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ABSTRACT

Increasing availability of large whole genome sequencing and genomics data have brought both
opportunities and challenges in genetic research. Genotype imputation is an integral tool in
genome-wide association studies, where it facilitates meta-analysis, increases power and enables
fine-mapping. With access to a multitude of reference panel choices for genotype imputation, in-
vestigators start to explore ways of utilizing information from different panels for better accuracy.
The successive increase in sample size and genotype density in sequencing projects also enables
high-resolution fine mapping, which improves the understanding of the underlying mechanisms of
complex diseases. However, there is a reasonable chance that the lead variants from fine-mapping
are not causal but are detected simply due to linkage disequilibrium (LD) with true causal variants,
so caution is required when interpreting the association signals. In this dissertation, we present
improved methods for genotype imputation and gene expression imputation, explore challenges in
fine-mapping that result from complex LD structure and provide potential remedies.

In Chapter 2, we described an efficient meta-imputation framework that enables researchers
to merge imputed data generated from multiple reference panels without the need to access
individual-level genotype data for the underlying reference samples. We first impute against dif-
ferent reference panels separately using our minimac4 imputation software with a new built-in
leave-one-out (LOO) imputation feature, and then combine the imputed results into a consensus
dataset using weights that are tailored to each individual and genome segment. The weights are
dynamically estimated through a hidden Markov model utilizing individual-specific LOO results.
In the scenarios we examined, meta-imputation consistently outperforms imputation using a sin-
gle reference panel and achieves comparable accuracy to imputation using a combined reference
panel.

In Chapter 3, we presented a comprehensive exploration of the trade-offs associated with sta-
tistical fine-mapping strategies. We particularly focused on the impacts of the choice of data type
(summary statistics versus individual-level data) and the algorithmic approach (greedy versus mul-
tiple starting-point strategy). Our evaluations revealed that using summary statistics typically re-
sulted in decreased power and coverage in fine-mapping. We also highlighted the issues of non-
identifiability in the presence of complex LD structures, a scenario where a greedy search strategy
might overlook alternate model configurations, leading to false discoveries. To address this, we
proposed a multiple starting-point strategy to improve the calibration of posterior probabilities,

xii



albeit at an increased computational cost.
In Chapter 4, we systematically compared models for gene expression imputation based on

TOPMed RNAseq data, and revealed a positive correlation between imputation accuracy and both
reference sample size and degree of ancestry matching between reference and target samples. The
study demonstrates that a large, diverse reference panel can achieve accuracy comparable to that
of a smaller, ancestry-specific panel. This finding obviates the need to classify target samples into
ancestry groups and carry out imputations using the corresponding ancestry-matching subpanels,
thereby enhancing processing efficiency. Moreover, we have crafted gene expression imputation
models based on DAP-G, leveraging TOPMed RNAseq data, to support transcriptome-wide asso-
ciation studies. This feature will soon be integrated into the TOPMed imputation server, creating
a unified platform where users can access both imputed gene expressions and genotypes.
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CHAPTER 1

Introduction

1.1 Background

Genome-Wide Association Studies (GWAS) are an essential tool in modern genetics research

where they significantly advanced our understanding of the genetic architecture of many com-

plex traits and diseases. As of March 2023, over 6,300 GWAS have been conducted on more than

5,000 human traits [72]. These have successfully identified numerous risk loci associated with

a wide range of diseases including coronary artery disease [80], Type 2 Diabetes [70, 74], can-

cers [42, 63, 69], autoimmune disorders [25, 43, 79], psychiatric diseases [64, 75, 92] and many

others. These findings have provided insights into the disease mechanisms and potential therapeu-

tic targets, which are valuable for improving diagnostic accuracy and guiding the development of

personalized treatments. For example, the discovery of the fat mass and obsesity-associated gene

(FTO) has spurred further research into therapeutic targets for weight management [29, 36]. The

identification of the interleukin-23 (IL-23) pathway through GWAS has led to the development of

induction therapies such as risankizumab and ustekinumab for plaque psoriasis and Crohn’s dis-

ease [24, 27, 35, 79]. Moreover, the finding that BCL11A acts as a repressor of fetal hemoglobin

levels has led to the development of gene therapies to treat sickle cell disease [26, 28]. These

targeted therapies have demonstrated significant clinical benefits for patients, enhancing disease

management and overall quality of life.

The evolution of GWAS has been facilitated by advances of genotyping technologies. Early
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genotyping approaches such as PCR-based assays were relatively expensive and lowthroughput,

which restricted their application to linkage analysis and candidate-gene studies. The development

of microarray technology in the early 2000s revolutionized genotyping by allowing the simulta-

neous analysis of hundreds of thousands of single nucleotide polymorphisms (SNPs), which was

instrumental in the initial wave of GWAS. Klein et al. (2005) [47] published the very first GWAS

study. Utilizing the Affymetrix GeneChip 100K Mapping Array Set, they conducted a genome-

wide scan of 103,611 SNPs across 96 cases and 50 controls and identified a strong association in

the complement factor H gene (CFH) with age-related macular degeneration (AMD). In 2007, the

Wellcome Trust Case Control Consortium (WTCCC) [15] published a genome-wide association

study of seven major diseases, involving a total of 17,000 samples genotyped with the GeneChip

500K Mapping Array Set. This landmark study not only pioneered the use of shared controls

but also provided valuable methodological insights into study design and significance thresholds,

laying the foundation for future GWAS analyses. As genotyping technologies progressed, higher-

density arrays with increased resolution and coverage facilitated more comprehensive GWAS, en-

abling the identification of additional risk loci. Exome chips, which target rare and low-frequency

protein-coding variants, aid in pinpointing functional genes associated with complex traits and

diseases [56, 88]. Customized arrays were also developed for specific research areas. Exam-

ples include the ImmunoChip [16] and MetaboChip [83], which focused on immunological and

metabolic diseases, respectively.

The advent of next-generation sequencing (NGS) platforms in mid-2000s further expanded the

capacity of GWAS and enabled large-scale whole-genome sequencing (WGS), whole-exome se-

quencing (WES) and RNA sequencing (RNA-seq) [33]. The 1000 Genomes (1000G) Project

stands as one of the pioneering large-scale studies that employed genome-wide sequencing us-

ing high-throughput platforms [11]. This project established a comprehensive catalog of human

genetic variation by reconstructing the genomes of 2,504 individuals from 26 populations [12],

utilizing a combination of low coverage WGS, deep exome sequencing, and dense microarray

genotyping. Larger variation catalogs, such as 1000G and the earlier HapMap Project [14], of-
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fer improved coverage of the human genome and deliver valuable insights into the frequency and

linkage disequilibrium (LD) patterns of genetic variations. This wealth of information has greatly

enhanced the design and selection of variants for genotyping arrays, leading to more efficient and

accurate genetic analyses. Additionally, these catalogs have facilitated genotype imputation, which

will be discussed later in this chapter.

Over the past two decades, DNA sequencing cost has reduced dramatically with the cost per

human genome falling to $562 as of August 2021, compared to $3 million per genome in January

2008 when sequencing centers transitioned from Sanger-based to NGS technologies [89]. This

continuous reduction in cost spurred a rapid surge in the volume of DNA sequence data. Large-

scale projects, such as the Trans-Omics for Precision Medicine (TOPMed) Program, which has

generated WGS from more than 130,000 samples [78], and the UK Biobank, which has released

WGS data for 150,119 participants [34] and WES data for 454,787 participants [2], exemplify this

trend. These sequencing studies offer unprecedented opportunities to identify ultra-rare genetic

variants and structural variants, which were previously inaccessible through microarray-based

genotyping. For example, GWAS based on high-depth WGS have associated rare coding vari-

ants with circulating lipid levels [37], sleep-disordered breathing [7], among other common traits

and diseases. Additionally, WGS have facilitated investigation of effects of structural variants on

hematologic traits [90], cardiometabolic traits [9] and cancers [17, 51].

1.2 Genotype Imputation and Imputation Server

While WGS has certainly become more affordable over time due to the development in sequencing

techniques, they can still be prohibitive for large-scale studies involving thousands of samples. In

this context, genotyping arrays, when combined with genotype imputation, provide a far more

cost-effective solution.
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Development of Imputation Tools

Genotype imputation is a statistical technique to infer unobserved genetic variants from a subset

of genotyped markers, utilizing information from a reference set of densely sequenced genomes.

The basic intuition behind this approach is that two unrelated individuals may share short stretches

of haplotype inherited from distant common ancestors, enabling the reconstruction of a study hap-

lotype as an imperfect mosaic copy of short segments from the reference haplotypes.

Over the years, various genotype imputation tools have been proposed, with the most successful

ones adopting a hidden Markov model (HMM) framework based on the Li and Stephens model

[50]. As illustrated in Figure 1.1, the hidden state in the HMM represents the template haplo-

type for each marker, while the emission state corresponds to the observed genotypes (including

missing data) at each marker for the target sample being imputed. The Li and Stephens model

directly characterizes the underlying coalescent process through the emission and transition proba-

bilities. Emission probabilities denote the likelihood of observing genotypes given the underlying

haplotype template, considering potential mutations or genotyping errors. Transition probabilities

represent the likelihood of switching from one haplotype template to another, effectively captur-

ing the correlation between markers by accounting for the recombination rates along the genome.

This idea was first implemented in PHASE v2.1.1 [77], a tool specifically designed for haplotype

estimation, and was then extended for simultaneous inference of haplotypic phase and missing

genotypes by IMPUTE [59] and MaCH [52], utilizing a diploid version of the Li and Stephens

model that incorporates with a pair of unobserved copying states. Consider a set of N reference

haplotypes H = {h1, h2, . . . , hN} which were sequenced at L markers. The hidden states in HMM

is denoted as Zl = {Z(1)
l , Z

(2)
l }, l = 1, 2, . . . L, representing the copying states for the two haplo-

types for the target sample at the lth marker, where Z
(i)
l ∈ {1, 2, . . . , N}, i = 1, 2. The transition

probabilities switch from state Zl to state Zl+1 is defined as a function of recombination parameter

θl as displayed in Equation 1.1. MaCH updates the value of θl iteratively through the estimation

process, whereas IMPUTE sets θl = 1− e−
4Nerl

N , where Ne stands for the effective population size

and rl stands for the genetic distance between the lth marker and the (l + 1)th marker.

4



Figure 1.1: The Hidden Markov Model for Genotype Imputation

P (Zl+1|Zl) =


( θl
N
)2, Z

(1)
l+1 ̸= Z

(1)
l and Z

(2)
l+1 ̸= Z

(2)
l

θl
N
(1− θl +

θl
N
), either Z(1)

l+1 ̸= Z
(1)
l or Z(2)

l+1 ̸= Z
(2)
l

(1− θl +
θl
N
)2, Z

(1)
l+1 = Z

(1)
l and Z

(2)
l+1 = Z

(2)
l

(1.1)

Let T (Zl) denote the genotype copied exactly from the templates indicated in state Zl, then the

emission probability P (Gl|Zl) is listed in Table 1.1, where the error rate parameter ϵl reflects the

combined effects of gene conversion, mutations, and genotyping error. MaCH updates the value

of ϵl iteratively through the estimation process, whereas IMPUTE sets ϵl = 1

2(1+N
∑N−1

i=1
1
i
)
.

Gl

0 1 2

T (Zl)
0 (1− ϵl)

2 2ϵl(1− ϵl) ϵ2l
1 ϵl(1− ϵl) (1− ϵl)

2 + ϵ2l ϵl(1− ϵl)
2 ϵ2l 2ϵl(1− ϵl) (1− ϵl)

2

Table 1.1: Emission probabilities in diploid HMM. The probability of observing genotype Gl given
hidden state Zl and error parameter ϵl at the lth marker.

It is noteworthy that the forward-backward algorithm used for computing the diploid HMM

model described above exhibits an O(N4L) time complexity, where N represents the number

of reference samples and L denotes the number of markers covered by the reference panel. As

WGS studies increase in size, encompassing larger sample sizes and an expanding number of rare

variants, these methods become computationally challenging.

One of the milestone strategy to reduce the computational complexity of genotype imputation

was introduced by Howie et al. in 2012 [39], which proposed separating the phasing and impu-

tation processes. By pre-phasing the study samples, the authors transformed the problem into a
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haploid HMM. Instead of searching for a pair of matching haplotypes, the new method imputes

each haplotype independently, and thus the state space was reduced from O(N2) to O(N), signif-

icantly decreasing the computational burden to O(N2L) compared to the previous diploid model.

In the simplified model, the hidden state Zl takes values from {1, 2, . . . , N} and the emission

state Gl takes value from {0, 1}, with the transition probabilities presented in Equation 1.2 and the

emission probabilities presented in Equation 1.3.

P (Zl+1|Zl) =


θl
N
, Zl+1 ̸= Zl

1− θl +
θl
N
, Zl+1 = Zl

(1.2)

P (Gl|Zl) =


ϵl, Gl ̸= T (Zl)

1− ϵl, Gl = T (Zl)

(1.3)

The pre-phasing imputation was initially implemented in IMPUTE2 [39, 40] and minimac (a

successor of MaCH) [31, 52] with their speed and memory usage being enhanced in their subse-

quent improved versions. Common strategies to improve computational efficiency include paral-

lelization, linear interpolation (computing HMM on genotyped sites only and linearly interpolating

untyped sites), using compact data structures for reference panels and adaptive precision for im-

puted probabilities.

The primary distinction between imputation tools lies in the strategies employed to reduce the

state space in the HMM. The IMPUTE series conditions the imputation on a target-specific selec-

tion of reference haplotypes instead of including all the reference haplotypes in the state space.

IMPUTE2 [40] selects reference haplotypes for each target sample based on Hamming distance;

IMPUTE4 [6] utilizes an improved approximation algorithm that selects reference haplotypes

according to local (rather than region-wide) sharing; IMPUTE5 [68] incorporates a positional

Burrows-Wheeler transform (PBWT) data structure [23], enabling even faster searching of lo-

cally matching haplotypes. Beagle4 [4] combines genotyped markers within 0.005 cM windows

into a single aggregate marker with more than two possible alleles; Beagle5 [5] introduces a novel
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method to reduce the full reference panel into a small number of composite reference haplotypes (a

mosaic of reference haplotypes) and adopts the IMPUTE2 idea of conditioning on a target-specific

selection of composite reference haplotypes. Minimac3 [19] splits the chromosome into blocks

and restricts the state space within each block to unique reference haplotypes, while minimac4

further reduces the number of unique templates by aggregating haplotypes with identical alleles on

genotyped markers.

A comparison of computational time and memory usage among IMPUTE5 (v1.1.5), Beagle5

(22Jul22.46e), and minimac4 (v4.1.2) is presented in Table 1 are listed in Table 1.2. We imputed

samples from UK Biobank array data [81] using the TOPMed r2 reference panel [78] on chromo-

some 20. The experiment was conducted on a single core of Intel® Xeon® Platinum 8268 CPU @

2.90GHz.

Target Sample Size
Time ( [h:]mm:ss ) Memory (Gb)

IMPUTE5 Beagle5 minimac4 IMPUTE5 Beagle5 minimac4
1 0:42 4:32 2:19 1.88 11.71 12.48

1,000 34:06 37:08 2:47:28 12.25 17.17 15.92
10,000 8:24:19 – 26:44:55 107.73 – 16.11

Table 1.2: A comparison of imputation tools based on time and memory usage for different target
sample sizes using the TOPMed r2 reference panel on chromosome 20. Beagle5 failed for 10,000
samples due to excess of maximum Java heap size.

Development of Imputation Servers

Despite the continuous improvements in the computational efficiency of imputation tools, the in-

creasing size of both reference panels and target samples imposes a substantial computational

burden. Large-scale studies typically require access to high-performance computing clusters with

ample memory and multi-core systems for processing. Additionally, researchers must possess fun-

damental knowledge of command-line tools and cluster job management, as well as familiarity

with the pipeline or software required for quality control and phasing prior to the imputation step.

To make genotype imputation more accessible to the scientific community, cloud-based impu-
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tation servers have been developed. Examples include Michigan Imputation Server (MIS) [20],

Sanger Imputation Service (SIS) [61] and EagleImp-Web [91]. MIS uses minimac4 [20], whereas

the other two rely on the PBWT algorithm [23]. These services provide user-friendly web inter-

faces, enabling users to securely upload their (pre-phased or unphased) genotype array data and

specify imputation options, including the choice of reference panel. The imputation job, includ-

ing quality control and phasing (if applicable), is performed remotely on the server, with imputed

results returned to the user for downstream analyses.

Another challenge in genotype imputation is data sharing restrictions. Imputation requires

individual-level genotype data from reference samples, but some reference panels like HRC [61]

and TOPMed [78] cannot be made public due to data privacy and consent issues. Imputation

servers facilitate the use of controlled-access reference panels. For instance, the TOPMed Imputa-

tion Server, powered by the same engine as MIS, was developed specifically to enable researchers

to use the TOPMed reference panel for genotype imputation [78]. MIS, SIS, and EagleImp-Web all

offer imputation with the 1000G and HRC reference panels. Additionally, MIS supports Genome

Asia (GAsP) [13], the multi-ethnic HLA panel [57], CAAPA African American Panel [46], while

SIS supports the UK10K reference panel [41] and African Genome Resources.

In summary, imputation servers streamline the process of imputing genotypes using high-

quality reference panels by offering standardized workflow pipelines. This reduces the need for

users to have extensive computational infrastructure and expertise in command-line tools. These

servers play a crucial role in making genotype imputation more accessible to a wider range of

researchers, facilitating powerful and high-resolution downstream analyses.

Benefits of Genotype Imputation

By predicting untyped genetic variants based on the reference panel, imputation increases the

density of variants available for association tests. This process facilitates fine-mapping to more

accurately localize association signals by considering all genetic variants in a given region, which

in turn increases the chance of identifying a causal variant.
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Genotype imputation also facilitates meta-analysis by enabling merging data or GWAS sum-

mary statistics from multiple studies. Different studies often use different genotyping arrays. By

imputing array data from different genotyping platforms to the same reference panel, researchers

can obtain a consensus set of variants, permitting meta-analysis across all available variants with a

larger sample size than any individual study. This becomes particularly beneficial when the indi-

vidual studies are small and may lack the statistical power needed to detect an effect. Therefore,

genotype imputation not only provides a cost-effective alternative to WGS but also helps boost the

power of GWAS.

1.3 Development of Statistical Methods in Association Tests

With the dramatic increase in genetic studies and the abundance of genome-wide genotyping and

sequencing data, the development of methodologies to maximize the utility of data and facilitate

interpretability of results from these studies has been an extremely productive research area. New

methods have enabled researchers to gain insights into the biological mechanisms underlying com-

plex traits and diseases. For instance, gene-based burden analyses have improved power by aggre-

gating information from multiple genetic variants, allowing the identification of rare variants even

with small sample sizes [18, 49]. Additionally, BOLT-LMM has introduced orders-of-magnitude

improvements in the computational efficiency of mixed model methods, making it possible to an-

alyze biobank-scale datasets while accounting for sample relatedness and population substructure

[54, 55]. In this section, we will explore the primary challenges faced by genetic association tests

and examine how statistical methods have evolved in response to the growing availability of data.

Population Stratification and Relatedness

Population stratification, characterized by allele frequency differences between cases and controls

due to systematic ancestry differences, along with sample relatedness are major confounders in

genetic association studies. These factors can result in the systematic inflation of test statistics
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when methods assume independence between samples, leading to biased or spurious associations.

Before the era of GWAS, researchers favored family-based studies for their robustness against

population substructure. The transmission disequilibrium test [73], an application of McNemar’s

test [62], was used to detect genetic linkage by examining the difference in frequency between

alleles transmitted from heterozygous parents to affected offspring and those not transmitted.

Devlin and Roeder proposed genomic control (GC) [22], a population-based method intended

to be as robust yet less expensive than family-based design, making it more suitable for analyzing

complex traits. GC estimates the inflation factor of test statistics by assessing null alleles, then

adjusts the test statistics of the candidate gene accordingly. Since null alleles are assumed to be

unassociated with the trait, the inflation should arise solely from population stratification. How-

ever, a global adjustment may be inappropriate as the extent of inflation can differ among genetic

markers [67]. Consequently, the GC inflation factor λGC is now used as a quality measure to eval-

uate whether confounding persists after correction in association tests, rather than being directly

used for correction. In practice, λGC is defined as the median of the observed chi-squared test

statistics (with 1 degree of freedom) of all tested markers divided by the expected median value

under the null hypothesis. λGC > 1 indicates stratification or the presence of other confounders.

As sample sizes and admixture in study samples have grown, estimating and matching indi-

vidual ancestry has become increasingly sophisticated, with principal component analysis (PCA)

emerging as a popular option for inferring population substructure [65, 66]. PCA offers ad-

vantages such as being assumption-free, parameter-free, and, more importantly, computationally

tractable on a genome-wide scale. The top principal components, which may represent broad dif-

ferences across individuals (although interpretations can be unclear), are widely used as covariates

in GWAS. However, PCA does not explicitly account for family structure or cryptic relatedness.

Consequently, mixed models have emerged as the preferred method due to their proven ability to

account for relatedness among samples while controlling for population stratification and other

confounding factors [94]. In practice, association studies often employ a combination of these

strategies, correcting for broad sample structure using principal components and then modeling
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the association using a mixed model.

Mixed-Model Association Tests in Large-Scale Studies

The standard linear mixed model for genetic association tests can be represented as

y = Wα +Xβ + b+ e (1.4)

where y is an n-vector of observed phenotypes, and X denotes the genotype of the variant of in-

terest. W represents a matrix of covariates such as the mean (the intercept), gender and age, α

represent the corresponding fixed effects. Note that we may project the covariates out from both

the phenotype and genotype, which is equivalent to including them as fixed effects. b and e rep-

resent the random effects (the polygenic component) and residuals (the non-genetic component),

respectively, which are both normally distributed with mean 0 and covariance σ2
gK and σ2

e . Here,

K is an n × n matrix called the genomic relationship matrix (GRM) or empirical kinship matrix

which models the genetic similarity between samples. β denotes the fixed effect of the variant of

interest, and our goal is to test the null hypothesis H0 : β = 0.

One of the challenges of using mixed models for GWAS is the substantial computational cost,

as the optimization procedure for the likelihood function or the restricted maximum-likelihood

(REML) function requires iterative updates of Σ̂ = σ̂2
gK + σ̂2

eI and β = (XT Σ̂−1X)−1XT Σ̂−1y.

EMMA [45] employs singular value decomposition to avoid redundant matrix inverses and mul-

tiplications in the computation of likelihood, and thus reduces the time complexity from cubic to

quadratic. EMMAX [44] further reduces the computational cost via a two-stage approach – first,

the variance parameters are estimated under the null hypothesis (which avoids repetitive variance

component estimation procedure for each variant); second, test the null hypothesis for each variant

based on the variance estimates from the first step. It is worth noting that this approach relies on

the assumption that each variant has a small effect and may lead to underestimation of p-value

and decrease in test power when the assumption is invalid. Methods such as GEMMA [96] and
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FaST-LMM [53] provide exact p-values, but here we focus the discussion on two-stage approaches.

BOLT-LMM [55] further improves the efficiency by using the conjugate gradient method to

circumvent spectral decomposition, achieving a computational complexity of O(mn), where m

is the number of variants. It saves memory usages by operating directly on raw genotypes and

calculating the elements GRM as needed instead of pre-computing and storing the entire GRM. The

estimation of variance parameters is achieved through a stochastic approximation algorithm, and

retrospective mixed-model association statistics are computed for hypothesis testing. In addition to

the standard mixed model, BOLT-LMM models non-infinitesimal genetic architecture by placing

a Gaussian mixture prior on the effect sizes and calibrating the test statistics using the LD Score

regression technique. It also employs the leave-one-chromosome-out (LOCO) scheme to prevent

proximal contamination.

Another challenge is the inflated type I error in case-control studies. Since the homoscedasticity

assumption no longer holds for binary traits in the presence of covariates, linear mixed models may

fail to control type I errors and yield incorrect p-value estimates. Chen et al. proposed GMMAT

[8], which applies logistic mixed models and score tests for genome-wide analysis of binary traits.

However, its implementation requires O(mn2) computation and O(n2) memory. SAIGE [95] has

adapted BOLT-LMM’s optimization strategies into the logistic mixed model framework, making it

scalable for large sample sizes. It also incorporates the saddlepoint approximation to the score test

statistics to accommodate unbalanced case-control ratios. REGENIE [60] enables parallel analysis

of multiple quantitative or binary traits and further reduces the memory usage by loading only local

segments of the genotype matrix. Enhanced computational efficiency in the first step is achieved

by partitioning the variants into consecutive blocks and generating a small set of predictors using

ridge regressions within each block. LOCO predictors are generated using a second round of ridge

regressions with cross-validation and used for association tests in the second step. REGENIE has

also proposed an approximate Firth regression approach for the analysis of binary traits.

Improved computational efficiency of GWAS methods offer substantial benefits to genetic re-

search in terms of scalability and capacity. Efficient computational algorithms accommodate anal-
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yses of large-scale studies which are growing both in sample size and the number of genetic vari-

ants (via WGS or genotype imputation), enhancing the power of GWAS and paving the way for

more intricate studies such as multi-trait GWAS or meta-analyses, ultimately broadening our un-

derstanding of the complex traits and diseases.

The advancements in the computational efficiency of GWAS methods benefits genetic research

in terms of scalability and capacity. These improved algorithms enabled large-scale studies that

are growing both in terms of sample size, due to more individuals being genotyped, and in terms of

the number of genetic variants (via WGS or genotype imputation), enhancing the power of GWAS

and broadening our understanding of the complex genetic traits and diseases.

Statistical Fine-Mapping

GWAS have successfully identified thousands of genetic associations for diseases and complex

traits [30, 71, 75, 82]. However, GWAS signals often point to broad regions of the genome which

harbor hundreds of genetic variants, among which some are potentially causal while most are

implicated due to LD with the true causal variant. With the presence of complex LD structure,

it is often challenging to pinpoint the true causal variant, and therefore additional fine-mapping

analyses are required to prioritize the candidate causal variants for follow-up functional studies.

One intuitive way to prioritize variants is based on p-values. While it is tempting to assume

that the lead variant with the lowest p-value is most likely to be cause, it is not always true – a

non-causal variant could have the lowest p-value due to LD with the actual causal variant or due to

statistical fluctuations [10]. The limitations of using p-values in this context become apparent when

we consider that p-values cannot quantify the uncertainty of a variant being causal [76]. Also, p-

values are not comparable across variants or across different studies, given that they are influenced

by minor allele frequency and sample size. Therefore, the Bayes factor has been increasingly

recognized as a viable alternative to the p-value for summarizing the evidence of associations [84].

The earliest Bayesian fine-mapping approach ranks the associations by posterior probability which

is proportional to the Bayes factor of each variant, while assuming that exact one of the variants is
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causal in each region [58].

Several methods have been proposed to lift the restriction of one single causal variant in one

region by jointly analyzing all the variants in the region. Conditional approach uses a stepwise

selection procedure, sequentially selecting variants based on conditional p-values, which are re-

calculated at each step [93]. However, this approach carries the drawbacks of using p-values: the

necessity to set a significance threshold and the inability of quantifying uncertainty in the selection

process, which is sub-optimal in terms of power and precision with the presence of complex LD

structure. Consider two SNPs in perfect LD, only one being causal, the conditional approach will

randomly choose one of them in the selection process and thus miss the true causal variant in half

cases. One of the major methods that overcomes this limitation was presented in Hormozdiari et

al. (CAVIAR) [38], in which they took the approach of jointly modeling multiple causal variants

rather than sequentially. They framed the issue as a Bayesian Variable Selection (BVS) problem,

taking into account all possible combinations of variants and calculating the posterior probability

for each variant in a genomic region to be causal. Subsequently, more scalable BVS implementa-

tions were proposed, including FINEMAP [3], DAP-G [87, 48], and SuSiE [85], to avoid the need

for exhaustive enumeration of all causal configurations.

1.4 Transcriptome-Wide Association Studies

Recent technological advancements have also permitted high-throughput measurement of other

omics data. RNA sequencing has facilitated gene expression profiling [86] while mass

spectrometry-based techniques have revolutionized proteomics [1] and metabolomics [21] by iden-

tifying and quantifying proteins and small molecules. These technologies, combined with ad-

vanced statistical methods, have enabled integrative analysis of multi-omics data, enhancing func-

tional annotation of genetic variants, prioritizing candidate genes in association studies, and pro-

viding a comprehensive understanding of complex biological processes.

Transcriptome-Wide Association Study (TWAS) is a powerful research approach that integrates
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gene expression measurements with GWAS to identify expression-trait associations. TWAS begins

by leveraging a panel with both gene expression data and genotype data to build a prediction model

for genetically regulated gene expression levels based on genotype [32]. The prediction model is

then applied to GWAS data. Instead of testing individual genetic variants, the predicted expression

levels of genes are evaluated for their association with the disease or trait in question. This process

enables TWAS to identify genes where predicted expression correlates with disease risk, thereby

offering a mechanistic hypothesis on how genetic variants may influence the disease.

1.5 Challenges and Purpose

This dissertation is dedicated to addressing urgent challenges and advancing the methods used in

genetic association studies, specifically focusing on genotype imputation, fine-mapping, and gene

expression imputation.

In Chapter 2, we confront the task of augmenting genotype imputation accuracy by leverag-

ing multiple reference panels. Existing genotype imputation methods typically use one reference

panel at a time. Nevertheless, with the increasing availability of large-scale sequencing projects, it

is desirable to use multiple reference panels to boost imputation accuracy. But data-sharing restric-

tions and computational cost create obstacles in directly combining these reference panels. Thus,

we introduce a meta-imputation framework, which circumvents the need for accessing individual-

level genotype data by imputing target samples using each reference panel separately and then

combining the imputed results.

In Chapter 3, we investigated the limitations of statistical fine-mapping methods that employ

summary statistics and LD data compared with using individual-level data. We further examine

the challenge of non-identifiability arising from complex LD structures within the BVS framework

and its implications on fine-mapping outcomes. Additionally, we scrutinize the limitations of

BVS implementations utilizing greedy algorithms, in contrast to exact calculation of posterior

probabilities via enumeration of all possible model configurations, focusing particularly on their
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handling of non-identifiable cases.

In Chapter 4, we pivot our focus to the fundamental part of TWAS – the prediction of geneti-

cally regulated expression levels. By employing TOPMed data, we undertook a comparative study

of various gene expression imputation methodologies. Our objective is to spotlight the strengths

and weaknesses of these methods, assess factors influencing the imputation accuracy of gene ex-

pression levels, and provide prediction models trained from the TOPMed data, which researchers

can utilize in their TWAS analyses.

Through these projects, our method offers researchers valuable tools and insights for genetic re-

search. We have integrated the meta-imputation feature in our imputation server so that researchers

can conveniently improve imputation accuracy with multiple reference panels. Our investigation

of fine-mapping methods provides a deeper understanding of non-identifiability issues, sheds light

on the limitations of statistical approaches and the utilization of summary statistics. This knowl-

edge empowers researchers to refine their fine-mapping analyses and improve their interpretation

of results. Additionally, by providing prediction models trained from the TOPMed data, we offer

researchers a practical resource to seamlessly integrate imputed gene expression levels into their

analyses. These contributions collectively propel researchers forward in advancing their studies to

unravel the mechanisms underlying complex traits and diseases.
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and David Ellinghaus. Eagleimp-web: A fast and secure genotype phasing and imputation
web service using field-programmable gate arrays. bioRxiv, pages 2022–02, 2022.

24

www.genome.gov/sequencingcostsdata


[92] Naomi R Wray, Stephan Ripke, Manuel Mattheisen, Maciej Trzaskowski, Enda M Byrne,
Abdel Abdellaoui, Mark J Adams, Esben Agerbo, Tracy M Air, Till MF Andlauer, et al.
Genome-wide association analyses identify 44 risk variants and refine the genetic architecture
of major depression. Nature genetics, 50(5):668–681, 2018.

[93] Jian Yang, Teresa Ferreira, Andrew P Morris, Sarah E Medland, Genetic Investigation
of ANthropometric Traits (GIANT) Consortium, DIAbetes Genetics Replication, Meta anal-
ysis (DIAGRAM) Consortium, Pamela AF Madden, Andrew C Heath, Nicholas G Martin,
Grant W Montgomery, et al. Conditional and joint multiple-snp analysis of gwas summary
statistics identifies additional variants influencing complex traits. Nature genetics, 44(4):369–
375, 2012.

[94] Jianming Yu, Gael Pressoir, William H Briggs, Irie Vroh Bi, Masanori Yamasaki, John F
Doebley, Michael D McMullen, Brandon S Gaut, Dahlia M Nielsen, James B Holland, et al.
A unified mixed-model method for association mapping that accounts for multiple levels of
relatedness. Nature genetics, 38(2):203–208, 2006.

[95] Wei Zhou, Jonas B Nielsen, Lars G Fritsche, Rounak Dey, Maiken E Gabrielsen, Brooke N
Wolford, Jonathon LeFaive, Peter VandeHaar, Sarah A Gagliano, Aliya Gifford, et al. Effi-
ciently controlling for case-control imbalance and sample relatedness in large-scale genetic
association studies. Nature genetics, 50(9):1335–1341, 2018.

[96] Xiang Zhou and Matthew Stephens. Efficient multivariate linear mixed model algorithms for
genome-wide association studies. Nature methods, 11(4):407–409, 2014.

25



CHAPTER 2

Meta-Imputation: An Efficient Method to Combine

Genotype Data after Imputation with Multiple

Reference Panels

2.1 Introduction

Genotype imputation, which uses a reference panel of sequenced genomes to estimate unobserved

genotypes for samples with sparse microarray data, has been widely used to infer genotypes in

genome-wide association studies (GWAS) [11, 17, 26].Genotype imputation helps improve power

for detecting association signals, facilitates meta-analyses and enables fine-mapping [20, 7].

Over the last decade, large-scale whole-genome sequencing projects such as 1000 Genomes

(1000G) [6], Haplotype Reference Consortium (HRC) [21] and Trans-Omics for Precision

Medicine (TOPMed) Program [27] have produced reference panels that include progressively

larger numbers of samples. The successive increase in reference sample size captures more rare

variants and provides higher resolution mapping in association studies. While these widely used

panels have been steadily increasing in resolution and accuracy, particularly in European ances-

try samples, the optimal choice of panel is often challenging for other ancestries (for example,

the smaller 1000G reference panel sometimes outperforms the larger HRC panel in samples of

South Asian ancestry[7, 27]). Furthermore, when imputing samples within a specific study popu-

lation, smaller customized reference panels exist as alternatives to these widely used public pan-
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els and might yield even better imputation quality [9, 22]. Examples where using these cus-

tomized reference panels can often provide higher accuracy include ongoing studies in Sardinia

[25], Finland[16], Norway [15] and Iceland [14], among many others. Unfortunately, these cus-

tomized reference panels may miss rare variants and haplotypes that could be covered by larger

panels and may perform poorly for individuals with unique ancestry. Therefore, it is desirable to

utilize genetic information from both customized panels and large-scale panels [32].

An ideal solution is to construct a combined reference panel. However, different studies tend

to use different variant calling and filtering strategies, which can make it challenging to merge

sequencing data [27, 24]. It is desirable to consider the union set of variants across studies to

use as much of the available information as possible. The gold standard method to address such

discrepancies between multiple data sets is to jointly call variants from all samples using their

original sequence alignment files, which is a highly computationally intensive task. A relatively

simple substitute for joint variant calling is cross-imputation, where data sets are used as reference

panels for each other and reciprocally imputed up to the union set of variants [13]. Furthermore,

another important concern is data-sharing restrictions. For example, individual-level genotype data

in many reference panels are not publicly available, it may thus be impossible to directly merge

them with other sequencing data sets.

In this paper, we introduce the idea of meta-imputation. Instead of combining the reference pan-

els before imputation, we first impute using different reference panels separately and then combine

the imputed results into a consensus data set. By doing so, we can avoid accessing individual-

level genotype data of the reference panel samples and achieve the goal of improving imputation

accuracy by incorporating genetic information from multiple sources.

2.2 Materials and Methods

Meta-imputation consists of two separate steps (Figure B.1). First, we impute our target samples

against two or more different reference panels. Then, we combine the imputation results using
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weights that are guided by the empirical performance of each of the panels in stretches of each

individual genome. The meta-imputed result at each marker is then a weighted average of the

estimated allele counts from imputation against each panel. The weights are individual and region

specific and reflect that the optimal choice of reference panel varies along the genome. Weights

for each region and individual are estimated through a hidden Markov Model (HMM).

2.2.1 Leave-one-out Imputation

In order to determine the optimal weights for each reference panel along the genome, we need to

evaluate the performance of each panel along each imputed haplotype. Theoretically, if we knew

the true genotype of the target haplotype at a marker, we could quantify the imputation accuracy

at that marker by comparing the true genotype with the imputed haploid dosage. In practice,

we mimic this approach by leave-one-out (LOO) imputation, in which each genotyped marker is

masked and imputed in turn. Our innovation is to use the genotyped markers in each genome to

estimate these local weights for each individual. We do this by masking each observed genotype

in turn and then trying to impute it based on information at flanking markers. We call the imputed

results from this procedure LOO dosages. We evaluate local imputation performance for each

reference panel by comparing the LOO dosages and the original genotypes at the masked sites,

and assign local weights accordingly.

Figure 2.1A and Figure 2.1B illustrate a simplified version of the LOO imputation algorithm

using two reference panels. For easier understanding, we simplified HMM to estimation based

on exact matching haplotypes. The target haplotype is genotyped at three markers (marker 1,3,6).

First, we masked the observed allele at marker 1, and searched for matching haplotypes based

on marker 3 and marker 6. According to the matching reference haplotypes (shaded in blue), the

probability of observing “A” was 0.8 from Panel #1 and 0.3 from Panel #2. Similarly, we could

obtain the LOO results at other genotyped markers. Figure 2.1C compares the LOO results from

the two reference panels along the genome, Panel #1 was more accurate at the beginning and Panel

#2 was more accurate at the end of the chunk, so in the weight estimation process, we would assign
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Panel #1 high weights at the beginning and low weights at the end of the chunk. Our expectation

is such weights will improve imputation at ungenotyped markers.

In practice, the LOO imputation utilizes the same Markov chain as the regular imputation, and

the only difference in the model lies in the genotype emission probability at the masked marker.

Let Am denote the observed allele at marker m in the target haplotype, Hm denote the reference

haplotype template at marker m, and M denote the number of markers. In the HMM for the regular

imputation, the probability of the underlying template at marker m is given in equation (2.1).

P (Hm|A1, . . . , AM) ∝ P (Am|Hm)Lm(Hm)Rm(Hm) (2.1)

where Lm(·) and Rm(·) denote the left probability and right probability for the haplotype template

at marker m, as defined in equation (2.2) and (2.3) respectively.

Lm(Hm) =


1 m = 1∑

Hm−1
Lm−1(Hm−1)P (Am−1|Hm−1)P (Hm−1|Hm) 1 < m ≤ M

(2.2)

Rm(Hm) =


∑

Hm+1
Rm+1(Hm+1)P (Am+1|Hm+1)P (Hm+1|Hm) 1 ≤ m < M

1 m = M

(2.3)

Assume that the genotype at marker m is observed. When calculating the LOO dosage for

marker m, the observed genotype is masked and handled as if it were unknown. Hence, the

corresponding genotype emission probability P (Am|Hm) is set to 1, while other components in

equation (2.1) remain the same as in the regular imputation, which yields the LOO posterior prob-

ability P̃ (Hm|A1, . . . , AM) ∝ Lm(Hm)Rm(Hm). Let Y1, . . . , YN denote all the haplotypes in the

reference panel, and Yn,m denote the alternative allele count at marker m of reference haplotype

Yn, then the LOO dosage at marker m is represented as:

dm =
N∑

n=1

Yn,m × P̃ (Hm|A1, . . . , AM) (2.4)
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The LOO imputation is a built-in feature in the latest version of our minimac4 imputation soft-

ware [8], which runs at the same time of regular imputation with minimal additional computational

cost. The time costs of imputation using minimac4 with and without the LOO imputation feature

are displayed in Table B.2. The LOO imputation is computationally inexpensive because it does

not require rerunning the forward and backward chains of the HMM that underlie genotype impu-

tation and because it requires limited extra calculations at genotyped markers only.

2.2.2 Model Description

We assume that the target genotypes are pre-phased prior to imputation, so that imputation is con-

ducted on the same set of haplotypes using each reference panel in turn. The key meta-imputation

problem is thus combining haploid allele dosages estimated using each of the available panels.

Assume that we have K reference panels, containing a union set of M markers, labeled in a chro-

mosome order with indices 1, 2, . . . ,M . For a target haplotype, we denote the imputed haploid

dosages at marker m from panel k as Xk,m, and the meta-imputed haploid dosage at that marker is

represented as their weighted average:

Xm =
K∑
k=1

wk,mXk,m m = 1, 2, . . . ,M (2.5)

where wk,m represents the weight on panel k at marker m, satisfying 0 ≤ wk,m ≤ 1 and∑K
k=1wk,m = 1. For each target haplotype, weights are estimated through an HMM that we

will describe next. The weights are tailored to each haplotype and vary along the genome. This

integration step is implemented in the C++ package MetaMinimac2.

2.2.3 Weight Estimation

As inspired by Li and Stephens model [18], we use an HMM to estimate reference panel weights

using the LOO dosages and the observed alleles to guide our decisions about which panel is pre-

ferred along the genome. In this HMM the hidden state Sm represents the underlying choice of
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reference panel at marker m and the emission state Am represents the observed allele (0 – reference

allele, 1 – alternate allele).

The emission probability P (Am|Sm) is defined in Equation (2.6) where dk,m denote the LOO

dosage from panel k at marker m. An ideal choice of reference panel will maximize the probability

of the genotypes that are actually observed.

P (Am = 1|Sm = k) = dk,m

P (Am = 0|Sm = k) = 1− dk,m

(2.6)

The transition probability P (Sm|Sm−1) is defined in Equation (2.7) where λm represents the

probability of a change in optimal reference panel between markers m − 1 and m. We have

found that our model is not very sensitive to reasonable choices of λm, and we typically set λm =

1− e−c·distm , where distm is the base pair distance between the two markers and c = 2× 10−7.

P (Sm|Sm−1) =


λm

K
Sm ̸= Sm−1

1− λm + λm

K
Sm = Sm−1

(2.7)

Finally, these quantities allow us to define the weight for panel k at marker m as the posterior

probability wk,m = P (Sm = k|A1, . . . , AM) using the forward and backward algorithm [2].

After obtaining the weights at genotyped markers, weights at intervening markers are interpo-

lated from flanking genotyped markers. When calculating the meta-imputed dosage at a specific

marker (equation 2.5), only reference panels including that marker are considered and their weights

are scaled so they sum to 1.0. An alternative strategy would be to assume a dosage of 0.0 where the

marker is absent, avoiding rescaling. The optimal choice of strategy depends on whether markers

are generally absent from a panel due to differences in allele frequency between populations and

samples or, instead, due to differences in variant calling and filtering protocols.

31



2.2.4 Empirical Assessment #1: African American Samples from 1000

Genomes

To evaluate the ability of our method to accurately impute the genomes of admixed individuals,

we selected a set of 1000G samples with admixed ancestry and created two panels for imputation

– one with individuals with mostly European ancestry, and the other with individuals with mostly

African ancestry. This setting is challenging because the optimal choice of panel will vary between

individuals (depending on their degree of admixture) and also along the genome of each individual

(depending on the ancestral origin of each chromosome segment). Then, we focused on 61 individ-

uals of African Ancestry in Southwest US (ASW) and extracted their genotypes for the Illumina

Human1M-Duo Beadchip (19,883 out of 1,803,869 variants on chromosome 20) to mimic a typi-

cal GWAS data set. Two reference panels were constructed, one of 503 European (from the 1000G

CEU, FIN, GBR, IBS and TSI samples) individuals, and the other including 600 African (from the

1000G ACB, ESN, GWD, LWD, MSL and YRI samples) individuals. The detailed distribution of

reference populations is listed in Table S2. All genotype data and ancestry information are from

1000G phase 3 release[6].

We conducted meta-imputation on ASW samples using the European panel and African panel

and evaluated the imputation accuracy by calculating aggregated r2 between the imputed results

and the masked genotype data. In order to obtain the aggregated r2, we grouped the markers by

the minor allele frequency (MAF) in the entire 1000G data set. The aggregated r2 for each group

is calculated as the squared Pearson correlation between the imputed dosages and the true minor

allele counts across the markers in the group.

2.2.5 Empirical Assessment #2: Evaluation in South Asian Samples from

UK Biobank

To illustrate the capability of our method to improve imputation when used together with large

reference panels, we tested it on South Asian ancestry individuals in UK Biobank[28]. Genomes

32



for these individuals are hard to impute using reference panels such as HRC[21] and TOPMed[27]

that include relatively few Asian ancestry individuals despite their size. HRC[21] and TOPMed[27]

are typically outstanding at imputing missing genotypes in the bulk of the UK Biobank samples,

which are of European origin.

The 2019 release of UK Biobank includes approximately 50,000 individuals with both array

data and whole exome sequencing data [28]. We imputed the array data across the autosomes

and used the exome data as a truth set to evaluate the accuracy of imputed variants. We assigned

ancestry to UK Biobank participants by running a supervised ADMIXTURE [1] analysis with

the Human Genome Diversity Project (HGDP) data[5] as a reference. Using a threshold of 70%

genome content to classify an individual into a population, we identified 762 individuals as South

Asian.

We meta-imputed genotypes for these 762 South Asian samples (pre-phased using Eagle v2.3.5

[19] without a reference panel) across the autosomes using the second release of TOPMed panel

which includes 97,256 individuals[27] and the 1000G phase 3 (GRCh38) panel which includes

2504 individuals [6]. We evaluated the imputation accuracy by comparing the imputed results with

the exome sequencing data. For comparison, we repeated the experiment using several individuals

with other ancestries and also after adding half of the exome variants to the array dataset, enabling

us to evaluate whether the inclusion of rare and low frequency variants in the scaffold used for

imputation might improve results.

Finally, we constructed a combined panel for chromosome 20 by jointly calling the variants in

2504 1000G samples and 86,594 TOPMed samples from their sequence alignment files, split it

into two subpanels with singletons excluded, and compared the performance of meta-imputation

and imputation using the combined panel.
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2.3 Results

2.3.1 Meta-Imputation in African American Samples

We first evaluated our method in the context of the 1000G ASW samples (African Americans from

the Southwest US), using reference panels consisting of other 1000G samples of mainly African

ancestry (the AFR panel), mainly European ancestry (the EUR panel), or the combination of all

these individuals (the AFR+EUR panel). As shown in Figure 2.2, meta-imputation achieved the

same accuracy as imputation using the combined AFR+EUR panel, which suggests that meta-

imputation can serve as an efficient alternative when a combined reference panel is unavailable

or impractical. Importantly, our results also show that the accuracy from meta-imputation was

substantially greater than that from imputation using a single reference panel. For variants with

minor allele frequency of 0.05%0̃.1%, meta-imputation achieved higher accuracy (r2 = 0.427

between imputed dosages and actual genotypes) than imputation using the AFR panel alone (r2 =

0.313) or using the EUR panel alone (r2 = 0.009), and the accuracy of meta-imputation was

comparable to that using the AFR+EUR panel (r2 = 0.425). Overall, we observed the largest

advantages of meta-imputation, compared to using one of the smaller panels, for rare variants.

2.3.2 Meta-Imputation in South Asian Samples

Next, we examined whether the benefits of meta-imputation would extend to settings where very

large reference panels are available. Generally, these larger reference panels yield better imputation

quality, but there are some exceptions. For example, it has been pointed out that the TOPMed

panel sometimes underperforms the much smaller 1000G panel, particularly for ancestries (such

as South Asian) that are poorly represented in TOPMed [27]. For this assessment, we used UK

Biobank samples that have been exome sequenced and compared the results of imputation and

meta-imputation with those of exome sequencing.

Figure 2.3 shows that the 1000G panel generally exhibited slightly better accuracy for imputing

South Asian genomes than the TOPMed panel for variants with MAF > 0.2%. Our results also
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suggested that meta-imputation was able to improve the accuracy even further. For example, the

imputation quality for variants with MAF of 0.05%0̃.1% increased from r2 = 0.231 (using the

1000G panel alone) and r2 = 0.260 (using the TOPMed panel alone) to r2 = 0.311 (using meta-

imputation with the 1000G panel and TOPMed panel imputation results as input). Also, the number

of well-imputed (imputation r2 > 0.3 reported by imputation software) variants on autosomes in-

creased from 16,480,094 (imputation using 1000G panel) to 25,713,394 (meta-imputation), which

suggests that 56% more variants would be available for downstream analyses.

We also evaluated a hypothetical combined panel including 1000 Genomes and TOPMed sam-

ples. For this analysis, we constructed a combined panel including the 1000G samples and most

TOPMed samples, and repeated the experiment on chromosome 20. The result (Figure B.2) shows

that meta-imputation achieves comparable accuracy to imputation using the combined panel even

in this challenging setting where the reference panels differ greatly in size.

As part of meta-imputation, weights for each reference panel were estimated along each chro-

mosome for each haplotype, reflecting the optimal choice of reference panel at each marker. Figure

2.4A illustrates the pattern of weights along the genome for a typical South Asian ancestry sample,

where red indicates a preference for TOPMed and blue indicates a preference for 1000G. In the

example, both the 1000G panel and the TOPMed panel are favored in substantial portions of the

genome. By contrast, meta-imputation generally places a much heavier weight on the TOPMed

panel when tackling a European ancestry sample, as shown in Figure 2.4B.

2.3.3 Computational Time

In principle, meta-imputation is relatively inexpensive (computationally) but there are challeng-

ing details in implementation, particularly because input and output file sizes can be extremely

large. To achieve computational efficiency, in terms of both memory and CPU usage, we first

calculate meta-imputation weights for each haplotype at genotyped markers only. The resulting

weight matrices can then be used to scan through imputation results one marker at a time, reading

panel specific imputation results, interpolating weights, and outputting weighted meta-imputation
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dosages. Since meta-imputation combines imputed dosages, the cost of the meta-imputation step

depends on the number of genotyped and imputed markers and on the number of individuals being

processed, but not on the reference panel sample sizes.

We tested meta-imputation performance on different numbers of individuals (Table 2.1). For

this analysis, we used the 1000G Phase 3 and TOPMed release 2 reference panels, which in-

clude 6,771,422 markers on chromosome 20 (1000G contains 1,052,215 markers, TOPMed con-

tains 6,631,674 markers, 912,467 markers overlap). The single-core computational times of meta-

imputation for 1000, 2000, 5000 and 10,000 target samples are reported in Table . Generally, the

computational requirements for our implementation of meta-imputation are linear with respect to

the number samples being imputed (earlier implementations performed in quadratic time because

of less efficient memory and input/output usage). The per sample time for the imputation step with

the 1000G and TOPMed reference panels using Minimac4 was about 20 seconds and for the meta-

imputation using MetaMinimac2 was about 2 seconds. Since chromosome 20 accounts for about

2% of the genome, these estimates translate into about 17 minutes per genome for imputation and

2 minutes for meta-imputation.

2.4 Discussion

We have presented a convenient and efficient meta-imputation framework that enables researchers

to merge imputed data generated using multiple reference panels. The meta-imputation procedure

consists of two separate steps, imputation and integration, allowing investigators to incrementally

consider new reference panels without repeating imputation steps using prior panels. As each

panel is added, investigators need only impute the target samples against the new panel and can

then combine the results with previously computed imputed result data sets. Our method does not

require access to individual-level data from the reference panels and should perform gracefully

even when the optimal choice of reference panel varies between individuals or along the genome

of each individual. In principle, we expect our method to perform well even when reference panels
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have partial overlap.

We first illustrated the performance of our method for meta-imputation in African American an-

cestry samples using reference panels consisting mainly of European haplotypes, mainly of African

haplotypes, or their combination – a challenging situation for meta-imputation. Since the propor-

tion of African ancestry will vary between individuals and along the genome of each individual,

achieving accurate meta-imputation requires weights that are highly customizable – varying be-

tween individuals and along the genome of each individual. We also evaluated our methods in

South Asian samples using reference panels with a large disparity in size. In these scenarios, meta-

imputation not only outperformed imputation using either panel alone, but also compared well

with imputation against the merged panel in terms of accuracy. Therefore, we propose that it will

be safe to use our method even when the reference panels used for the initial imputation step are

both sub-optimal, since our MetaMinimac2 algorithm is able to incorporate the best information

from the different imputation results to yield much improved genotype dosages.

Improved imputation accuracy brings greater statistical power in GWAS. In the scenarios we

examined (see Appendix B.1.1 and Figure B.4), the power of GWAS using meta-imputed dosages

is comparable to the power of a hypothetical GWAS using imputed dosages from a merged panel.

A previous recommendation for conducting GWAS when multiple reference panels are available

was to conduct multiple GWAS (one for each set of imputation results) and to use the smallest p-

value at each marker after imputation, carrying out simulations to estimate an appropriate multiple

testing correction[32]. This approach also approximates the power of analysis with a combined

panel. One of the reasons is that it may captures some of the features of multiple imputation[12],

and we speculate that the power of GWAS using our approach might be further improved in the

multiple imputation framework. Although the best p-value also performs well, our approach pro-

vides important advantages. First, because it produces a single consensus set of imputed dosages,

the computational effort required to analyze additional phenotypes is more modest. Additionally,

this consensus set of imputed dosages can serve as input to a variety of additional analyses –

including trait co-localization [23, 29] and fine-mapping [3, 31, 30].
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In the scenarios we examined, meta-imputation consistently produced better accuracy than im-

putation using only one of the available reference panels. However, it is not necessarily the case

that every variant would gain in imputation quality. A challenging question concerns handling of

variants that are present in only a subset of the reference panels. If a variant is present in one

reference panel only, we opted to preserve the original imputed results for that variant. This is

appropriate if we expect the presence or absence of a variant to be due to technical reasons, such

as arbitrary differences in filtering criteria or accessibility of different parts of the genome using

different sequencing technologies. An alternative would be to score variants that are absent from

one panel as if they always match the reference genome in haplotypes from that panel, assigning

them a dosage of zero. The optimal choice between these two alternatives will depend on the de-

tails of how panels were generated and whether panel specific variants reflect patterns of natural

variation or technical artifacts due to variant calling and filtering. Since meta-imputation works on

a per haplotype basis, its performance relies on the quality of pre-phasing. Switch errors in phasing

may result in decreased imputation accuracy and misleading weights, so meta-imputation should

directly benefit from evolving phasing algorithms [19, 10, 4]. The accuracy of meta-imputation

could also be affected by factors including the density of genotype array and choice of variants.

We would expect that a denser genotype array may bring improved accuracy as it could provide

more information and better reflect the local performance of each reference panel. In our exper-

iment (see Appendix B.1.2 and Figure B.3), supplementing the common variant array genotypes

with the exome variants did not make a substantial difference in the imputation accuracy. This

is because the weights estimated using common variants are also close to the ideal weights for

imputation of rare variants.

In the current era, where imputation reference panels are often shared through convenient impu-

tation servers [21, 27, 8], which increase user convenience and protect genetic information in the

panel, our approach allows results from different servers to be combined and also allows studies

who create their own panels to combine results generated using these panels with results gener-

ated from one or more imputation servers. We hope that these meta-imputation strategies will
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continue to extend the reach of imputation towards rarer and rarer variants and facilitate studies in

diverse populations, where supplementing publicly available reference panels with complementary

targeted panels is likely to be especially useful.
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Table 2.1: Computational time of meta-imputation for UK Biobank samples

Number of Samples
Time ([hh]:mm:ss)

Step 1: Minimac4
Step 2: MetaMinimac2 Total

1000G TOPMed
1,000 21:57 5:42:37 38:45 6:43:19
2,000 43:34 11:06:08 1:16:57 13:06:39
5,000 1:45:44 26:40:53 3:12:12 31:38:49

10,000 3:34:10 53:15:35 6:14:16 63:04:01

The analysis was conducted on chromosome 20, which involved 17,388 genotyped markers in the
target haplotypes and 6,771,422 markers in reference panels. 1000G phase 3 (GRCh38) panel
contains 1,052,215 markers; TOPMed release 2 panel contains 6,631,674 markers; 912,467
markers overlap. All the tests were conducted on Intel Xeon Platinum 8268 CPU @ 2.90GHz
using one core at a time.
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Figure 2.1: An illustration of leave-one-out imputation

Figure A and B illustrate LOO imputation on a small chunk of 6 genotype markers using two
reference panels, respectively. The target haplotype is genotyped at three markers (1,3,6). During
the LOO imputation procedure, one marker was masked at a time, denoted as ‘?’. The figure
simplifies the HMM procedure to estimating LOO results based on exact matching according to
the unmasked markers (an HMM is used in the actual algorithm). For example, when performing
LOO imputation using reference panel #1, we first masked the observed allele “A” at marker 1
and found five haplotype matches (shaded in blue) based on marker 3 and marker 6. The alleles
from the five matches at maker 1 were AAAAC, which suggested a result of “A” with probability
0.8. Thus we obtained that the probabilities of observing the true allele at marker (1,3,6) were
(0.8, 1.0, 0.8) from panel #1 and (0.3, 0.2, 0.3) from panel #2, which were compared in Figure 1C
along with LOO results at other genotyped markers. Panel #1 was more accurate than panel #2 at
the beginning but less accurate at the end, so ideally the weight on panel #1 should be high at the
beginning and low at the end.
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Figure 2.2: Comparison of imputation accuracy in African American samples

Imputation accuracy for the pseudo-GWAS ASW data set was compared among: 1)
meta-imputation; 2) imputation using the combined AFR+EUR panel including both African and
European ancestry genomes; 3) imputation using the homogeneous African (AFR) panel; 4)
imputation using the homogeneous European (EUR) panel. Variants were grouped according to
minor allele frequency, which was estimated from the genotype data of 2504 samples in the 1000
Genomes Project. Aggregated r2 were calculated for each variant group.
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Figure 2.3: Comparison of imputation accuracy in South Asian sample

Imputation accuracy for 762 South Asian samples in UK Biobank data was compared among 1)
meta-imputation; 2) imputation using 1000G Phase 3 (GRCh38) panel; 3) imputation using
TOPMed Release 2 panel. Aggregated r2 was computed based on 918,144 variants shared by the
1000G panel, the TOPMed panel and UK Biobank whole exome sequencing data. Variants were
binned according to minor allele frequency, which was estimated from exome sequencing data for
the 762 samples.
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Figure 2.4: Genome-wide summary of weights used in meta-imputation

UK Biobank samples were meta-imputed against the 1000G phase 3 panel and the TOPMed
release 2 panel. The figures display the local weights on the TOPMed panel from the weight
estimation step, where red indicates a preference for TOPMed and blue indicates a preference for
1000G. Figure A corresponds to the analysis of a sample haplotype with South Asian ancestry,
where both the 1000G panel and the TOPMed panel were favored in substantial portions of the
genome. Figure B corresponds to the analysis of a sample haplotype with European ancestry,
where the TOPMed panel was nearly always favored.
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Samer Najjar, Ramaiah Nagaraja, Marco Orrú, Gianluca Usala, et al. Genome-wide asso-
ciation scan shows genetic variants in the fto gene are associated with obesity-related traits.
PLoS genetics, 3(7):e115, 2007.

[26] Eli A Stahl, Gerome Breen, Andreas J Forstner, Andrew McQuillin, Stephan Ripke, Vassily
Trubetskoy, Manuel Mattheisen, Yunpeng Wang, Jonathan RI Coleman, Héléna A Gaspar,
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CHAPTER 3

Exploring the Limitations of Statistical

Fine-Mapping Analysis of Genetic Association

Signals

3.1 Introduction

3.1.1 Background and Motivations

Genome-wide association studies (GWAS) have successfully identified thousands of genetic as-

sociations for diseases and complex traits [7, 15, 17, 21]. However, GWAS signals often point

to broad regions of the genome which harbor hundreds of genetic variants, among which some

are potentially causal while most are implicated due to linkage disequilibrium (LD) with the true

causal variant. With the presence of complex LD structure, it is often challenging to pinpoint the

true causal variant, and therefore additional fine-mapping analyses are required to prioritize the

candidate causal variants for follow-up functional studies.

Prioritizing variants intuitively often hinges on p-values. While it might seem logical to infer

that the variant with the smallest p-value is most likely to be causal, this isn’t always the case – a

non-causal variant could have the lowest p-value due to LD with the actual causal variant or due to

statistical fluctuations [3]. The limitations of using p-values in this context become apparent when

we consider that p-values cannot quantify the uncertainty of a variant being causal [18]. Also, p-
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values are not comparable across variants or across different studies, given that they are influenced

by minor allele frequency and sample size. Therefore, the Bayes factor has been increasingly

recognized as a viable alternative to the p-value for summarizing the evidence of associations

[22]. The earliest Bayesian fine-mapping approach ranks the associations by posterior probability

which is proportional to the Bayes factor of each variant, while assuming that exact one of the

variants is causal in each region [13]. Several methods have been proposed to lift this restriction

by jointly analyzing all the variants in the region. Conditional approach uses a stepwise selection

procedure, sequentially selecting variants based on conditional p-values, which are recalculated at

each step [26]. However, this approach carries the drawbacks of using p-values: the necessity to

set a significance threshold and the inability of quantifying uncertainty in the selection process,

which is sub-optimal in terms of power and precision with the presence of complex LD structure.

Consider two SNPs in perfect LD, only one being causal, the conditional approach will randomly

choose one of them in the selection process and thus miss the true causal variant in half cases.

One of the major methods that overcomes this limitation was presented in Hormozdiari et al.

(CAVIAR) [10], in which they took the approach of jointly modeling multiple causal variants rather

than sequentially. They framed the issue as a Bayesian Variable Selection (BVS) problem, taking

into account all possible combinations of variants and calculating the posterior probability for each

variant in a genomic region to be causal. Subsequently, more scalable BVS implementations were

proposed to avoid the need for exhaustive enumeration of all causal configurations. FINEMAP op-

timizes computational efficiency in fine-mapping by using a stochastic shotgun search [2], a tech-

nique that emphasizes the most probable subset of causal configurations. DAP-G [11, 24]leverages

an efficient deterministic search strategy to discern plausible models and approximates the normal-

izing constants using the well-established statistical principle of Sure Independence Screening [6].

SuSiE introduces the ”Sum of Single Effects” model [23] , implementing an iterative Bayesian

stepwise selection algorithm that enables effective computation in fine-mapping by associating

each credible set with variants sharing similar marginal impacts on traits.

While BVS offers a robust alternative to traditional methods, it’s not exempt from complica-
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tions, especially when dealing with complex LD structures. One prominent issue arises when a

non-causal variant is linked with multiple causal variants. In such scenarios, the non-causal variant

may manifest with higher significance than the actual causal variants. For example, the sole 95%

credible set variant located in SKIV2L intron pinpointed by fine-mapping was proved not truly

associated with age-related macular degeneration according to haplotype analysis. Instead, it tags

with two CFB missense variants and shows stronger association than either of these true causal

variants [7].

Another big challenge for fine-mapping is data-sharing restrictions. Privacy concerns have

grown in prominence in the era of big data, especially when dealing with genomic data as in-

dividual genetic data can be personally identifiable and potentially misused in ways that could

discriminate or harm individuals [16]. To address these concerns, data sharing policies and best

practices have been instituted across research communities, limiting the availability of individual-

level data to a broader audience. This limitation has necessitated the development of methods

tailored to work with summary statistics.

In this chapter, we investigated non-identifiability issues caused by complex LD structure within

the BVS framework and the resulting false discoveries in fine-mapping. We evaluated the limita-

tions of BVS implementations which employ greedy algorithms, especially when they handle the

non-identifiable cases. Also, we evaluated the limitations of fine-mapping analyses that utilize

summary statistics and compared their power and coverage against those using individual-level

data.

3.1.2 Overview of Bayesian Variable Selecion Framework

Assume that we have observed genotype and phenotype data for n samples. Let y =

(y1, y2, ..., yn)
T represent the trait of interest of n samples and Xn×p = (x1, x2, ..., xp) represents

the genotype matrix, where xj is an n-vector of genotype at the jth variant, j = 1, 2, ..., p. The
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relationship between genotype and the trait of interest is modeled as a multiple regression.

y = Xβ + ϵ, ϵ N(0, σ2In) (3.1)

where β denote the effect sizes of the pvariants,ϵ is an n-vector of error terms, and σ2 is the

residual variance. For simplicity, we assume that both X and y have been mean-centered before

analysis so that we do not have to consider the intercept term when modeling the association.

Statistical fine-mapping approaches primarily aim to identify causal variants rather than deter-

mining their effect sizes, thus transforming the issue into a variable selection problem. The causal

status of the jth variant is denoted as γj = I(βj ̸= 0), so that it is referred to as a causal variant

if γj = 1. In order to quantify the uncertainty in variants selected, most existing fine-mapping

methods employ the BVS framework (rather than non-Bayesian methods including LASSO [20]

and COJO [26]), in which we focus on the inference of the posterior distribution of the indicator

vector γ = (γ1, γ2, ..., γp)
T :

P (γ|X, y) =
π(γ)BF (γ)∑
γ′∈Γπ(γ′)BF (γ′)

(3.2)

where Γ denotes the model space of 2p possible configurations of γ, π(·) denotes the prior prob-

ability and BF (γ) = (P (y|X, γ))/(P (y|X, γ = 0)) denotes the Bayes factor for γ. The prior

probability is a function of prior inclusion probabilities of variants −→π = (π1, π2, · · · , πp)
′ where

πj denotes the prior probability that variant j is causal, and we set πj =
1
p

by default:

π(γ) =

p∏
j=1

π
γj
j (1− πj)

1−γj (3.3)

Subsequently, we can obtain the posterior inclusion probability (PIP) of each variant by

marginalizing the posterior model probability:

PIPj := P (γj = 1|X, y) =
∑

γ:γj=1

P (γ|X, y) (3.4)
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3.1.3 Using Summary Statistics for Fine Mapping

It is challenging to obtain in practice due to data privacy concerns and sharing restrictions. Such

obstacles have motivated methodological development of fine-mapping frameworks that require

only summary statistics.

Studies have shown that given the summary-level data (R, b̂, ŝ, yTy, n), we could achieve infer-

ence results identical to those obtained through fine-mapping using individual-level data. Here,

R is the correlation matrix of genotypes between genetic variants, b̂ = (b̂1, b̂2, · · · , b̂p)T and

ŝ = (ŝ1, ŝ2, · · · , ŝp)T represent the effect size and the corresponding standard errors from a simple

linear regression for each variant, yTy denotes the sum of squares of the centered phenotype, and n

denotes the sample size of the GWAS study. Proofs can be found in the supplementary materials.

However, the in-sample LD matrix R may not be available in practice and is typically substituted

with an out-of-sample LD estimate R̂ – the sample correlation matrix of the same set of variants

from a reference panel of the same or a genetically similar population as the study samples.

3.1.4 Non-Identifiability Issues caused by LD

A model is non-identifiable when theoretically it is not possible to learn about the true values of the

underlying model parameters, even given an infinite number of observations [14]. This is common

in genetic research due to the presence of complex LD structure. Within the fine-mapping frame-

work specifically, Bayesian non-identifiability occurs when two configurations γ and γ′ yield iden-

tical posteriors, i.e., P (γ|X, y) = P (γ′|X, y). Contrastingly, the definition of non-identifiability

from a classical perspective refers to the cases with identical likelihoods P (X, y|γ) = P (X, y|γ′).

It is recommended to consider both the identifiability of the likelihood and the identifiability of the

posterior in analyses [4].

Consider an intuitive example where one non-causal variant is completely correlated with a

causal variant, denoted as x1 = x2. The two configurations γ = (1, 0)T and γ′ = (0, 1)T gen-

erate identical Bayes factors. Given identical priors, these configurations will consequently yield

the same posteriors. In this case, the true causal variant cannot be distinguished from the non-
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causal one based on the posterior or likelihood, regardless of the number of observations available,

meaning that the model is non-identifiable. DAP-G [11] introduced the concept of a signal cluster.

Variants within the same cluster exhibit modest to high LD with each other, and the posterior of

a configuration that includes one variant resembles the posterior of a configuration that includes

another variant within the same cluster. Similarly, SuSiE [23] introduced the concept of a credible

set, which is defined as the smallest subset of variants that contains at least one causal variant, with

a probability exceeding a predetermined threshold. As a result, we could make causal inference

at the cluster level, rather than relying on a randomly selected variant, which could potentially

overlook the true causal variant.

However, these methods may not work well under more complex LD structures, for example,

when a non-causal variant is correlated with multiple causal variants. Let x1 and x2 denote two

causal variants in weak correlation and let x3 denote a non-causal variant correlated with both

x1 and x2. Consider the following two models, corresponding to two configurations γ(M1) =

(1, 1, 0)T and γ(M2) = (1, 1, 0)T , respectively.

y = x1β1 + x2β2 + ϵM1 (M1)

y = x3β3 + ϵM2 (M2)

where y is the trait of interest, β1, β2, β3 represent the effect sizes of x1, x2, x3, respectively, and ϵM1

and ϵM2 represent the error terms. In an edge case where x3 ∝ x1β1+x2β2, they two configurations

will yield identical likelihood as x3 provides as much information as the combination of x1 and x2.

Therefore, an ideal inference should conclude that either both x1 and x2 are causal or x3 is causal.

The concepts of signal clusters or credible sets might not be effective in accurately capturing such

an inference. The variant x3 could be incorporated into either the x1 cluster or the x2 cluster, or be

included in a standalone cluster. The latter case may lead to a false-positive discovery.

The multimodality posteriors will induce computational difficulties in practice, as it is almost

intractable to explore the neighborhoods of all modes. Most fine-mapping methods including
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SuSiE and DAP-G implement greedy algorithms for exploration of the model space and will get

stuck at one mode while ignoring the other(s). For example, in the toy example, a greedy algorithm

may explore the configurations that include x3 while disregarding the configuration that contains

x1 and x2 only, which will overestimate x3’s PIP and lead to a false discovery.

3.2 Results

3.2.1 Overdispersion of Sample Correlation Matrix

Fine-mapping using summary statistics requires the LD information between the variants. Ideally,

this LD should be calculated directly from the GWAS samples. However, in many cases, the

original GWAS data are not available, prompting the use of LD information derived from publicly

accessible reference genotype panels as a substitute in the analysis. This substitution operates

on the underlying assumption that when the sample size is suitably large, the sample correlation

matrix can serve as an accurate approximation of the population correlation matrix. To explore

the validity of this assumption, we carried out simulations under different settings of the ratio of

number of variants to sample size.

Figure 3.1 demonstrates that when the ratio stands is 10:1 (with the number of variants p = 500

and the sample size n = 50), the largest eigenvalue of the sample correlation matrix is much higher

than that of the population correlation matrix. Note that the eigenvalues of the correlation matrix R,

denoted as λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0, are related to the spectral radius ∥R∥2 = λ1. This allows us

to evaluate the difference between the sample correlation matrix and population correlation matrix

by comparing their eigenvalues since ∥R̂−R∥2 ≥
∣∣∣∥R̂∥2 − ∥R∥2

∣∣∣ = |λ1(R̂)− λ1(R)|. The large

disparity in the largest eigenvalue suggests that the sample correlation may not provide a reliable

estimate for the population correlation in such circumstances. An increase in the sample size leads

to a decrease in this divergence. When the ratio reaches 1:10 (with the number of variants p = 500

and the sample size n = 5000) – a situation that is relatively rare in actual datasets – the sample

correlation approximates the population correlation quite closely.
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Our findings illustrates that when the ratio of the number of variants to sample size is high, a

sample LD matrix could deviate substantially from the corresponding population LD matrix. This

highlights the potential inaccuracies that can emerge in such situations and the need for careful

consideration when using out-of-sample LD for fine-mapping.

3.2.2 Comparing Fine-Mapping using Summary Statistics and Individual-

Level Data

The above analysis demonstrated that the application of summary statistics and LD data drawn

from a reference population may be suboptimal in comparison to fine-mapping conducted directly

with individual-level genotype and phenotype data. To assess the potential impacts of using sum-

mary statistics on the power and coverage of fine-mapping in practical scenarios, we conducted a

series of comparative analyses utilizing genotype data from the TOPMed dataset [19].

We randomly selected 500 unrelated European samples to form a GWAS panel, and constructed

two LD panels from the remaining European samples – one comprising 500 samples and the other

2500 samples. For fine-mapping with summary statistics, we examined three LD matrices, which

were derived from the GWAS panel and the two LD panels, respectively. The power (the proportion

of causal variants covered by signal clusters with SPIP>95%) and the coverage (the proportion of

signal clusters with SPIP>95% that contain at least one causal variant) were compared between

fine-mapping using individual-level data and using summary statistics with LD data from different

panels.

The results indicate that both the power (Table 3.1) and coverage (Table 3.2) of fine-mapping

when utilizing individual-level genotype and phenotype data are superior to those achieved when

using summary statistics. When comparing the results derived from different LD matrices, we

found that the choice of LD panel does not significantly impact the power of fine-mapping. How-

ever, the difference in coverage is striking, and this disparity widens with an increase in PVE. The

coverage of fine-mapping using an in-sample LD consistently outperforms that from using an out-

of-sample LD, even when the sample size of the LD panel is considerably larger than that of the
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GWAS panel.

Under ideal circumstances – when the method is well-calibrated – we would expect that the

coverage of signal clusters with SPIP > 95% should exceed 95%. However, when summary

statistics are used, the coverage is way off the expectation as PVE increases, especially with the

usage of an out-of-sample LD matrix. Notably, when using the LD matrix derived from an LD

panel of 500 samples, the coverage dips below 95% as soon as the PVE reaches 0.10. At a PVE

of 0.40, the coverage drops to 68.3%, in contrast to the 94.8% coverage achieved with the use of

individual-level data.

3.2.3 Non-Identifiability Issues in Simulation Studies

To investigate the conditions under which non-identifiability due to complex LD structure can

occur in fine-mapping, we conducted a simulation study involving 1000 individuals and 6 variants.

We assumed that the phenotype is associated with five variants as formulated in Equation 3.5:

y = β1x1 + β2x2 + β4x4 + β5x5 + β6x6 + ϵ (3.5)

Among these, two causal variants, x1 and x2, are correlated, whereas the other three causal variants

x4, x5, x6 are independently and identically distributed following the standard normal distribution.

A non-causal variant, x3, exhibits a correlation with both x1 and x2, with correlation coefficients

given by cor(x1, x3) = cor(x2, x3) = 0.8. The variance of the error term, ϵ, was adjusted such

that the proportion of variance in the phenotype explained by x1 and x2 matches a pre-determined

value (PVE = 0.05, 0.1, 0.15, 0.2).

We enumerated all 26 model configurations to determine the exact posterior probabilities, as-

suming a prior probability of 0.05 for the inclusion of each variant. We then compared the posterior

probabilities for the true model configuration, denoted by γ = (1, 1, 0, 1, 1, 1)T , and an alternative

model configuration, denoted by γ′ = (0, 0, 1, 1, 1, 1)T . We examined the incidence of multimodal-

ity, defined as
∣∣∣log P (γ′|X,y)

P (γ|X,y)

∣∣∣ < 1, and inevitable false discoveries, defined as log P (γ′|X,y)
P (γ|X,y)

≥ 1.
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Figure 3.2 illustrates that with a relatively high PVE, the posterior probability of the true model

outweighs that of the alternative model in a majority of the cases. However, as the PVE decreases,

the proportion of non-identifiable cases increases. Consequently, the data may increasingly favor

the alternative model, resulting in a greater likelihood of false discoveries.

The presence of non-identifiability may trap the greedy algorithm at a local optimum. For ex-

ample, the algorithm may select x3 as the optimal starting point and consequently explore configu-

rations that include x3, while it may disregard configurations that include x1, x2 and other variants

exclusive of x3. Such a scenario could lead to an overestimation of x3’s PIP, resulting in a false

discovery. A possible solution to this predicament is to refine the greedy algorithm by launching it

from multiple starting points rather than solely the optimal one, to incorporate configurations that

include either x1 or x2. By integrating this multi-starting-point strategy into DAP-G, we developed

a new implementation known as DAP-MS.

To validate this idea, we expanded our simulated datasets under the condition of PVE=0.05

and cor(x1, x2) = 0.5 with an additional 994 independent non-variants. Under these conditions,

the models were non-identifiable in 42.6% of the 500 simulated cases according to the posteriors

obtained from exact calculations. We then performed fine-mapping among the 1000 variants using

three methods: SuSiE, DAP-G, and our new implementation, DAP-MS. The PIPs generated by

each method were then compared with those derived from exact calculations.

As depicted in Figure 3.3, both SuSiE and DAP-G demonstrated a tendency to underestimate

the PIPs for x1 and x2, and to overestimate the PIP for x3 when compared to the exact calculations.

In contrast, the estimates provided by DAP-MS proved closer to those from exact calculation.

Notably, in four cases where the exact calculation favored the true model, the PIP for x3 was

nearly 1 by DAP-G and SuSiE, suggesting potential false discoveries. However, these cases were

better addressed with the DAP-MS implementation.

57



3.2.4 Numerical Comparisons with Real Genotype Data

To demonstrate the potential inflated false discoveries introduced by the usage of greedy algo-

rithms with the presence of complex LD structures, we first evaluated the performance of SuSiE

and DAP-G in fine-mapping using individual-level genotype and phenotype data. To ensure our

analysis closely mirrored the LD structure in real-world situations, we simulated phenotypes based

on genotype data from the Genotype-Tissue Expression (GTEx) project [5]. Details of the simula-

tion study are available in the Methods section.

As illustrated in Figure C.1, the coverage and power of both methods tend to increase with rising

PVE and decrease with an increasing number of causal variants. Generally, SuSiE demonstrates

higher power compared to DAP-G, albeit with lower coverage. It is noteworthy that when the

number of causal variants is three or more, the coverage begins to fall below 95%, which indicates

more false discoveries than expected.

We then conducted a comparison of the cross-entropy measures among DAP-G, SuSiE, and

DAP-MS. Cross-entropy is a measure of the difference between two probability distributions, and

in this context, it is used to assess the calibration of the variant-wise PIPs. Lower cross-entropy

signifies a closer match between the predicted and actual association status. The results from

simulations under the parameter settings of PVE=0.1 and 3 causal variants are displayed in Table

3.3 and Figure 3.4. DAP-MS was found to exhibit slightly lower cross-entropy, which aligns with

our hypothesis that the implementation of DAP-MS with multiple starting points may enhance the

calibration. However, the improvement introduced by DAP-MS over SuSiE and DAP-G is rather

marginal.

In addition to performance measures, it is also crucial to consider the computational costs asso-

ciated with each of these methodologies. The computational costs, displayed in Table 3.4, highlight

an interesting trade-off. With an increase in the number of causal variants, the computational time

required for DAP-MS escalates significantly. This increase is anticipated as the number of model

configurations inspected with the multiple-starting-point strategy grows faster than the greedy al-

gorithm. Therefore, although DAP-MS can potentially enhance the calibration of the posterior
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probabilities, the substantial computational overhead it imposes could limit its applicability in

large-scale studies.

3.3 Discussion

In this chapter, we presented a comprehensive exploration of the trade-offs associated with dif-

ferent fine-mapping strategies, particularly highlighting the impacts of the choice of data type

(summary statistics versus individual-level data) and the choice of algorithmic approach (greedy

versus multiple starting-point strategy).

First, our evaluations underscored that using summary statistics, as opposed to individual-level

genotype and phenotype data, typically leads to decreased power and coverage in fine-mapping.

While this issue can be solved by providing sufficient statistics, such information is often available

only with access to the individual data. An additional challenge we found pertains to the choice of

LD panel when working with summary statistics. The most accurate results can be achieved when

the LD matrix is derived directly from the GWAS panel. However, due to practical limitations,

researchers often resort to using an LD matrix derived from a publicly available reference genotype

panel. The out-of-sample LD matrix may not accurately replicate the sample correlation between

genetic markers in the GWAS data. This discrepancy is particularly pronounced when the sample

size of the LD panel is relatively small compared to the number of variants being considered, which

may lead to an inflated rate of false discoveries.

To enhance accuracy in fine-mapping studies using summary statistics, researchers have sug-

gested the use of shrinkage estimation or regularization for the sample LD matrix [25, 28]. This

technique involves shrinking the off-diagonal entries towards zero, resulting in a sparse matrix.

Notably, the sparsity of the matrix also contributes to faster computation, making it particularly

advantageous for large genomic regions. While the shrinkage-based estimate may improve the

reliability of fine-mapping results compared to using the sample LD from a reference panel (eval-

uations showed that SuSiE and DAP-G performed similarly at all levels of regularization though
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[28]), it is essential to acknowledge that it is still less accurate than utilizing the in-sample LD

matrix derived from the study samples [27].

Based on these findings, we recommend that researchers prudently evaluate their choice of data

input and LD panel, particularly considering the available sample size and the number of variants

under investigation. Also, as a forward-looking suggestion, we strongly advocate for researchers to

publish their fine-mapping results in conjunction with GWAS results. This practice would ensure

the provision of comprehensive data, enhancing the utility of these results for future research and

facilitating more effective meta-analyses.

Furthermore, we investigated the challenges posed by non-identifiability in the presence of

complex LD structures. Notably, even with an exact calculation of posteriors by enumerating all

conceivable model configurations, it may still prove impossible to unambiguously identify the true

association model based on the observed data. We observed that with the presence of multimodal

posteriors, a greedy search strategy, such as the one employed by DAP-G, could be trapped at local

optima, potentially leading to an overconfidence in the identified signals while overlooking alter-

nate model configurations. Consequently, this could contribute to an increase in false discoveries.

In response to this challenge, we proposed an enhancement to the greedy algorithm – DAP-

MS – incorporating a multiple starting-point strategy. This alternative approach demonstrated

potential in improving the calibration of posterior probabilities and reducing false discoveries in

multimodality cases. However, it is important to note that this refinement primarily emphasizes

inference at the model level and lacks features like signal clusters. As a result, we were able to

compare variant-level PIP in terms of probability calibration and cross entropy but were unable to

directly compare signal-level coverage and power with other methods, such as SuSiE and DAP-G.

Furthermore, this refinement is accompanied by an increase in computational demands. In con-

ventional greedy algorithm, the exploration ends up with one local optima, while as the multiple

starting-point strategy aims to visit the neighborhood of all the modes, the number of model con-

figurations it explore increases dramatically, especially as the number of causal variants escalates,

making it less suitable for large-scale studies.
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Consequently, the choice of algorithm ultimately becomes a trade-off between computational

efficiency and accuracy. Note that DAP-MS is a better solution than greedy algorithms in terms of

lower false discovery rate only with the presence of multimodal posteriors, while in practice there

is no straightforward way to examine whether multimodality exists without running and compar-

ing results from both algorithms. Considering the growing size of the data sets being investigated,

methods like SuSiE or DAP-G may still be the optimal choices for fine-mapping tasks. Neverthe-

less, it’s important for researchers to stay aware of the potential limitations of these methods.

3.4 Methods

Owing to the restrictions on sharing individual-level data, statistical fine-mapping methods have

been adapted to utilize only GWAS summary data in conjunction with an LD estimate. In theory,

given sufficient statistics — including LD estimates derived directly from GWAS samples — we

could achieve fine-mapping results identical to those using individual-level data. However, this is

often impractical because LD information typically isn’t shared alongside GWAS summary statis-

tics, necessitating estimation from a reference panel. In the first part of this study, we embarked on

simulation studies using TOPMed genotype data to assess the influence of LD panel choice on the

power and coverage of fine-mapping.

In the second part of our study, we examined the limitations of statistical fine-mapping, even

when individual-level data is accessible. While prior studies, such as [28], have noted that the

greedy algorithms used in most fine-mapping methods can be trapped in local optima, leading to

false positives, this issue have not been extensively explored. We delved into scenarios where a

non-causal variant correlates with multiple causal variants and assessed the occurence and influ-

ence of multimodal posterior distribution in fine-mapping. Through simulations using GTEx data,

we evaluated the improvements brought by a multi-starting-point strategy which is expected to

reduce the false signals typically attributed to the greedy algorithm.
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3.4.1 Simulations on TOPMed data

TOPMed [19] is a research program aiming to advance precision medicine for heart, lung and

blood traits through the integration of whole-genome sequencing (WGS) and other omics data

with high-quality epidemiological data in ongoing studies of these traits.

In our study, we identified 3,115 individuals of European descent (EUR) within the TOPMed

whole blood samples. This was accomplished through ADMIXTURE, using a threshold of 80%

genomic content as a criterion for inclusion [1]. From this pool, we randomly selected 500 in-

dividuals to form a GWAS panel. The remaining individuals were utilized to construct two LD

panels of different sizes – one comprising 500 individuals and the other, more comprehensive

panel, consisting of 2,500 individuals.

For this analysis, we randomly selected 1,000 genes. For each gene, we chose 5,000 variants

from its cis-region (within a 1Mb window of the transcription start site) that had a minor allele

frequency (MAF) greater than 1%. Among these variants, we arbitrarily designated three as causal

variants, and simulated phenotypes under varying conditions, specifically different proportions of

variance explained by the genotype (PVE = 0.05, 0.1, 0.2, 0.4).

We carried out fine-mapping on each of the simulated datasets using DAP-G [11]. It’s important

to note that when fine-mapping with summary statistics, the input data for DAP-G includes only

effect sizes and the corresponding standard deviations from single-variant association tests, as well

as LD data, which do not constitute sufficient statistics. This remains the case even when the LD

data is derived in-sample from the GWAS panel. The GWAS summary statistics were derived from

simple linear regression analyses using individual-level genotype data and the simulated phenotype

data in the GWAS panel.

3.4.2 Simulations on GTEx V8 data

The GTEx V8 dataset [9, 12] presents an extensive collection of WGS genotype data and RNA-seq

expression data from 838 donors covering 54 human tissue types, including 670 donors with whole

blood samples. Both RNA-seq and genotype data underwent pre-processing in accordance with the
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protocols of GTEx data processing. We adjusted normalized gene expression levels using the same

set of covariates as those applied in GTEx v8 single-SNP Expression Quantitative Loci (eQTL)

mapping [8].

In our study, we randomly selected 1000 genomic regions from the autosomes within the GTEx

dataset, each containing 1000 variants. Using a similar strategy to the one detailed in the SuSiE

paper [23], we simulated synthetic expression levels for each genomic region under varying set-

tings of the number of causal variants (denoted by S) and the proportion of variance explained by

genotypes (denoted by ϕ). Initially, for each genomic region, we sampled S causal variants from

the 1000 variants under analysis. Subsequently, we assigned an effect size drawn from the normal

distribution N(0, 0.62) to each causal variant and set the effect sizes for the remaining variants

to zero. The expression levels y were simulated from N(Xb, σ2), where X represents the n × p

matrix of genotypes, b is a p-vector of effect sizes, and σ2 = 1−ϕ
ϕ
V ar(Xb). This approach resulted

in a total of 5× 4× 1000 = 20, 000 datasets, from all pairwise combinations of S ∈ {1, 2, · · · , 5}

and ϕ ∈ {0.05, 0.1, 0.2, 0.4}.

We conducted a fine-mapping analysis on each simulated dataset using existing methods such as

DAP-G, SuSiE, and our new implementation, DAP-MS (Section C.2), which employs the multiple

starting-point strategy. We evaluated the performance of these methods based on: 1) the calibra-

tion of variant-wise posterior inclusion probabilities; 2) cluster-wise coverage and power; and 3)

computational efficiency.

3.5 Tables and Figures
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Table 3.1: Power of Fine-Mapping using Individual-level Data and Summary Statistics

Individual-level data Summary statistics
PVE In-sample LD Out-of-sample LD Out-of-sample LD

(n=500) (n=500) (n=2500) (n=500)
0.05 10.8% 11.5% 11.6% 11.7%
0.10 32.1% 31.9% 32.4% 32.5%
0.20 49.4% 47.2% 46.9% 47.1%
0.40 63.1% 56.0% 56.5% 56.6%

Table 3.2: Coverage of Fine-Mapping using Individual-level Data and Summary Statistics

Individual-level data Summary statistics
PVE In-sample LD Out-of-sample LD Out-of-sample LD

(n=500) (n=500) (n=2500) (n=500)
0.05 97.1% 96.7% 96.4% 96.7%
0.10 95.4% 95.2% 95.1% 93.9%
0.20 94.9% 94.6% 92.2% 89.7%
0.40 94.8% 89.1% 81.6% 68.3%
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Table 3.3: Comparisons of Cross Entropy across different Methods

# of Causal Variants SuSiE DAP-G DAP-MS
1 0.0043 0.0024 0.0025
2 0.0119 0.0094 0.0088
3 0.0197 0.0178 0.0165
4 0.0271 0.0269 0.0249
5 0.0343 0.0361 0.0335

Table 3.4: Comparisons of Computational Cost across different Methods

# of Causal Variants SuSiE DAP-G DAP-MS
1 26:42 5:23 23:33
2 25:54 12:32 45:29
3 28:17 43:04.10 3:06:20
4 23:16 1:00:12 3:37:54
5 29:33 1:12:12 3:47:38
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Figure 3.1: Comparison of Eigenvalues of sample LD and population LD

We simulated a blockwise LD structure for 500 variants, each block containing 10 variants with
pairwise correlation drawn from uniform distribution from 0.7 to 1, and generated 100 genotype
datasets based on the simulated LD structure with sample size n = 50, 500, 5000, respectively.
We compared the first 50 eigenvalues from the population LD matrix (dashed line) and sample
LD matrix. The solid line represents the mean of the eigenvalues of LD matrix calculated from
the 100 datasets, the upper bound represents the maximum value of the eigenvalues and the lower
bound represents the minimum value.
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Figure 3.2: Proportion of Multimodal Cases in Simulation Studies

The phenotype in this analysis is associated with five variants. Among these, two causal variants,
x1 and x2, are correlated with each other, and a non-causal variant, x3, shares a correlation with
both. The remaining three causal variants are statistically independent from x1, x2, and x3. Under
each combination of settings – PVE values of 0.05, 0.1, 0.15, 0.2, and correlation coefficients for
x1 and x2 of 0.3, 0.4, and 0.5 – we simulated 500 datasets. Subsequently, we enumerated all 26

model configurations to yield the exact posterior probabilities. We compared the posterior
probabilities of the true model γ = (1, 1, 0, 1, 1, 1)T , with those of the alternative model
γ′ = (0, 0, 1, 1, 1, 1)T . For each setting, we summarized the proportion of cases deemed
multimodal, defined as

∣∣∣log P (γ′|X,y)
P (γ|X,y)

∣∣∣ < 1.
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Figure 3.3: Comparisons between PIPs from Greedy Algorithms and Exact Calculations

Two causal variants, x1 and x2, are correlated with a non-causal variant x3. We determined the
exact PIPs by enumerating all possible model configurations and then compared these exact PIPs
with those derived from SuSiE, DAP-G, and DAP-MS, respectively. A data point beneath the
diagonal line denotes an underestimated PIP in comparison to the exact calculation, whereas a
point above the diagonal line signals an overestimated PIP. Large deviations from the exact
calculation indicate that that the greedy algorithm may have overlooked some model
configurations that carry unignorable posteriors during the search process.
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Figure 3.4: Assessment of PIP calibration

Variants across all simulations were classified into bins based on their reported PIP, using ten bins
of equal spacing, ranging from 0 to 1. The graphs display the average PIP for each bin against the
proportion of causal variants within that respective bin. A method demonstrating good calibration
should yield data points in close proximity to the diagonal red line.
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CHAPTER 4

Gene Expression Imputation Analysis on TOPMed

RNAseq data

4.1 Introduction

Transcriptome-wide association studies (TWAS) have emerged as a powerful tool for causal-gene

prioritization [37], a crucial yet challenging process that seeks to unravel the mechanisms through

which the genetic variants, identified via genome-wide association studies (GWAS), contribute to

the trait. By integrating transcriptomic datasets with GWAS, TWAS prioritize candidate genes at

GWAS loci by testing the mediating effects of gene expression levels on the trait of interest and thus

provide mechanistic insights of gene regulation underlying complex traits and diseases. TWAS

have detected new susceptibility genes and highlighted potential regulatory targets for schizophre-

nia [16], autism spectrum disorder [33] and Crohn’s disease [7] among many others [25].

A conventional TWAS framework consists of two stages – first, the genetically regulated ex-

pression (GReX) is estimated for each individual in the GWAS cohort; second, the association

tests are performed between GReX and the trait of interest. The first step, often referred to as

gene expression imputation, involves constructing prediction models for gene expression based on

a reference dataset that contains both genotype and transcriptomic data. These prediction models

are then utilized to estimate the GReX. Therefore, the reliability of TWAS results heavily depends

on the quality of gene expression imputation and the reference datasets that enable it.

The estimation of GReX shares common ground with the polygenic modeling of complex dis-
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eases and traits, or Polygenic Risk Score (PRS) calculation [20], as they both involve phenotype

prediction by jointly modeling genotypes across multiple genetic variants, potentially spanning

the entire genome. Therefore, many PRS techniques might be suitable for gene expression imputa-

tion. For instance, the Bayesian Sparse Linear Mixed Model (BSLMM) [45] is incorporated in the

efficient TWAS tool FUSION [15], and the Latent Dirichlet Process Regression (DPR) [41] is uti-

lized in TIGAR [28, 29]. However, these methods require access to individual-level data and lack

scalability to data with millions of genetic variants. Hence, when applied for gene expression im-

putation, they include only genotypes in the cis-region of the target gene. In contrast, PRS methods

using summary statistics including LDpred [36, 30], SBayesR [21], and MegaPRS [42], consider

genetic variants genome-wide, offering the potential for a more comprehensive prediction of gene

expression. In this study, we assess the performance of PRS methods using individual-level data in

the cis-region and methods using summary statistics across the genome within the context of gene

expression imputation.

Most gene expression imputation models have been trained using data from the Genotype-

Tissue Expression (GTEx) project [5, 23], which predominantly consists of subjects of European

descent. However, many genetic studies include samples from multi-ethnic populations. Here we

explore the potential of utilizing the Trans-Omics for Precision Medicine (TOPMed) [34] dataset,

distinguished by its larger sample size and greater population diversity, as a reference panel for

gene expression imputation. We conducted comparative analyses on both European and African

samples, using models trained from varying reference sample sizes and degrees of ancestry align-

ment. Furthermore, we assessed the performance of whole-blood expression models, trained using

TOPMed data, when applied to GTEx samples.
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4.2 Methods

4.2.1 TOPMed RNA-sequencing Data

TOPMed [34] is a research program aiming to advance precision medicine for heart, lung and

blood traits through the integration of whole-genome sequencing (WGS) and other omics data

with high-quality epidemiological data in ongoing studies of these traits .

This analysis included 9264 unrelated participants from 8 TOPMed studies with both WGS

data and transcriptomics data (Table D.1): Genetic Epidemiology of COPD Study (COPDGene,

n=382) [31], Framingham Heart Study (FHS, n=793) [2], Genes-Environments and Admixture in

Latino Americans (GALA II, n=1897) [11], Lung Tissue Research Consortium (LTRC, n=1360)

[35], Multi-Ethnic Study of Atherosclerosis (MESA, n=1271) [3], Study of African Americans,

Asthma, Genes and Environments (SAGE, n=705) [4], SubPopulations and InteRmediate Outcome

Measures In COPD Study (SPIROMICS, n=1578) [6], Women’s Health Intiative (WHI, n=1279)

[17].

RNA libraries were prepared using the Illumina TruSeqTM stranded mRNA kit, sequenced for

a target depth of 75 million reads per 2×101 bp paired-end reads in whole blood samples, and

40 million reads per 2×101 bp paired-end reads in other tissues. Alignment and quality control

were conducted via the TOPMed RNA-seq pipeline [39]. Briefly, RNA-seq reads were aligned to

GRCh38 reference genome with STAR [8] and gene-level expression was quantified with RNA-

SeQC 2 [14] based on GENCODE 34 annotations.

WGS was generated to an average depth of 38x by seven sequencing centers (Broad Institute

of MIT and Harvard, Northwest Genomics Center, New York Genome Center, Illumina Genomic

Services, Macrogen, Baylor College of Medicine Human Genome Sequencing Center, and Mc-

Donnell Genome Institute at Washington University). TOPMed freeze 9b [24] includes WGS

data with joint genotype calling and variant-level quality control for about 158,000 samples across

more than 80 studies. We matched the RNA samples with WGS samples by comparing genotypes

at variants with MAF≥5% in coding exons and excluded samples without a match. Also, we esti-
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mate subject based on autosomal SNPs with MAF≥1% relatedness using KING v.2.2.7 [26], and

included only unrelated samples in the study. SNPs and short indels (<50 bp) that passed quality

control and exhibited MAF≥1% in the selected unrelated participants were used for analysis.

Gene counts were filtered to include only autosomal and chromosome X genes, and TMM-

normalized using edgeR [32], followed by inverse normal transformation. Genes with low expres-

sion levels were excluded from the analysis. To control for potential confounders, we adjusted the

normalized gene expression data for covariates including cohort, inferred sex, 15 genotype princi-

pal components (PCs), and a varying number of gene expression PCs depending on the tissue: 30

for peripheral blood mononuclear cells (PBMCs), nasal epithelial, T cells, and monocytes; 75 for

lung; and 100 for whole blood.

4.2.2 Building Gene Expression Imputation Models

We evaluated four gene expression imputation models, each being a key component of well-

established TWAS tools: the elastic net model [47] in PrediXcan [13], BSLMM [45] in FUSION

[15], DPR [41] in TIGAR [28, 29], and DAP-G [38, 19] in the probabilistic TWAS framework

[43].

These models estimate the effect sizes of cis-SNPs by modeling the relationship between ex-

pression level of genes and genotypes in the cis-region based on a linear model (Equation 4.1) in a

transcriptomic reference data set.

y = Xβ + ϵ (4.1)

where y is an n-vector of normalized gene expression level for n samples, X is an n × p matrix

of genotypes for p cis-SNPs, β is a p-vector of effect sizes of the cis-SNPs, ϵ is an n-vector of

error terms following a multivariate normal distribution. The effect sizes β are estimated based on

different assumptions depending on the method (Table 4.1), and are subsequently used as weights

to calculate GReX, which is derived as a weighted average of the genotypes across the cis-SNPs.

The elastic net is a regularized linear regression that combines L1 penalty and L2 penalty, which
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Method Priori Assumption
Elastic Net π(β) ∝ exp{α∥β∥1 + (1− α)∥β∥2}
BSLMM β ∼ N(0, σ2

a + σ2
b ) + (1− π)N(0, σ2

b )
DPR β ∼

∑∞
i=1 πiN(0, σ2

i )
DAP-G β ∼ πN(0, σ2) + (1− π)δ0

Table 4.1: Comparison of priori assumptions on the effect size in different methods.

is equivalent to a mixture of Gaussian and Laplace prior on the effect size [47]. The cv.glmnet

function from the R package glmnet [9] was used to fit the elastic net models, with the mixture

parameter fixed at α = 0.5 and the penalty parameter chosen by 5-fold cross validation.

BSLMM is a combination of Bayesian variable selection (BVS) model and linear mixed model

[45]. It assumes that all SNPs have non-zero effects, while a small proportion of them have ad-

ditional effects and follows a mixture of two normal distributions. GEMMA [46] was used to fit

BSLMM using Markov chain Monte Carlo (option ’-bslmm 1’) with default settings.

DPR is a more generalized model that includes BLSMM as a special case [41]. It assumes a

non-parametric prior on the effect size, which is equivalent to a mixture of infinitely many normal

distributions. The model was fitted using the variational Bayesian algorithm (option ’-dpr 1’) with

default settings.

DAP-G is a BVS method specially designed for fine-mapping [19, 38] and later extended for

robust effect size estimation through Bayesian model averaging [43]. It uses an indicator variable

γj = I(βj ̸= 0) to indicate the association status of the jth SNP. We refer to the indicator vector

γ = (γ1, γ2, · · · , γp)′ as model configuration. DAP-G provides a cost-efficient implementation

for estimating the posterior probability of all plausible model configurations. SNP-level posterior

inclusion probability can be obtained for fine-mapping purposes by marginalizing the posterior

model probabilities. The effect sizes can be obtained as a weighted average of model-specific

effect estimates. Given posterior model probabilities, model-specific effect estimates are weighted

by the probability of the corresponding model.

The models mentioned above employ individual-level genotype data at cis-SNPs (within a 1Mb

window of the transcription start site) to impute the expression level of the target gene. To assess

77



if incorporating information from trans-SNPs could enhance imputation accuracy, we also include

megaPRS [42] in comparison. The megaPRS software implements methods with four different

priors (LASSO [44], Ridge [18], BOLT-LMM [22], BayesR [27]) for genetic prediction of complex

traits using genome-wide summary statistics. It performs cross-validation to determine optimal

model parameters of the prior distribution. The input for megaPRS comprised GWAS summary

statistics and the LD matrix, calculated from the individual-level data within the reference dataset.

Subsequently, the effect size estimates derived from this optimal model served as weights for

imputing gene expression.

4.2.3 Evaluation on GTEx data

The GTEx V8 dataset [13, 23] presents an extensive collection of WGS genotype data and RNA-

seq expression data from 838 donors covering 54 human tissue types. In this study, we focused

on 670 whole blood samples to assess the accuracy of gene expression imputation models. Both

RNA-seq and genotype data underwent pre-processing in accordance with the protocols of GTEx

data processing. We adjusted normalized gene expression levels using the same set of covariates as

those applied in GTEx v8 single-SNP eQTL mapping [12]. Additionally, we imputed the genotype

data with the TOPMed release 2 reference panel [34].

To evaluate the prediction accuracy among different gene expression imputation models (Elas-

ticNet, BSLMM, DPR, DAP-G and megaPRS), we randomly selected 1000 autosomal genes with

whole-blood expression levels measured in both TOPMed and GTEx data. Models were trained on

3000 European samples in TOPMed and tested on 670 samples in GTEx. The imputation accuracy

of the models was quantified by the squared Spearman’s Rank correlation coefficient (r2) between

the imputed expression level and the measured expression level. We compared the mean r2, me-

dian r2 and the proportion of well-imputed genes among methods, and performed paired t-tests to

see if there is a significant difference in mean r2 between methods.
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4.2.4 Evaluation of Factors Affecting Imputation Accuracy

Two main factors that we aim to investigate regarding gene expression imputation accuracy include

1) the sample size of the reference dataset, and 2) the degree of ancestry matching between the

reference and target samples.

Using a threshold of 80% genome content in ADMIXTURE analysis [1], we identified 3,115

European (EUR) individuals and 709 African (AFR) individuals within the TOPMed whole blood

samples. The ancestral composition of all 6602 whole blood samples are displayed in Figure D.1.

We designated 115 EUR samples and 109 AFR samples as test samples, while the remaining 3000

EUR samples and 600 AFR samples were used to construct reference panels of varying sizes and

ancestral compositions. The DAP-G method was employed to analyze each reference dataset, with

the derived effect sizes serving as weights for gene expression imputation.

For assessing the value of reference sample size, we maintained a fixed AFR to EUR ratio in

the reference panel at 1:5 and then compared the imputation accuracy across models trained on

reference panels of different sample sizes (n=600, 1200, 1800, 3600). To evaluate the effect of

the ancestral composition of the reference panel, we kept the sample size constant at n=600, and

compared the imputation accuracy among models trained on the following reference panels: 600

AFR, 300 AFR + 300 EUR, 200 AFR + 400 EUR, 100 AFR + 500 EUR, and 600 EUR.

4.3 Results

4.3.1 Comparisons of Imputation Models

To evaluate different strategies for building gene expression imputation models using the TOPMed

data, we first compared the accuracy of various models, including DAP-G, Elastic Net, DPR,

BSLMM, and megaPRS, by comparing their predictions when appied to GTEx with actual gene

expression levels. These models were trained on 3,000 TOPMed European individuals with whole-

blood gene expression data and tested on 670 GTEx samples. The accuracy of gene expression
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imputation was evaluated using the squared Spearman’s correlation (r2) between the measured

normalized expression levels and the imputed gene expression levels.

Our evaluations were performed on 1,000 autosomal genes. However, some methods yielded

small effect sizes (weights for gene expression imputation) across all variants from certain genes,

with absolute values less than 10−4, and thus were unable to generate effective imputation models

for those genes. The number of effective imputation models generated by DAP-G, Elastic Net,

DPR, BSLMM, and MegaPRS were 970, 909, 981, 987, and 920, respectively, with 815 genes

shared across all methods. We excluded one gene (DND1P1) for which the Spearman’s correlation

was less than -0.5 for all methods (Figure D.2). Our comparison of the performance of the five

methods was thus conducted across the remaining 814 genes.

Our comparison revealed that DAP-G was the top model (with highest r ) for 41.6% genes,

compared with 24.9% for Elastic Net, 18.1% for DPR, 8.0% for BSLMM and 7.3% for megaPRS

(Figure D.2). The comparison is detailed in Table 4.2. DAP-G outperformed the other four meth-

ods, demonstrating the highest mean r2 of 0.133 and the highest median r2 of 0.088. Furthermore,

DAP-G achieved the highest percentage of well-imputed genes with 44.3% of tested genes achiev-

ing r2 > 0.1. As we increased the r2 threshold, the number of well imputed genes decreased for

all methods, reaching 4.67% when we set the threshold at 0.4. Elastic Net performed similarly,

although it presented slightly lower r2 values (paired t-test p = 1.3× 10−9).

Method Mean r2 Median r2 % r2 > 0.1 > 0.2 > 0.3 > 0.4
DAP-G 0.133 0.088 44.3% 21.6% 11.8% 4.67%
Elastic Net 0.130 0.085 43.4% 20.8% 10.9% 4.55%
DPR 0.127 0.078 41.5% 20.4% 10.8% 4.42%
BSLMM 0.120 0.073 38.9% 19.2% 9.58% 3.93%
megaPRS 0.113 0.069 37.3% 18.1% 8.23% 2.95%

Table 4.2: Comparison of Spearman’s r2 across different methods.
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Figure 4.1: Comparison of Spearman’s r2 using Reference Panels of Different Sizes

4.3.2 Impacts of Sample Size on Imputation Accuracy

To assess the influence of sample size on gene expression imputation accuracy, we performed a

comparison using weights derived from DAP-G based on reference panels of varying sizes (n =

600, 1200, 1800, 3600), maintaining a fixed AFR to EUR ratio of 1:5.

As depicted in Figure 4.1, imputation accuracy increases with the reference sample size. No-

tably, the increase in accuracy for AFR target samples (median r2 increases from 0.115 to 0.149)

outstrips that of EUR target samples (median r2 increases from 0.157 to 0.173). This finding sug-

gests that populations underrepresented in the reference panel will benefit more from an increase

in sample size.

4.3.3 Impacts of Ancestry Matching on Imputation Accuracy

To evaluate the impact of ancestry matching between the reference panel and target samples on

gene expression imputation accuracy, we performed a comparison using DAP-G-derived weights,

based on reference panels with varying AFR-to-EUR ratios, with a fixed sample size at 600.
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Figure 4.2 demonstrates that imputation accuracy escalates as the proportion of matching an-

cestry in the reference samples rises. Interestingly, the influence of ancestry matching appears to

be more substantial on AFR target samples compared to EUR target samples. Imputing gene ex-

pression levels in AFR samples using a pure EUR reference panel yielded a median r2 of 0.085,

while the same task with EUR samples using a pure AFR reference panel resulted in a median r2

of 0.137. Imputing with a 100% ancestry-matching reference panel yielded a median r2 of 0.157

for AFR and 0.158 for EUR samples. This data clearly underscores the importance of ancestry

matching in gene expression imputation.

Using a combined reference panel including all 600 EUR and 600 AFR ancestry samples (that

is, with 1200 samples in total) yielded median imputation accuracy r2 of 0.159 for AFR and 0.161

for EUR, which are both higher than using the ancestry-specific sub-panel. However, Figure D.3

revealed that a combined reference panel of 600 AFR and more than 600 EUR samples may have

a worse performance as the proportion of AFR decreases in the reference panel. Other metrics

including mean r2 and proportion of well-imputed genes indicate that an ancestry-specific refer-

ence panel may perform better. The paired t-tests on the Spearman’s correlation r showed that the

difference is significant for African samples (∆r̄ = 0.005, p = 0.003) and yet insignificant for

European samples (∆r̄ = 0.0001, p = 0.947).
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Figure 4.2: Comparison of Spearman’s r2 using Reference Panels of Different Ancestral Compo-
sitions
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4.3.4 Computational Costs

We evaluated the computational costs of expression imputation in UK Biobank samples on chro-

mosome 20, using TOPMed-imputed genotype dosages (6,631,680 variants) and weights (557

genes, 40,541 variants) derived from TOPMed dataset using DAP-G as inputs. As demonstrated

in Table 4.3, the computational time displays a linear increase with the sample size, presenting a

per-sample cost of approximately 0.43 seconds. As the genotype matrix does not need to be stored

while calculating the imputed expression, memory usage remains effectively managed, escalating

only with the number of genes and sample size.

Sample Size Time ([hh]:mm:ss) Memory (MB)
1000 7:13 15.6

10,000 1:11:44 57.2
100,000 11:51:32 474.56

Table 4.3: Computational Cost of Expression Imputation using TOPMed-Imputed Genotype Data

The most time-intensive segment of the process involves reading through the genotype file;

therefore, the per-sample computational time will correspondingly expand with the number of

variants. Also, the computational costs of expression imputation using weights derived from alter-

native methods should be similar to that uing DAP-G.

The experiment was conducted on a single core of Intel® Xeon® Platinum 8268 CPU @

2.90GHz. The C++ package for expression imputation is available on Github (https://

github.com/yukt/PRScal).

4.4 Discussion

Through our systematic comparison, we concluded that DAP-G emerges as the most effective

model for gene expression imputation based on the TOPMed data. This conclusion was substanti-

ated by the fact that DAP-G was the top model for a significant proportion of genes and consistently

outperformed other models in terms of the mean and median Spearman’s r2.
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We also show that the accuracy of gene expression imputation improves with increased refer-

ence sample size, highlighting the benefit of a larger reference panel, especially for less represented

populations. Although imputation accuracy increases only slowly with reference panel size, it in-

creased steadily in the range we evaluated and we expect it will continue to increase as larger

reference panels become available. Increasing reference panel size from 600 to 3000 individuals

increased the mean correlation between estimated and actual expression values by 20 - 30%.

Our evaluations also showed that imputation accuracy is positively correlated with the degree

of ancestry matching between the reference and target samples. Therefore, using a reference panel

that is more diverse or that has a higher proportion of samples with matching ancestry leads to

a more accurate imputation. The imputation accuracy was comparable between African and Eu-

ropean samples when using matching reference panels. However, a notable decrease in accuracy

was observed when imputing African samples using a European reference panel, in contrast to

imputing European samples using an African reference panel. This asymmetry in accuracy can

be attributed to the differing size of LD blocks between the two populations. Generally, Euro-

pean populations exhibit larger LD blocks compared to African populations, which implies that

the causal variant might be correlated with more surrounding variants in European samples [10].

As discussed in the previous chapter, a complex LD structure can complicate the identification of

true causal associations, and thus it becomes more challenging to identify the true causal variant

using data from European samples compared to African samples. Consequently, when using an

expression imputation model inferred from European samples on African samples, the presence of

this confounding variant may lead to decreased accuracy. This observed asymmetry highlights the

importance of carefully evaluating the cross-ancestry transferability of gene expression models by

ancestry group.

Figure D.3 demonstrated that utilizing a fully African panel of 600 samples can achieve com-

parable accuracy on African target samples as a considerably larger mixed panel comprising 600

African and 3000 European samples. However, this also implies that with a large mixed reference

panel, there is no necessity to impute gene expression using ancestry-specific subpanels. Instead,
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samples across all populations can be processed together using the same mixed panel, a procedure

which is notably more convenient and efficient.

Building upon our findings, we have developed DAP-G weights based on the TOPMed data,

specifically designed to facilitate transcriptome-wide association studies (TWAS). We compared

the imputation performance with heritability estimated from the previous study [40] (Figure D.4)

and the imputation r2 exceeds the lower bound of heritability estimate for 43.5% genes. In an

effort to make these resources readily available and user-friendly, we will integrate this feature into

the TOPMed imputation server. This enhancement will allow users to conveniently access both

imputed gene expressions and genotypes in a unified platform.
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CHAPTER 5

Conclusions and Discussions

In this dissertation, we developed an meta-imputation framework that enables highly-accurate

genotype imputation to benefit from multiple distributed reference panels, examined the poten-

tial and limitations of statistical fine-mapping analysis for refining genetic association signals,

and assessed the performance of various approaches for gene expression imputation to facilitate

transcriptome-wide association studies. We believe that our work brings improvements in genetic

research particularly through the integration of data from diverse sources. In the following sec-

tions, we review the findings from each of these chapters, deliberate their limitations and discuss

potential future directions for integrative data analysis in genetic research.

5.1 Genotype Imputation with Multiple Reference Panels

In Chapter 2, we introduced meta-imputation, a convenient and efficient framework that enables

genotype imputation using multiple reference panels. Our method involves imputing target sam-

ples separately with different reference panels and combining the imputed results into a consensus

dataset using weights determined by the empirical performance of each panel in stretches of indi-

vidual genomes. By adopting this approach, we can improve imputation accuracy by incorporating

genetic information from multiple sources without accessing individual-level genotype data of the

reference panel samples.

Our research demonstrated that meta-imputation not only outperformed imputation using in-

dividual panels alone, leading to greater statistical power in genome-wide association studies
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(GWAS), but also achieved comparable accuracy to imputation against a merged panel. This high-

lights the potential of meta-imputation to enhance imputation accuracy for rarer variants and sup-

port studies in diverse populations, where supplementing publicly available reference panels with

customized panels for the study population can be particularly beneficial.

However, it is important to acknowledge that not all variants will necessarily experience im-

provements in imputation quality. In cases where a variant is present in only one reference panel,

we chose to retain the original imputed results for that variant, which is appropriate when the ab-

sence is due to technical reasons. For variants that are absent from one panel because they always

match the reference genome in haplotypes from that panel, assigning them a dosage of zero would

be a better choice. It is also worth noting that the accuracy of meta-imputation can be influenced

by factors such as the quality of pre-phasing, the density of the genotype array, and the selection

of variants.

Meta-Imputation based on Low-Coverage Sequencing Data

An intuitive extension of meta-imputation is for imputation from low-coverage sequencing. The

decreasing cost of next-generation sequencing (NGS) has facilitated large-scale, high-coverage

whole-genome sequencing (WGS) projects [29, 31], leading to a transition from microarray plat-

forms to NGS. However, the financial burden associated with sequencing large sample sizes re-

mains a challenge at the current stage. To address this, low-coverage WGS followed by genotype

imputation has been proposed as a cost-effective alternative [23, 27], potentially offering higher

statistical power than standard GWAS designs based on microarrays under the same cost [19].

Similar to microarray-based imputation, the accuracy of imputation from low-coverage se-

quencing is influenced by the reference sample size and its alignment with the ancestry of the

target samples. Therefore, the meta-imputation framework may enhance the accuracy in this con-

text, and still enjoy the advantage that it does not require access to individual-level data of reference

samples. Hence, the meta-imputation framework may enhance accuracy in this context while still

enjoying the advantage of not requiring access to individual-level data of reference samples.
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Notably, the imputation algorithm for low-coverage WGS data differs from that used for mi-

croarray data, as discussed in Chapter 1. In low-coverage WGS, observed genotypes are typically

provided as genotype likelihoods rather than hard calls, necessitating an additional layer of emis-

sion probabilities on top of the Li and Stephens model [16, 23]. Moreover, unlike microarray data

where genotypes are available at sparse markers, genotype likelihoods are available for almost all

variants in the reference panel. The computational time for imputing low-coverage WGS data is

substantially longer than that for imputing microarray data due to the larger number of variants. To

address this, PBWT [8] is used to reduce the state space at each variant, making the computation

more tractable. However, integrating the leave-one-out feature in this context poses a challenge as

it requires considering changes in the state space from PBWT after masking a marker. Overcom-

ing this challenge would not only facilitate the incorporation of the leave-one-out feature into the

existing methodology but also unlock meta-imputation on IMPUTE5-derived results [22], thereby

benefiting microarray-based imputation as well.

By extending the meta-imputation approach to imputation from low-coverage sequencing data,

researchers can leverage the advantages of higher statistical power in GWAS through cost-effective

imputation with enhanced accuracy.

Leave-One-Out Feature for Ensemble Learning

Methodology-wise, a notable aspect of the meta-imputation framework is the empirical evaluation

of the local performance of each panel. We achieve this by systematically masking one genotyped

marker at a time and comparing the leave-one-out dosages and the original genotypes at the masked

sites. This approach allows us to assign appropriate weights that may vary along the genome, which

realize the improved accuracy through meta-imputation.

The leave-one-out method holds promise for its potential application in ensemble learning on

partially observed data, particularly for predictions on network data and spatial data. By mask-

ing local observations, we can evaluate the local predictive accuracy of each model and assign

appropriate weights to enhance ensemble predictions. One compelling example is the study of
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seizure spread patterns. During an epileptic seizure, the electrical activity of the brain can be ob-

served using intracranial electroencephalography, which involves electrodes implanted in specific

brain regions. However, due to practical constraints, only selected brain regions can be implanted,

creating a need to build prediction models for unobserved areas based on observations in the im-

planted regions. It is assumed that the seizure spreads along the white-matter structural connections

[20, 18], resulting in correlated outcomes in nearby regions. Therefore, we can empirically eval-

uate the local prediction accuracy of different models by masking observations in one region and

comparing the predicted outcome with ground truth. This allows us to obtain patient-specific and

region-specific weights to build an ensemble of models for optimal prediction [25].

Similarly, this idea can be extended for different types of spatial data where only partial observa-

tions are available, including but not limited to neuroimaging-based biomarker prediction [6, 21]

and climate forecasting [9, 11]. Ensemble learning techniques, coupled with the leave-one-out

approach, offer promising avenues for enhancing predictions and understanding complex spatial

processes.

5.2 Limitations of Statistical Fine Mapping

Fine-mapping is a critical technique in genetic research that refines the initial genetic association

signals from GWAS and provides insights into the functional impact of genetic variants. It plays a

pivotal role in precision medicine by identifying variants associated with disease susceptibility or

treatment response and guiding the prioritization of functional studies [2, 24].

In Chapter 3, we conducted a comprehensive investigation into non-identifiability issues and

false discoveries arising from the complex linkage disequilibrium (LD) structure in fine-mapping

analysis of genetic association signals. Non-identifiability poses a significant challenge in dis-

tinguishing causal variants from non-causal ones, even with a substantial amount of observational

data. Our evaluation of existing methodologies revealed that the use of greedy algorithms could ex-

acerbate this problem, resulting in a higher rate of false discoveries. Incorporating multiple starting
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points in the implementation can potentially mitigate these false discoveries at the expense of in-

creased computational cost. Therefore, a trade-off between accuracy and computational efficiency

needs to be carefully considered.

Furthermore, we examined the effectiveness of fine-mapping approaches using summary statis-

tics in comparison to individual-level data. The growing prominence of summary statistics is pri-

marily driven by data sharing restrictions and the computational challenges associated with large

sample sizes. While theoretically, using summary statistics may yield results equivalent to those

derived from individual-level data [14, 32], our findings demonstrate that in practical terms, this ap-

proach often compromises power and coverage, particularly when LD is obtained from an external

reference panel and the sample size is relatively small. Consequently, we advocate for researchers

to publish their fine-mapping results alongside their GWAS findings, allowing for a comprehensive

assessment of the genetic architecture underlying complex traits and diseases.

Meta-Analysis of Fine-Mapping Results

GWAS meta-analysis has become a popular method for discovering genetic risk variants due to its

higher statistical power through the synthesis of information from multiple studies and its ability

to utilize summary data, bypassing restrictions on sharing individual-level data. As a result, the

majority of genetic risk variants discovered in recent years have emerged from large-scale meta-

analyses [4, 15, 17].

However, recent research highlighted an important limitation in fine-mapping GWAS signals

derived from meta-analyses. Heterogeneity arising from disparities in sample size, phenotyping

processes, genotyping, or imputation can lead to miscalibration and false discoveries [13]. Achiev-

ing robust fine-mapping analysis based on summary statistics from GWAS meta-analysis requires

a challenging harmonization procedure that necessitates full genotype data from all cohorts, which

is often infeasible. Given the potential pitfalls, an alternative strategy is warranted. One promising

idea is to conduct a meta-analysis on the fine-mapping results obtained directly from individual

studies, further highlighting the significance of researchers sharing their fine-mapping findings.
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This approach has the potential to address the challenges posed by heterogeneity, leading to en-

hanced reliability and robustness in fine-mapping analyses.

Fine-Mapping with Related Samples

As discussed in Chapter 1, addressing population structure and relatedness is crucial in both GWAS

and fine-mapping analyses. While popular methods like CAVIAR [3], SuSiE [30], and DAP-G [14]

incorporate genotype principal components as covariates to adjust for population structure, they do

not fully account for sample relatedness within the Bayesian variable selection framework. This

limitation becomes apparent when performing eQTL fine-mapping on TOPMed RNAseq data [28],

where the exclusion of related samples results in a smaller effective sample size and compromises

statistical power. Although these methods also accommodate summary statistics for fine-mapping,

a comprehensive evaluation is needed to assess the performance of summary statistics from linear

mixed models for related samples in fine-mapping. To enhance the accuracy and power of asso-

ciation analyses, a future direction for fine-mapping should incorporate the modeling of sample

relatedness.

5.3 Gene Expression Imputation

In Chapter 4, we embarked on a detailed examination of various strategies for gene expression

imputation based on the TOPMed dataset [28]. Our analysis unveiled that the accuracy of gene

expression imputation improves with an increasing reference sample size, underscoring the im-

portance of utilizing a larger reference panel, especially for underrepresented populations. Fur-

thermore, our evaluations showed that imputation accuracy increases with the degree of ancestry

matching between the reference and target samples. Therefore, using a reference panel that ex-

hibits more diversity or possesses a higher proportion of samples with matching ancestry results in

more accurate imputation outcomes.

However, our findings also revealed that a substantial mixed reference panel can yield compa-
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rable results to a smaller ancestry-specific subpanel. This led us to argue that there is no necessity

to impute gene expression using ancestry-specific subpanels. Instead, samples from diverse pop-

ulations can be efficiently and conveniently processed together using the same mixed panel. This

eliminates the need for separate processing and allows for increased convenience and efficiency

when imputing gene expression for target samples from diverse populations and admixed samples.

Finally, we presented a set of imputation models derived from the TOPMed dataset, and will

integrate this feature into the TOPMed imputation server. This strategy aims to offer a seamless

user experience where researchers can conveniently access both imputed gene expressions and

genotypes within a single, unified platform. We believe that it will greatly facilitate transcriptome-

wide association analyses.

Cross-Tissue Gene Expression Imputation

Recent studies have demonstrated that incorporating expression information from multiple tissues

can improve imputation accuracy and enhance the reliability of detecting causal genes compared

to single-tissue methods [1, 12]. However, in our analysis of the TOPMed dataset, we focused

on single-tissue strategies only due to several reasons. Firstly, the TOPMed dataset only includes

RNA-seq data for a limited number of distinct tissues, and the correlations among expressions

across these tissues are relatively low. Secondly, the sample sizes of these tissues, with the excep-

tion of whole blood, are considerably smaller, which could introduce bias if all tissues were to be

analyzed collectively. Lastly, the small sample sizes of these tissues may result in large variance in

parameter estimation when constructing multi-tissue expression models, potentially compromising

the reliability of the resulting imputation models.

Nevertheless, with the continuous advancements in RNA-seq technology, we anticipate that

the near future will witness the availability of gene expression data from multiple tissues on a

larger scale. This expanded availability can serve as a valuable reference for building accurate and

robust imputation models that consider multiple tissues simultaneously, enabling comprehensive

and reliable gene expression imputation across tissues.
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Imputation of Other Molecular Phenotypes

From a statistical perspective, transcriptome-wide association analysis (TWAS) can be viewed as a

specific application of instrumental variable analysis. In TWAS, a prediction model is constructed

using a reference panel to impute gene expression levels for samples in a genome-wide association

study (GWAS). These imputed gene expression levels act as instrumental variables, enabling the

assessment of associations between genetically regulated expression and the trait of interest. This

framework can be readily extended to other molecular phenotypes, such as DNA methylation,

metabolomics, and proteomics. Recent studies have demonstrated the potential of integrating these

phenotypes to refine GWAS signals and uncover novel insights into complex traits and diseases

[5, 7, 10, 26].

In line with the development of gene expression imputation, the use of instrumental variables

can be extended to other molecular phenotypes through the construction of polygenic risk scores

(PRS). However, our evaluation in Chapter D showcased the slightly superior performance of fine-

mapping-based prediction models compared to PRS methods. As future directions, it would be

valuable to focus on localizing quantitative trait loci for methylation, metabolites, and proteins,

and subsequently develop imputation models leveraging these loci and their effect sizes.

5.4 Closing Remarks

With the continuous development of sequencing technology, we are entering an era of larger-scale

and more diverse genomic datasets, enabling more comprehensive analysis of genetic variation and

its impact on human health. The methods presented in this dissertation, such as meta-imputation

and fine-mapping analysis, take advantage of these advancements. Meta-imputation leverages

multiple reference panels to improve genotype imputation accuracy, while fine-mapping can better

pinpoint causal variants and unravel their functional impacts as sequencing data resolution and

coverage improve. Moreover, the progress in technology allows for profiling additional molecular

phenotypes, including transcriptomics, metabolomics, and proteomics. Integrating these multi-
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omics data in genetic association studies enhances our understanding of the complex genetic ar-

chitecture underlying traits and diseases.

The ongoing development of sequencing technology brings new possibilities to genetic re-

search. We hope that our work could inspire future research, driving further progress in precision

medicine and expanding our knowledge of human genetics.
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APPENDIX A

Quality Metrics for Post-Imputation Filtering

Quality control of genotype imputation results is crucial for downstream genome-wide association

studies (GWAS) analyses, as poorly-imputed genotype dosages may lead to false-positive asso-

ciations, ultimately affecting the validity of the findings. Ideally, imputation accuracy should be

evaluated by comparing the imputed results to the ground-truth of sequenced genotypes using the

correlation R2. However, ground-truth data are often unavailable in practice. To provide insights

into the confidence in the imputed results for each genetic variant, imputation tools report variant-

level quality metrics that serve as proxies for the actual correlation R2 between imputed and true

genotypes. Examples of such metrics include Beagle AR2 (Allelic R2) [1], MaCH Rsq [4] and

IMPUTE INFO [5]. These metrics were designed under the original imputation models, and the

documentations have not been updated since the introduction of the pre-phasing strategy, which

has now become a standard approach in genotype imputation.

Here we present the updated formulae for imputation quality metrics under the pre-phasing

imputation model, where each haplotype is imputed independently. It is worth noting that AR2 has

been deprecated in Beagle5 [2]; instead, they report DR2 (dosage R2) as the imputation quality

score, which shares the same definition as the Rsq in minimac3 and minimac4 [3] (successors of

MaCH). Therefore, our discussion will focus primarily on minimac Rsq and IMPUTE INFO.

Let X = {X1, X2, . . . , X2N} denote the genotypes of N target samples at the SNP of interest,

and let x = {x1, x2, . . . , x2N} denote the imputed dosages. For simplicity, let n = 2N so that

n represents the number of pre-phased haplotypes being imputed. Xi = 0 indicates that the ith
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haplotype carries the reference allele, and Xi = 1 indicates the alternate allele, i = 1, 2, . . . , n.

Also, let p denote the population allele frequency of the SNP, with the estimated allele frequency

from the imputed results given by p̂ = 1
n

∑n
i=1 xi. In this section, we focus on the cases where

p̂ ∈ (0, 1) and show that minimac Rsq and IMPUTE INFO are equivalent to each other.

For edge cases where p̂ = 0 (or p̂ = 1), meaning the imputation predicts all target samples

carry the reference (or alternate) alleles with probability 1, the quality score is defined as 0 by

minimac3/4 [3] and Beagle5 [2], while it is defined as 1 by IMPUTE5 [6].

A.1 Minimac Rsq

The minimac Rsq measure R̂2 is represented as the ratio of the observed sample variance of the

dosage s2X = 1
n

∑n
i=1 x

2
i −

(
1
n

∑n
i=1 xi

)2 to the expected variance assuming the allele Xi follows a

Bernoulli distribution with the mean being the observed allele frequency p̂.

R̂2 =
s2X

p̂(1− p̂)
=

∑n
i=1 x

2
i − (

∑n
i=1 xi)

2/n∑n
i=1 xi − (

∑n
i=1 xi)2/n

, p̂ ∈ (0, 1) (A.1)

Since 0 ≤ xi ≤ 1, it follows that
∑n

i=1 x
2
i ≤

∑n
i=1 xi, ensuring that the numerator is always

less than or equal to the denominator. As a result, the values of R̂2 are restricted to the range [0, 1].

We emphasize this point in response to criticisms against the MaCH Rsq that its value may exceed

1 [5], which is no longer true for minimac Rsq.

A.2 IMPUTE INFO

The IMPUTE INFO metric, IA, is derived from Fisher Information and represents the ratio of

observed information to complete information. Marchini & Howie provided the derivation of the

INFO metric in the supplementary material of their 2010 publication [5], which was designed for

the original imputation model before pre-phasing was introduced. In this work, we present a de-

tailed derivation of the INFO metric adapted for the pre-phasing imputation model and demonstrate
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that the INFO metric is equivalent to the minimac Rsq metric.

The full data likelihood is given by

L(p) =
n∏

i=1

pXi(1− p)1−Xi (A.2)

We can derive the likelihood score and information function:

U(p) =
∂ logL(p;X)

∂p
=

∑n
i=1Xi − np

p(1− p)
(A.3)

I(p) = −∂U(p)

∂p
=

1

p2

n∑
i=1

Xi +
1

(1− p)2

n∑
i=1

(1−Xi) (A.4)

The complete information given the observed imputed dosages is

I(p̂) = E[I(p)]|X=x =
n

p̂(1− p̂)
(A.5)

Note that the variance for each Xi give the observed data xi is V (Xi)|Xi=xi
= xi(1− xi), then we

can derive the variance of the likelihood score given the imputed dosages as follows:

V (U)|X=x =

∑n
i=1 xi(1− xi)

p̂2(1− p̂)2
(A.6)

The observed information is defined as I∗(p̂) = I(p̂)−V (U)|X=x. Therefore, the IMPUTE INFO

metric which represents the ratio of observed information to complete information is given by:

IA = 1− V (U)|X=x

E[I(p)]|X=x

= 1−
∑n

i=1 xi(1− xi)

np̂2(1− p̂)
=

∑n
i=1 x

2
i − (

∑n
i=1 xi)

2/n∑n
i=1 xi − (

∑n
i=1 xi)2/n

(A.7)

which is equivalent to the minimac Rsq metric shown in Equation A.1 when p̂ ∈ (0, 1).
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APPENDIX B

Supplemental Materials for Chapter 2

B.1 Supplemental Materials and Methods

B.1.1 Power Analysis

To evaluate the improvement brought by meta-imputation to the downstream genome-wide asso-

ciation studies (GWAS), we conducted simulations upon 9936 European samples from the UK

Biobank exome sequencing data[4].

We randomly divided the TOPMed samples into two halves and constructed two subpanels for

imputation. We imputed the UK Biobank array data on chromosome 1 using the two subpanels

and the whole panel separately, and meta-imputed using the two subpanels. We then carried out a

series of analyses: first, using the imputation results from the original combined panel; next, using

the imputation results from each of the two subpanels; then, using the meta-imputation results; and

finally, using two previously suggested approaches for GWAS when multiple imputation reference

panels are available[5]: we tested each marker for association after imputation with subpanel 1 and

subpanel 2, and retained the most significant result among the two, or retained the one with higher

estimated imputation accuracy. The phenotypes for the association tests were simulated based on

exome sequencing data. We pruned the exome sequencing data based on linkage disequilibrium

(pairwise LD r2 < 0.2), and randomly selected 5,000 variants on chromosome 1 with MAF <

0.0005 and estimated imputation r2 > 0.3 from at least one subpanel.

For each selected variant, the phenotype was generated in the following steps so that the power

107



of association test using the original exome data could achieve a family-wise type I error rate of

0.05 and a statistical power of 50% with Bonferroni correction.

1. Determine the non-centrality parameter (ncp) of the chi-square distribution under the alter-

native hypothesis given the desired power and type I error rate.

2. The effect size β =
√

ncp
2nf(1−f)

, where n denotes the sample size and f denotes the MAF of

the variant.

3. The phenotype y = Gβ + ϵ, ϵ ∼ N(0, 1− ncp
n
).

We compared the power among four strategies:

• GWAS using meta-imputed dosages.

• GWAS using TOPMed-imputed dosages.

• best r-square strategy – GWAS using imputed dosages from the subpanel with higher esti-

mated imputation r2 for each variant.

• best p-value strategy – GWAS using imputed dosages from the two subpanels separately and

use the most significant p-value, adjusting for the additional variants tested.

The significance threshold for each strategy was determined by permutation tests. The BMI

metrics of the target samples were permuted for 1000 times, followed by association tests on each

of the 5000 variants using the four strategies separately. For each strategy, the most significant

p-value from association test on each permuted trait was recorded, and the significance threshold

was chosen as the 50th smallest one among the 1000 recorded p-values.

B.1.2 Meta-Imputation with Denser Array Data

Typically, genotyping arrays mainly focus on common variants that are selected to tag other com-

mon variants and haplotypes. It is well established that larger arrays, with larger numbers of care-

fully selected common variants, provide for improved imputation accuracy. Our meta-imputation
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approach should also benefit from increased array density. Our model includes an additional cal-

ibration step, where weights for each region of the genome are estimated using a leave-one-out

approach where each array genotype is masked and re-imputed in turn. Potentially, the results

of this calibration step would be different if rare variants were available in the array. To assess

the value of including rare variants in the array datasets used for meta-imputation, we compared

the accuracy between meta-imputation using the original UK Biobank[4] array data and meta-

imputation using the original array UK Biobank array data together with half of the available UK

Biobank exome variants.

We randomly selected half of the exome variants which have complete data for the 762 South

Asian samples from UK Biobank and combined them with the original UK Biobank array. We

rephased the merged dataset using Eagle v2.4[2] and conducted meta-imputation using 1000G[1]

and TOPMed[3] panel across the autosomes. The Imputation accuracy was evaluated by comparing

the final meta-imputation results for the remaining exome variants. The results, in Figure B.3, show

that supplementing the common variant array genotypes with the exome variants does not make a

substantial difference in the quality of the final meta-imputation result. We speculate that this is

because the weights estimated using the leave-one-out approach using common variants are also

close to the ideal weights for imputation of rare variants.

B.2 Supplemental Figures
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Figure B.1: Workflow of meta-imputation

First, minimac4 imputes the target samples against two or more different reference panels. Then,
MetaMinimac2 estimates the weights on each of the panels according to the empirical performance
in stretches of each individual genome which is measured by leave-one-out (LOO) imputation
results from minimac4. The weights are individual and region specific and reflect that the optimal
choice of reference panel varies along the genome. The meta-imputation result at each marker is
then a weighted average of the estimated allele counts from imputation against each panel.
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Figure B.2: Comparison of accuracy between meta-Imputation and imputation using the merged
panel for 762 South Asian samples on chromosome 20

We constructed the merged panel by jointly calling variants in 2,504 1000G samples and 86,594
TOPMed samples, and reconstructed the 1000G* panel and TOPMed* panel accordingly by
separating the samples and excluding the singletons. The 1000G* panel contains 2,046,899
variants on chromosome 20, and the TOPMed* panel contains 8,782,465 variants. 1,768,427
variants overlap. The imputation accuracy was evaluated based on 11,268 variants shared by
1000G*, TOPMed* and the exome sequencing data on chromosome 20. MAF was calculated
based on the exome sequencing data of the target samples.
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Figure B.3: Comparison of imputation accuracy between using the UK Biobank array data and
using the array variants plus half of exome variants

We conducted meta-imputation on 762 South Asian samples from UK Biobank 50K exome data
set using 1000G panel and TOPMed r2 panel. Imputation accuracy was evaluated by comparing
imputed results and the remaining exome sequencing data on 151,719 variants across autosomes.
MAF was calculated from the exome sequence data of the study samples.
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Figure B.4: Comparison of power of association tests among different strategies

The evaluation was performed on 9936 European samples from UK Biobank 50K exome dataset,
and 5,000 LD pruned variants with MAF < 0.0005 on chromosome 1. The significance
thresholds from permutation tests are 1.75× 10−5 (TOPMed 1st half), 1.57× 10−5 (TOPMed 2nd
half), 1.60× 10−5 (best rsq), 1.09× 10−5 (best p-value), 1.98× 10−5 (meta-imputation),
1.73× 10−5 (the whole TOPMed panel), 2.02× 10−5 (exome data), respectively.
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B.3 Supplemental Tables

Table B.1: Distribution of sample populations of the reference panels used for imputing the African
American individuals in the Southwest US

Panel Population
Code

Population
Description

Number
of Samples

African (AFR)

ACB African Caribbean in Barbados 96
ESN Esan in Nigeria 99
GWD Gambian in Western Division, The

Gambia - Mandinka
113

LWD Luhya in Webuye, Kenya 99
MSL Mende in Sierra Leone 85
YRI Yoruba in Ibadan, Nigeria 108

European (EUR)

CEU Utah residents with Northern and
Western European ancestry

99

FIN Finnish in Finland 99
GBR British in England and Scotland 91
IBS Iberian populations in Spain 107
TSI Toscani in Italy 107
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Table B.2: Comparison of computational time between imputation using Minimac4 with and with-
out the meta-imputation option

The meta-imputation option in Minimac4 triggers the leave-one-out imputation (which is carried
out with the inner loop used for standard imputation) and writes the leave-one-out imputation
dosage file which is required for the downstream meta-imputation analysis in MetaMinimac2.
The tests were performed on chromosome 20 for UK Biobank samples using the TOPMed panel.
All the tests were conducted on Intel Xeon Platinum 8268 CPU @ 2.90GHz, using one single
core at a time.

Number of Samples
Time ([hh]:mm:ss)

Minimac4 Minimac4 with Meta-Imputation Option
1,000 5:27:37 5:42:37
2,000 10:39:41 11:06:08
5,000 26:23:14 26:40:53
10,000 51:55:23 53:15:35
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APPENDIX C

Supplemental Materials for Chapter 3

C.1 Sufficient Statistics for Fine-Mapping

Consider the following multivariate regression model for fine-mapping

y = Xβ + ϵ, ϵ ∼ N(0, σ2I) (C.1)

For simplicity, we assume that both the phenotype y and genotype X have been centered to have

mean 0. The log likelihood can be written as

l(β, σ2;X, y) = −n

2
log(2πσ2)− 1

2σ2
(yTy − 2yTXβ + βTXTXβ) (C.2)

Equation C.2 indicates that (XTX,XTy, yTy, n) are sufficient statistics. Here we show that

this set of statistics is equivalent to (R, b̂, ŝ, yTy, n), where R denote the sample correlation matrix

between variants calculated from the GWAS samples, b̂ and ŝ denote the estimated effect sizes and

corresponding standard deviation obtained from the single-variant association test, yTy denotes the

sum of squared phenotype, and n denotes the sample size.

For the jth variant, we consider the single-variant association test model y = xjbj + ej, ej ∼

N(0, σ2
j ), where xj denote the jth column of the genotype matrix X . We are able to obtain the

estimated effect size as b̂j =
xT
j y

xT
j xj

with the variance of the estimator as s2j =
σ2
j

xT
j xj

. When σ2
j

is unknown, which is the typical case in practice, we approximate s2j by plugging the esimtated
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residual variance σ̂2 = 1
n−1

(y − xj b̂j)
T (y − xj b̂j). Therefore, the z-score can be wriiten as ẑj =

b̂j
ŝj

=
xT
j y

σ̂
√

xT
j xj

and ẑj follows a t-distribution with (n− 1) degrees of freedom, which is close ot the

normal distribution when n is large.

Let r̂j denote the sample correlation between xj and y, i.e. r̂j =
xT
j y√

xT
j xj

√
yT y

. Since in a simple

linear regression, the test statistic for the null hypothesis bj = 0 is equivalent to that for testing the

correlation coefficient rj = 0, the z-score can also be represented as ẑj =
√
n− 1

r̂j√
1−r̂2j

, which

induces that r̂2j =
ẑ2j

ẑ2j+n−1
. Note that the residual sum of squares RSS = (1−r̂2j )y

Ty = n−1
ẑ2j+n−1

yTy,

the estimated variance can be written as σ̂2 = RSS
n−1

= 1
ẑ2j+n−1

yTy. Therefore, we are able to write

xT
j xj and xT

j y as a function of (b̂j, ŝj, yTy, n) as follows.

xT
j xj =

σ̂2
j

ŝ2j
=

yTy

b̂2j + (n− 1)ŝ2j
(C.3)

xT
j y = b̂jx

T
j xj =

b̂jy
Ty

b̂2j + (n− 1)ŝ2j
(C.4)

To this point, we can recover XTy and the diagonal elements of XTX . Let Λ denotes a diagonal

matrix with the jth diagnoal element being Λjj = xT
j xj,∀j = 1, 2, · · · , p. Note that XTX =

Λ
1
2RΛ

1
2 , we can able to fully recover XTX from (R, b̂j, ŝj, y

Ty, n).

In summary, given the effect sizes along with the standard deviation b̂j, ŝj from the single-

variant association test, the sample size n, sample variance of the phenotype (yTy)/(n − 1), and

the in-sample genotype correlation matrix R, we are able to obtain the same results as fine-mapping

using the individual-level data (X, y).

C.2 DAP-MS Algorithm

• Require: Data X , y

• Require: Priors for variants, 1
p

by default

• Require: Model size limit, T = p by default

118



• Step 1: Scan all single-variant models, calculate posterior score S(γi|X, y) = πiBF (γi),

where all elements in γi are zero except that the ith element is 1.

• Step 2: Select models with score> T as starting points (M1 – candidate models of size 1).

• While model size t ≤ T , do

– For each candidate model mt,i in Mt

1. Expand the model by including one more variant.

2. Mark the new model with the highest posterior score as mt+1,i.

3. If BF (mt+1,i) > BF (mt,i), insert mt+1,i into Mt+1.

– Calculate the sum of posterior scores of all models of size t+ 1 scanned.

– Stop if |Mt+1| = 0, or the sum of posterior scores of models of size t + 1 is smaller

than 10% that of size t.

– Update t = t+ 1

C.3 Supplemental Figures

119



Figure C.1: Comparisons of Power and Coverage between SuSiE and DAP-G

We randomly selected 1,000 genomic regions from the GTEx data, each encompassing 1,000
variants. For the 670 samples, we simulated phenotypes under varying settings of
PVE∈ {0.05, 0.1, 0.2, 0.4} and number of causal variants ranging from 1 to 5. We then conducted
fine-mapping using individual-level data and evaluated the 95% credible sets from SuSiE and
signal clusters with SPIP> 95% from DAP-G. This comparison was performed in two aspects: 1)
power, defined as the fraction of simulated causal variants included in a signal, and 2) coverage,
denoting the fraction of signals that encapsulate at least one causal variant.
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Figure C.2: Comparisons of PIPs from different Methods

We conducted a comparison of PIPs obtained from DAP-G against those derived from SuSiE and
DAP-MS, respectively. Each point within the visualization represents a single variant from one of
the simulations, with causal variants indicated in red and non-causal variants depicted in gray.
These simulations were performed under conditions of PVE set at 0.2 with 3 causal variants.
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APPENDIX D

Supplemental Figures and Tables for Chapter 4

Figure D.1: Ancestral Composition of TOPMed Whole Blood Samples

We conducted ADMIXTURE analysis on 6602 individuals with whole blood RNAseq data from
TOPMed. Using a threshold of 80%, we identified (from right to left in the figure) 719 individuals
as African, 2708 as admixed, 3105 as European, and 70 as others (East Asia: 12; Central and
South Asia: 2; Middle East: 1; Native America: 55).
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Figure D.2: Comparison of Spearman’s correlation r across different methods.

Figure D.3: Performance of Reference Panels of Different Size and Ancestral Compositions
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Figure D.4: Prediction Performance versus Heritability

We compared the prediction performance (red) in comparison to gene expression heritability
estimates (black; 95% confidence intervals in gray). Performance was assessed in GTEx
whole-blood cohort. Accuracy was measured by Pearson’s r2 between the imputed expression
levels using DAP-G weights obtained the from TOPMed panel and the observed expression
levels. The heritability was estimated by Wheeler et al. [1] using BSLMM in DGN dataset.
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Table D.1: Summary of TOPMed RNA-Sequencing Samples included in Analysis

Short Name Study Name
Sample Size by Tissue

Whole Blood Lung Monocyte Nasal epithelial PBMC T cell
COPDGene Genetic Epidemiology of COPD 350 - - 359 - -
FHS Framingham Heart Study 793 - - - - -
GALA II Genes-Environments and Admix-

ture in Latino Americans
1897 - - - - -

LTRC Lung Tissue Research Consortium - 1360 - - - -
MESA Multi-Ethnic Study of Atheroscle-

rosis
- - 352 - 1265 368

SAGE Study of African Americans,
Asthma, Genes and Environments

705 - - - - -

SPIROMICS SubPopulations and InteRmedi-
ate Outcome Measures In COPD
Study

1578 - - - - -

WHI Women’s Health Intiative 1279 - - - - -
Total 6602 1360 352 359 1265 368
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Table D.2: Comparison of Gene Expression Imputation using Reference Panels of Different Sample Sizes and Ancestral Compositions

Reference Panel Mean r2 Median r2 % r2 > 0.1 % r2 > 0.2 % r2 > 0.3 % r2 > 0.4
Size AFR EUR AFR EUR AFR EUR AFR EUR AFR EUR AFR EUR AFR EUR
600 0 600 0.142 0.217 0.085 0.158 45.7% 63.8% 25.6% 42.7% 15.5% 28.7% 9.6% 18.4%
600 100 500 0.170 0.217 0.119 0.157 55.3% 64.1% 32.6% 41.8% 19.3% 28.1% 11.3% 18.2%
600 200 400 0.182 0.212 0.134 0.157 59.4% 63.8% 35.7% 41.5% 20.5% 28.0% 12.1% 17.4%
600 300 300 0.191 0.208 0.142 0.152 61.3% 62.3% 39.4% 40.3% 23.2% 26.8% 12.6% 16.9%
600 600 0 0.209 0.191 0.157 0.137 66.0% 58.5% 41.6% 35.7% 26.9% 24.8% 15.8% 14.6%

1200 0 1200 0.147 0.225 0.093 0.170 48.0% 67.1% 27.6% 43.3% 15.7% 29.9% 9.4% 18.6%
1200 200 1000 0.182 0.224 0.133 0.171 59.4% 66.7% 35.8% 43.5% 20.6% 29.6% 12.1% 18.4%
1200 400 800 0.194 0.220 0.146 0.166 61.3% 66.4% 38.7% 42.8% 23.8% 28.4% 13.5% 18.3%
1200 600 600 0.203 0.216 0.159 0.161 64.1% 65.6% 41.0% 41.2% 24.8% 27.8% 14.3% 17.8%
1800 0 1800 0.150 0.227 0.095 0.173 48.1% 67.6% 27.6% 44.0% 16.0% 29.9% 9.7% 19.3%
1800 300 1500 0.189 0.227 0.146 0.169 61.4% 66.9% 38.1% 44.0% 21.8% 30.2% 12.4% 19.0%
1800 600 1200 0.200 0.223 0.156 0.167 64.2% 67.5% 41.1% 43.4% 24.2% 29.0% 14.4% 18.5%
3600 600 3000 0.198 0.229 0.157 0.175 63.8% 68.7% 39.6% 44.2% 24.5% 30.3% 13.0% 19.3%
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