

distance-related reduction in solute-network interactions. However, further reduction in solute 

packing fraction causes particle mobility to rapidly plunge, because the solute adheres to the 

facet of network interstice. Hence, the optimal condition for high solute mobility is a potential 

energy surface characterized by extensive anharmonicity and strong but not complete solute-

network decohesion. 
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Chapter 3 Equivalent Ionic Mobility Enhancements in a Model Sodium Silicate Glass from 

Ion-Exchange and Isotropic Straining 

Abstract 

We have computationally explored the use of ion-exchange to enhance ionic mobility in a model 

sodium silicate glass using molecular dynamics simulation. The glass is formed from the melt as 

cesium silicate before replacing the larger cesium ions with sodium. This results in 4.5 to 6-fold 

increases in sodium ion diffusivity for glass at temperatures between 400K and 600K when 

compared to a standard melt-quenched sodium silicate glass. The increase in sodium mobility 

appears to result from the increased volume of the ion-exchanged glasses that does not relax out, 

at least on molecular dynamics timescales, so long as the material is below its glass transition 

temperature. To remove the variable of volume relaxation and directly investigate the effect of 

increasing volume on sodium ion diffusion, we also explore the dynamics of a melt-quenched 

sodium silicate glass at 600K subject to variable isotropic volumetric strains. Volumetric strains 

up to approximately 0.25 result in increased sodium mobility of the same magnitude as ion-

exchange. Strains greater than this cause the diffusivity of sodium to decline due to the initiation 

and escalation of the silica network rupture. The increases in sodium mobility are caused by the 

weakening of ionic bonding with surrounding oxygen atoms resulting in a reduced tensile stress 

on the sodium, and thus, a reduced curvature and depth of their equilibrium site potential wells. 

Our results indicate that robust glass networks suitable for low temperature ion-exchange and 

stable against volume relaxation make good candidates for high ionic conductivity solid-state 

electrolytes.  
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3.1 Introduction 

We investigate the efficacy of using ion-exchange as a method to improve ionic mobility in 

inorganic glass solid-state electrolytes (SSEs). We chose an alkali silicate glass for this case 

study as this relatively simple binary glass is a common component in many inorganic and 

composite SSEs. Specifically, we are using molecular dynamics simulations to explore 

exchanging a larger modifier alkali cation with which the glass was formed with a smaller alkali 

cation. This is essentially the inverse of the chemical strengthening process, in which a glass is 

formed containing smaller modifying ions which are then exchange with larger ions to produce a 

compressive stress at the surface of the glass which increases the stress the glass can undergo 

before failure occurs.1–3 Electrolyte ion-exchange experiments on various classes of SSEs in 

previous studies with the goal of improving ionic conductivity have yielded mixed results.4–13 In 

previous studies of NASICON-type inorganic crystalline SSEs, some results have shown 

decreases in conductivity when replacing sodium with lithium while more recent results have 

indicated the opposite.5,14 The difference in these results appears to be related to the method of 

ion-exchange utilized. The ion-exchange using molten salt requires higher temperatures, which 

may enable greater structural relaxation after ion-exchange.  Furthermore, this method 

accomplishes lower ion-exchange ratios in the range of about 50% replacement, which causes 

suppression of ionic mobility due to the mixed-alkali effect. The study producing enhanced ionic 

conductivity used a liquid organic solvent carrier containing dissolved bis(trifluoromethane) 

sulfonimide lithium (LiTSFI) to carry out the exchange with effectively total sodium 

replacement at a lower temperature that largely restrains structural changes. In a study involving 

ion-exchange within a metal-organic framework (MOF) of tetrabutylammonium cations with 

lithium, increased ionic conductivity was demonstrated.  These investigators used a similar 



 69 

method of low-temperature solvent-mediated ion-exchange preserving the MOF structure and 

producing a high exchange ratio.13 Ion-exchange methods to increase conductivity in inorganic 

glass electrolytes have been studied as well primarily for aluminum, zirconium, phosphate, 

and/or titanium containing modified silicate glasses in which sodium is generally replaced with 

lithium or silver cations.4,6–12 The results for these studies were mixed. Ion-exchange to 

incorporate smaller cations can produce enhanced ionic mobility so long as the ion-exchange 

procedure is able to be performed below the glass transition temperature (Tg) of the material. It 

has been reported that when ion-exchange is carried out below Tg, there is no suppression 

resulting from the mixed-alkali effect even when the exchange is not carried out completely. The 

mobility reduction when the glass contains a mixture of alkali cations appears to result from 

network structural developments that can only occur when the material has been exposed to the 

required thermal energy (temperatures above Tg). In these studies the authors were replacing 

potassium with sodium to create soda-lime silica and replacing sodium with lithium to make 

lithium aluminosilicate.7,15 However, the presence of mixed mobile ion-based conductivity 

reduction has been reported in an aluminosilicate glass where sodium was replaced with silver 

even when the process was carried out well below Tg.
11 It has been suggested that reduced ionic 

conductivity is caused by an induced low temperature relaxation not only at sites containing 

silver ions but at sites still occupied by sodium as well. There is a decrease of the oxygen 

coordination number for sodium and increase surrounding silver, which forms a covalent bond 

with nonbridging oxygen atoms in these systems.16 

In a previous work, we explored the effect of varying the size of a mobile solute species on its 

diffusivity within a crystalline diamond lattice.17 This simple two-component solid-state material 

was simulated using molecular dynamics (MD) methods. The carbon atoms of the diamond 
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lattice were covalently bound to one another, and the solute atoms existed in the interstices, 

interacting with the carbon network via a Lennard-Jones potential. The size of the solute species 

was varied systematically while the volume of the system was held constant. A relationship 

between the internal pressure of the system, its vibrational properties, and the diffusivity of the 

solute species was evident. Orders of magnitude increase in solute mobility was found to relate 

to structural instabilities that were reflected in the calculated solute-specific internal pressure, 

solute-specific compressibility, and features of the vibrational spectra. 

Following these findings and the body of literature suggesting ionic mobility can be enhanced 

through ion-exchange, in the present work, we use atomistic simulations to investigate atomic 

transport in a more realistic sodium silicate glass. Specifically, we explore the effect of large to 

small alkali ion-exchange in a silicate glass before homing in on the essence of enhanced 

mobility inducing structural effects in ion-exchanged, as opposed to melt-quench, glasses by 

analyzing ion mobility within isotropically strained glasses. 

3.2 Methodology 

To investigate the influence of exchanging the cationic species on the ionic conductivity in an 

inorganic amorphous solid electrolyte, we explore alkali silicate glasses via MD simulation. The 

silicate glasses were composed of 20 mol% alkali oxide where the cation is either sodium or 

cesium. Simulations are performed using the Large-scale Atomic/Molecular Massively Parallel 

Simulator (LAMMPS) maintained by Sandia National Lab.18 The potential chosen to govern 

intermolecular interactions is ReaxFF due it its ability simulate chemical reactions and dynamic 

bonding with a good balance between fidelity and computational expense. ReaxFF dynamically 

calculates bond orders based on interatomic distances. This enables the modulation of bond, 

angular, and torsional energies as a function of local environment, which allows for simulation of 
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chemical reactions. 19–23 The electronegativity equalization method (EEM) is used to simulate 

charge transfer when calculating Coulomb interactions.24 ReaxFF has been shown capable of 

simulating and quenching high temperature sodium silicate melts to the glassy state and 

producing reasonable structural features that are in general agreement with experimental 

data.25,26 The force field parameterization used in the following was developed by merging 

extensively tested force fields originally used by Psofogiannakis et al. for the purpose of 

simulating hydration of copper containing high-silica zeolites.27 

The following alkali silicate simulations contain 4080 atoms and are initialized with sodium or 

cesium, silicon, and oxygen atoms in random positions within the supercell with period boundary 

conditions. The initial volumes of these simulations were chosen to correspond approximately to 

experimental room temperature densities of 20 mol% sodium or cesium silicate glasses, i.e., 

about 3.0 and 2.38 g/cm3, respectively. A conjugate-gradient energy minimization is performed 

to avoid atomic core overlaps producing a more stable configuration for subsequent finite 

temperature time integration. Boltzmann distributed velocities are assigned to all atoms 

corresponding to a temperature of 4000 K. This high temperature is chosen to facilitate an 

increased rate of exploration of configuration space. The simulations are run in the NVT 

ensemble at 4000K for 125 ps, 125 ps at 3000K, and another 125 ps at 2500K before quenching. 

Quenching occurrs at a rate of 0.8 K/ps from 2500K to 1500K in the NPT ensemble with an 

applied external pressure of 1000 atm to ensure that a condensed phase is maintained. At 1500K, 

the alkali silicates are relaxed for 500 ps while the external pressure is slowly reduced to 0 atm 

before further quenching to 300K at a rate of 0.8K/pS. At each temperature where diffusion data 

is collected, the alkali silicate is allowed to relax for another 500 ps before a subsequent 100 ps 

production run. A time step of 0.5 femtoseconds is used for time integration of the equations of 
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motion in all simulations. Larger timesteps used with the ReaxFF potential can result in 

instability due to the incorporation of the electronegativity equalization method and dynamic 

bonding. 

For solid-state electrolyte applications, we are primarily interested in the transport properties of 

the alkali cationic species. The most common method for characterizing atomic mobility in MD 

simulations is the calculation of diffusion coefficients. This calculation generally utilizes the 

mean squared displacement (MSD) of the particles of interest over the course of a simulation. 

The ensemble-averaged MSD of particles collected over time yields the diffusivity based the 

equation, 

𝐷 = lim
𝑡→∞

⟨|𝑟(𝑡)−𝑟(0)|2⟩

2𝑑∙𝑡
,          (3.1) 

where r(0) is the initial particle position, r(t) is the particle position at subsequent times t, and d 

is the dimensionality of the system. For adequately sampled atomic trajectories, the MSD 

typically exhibits a ballistic regime at short times when the particle is “caged” within its local 

network cavity and a diffusive regime at times when correlation between atomic motion 

deteriorates due to “cage-breaking” events that result in aperiodic trajectories. The diffusivity is 

obtained from the slope of the MSD vs. time within the diffusive regime. Though the system 

possesses periodic boundary conditions, for this calculation, particle coordinates are 

“unwrapped” such that the simulation box length is not subtracted when the particles pass 

through a periodic boundary and reenter from the opposite side of the simulation box and 

position data is stored every ten femtoseconds for the duration of the production run. 

3.3 Ion-Exchange Simulations 

Atomic diffusivity data is collected for the sodium and cesium cations within the alkali silicates 

at 300K, 400K, 500K, 600K, and 1000K. The alkali diffusivities within the sodium silicate and 
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cesium silicate glasses quenched from the molten state are used for comparison with the ion-

exchanged glass, which is generated from the melt as a cesium silicate glass, but the cesium 

atoms are subsequently replaced with sodium atoms at the low temperatures of interest. The ion-

exchange method utilized for these simulations represents a perfect exchange efficiency where 

transport limitations are not an issue. This is because in molecular simulations, one can simply 

replace one species of atoms with another. In this case, cesium is replaced by sodium simply by 

changing the mass and characteristic parameters of the interaction potential. After the ions are 

exchanged, the simulated glasses are relaxed for 500 ps before the 100 ps production run for data 

collection. 

The resultant diffusivities are plotted versus inverse temperature for the sodium, cesium, and ion-

exchanged sodium ions in the silicate glasses in Figure 3-1. As hypothesized, the ion-exchanged 

sodium ions possess higher diffusivities than the sodium ions in the melt-quenched glass, and 

both are more diffusive than the larger and much more massive cesium ions. The diffusivity for 

the alkali ions is Arrhenius in character with respect to changes in temperature for the 

temperature range between 400K and 600K or for values of 1/T in the range between about 1.5 

and 2.5K-1. For the simulations at 300K (1/T = 3.33K-1), cationic diffusion becomes a rare event 

on simulation timescales resulting in a breakdown in the validity of Equation 1. For the 

simulations at 1000K (1/T = 1K-1), the alkali cations diffuse readily, but the diffusivity values do 

not align with the Arrhenius relationship present at lower temperatures. This is because the glass-

forming silicates are above Tg for these simulations, where the supercooled liquid undergoes 

significant structural rearrangements that are part of the glass transition process. 



 74 

 

Figure 3-1 Ion diffusivities as a function of inverse temperature for the ion-exchanged sodium silicate (circles), 

melt-quenched sodium silicate (Xs), and melt-quenched cesium silicate (diamonds) glasses. 

Exchanging the cesium ions with sodium causes a contraction of the network and an increase in 

the number density of the ion-exchanged glasses. This happens because the sodium ions are 

smaller, possessing a higher charge density, than the replaced cesium ions. This results in an 

initial tensile force on the surrounding network that upon relaxation causes the observed 

contraction in volume. Importantly, this volume contraction still resulted in densities that are 

about 13% to 15% lower than that of the sodium silicate specimens produced from the melt, with 

the exception of the 1000K ion-exchanged glass (above Tg) for which the density was only an 

8.6% contraction after 2 nanoseconds and the structure continued to relax. For the other ion-

exchanged sodium silicate glasses, the diffusivity of the sodium ions within the Arrhenius 
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temperature range is increased by about 4.5 to 6-fold over that of the sodium silicate quenched 

from the melt. 

As noted, there is always some degree of relaxation that occurs following the ion exchange. 

Relaxing out the initial tension from replacing the cesium atoms with sodium is simple enough 

on MD timescales and is largely complete after approximately 10 ps. However, beyond this 

period of relatively rapid contraction, further relaxation that occurs at a much slower rate is 

evident subsequently over a period of nanoseconds for the ion-exchanged simulation at 1000K. 

While lower temperature simulations do not appear to further relax, at least not on the timescale 

of nanoseconds, whether significant relaxation would occur for these systems on experimental 

timescales of seconds and hours, unattainable in simulations, is not obvious. The difference in 

sodium ion diffusivity between the ion-exchanged and from-melt sodium silicate glass appears to 

result primarily from the increased free volume in the ion-exchanged glass. The extent of 

structural relaxation of the network that occurs after ion-exchange may result from our particular 

choice of binary glass-former. In this simple sodium silicate glass, the modifying cation is an 

important structural element that aids in supporting the network from collapse. The degree of 

relaxation after ion-exchange may be reduced with this use of a more structurally robust but 

complicated glass composition containing multiple network formers, some of which, like boron, 

are capable of incorporating alkali oxides with reduced network depolymerization by forming 

partially charged bridging oxygens. To remove the added variable of relaxation after ion-

exchange and directly probe the effect of increasing free volume, we next investigate how 

sodium ion mobility is affected by applying an isotropic volumetric strain to a quenched sodium 

silicate glass. 
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3.4 Isotropic Expansion Simulations 

In the following, we report on the effect of increased free volume on ion mobility, where a 20 

mol% sodium silicate glass is strained isotropically resulting in a uniform volume expansion. 

This is analogous to our previous work involving variation of solute size within a constant 

volume diamond lattice, but in the simulations described here all atomic interactions remain 

unchanged and instead the volume of the glass network itself is varied.17  Effectively, this means 

that all atomic ‘sizes’ are fixed but the bonds between them are strained.  The LAMMPS “fix 

deform” method is used to accomplish this. The “deform” method allows for the volume and/or 

shape of the simulation box to be changed during a molecular dynamics run.  For the present 

simulations, the shape of the simulation box is conserved but the three orthogonal dimensions of 

the simulation box are expanded identically at each timestep in a manner analogous to applying a 

constant rate of strain. Each strain simulation is initialized from the 20 mol% sodium silicate 

glass at 600K in the canonical ensemble. The glass is strained over 10 ps to its new volume and 

then maintained at that volume for a 500 ps relaxation before a 100 ps production run during 

which data is collected. Volume strains between –0.2 and 1.0 are simulated in increments of 

0.05. This corresponds to uniaxial strains between about -0.07 and 0.26. The negative strains 

correspond to compression, which are included for comparison. 

Before discussing the effect on cation diffusivity, let us inspect the effect of the applied 

volumetric strains on the potential energies and internal pressures of the sodium silicate glass. 

This provides insight into the cohesive energy of the structure and the tensile or compressive 

forces within the network. Figure 3-2 shows the potential energy of the sodium silicate as a 

function of the applied strain. A near-parabolic energy-volume relationship, similar to those 

often reported from first-principles structure calculations, is apparent in the immediate vicinity of 
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the unstrained glass between strains of about –0.2 to 0.2.28 However, for strains larger than 0.25, 

the harmonic energy-volume relationship breaks down as strains become large enough to begin 

breaking network bonds, resulting in significant changes to the structure of the network. 

 

Figure 3-2 The potential energy as a function of isotropic volume strain for a simulated sodium silicate glass. 

The relationship between internal pressure and strain in Figure 3-3 supports this. As one would 

expect, negative strain, or compression, results in an increase in internal pressure and positive 

strains cause tension that results in negative internal pressures. However, strains greater than 

0.25 while still resulting in negative internal pressures, lead to decreasing magnitudes with 

increasing strain. Once again, this is due to the onset of network bond breaking at a strain of 0.25 

and gradual destruction of the network with increasing strains. The shape of the pressure-strain 

relationship here is similar to that of our previously studied two-component model system.17 
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Figure 3-3 The internal pressure as a function of isotropic volume strain for a simulated sodium silicate glass. 

However, past the pressure minimum, where increasing strain results in increasing pressure the 

curve is much more irregular and jagged than our prior results. This observed difference is due to 

network slippage, i.e., when the most strained bond at any given moment breaks it allows for a 

larger cavity in the structure to open and in its surroundings the stress momentarily relaxes out.  

Meanwhile another bond in the network becomes the weakest link until it too breaks, giving rise 

to local relaxation, and so forth.  This repeated straining and breaking of covalent network bonds 

is different from our previous study, where the only bond energies affecting is relationship are 

solute-network bonds of Lennard-Jones type and the covalent network bonds remain unaffected. 

These solute-network Lennard-Jones bonds are more analogous to the ionic bonding of the 

sodium atoms with the network in the present system. However, the energy of ionic bonds 
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decreases to a much lesser extent with increasing distance than that of the network bonds, which 

largely obscures their contribution to the pressure-strain relationship in Figure 3-3. 

Now, we turn our attention to the effect of volumetric strain on the sodium cation diffusivity. 

This relationship is shown in Figure 3-4 for the sodium silicate glass at 600K for all strains 

simulated. As one may expect, the compressed glasses possess lower sodium ion diffusion than 

the unstrained glass, decreasing by a little over an order of magnitude with a volumetric strain of 

–0.2. As for the expanded glasses, they demonstrate an increase in sodium ion mobility. 

 

Figure 3-4 The sodium ion diffusivity (logarithmic scale) as a function of isotropic volume strain for a simulated 

sodium silicate glass. 

From 0 to about 0.1 strain, there is a 4.25-fold increase in diffusivity. The diffusivity plateaus at 

a maximum between strain values of 0.1 and 0.25 before decreasing in a seemingly linear but 

noisy fashion with increasing strain. There is an interesting correspondence between the potential 
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energy (Figure 3-2), internal pressure (Figure 3-3), and diffusivity (Figure 3-4) as strain is 

varied. For small strains, there is a decreasing amount of energy stored in the form of potential 

energy, the internal pressure decreases (tension), and the sodium ion diffusivity increases. 

However, at a strain value of 0.25 the potential energy ceases to follow the parabolic relationship 

as a function of volume, the internal pressure, though still negative, shifts from decreasing with 

strain to increasing with strain, and the diffusivity-strain relationship similarly inverts from 

increasing to decreasing with increasing strains. This behavior suggests that so long as the 

network structure through which the sodium ion travels remains intact, there is a direct and 

positive relationship between volumetric strain and diffusivity due to, at least in part, the internal 

tension that weakens the bond energies. This weakening of bond energies results in a lower 

energy requirement for sodium ions when hopping between sites within the network. Once again, 

we see similarities here with our previously studied two-component lattice-solute model 

system.17 Increasing volumetric strain, analogous to decreasing solute particle size, initially 

results in substantial increases in solute or modifier cation mobility. However, while the prior 

model system shows a dramatic drop off in mobility when the solute becomes small enough to 

get trapped against the network wall, the sodium ion in the silicate glass discussed here becomes 

less diffusive as strains are increased past the tensile limit of the network but not dramatically so. 

The reason for this is that sodium never becomes trapped and instead can still diffuse within the 

progressively ruptured network, but as the network breaks down to greater extents, the sodium 

ions become more limited in terms of directions in which they can diffuse due to a growing 

number of cavities in the network fabric that are too large to allow for diffusive ion hopping. 

To further analyze the observed behavior, we focus on the distribution of forces felt by each 

constituent species within the strained glasses. This is accomplished by collecting the per-atom 
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pressures over the course of 1 ps using the “compute stress/atom” command in LAMMPS.29 This 

method is based on calculating the symmetric six component per-atom stress tensor where here 

we are only interested in the virial contribution to the normal stresses. This includes the bonding, 

pairwise, multibody, and long-range Coulomb interactions. The atomic stresses are calculated as 

a product of stress and volume since atomic volumes are not well defined. These values can be 

divided by the per-atom volume that we take here to be the quotient of the cell volume and 

number of atoms as a crude approximation. This has no effect on the relative stresses during 

comparison. Finally, we convert the three per-atom normal stresses to a pressure through the 

summation of their negative magnitudes and division by the number of components, in this case 

three. This is analogous to the calculation of a hydrostatic pressure, but negative magnitudes are 

used here to reconcile the difference in sign convention between atomic stresses and system 

pressures in MD simulations. The distribution of per-atom pressures for sodium, silicon, and 

oxygen are shown in Figure 3-5 for strains of –0.1, 0, 0.2, and 0.75. This gives an indication of 

species specific per-atom pressures in the cases of compression, no strain, strain with an intact 

network, and strain past the onset of network rupture. For all species, the pressure distributions 

narrow with increasing strain values. This can be understood in terms of the geometric 

constraints covalent atomic bonds are subject to at different densities.  Under tension these bonds 

stretch without much flexibility in terms of their spatial orientation, whereas under compression 

the corresponding strain can be accommodated not only by shortening the bonds, but the 

structure can buckle at pivotal joints, giving rise to a larger variation in the angles between 

adjoining bonds.  Hence, in a compacted structure there exists a greater number of local force 

transmission motifs resulting in a broader spread in the per-atom pressure. Though distributions 
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for all species span both positive and negative pressure values, the mean and majority values of 

the sodium and silicon distributions are negative while oxygen shows the opposite trend. 

 

Figure 3-5 Distributions of sodium, silicon, and oxygen per-atom pressures for volumetric strains of -0.10, 0.0, 

0.20, and 0.75. Samples refer to the number of atoms with a similar per-atom stress across 1ps. 

This means the sodium and silicon atoms are primarily under tension while the oxygen atoms are 

primarily under compressive stress. This would suggest that, within the structural environment of 

these sodium silicate glasses, the oxygen-oxygen repulsion is an important factor in supporting 

the structure from collapsing into a denser configuration while the sodium and silicon atoms 

maintain structural cohesion by stabilizing against expansion. Turning our attention to the effect 

of strain on the per-atom pressures of each species, sodium possesses the simplest relationship 

where it appears that increasing strain continuously reduces the magnitude of negative pressure 

on the sodium atoms. In the case of silicon, there are only minor reductions in the negative 

pressure magnitudes until some network bonds have broken, as is the case for 0.75 strain. 

Interestingly, the oxygen atoms only show reductions in pressure for strain values corresponding 

to stretched network bonds prior to the initiation of bond breaking at 0.25. 
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Using these per-atom pressure values, we were able to reconstruct the internal pressure-strain 

curve from Figure 3-3 on a species-specific per-atom basis by averaging the per-atom pressures 

for each species at a given strain. These species-specific pressure curves are shown in Figure 3-

6. The sodium pressure curve exhibits a minimum, corresponding to the largest-magnitude 

negative pressure, at zero strain. The magnitude of pressure on sodium atoms decreases under 

both volume compression and expansion. Importantly, however, the reduction in tensile stress on 

sodium as a result of volume compression is caused by increased Coulombic repulsion with the 

adjacent silicon atoms now in closer proximity. The reduction in tensile stress on sodium when 

the glass is volumetrically expanded results from weakened ionic bonding with surrounding 

oxygen atoms that facilitates sodium ion hopping due to the decreased energy required to escape 

potential wells in the potential energy surface. This region of the sodium pressure curve between 

the minimum at 0 strain and the inflection point at about 0.25 strain coincides with the region of 

strains characterized by enhanced diffusivity in Figure 3-4. This sodium pressure-strain curve 

more closely aligns with previous results from our lattice-solute model system as changes in the 

internal pressure for that system results solely from interaction between the network and mobile 

solute species.17 Minor differences in the features of the two pressure relationships arise from the 

differences in the bonding types of the mobile species, i.e., Lennard-Jones versus ionic. Unlike 

the Lennard-Jones potential, which tends to act over the distance of a few angstroms, ionic 

bonding resulting from Coulombic interactions are long-range in nature and the forces generated 

decrease proportional to the square of the interatomic distance. 



 84 

 

Figure 3-6 Species-specific per-atom pressure as a function of isotropic volume strain for sodium (circles), silicon 

(Xs), and oxygen (diamonds). 
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This is the reason for the less abrupt reduction is tensile stress on sodium atoms when the glass is 

subjected to large strains compared to the trends observed in our previous work. For the present 

sodium silicate glass, at strains greater than 0.25, the tensile stress continues to decrease and the 

jump distances between stable sodium sites on average increases. Furthermore, network bonds 

have begun to break, creating cavities in the network structure that create gaps large enough to 

prohibit diffusion.  The breakdown of the network is more apparent when inspecting the silicon 

pressure curve, which exhibits its largest negative magnitude at 0.25 strain, the tensile limit of 

the network. For smaller strains than this, the tensile stress on silicon increases with increased 

volumetric strain. However, for larger strains, the tensile stress decreases in a jagged fashion 

with increasing volumetric strain. The jagged character of this decrease is because the polar 

covalent bonding of the network constituents is short range in nature, unlike the ionic bonding of 

the sodium ions. The jagged decrease in pressure magnitude represents the cycle of network 

bond stretching, breaking, remaining bonds relaxing, then stretching, and breaking within 

increasing strain. Contrary to the cases of sodium and silicon, the oxygen per-atom pressure 

curve shows a decrease in the pressure magnitude with increasing strain as the oxygen-oxygen 

repulsion decreases and the silicon-oxygen bonds are stretched. Then, once the network bonds 

begin to break, the per-atom oxygen pressure remains relatively constant upon further strain. 

This occurs because the network no longer expands continuously in an isotropic fashion and does 

not allow nearby oxygen atoms to spread further apart since the tearing of the network allows the 

separated fragments to relax to higher local densities. Essentially, the oxygen atoms that share 

bonds with the same silicon atom and adjacent silicon atoms maintain a roughly constant 

distance from one another. 
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3.5 Conclusions 

To investigate the efficacy of increasing the local volume available to diffusing sodium ions on 

their mobility within a solid-state electrolyte, we first simulate the ion-exchange of cesium with 

sodium in a melt-quench formed cesium silicate glass using the ReaxFF reactive potential in 

LAMMPS to perform the molecular dynamics simulations.  We compare these results to those 

obtained for simulated melt-quenched sodium silicate and cesium silicate glasses. The ion-

exchanged sodium silicate exhibits 4.5 to 6 times higher sodium cation diffusivities than the 

melt-quenched sodium silicate glass, so long as the ion exchange is performed on samples below 

their glass transition temperature. The increases in sodium ion mobility appear to be associated 

with an increase in free volume within the ion-exchange glasses. The ion-exchanged sodium 

silicate glasses below Tg are 13% to 15% less dense than their melt-quenched counterparts at the 

same temperature. The expanded volumes associated with these ion-exchanged glasses may be 

retained to a greater extent with this use of a more complex glass composition containing 

multiple network formers some of which, like boron, can incorporate alkali oxides with a lower 

than commensurate degree of network depolymerization due the formation of four-coordinated 

boron. Glasses of this type may be more resistant to structural changes initiated by exchanging 

differently sized ions. To remove the effect of relaxation after ion-exchange as a variable and 

directly probe the effect of increasing free volume on ion mobility, we also explore the effect of 

applying of an isotropic volumetric strain to a melt-quenched sodium silicate glass on sodium ion 

mobility. We compare the sodium ion diffusivities, system potential energies, and system 

internal pressures as a function of volumetric strain at 600K. The sodium ion mobility increases 

significantly with increasing volumetric strain for strains between 0 and 0.25. Upon exceeding 

these strains, diffusivities begin to decrease with increasing strain. As revealed by the trends in 
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the potential energy as a function of strain, this reversal in the cation diffusivity occurs because 

the network bonds begin to break, no longer increasing volume uniformly within the structure 

and instead creating cavities in the structure that inhibit diffusion. The calculated per-atom 

species-specific pressures or stresses as a function of strain reveal whether components are under 

compression or tension and how this changes with volumetric straining of the glass. Oxygen 

atoms tend to be under compressive stress while sodium and silicon tend to be under tension. 

There is a reduction in tensile stress on sodium when the glass is volumetrically strained. This 

results from weakened ionic bonding with surrounding oxygen atoms and facilitates sodium ion 

hopping due to the decreased energy required to escape their potential wells. This region of the 

sodium per-atom pressure curve between the minimum at 0 strain and the inflection point at 

about 0.25 strain coincides with the strains characterizing the enhanced diffusivity region in 

Figure 3-4. Ion-exchange of a large ionic species with a similarly charged smaller species results 

in enhanced ionic conduction so long as the structure is able to resist densification. The 

mechanism of mobility enhancement for an ion-exchanged glass is similar to that of a 

volumetrically strained glass in that the tensile stress on sodium ions is reduced and undulations 

in the potential energy surface are attenuated. Our findings suggest that low temperature ion-

exchange, replacing a large modifier cation with a smaller one, is a viable strategy for improving 

ionic conductivity in solid-state electrolytes based on robust inorganic glasses that are stable 

against volume relaxation. 
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Chapter 4 Enhanced Viscoelastic Model: Reconciliation of Viscosity Measures Differing in 

Frequency by Ten Orders of Magnitude 

Original Publications Information 

The work in this chapter was published in the Journal of Non-Crystalline Solids as: 

Beg, C. & Kieffer, J. Fragility and the rate of change of the energy landscape topography. 

Journal of Non-Crystalline Solids: X 14, (2022). 

Abstract 

We conduct a comparative analysis of the mechanical response of a moderately fragile sodium 

borate melt, juxtaposing the adiabatic complex modulus measured at GHz frequencies using 

Brillouin light scattering and the steady-state shear viscosity measured at zero Hz. The two data 

sets are perfectly compatible with one another by fitting both components of the high-frequency 

complex modulus using a modified Maxwell-Wiechert model, transforming the loss modulus to 

viscosity, and extrapolating to zero frequency. This procedure yields an excellent fit to the 

steady-state viscosity under the condition that the static and relaxational moduli, as well as the 

activation energy for viscous dissipation are temperature dependent, as modulated by the logistic 

function, which accounts for the structural changes in the material as it transitions from liquid to 

glass. Accordingly, fragility of a glass forming liquid can be regarded as a measure to the rate of 

change with temperature in the energy landscape topography. 
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4.1 Introduction 

The viscosity of glass forming liquids has been of foremost interest to the researcher 

investigating the fundamental scientific phenomenology underlying the emergence of the 

amorphous state of matter, and equally, to the practitioner of glass manufacture. Viscosity, and 

its change with temperature, has been recognized as the key factor that determines whether a 

liquid subject to rapid cooling crystallizes or forms a glass. Furthermore, creating glass objects 

with complex shapes to tight dimensional specifications requires precise control of the viscosity 

during the operation. Unsurprisingly, the nature of viscosity has been a subject of persistent 

investigation throughout the century of modern glass science.1–13 Both from a practical and 

fundamental point of view, the focus of attention is the manner in which viscosity deviates from 

the Arrhenius law.14 In the mid-1980s, Austen Angell famously coined the concept of strong vs. 

fragile behavior to categorize the temperature dependence of the viscosity for glass forming 

systems,15–19 and with this he created a standard allowing researchers to gauge, label, and 

interpret their findings. 

As a materials characteristic, viscous dissipation is understood to be the consequence of 

processes that are manifest at the atomic or molecular level. Phenomenologically, the viscosity 

coefficient describes the rate of momentum transport in response to an imposed strain rate, and 

as such, transition state theory (TST) provides a formalism based on statistical thermodynamics 

to quantify the underlying elementary mechanisms. This entails evaluating the relaxation rate, 

which involves the probability density for the system to overcome the activation energy barrier 

that allows one of the mechanistic entities to advance from one equilibrium configuration to 

another in response to the imposed constraint. Among other components, detailed below, this 

rate comprises the grouping (
𝑄𝑎

𝑄𝑔
⁄ ) 𝑒−𝐸𝑎 𝑘𝐵𝑇⁄ , where Qa and Qg represent partition functions 
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associated with the activated and ground states, respectively, kB the Boltzmann constant, and Ea 

the potential energy difference between these two states, or activation energy for short. The ratio 

𝑄𝑎
𝑄𝑔
⁄  amounts to 𝑒𝑆𝑎 𝑘𝐵⁄ , where Sa is the entropy difference between the activated and ground 

states. Ultimately, the amount of energy dissipated in viscous flow is inversely proportional to 

the relaxation rate, so that the viscosity coefficient becomes 𝜂 ∝ 𝑒𝐸𝑎 𝑘𝐵𝑇⁄ , which constitutes the 

dominant temperature dependent term. Hence, when graphing the logarithm of the viscosity vs. 

reciprocal temperature, one would expect a straight line, indicative of Arrhenius behavior,14 

which is exhibited by strong liquids in the Angell categorization. 

However, in most glass forming liquids, the temperature dependence of viscosity deviates from 

this behavior in ways reflected by a steeper slope at low temperatures (high values of 1/T) and a 

gentler slope at high temperatures (low values of 1/T). The more the log10 vs. Tg/T data curves 

away from linear behavior, the more fragile the liquid is said to be. Accordingly, various fragility 

indices to quantify the phenomenon, such as 𝑚 = lim
𝑇→𝑇𝑔

(𝜕𝑙𝑜𝑔10𝜂 𝜕(𝑇𝑔 𝑇⁄ )⁄ ), were quickly 

introduced. However, clarity with respect to the structural and physicochemical origin of this 

non-Arrhenius behavior has been slower in coming, and open questions still remain to date. 

Considering the above enumeration of the dominant factors controlling the relaxation rate, it is 

not surprising to see explanations involving the energy landscape topography becoming most 

generally accepted. Early investigations revealed correlations between fragility and the size of 

the heat capacity jump at the glass transition. While this remains a strong connection between 

kinetic and thermodynamic fragility,20 the continued accruing of data suggests that this may not 

be comprehensive indicator across different types of materials.21 Conversely, the rate of change 

of the excess configurational and vibrational entropy, as the liquid approaches its glass transition, 

appears to yield a more universal measure and stronger connection between kinetics and 
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thermodynamics.21–25 Finally, the role of configurational entropy in characterizing fragility has 

also been identified among the quantities used in the topological constraint theory describing 

network glasses, e.g., the mean field connectivity within a coarse-grained representation of the 

intermediate-range order in these structures.26, 27 

Based on these developments, the importance of the energy landscape topography for explaining 

the non-Arrhenius behavior of the viscosity in glass forming liquids, specifically quantification 

of the changes that take place in this landscape throughout the glass transition regime, is evident. 

Here we present an analysis that is consistent with the perspectives document in the 

aforementioned literature, in particular stressing the need to account for the significant changes 

in the energy landscape topography that occur between liquid and glass. Our analysis focuses on 

the anatomy of the relaxation rate, i.e., the reciprocal of the characteristic relaxation time, 

identifying the relevant contributions emerging from TST by juxtaposing these quantities 

measured at 0 Hz and ~20 GHz. 
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Figure 4-1 Schematic illustrating of an atomic jump event that leads to strain energy dissipation during shear flow 

in a liquid.  Atomic positions approximate the inherent structure of the liquid for clarity.  The diagrams on the right 

show the system potential energy associated with each configuration along the phase space coordinate aligned with 

the jump orientation. 

4.2 Theoretical Background 

4.2.1 Dissipation Mechanisms and Transition State Theory 

In the 1930s, Eyring was the first to derive an expression for the viscosity coefficient based on 

TST.28 According to TST, in an equilibrium liquid at a given temperature T, mobile molecular 

moieties, or atoms for short, jump between neighboring sites at a rate given by 
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𝑘 =
𝑘𝐵𝑇

ℎ

𝑄𝑎

𝑄𝑔
𝑒−𝐸𝑎 𝑘𝐵𝑇⁄ , (4.1) 

where h is Planck’s constant and the other quantities have already been defined above. We 

ignore Wigner’s tunneling correction for now, considering that ℎ𝜈 ≪ 𝑘𝐵𝑇, and we assume that 

the sticking coefficient is unity. Eyring then considered two adjacent layers of a liquid 

configuration, subject to a shear stress zx, that acts in the positive x-direction on the top layer 

and in the negative x-direction on the bottom layer, as illustrated in Figure 4-1. Here, the normal 

orientation of the plane onto which the stress is applied points in the z-direction. Hence, the net 

force the applied stress exerts on each atom is zxxy, where x and y delineate the effective 

area attributed to each atom. Now, assuming that  is the distance by which the atom is displaced 

during the jump event, which need not be identical to x, but is of the same order of magnitude, 

this applied stress skews the activation barrier by the amount ±(𝜏𝑧𝑥𝜆𝑥𝜆𝑦𝜆) 2⁄ , where the positive 

sign applies when the particle jumps opposite to the direction of the applied stress, while the 

negative sign reveals how the applied stress assists in the particle jump when both occur in the 

same direction. The net balance of this stress bias results in a preferred displacement of particles 

in the direction of the applied constraint, expressed by 

𝑘 = 𝑘+ − 𝑘− =
𝑘𝐵

ℎ

𝑄𝑎

𝑄𝑔
(𝑒−(𝐸𝑎−(1 2⁄ )𝜏𝑧𝑥𝜆𝑥𝜆𝑦𝜆) 𝑘𝐵𝑇⁄ − 𝑒−(𝐸𝑎+(1 2⁄ )𝜏𝑧𝑥𝜆𝑥𝜆𝑦𝜆) 𝑘𝐵𝑇⁄ ) =

𝑘𝐵

ℎ

𝑄𝑎

𝑄𝑔
𝑒−𝐸𝑎 𝑘𝐵𝑇⁄ sinh(𝜏𝑧𝑥𝜆𝑥𝜆𝑦𝜆 2𝑘𝐵𝑇⁄ ). (4.2) 

Expanding the hyperbolic sine function as a power series and truncating after the first power, 

since 𝜏𝑧𝑥𝜆𝑥𝜆𝑦𝜆 ≪ 𝑘𝐵𝑇, yields 

𝑘 ≃ 𝑒−𝐸𝑎 𝑘𝐵𝑇⁄ 𝑄𝑎

𝑄𝑔

𝜏𝑧𝑥𝜆𝑥𝜆𝑦𝜆

ℎ
. (4.3) 

This rate applies to every atom in a given layer and, even though the jumps of the atoms are not 

synchronized, over time they all jump with the same frequency. Hence, the product of jump 
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frequency and displacement yields the drift velocity of each atom and, consequently, of the entire 

layer relative to the adjacent ones. Hence, this drift velocity represents the velocity differential 

between two adjacent atomic planes, i.e., 𝛿𝑣 = 𝑘𝜆.  Furthermore, 𝛿𝑣 𝜆𝑧
⁄  represents the velocity 

gradient in z-direction, which appears in Newton’s law for viscous flow, 

𝜏𝑧𝑥 = 𝜂
𝛿𝑣

𝜆𝑧
⇒ 𝜂 = 𝜏𝑧𝑥𝜆𝑧 𝛿𝑣⁄ = 𝜏𝑧𝑥𝜆𝑧 𝑘𝜆⁄ . (4.4) 

Substituting Equation 4.3 in Equation 4.4 yields, 

𝜂 = 𝜏𝑧𝑥𝜆𝑧 (
𝑄𝑎

𝑄𝑔
𝑒−𝐸𝑎 𝑘𝐵𝑇⁄ 𝜏𝑧𝑥𝜆𝑥𝜆𝑦𝜆

2

ℎ
)
−1

=
ℎ𝜆𝑧

𝜆𝑥𝜆𝑦𝜆2

𝑄𝑔

𝑄𝑎
𝑒𝐸𝑎 𝑘𝐵𝑇⁄ . (4.5) 

In this expression, the various length parameters, x, y, z, and  are approximately of the order 

of the interatomic spacing, and they appear in the expression as a grouping that roughly 

delineates the reciprocal of the volume in which the fundamental mechanism of the atomic jump 

plays out. We therefore replace the grouping with a number density N.  Furthermore, for an 

(NVT) ensemble we have 

𝑆 𝑘𝐵⁄ = ln(Q) + 𝑈 𝑇⁄ , (4.6) 

where U is the system’s internal energy, which allows us to replace 𝑄𝑎 𝑄𝑔⁄ = 𝑒𝑆𝑎 𝑘𝐵⁄  under the 

condition that the process is isothermal and the total energy of the system does not change during 

a particle jump, which is typically the case. Note that Qa has one degree of freedom fewer than 

Qg. Also, we omit the ∆-symbol in front of both Ea and Sa for brevity and because it is needed 

later, but the reader should keep in mind that both of these quantities describe a difference 

between ground state and activated state. We finally get for the viscosity coefficient, 

𝜂 = ℎ𝜌𝑁𝑒
−𝑆𝑎 𝑘𝐵⁄ 𝑒𝐸𝑎 𝑘𝐵𝑇⁄ .         (4.7) 

It is interesting to note that in Newton’s law, 𝜎 = 𝜂𝜀̇, which is considered a linear response law 

describing the momentum flux (or stress), 𝜎 = (1 𝐴⁄ ) 𝑑𝑝 𝑑𝑡⁄ , that results from an imposed strain 
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rate, 𝜀̇,  is considered a rate coefficient, despite the fact that it has the physical dimension of a 

reciprocal rate. This is the consequence of the physical dimensions of the flux considered here. 

Moreover, as we outline in the following, it is important to not lose track of the fact that  is also 

a composite quantity in which the mechanistic rate coefficient appears in the denominator. 

In his initial derivation of Equation 4.5, Eyring did not provide a detailed explanation of how 

elementary jumps can take place in a dense liquid. There ought to be a space to which the atom 

or molecule can jump. In subsequent publications, he and his coworkers address this issue and 

propose a mechanism by which upon collision of two molecules they form a short-lived complex 

and exchange positions via rotation (“… given enough space …”), before dissociating again.29, 30 

Later, when expanding his model to account for bulk viscosity, Eyring allows for the creation of 

‘holes’ in the structure, which requires an additional amount of energy that compounds with the 

activation energy for motion.31 This can be thought of as equivalent to the intrinsic vacancy 

formation in crystals, except that they are less palpable in amorphous structures and, as the 

authors show, the free space needed to effect bulk viscosity is much smaller than the size of a 

particle.31 Similarly, relaxation and viscous dissipation in amorphous metals have been attributed 

to facilitation by point-like defects.32, 33 

Indeed, the detailed mechanism of atomic displacements during viscous flow likely involves the 

temporary creation of void space in the structure. This extra space could be generated in an 

entirely reversible fashion, i.e., depending solely on elastic deformations and allowing for the 

structure to be restored after completion of the event. Hence, the necessary energy, or at least a 

significant fraction thereof, would not be dissipated but returned in the form of mechanical work.  

Figure 4-1 shows a simplified cartoon of such a scenario. It is therefore important to analyze the 
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atomic-scale mechanisms underlying viscous processes in a medium using viscoelastic theory, 

even if this medium is well inside its liquid regime. 

4.2.2 Relation to Linear Viscoelasticity 

The standard approach for describing linear viscoelasticity is the Maxwell-Wiechert (MW) 

model,34 which consists of a number of Maxwell elements connected in parallel, as illustrated in 

Figure 4-2. Each Maxwell element by itself contains a provision for viscous dissipation (dash 

pot) and elastic storage (spring) of energy. The dynamics of each Maxwell element is expressed 

by the differential equation 

𝑑𝜎𝑗

𝑑𝑡
+ Γ𝑗𝜎𝑗 = 𝑀𝑗𝜀̇, (4.8) 

where j is the stress transmitted by element j, j is the relaxation rate associated with the 

dissipative mechanism represented by this element and Mj the associated elastic modulus. The 

relaxation rate can be written as 

Γ𝑗 = Γ0,𝑗𝑒
𝑆𝑎,𝑗 𝑘𝐵⁄ 𝑒−𝐸𝑎,𝑗 𝑘𝐵𝑇⁄ , (4.9) 

where 0,j is the attempt frequency, Sa,j the activation entropy, and Ea,j the activation energy of 

the jth mechanism. Comparison with Equation 4.7 allows us to equate Γ0,𝑗 = 𝑀𝑗 (ℎ𝜌𝑁,𝑗)⁄ , which 

ascribes this factor a value ranging between 1013 – 1015 s–1. Furthermore, we have the equalities 

Γ𝑗 = 𝑀𝑗 𝜂𝑗⁄ = 1 𝜏𝑗⁄ , where j is the characteristic relaxation time pertaining to this mechanism.  

The ratio 𝑀𝑗 𝜌𝑁⁄  may be material specific but is not known a priori. We allow for the number 

density N,j to also be mechanism specific, i.e., different mechanisms may be characterized by 

different spatial focus of energy. 

The number of elements needed to accurately describe an observed behavior depends on the 

complexity of the material. For a material that dissipates energy as well as supports a static load, 
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i.e., from a mechanical point of view one that is considered a viscoelastic solid, the minimal 

model involves two elements, of which one, the leftmost one in Figure 4-2, possesses a zero 

relaxation rate. This element is purely elastic. Each remaining Maxwell element represents a 

different relaxation mechanism, each characterized by a particular attempt frequency and 

activation free energy. Conversely, a liquid does not require the purely elastic element, unless it 

is subject to isotropic compressive strain. Under steady state conditions, such as apply to rotating 

cylinder viscometry, Equation 4.8 simplifies to Newton’s law, 

Γ𝑗𝜎𝑗 ≡ 𝜎𝑗(𝑀𝑗 𝜂𝑗⁄ ) = 𝑀𝑗𝜀̇ ⇒ 𝜎𝑗 = 𝜂𝑗𝜀̇,       (4.10) 

 

Figure 4-2 Illustration of the Maxwell-Wiechert model for linear viscoelasticity.  Load is transmitted via several 

Maxwell elements in parallel. 
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which means that probing the response of a viscoelastic liquid this way does not reveal the 

elastic component of the process. To access the complete set of characteristic measures it is 

indicated to employ oscillatory probing. In this case, the solution of Equation 4.8 yields 

𝜎𝑗 =
𝜔2+𝑖𝜔Γ𝑖

(𝜔2+Γ𝑗
2)
𝑀𝑗𝜀 ⇒

𝜎𝑗

𝜀
= 𝑀𝑗

∗ = 𝑀𝑗
′ + 𝑖𝑀𝑗

′′ =
𝜔2𝑀𝑗

(𝜔2+Γ𝑗
2)
+ 𝑖

𝜔Γ𝑗𝑀𝑗

(𝜔2+Γ𝑗
2)

, (4.11) 

where  is the probing frequency. Accordingly, the stress resulting from an imposed oscillatory 

strain is described by a complex mechanical modulus, of which the real component represents 

the ability of the system to reversibly store elastic energy, and is called the storage modulus, 

while the imaginary component measures the amount of energy that is dissipated into heat and is 

referred to as the loss modulus. As can be seen after regrouping the term for the imaginary 

component of the complex modulus, the loss modulus is related to the real component of a 

frequency dependent complex viscosity according to 

𝑀𝑗
′′ = 𝜔

𝑀𝑗 Γ𝑗⁄

(1+𝜔2 Γ𝑗
2⁄ )
≡ 𝜔𝜂′. (4.12) 
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Figure 4-3 Simulated viscosity vs. temperature curves as determined using different probing frequencies, for a 

model substance.  Inset: Comparison between the zero-frequency viscosity of a National Institute of Standards and 

Technology viscosity standard oil and the GHz-frequency data obtained from Brillouin light scattering. 

Measurement of these quantities can be carried out using different techniques, including 

dynamical mechanical analysis (10–3-102 Hz), ultrasonic characterization (104-106 Hz), and 

inelastic light scattering (109-1011 Hz). While each of these techniques has its advantages, they 

all offer access to a relatively narrow frequency range and thus limit the spectroscopic range. 

Hence, researchers resort to conducting relaxational spectroscopy, where varying the 

temperature, and consequently the rates of thermally activated processes, facilitates enhanced 

spectral coverage. With this approach, spectral features such as peaks reflecting resonant 

absorption of energy are cast from a frequency onto a temperature scale. It is useful, in this 
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context, to illustrate what to expect in terms of the temperature dependence of the mechanical 

loss or frequency dependent viscosity coefficients. In Figure 4-3 we show a series of simulated 

viscosity vs. temperature curves as determined using different probing frequencies, for a model 

substance. These curves are generated using Equation 4.12 after dividing all sides by  and 

substituting Equation 4.9 for j, each with the same values for all parameters, except for the 

frequency . 

Accordingly, at zero frequency Equation 4.12 yields the familiar monotonic decrease of the 

viscosity with temperature. Indeed, this data would yield a straight line if plotted as the log  vs. 

1/T plot. However, at finite probing frequencies, the curves exhibit maxima that occur at higher 

temperatures the higher the frequency. On the high-temperature sides of the maxima, viscosity 

values determined at different probing frequencies all converge. This is the case when the 

characteristic relaxation time has dropped below the reciprocal of even the highest frequency. 

The relaxation process then comes to completion well within the period of the selected phonon. 

At low temperatures the viscosities drop off sooner the higher the probing frequency. The fact 

that viscosities vanish when approaching zero temperature, or equivalently, increase with 

temperature in the low-temperature regime reflects the fact that no viscous processes are 

sufficiently activated to effect any measurable energy dissipation within the period of the probe. 

The maximum viscosities correspond to the resonance between probing frequency and relaxation 

rate, causing the strongest dissipation of energy. 

We identify relaxation mechanisms based on their activation energy, Ea, activation entropy, Sa, 

and attempt frequencies, 0. The temperature at which viscous dissipation peaks is an easily 

recognizable and unambiguous quantity in relaxational spectroscopy. In general, as with any type 

of spectroscopy, the more separated spectral features are, the more reliably they can be assigned 
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to the underlying mechanisms. We now examine how relaxational spectroscopy is affected in 

this regard by the probing frequency. The relaxation peak maximum is characterized by the 

condition (𝜔 Γ0⁄ )𝑒−𝑆𝑎 𝑘𝐵⁄ 𝑒𝐸𝑎 𝑘𝐵𝑇
∗⁄ = 1. Solving for the peak position on the temperature scale, 

T*, yields 

𝑇∗ =
𝐸𝑎

𝑆𝑎−𝑘𝐵 ln(𝜔 𝛤0⁄ )
.          (4.13) 

For this peak temperature, variations of determining factors propagate as 

Δ𝑇∗ =
𝜕𝑇∗

𝜕𝐸𝑎
Δ𝐸𝑎 +

𝜕𝑇∗

𝜕Γ0
ΔΓ0 +

𝜕𝑇∗

𝜕𝑆𝑎
Δ𝑆𝑎 =

1

𝑆𝑎−𝑘𝐵 ln(𝜔 𝛤0⁄ )
(1 + 𝐸𝑎

𝑘𝐵ΔΓ0 Γ0⁄ +Δ𝑆𝑎

𝑆𝑎−𝑘𝐵 ln(𝜔 𝛤0⁄ )
). (4.14) 

Given that Ea is positive, (𝜔 Γ0⁄ )𝑒−𝑆𝑎 𝑘𝐵⁄ < 1 and 𝑆𝑎 − 𝑘𝐵 ln(𝜔 𝛤0⁄ ) > 0. However, with 

increasing frequency, the magnitude of the denominator decreases, which means that the factor 

magnifying the changes in Ea, 0, and Sa grows. In other words, the higher the probing frequency 

the more dispersed relaxation peaks are on the temperature scale, and the easier it is to identify 

the different contributions to a distribution of relaxation mechanisms. This is one advantage of 

high-frequency probing. 

4.3 High-Frequency Viscosity Measurements 

Brillouin light scattering (BLS) provides a unique way to determine the complex mechanical 

modulus by probing materials in the GHz frequency regime. BLS is based on the interaction 

between light and thermal phonons, which exist naturally in condensed matter at finite 

temperatures. Considering that the method is contact free and non-invasive, the scattering 

medium is not perturbed during the measurement; there is no external actuation and the system 

remains in thermodynamic equilibrium. Light is scattered due to the changes in the dielectric 

constant associated with density fluctuations. In BLS, the spectrum of scattered light from 

propagating phonons contains peaks at frequencies that are Doppler-shifted relative to that of the 
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incident light. Peaks associated with longitudinal and shear deformation modes can be 

distinguished, and hence, both the longitudinal and shear moduli can be determined using this 

technique. For a given mode, the frequency shift, , is proportional to the velocity of sound and, 

consequently, can be related to the elastic storage modulus of the scattering medium according to 

𝑀′ = 𝜌0𝜔
2 𝑞2⁄ , (4.15) 

where 0 is the average density of the scattering medium, 𝑞 = 2𝑛 𝜆 sin 𝜃 2⁄⁄ , is the wavevector, 

 is the angle between the incident and scattered light, n is the refractive index of the scattering 

medium, and  the wavelength of the light. Conversely, phonon wave attenuation causes peak 

broadening of the Brillouin peaks, and hence, the loss modulus is obtained as 

𝑀′′ = 𝜔𝜂′ = 𝜔𝜌0 Δ𝜔 𝑞2⁄ , (4.16) 

where ∆ is the full width at half maximum of the Brillouin peak. Hence, both components of 

the complex mechanical modulus are derived from a single spectrum. Details with regard to the 

technique and data analysis can be found in the pertinent literature.35–39 Here we summarize the 

most salient points. Although the procedural spatial resolution of the BLS technique is about 25 

µm using conventional optics and 1 µm using microscope optics, the phenomenological 

resolution is of the order of 100 nm. This is about half the wavelength of the phonon probed in 

the measurement, i.e., the size of the region that is under tensile deformation at any given 

moment, which corresponds to the length of the dog bone sample in an equivalent tensile testing 

experiment. 

Importantly, because of the high frequency, heat exchange between the scattering location and its 

surroundings is negligible, and the measured quantities represent the elastic response of the 

materials in the adiabatic (or isentropic) limit, i.e., they relate to only the potential energy change 

associated with the elastic deformation. Similarly, the measured viscous dissipation occurs on the 
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same time scale as atomic jumps. The viscous processes detected using BLS are based on the 

momentum exchanged between structural moieties, and hence, most closely gauge the 

mechanisms underlying Eyring’s theory. 

4.4 Data 

Our objective is to explore the connection between viscosity data obtained using rotating 

cylinder viscometry (or other suitable steady state techniques) and those obtained using BLS, 

i.e., comparing the viscoelastic response of glass forming liquids at 0 Hz and ~1010 Hz. Our 

evaluation is aimed at deriving new insights from this comparison. Here we focus on the analysis 

and the ensuing enhancement of the applicable conceptual framework. To this end we 

concentrate on viscosity data for a representative sodium borate system containing 32 mol.% 

Na2O. The BLS data was measured in our lab using a Sandercock six-pass tandem Fabry-Pérot 

interferometer.35, 39  The sample was suspended by a double-loop wire in a resistively heated 

furnace. The incident light, with a wavelength of 514 nm, entered the furnace vertically from the 

bottom and the scattered light was collected horizontally, i.e., at a 90˚ scattering geometry. 

Further details can be found in reference [38]. The zero-frequency data is obtained from the 

SciGlass database, as referenced by Cassar.40 Figure 4-4 (a) shows both components of the 

complex mechanical modulus measured using BLS, whereas Figure 4-4 (b) shows the measured 

zero-frequency viscosity as well as the loss modulus data from (a) converted to zero frequency 

simply by dividing M” by . The nature of the various fit lines is discussed in the next section. 

Note how the viscosity data measured at zero frequency and at GHz-frequencies line up at high 

temperatures (low ). This demonstrates that the viscosity measured using BLS indeed yields the 

correct magnitudes, which is important for the data analysis discussed below. The data shown in 

the inset of Figure 4-3 for a viscosity standard serves the same validation purpose. 
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4.5 Analysis and Discussion 

4.5.1 The Maxwell-Wiechert Model and its Limitations 

It has long been accepted that, considering the structural complexity and disorder in most glass 

forming liquids, it is sensible to assume that more than one Maxwell element is required to 

describe the viscoelastic response of such a liquid. The above Equation 4.11 is therefore 

expanded to a linear combination of terms, 

𝑀∗ = 𝑀0 + Δ𝑀0𝜓(β) + (∑
𝜔2

(𝜔2+Γ𝑗
2)
𝑀𝑗𝑗=1,𝑛 ) + 𝑖 (∑

𝜔Γ𝑗

(𝜔2+Γ𝑗
2)
𝑀𝑗𝑗=1,𝑛 ). (4.17) 

Here we also expanded the leading term, corresponding to the static modulus, to include a 

temperature dependent factor (), where 𝛽 = 1 𝑘𝐵𝑇⁄ . The nature and purpose of this factor is 

explained in the following. Substituting Equation 4.9 in Equation 4.17 leaves us with three 

fitting parameters per element, Mj, Ea,j, and Γ0,𝑗𝑒
𝑆𝑎,𝑗 𝑘𝐵⁄ , where the latter factor can evidently be 

optimized as a grouping.  We begin by fitting the loss modulus, which is relatively 

straightforward. Peak positions are controlled by Ea,j and Γ0,𝑗𝑒
𝑆𝑎,𝑗 𝑘𝐵⁄ , allowing us to swiftly 

narrow down reasonable initial guesses for the parameters, and the magnitude is regulated by Mj. 

It is also well known that, the number of terms to be used in Equation 4.17 can easily become 

ambiguous. Increasing the number of terms after achieving a less than satisfactory fit, typically 

requires re-optimizing the parameter values previously obtained. In other words, peak positions 

and magnitudes are not unique but depend on the number of terms used. We therefore aim to 

achieve the best possible fits with as few terms in Equation 4.17 as possible, to which end we 

constrain the range of values each parameter can assume. This prevents parameters from drifiting 

to physically unreasonable values, such as negative Mj values, which are phenomenologically not 

meaningful but can improve the fit. Similarly, and perhaps less obviously, we want to avaoid 
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factors such as Γ0,𝑗𝑒
𝑆𝑎,𝑗 𝑘𝐵⁄  and 𝑒−𝛽𝐸𝑎,𝑗  from straying by more than a couple of orders of 

magnitude from experiential estimates. 

We can simultaneously fit both the loss and storage moduli to optimize the aforementioned three 

parameters per term, by appropriately constructing a cost function and Jacobian matrices, after 

making the aforementioned adjustment to the first term in Equation 4.17. The need for this 

adjustment, which we have discussed in earlier publications,36, 38, 41 becomes obvious when 

comparing the peak magnitude of M” with the change in magnitude of M’ between the low and 

high temperature limits. While the former is barely 6.5 GPa the latter is about 55 GPa, more than 

eight times larger. The problem with this is that M’ and M”, as defined in Equation 4.11, are two 

components of a complex quantity and therefore must obey the Kramers-Kronig transformation. 

Accordingly, one would expect that the peak loss modulus values amounts to half the change in 

the storage modulus. Hence, the overall change in storage modulus cannot simply be attributed to 

the sum of all relaxational moduli Mj.  Indeed, the relaxational modulus is a concept based purely 

on the dynamics of a structurally unchanging system. 
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Figure 4-4 (a) Real and imaginary components of the complex mechanical modulus as a function of temperature 

measured using Brillouin light scattering, and best fits using a linear combination of Maxwell elements (see text).  

Note that the scales for M’ and M” are different. (b) Measured zero-frequency viscosity and high-frequency 

viscosity converted from M” in (a).  The black and green lines represent best fits using applicable model (see text).  

The red, nearly straight line represents a conversion to zero frequency of the expression that yields the best fit of the 

high-frequency viscosity.  The inset shows the deviation of the red line from linear, i.e., from Arrhenius behavior. 

Instead, we must account for an intrinsic structural reconfiguration when the material transitions 

from liquid to glass.42–44 This is accomplished by the first term in Equation 4.17, which for now 

only applies to the static modulus. Essentially, the change in elastic modulus is described by the 

so-called logisitic function, (). We can think of () as describing the change in a property of 

a material as it relates to a change in its thermodynamic state. As this thermodynamic change 

occurs, related changes in potential energy, structural order parameters, and physical properties 

can be observed. And while they all transition between a starting and ending value, they likely do 

not follow the same path. Hence, the logistic function is ultimately an abstract, but effective 

model expression. This construct has been employed in fields including epidemiology,45, 46 

behavioral sciences,47 ecology,48 economics,49 and chemistry.50 The logistic function is derived 
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from a type of reaction equation in which both the beginning and ending state weigh in, i.e. (in 

simplified form), 

𝜕𝜓(𝛽)

𝜕𝛽
= 𝐻𝜓(𝛽)(1 − 𝜓(𝛽)𝜈), (4.18) 

where H is a coefficient describing the rate of change with respect to the independent variable 

(i.e., driving force), and  serves to distribute the weight of influence of either the beginning or 

ending state on the progress of the transformation (skewedness).  This differential equation has 

the closed form solution, 

𝜓(𝛽) = (1 + 𝐶0𝑒
−𝜈𝐻(𝛽−𝛽𝐶))

−1 𝜈⁄
, (4.19) 

where C corresponds to the location at which the value of the function (C) must be known to 

define the integration constant C0. For example, with  = 1, Equation 4.19 describes the 

partitioning in a two-level system and H represents the energy difference between levels. We 

used the function in this form in our earlier publications.36, 38, 41 However, it is safe to assume that 

if the potential energy of the system changes in a certain way as a function of , other properties 

do not follow the exact same pattern. For example, it may be the case that the modulus changes 

more rapidly as the structure settles into the solid glass configuration than at high temperature, 

when the structure is in flux, even though the energy changes slow near Tg. Such a scenario is 

described by values of  > 1. We therefore treat C,  and H as additional fitting parameters, 

especially for the applications of () discussed in the next section. Specifically, H controls the 

steepness of the changeover,  the degree of asymmetry, and C is expected to closely 

approximate 1/kBTg. With this, the best fits of the BLS data using Equation 4.17 are shown in 

Figure 4-4 (a). In addition to the temperature dependent static modulus, we used three 

relaxational terms of which one dominates, while the other two terms improve fitting the details. 
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Accordingly, the dominant relaxation mechanism is characterized by an activation energy of 89.0 

kJ/mol, while that of the secondmost important mechanism is 56.1 kJ/mol. We further analyze 

these figures in the next section. 

Next, we examine how these findings compare to the zero-frequency viscosity data from the 

literature for the same sodium borate system. To this end we divide the measured loss modulus 

data and each parameterized term of the fitting function by the probing frequency, which yields 

𝜂′ = ∑
Γ𝑗

(𝜔2+Γ𝑗
2)
𝑀𝑗𝑗=1,𝑛 = ∑

Γ0,𝑗𝑒
𝑆𝑎 𝑘𝐵⁄ 𝑒

−𝛽𝐸𝑎,𝑗

(𝜔2+Γ0,𝑗
2 𝑒2𝑆𝑎 𝑘𝐵⁄ 𝑒

−2𝛽𝐸𝑎,𝑗)
𝑀𝑗𝑗=1,𝑛 , (4.20) 

and plot the results as a function of  in Figure 4-4 (b), where they appear as circular symbols 

along with the best fit line towards the bottom. The maximum in the data can be identified as a 

shallow bump because of the log scale of the ordinate. We then set the frequency in Equation 

4.20 to zero, simplifying the expression to lim
𝜔→0

𝜂′ = ∑ (𝑀𝑗 Γ0,𝑗⁄ )𝑒−𝑆𝑎 𝑘𝐵⁄ 𝑒𝛽𝐸𝑎,𝑗𝑗=1,𝑛 . The resulting 

curve is the red line, which appears to be linear and ascends towards increasing . On the high-

temperature side of the maximum, the red line forms the tangent to the fitting curve and 

measured data. The zero-frequency viscosity data from the literature is plotted as triangular 

symbols, exhibiting the characteristic curvature of a moderately fragile liquid (m = 25). The solid 

green line fitting this data is based on the Vogel-Tammann-Fulcher (VTF) equation, 𝜂 =

𝜂0𝑒
𝐵 (𝑇−𝑇0)⁄ . While at high temperatures we observe good agreement between viscosity data 

obtained at zero frequency and at 20 GHz, both in terms of magnitude and asymptotic 

temperature dependence, the loss modulus data converted to zero frequency significantly fails 

when extrapolated to low temperatures. Note that the red line deviates slightly from linear (see 

inset with residuals) as a result of the contributions from three relaxation mechanisms, but the 

curvature this produces is nowhere near that exhibited by the measured data. 
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4.5.2 Non-Linear Corrections  

In our earlier publications we concluded that BLS simply does not resolve viscous dissipation 

losses at low temperatures, and therefore, a correct extrapolation may not be expected. On the 

other hand, the combination of both components of the complex modulus does reveal how the 

structure transitions from readily dissipating mechanical energy to storing it elastically. 

Furthermore, a related recent study has yielded important new insights into the matter. When 

investigating ionic conductivity in mixed network forming glasses, we discovered a strong 

correlation between the activation energy for cation hopping and the adiabatic elastic modulus as 

determined using BLS.51 Indeed, a number of decades ago already, Frenkel52 and subsequently 

Anderson and Stuart53 used elastic moduli in their formulation of TST to describe atomic 

transport in liquids and amorphous materials. This approach is based on the notion that for an 

atom to jump from one stable site to the next atoms in the vicinity of the trajectory reversibly 

spread apart to open a passageway, which requires an elastic deformation. We elaborated on our 

observation and improved upon the Anderson-Stuart model. Our analysis shows that the 

activation energy is supplied to the site of the hopping event by a fortuitous overlap of phonons, 

focused not on the hopping atom alone but on a small region surrounding this atom, i.e., the 

affected volume, involving about 30 neighbors. These neighbors undergo displacements beyond 

their normal vibrational motions, which synchronize with the motion of the hopping atom so as 

to allow for the elementary transport event. The volume affected by the hopping process can be 

evaluated by comparing the activation energy (energy per hopping atom) with the adiabatic bulk 

modulus (energy per volume), with knowledge of the average phonon amplitude (e.g., as derived 

from the Debye-Waller factor).51 Multiplying the affected volume so obtained by the atomic 

number density N,j yields the number of atoms participating in the hopping process. The reason 
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why the atomic transport activation energy correlates specifically with the adiabatic modulus has 

to do with the fact that the rate of deformation of the affected volume must be commensurate 

with the instantaneous velocity of jumping atom. 

The data in Figure 4-4 (a) informs that the elastic modulus increases with decreasing 

temperature, significantly exceeding the relaxational modulus. This implies that upon cooling, 

the structure of the supercooled liquid changes, allowing for higher packing density, relaxation 

of covalent bonds, and optimization of non-bonding interactions. Therefore, it stands to reason 

that (1) we must anticipate that the stiffness in all structure types increases upon cooling, and (2) 

the activation energies for the associated relaxation mechanisms follow along with the increases 

in moduli. Hence, for the improved version of our viscoelastic model we assume temperature 

dependences for the relaxational moduli and corresponding activation energies as described by  

𝑀𝑗(𝛽) = 𝑀0,𝑗 + 𝜓𝑗(𝛽)Δ𝑀𝑗, and (4.21) 

𝐸𝑎,𝑗(𝛽) = 𝐸0,𝑗 + 𝜓𝑗(𝛽)Δ𝐸𝑗. (4.22) 

Substituting these expressions in Equation 4.9 yields Γ𝑗(𝛽) = Γ0,𝑗𝑒
𝑆𝑎,𝑗 𝑘𝐵⁄ 𝑒−𝛽𝐸𝑎,𝑗(𝛽) and in 

Equation 4.17 it yields 

𝑀∗ = 𝑀0 + Δ𝑀0𝜓(𝛽) + (∑
𝜔2

(𝜔2+Γ𝑗
2(𝛽))

𝑀𝑗(𝛽)𝑗=1,𝑛 ) + 𝑖 (∑
𝜔Γ𝑗(𝛽)

(𝜔2+Γ𝑗
2(𝛽))

𝑀𝑗(𝛽)𝑗=1,𝑛 ). (4.23) 
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Figure 4-5 (a) Real and imaginary components of the complex mechanical modulus as a function of temperature 

measured using Brillouin light scattering, and best fits using the enhance viscoelastic model in which both 

relaxational moduli and activation energies for each relaxation mechanism possess an additional intrinsic 

temperature dependence introduced by the logistic function.  Note that the scales for M’ and M” are different. (b) 

Measured zero-frequency viscosity and high-frequency viscosity converted from M” in (a). The green line 

represents best fits using applicable model (see text). The red line represents a conversion to zero frequency of the 

expression that yields the best fit of the high-frequency viscosity assuming temperature dependent activation 

energies and relaxational moduli for each relaxation mechanism. The inset shows the best fit activation energies for 

the three relaxation mechanisms as a function of b. 

Note that in Equation 4.9, j is already explicitly a function of , but now it has a second 

implicit dependence on . Also, strictly speaking we should consider a similar -dependence of 

Sa,j. However, given the estimated magnitude of the entropy, this would not have a very 

noticeable effect on the fitting quality, and in light of the noise in the experimental data, the 

accuracy with which the entropy could be determined is questionable. We therefore fit the 

enhanced expression again with the grouping Γ0,𝑗𝑒
𝑆𝑎,𝑗 𝑘𝐵⁄  as a single parameter. Finally, we 

formally allow for the logistic function to be specific to the relaxation mechanism. It turns out 

that very little adjustment pertaining only to the value of C is required. This is consistent with 

the notion that the logistic function originates with the concept of structural changes, and 
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consequently, all properties reflective of this structure should have a similar temperature 

dependence. Only the static modulus requires different fitting parameters. The possibility for the 

activation energy to be temperature dependent has been considered by other authors.54–56 We 

arrived at this hypothesis independently, following a different trail of indications, thus lending 

the notion additional credibility. 

The results of our analysis are summarized in Figure 4-5. The contents are structured similar to 

that in Figure 4-4.  Again, pane (a) shows the experimental data obtained from BLS and the 

best-fit curves using Equation 4.23. Compared to Figure 4-4 (a), now the temperature 

dependent activation energy causes the relaxation peaks to be more asymmetric, i.e., the low-

temperature flank rises more abruptly, and the high-temperature tail is more stretched out. This 

requires a stronger weight to be attributed to low-activation energy peaks, making them more 

relevant to the fitting procedure. The important differences can be observed in Figure 4-5 (b), 

which also shows the loss modulus data divided by the frequencies as circular symbols, 

overlayed by a line representing the function  

𝜂′ = ∑
Γ𝑗(𝛽)

(𝜔2+Γ𝑗
2(𝛽))

𝑀𝑗(𝛽)𝑗=1,𝑛 = ∑
Γ0,𝑗𝑒

𝑆𝑎 𝑘𝐵⁄ 𝑒
−𝛽𝐸𝑎,𝑗(𝛽)

(𝜔2+Γ0,𝑗
2 𝑒2𝑆𝑎 𝑘𝐵⁄ 𝑒

−2𝛽𝐸𝑎,𝑗(𝛽))
𝑀𝑗(𝛽)𝑗=1,𝑛 , (4.24) 

evaluated using the parameters obtained by fitting the loss modulus in Figure 4-5 (a) using 

Equation 4.23. Finally, setting the frequency in Equation 4.24 to zero, i.e., 

lim
𝜔→0

𝜂′ = ∑ (𝑀𝑗(𝛽) Γ0,𝑗⁄ )𝑗=1,𝑛 𝑒−𝑆𝑎 𝑘𝐵⁄ 𝑒𝛽𝐸𝑎,𝑗(𝛽), (4.25) 

we obtain the red line, which now fits the zero-frequency viscosity very well. We emphasize that 

this data was not directly fit using Equation 4.25, but all parameters were determined by fitting 

an entirely different set of data, namely the high-frequency complex modulus obtained using 

BLS. Also, note that for the conversion and extrapolation according to Equation 4.24 and 4.25 
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we used the longitudinal modulus measured at high frequency, and compare the result to the 

zero-frequency shear viscosity. Consequently, we do not anticipate a perfect match between the 

red line and the triangular symbols in Figure 4-5 (b). It turns out that for inorganic network 

glasses and their melts, the longitudinal modulus is about a factor 2 to 3 times higher than the 

shear modulus, which on the logarithmic scale barely exceeds the scatter in the zero-frequency 

viscosity data. Indeed, the red line runs consistently above the triangular symbols by about the 

expected amount. 

The temperature dependent activation energies resulting from this analysis are plotted in the inset 

of Figure 4-5 (b) as a function . Accordingly, that of the dominant term varies from just under 

60 kJ/mol at high temperatures to about 200 kJ/mol near Tg. The high-temperature magnitudes 

are commensurate with the typical activation energy for atomic transport in a liquid, whereas 

those near Tg are still considerably lower than the bond energies in these oxide systems. 

Deviation from Arrhenius behavior is a direct consequence of the temperature dependence of the 

activation energy. However, the shape of the logistic function does affect the quality of 

agreement between the zero-frequency viscosity data and Equation 4.25. It appears that large 

values of ∆Ej and values of  > 1 are representative of more fragile liquids. We chose Equation 

4.19 as the form of the logistic function in our analysis for its roots in thermodynamics, but we 

continue to explore alternative forms. 

By comparison, the VTF fit yields a pseudo-activation energy R·B = 63 kJ/mol. In the VTF 

model, the factor B is compared to only a fraction of the available thermal energy; it therefore is 

not an activation energy in the sense of TST, and generally underestimates the actual energy 

required for the activated process. The values Γ0,𝑗𝑒
𝑆𝑎,𝑗 𝑘𝐵⁄  range right around 1014 s–1, which is 

consistent with activation entropies ranging from 10-20 J/mol•K and an affected volume of the 
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order of 10 Å3. These values are all physically meaningful, and we therefore conclude that our 

model not only provides excellent numerical fits to the data, but also yields sensible insights with 

regard to the underlying phenomenology. 

Finally, we have confirmed that our analysis approach is consistently applicable to other glass 

forming oxides, covering a wide fragility range. However, a full report on our composition 

dependent findings risks overwhelming the present account and is therefore planned for a future 

publication. For now, we summarize that the more fragile a liquid, the more rapidly the adiabatic 

storage modulus changes as a function of temperature.36–38 

4.6 Conclusions 

BLS provides access to unique materials characteristics of glass forming systems, namely the 

adiabatic complex mechanical modulus as a function of temperature across the glass transition. 

The technique yields a storage modulus that starts out in the tens of GPa at ambient conditions, 

decreases rapidly above the glass transition temperature, and towards high temperatures 

stabilizes at a single-digit finite value corresponding to the bulk modulus of the liquid. The 

associated loss modulus exhibits a maximum in the vicinity of steepest descent in the storage 

modulus. Based on this appearance, a description of mechanical response using the MW model 

for viscoelasticity therefore seems indicated, except that the two components of the complex 

modulus do not observe the Kramers-Kronig transformation. This discrepancy can be eliminated 

by accounting for a temperature dependence of the static modulus, modeled using the logistic 

function, which has the storage modulus grow larger as the system transitions from a liquid to 

glass on account of the structural changes that occur during this process. With this correction, the 

high-frequency complex modulus is well described. However, when converting the loss modulus 

to viscosity, and extrapolating the MW expression to zero frequency, it only fits the viscosity 
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obtained using rotating cylinder viscometry asymptotically in the high-temperature limit. To 

remedy this shortfall we must consider that the relaxational moduli and, importantly, the 

activation energies for viscous dissipation for all Maxwell elements, since the two quantities are 

correlated, also exhibit a temperature dependence. Only then, using a similarly parameterized 

logistic function to describe this temperature dependence, can we achieve a satisfactory 

description of the zero-frequency viscosity. Hence, the structural changes in the glass transition 

regime not only affect the static modulus, but all mechanical responses of the supercooled liquid 

structure, which includes the activation energies for atomic motion, as these rely on elastic 

deformations of their surroundings. Note that the activation free energy is strictly a feature of the 

energy landscape, namely the difference between the free energy of the activated complex and 

that of the ground state. Then, because the deviation from Arrhenius behavior of the viscosity is 

a direct consequence of the change in activation energies and entropies with temperature, the 

fragility of a glass forming liquid can be regarded as a measure of the rate of change with 

temperature in the energy landscape topography. 
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Chapter 5 Application of Variable Activation Free-Energy Model to Viscous Processes in 

Inorganic Oxide Glass-Formers 

Abstract 

We have developed the workflow for analyzing steady-state viscosity data using our new 

Variable Activation Free Energy (VAFE) model, reviewing salient points underlying our model 

and how they factor into the derived formalism and reporting on how our model performs when 

fitting viscosity data of 847 oxide glass formers. The VAFE model is an enhanced descriptive 

model for viscosity of glass-forming liquids that not only fits experimental data well but 

produces quantitative and physically meaningful parameters. Our model takes the structural 

evolution resulting from traversing the glass transition regime, and thus the variation in the 

activation barrier, for the viscous process into account. We compared representative fits of the 

VAFE model with those of the VFT and MYEGA equations and find our model to be more 

robust to extrapolation and possessing more reasonable behavior in the infinite-temperature limit 

which simply encodes non-enthalpic contributions to the rate coefficient. It is demonstrated that 

VAFE model fits can be utilized to gain insight into the effect of the component speciation and 

composition of glass forming liquids on the viscous process by comparing magnitudes of the 

fitting parameters. These values can indicate which factors are dominant in dictating the 

viscosity of specific glass forming compositions and how these factors and their sensitivities to 

changes in temperature vary as a function of composition. Through analysis using the VAFE 
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model, we link the temperature-dependent change in potential energy due to structural changes in 

glass formers to fragility. This enables the reconciliation of temperature-dependent changes in 

the average ground-state potential energy of the glass forming liquid with changes in viscous 

activation enthalpy and the ability to estimate the number of atoms involved in the viscous 

relaxation process which ranges from approximately 10 to 50 atoms for the oxide glass formers 

studied. 
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5.1 Introduction 

Accurate knowledge of the viscosity of glass forming liquids and its variation with temperature, 

pressure, and chemical environment is a fundamental aspect of numerous fields of study and 

technologies, which include macromolecular and polymeric sciences1,2, ionic and complex 

liquids3,4, geophysics5,6, food and drug sciences7–9, ceramics10,11, and metallurgy12,13. The ability 

to navigate the regime of state variables in which the molecular system must be conditioned to 

prevent it from accessing its thermodynamically stable crystalline state is key to achieving the 

unique properties associated with materials that are amorphous and monolithic at all length 

scales. Reliable prediction of the viscosity is essential for regulating working temperatures, 

establishing proper annealing conditions, suppressing crystal growth, and carrying out physical 

processing, molding, and shaping of glass and glass-ceramics products.14–16 

Furthermore, the rapid increase in viscosity with decreasing temperature is perceived to reflect 

an essential characteristic of the glass transition phenomenon and has therefore spurred a distinct 

field of scientific study.2,7,12,17–20 In particular, there are aspirations that a better understanding of 

what causes such an accentuated change in the structural relaxation rates of glass forming 

systems may provide insights into the nature of the amorphous state of matter, a mystery that has 

thus far remained impervious to conventional structural probes. To this end, it is necessary to 

connect viscosity with the underlying molecular scale processes. In the early 1930s, Eyring 

derived his model for the viscosity coefficient, which provides a formalism that can be used to 

quantify the elementary mechanisms of this complex process on the basis of transition state 

theory.21 Calculation of viscosity requires the evaluation of the relaxation rate where the system 
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must overcome and activation barrier from one equilibrium state to another. The relaxation rate 

is shown to principally depend on the factors described in the following equation, 

𝛤 ∝ (
𝑄𝑎

𝑄𝑔
) 𝑒

−𝐸𝑎
𝑘𝐵∙𝑇,          (5.1) 

where Qg is the ground-state partition function, Qa is the activated-state partition function, kB is 

the Boltzmann constant, Ea is the activation energy required for the process to occur, and T is the 

temperature.21 The difference between the natural logarithms of the activated and ground state 

partition functions is equal to Sa, or the entropy of activation. This is the difference in entropy, or 

difference in the number of equivalent energy microstates, between the activated and grounds 

states. The amount of energy dissipated in viscous flow is inversely proportional to the relaxation 

rate, so Eyring’s equation for viscosity is written as, 

𝜂 = ℎ
𝜆𝑧

𝜆𝑥𝜆𝑦𝜆2
𝑒
−𝑆𝑎
𝑘𝐵 𝑒

𝐸𝑎
𝑘𝐵∙𝑇 = ℎ𝜌𝑁𝑒

−𝑆𝑎
𝑘𝐵 𝑒

𝐸𝑎
𝑘𝐵∙𝑇,       (5.2) 

where h is Planck’s constant and ρN = λz/( λx λy λ
2). The various l-parameters represent the 

characteristic length scales on which the elementary relaxation mechanism takes place. 

Specifically, Eyring conceived of two layers of a liquid being sheared passed one another in 

opposite directions as a result of an applied shear stress ±τzx. Rather than sliding past one another 

steadily and simultaneously as a collective, the molecular entities jump individually from one 

equilibrium position to the next in a stochastic fashion. In due course all molecules jump 

eventually with an average bias in the direction of the applied shear stress.  In this description, λz 

is the distance between the liquid layers, λx and λy make up the per atom contact area of the 

layers, and λ is the atomic jump distance of the mechanism. The length parameters λ, λx, λy, and 

λz are all on the order of the interatomic spacing and together can be combined to represent the 
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reciprocal volume, ρN, involved in the jump mechanism. Equations 5.1 and 5.2 assume that the 

energy and entropy of activation are constant. That is that these values, and therefore the 

potential energy surface of the structure they arise from, do not change as a function of 

temperature. This formalism adequately describes the temperature dependence of the viscosity 

coefficient for simple liquids, resulting in a linear relationship between the logarithm of the 

viscosity and inverse temperature, 1/T. However, this equation is unable to capture the complex 

viscous characteristics of most glass-forming liquids. 

For most glass forming liquids, the temperature dependence of viscosity deviates from the 

semilogarithmic linearity of Eyring’s equation in ways reflected by a steeper slope at low 

temperatures and a shallower slope at high temperatures. The underlying reason for the deviation 

from Arrhenius behavior in the temperature dependence of the viscosity has been a factor of 

intense scrutiny.18,20,22,23 Austen Angell plotted viscosity data for various types of glass forming 

liquids vs. reciprocal temperature normalized with respect to the glass transition temperature, Tg, 

thereby devising the so-called Angell plot shown in Figure 5-1, which casts the viscosity 

profiles onto a set of master curves. Based on this observation, he conceived the concept of 

strong vs. fragile behavior to categorize the temperature dependence of the viscosity for glass 

forming systems.24–28 This paradigm has enabled researchers to better gauge, label, and interpret 

their findings. The more the log10(η) vs. Tg/T data deviates from linearity, the more “fragile” the 

liquid is said to be, while nearly linear, or Arrhenius, behavior is designated as “strong”.29 To 

quantify this phenomenon, various fragility indices have been suggested to date. The most 

commonly utilized of these is the kinetic fragility, m, which is based on the slope of the log 

viscosity versus inverse temperature relationship at the glass transition temperature.30 
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Figure 5-1 Angell Plot depicting the pattern of liquid viscosity-temperature relations for Tg-based normalization 

showing contrast between network and molecular or simple ionic liquid behavior.24 

𝑚 = lim
𝑇→𝑇𝑔

𝜕 log10 𝜂

𝜕(
𝑇𝑔

𝑇
⁄ )

          (5.3) 

Despite the progress made towards the development of theoretical frameworks, categorization, 

and quantitative tools, the structural and physicochemical origin of this non-Arrhenius behavior 

remains an open question. The most widely used models to date are very successful at 

interpolating the viscosity-temperature relationship and have some success in extrapolation but 

yield little insight into the microscopic structural and mechanistic processes affecting viscosity in 

these glass-forming liquids when relaxation takes on non-Arrhenius character. In our earlier 
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publication,31 we introduced the basic framework of an enhanced descriptive model for viscosity 

of glass-forming liquids that not only fits experimental data well but produces quantitative and 

physically meaningful parameters that can be reconciled with long-successful physics-based 

models such as transition state theory. Based on the same phenomenological approach as 

pioneered by Eyring, our model takes the structural evolution resulting from traversing the glass 

transition regime, and thus the variation in the activation barrier, for the viscous process into 

account. 

In this previous publication, we derived our formalism starting with the complex mechanical 

modulus of a moderately modified sodium borate glass forming system, obtained in the adiabatic 

(at ~1010 Hz) limit using Brillouin light scattering. We showed that, using our new model, the 

loss modulus measured at high frequencies can be extrapolated to zero frequency and accurately 

yield the viscosity measured using steady-state viscometry. Moreover, the temperature 

dependence of the activation energy for viscous relaxation can be evaluated through combined 

analysis of the storage and loss modulus. In this context, the importance of utilizing the adiabatic 

modulus arises from the fact that the atomistic jump processes that underly viscous relaxation 

also occur on a time scale that does not allow for heat exchange, even with the immediate 

surroundings. Note that in Eyring’s equation, the attempt frequency for atomic hopping, G0 has 

been expressed in terms of the generic phonon energy quantum, G0 = kBT/h, which does not 

contain materials specific information. With the knowledge of the adiabatic storage modulus of, 

say for shear deformation, G’, we can formally replace hρN in Equation 5.2 with G’/G0,
31 where 

the value for G0 can be gained from vibrational spectroscopy measurements such as Raman 

scattering or infrared absorption spectroscopies. 
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However, short of such measurements, the term hρN can also be treated as a fitting parameter. In 

the present work, we developed the workflow for analyzing steady-state viscosity data using our 

new model. We begin by reviewing the salient points underlying our model and how they factor 

into the derived formalism. We then report on how our model performs when fitting viscosity 

data of 847 oxide glass formers and how to interpret the results. 

5.2 Temperature Dependence of the Activation Free Energy 

The dependence of the viscous activation barrier on temperature has been previously asserted by 

other authors where it is generally believed that, should the activation energy depend on 

temperature, it increases with decreasing temperature.32–39 In accordance with this perspective, 

there have been a modest number of viscosity models put forth that include a temperature-

dependent activation energy.34,40 Starting with Equation 5.2 and combining the energy and 

entropy of activation into an activation free energy using the standard thermodynamic definition, 

𝐺𝑎 = 𝐸𝑎 − 𝑇𝑆𝑎,          (5.4) 

and replacing 1 (𝑘𝐵𝑇)⁄  with the thermodynamic beta, β, Erying’s equation is now in a compact 

form 

𝜂 = ℎ𝜌𝑁𝑒
𝛽𝐺𝑎 ,           (5.5) 

which is more conducive to the following derivation. Next, we take the logarithm of the equation 

as is commonly done for linearization. 

ln(𝜂) = ln(ℎ𝜌𝑁) + 𝛽𝐺𝑎         (5.6) 

Allowing for Ga to be a function of β, we take the derivative of Equation 5.6 with respect to β 

using the chain rule to get 
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𝑑ln⁡(𝜂)

𝑑𝛽
⁡= 𝐺𝑎(𝛽) + 𝛽

𝑑𝐺𝑎(𝛽)

𝑑𝛽
.         (5.7) 

For a perfectly strong glass former, dGa/dβ = 0 and Ga is a constant independent of temperature, 

resulting in a constant slope of log10(η) vs. Tg/T profile, which conforms with Eyring’s equation. 

However, when the log10(η) vs. Tg/T profile exhibits curvature, it must follow that dGa/dβ ≠ 0. 

Moreover, since the activation free energy compares the energy levels between two specific 

locations in the free energy landscape, namely the ground state and activated state (or saddle 

point), a change in the activation free energy with temperature reflects a change in this landscape 

brought about by structural rearrangements and specific volume changes associated with the 

material transitioning between liquid and glass. So dGa/dβ is the important term here, but we do 

not know its functional form a-priori. 

At this juncture, there exist several options. One is to make no direct assumptions about the 

functional form for Ga(β) and expand it as a Taylor series, which in practice amounts to a 

polynomial regression where the coefficients are determined by fitting to the experimental data. 

This approach has several disadvantages, the most significant among which is that there is a 

tendency to over-fit, especially for sparse data sets, and as a result, leads to nonsensical 

intercepts with the ordinate. Instead, we opted to choose a definitive functional form with a 

relatively small number of parameters. The approach we have taken is both rooted in 

thermodynamic and kinetic formalisms and can thus be considered as describing the transition 

from a liquid to a glass (or vice versa) as a reversible rate phenomenon. The function selected is 

based on Richard’s generalized differential equation, which has the structure of a generic rate 

equation, shown here applied to the free energy of activation.41 

𝑑𝐺𝑎(𝛽)

𝑑𝛽
= 𝐻 ∙ 𝐺𝑎(𝛽) (1 − (

𝐺𝑎(𝛽)

∆𝐺𝑎
)
𝜈

)        (5.8) 
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Integration of Equation 5.8 with respect to β yields the generalized logistic function, defined 

here as ψ(β). The logistic function was originally developed to describe population growth but 

has since been used to model chemical reactions and the spread of communicable diseases, it is 

commonly used in machine learning applications as an activation function, and it is even present 

in the functional form governing Fermi-Dirac statistics for the energy distribution of fermions at 

a given temperature.42–46 

𝐺𝑎(𝛽) ⁡= ∆𝐺𝑎𝜓(𝛽) + 𝐶1,         (5.9) 

where 

𝜓(𝛽) = (
1

1+𝐶0𝑒
(−𝜈∙𝐻(𝛽−𝛽𝑔) )

)

1
𝜈⁄

.        (5.10) 

Equation 5.8 is integrated as a boundary value problem, typically by choosing the value of ψ(β) 

where β = βg, i.e., at the glass transition temperature, which defines the integration constant C0. 

Naturally, the expression for Ga(β) is also accepting of a bias C1. Furthermore, based on the 

observation that by and large log10(η) vs. Tg/T profiles exhibit their steepest slope at Tg, we also 

require that the function’s inflection point (the root of the second derivative) be located at the 

glass transition temperature. Finally, we normalize the value to unity, so that within the domain 

of interest β = 0 to β = βg the function varies between 0 and 1 and also to enforce that the 

curvature in the viscosity profiles is always greater than or equal to zero. With these constrains, 

the expression for ψ(β) becomes, 

𝜓(𝛽) = (
1+𝜈

1+𝜈𝑒(−𝜈∙𝐻(𝛽−𝛽𝑔) )
)
1
𝜈⁄

         (5.11) 

where the steepness of the slope is primarily governed by H, while the parameter ν is responsible 

for the degree of asymmetry of the function. A special case for this function results when ν = 1. 
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This reduces Equation 5.11 to the two-level system model commonly used to describe phase 

relations in thermodynamics. Here, we make no a-priori assumption about the value of ν and 

allow these parameters to be optimized via a nonlinear fitting procedure. In the next section the 

meaning of the parameters ν and H is further elaborated on in the context of physicochemical 

quantities. 

Combining Equations 5.9 and 5.11 results in the description of a variable activation free energy 

(VAFE), in the present context, one that is temperature dependent. As mentioned above, we 

already validated our VAFE model by fitting the adiabatic complex mechanical modulus of a 

sodium borate glass obtained using Brillouin light scattering. In that case, we modified a three-

term Maxwell-Weichert model with our VAFE enhancement..31 This affects the relaxational 

modulus terms that appear in both the storage and loss modulus, but the effect of the correction is 

especially noticeable in the storage modulus, as it directly reflects the shape of the logistic 

function. Demonstrating that viscosity data is equivalent whether it is measured at 0 Hz or 1010 

Hz frequencies and that values are mutually convertible substantiates the robustness of the 

VAFE concept. This conformity allows for a more definitive interpretation of structural 

relaxation mechanisms and their relationship to materials chemistry, and it opens new ways for 

measuring viscosity. 

In the following we describe insights we gained by using the VAFE formalism for viscous 

dissipation in its zero-frequency limit to analyze a steady-state viscosity data set of 847 oxide 

glasses.47 The form of our VAFE model is essentially the same as Eyring’s equation, except that 

the enthalpy and entropy of activation are now both functions of the independent variable χ, 
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where χ is simply equal to Tg/T to put the equation in a form commensurate with that of an 

Angell plot. 

ln 𝜂(𝜒) = ln(ℎ𝜌𝑁) −
𝑆𝑎(𝜒)

𝑘𝐵
+

𝐸𝑎(𝜒)

𝑘𝐵𝑇𝑔
∙ 𝜒       (5.12) 

The enthalpy of activation, Ea(χ), and entropy of activation, Sa(χ), are given by 

𝐸𝑎(𝜒) = 𝐸0 + 𝛥𝐸 𝜓(𝜒) and         (5.13) 

𝑆𝑎(𝜒) = 𝑆0 + 𝛥𝑆 𝜓(𝜒),         (5.14) 

which comes directly from our earlier integration using Richard’s differential equation. E0 and S0 

are static quantities that relate closely to the activation enthalpy and entropy in the high 

temperature liquid state. The values ΔE and ΔS correspond to the magnitude of change in the 

activation enthalpy and entropy between the high temperature liquid state and the material at its 

glass transition temperature, while the function ψ(χ) determines how this occurs with respect to a 

change in the temperature. The values of the parameters ln(hρN), S0, ΔS, E0, ΔE, H, ν, and Tg are 

unknown for each composition and a nonlinear fitting method is required. The parameters 

ln(hρN) and S0 are both constants and therefore indistinguishable from one another in terms of 

fitting procedures so these values are combined and fit as a single parameter (ln(hρN) - S0/kB). 

The value of Tg can be calculated as a function of the other parameters so long as the value of the 

viscosity at the glass transition temperature is known. Since Tg is defined as the temperature at 

which the viscosity of the supercooled liquid reaches a value of 1012 Pa·s, this value is always a 

known quantity by construction. The value of Tg can therefore be written as, 

𝑇𝑔 =
𝐸0+𝛥𝐸

𝑘𝐵(ln(1012)+
𝑆0
𝑘𝐵
+
𝛥𝑆

𝑘𝐵
+ln(ℎ𝜌𝑁))

        (5.15) 



 

 

 

135 

since ψ(χ) is equal to unity at the glass transition temperature. The parameter ν is also not treated 

as a fitting parameter but instead as a hyperparameter that has a constant value across all glass 

compositions and is varied manually over each set of fits of the entire viscosity data set to find 

the optimal value. This is done to simplify and increase the stability of the fitting process 

because the value of ν has the smallest effect on the quality of the fits. Analytically, the value of 

ν determines the degree of asymmetry of ψ(χ), where the two-level simplification, ν = 1, is 

symmetric. Based on the general behavior of log10(η) vs. χ profiles, regardless of the degree of 

fragility, we already know that ν cannot be negative and is unlikely to be less than unity because 

the that would indicate a slowing in the rate of change of viscosity as Tg is approached from 

above. This would be indicated by negative curvature in the profile which has not been reported. 

A constrained trust-region robust fitting algorithm based on Newton’s method is used to fit the 

model to the viscosity profiles of the oxides glass-formers. Each glass composition is refit 50 

times using bounded randomized initial values for the parameters and the fit with the minimum 

residual squared error for each composition is kept. A range of ν-values greater than or equal to 

unity were tested and found them to minimally affect the quality of the fits. Although changing ν 

does affect the values of the other parameters, with increasing magnitude of ν this effect 

gradually vanishes. Holding all other parameters constant and taking ν = 1 as the basis for 

comparison, an increase in the value of ν from 1 to 2 results in a 20% increase in the value of 

log10(η) at the infinite temperature intercept – the location most greatly affected by this change. 

In comparison, changing the value of ν from 6 to 7 only results in a 0.7% increase in log10(η) and 

by ν = 100, the percent change is in parts per million. The model appears to converge as ν 
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approaches infinity. Therefore, we adopt the expression for generalized logistic function, ψ(χ) in 

limit of the infinite ν, namely 

lim
𝜈→∞

𝜓(𝜒) = lim
𝜈→∞

(
1+𝜈

1+𝜈𝑒(𝜈∙𝛽𝑔∙𝐻(1−𝜒))
)
1
𝜈⁄

= 𝑒(𝛽𝑔∙𝐻
(𝛸−1))

.     (5.16) 

This limiting behavior approaching an exponential form can be seen in the characteristics the 

differential form of ψ(χ), Richard’s differential equation, as the value of ν is increased in Figure 

5-2. Using this simplified model for ψ(χ), we fit all 847 viscosity profiles with our VAFE model. 

Care is taken to properly constrain the values of (ln(hρN) - S0/kB), ΔS, E0, ΔE, and H, such that 

fits become unique and the fit values are physically meaningful. 

 

Figure 5-2 The shape of dψ(χ)/dχ, Richard’s differential equation as the parameter ν is increased. The limiting 

behavior is that of an exponential function. 
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One such method that has been successful, at least for application within the current oxide glass-

former data set, results in a reduction in the number of fitting parameters from 5 down to 3 

through enforcing the following relationships: 

𝛥𝐸 = 𝐻 ∙ 𝛽𝑔 ∙ 𝐸0, and          (5.17) 

𝛥𝑆

𝑘𝐵
= 𝐻 ∙ 𝛽𝑔 ∙ (

𝑆0

𝑘𝐵
− ln(ℎ𝜌𝑁))         (5.18) 

The rationale for imposing these constraints is that changes in enthalpies and entropies of 

activation are large only when H, which represents the distinctiveness between the liquid and 

glassy states, is also large as one would expect for a fragile glass former. The physical basis for 

this relationship is further discussed below. 

5.3 Results and Discussion 

In the following, we show a few representative fits of the VAFE model compared with the VFT 

and MYEGA equations, which have become among the most successful viscosity fitting 

equations for glass-forming liquids. The VFT equation, or Vogel-Fulcher-Tammann equation, 

was developed independently in 1920s by the three scientists for which it has been named and is 

mathematically identical to the later derived Williams-Landel-Ferry (WLF) equation from the 

field of polymer chemistry.48–52 These are empirical models that have now been in use for about 

a century for fitting and interpolating the temperature-dependence of fragile liquids. 

log10 𝜂(𝜒) = log10 𝜂0 +
𝐵

(
𝑇𝑔

𝜒⁄ )−𝑇0

        (5.19) 

The parameters η0, B, and T0 set the vertical offset, the scale, and the location of the vertical 

asymptote for the expression, respectively. The parameter B is sometimes referred to erroneously 

as an activation energy or instead as a pseudoactivation energy. This measure cannot be thought 
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of as an activation energy in the Boltzman probability sense because the available thermal energy 

it is compared to is truncated by T0 in the denominator of the expression, which results in values 

of B being much smaller than activation energies from the perspective of transition-state 

theory.53 To date, despite much effort, T0 does not appear to have any physical interpretation as it 

neither corresponds reliably to the glass transition temperature nor the Kautzmann temperature 

and is best thought of simply as a fitting parameter.54,55 For these reasons, the VFT equation and 

its parameters are not likely to provide valuable insight into the physics underlying fragile 

behavior and glass-formation.38 It has also been documented that while the VFT equation 

produces good fits for moderately fragile liquids, the quality of fits decrease with increasing 

fragility.28 

The MYEGA equation takes inspiration from the Adam-Gibbs equation, which modifies the 

temperature-dependence of the viscosity through scaling with the configurational entropy, which 

is also a function of temperature.56,57 The MYEGA equation modifies this expression by 

assuming a different functional form for the configurational entropy based on topological 

constraint theory, where the configurational entropy is related to the topological degrees of 

freedom per atom and network constraints are considered to be either intact or broken. This 

yields the following expression,58 

log10 𝜂(𝜒) = log10 𝜂∞ + (12 − log10 𝜂∞) ∙ 𝜒𝑒
((

𝑚

(12−log10 𝜂∞)
−1)(𝜒−1))

   (5.20) 

The parameters η∞ and m are the extrapolated infinite temperature viscosity and the kinetic 

fragility index (Equation 5.3), respectively. The third parameter, Tg, is encompassed by the 

parameter χ = Tg/T in the current expression. 
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We begin our comparison of the three models by exploring the case for strong glass former in 

Figure 5-3. All three models are able to fit the data well. The VAFE and VFT models overlay 

one another completely, while the MYEGA model deviates slightly from the others at high 

temperatures. The enthalpy and entropy of activation produced from the VAFE model are nearly 

constant as expected from a strong glass former. 

 

Figure 5-3 Comparison of VAFE (black), MYEGA (blue), and VFT (green) equation fits of viscosity data (red dots) 

for a strong glass former. The temperature-dependent activation enthalpy, Ea(χ), and entropy, Sa(χ), from the VAFE 

model are shown on the right. 

Next, we compare the case of a very fragile glass-former (m = 103), shown in Figure 5-4. Once 

again, all three models fit the data well with a greater level of agreement between the VAFE and 

MYEGA equations at lower temperatures. However, at higher temperatures, beginning around 

twice Tg, the model predictions begin to disagree to a greater extent. The higher temperature data 
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is approximately linear, seemingly having entered the Arrhenius regime, but the continued 

curvature of the MYEGA model produces an almost horizontal line at temperatures greater than 

1.67·Tg or values below χ = 0.6. This suggests a viscous activation energy nearing zero within 

the liquid phase, which should not be the case. Looking at the enthalpy and entropy of activation 

predicted by the VAFE model, we see large activation barriers near Tg that drop off dramatically 

with increasing temperature as a result of the highly fragile nature of this glass former. At even 

higher temperatures, however, the activation energy from the VAFE model remains finite and 

approaches 80 kJ/mol which is reasonable for a high temperature inorganic glass melt. 

 

Figure 5-4 Comparison of VAFE (black), MYEGA (blue), and VFT (green) equation fits of viscosity data (red dots) 

for a fragile glass former. The temperature-dependent activation enthalpy, Ea(χ), and entropy, Sa(χ), from the VAFE 

model are shown on the right. 
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Lastly, we look at a moderately fragile glass (m = 41) in Figure 5-5. To fit the higher 

temperature data, the MYEGA model overestimates the viscosity values in the low temperature 

liquid while the VFT equation underestimates them in this region. Here, the VAFE model 

showcases its ability to fit the higher degree of curvature of the low temperature viscosity profile 

while still recovering linear behavior that approaches the Arrhenius character of the high 

temperature liquid. 

 

Figure 5-5 Comparison of VAFE (black), MYEGA (blue), and VFT (green) equation fits of viscosity data (red dots) 

for a glass former of moderate fragility possessing a low activation enthalpy and entropy. The temperature-

dependent activation enthalpy, Ea(χ), and entropy, Sa(χ), from the VAFE model are shown on the right. 

From trends our VAFE model reveals for the oxide glass data fits, and as predicted in the 

original Angell plots, the behavior of the viscosity profile for fragile systems appears to regain 

Arrhenius type, or linear character in the high temperature liquid regime. The divergence 
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between our model and the VFT or MYEGA equations at high temperatures originates from the 

functional form of the models. Our model allows for a return to linearity due to the presence of 

the E0 term, while the simple double exponential viscosity dependence of the MYEGA equation 

enforces either no curvature or continuous curvature throughout the profile. The e1/T type 

viscosity dependence of the VFT equation allows the profile to approximate linearity at high 

temperatures but curvature is still present. The flattening of MYEGA profiles at high 

temperatures insinuates a reduction in activation energy approaching zero, which should not be 

the case unless the potential energy surface becomes completely flat. The ability to derive 

meaningful measures from the intercept with the ordinate by extrapolating a model to infinite 

temperature relies on preserving the phase character of, in this case the liquid. Evidently, the 

construct is hypothetical, but it is based on the premise that thermal energy is abundant so that 

the system can overcome all potential energy barriers with unit probability and freely explore all 

possible microstates. This allows one to focus on the analysis of non-enthalpic contributions to 

the rate coefficient, such as activation entropy, attempt frequency, geometry factors, etc. 

Therefore, the microstates must be representative of the physical state and structural description 

of the material for which the extrapolation is being considered. This means that particles can 

move without any constraints. The substance still occupies a finite volume commensurate to that 

of the liquid, particles still interact with one another, and their trajectories cross potential energy 

wells, whose shape defines the frequencies of fundamental vibrational modes, as often as they 

pass over the cusps associated with activated states while conquering the repulsive forces of 

neighboring particles. 
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While the VAFE concept is designed to account for changes in the energy landscape that result 

from a system transitioning between glass and liquid, it is also sensitive to the temperature range 

over which this transition occurs. Beyond the upper bound of this range, when the transformation 

to liquid is complete, we can assume constancy of structure up to the boiling point, which is 

consistent with the return to linearity in the temperature dependence of the viscosity.  

Accordingly, a linear extrapolation towards infinite temperature makes sense for viscosity 

models of glass-forming liquids, and for data sets extending to sufficiently high temperatures a 

return to linearity is manifest. Similarly, for our equation that becomes Arrhenius in form for 

high temperature liquids, its apparent that the energy terms drop out and the infinite temperature 

intercept is just an indication of the combined values of the characteristic attempt frequency, the 

high frequency shear modulus, and the entropy of activation for the viscous process in the high 

temperature liquid. 

In Figure 5-6, we test the extrapolation robustness of the VAFE model in comparison with the 

VFT and MYEGA models. This is done by removing the high temperature viscosity data from 

the profile before fitting each model and then comparing the fits with the full viscosity data set. 

The data set in Figure 5-6 is composed of 17 data points. Only the lowest temperature data 

composing about 35% of the total data set was used for fitting. The fits are identical for all three 

models for the low temperature data points on which they were fit. However, upon extrapolation 

it is apparent that neither the VFT nor MYEGA models accurately predict the high temperature 

data based on low temperature fits. The VFT model underpredicts the viscosity values in the high 

temperature liquid while the MYEGA model overpredicts the viscosity values. 
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Figure 5-6 Comparison of the robustness of the VAFE (black), MYEGA (blue), and VFT (green) equations to 

extrapolation. The models have been fit only on the blue data points. 

Figure 5-7 shows a distribution of activation enthalpies and entropies for all 847 oxide glass 

compositions both in the high temperature liquid, E0 and S0, and at the glass transition 

temperature, ETg and STg. Activation enthalpies in the high temperature liquids are centered 

around 80 kJ/mol with a range from about 35 kJ/mol to just over 300 kJ/mol. At Tg, the 

enthalpies of activation are centered around 300 kJ/mol but range from around 200 kJ/mol to 

above 700 kJ/mol. These values fall within reported ranges for viscous activation energies for 

inorganic glass formers.59–61 Activation entropies in the high temperature liquid are centered at 

40 J/(mol·K) and range from nearly 0 to about 135 J/(mol·K). At Tg, the entropies of activation 

center around 150 J/(mol·K) with a range from about 30 to 600 J/(mol·K). 
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Figure 5-7 The distributions of activation enthalpies and entropies represented by the 847 compositions within the 

oxide data set. The activated values in the high temperature liquids, E0 and S0, are shown as well as values at Tg, ETg 

and STg. 

The effect of activation entropy on the activation free energy for viscosity is significant and 

should not be ignored.20 In the VAFE model, we have made the assumption that the activation 

enthalpy and entropy are both modulated by the function ψ(χ). This means that while the 

magnitudes of E0, ΔE, S0, and ΔS can all differ as necessary, the temperature dependence of Ea(χ) 

and Sa(χ) overlap identically when scaled and shifted. This assumption produces good fits of the 

data and meaningful values for the activated quantities. A proportionality relationship between 

the values of activation enthalpies and activation entropies has been documented numerous times 
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and is often referred to as the Meyer-Neldel rule or the entropy-enthalpy compensation (EEC) 

effect.20,62–66 

The infinite temperature intercepts of viscosity profiles are often shown to converge for all glass-

forming liquids regardless of fragility.28,67 However, based on the reasons listed previously about 

the interpretation of the infinite temperature limit, this is not necessarily true and is unlikely to be 

realistic. Based on the measured viscosity data we analyzed, such convergence would in many 

instances require a sign inversion in the slope of the viscosity curves at high temperatures. If we 

look at the distribution of infinite temperature intercept values in Figure 5-8 extrapolated from 

our model, it is quite broad. 

 

Figure 5-8 Distribution of infinite temperature intercept values for the 847 compositions within the oxide glass data 

set extrapolated from fits using the VAFE model. 
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The intercepts result from largely excellent fits of the experimental viscosity data, and even 

accounting for the magnification of small errors that occur with extrapolation from the terminal 

high temperature data point, which may exist in some of the fits, the intercept values will not be 

convergent as is often shown. 

The fragility of a glass-forming liquid is most often defined as the slope of the log10(η) vs. Tg/T 

relationship at the glass transition temperature, as shown in Equation 3. This is a simple metric to 

calculate, given sufficient viscosity data near Tg or viscosity data at other temperatures and a 

viscosity model equation. However, in the latter case, the accuracy of the estimation of the 

fragility index will depend on the successful extrapolation by the model. It is important to point 

out that this instantaneous slope in the viscosity curve at Tg is intended to describe behavior that 

is manifest throughout the entire glass transition regime. As such, this metric is relied upon to 

describe the curvature present across the entire viscosity profile. One should be cautious about 

the validity of this metric away from the glass transition temperature, however. As discussed 

previously, the infinite temperature intercepts of these viscosity profiles, representing non-

enthalpic properties of the high temperature liquid, do not necessarily converge and therefore the 

curvature for any given profile, even when normalized as is the case for Angell plots, is not 

uniquely defined by a locally constructed fragility index m. 

The VAFE model produces an alternative metric of fragility that accounts for the magnitude of 

the non-Arrhenius curvature across the entire viscosity profile. This metric arises directly from 

the derivation and application of ψ(χ). The parameters H·βg, or explicitly, H/(kBTg), is a unitless 

quantity that goes to zero for a perfectly strong glass former. A correlation plot between H·βg 

and the fragility index, m, is shown in Figure 5-9. 
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Figure 5-9 Correlation plot comparing the Fragility Index, m, with the parameter Hβg of the VAFE model that 

controls curvature, and therefore the degree of fragility, within the viscosity profile. 

The two metrics correlate well for relatively strong glass formers, but the correlation becomes 

weaker for more fragile glass formers. This is due to the increased variance in the infinite 

temperature intercept for fragile glass formers and the effect that has on the curvature of the 

profile, independent of the slope at Tg. 

Parameter values that result from VAFE model fits can be utilized to gain insight into the effect 

of the component speciation and composition of glass forming liquids on the viscous process. E0 

and S0 can be calculated to yield enthalpies and entropies of activation for high temperature 

melts, while Hβg encodes information about fragility and how the activated values change with 
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temperature down to Tg. This information can be used to better understand what factors are 

dominant in dictating the viscosity of specific glass forming compositions and how these factors 

and their sensitivities to changes in temperature vary as a function of composition. For example, 

Figure 5-10 shows a comparison of the values of E0, S0, and Hβg for a mixed alkali borosilicate 

melt composed of 18 mol% B2O3 and 52 mol% SiO2 while the remaining 30 mol% is varied in 

increments of 5 mol% between two of the three alkali oxides: Li2O, Na2O, and K2O. Within the 

composition range available, introduction of a secondary alkali oxide results in an initial increase 

in the values of E0 and S0 and a corresponding decrease in fragility as indicated by Hβg. 

However, after this initial increase parameters for the lithium potassium borosilicate remain 

relatively constant upon increasing Li2O content with minor increases in fragility. This is unlike 

the trends for sodium potassium borosilicate and lithium sodium borosilicate in that these glass 

formers show maximum values in E0 and S0 and a minimum in fragility at 15 mol% Na2O and 10 

mol% Li2O content, respectively. This corresponds to approximately equal concentrations of 

each alkali species, which is the range in which the mixed alkali effect is typically most apparent. 

This makes sense, as E0 increases in greater proportion than the compensating effect of S0, and 

simultaneously the fragility decreases to a minimum leading to a more stabilized less atomically 

mobile glass melt. Evidence of the mixed alkali effect is typically not apparent in high 

temperature melts when inspecting viscosity vs. alkali mole fraction data. At low temperatures, 

these relationships show a dip in the viscosity for equimolar mixed alkali glasses, but upon 

increasing temperature this dip becomes shallower until it coincides approximately with 

viscosity magnitudes of the surrounding alkali compositions. 
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Figure 5-10 Comparison of VAFE model parameters E0, S0, and Hβg for a mixed alkali borosilicate melt composed 

of 18 mol% B2O3, 52 mol% SiO2, and 30 mol% alkali oxides. Glass compositions shown are the following: (1) 

Sodium potassium borosilicate (dots represent Na2O mole fraction), (2) Lithium potassium borosilicate (diamonds 

represent Li2O mole fraction), and (3) Lithium sodium borosilicate (X represents Li2O mole fraction) 
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This would indicate a higher activation energy for mixed alkali glasses as the viscosity increases 

more with temperature which is exactly what we see in Figure 5-10. This suggests that while the 

mixed alkali effect appears to diminish with increasing temperature when looking at constant 

temperature viscosity-composition data, this effect may, in fact, remain even for high 

temperature melts as observed when inspecting activation energies. 

The parameter, H, represents an energy with units of J/mol. For the oxide glass-formers within 

the data set we analyzed, the magnitude of H varies between approximately 0 and 44.5 kJ/mol or 

between 0 and 0.46 eV/atom, to better illustrate the argument that follows in view of illustrating 

the thermophysical meaning of H.  Given that the glass transition does not involve phase 

boundaries, let us consider a generic homogeneous reaction, where a compact and rigid 

molecular configuration (G) is transformed into a more open and flexible one (L), i.e., 𝐺 ⇌ 𝐿. 

The equilibrium constant is given by 𝐾 = 𝑒−𝛽Δ𝐺𝑥 = 𝑒−𝛽Δ𝜀0𝑒Δ𝑆𝑥 𝑘𝐵⁄ , where ∆ε0 and ∆SX are the 

differences in ground state energy and entropy between G and L, respectively. At some 

temperature TE the chemical potentials of the two configurations are equal, i.e., ∆GX = 0, and in a 

first approximation we can eliminate the entropy term using Δ𝜀0 = 𝑇𝐸Δ𝑆𝑋 so that 𝛽Δ𝐺𝑋 =

Δ𝜀0(𝛽 − 𝛽𝐸)⁡, where 𝛽𝐸 = 1 𝑘𝐵𝑇𝐸⁄ . Using the law of mass action, 𝐾 = 𝑎𝐿 𝑎𝐺⁄ , where aL and aG 

are the chemical activities of configurations L and G, respectively, and furthermore assuming 

ideal mixing behavior of the two species, we can evaluate the molar fraction of the configuration 

L as 

𝑥𝐿 = 1 −
1

1+𝐾
= 1 − (1 + 𝑒−Δ𝜀0(𝛽−𝛽𝐸))

−1
.       (5.21) 

Hence, we obtain the complement of the logistic function, i.e., the vertically inverted expression 

in Equation 5.11 for ν = 1. Indeed, the molar fraction xG of constituent G is directly described by 
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the logistic function. Accordingly, the parameter H represents a difference in the potential energy 

of the ground state of the glass and the ground state potential energy of the high temperature 

liquid. 

Note that the vertical scale of the logistic function can be chosen arbitrarily to best match the 

quantity it is intended to describe. Often it is opted to range from zero to one to represent 

probabilities. Figure 5-11 shows two schematics illustrating the ground state (ε0,X) and activated 

state (ε*) energy levels for the 𝐺 ⇌ 𝐿 conversion system that is consistent with our VAFE 

analysis. Each schematic shows two curves: the red one representing the symmetric logistic 

function, shown here for reference, and the asymmetric blue curve representing the logistic 

function for a large ν -value, which we postulate to represent that glass transition phenomenon 

more accurately. The reciprocal temperature range to the right of Tg/T = 1 is only shown to better 

differentiate between the curves. Also, for the asymmetric curve βg is substituted for βE, and it no 

longer corresponds to an equipartition between two states. The distance between the curves and 

the activated state line represents the activation energy for viscous dissipation in the liquid. 

Hence, the vertical axis is mapped onto a scale ranging from ~0.5 to ~6 eV/atom. Most important 

to point out is that both symmetric and asymmetric logistic curves are calculated for the same 

value of H. The uniqueness of this parameter can most easily be understood by considering the 

limit in which ν by far exceeds unity, i.e., (𝑒−𝜈𝐻(𝛽−𝛽𝑔))
1
𝜈⁄
≡ 𝑒−𝐻(𝛽−𝛽𝑔). Moreover, the factor ν 

has been associated with the chemical activity coefficient γi, which relates the chemical activity 

of species i to its molar fraction according to ai = γi·xi.
68,69 This is best illustrated using Richard’s 

differential equation (Equation 5-8) focusing on the term 𝑥𝑖 ∙ (1 − 𝑥𝑖
𝜈), adapted here for a 

generic probability variable. 
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Figure 5-11 Temperature dependence of the ground state and activated state energies for (a) a strong and (b) a 

fragile glass forming system, and the relationship activation energy and two of the parameters, E0 and ∆E of the 

VAFE model equation.  (See text for further explanation of the depicted quantities. 
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Although, the standard thermodynamic definition of γi·xi. and 𝑥𝑖
𝜈 cannot mathematically be 

reconciled with one another, they have similar effects on xi. in that a value ν > 1 suppresses the 

activity of species i, as does a value of γi < 1. Hence, as ν tends to infinity, the measure that 

counteracts the growth of species i, namely (1 − 𝑥𝑖
𝜈) is suppressed until xi reaches 1. In other 

words, the proliferation of species i is self-catalyzed, and therefore grows exponentially. 

Applying this perspective to the glass transition phenomenon, the exponential growth of the 

activation free energy for viscous relaxation upon approaching Tg signifies that the smallest 

structural changes result in the largest increase in activation free energy. 

As a glass-forming liquid cools, we expect the energy wells in the potential energy surface to 

deepen due to more efficient packing and increasingly stabilizing non-bonding interactions, 

whereas the configurations associated with the activated states may vary less in comparison 

because atoms that jump between sites must push past neighboring gateway atoms to within 

similar proximity. While this latter assumption is not crucial to the interpretation of our findings, 

the temperature-independent ε*-level drawn in Figure 5-11 appears to be the least speculative 

option. It follows that the change in activation energy, i.e., the difference between the ground 

state and the activated state energies, increase proportionally to H·βg, where the scale could be 

set by the constant baseline activation energy value E0, which is the sole component remaining 

for the high temperature liquid. This has been the physical motivation for the constrained form of 

the VAFE model given by Equations 5.17 and 5.18. The relationship put forth so far between H 

and ΔE may suggest that the value of ΔE should therefore be equal to H. This is not the case. The 

value of ΔE is typically 10 to 35 times larger than H. This difference is to be expected based on 

what each energy represents. While H represents the change in the ground-state potential 
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energies of the entire liquid vs. glassy material taken on an average per atom (or molecular 

constituent) basis, ΔE represents the energy required to elevate those atoms that participate in a 

single elementary dissipative event of the viscous process from their ground state to the activated 

state. Hence, the discrepancy in magnitudes has to do with the number of atoms involved in the 

activated process. If increasing the temperature from just above Tg to well into the liquid domain 

raises the ground state energy of all atoms by H eV on average, it would reduce the activation 

energy for viscous dissipation by n·H = ∆E eV, assuming constant ε* across that temperature 

range, where n is the number of atoms participating in (or affected by) the underlying relaxation 

mechanism. Conversely, the ratio of ∆E/H = n should yield the number of affected atoms. 

In fact, our data indicates that in the vicinity of 10 to 50 atoms are involved in the activated 

process. This range of numbers is corroborated by the findings of a recent investigation of ionic 

conductivity in mixed network forming glasses. Using Brillouin light scattering (BLS), we 

discovered a strong correlation between the adiabatic elastic modulus and the activation energy 

for cation hopping.70 Elastic moduli have been used in transition-state theory to describe atomic 

transport in liquids and amorphous materials first by Frenkel and later by Anderson and 

Stuart.71,72 This description envisions the cooperation of atoms in the local environment of 

hopping atom that reversibly spread apart to open a passageway along the trajectory allowing an 

atom to jump from one stable site to the next. From the comparative analysis of BLS and ionic 

conductivity data, the activation energy for the hopping event is supplied to the site by a 

coincidence of overlapping phonons. However, this energy is not focused on the hopping atom 

alone but on a small region surrounding this atom. This affected volume involves about 30-40 

neighboring atoms. Displacements of these neighboring atoms exceeding their normal 
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vibrational motions coincide with the motion of the hopping atom in such a way that it allows for 

the elementary transport event to take place. The affected volume of the hopping process is 

calculated by comparing the activation energy (energy per hopping atom) with the adiabatic bulk 

modulus (energy per volume). The product of the affected volume and the atomic number 

density gives the number of atoms that participate in the activated hopping process. 

Interestingly, in the derivation of the MYEGA equation, the configurational entropy of the glass-

forming liquid is posited to be a function of the topological degrees of freedom per atom which 

is calculated as56 

𝑓(𝑇) = 3𝑒
−
𝐻𝑀𝑌𝐸𝐺𝐴

𝑘𝐵𝑇 .          (5.22) 

The parameter, HMYEGA (the subscript has been added for clarity), is described as the energy 

difference between intact and broken network constraints. Though this expression is lost from 

the final MYEGA expression as a result of generalization, the value of HMYEGA can be 

approximated for compositions within the present oxide data set according to 

𝐻𝑀𝑌𝐸𝐺𝐴 = (
𝑚−(12−log10 𝜂∞)

(12−log10 𝜂∞)
) ∙ 𝑘𝐵𝑇𝑔.        (5.23) 

This expression makes use of the simplifying assumption that the temperature at which linear 

behavior is regained, and the activation free energy no longer varies with increasing temperature, 

is approximately equal to 2·Tg. The values of HMYEGA are estimated and compared with values of 

H from the VAFE equation in a correlation plot in Figure 5-12. These values correlate strongly 

and possess similar magnitudes for the same compositions. Differences in the values likely result 

from the simplifying assumption in calculating HMYEGA as well as key differences in the 

mathematical structure of the models. Though these values are arrived at using different methods 

and frameworks, they likely are describing the same phenomenon. 
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Figure 5-12 Comparison between the H value from the VAFE model corresponding to the change in the ground 

state potential energy of the glass forming liquid and a corresponding HMYEGA calculated from parameters of the 

MYEGA equation. 

Though viewed through the lens of breaking topological constraints, these changes in energy of 

the glass-forming liquid should be directly evident in the potential energy of the liquid. In fact, 

the breaking of topological constraints in glass-forming liquids has already been associated with 

reductions in the energy barriers for relaxation processes.73–77 This lends credence to the idea that 

changes in the potential energy surface of the glass-forming liquid, as a result of temperature-

mediated effects on relaxation, directly result in modification to viscous activation barriers. 
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5.4 Conclusions 

The ability to reliably predict viscosity is essential for carrying out the physical processing of 

glass and glass-ceramics products to a high degree of fidelity and a better understanding of what 

causes such dramatic changes in the structural relaxation rates of glass forming systems may 

provide insights into the nature of the amorphous state of matter. To date, the underlying reason 

for the deviation from Arrhenius behavior in the temperature dependence of the viscosity has 

been a factor of intense scrutiny. Despite the progress made towards the development of 

theoretical frameworks, categorization, and quantitative tools, the structural and physicochemical 

origin of this non-Arrhenius behavior remains an open question. 

In our earlier publication,31 we introduced the basic framework of an enhanced descriptive model 

for viscosity of glass-forming liquids that not only fits experimental data well but produces 

quantitative and physically meaningful parameters that can be reconciled with long-successful 

physics-based models such as transition state theory. Based on the same phenomenological 

approach as pioneered by Eyring, our model takes the structural evolution resulting from 

traversing the glass transition regime, and thus the variation in the activation barrier, for the 

viscous process into account. In the present work, we have developed the workflow for analyzing 

steady-state viscosity data using our new model, reviewing salient points underlying our model 

and how they factor into the derived formalism and reporting on how our model performs when 

fitting viscosity data of 847 oxide glass formers. 

The form of our VAFE model is essentially the same as Eyring’s equation, except that the 

enthalpy and entropy of activation are temperature-dependent quantities. The modulation of 

these values with temperature is based on Richard’s generalized differential equation, which has 
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the structure of a generic rate equation. The approach we have taken is both rooted in 

thermodynamic and kinetic formalisms and can thus be considered as describing the transition 

from a liquid to a glass (or vice versa) as a reversible rate phenomenon. The function ψ(χ) 

determines how the activation enthalpy and entropy change with respect to a change in the 

temperature, while E0 and S0 are static quantities that relate closely to the activation enthalpy and 

entropy in the high temperature liquid state. The values ΔE and ΔS correspond to the magnitude 

of change in the activation enthalpy and entropy between the high temperature liquid state and 

the material at its glass transition temperature. 

We compared representative fits of the VAFE model with those of the VFT and MYEGA 

equations. When fitting a very fragile glass-former (m = 103), at high temperatures the model 

predictions disagree. The higher temperature data is approximately linear, seemingly having 

entered the Arrhenius regime, but the continued curvature of the MYEGA model produces an 

almost horizontal line, suggesting a viscous activation energy nearing zero within the liquid 

phase, which should not be the case. Curvature in viscosity profiles for temperatures extrapolated 

from the high temperature liquids state should not occur. Upon heating a glass, once the 

transformation to liquid is complete, we can assume constancy of structure up to the boiling 

point, which is consistent with the return to linearity in the temperature dependence of the 

viscosity. The infinite temperature intercept is just an indication of the combined values of the 

non-enthalpic contributions to the rate coefficient, such as activation entropy, attempt frequency, 

geometry factors, etc. 

We also tested the extrapolation robustness of the VAFE model in comparison with the VFT and 

MYEGA models by removing the high temperature viscosity data from the profile of a 
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moderately fragile glass former before fitting each model. The fits were then compared with the 

full viscosity data set. Neither the VFT nor MYEGA models accurately predicted the high 

temperature data when only fit on low temperature data. 

It was demonstrated that VAFE model fits can be utilized to gain insight into the effect of the 

component speciation and composition of glass forming liquids on the viscous process. 

Enthalpies and entropies of activation as well as information about fragility and how the 

activated values change with temperature down to Tg obtained from the model can be used to 

better understand which factors are dominant in dictating the viscosity of specific glass forming 

compositions and how these factors and their sensitivities to changes in temperature vary as a 

function of composition. 

The VAFE model also links the temperature-dependent change in potential energy due to 

structural changes in glass formers to fragility. The parameter H represents a difference in the 

potential energy of the ground state of the glass and the ground state potential energy of the high 

temperature liquid. The change in activation energy, i.e., the difference between the ground state 

and the activated state energies, increase proportionally to H·βg, where the scale could be set by 

the constant baseline activation energy value E0. The value of ΔE, the change in activation 

enthalpy, is typically 10 to 35 times larger than H. While H represents the change in the ground-

state potential energies of the entire liquid vs. glassy material taken on an average per atom (or 

molecular constituent) basis, ΔE represents the energy required to elevate those atoms that 

participate in a single elementary dissipative event of the viscous process from their ground state 

to the activated state. Hence, the discrepancy in magnitudes has to do with the number of atoms 
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involved in the activated process. Our data indicates that in the vicinity of 10 to 50 atoms are 

involved in the activated process. 

A value, HMYEGA, was estimated from fits using the MYEGA equation and compared with values 

of H from the VAFE equation The values correlated strongly and possess similar magnitudes for 

the same compositions. Though these values were arrived at using different methods and 

frameworks, they likely describe the same phenomenon. The breaking of topological constraints 

in glass-forming liquids, such as those at the core of the MYEGA equation derivation, has 

already been associated with reductions in the energy barriers for relaxation processes, like those 

of the VAFE model.73–77 This supports that changes in the potential energy surface of the glass-

forming liquid, as a result of temperature-mediated effects on relaxation, directly result in 

modification to viscous activation barriers. 
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Chapter 6 Summary and Future Directions  

6.1 Research Summary 

In this work, we explore atomic-scale transport properties in glasses and glass forming liquids. 

Focusing on the mechanistically similar phenomena of ion diffusion and viscous processes, we 

leverage the use of computational investigation methods and analysis of experimental data sets to 

gain new insights and develop a phenomenologically descriptive model of these behaviors. The 

goals of this research include: (1) contributions toward the knowledge of ionic mobility in 

glasses for the development of next-generation solid-state electrolyte batteries, improving on the 

safety, performance, and lifespan of the current technology with applications ranging from 

mobile electronics and electric vehicles to supporting infrastructure for a renewable energy grid 

and (2) advancements in our understanding of the glass transition phenomenon through 

improvements in viscosity modeling of glass formers to support the development and 

manufacturing of novel glasses. A ubiquitous feature of thermally activated transport processes, 

such as ionic conductivity and viscosity, in glass forming materials is their non-Arrhenius 

temperature dependence above Tg. Developing a framework for how changes in the free energy 

topography associated with the structure of these glassy materials control these processes is vital 

to their understanding. This is a common thread throughout this work. 

In the second chapter, we use MD simulations to study atomic transport in a simple model 

system consisting of a covalently bonded species that forms a continuous three-dimensional 

network and mobile species that occupies and moves about the interstices of this network. This 



 169 

approach reduces the structural complexity from that of actual materials that are being 

considered as potential solid electrolytes, with the expectation to expose the essential attributes 

of atomic mobility. By systematically varying the size of the mobile solute particles, while 

keeping that of carbon in the supporting structure constant, different diffusive regimes have been 

identified. The thermodynamic quantity best associated with variation in diffusive behavior is the 

internal pressure of the system. For our analysis, we define a nominal packing fraction, fs, as, a 

quantitative metric for solute particle size where high packing fractions correspond to larger 

solute particles and vice versa. Descending from high to low fs, the internal pressure decreases 

from positive values, where each solute particle overfills its interstice, to negative values, where 

solutes experience a net tensile pull from the carbons. The internal tensile limit is crossed at the 

pressure minimum, below which the solute detaches at least from some of the supporting 

network elements. For as long as the curvature in the internal pressure vs. packing fraction is 

positive, fluctuations in the solute sub-system density would tend to reconstitute the cohesive 

state. Below the inflection point, the solute sub-system tends towards separation. We find that 

solute diffusivity starts to rise at the inflection point in the pressure vs. fs. The vibrational 

spectrum for the configuration at this point is indicative of the particle motions exploring 

locations on the potential energy surface characterized by highly anharmonic particle dynamics. 

The onset of solute diffusion coincides with the maximum in the compressibility vs. fS curve. 

Furthermore, the solute mobility peaks when (1) the compressibility is negative, i.e., as the free 

volume available to the solute increases (corresponding to a shrinking solute size) the pressure in 

the system increases (corresponding to a reduction in tensile stress due to decohesion between 

solute and network elements), and (2) decohesion is self-catalyzed because the compressibility 

becomes more negative with decreasing atomic packing fraction, i.e., the increase in free volume 
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is accompanied by decreasing changes in the tensile stress due to distance-related reduction in 

solute-network interactions. However, further reduction in solute packing fraction causes particle 

mobility to rapidly plunge, because the solute adheres to the facet of network interstice. Hence, 

the optimal condition for high solute mobility is a potential energy surface characterized by 

extensive anharmonicity and strong but not complete solute-network decohesion. 

In the third chapter, we expand this investigation to the physically more realistic system of a 

sodium silicate glass, modeled using the ReaxFF reactive potential for our MD simulations. The 

circumstances envisioned here also have the potential for implementation in the experimental 

laboratory. We explore the efficacy of increasing the local volume available to diffusing sodium 

ions on their mobility within a solid-state electrolyte. First, we simulate the ion-exchange of 

cesium with sodium in a melt-quench formed cesium silicate glass. We compare these results to 

those obtained for simulated melt-quenched sodium silicate and cesium silicate glasses. The ion-

exchanged sodium silicate exhibits 4.5 to 6 times higher sodium cation diffusivities than the 

melt-quenched sodium silicate glass, so long as the ion exchange is performed on samples below 

their glass transition temperature. The increases in sodium ion mobility appear to be associated 

with an increase in free volume within the ion-exchange glasses which are 13% to 15% less 

dense than their melt-quenched counterparts at the same temperature. To directly probe the effect 

of increasing free volume on ion mobility, we also explore the effect of applying of an isotropic 

volumetric strain to a melt-quenched sodium silicate glass. The sodium ion mobility increases 

significantly with increasing volumetric strain for strains between 0 and 0.25. Upon exceeding 

these strains, diffusivities begin to decrease with increasing strain. As revealed by the trends in 

the potential energy as a function of strain, this reversal in the cation diffusivity occurs because 

the network bonds begin to break, no longer increasing volume uniformly within the structure 
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and instead creating cavities in the structure that inhibit diffusion. In these glasses, oxygen atoms 

tend to be under compressive stress while sodium and silicon tend to be under tension. There is a 

reduction in tensile stress on sodium when the glass is volumetrically strained. This results from 

weakened ionic bonding with surrounding oxygen atoms and facilitates sodium ion hopping due 

to the decreased energy required to escape their potential wells. Ion-exchange of a large ionic 

species with a similarly charged smaller species results in enhanced ionic conduction so long as 

the structure is able to resist densification. The mechanism of mobility enhancement for an ion-

exchanged glass is similar to that of a volumetrically strained glass in that the tensile stress on 

sodium ions is reduced and undulations in the potential energy surface are attenuated. Our 

findings suggest that low temperature ion-exchange, replacing a large modifier cation with a 

smaller one, is a viable strategy for improving ionic conductivity in solid-state electrolytes based 

on robust inorganic glasses that are stable against volume relaxation. 

In the fourth chapter, we transition to analyzing experimental sodium borate glass viscoelastic 

data and develop an enhanced viscoelastic model based on the Maxwell-Wiechert (MW) model. 

Based on previous observations of changes in the potential energy topography with temperature, 

this indicates corresponding structure-mediated changes in the activation energy of viscoelastic 

processes. Brillouin light scattering spectroscopy provides access to unique materials 

characteristics of glass forming systems, namely the adiabatic complex mechanical modulus as a 

function of temperature across the glass transition. A description of mechanical response for the 

sodium borate glass using the MW model for viscoelasticity indicates that the two components of 

the complex modulus do not observe the Kramers-Kronig transformation. However, this 

discrepancy can be eliminated by accounting for a temperature dependence of the static modulus, 

modeled using the logistic function, which has the storage modulus grow larger as the system 
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transitions from a liquid to glass on account of the structural changes that occur during this 

process. With this correction, the high-frequency complex modulus is well described. However, 

when converting the loss modulus to viscosity, and extrapolating the MW expression to zero 

frequency, it only fits the viscosity obtained using rotating cylinder viscometry asymptotically in 

the high-temperature limit. To reconcile this data, we must consider that the relaxational moduli 

and, importantly, the activation energies for viscous dissipation for all Maxwell elements, since 

the two quantities are correlated, also exhibit a temperature dependence. Only then, using a 

similarly parameterized logistic function to describe this temperature dependence, can we 

achieve a satisfactory description of the zero-frequency viscosity. Hence, the structural changes 

in the glass transition regime not only affect the static modulus, but all mechanical responses of 

the supercooled liquid structure, which includes the activation energies for atomic motion, as 

these rely on elastic deformations of their surroundings. Note that the activation free energy is 

strictly a feature of the energy landscape, namely the difference between the free energy of the 

activated complex and that of the ground state. Then, because the deviation from Arrhenius 

behavior of the viscosity is a direct consequence of the change in activation energies and 

entropies with temperature, the fragility of a glass forming liquid can be regarded as a measure 

of the rate of change with temperature in the energy landscape topography. 

Building on this basic framework of an enhanced descriptive model for viscosity of glass-

forming liquids that not only fits experimental data well but produces quantitative and physically 

meaningful parameters, in chapter 5 we have develop the workflow for analyzing steady-state 

viscosity data using our new model. We review salient points underlying our model and how 

they factor into the derived formalism and report on how our model performs when fitting 

viscosity data of 847 oxide glass formers. The form of our variable activation free energy 
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(VAFE) model is essentially the same as Eyring’s long successful equation, except that the 

enthalpy and entropy of activation are temperature-dependent quantities based on Richard’s 

generalized differential equation, which is used to describe the transition from a liquid to a glass 

(or vice versa) as a reversible rate phenomenon. We compare the performance of the VAFE 

model with those of the established VFT and MYEGA equations and find our model to be more 

robust to extrapolation and possessing more reasonable behavior in the infinite-temperature, 

which is just an indication of the combined values of the non-enthalpic contributions to the rate 

coefficient, such as activation entropy, attempt frequency, geometry factors, etc. We demonstrate 

that VAFE model fits can be utilized to gain insight into the effect of the component speciation 

and composition of glass forming liquids on the viscous process. Enthalpies and entropies of 

activation as well as information about fragility and how the activated values change with 

temperature down to Tg obtained from the model can be used to better understand what factors 

are dominant in dictating the viscosity of specific glass forming compositions and how these 

factors and their sensitivities to changes in temperature vary as a function of composition. The 

VAFE model also links the temperature-dependent change in potential energy due to structural 

changes in glass formers to fragility. From the model, the parameter H represents the change in 

the ground-state potential energies of the entire liquid vs. glassy material taken on an average per 

atom (or molecular constituent) basis, and ΔE represents the energy required to elevate those 

atoms that participate in a single elementary dissipative event of the viscous process from their 

ground state to the activated state. These parameters have a discrepancy in magnitudes 

equivalent to the number of atoms involved in the activated process. This allows us to calculate 

that in the vicinity of 10 to 50 atoms are involved in these activated processes. 
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6.2 Future Directions: Ion Mobility in Solid-State Electrolytes 

Results of our research indicate that low temperature ion-exchange of a large modifier cation 

with a smaller one is a viable strategy for improving ionic conductivity in solid-state electrolytes. 

However, significant volume relaxation after the exchange has occurred diminishes the gains in 

conductivity. The use of more robust inorganic glass compositions with a greater degree of 

stability against volume relaxation for ion-exchange is a research direction worth pursuing. It is 

likely the expanded volumes associated with these ion-exchanged glasses may be retained to a 

greater extent for glass compositions containing multiple network formers some of which, like 

boron, can incorporate alkali oxides with a lower than commensurate degree of network 

depolymerization due the formation of four-coordinated boron. Glasses of this type may be more 

resistant to structural changes initiated by exchanging differently sized ions. This research can be 

pursued experimentally, which will of course come with its own challenges with respect to 

synthesizing good glass samples as well as design and iteration of the low temperature ion-

exchange method to receive the highest exchange ratio at low enough temperatures to impede 

thermally initiated structural reconfigurations. As for continued computational investigations to 

support this research, such as the use of MD simulations, this will require the incorporation of 

improved methods in the melt-quenching of glasses. Currently, MD generated glasses are known 

to not produce the correct network unit speciation, Qn distributions, where n is the number of 

bridging oxygen atoms attached to the network cation, that deviate significantly from those 

characterized in experimental glass samples. We have seen this in our own simulations using 

both our own in-house reactive force field, FLX, and the ReaxFF force field. This has also been 

reported in the literature.1–6 The Qn distribution is especially important for the mixed-network 

former (MNF) glasses discussed here because it is directly related to the incorporation of alkali 
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oxides and corresponding degree of network depolymerization that will affect the glass’s 

stability and resistance to volume relaxation upon ion-exchange. The reason for the inaccuracy in 

the Qn distribution for MD generated glasses is often hypothesized to result from the rapid 

quench rates, on the order of 1 K/ps, and not the interatomic potential used. The hyper-quenching 

of MD melt-quenched glasses is thought to produce these anomalous network unit distributions 

for the same reason that produce glasses with higher fictive temperatures than real glass samples, 

because the atoms composing the structure are not able reconfigure to the degree necessary to 

settle into the lower energy conformations present in real glasses on timescales attainable for MD 

simulations.1–3,5,6 It has been suggested that the use of a thermostat based not only on the kinetic 

temperature but also on the configurational temperature, which is defined in terms of the 

derivatives of the potential energy as opposed to the kinetic energy, could yield more realistic 

structures.7–10 

I believe another worthy pursuit to build on the research reported in this work is the continued 

development of an analysis framework for the velocity auto-correlation function (VACF) and 

vibrational density of states (VDOS) incorporating the use of Prony’s method, described in the 

last section of Chapter 1. The method, as described in the chapter is inadequate for extracting 

reliable information related to ionic diffusion due to the large number of Lorentzian terms 

required and the poor fits at the zero-frequency intercept of the VDOS. However, this method 

may be improved upon by incorporating details from the analysis reported in Chapter 2 revealing 

the presence of higher harmonic frequency peaks associated with a lower fundamental 

vibrational frequency, the number and intensity of which depend on the anharmonicity of the 

potential energy surface affecting the particle motion. Next steps in the development of this 

analysis framework would involve devising a process by which to build on Prony’s method by 
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efficiently and reliably fitting sets of Lorentzian functions that are integer multiples of chosen 

fundamental frequencies present in the low frequency portion of the VDOS. 

6.3 Future Directions: Viscosity of Glass Forming Systems 

The success of our VAFE model is demonstrated in Chapters 4 and 5 of this work. An area of 

further analysis that is likely to be fruitful is a thorough investigation of the relationship between 

composition and the physically meaningful model parameters yielding information about the 

activation enthalpies, activation entropies, the temperature-dependent variation of these 

quantities, and the value of H indicating the magnitude of change in the ground-state potential 

energy between the high temperature liquid and glassy state. This analysis would contribute to a 

better understanding of what factors are dominant in dictating the viscosity of specific glass 

forming compositions and how these factors and their sensitivities to changes in temperature 

vary with glass composition. This information could be used to simplify the selection of glass 

compositions for engineering applications based on an improved understanding of how each 

component of the glass affects the viscoelastic behavior of the glass during and after processing. 

Another avenue of continued research and development of the VAFE model is pursuing an 

improved model fitting methodology. The iteration of the VAFE model applied to the oxide 

glass former viscosity data set in Chapter 5 requires that the model be reduced in complexity 

from 5 parameters down to 3 parameters leveraging an apparent relationship between the change 

in the activated values and the change in the ground-state potential energy. While this enforced 

relationship both reduces complexity ensuring that the model parameter fits are unique and 

intuitive and results in good fits of the data, it also introduces a well-motivated but potentially 

physically unrealistic dependency. To both independently test the validity of this relationship and 

possibly improve upon the VAFE model fits in the event that this relationship does not strictly 
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hold. Initial steps towards developing and implementing a new model fitting method has already 

begun within our research group at the time of writing. This method involves utilizing parameter 

values from fitting the 3-parameter version of the VAFE model on the oxide dataset used in 

Chapter 5 as a starting point. These parameters are used to generate plausible distributions of 

values for each of the original 5 parameters. From these distributions combinations of parameter 

values are selected to generate a large synthetic dataset of parameter values. The synthetic 

dataset generation is constrained such that each combination of parameters must enforce a Tg 

value that corresponds to a viscosity of 1012 Pa•s and ensure that the generated viscosity profile 

possesses no negative curvature. This synthetic data set is used to train a neural network to 

effectively fit viscosity data for glass formers and produce accurate parameters values for the 5-

parameter VAFE model. This type of neural network physical model parameter estimation has 

been successful in applications for nonlinear model fitting across multiple fields.11–15 The 

success of this method for the application discussed here remains to be seen, but initial results 

indicate that the final five-parameter fits yield parameter values that are decoupled from the 

those obtained using the three-parameter constrained interpolation fits. With that, the potential 

exists for uncovering new physically meaningful relationships between the high temperature 

melt enthalpy and entropy of activation, the magnitude of change in the activation enthalpy and 

entropy between liquid and glass transition, and the fragility (apparently relating to changes in 

the ground-state potential energy throughout the glass transition regime) progressing one step 

further toward uncovering the essential characteristics of the glass transition phenomenon. 
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