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Abstract 

The muscle-tendon unit (MTU) is the motor responsible for voluntary movement. 

Biomechanical properties of muscles and tendons can change over the lifespan in response to 

aging, disease, and physical training. The impact of MTU biomechanical properties on 

musculoskeletal function is poorly understood but has broad implications for understanding a 

range of phenomena including clinical gait disorders, human performance, and the evolution of 

human bipedalism.  

The purpose of this dissertation was to explore the properties of lower limb MTUs and 

better understand how they influence the mechanics and metabolic energy cost of human 

locomotion. We used a musculoskeletal modeling approach in isolation, and integrated with 

experimental techniques. It is challenging to investigate human MTU properties in vivo, but they 

are readily modifiable in a musculoskeletal model and can be isolated from confounding factors. 

The computational demands of biomechanical simulation present substantial limitations, but 

modern computers with multicore processors can potentially overcome these limitations through 

parallel computing. Thus, the first study of this dissertation focused on achieving the 

computational performance necessary to meet the demands of the remaining two studies.  

In Chapter 2, we analyzed the parallel speed-up in solving optimal control simulations of 

human movement using multicore parallel computing. The results suggest up to a several-fold 

speed-up can be achieved across a range of musculoskeletal simulations; however, the actual 

performance improvement is problem specific and requires careful evaluation. This knowledge 
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was used to facilitate the large number of simulations performed in Chapters 3 and 4 of this 

dissertation. 

In Chapter 3, we used musculoskeletal simulation to investigate the effects of optimal 

muscle fiber length, tendon slack length, and tendon stiffness on whole-body and muscle-specific 

locomotor performance. We found lower limb MTU properties can be optimized to reduce whole-

body neuromuscular and metabolic demands of human walking. However, reducing overall 

demands typically required increased effort or cost in some muscles that were offset by greater 

reductions in others. These MTU-specific performance outcomes may reflect evolutionary trade-

offs associated with the need to perform tasks besides level walking. 

In Chapter 4, we explored the relationships of in vivo tendon stiffness of the major lower 

limb tendons, using ultrasound shear wave elastography, with the metabolic energy cost of 

locomotion. This experimental approach was complemented by musculoskeletal simulations 

where tendon stiffness was varied. The experimental findings suggest lower limb tendon stiffness 

was not associated with whole-body metabolic power. However, the simulation results suggest 

correlations at the MTU-specific level may not be evident at the whole-body level. While 

estimating tendon stiffness with ultrasound at rest is common, it may not adequately capture MTU 

behavior during dynamic contractions.  

The findings of this dissertation indicate MTU properties are not specialized to reduce the 

neuromuscular and metabolic demands of locomotion, yet these outcomes were both sensitive to 

optimizing individual MTU properties. Tendon stiffness uniquely affects the MTU-specific energy 

demands resulting in a diverse range of responses, possibly contributing to a cancelation effect at 

the whole-body level. Overall, our findings reinforce the difficulty of establishing a direct link 

between elements of the musculoskeletal system and the associated demands during locomotion. 
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Despite these challenges, future investigations should continue advancing our fundamental 

understanding of MTU function in locomotion because it holds the potential to broadly benefit 

many areas of human movement. 
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Chapter 1 – Introduction 
 

1.1 Muscle-tendon Unit 

The muscle-tendon unit (MTU) is modeled representatively as a contractile component 

(muscle) in series with an elastic component (tendon) [1]. The hierarchical structure of muscle 

consists of bundled muscle fibers composed of contractile subunits (sarcomeres), which 

require metabolic energy to produce force via cross-bridge cycling [2]. In contrast, tendon is 

composed of bundles of collagen fibers arranged in parallel, which do not directly require 

metabolic energy to transfer muscle force or store and release elastic strain energy. Taken 

together, muscle and tendon function in synchrony to produce movement. 

Muscle force production depends on the amount and rate of cross-bridge formations, 

determined by: muscle volume, neuromuscular activation, and the force-length-velocity 

relationship (Figure 1A & B) [3]–[9]. These relations are key to understanding the behavior of 

muscle. As muscle produces force, the muscle fiber length, or muscle fascicle length, will change 

at a given corresponding rate [8]. Since muscle fascicles are composed of bundles of muscle fibers, 

the relative length change and velocity are similar in most muscles [4], [10], [11]. When the MTU 

contracts isometrically, muscle fibers produce force at both the optimal length and low shortening 

velocities (Figure 1A & B) [9], [12]–[14]. This is metabolically effective as the muscle performs 

little to no mechanical work, yet produces a large force with minimal neuromuscular effort given 

the level of neuromuscular excitation [12]–[14]. During concentric and eccentric muscle 

contractions, muscle fibers instead move away from the optimal length and function at higher 
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velocities, thus demanding increased neuromuscular effort and metabolic energy in comparison to 

the isometric condition (Figure 1A & B) [14]. Notably, the ascending limb of the force-length 

curve is mechanically stable, whereas the descending limb is generally unstable, as muscles are 

more susceptible to damage during eccentric contractions (Figure 1A) [15], [16]. Regardless of 

muscle contraction type, all muscle forces are transmitted via tendon connecting muscle to the 

skeletal system. 

Figure 1.1 The mechanical relationships of the MTU- (A) The active force-length relationship of 

muscle: the dashed line represents the plateau region associated with maximum muscle force and 

optimal fiber length. (B) The force-velocity relationship of muscle: the shaded region where 

velocity equals corresponds to the maximum isometric force. (C) The force-elongation 

relationship of tendon- stiffness (k) can be determined from the linear region of the slope. 

 

Though force transmission is the primary function of tendon, there is also a secondary 

function: storing and releasing elastic strain energy. A change in muscle fiber length and joint 

angle prompts tendon elongation, with greater displacements storing greater elastic strain energy, 

a form of potential energy [17]. Minimal muscle force is required to straighten crimped collagen 

fibers, resulting in an initial non-linear toe-region of the force-elongation curve (Figure 1C) [18]–

[20]. This region precedes a linear elastic region as force further increases (Figure 1C) [21]–[24]. 

Eventually, and with excessive force, the tendon may then enter the plastic region of the force-

elongation curve, where permanent deformations can lead to tendon rupture [24], [25]. Structural 

and material properties both determine tendon stiffness and in turn the functional mechanics of the 
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MTU [22], [26]. For example, tendon slack length (resting length), a structural property, is 

inversely related to tendon stiffness. Consequently, a tendon with excessively low stiffness can 

disrupt muscle force transmission, demanding increased excitation, and potentially cause limb 

positioning errors [5], [27], [28]. In contrast, if the tendon was absent from the MTU, or extremely 

rigid, the muscle fibers would inherently be forced to perform most of the mechanical work and 

do so at unfavorable lengths and shortening velocities, consequently decreasing the level of muscle 

force and elevating the metabolic energy cost of force production [28], [29]. Tendon stiffness is 

susceptible to changes throughout the lifetime, commonly decreasing with aging [30]–[32], 

injury[33], [34], and disease [35], [36], but often increasing with exercise [25], [30], [31], [37]–

[40], thus impacting the metabolic energy cost of muscle contraction and movement.  

A spring-like tendon provides an overall advantage to force production by decoupling the 

muscle fiber and tendon length changes from one another, and thus from the overall length change 

of the MTU [29], [41]–[45]. Muscle fibers are then permitted to perform less mechanical work and 

function closer to their optimal length at slower shortening velocities with less neuromuscular 

effort because the tendon performs the majority of the length change [45], [46]. Moreover, a 

spring-like tendon acts as a protective mechanism by inhibiting muscle fibers from lengthening 

excessively, as high forces incurred during eccentric contractions risk damaging the muscle [5], 

[47], [48]. Hence, muscle-tendon synergy is a critical aspect of overall MTU physiological 

function. 

 

1.2 Stretch-shortening Cycles 

 

The energy-saving mechanism of the stretch-shortening cycle occurs in ballistic human 

movement (walking, running, jumping, etc.) [45], [49]–[53]. The spring-like behavior of tendon 
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is essential to this secondary function. Upon stretching, the tendon performs mechanical work and 

stores elastic strain energy, which is then released upon muscle relaxation all at no additional 

metabolic energy cost [49], [54]. This mechanism prevents muscle from performing metabolically 

expensive mechanical work, in particular, positive muscle work which can demand up to fivefold 

more metabolic energy in comparison to negative muscle work [12], [55].  

The physical properties of the MTU determine the ability to store and release elastic strain 

through tendon stretch and recoil; making some tendons better suited for this function than others. 

The long Achilles tendon connected to the short pennated fibers of the triceps surae muscle (medial 

and lateral gastrocnemii and the soleus muscles) is ideal for storing and releasing elastic strain 

energy through stretch-shortening cycles [53], [56]–[59]. This MTU structure is more common in 

the distal limb segments than in the proximal limb segments which are better suited for producing 

mechanical power [58], [60]. These ideal MTU properties also serve to reduce the volume of active 

muscle, thereby reducing the metabolic energy cost of muscle contraction [61].  

 The interaction between the triceps surae muscle and Achilles tendon reduces the metabolic 

energy cost of the stance phase of human locomotion, mediated by stretch-shortening cycles 

 [49], [51], [52], [62], [63]. Achilles tendon elongation enables the triceps surae muscle 

fibers to operate under metabolically efficient conditions throughout the stance phase of 

locomotion[51], [64]. During the stance phase of walking, the triceps surae MTU is said to 

resemble the action of a catapult- slowly lengthening while leading up to a rapid recoil [50], [51]. 

In contrast, the spring-like behavior of the triceps surae during the stance phase of running is 

comparable to the conceptual action of a pogo stick- the loading period is nearly equal in time to 

the release period which lends a characteristic ‘bounce’ [17], [57], [65]. However, this behavior is 

spring-like merely in stretch and relaxation, not compression. Therefore, the difference in the 
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stretch-shortening cycle during running and walking results in divergent muscle fiber mechanics 

and metabolic energy cost of movement. 

 

1.3 Locomotion 

Bipedal locomotion characterizes human movement. The walking gait cycle predominantly 

consists of stance and swing phases, whereas the running gait cycle consists of stance and flight 

phases. The stance phase of walking is comparable to the motion of a simple inverted pendulum 

model [66], while running can be formalized as a bouncing rubber ball, or a mass bouncing on a 

linear spring[67]–[69]. Early studies suggested elastic strain energy was only valuable during 

running, but the walking gait produced by the rigid leg of the inverted pendulum model 

insufficiently represents the center of mass trajectory and vertical ground reaction force observed 

experimentally [53], [68]. This discrepancy between the conceptual model, and experimental 

kinematics and kinetics of walking, can be resolved using a double inverted pendulum model [70] 

or a spring-loaded inverted pendulum model [71]. This suggests the flexion of the knee, and 

possibly the storage and release of elastic strain energy within the spring-like lower limb tendons, 

contribute to the overall spring-like behavior of the leg during the stance phase of both walking 

and running [41], [71], [72]. 

Minimizing the metabolic energy cost of movement or neuromuscular effort are two 

strategies the central nervous system may adhere to during locomotion[73]–[75]. Individuals 

exhibiting movement disorders, such as cerebral palsy [76]–[79], or amputees [80]–[83] 

experience an increased metabolic energy cost of locomotion due to unfavorable kinematics and 

muscle mechanics. We formalize locomotor efficiency as the ratio of mechanical work and 

expended metabolic energy. Yet mechanical work can be calculated using a variety of methods, 
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potentially yielding different results [84]. For example, some biomechanists suggest walking and 

running efficiencies, greater than the maximum efficiency of muscle, are attainable through the 

‘free work’ returned in stretch-shortening cycles [49], [66]. Ultimately, the behavior of the muscle 

fibers determines the metabolic energy cost of locomotion. 

During the stance phase of walking, the medial gastrocnemius muscle fibers operate almost 

completely isometric and the soleus muscle fibers lengthen [41], [50], [51], [62], [63], [85]. As 

stance phase terminates, the ankle plantar flexes during push-off causing the gastrocnemius 

fascicles to operate concentrically [41], [51], [86], [87]. In contrast, throughout the stance phase 

of running the medial gastrocnemius muscle fibers operate concentrically and the soleus muscle 

fibers operate isometrically [57], [62], [63], [88]. The ankle joint contributes roughly half of the 

positive mechanical work during the stance phase of locomotion, and Achilles tendon elastic strain 

energy contributes 20-60% of the total ankle positive work [42], [89]–[91]. The Achilles tendon 

magnifies the work returned to the muscle as tendon can shorten faster than muscle, so nearly all 

of the mechanical energy stored in the tendon is subsequently returned to the muscle, suggesting 

minimal tendon damping [27], [46], [92]. Active MTU lengthening before muscle shortening, 

compared to only shortening, decreases muscle mechanical work and reduces the metabolic energy 

cost of locomotion [58], [93], [94]. Even though this elastic energy-saving mechanism may 

provide a greater advantage during running, it is still nevertheless considered beneficial during 

walking [23], [49], [50].  

The energetic cost of human walking is relatively efficient in comparison to other species 

[95] and the self-selected speed, stride length, and stride frequency lower the metabolic energy 

cost [84], [96]–[98]. This suggests bipedalism was a strong evolutionary influence on hominid 

ancestors who engaged in continental migrations and persistence hunting [99]–[102]. Yet the 
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structure of the MTU may not have evolved to minimize locomotor economy under ideal 

conditions (preferred speed, level ground, etc.). During locomotion, lower limb muscles operate 

on all regions of the force-length curve due to the spring-like nature of tendon [86]. The lower 

limb MTU properties and function are well suited for locomotion in general, but the properties of 

the MTU are not likely optimized specifically for any given task but are rather well suited to 

accommodate a range of locomotive behaviors and conditions (terrain, incline, pace, etc.).  

 

1.4 Musculoskeletal Modeling and Simulation 

Musculoskeletal models are a simplified representation of the musculoskeletal system. 

Many musculoskeletal model measurements are derived from imaging techniques and cadaveric 

measurements [103]. Simulating a movement is accomplished by solving the equations of motion 

for a given objective criteria, and optimal control methods achieve this by optimizing (minimizing 

or maximizing) the movement for a given performance criteria while estimating muscle excitation 

patterns [104]. Minimizing muscle excitation, squared or cubed, has been shown to lead to realistic 

gait simulations [105]. This approach allows researchers to investigate questions that would be 

difficult or infeasible to accomplish in human subjects due to the invasive and ethically 

questionable nature of the experiments.  

In a musculoskeletal model, it is possible to instantaneously alter MTU properties and 

observe the simulated metabolic energy cost and mechanics. Notably, muscle force is consistently 

most sensitive to perturbations in tendon slack length in comparison to other MTU properties 

(optimal muscle fiber length, physiological cross-sectional area, pennation angle, moment arm 

length, etc.) [106]–[109]. This is likely due to the elastic tendon ultimately influencing the muscle 
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contractile relationships. However, the impact of the major lower limb MTU properties on the 

metabolic energy cost of locomotion remains to be thoroughly explored. 

An approach commonly used to characterize tendon stiffness in musculoskeletal modeling 

is the percent strain (relative elongation) produced at peak isometric force [110], though this varies 

among individuals and possibly among different MTUs [23], [46], [92], [111]–[114]. For example, 

the average human Achilles tendon strain at maximum isometric force typically varies among 

individuals, between 4 and 10% [23], [46], [92], [111], [112], [114]–[116]. This parameter can 

substantially impact movement performance, as well as the overall and muscle-specific metabolic 

energy costs, when systematically varied in the musculoskeletal model. For example, simulations 

of vertical jumping indicated jump height increased with a lower Achilles tendon stiffness [110]. 

Moreover during walking, given a 25% increase in Achilles tendon stiffness (relative to its 

physiological stiffness), the metabolic energy expenditure of the triceps surae muscle increased by 

7%, but the overall metabolic energy cost of walking only increased by 1.5% [117]. Yet during 

running, the metabolic energy cost of movement was lower with a stiffer Achilles tendon [118]. 

This suggests tendon properties are not selectively tuned to optimize either the metabolic energy 

cost of walking or running. Much of the lower limb MTU properties have yet to be targeted using 

musculoskeletal modeling and simulation to explore the impacts of the metabolic energy cost of 

locomotion. 

Musculoskeletal modeling and computer simulation is an insightful biomechanical 

research approach, but it is limited by the intense computational demand. Generating simulations 

of human movement can often take hours or even days to solve. With advancements in computer 

technology, the computational process can be sped up using parallel computing- the process of 

dividing the problem into smaller parts that can be solved simultaneously on computer clusters or 



9 

 

a multicore computer workstation [104], [119]–[124]. Exploring modern computer architecture 

can circumvent this limitation which has delayed the progression of musculoskeletal modeling and 

simulation as a more general-purpose tool for biomechanists, engineers, and clinicians. 

 

1.5 Ultrasonography 

 B-model ultrasonography uses high-frequency sound waves to create real-time two-

dimensional images of internal structures within the body. Images are often used to assist 

medical professionals with diagnosing and monitoring various medical conditions. B-mode 

ultrasonography can also be used to non-invasively estimate the stiffness of superficial tendons 

by capturing the maximum displacement of tendon during a maximum voluntary isometric 

contraction. This technique has been most commonly applied to the Achilles tendon due to its 

superficial nature and important role in walking (e.g. [23], [112], [116], [125], [126]). 

Subsequently, it was estimated approximately 6% of the total mechanical work involved in 

human walking can be attributed to the elastic strain energy stored in the Achilles tendon [23]. 

This technique can be physically exhausting for participants and presents several methodological 

challenges for the experimenter including adequate ultrasound probe placement. Moreover, these 

measurements can be implemented in a musculoskeletal model to characterize tendon stiffness. 

More recently, ultrasound shear wave elastography (SWE) a non-invasive and reliable 

imaging method, has been used to estimate the elastic properties of biological soft tissues [127]. 

The ultrasound probe uses a non-ionizing acoustic radiation force to emit shear waves through 

the underlying soft tissues and measures the speed at which these waves travel [128]. The shear 

wave velocity (SWV) is closely related to the stiffness of tissue, with the shear waves 

propagating faster through stiffer tissue. Images of the tendon are acquired at rest with a freehand 
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approach and the ultrasound probe does not need to be secured to the participant. The 

experimenter can view a color map of the shear wave velocities which overlays the standard B-

mode ultrasound image of the tissue of interest.  

SWE is widely used to capture the stiffness in both muscle and tendon, though more 

commonly in muscle. Tendon is more rigid than muscle and current SWE technology has a 

limited ability to estimate tendon stiffness under active tension. Even under passive tension, 

tendon SWV is sensitive to joint positioning, though a standardized approach has not been 

established. Even so, SWE is commonly used to estimate the stiffness of the Achilles tendon in 

healthy and pathological settings (e.g. [129]–[134]). Some have also used SWE to investigate the 

stiffness of the patellar and quadriceps tendons (e.g. [135]–[139]), though few have investigated 

the other major tendons of the lower limb. Although there are mixed findings within the 

literature, ultrasound SWE indicates asymptomatic tendons are generally stiffer than 

symptomatic tendons [129], [130], [132]–[134], and physical training increases tendon stiffness 

[135], [136]. There is a growing interest in using SWE to measure tendon stiffness due to the 

non-invasive methodology and feasibility. 

 

1.6 Justification 

Lower limb MTU properties are major determinants of muscle force-length-velocity and 

tendon force-elongation relationships, which influence the metabolic energy cost of locomotion.  

This has applications ranging from enhancing our understanding of various clinical gait disorders 

to pushing the limits of athletic performance. It is challenging to empirically isolate and investigate 

changes in MTU properties in the case of disease, disuse, or in response to training. However, they 

are readily modifiable in a musculoskeletal model and can be isolated from other confounding 
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factors. Optimal control computer simulations of human locomotion can provide insight into the 

metabolic energy cost of movement and mechanical outcomes driven by the muscle-tendon unit 

properties and complement traditional human subject-centered experiments. The use of 

musculoskeletal modeling and computer simulation has long been limited by the substantial 

computational demand. However, recent algorithmic developments paired with parallel computing 

on multicore computers can make previously intractable problems computationally feasible. 

Despite considerable research, particularly on the Achilles tendon, the broad effects of lower limb 

muscle-tendon unit properties on the metabolic energy cost of locomotion at both the muscle-

specific and whole-body levels remain poorly understood. A better understanding of muscle-

tendon unit properties has broad implications for a range of prominent areas of human movement. 

 

1.7 Aims & Hypotheses 

Specific Aim 1: Identify how the number of parallel computer processor cores in a multicore 

workstation interacts with musculoskeletal model complexity, movement task, initial guess, and 

temporal mesh density to affect the runtime of human movement simulations. Musculoskeletal 

modeling and computer simulation allows researchers to investigate questions that would be 

challenging or impossible to do experimentally, but the considerable computational demand is a 

substantial limitation. Although we anticipated the effect on runtime and speed-up to be problem-

specific, there was more focus on maximizing the current computer architecture and algorithms to 

facilitate the large number of simulations performed in Chapters 3 and 4 

 

Specific Aim 2a: Identify how MTU properties affect the neuromuscular and metabolic energy 

demands of walking at the whole-body and muscle-specific levels. MTU properties are major 
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determinants of the contractile and energetic behavior of muscle. The primary MTU properties to 

be investigated are: 

A) muscle optimal fiber length (i.e., length at which muscle fibers generate peak active  

     force) 

B) tendon slack length (i.e., longest length at which tendon produced zero force) 

C) tendon stiffness (i.e., characterized as strain at maximum isometric force) 

The starting points of these model parameters within the musculoskeletal model are based on 

averages from the literature [23], [86], [103], [116], [140]. 

 

 

During locomotion, the central nervous system may prioritize minimizing neuromuscular effort or 

the metabolic energy cost of movement, which are both insightful metrics of human performance 

[75]–[77]. Neuromuscular effort was defined as muscle excitation cubed and integrated over the 

stride and summed across muscles [105]. This quantity is thought to represent minimization of 

muscle fatigue and is characteristic of submaximal human movements [105], [141]. The metabolic 

energy cost was defined as the energy expended during walking measured by the sum of the work 

rate and heat rate over the stride, and neuromuscular effort was defined as muscle excitation 

integrated over the stride and summed across muscles [142]–[144]. 

 

Hypothesis 2a: Optimizing optimal muscle fiber lengths will permit walking with systematically 

lower neuromuscular effort and metabolic energy cost across muscles.  
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Hypothesis 2b: Optimizing tendon slack lengths will permit walking with systematically lower 

neuromuscular effort and metabolic energy cost across muscles. 

 

Hypothesis 2c: Optimizing tendon stiffness will permit walking with systematically lower 

neuromuscular effort and metabolic energy cost across muscles. 

 

The hypotheses imply these values are not optimal for minimizing the metabolic energy cost of 

walking, but rather represent tradeoffs with the need to perform other activities. For example, the 

starting point for the stiffness of all tendons is 4.9% at maximum isometric force; therefore, we 

are predicting this value represents a compromise among multiple tasks. By adjusting MTU 

properties on a muscle-by-muscle basis, we can achieve a lower metabolic energy cost. 

 

Specific Aim 2b - Exploratory: Investigate how MTU properties interact with each other to affect 

the neuromuscular effort and metabolic energy cost of walking at the whole-body and MTU-

specific levels. The specific analyses will be guided by the results obtained from Specific Aim 2a. 

 

Specific Aim 3a: Explore the relationship of in vivo tendon stiffness of the major lower limb 

tendons on the metabolic energy cost of locomotion using ultrasound shear wave elastography. 

Tendons are a key element of the musculoskeletal system and are responsible for transferring the 

force generated by our muscles to the skeleton. The properties of tendon, such as the stiffness, 

influence muscle contractile mechanics which ultimately determine the metabolic energy cost of 

movement. 
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Hypothesis 3a: Lower limb tendon stiffness will affect the metabolic energy cost of locomotion 

in muscle-specific ways. For the Achilles tendon, it can be reasoned that greater relative stiffness 

will lead to a lower metabolic energy cost due to enhanced storage and release of elastic energy. 

However, we lack a theoretical basis or prior findings to predict the relationships for the ankle 

dorsiflexors and flexors and extensors of the knee.
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Chapter 2 – Computational Performance of Musculoskeletal Simulation in OpenSim Moco 

Using Parallel Computing 
 

2.1 Abstract 

Optimal control musculoskeletal simulation is a valuable approach for studying 

fundamental and clinical aspects of human movement. However, the high computational demand 

has long presented a substantial challenge. The OpenSim Moco software package permits 

musculoskeletal simulation problems to be solved in parallel on multicore processors using the 

CasADi optimal control library, potentially reducing the computational demand. However, the 

computational performance of this framework has not been thoroughly examined. Thus, we aimed 

to investigate the computational speed-up associated with solving optimal control simulations of 

human movement in OpenSim Moco using multicore parallel computing. We examined the 

parallel speed-up for a range of musculoskeletal models and movements that included two- and 

three-dimensional models, tracking and predictive simulations, and walking and reaching tasks. 

Simulations were solved serially and in parallel using up to 18 processor cores with a variety of 

temporal mesh interval densities and using two different initial guess strategies. The maximum 

overall parallel speed-up was problem specific and ranged from 1.7 to 7.7 times faster than serial, 

with most of the speed-up achieved by about 6 processor cores. Parallel speed-up was generally 

greater on finer temporal meshes, while the initial guess strategy had a minimal impact on the 

speed-up. Considerable speed-up can be achieved for some musculoskeletal optimal control 

simulation problems in OpenSim Moco by leveraging the multicore processors often available in 
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modern computers. However, since the actual improvements are problem specific, achieving 

optimal computational performance will require some degree of exploration by the end user. 

 

2.2 Introduction 

Musculoskeletal simulation combined with optimal control techniques represents a 

valuable research approach capable of providing novel insights into human movement; however, 

computational efficiency is a major limiting factor in the widespread adoption of this technique 

[104], [119]. There are computationally efficient simulation techniques, such as static optimization 

[141], yet these algorithms are tied to a set of experimental data, do not typically include muscle-

tendon dynamics, and cannot be used to predict novel movements [145]. The substantial 

computational cost of optimal control simulation has been reduced, in part, through algorithmic 

developments such as direct collocation [105], [146]–[149]. OpenSim Moco [122] is a relatively 

new software tool that streamlines the use of direct collocation while leveraging the user-friendly 

OpenSim musculoskeletal modeling environment [150]. Rapid simulation using direct collocation 

not only makes many computationally demanding problems tractable but can also facilitate more 

complex analyses such as bilevel optimization [120] and Monte Carlo methods [151], where each 

iteration of the algorithm involves solving a full optimal control problem.  

Another way computational efficiency can be improved in optimal control simulations is 

by solving parts of the problem in parallel. Parallel computing is a powerful and widely applicable 

computational technique where components of the problem are solved simultaneously [152]. For 

decades, biomechanical simulations of human movement have taken advantage of parallel 

computing, but usually in the context of centralized high-performance computing resources (e.g., 

[119]) or clusters of commodity computers (e.g., [153]). Modern laptop and desktop computers 
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are now available with one or more processors, each containing up to dozens of processor cores. 

This computer architecture is ideal for OpenSim Moco, which uses the CasADi library [154] with 

the ability to evaluate the objective and constraint equations in parallel on multicore processors.  

Although parallel computing is now possible in mainstream computers, multicore 

processors with more than 4-8 processor cores come at a steep financial cost. The potential for 

parallel computing to reduce runtime is likely to be problem-specific, depending on factors such 

as problem size, problem type (e.g., tracking data versus predicting movements), movement task, 

model complexity, and problem discretization (i.e., temporal mesh density). There is also 

computational overhead in parallelizing a problem, such that using more processor cores beyond 

a certain point may lead to no further speed-up or a reduction in computational performance. 

Understanding these issues allows computational scientists to select algorithms and computer 

architectures that best match their simulation problems given limited financial resources. Thus, the 

purpose of this study was to investigate how the number of processor cores used in solving optimal 

control musculoskeletal simulations interacts with musculoskeletal model complexity, movement 

task, initial guess type, and temporal mesh density to affect the simulation runtime and speed-up 

potential.  

 

2.3 Methods 

2.3.1 Musculoskeletal Models 

Simulations of walking were generated using both two-dimensional (2-D) and three-

dimensional (3-D) full-body musculoskeletal models, and simulations of reaching were generated 

using a 2-D upper limb model. Muscle-tendon actuators for all three musculoskeletal models were 

based on a Hill-type muscle model [155].  
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The full-body 2-D [120] and 3-D [156] musculoskeletal models were described in detail 

previously but will be summarized here. The 2-D sagittal plane model consisted of nine segments, 

11 degrees of freedom, and 18 muscle-tendon unit actuators [155]. The foot-ground interaction 

was modeled using eight Hunt-Crossley contact elements under each foot [146]. The full-body 3-

D musculoskeletal model consisted of 18 segments, 31 degrees of freedom, and 84 muscle-tendon 

unit actuators [155]. The foot-ground interaction was modeled using 11 Hunt-Crossley contact 

elements under each foot [157].  

The upper limb musculoskeletal model was modified from the OpenSim “Arm26” model 

[158], which was based on a previously published 3-D model [159]. The original planar Arm26 

model [158] consisted of three segments, two degrees of freedom, and six muscle-tendon actuators. 

We extended the Arm26 model by adding six additional muscles from [159] to provide more robust 

control of the glenohumeral joint. The muscles added to the model were: anterior deltoid (DELT1), 

posterior deltoid (DELT2), teres major (TMAJ), pectoralis major (PECM), latissimus dorsi (LAT), 

and coracobrachialis (CORB).  

 

2.3.2 Simulations 

All simulations were run serially and in parallel across a range of processor cores (1, 3, 6, 

9, 12, 15, and 18). 2-D tracking simulations, 2-D predictive simulations, and 3-D tracking 

simulations of a step of walking (1.3 m/s) were generated using OpenSim Moco 4.3 [122] and 

MATLAB 2020a (Mathworks, Natick, USA) on a multicore computer workstation (Intel(R) 

Core(TM) i9-7980XE CPU @ 2.6 GHz, 18-core processor, and 64 GB of RAM). To generate the 

simulation, OpenSim Moco relies on the CasADi library [154], which provides a framework for 
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solving numerical optimal control problems, and the IPOPT optimizer [160], which solves the 

nonlinear program (NLP) using a gradient-based approach. 

The tracking objective function was a weighted sum of the tracking error (i.e., squared 

deviation of the simulation from experimental kinematic and ground reaction force data) and the 

sum of squared muscle excitations [161]. The predictive objective function was the sum of cubed 

muscle excitations [105]. The walking step duration (0.54 s) was divided into n temporal mesh 

intervals, resulting in 2n+1 collocation nodes using a Hermite-Simpson discretization scheme 

[122]. The problems were solved over a range of mesh interval densities (5, 25, 50, and 100). The 

finest mesh density used for the 3-D simulations was 75 rather than 100, due to inconsistent 

convergence at 100 mesh intervals. The optimal control problems were each solved twice using 

two different types of initial guesses: a dynamically consistent guess (CG) in which the model was 

already stepping, but was not close to the final solution, and a mesh refinement (MR) strategy, 

whereby the solution at a particular mesh density (e.g., 5) was used as the initial guess for the next 

greater mesh density (e.g., 25) [147]. For the CG case, the same initial guess was used for every 

mesh interval density.  

Predictive simulations of discrete point-to-point forward reaching were solved using the 

same computer as for the walking simulations. The desired motion began with the arm down at 

the side of the torso with the elbow slightly flexed (shoulder elevated 0°, elbow flexed 20°) and 

the final target position had the arm projected in front of the torso with the elbow likewise slightly 

flexed (shoulder elevated 75°, elbow flexed 20°). The joint angular velocities for the initial and 

final positions were both zero. The objective function for the reaching task was to complete the 

motion in the minimum amount of time. A range of mesh interval densities (10, 25, 50, 100) was 

selected to solve the problem. The reaching simulations would not converge on the coarsest mesh 
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interval used in the simulations of walking (5 intervals); thus, the coarsest mesh interval density 

was set to 10 for reaching. As with the walking simulations, the optimal control reaching problem 

was solved twice for each mesh density using CG and MR initial guesses. The CG strategy for the 

reaching simulations began with an initial guess in which the model was already moving, but was 

not close to the final solution. 

Computers with multicore processors provide the opportunity not only to solve a single 

problem in parallel but also to solve multiple problems simultaneously. Based on the initial results 

obtained in this study, we conducted a secondary analysis of the overall speed-up associated with 

generating multiple simulations simultaneously using the parallel for loop (parfor) included in the 

MATLAB Parallel Computing Toolbox. As an exemplar case for this secondary analysis, we 

solved 2-D predictive simulations of walking on a 50 mesh time interval using six processor cores 

with a CG. The runtime required to generate three simulations sequentially was compared with the 

runtime required to generate the three simulations simultaneously within a parfor loop.  

 

 2.3.3 Evaluation 

Each simulation was run three times across the range of processor cores, temporal mesh 

densities, and initial guess types. Solving the same problem repeatedly leads to the same result; 

however, the runtime can vary slightly. Therefore, computational runtimes were averaged across 

the three independent runs for each case. The speed-up using parallel computing in comparison to 

the serial case was quantified as (Eq. 1).  

 1                                                     speed-up =
serial runtime

n parallel runtime
  

where n is the number of processor cores used in parallel. The overall runtimes accounted for time spent in 

the IPOPT algorithm (e.g., determining the Newton step, solving linear systems) and the time spent 
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evaluating the NLP functions (e.g., objective function, objective gradient, constraints Jacobian). For the 

OpenSim Moco end user, the NLP function evaluations can be easily parallelized across multiple processor 

cores by setting a single CasADi parameter. The solution of the sparse linear systems encountered in the 

IPOPT algorithm can also be parallelized, in principle, but in practice this is more complicated for the end 

user and depends on the particular linear solver being used (several are available) and the linear algebra 

subroutines the solver was compiled against. In this study, we only evaluated parallelization of the NLP 

function evaluations. The proportion of total runtime that is spent evaluating the NLP functions can vary 

among problems; therefore, so does the speed-up potential in our approach. Thus, in addition to reporting 

the overall speed-up, we also examined the speed-up of just the part representing the NLP function 

evaluation to understand how the parallelized part of the problem scales within the problem. 

 

2.4 Results 

 

The runtimes for 2-D tracking simulations of walking ranged between 1.3 minutes and 3.4 

hours across the tested mesh interval densities, number of computer processor cores, and initial 

guess strategies (Figure 2.1 A & B). Both initial guess strategies resulted in a similar overall 

runtime, however, the runtimes for simulations using an MR strategy were slightly greater than 

the runtimes for simulations using a CG strategy on mesh intervals densities of size 25 and 100, 

but not 50 (Figure 2.1 A & B). The overall speed-up due to parallelization for the 2-D tracking 

simulations of walking was minimal. The greatest speed-up using either initial guess strategy was 

only about 1.7 times faster than serial, with most of the speed-up achieved by about 6 processor 

cores regardless of the initial guess strategy (Figure 2.2 A & B). 

2-D predictive simulations of walking had runtimes between 54.9 seconds and 33.6 

minutes depending on the mesh interval density, number of computer processor cores, and initial 

guess strategy (Figure 2.1 C & D). Both initial guess strategies resulted in similar overall runtimes, 
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but the runtimes for simulations using a CG were slightly greater than the runtimes for simulations 

using an MR strategy on mesh intervals densities of size 5, 50, and 100, but not 25 (Figure 2.1 C 

& D). The maximum speed-up varied from about 3.7-3.8, depending on the initial guess strategy, 

with most of the speed-up achieved by 6 processor cores (Figure 2.2 C & D).  

3-D tracking simulations of walking had runtimes between 2 hours and 53 hours (Figure 

2.1 E & F). Similar to 2-D predictive simulations of walking, the runtimes for simulations using a 

CG were consistently greater than the runtimes for simulations using an MR strategy on mesh 

intervals densities of size 50 and 75, but not 25 (Figure 2.1 E & F). Runtimes between the two 

initial guess strategies for the 3-D tracking simulations differed the most, with simulations using a 

CG strategy completing 2.3 times slower overall than simulations using an MR strategy (Figure 

2.1 E & F). The maximum speed-up factor for 3-D tracking simulations of walking using a CG 

strategy was 4.1 times faster than serial, and 3.5 times faster than serial when using an MR strategy, 

with most of the speed-up achieved by 6-9 processor cores (Figure 2.2 E & F).   

2-D predictive simulations of reaching had runtimes between 1.3 minutes and 1.2 hours. 

Reaching simulations using a CG strategy were 2.1 times slower overall than simulations using an 

MR strategy (Figure 2.1 G & H). The runtimes using a CG strategy were consistently greater than 

the runtimes for simulations using an MR strategy on mesh intervals densities of size 5, 25, and 

100, but not 50 (Figure 1 G & H). 2-D predictive simulations of reaching achieved the greatest 

speed-up ranging from 7.5-7.7 times faster than serial, depending on the initial guess strategy 

(Figure 2.2 G & H). The potential for further speed-up beyond 9 cores depended on the temporal 

mesh density (Figure 2.2 G & H). 2-D predictive simulations of reaching benefitted the most from 

parallelization. There was a general increase in speed-up factor when using finer mesh interval 

densities and more processor cores, regardless of the initial guess strategy (Figure 2.2 G & H). 
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Figure 2.1 The computational runtime for 2-D tracking simulations of walking (A & B), 2-D 

predictive simulations of walking (C & D), 3-D tracking simulations of walking (E & F), and 2-D 

predictive simulations of reaching (G & H) across a range of computer processor cores and mesh 

interval densities. Note the different vertical ranges among the different rows of plots.  
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Figure 2.2 The overall computational speed-up factor for 2-D tracking simulations of walking (A 

& B), 2-D predictive simulations of walking (C & D), 3-D tracking simulations of walking (E & 

F), and 2-D predictive simulations of reaching (G & H) across a range of computer processor cores 

and mesh interval densities. The maximum speed-up factor varied from about 1.7 to 7.7 across the 

different simulations, being greatest for the 2-D simulations of reaching, and lowest for the 2-D 

tracking simulations of walking. 
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Only parallelization of the NLP function evaluation of each simulation was evaluated in 

this study. The speed-up for the NLP function evaluations generally increased with mesh interval 

density and the number of processor cores (Figure 2.3). The speed-up for the NLP function 

evaluations (Figure 2.3) was greater than the overall speed-up (Figure 2.2) for 2-D tracking 

simulations of walking, 2-D predictive simulations of walking, and 3-D tracking simulations of 

walking. The speed-up for the NLP function evaluations (Figure 2.3) was similar to the overall 

speed-up (Figure 2.2) for 2-D predictive simulations of reaching.  
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Figure 2.3 The computational speed-up factor of the nonlinear programming (NLP) function 

evaluation of the optimal control problem for 2-D tracking simulations of walking (A & B), 2-D 

predictive simulations of walking (C & D), 3-D tracking simulations of walking (E & F), and 2-D 

predictive simulations of reaching (G & H) across a range of computer processor cores and mesh 

interval densities. The maximum speed-up factor varied from about 4.4 to 8.5 across the different 

simulations, being greatest for the 2-D predictive simulation of walking, and lowest for the 2-D 

tracking simulations of walking.  
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The percent of overall runtime spent on NLP function evaluations ranged from 35.8% for 

2-D tracking simulations to 95.6% for 2-D predictive simulations of reaching (Table 2.1). The 

percent of overall runtime spent on NLP function evaluations for the 2-D predictive simulations 

of walking and 3-D tracking simulations of walking were similar to each other, at slightly more 

than half of the total runtime (Table 2.1). 

 

Table 2.1 Mean percentage of total runtime spent on nonlinear programming (NLP) function 

evaluations in solving the optimal control problems (± 1 standard deviation).  

Simulation type Time spent on the NLP 

function evaluations (%) 

2-D tracking walking 35.8 ± 12.8 

2-D predictive walking 54.3 ± 13.4 

3-D tracking walking  58.6 ± 17.1 

2-D predictive reaching 95.6 ± 2.1 

Note: Data were averaged for each model and task across the number of processor cores, mesh 

intervals, and initial guess types. 

 

For both 2-D and 3-D tracking simulations of walking, the minimum objective function 

values were greatest on the coarsest mesh density, and fairly consistent for finer meshes (Figure 

2.4 A & C). For 2-D predictive walking and reaching simulations, the minimum objective function 

values were consistent across all mesh interval densities (Figure 2.4 B & D). The initial guess 

strategy had little effect on the minimum objective function values (Figure 2.4). 
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Figure 2.4 The minimum objective function values for 2-D tracking simulations of walking (A), 

2-D predictive simulations of walking (B), 3-D tracking simulations of walking (C), and 2-D 

predictive simulations of reaching (D) across a range of mesh interval densities using both initial 

guess strategies. For some problems (B & D), the minimum objective function value was 

consistent across mesh interval densities, while for other cases (A & C) the minimum objective 

function value was greater on coarse meshes. The initial guess strategies had little impact on the 

minimum objective function value across mesh densities. Note the different ranges on the vertical 

axes among panels. 

 

 

The iteration count ranged from 21-1084 across the different simulations and initial guess 

strategies. There were no consistent trends in the number of iterations required to solve the four 
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optimal control problems for either initial guess strategy across mesh interval densities (Figure 

2.5). The MR strategy allowed 3-D tracking simulations of walking and 2-D predictive simulations 

of reaching to converge to a solution in considerably fewer iterations on finer mesh densities 

(Figure 5 C & D). Yet, this was not true for the other problems, especially in 2-D tracking 

simulations of walking (Figure 5A).  

Figure 2.5 The iteration count for 2-D tracking simulations of walking (A), 2-D predictive 

simulations of walking (B), 3-D tracking simulations of walking (C), and 2-D predictive 

simulations of reaching (D) across a range of mesh interval densities using both initial guess 

strategies. The number of mesh intervals and initial guess strategy did not have consistent effects 

on the number of iterations needed to converge to a solution across conditions. 
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The cumulative runtime to solve the 2-D predictive walking simulation (50 mesh time 

interval, six processor cores, CG) three times consecutively was 17.8 minutes. The runtime to 

solve the same three problems within a parallel for loop was 6.1 minutes. Thus, given the 18 

available processor cores in this study, it was possible to achieve an overall 2.9 speed-up factor 

beyond that obtained by parallelizing the NLP function evaluations within the individual 

simulations. Solving the same 2-D predictive walking problem three times consecutively in the 

serial case resulted in a cumulative runtime of 49.9 minutes. Thus, combining parallelization of 

the NLP function evaluations and parallel solution of the individual simulations results in an 

overall 8.2 speed-up factor. 

 

2.5 Discussion 

In the present study, we evaluated how model complexity, movement task, initial guess 

type, and temporal mesh density affect the speed-up of optimal control simulations of human 

movement when parallelized across a range of computer processor cores in a single computer 

workstation. Parallel computing has been used in biomechanics research for decades on 

supercomputers and computer clusters [119], [153] but can now be implemented on a typical 

laptop or desktop computer. The optimal control algorithms [154] implemented in OpenSim Moco 

[122] are well-suited for a computer with a multicore processor with the potential to improve 

computational performance. For all of the simulations considered here, multicore parallel 

computing resulted in at least some improvement in computational performance, but the extent of 

the speed-up varied considerably across the different simulations.  

The overall degree of speed-up was closely related to the percent of total runtime spent 

evaluating the NLP function evaluations. That portion of the total runtime was greatest for the 2-
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D predictive simulations of reaching and was lowest for the 2-D tracking simulations of walking 

(Table 2.1), which respectively had the greatest and least effective parallel speed-up (Figure 2.2). 

The 2-D predictive walking and 3-D tracking walking problems differed in problem size and type, 

yet had similar percentages of the total runtime represented by the NLP function evaluations (Table 

2.1), resulting in similar overall parallel speed-up (Figure 2.2). Thus, while the overall speed-up 

achieved with multicore parallel processing in OpenSim Moco is problem-specific, it appears to 

be well predicted by the split between the time spent in the IPOPT algorithm versus the time spent 

evaluating the NLP function evaluations, which can be readily determined for any particular 

problem. 

 In most cases, the overall speed-up was greatest between 3-6 processor cores, with most of 

the improvement achieved by 3 processor cores. Only for the reaching simulations on finer meshes 

was there considerable speed-up beyond 6 cores, albeit still less than ideal linear speed-up. 

Therefore, most of the achievable speed-up for the simulations considered here can be realized on 

computers with only 4 processor cores, which is common in modern computers. The availability 

of more processor cores, which comes at a financial cost, can yield additional speed-up for certain 

problems, such as the upper limb reaching task, or by allowing multiple problems to be solved 

simultaneously on the same computer. We used a parallel for loop to solve multiple problems in 

parallel, as might be typical in a Monte Carlo simulation or bilevel optimization, but it would also 

be possible to start multiple unrelated instances of OpenSim Moco simultaneously. The main 

consideration in either case is deciding how to allocate the available processor cores within and 

between the multiple OpenSim Moco problems that are being solved in parallel.  

The maximum possible overall speed-up in this study was limited by the fact that we only 

investigated parallelization of the NLP function evaluations. That was our focus because the 



32 

 

CasADi library [154] used in OpenSim Moco [122] makes it easy to select the number of parallel 

threads used for that part of the problem. Thus, parallelizing the NLP function evaluations is likely 

to be representative of typical user behavior. A systematic investigation of parallelization within 

the linear equation solvers available in IPOPT (e.g., [162]) could potentially lead to further 

enhancements in computational performance and should be a focus for future research. Even 

within the part of a problem that is parallelized there are likely to be differences in the actual speed-

up that is realized. Thus, we evaluated the speed-up achieved in the NLP function evaluations, 

separate from the overall speed-up. Speed-up is considered “ideal” when doubling the number of 

processor cores doubles the computational speed. For most problems, the speed-up for the NLP 

function evaluations was substantially greater than the overall speed-up. However, even in the best 

case (2-D predictive walking, Figure 2.3 C) the speed-up was less than ideal. Near ideal speed-up 

was previously reported for evaluating the objective and constraints derivatives in the solution of 

a direct shooting problem of human walking on a distributed memory parallel supercomputer 

[119]. The discrepancies from the present results are likely due to different optimal control 

formulations (direct shooting versus direct collocation in the present study) and different computer 

architectures (independent compute nodes versus a single multicore processor in the present 

study). 

The individual runtimes varied considerably across models and tasks, number of mesh 

intervals and processor cores, and initial guess types (Figure 2.1). However, our primary focus was 

not the runtimes per se, but rather the speed-up obtained through parallel computing. In contrast 

to the runtimes, the speed-up that was achieved generally scaled consistently across mesh intervals 

and processor cores, and was similar for the two different initial guess types (Figure 2 & 3). 

Generating simulations of human movement using direct collocation involves discretizing the 
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problem over a temporal mesh. Using a coarse mesh will usually reduce computation time, but 

could impair the quality of the solution. Solving a problem on a finer mesh may lead to a higher 

quality solution, but at the cost of being more computationally intensive [149]. In the current study, 

solutions obtained on finer mesh interval densities generally resulted in a greater speed-up when 

parallelized across more processor cores than solutions obtained on coarser mesh interval densities. 

Thus, the computational efficiency achieved through parallel computing helped offset the 

computational demands of using finer temporal mesh densities. 

 This study had several limitations. Parallelizing only the NLP function evaluation part of 

the problem limited the overall speed-up that was possible. However, it is important to note this 

approach likely reflects how a typical OpenSim Moco user would parallelize optimal control 

simulations of human movement. Additionally, the walking and reaching tasks that we used are 

common in the literature, yet there are many other tasks that have also been simulated using 

musculoskeletal models. The present results will not necessarily generalize to simulations of other 

tasks. Finally, OpenSim Moco can solve problems that we did not consider here, such as 

determining the muscle states that correspond to a prescribed motion (i.e., a Moco Inverse 

problem). The potential for parallel computing to speed-up these other problem types cannot be 

inferred from the present results. We chose to focus on tracking and predictive optimal control 

problems as they tend to be the most computationally demanding. 

Herein, we analyzed the computational demands of a broad range of optimal control 

simulations of human movement using parallel computing in OpenSim Moco. While the speed-up 

achieved was not ideal, the computational performance improved for all of the examined 

simulations when solved in parallel, and solving multiple problems simultaneously yielded further 

computational speed-up. In summary, multicore parallel computing in OpenSim Moco via the 
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CasADi library provides an effective means to reduce the computation demand of optimal control 

musculoskeletal simulation, enhancing the feasibility of this research technique.  
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Chapter 3 – Optimized Muscle-Tendon Unit Properties for Human Walking 
 

3.1 Abstract 

 The muscle-tendon unit (MTU) is a complex biomechanical system responsible for 

generating and transmitting forces to produce movement. The structural features of the MTU, such 

as optimal muscle fiber length, tendon slack length, and tendon stiffness, are major determinants 

of the overall contractile behavior of muscle and the metabolic energy cost of movement. The 

impact of individual features of MTU on whole-body musculoskeletal function is poorly 

understood but is central to our fundamental understanding of movement biomechanics. Therefore, 

the purpose of this study was to identify how MTU properties affect the neuromuscular and 

metabolic energy demands of walking at the whole-body and muscle-specific levels. We used a 

bilevel optimization technique with modeling and simulation to investigate the effects of lower 

limb optimal muscle fiber length, tendon slack length, and tendon stiffness on the neuromuscular 

and metabolic demands of human walking. The simulation objective function was specifically 

defined to minimize neuromuscular effort. Whole-body neuromuscular effort was 16.6-67.6% 

lower while whole-body metabolic power was 0.2-9.5% lower during walking compared to the 

default parameter values. Simultaneously optimizing optimal muscle fiber length and tendon slack 

length produced the lowest neuromuscular effort, and optimizing tendon slack length alone 

produced the lowest metabolic cost. Despite reductions in whole-body neuromuscular and 

metabolic energy demands, the demands of each MTU were different and not all lower than the 

default parameter values. MTUs are not specifically tuned to minimize the demands of normal 
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speed level walking and can be optimized to lower neuromuscular effort and metabolic energy 

cost. An evolutionary trade-off may exist between the need to perform other tasks besides level 

walking at the preferred speed and the biological MTU features. 

 

3.2 Introduction 

The interaction of muscle and tendon is important for human movement and the properties 

of each component can uniquely affect the associated neuromuscular and metabolic demands. 

Optimal muscle fiber length (OFL) is a key feature of the muscle-tendon unit (MTU), and the 

force-length-velocity relationship is a major determinant of the overall contractile behavior of 

muscle. When muscle fibers operate at the OFL, force is generated with less neuromuscular effort, 

or neuromuscular excitation, and less metabolic energy due to optimal cross-bridge formations [2], 

[6], [8]. Minimizing neuromuscular effort or metabolic energy cost, which often coincide with 

each other, is indicative of preferred gait characteristics [73]–[75]. Additionally, spring-like 

tendons not only transfer muscle force to the skeletal system to produce movement, but tendon 

stiffness (TK) affects where the muscle fibers operate along the force-length-velocity curve [28], 

[29]. A spring-like tendon can lower the metabolic energy cost of force production by reducing 

expensive metabolic changes in muscle mechanical work [29], [41]–[45]. While muscle and 

tendon functions are complementary to each other, the properties of each may not be tuned to 

minimize the demands of walking. Bipedal walking is important to human behavior and was likely 

influential in the development of our musculoskeletal evolution [163], [164]. Even so, the 

neuromuscular activation of individual MTUs is not uniformly tuned for a specific type of 

locomotion or speed [165]. 
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The properties of both muscle and tendon are contributing factors affecting the metabolic 

energy cost of locomotion, however, these contributions are difficult to generalize due to the 

natural variety of anatomical shapes and locomotor functions among human lower limb MTUs. 

The impacts of individual MTU properties on the function and metabolic energy cost of the whole-

body musculoskeletal system are poorly understood but of considerable interest to better 

understand the fundamental biomechanics of human locomotion.  

Relative muscle fiber lengths and tendon slack lengths (TSLs)  vary considerably across 

species and are likely subject to selective pressures. For example, the ratio of TSL to OFL is greater 

in humans than in our closest extant relatives, chimpanzees [86], [166]. This implies there are 

differences in lower limb MTU properties possibly driven by the functional demands of bipedal 

locomotion. Additionally, the substantial anatomical variation among the lower limb MTUs can 

impact the mechanical function, and thus the metabolic energy cost of force production. 

Furthermore, muscle fiber lengths, both absolute and relative to limb length, can change over time 

due to exercise [167]–[170] and aging [171]–[173]. Experimental approaches to studying the 

effects of MTU properties in humans are limited to cross-sectional studies and time-consuming 

longitudinal interventions. Musculoskeletal modeling and simulation is a complementary approach 

that allows muscle parameters to be varied systematically, or optimized for various performance 

criteria. 

The triceps surae is often the focus when studying the effects of muscles, tendons, and their 

interaction on MTU mechanics during locomotion due to its superficial nature and essential role 

in locomotion. While the ankle extensors play an important role in supporting and propelling the 

body in locomotion, their energy consumption is estimated to represent only 25% of the net 

metabolic cost of walking [143]. Compared with the triceps surae, the effects of OFL, TSL, and 
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TK across other major lower limb muscles on the neuromuscular effort and metabolic energy cost 

of walking are largely unknown at the whole-body and MTU-specific levels.  

In this study, we used a modeling and simulation approach to determine how OFL, TSL, 

and TK affect the neuromuscular effort and metabolic energy cost of walking. Neuromuscular 

effort was defined as muscle excitation cubed and integrated over the stride and summed across 

muscles [105]. This quantity is thought to represent minimization of muscle fatigue and is 

characteristic of submaximal human movements [105], [141]. Likewise, metabolic energy cost 

was defined as the energy expended during walking quantified as muscle heat rate plus muscle 

work rate, integrated over the stride and summed across muscles [142]–[144]. We hypothesized 

optimizing the MTU properties in the lower limb MTUs would permit walking with lower 

neuromuscular effort and metabolic energy cost across muscles.  

 

3.3 Methods 

Three musculoskeletal model parameters: OFL, TSL, and TK were separately optimized 

in the lower limb MTUs during simulations of human walking. In a secondary analysis, we 

simultaneously optimized OFL and TSL in the lower limb MTUs to better investigate the muscle-

tendon interaction. We used a bilevel optimization technique where the upper level of the problem 

was solved with a genetic algorithm to search for the optimal OFL, TSL, and TK  MTU parameters. 

The process of the genetic algorithm is inspired by natural selection observed in evolutionary 

biology [174]. The genetic algorithm function evaluations were evaluated using parallel computing 

through the MATLAB Parallel Computing Toolbox. The lower level solved an optimal control 

simulation of human walking using OpenSim Moco [122] using the MTU parameter values 

determined using the genetic algorithms. 
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3.3.1 Musculoskeletal Model 

A two-dimensional musculoskeletal model developed by Nguyen et al., 2019 [120] was 

used to simulate human walking. The model is summarized here and is described in more detail in 

Appendix A. The sagittal plane model consisted of nine segments, 11 degrees of freedom, and 18 

muscle-tendon unit actuators [155]. The foot-ground interaction was modeled using eight Hunt-

Crossley contact elements under each foot [146]. 

OFL, TSL, and TK were individually optimized for all lower limb MTUs using the genetic 

algorithm in the upper level of the optimization. The size of each parameter’s search space was 

expanded beyond the default parameter values based on the computational feasibility and was 

unique for each MTU parameter (Table 3.1). TK was characterized as tendon strain produced at 

maximum isometric force (Fmax). A low tendon strain at Fmax represents a stiffer tendon, with 0% 

tendon strain at Fmax representing a perfectly rigid tendon. 

 

3.3.2 Simulations 

Predictive simulations of a step of walking at 1.3 m/s (step time 0.54 s) were generated 

using direct collocation with a grid density of 15 nodes using OpenSim Moco 4.4 [122] and 

MATLAB (2022a, MathWorks, Natick, MA, USA). The optimal control problem was set to 

minimize the sum of cubed muscle excitations (referred to here as neuromuscular effort), which 

has been shown to lead to realistic gait simulations [105]. Simulations were generated on a 

multicore computer workstation (Intel® CoreTM i9-7980XE CPU @ 2.6 GHz, 18-core processor, 

and 64 GB of RAM). 

The genetic algorithm optimized nine variables (one for each unique MTU in the 

musculoskeletal model). The population size was set to 108 as this was determined to be 



40 

 

sufficiently large enough for the current problem and maximized the computation power of our 

computational workstation. The bilevel optimization terminated after 50 generations because 

during pilot testing we found no meaningful reduction in the objection function value beyond this 

point. The solution of the populations in the genetic algorithm was parallelized across the 18 

processor cores because this was found to achieve better computational efficiency than 

parallelizing the individual optimal control problems that were solved in the lower level of the 

bilevel problem. 

Based on the initial results obtained in the current study, we conducted a secondary analysis 

where OFL and TSL were simultaneously optimized. Solving optimal control musculoskeletal 

simulations has a high computational demand. Embedding this technique in a bilevel optimization 

further increased the size and complexity of the problem, and thus the computation demand. We 

found that it was too computationally demanding and complex to simultaneously optimize OFL, 

TSL, and TK across all major lower limb MTUs. Among the possible parameter combinations, we 

chose to optimize OFL and TSL simultaneously because these parameters had the greatest change 

in neuromuscular effort and metabolic energy cost. 

 

3.3.3 Evaluation 

The musculoskeletal model parameters were optimized three separate times starting from 

different random points in the solution space, and the MTU parameters producing the simulation 

with the lowest objective function value were further analyzed. The optimal gait simulations were 

used to estimate neuromuscular effort and metabolic energy cost at the whole-body and MTU-

specific levels [144]. Neuromuscular effort and metabolic energy cost were further evaluated 

across the major muscle groups of the lower limb: hip extensors (HE), knee extensors (KE), ankle 
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extensors (AE), and flexors (FX) [143]. The HE group included the hamstrings and gluteus 

maximum, the KE group included the rectus femoris and vasti, the AE group included the 

gastrocnemius and soleus, and the FX group included the iliopsoas, biceps femoris short head, and 

dorsiflexors [124]. The FX group represented a collection of muscles responsible for flexing the 

joints of the lower limb, rather than a joint-specific grouping. 

 

3.4 Results 

 The individually optimized MTU parameter values were all at least somewhat different 

from the default parameter values. (Figure 3.1). MTU-specific changes in parameter values were 

generally different across MTUs, with some consistencies among muscle groups. OFL became 

longer in the KE group but shorter in the AE group (Figure 3.1 A & B). TSL became longer in the 

HE group but shorter in the AE and FX groups (Figure 3.1 C & D). TK became less stiff in the KE 

group, but there was no uniform increase in TK among muscle groups (Figure 3.1 E & F). There 

were no discernable patterns within the uniarticular muscles or biarticular muscles. 
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Table 3.1 The default musculoskeletal model parameter values (P0) for optimal muscle fiber length 

(OFL), tendon slack length (TSL), and tendon stiffness (TK). TK was characterized as tendon 

strain produced at maximum isometric force (Fmax). A low tendon strain at Fmax represents a stiffer 

tendon, with 0% tendon strain at Fmax representing a perfectly rigid tendon. The lower bound (LB) 

and upper bound (UB) are the limits of the parameter search space (OFL= P0±25%, TSL= P0±5%, 

and TK= P0±50%). The represented muscle-tendon units include: hamstrings (HAM), biceps 

femoris short head (BFsh), gluteus maximus (GMAX), iliopsoas (IL), rectus femoris (RF), vasti 

(VAS), gastrocnemius (GAS), soleus (SOL), dorsiflexors (DOR). 

 

 

 

 

 

 

 

 

 

 

 

 

 

   OFL 

(m) 

 TSL 

(m) 

 TK 

(% strain at Fmax) 

Muscle   LB P0 UB  LB P0 UB  LB P0 UB 

HAM   0.09 0.12 0.15  0.26 0.35 0.44  0.04 0.05 0.06 

BFsh   0.08 0.11 0.14  0.12 0.16 0.20  0.04 0.05 0.06 

GMAX   0.12 0.16 0.20  0.06 0.08 0.10  0.04 0.05 0.06 

IL   0.08 0.11 0.14  0.11 0.15 0.19  0.04 0.05 0.06 

RF   0.06 0.08 0.10  0.29 0.39 0.49  0.04 0.05 0.06 

VAS   0.09 0.12 0.15  0.11 0.14 0.18  0.04 0.05 0.06 

GAS   0.05 0.06 0.08  0.30 0.40 0.50  0.04 0.05 0.06 

SOL   0.03 0.04 0.05  0.20 0.27 0.34  0.04 0.05 0.06 

DOR   0.05 0.07 0.09  0.20 0.26 0.33  0.04 0.05 0.06 
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Figure 3.1 The relative and absolute changes in lower limb muscle-tendon unit properties when 

individually optimizing optimal muscle fiber length (OFL) (A & B), tendon slack length (TSL) (C 

& D), and tendon stiffness (TK) (E & F) during walking compared to the default model parameters. 

Tendon strain produced at maximum isometric force (Fmax) below the dashed line represents a 

stiffer tendon (F). The vertical ranges for relative parameter outcomes match the size of the 

expanded parameter search space within the bilevel optimization. The represented muscle-tendon 

units include: hamstrings (HAM), biceps femoris short head (BFsh), gluteus maximus (GMAX), 
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iliopsoas (IL), rectus femoris (RF), vasti (VAS), gastrocnemius (GAS), soleus (SOL), dorsiflexors 

(DOR). Note the results for each parameter are presented in descending order. 

 

Individually optimizing the MTU parameters resulted in lower whole-body neuromuscular 

effort during walking ranging from 16.6-41.0% lower than with the default parameter values(Table 

3.2). Optimizing the MTU parameters also resulted in lower metabolic power during walking 

ranging from 0.2-9.5% lower compared to the default parameter values, even though the 

simulation objective function was defined to minimize neuromuscular effort, not metabolic cost 

(Table 3.2). Among the individually optimized parameters, neuromuscular effort was lowest when 

optimizing only OFL, and metabolic energy cost was lowest when only optimizing TSL. 

Simulations optimizing both OFL and TSL produced the greatest overall change in neuromuscular 

effort compared to the default parameter values but did not yield the greatest reduction in metabolic 

cost (Table 3.2).  

 

Table 3.2 Change in neuromuscular effort and metabolic power when optimizing lower limb 

optimal muscle fiber length (OFL), tendon slack length (TSL), and tendon stiffness (TK) during 

walking compared to the default parameter values. The muscle-tendon interaction was further 

investigated by simultaneously optimizing OFL and TSL. 

 

 

 

 

 

 

While whole-body neuromuscular effort was lower when MTU parameters were 

individually optimized, the results across individual MTUs were different (Figure 3.2). Optimizing 

OFL produced lower neuromuscular effort in most MTUs compared to the default values (Figure 

3.2 A & B). However, neuromuscular effort was lower in all MTUs when optimizing TSL 

Optimized  

Parameter 

Neuromuscular  

Effort (%) 

Metabolic  

Power (%) 

OFL -41.0 -4.8 

TSL -37.6 -9.5 

TK -16.6 -0.2 

OFL & TSL -67.6 -5.5 
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compared to the default parameter values (Figure 3.2 C & D). Optimizing TK resulted in the most 

variable changes among the MTUs, and the neuromuscular effort of nearly half the MTUs was 

greater than with the default parameter values (Figure 3.2 E & F). 
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Figure 3.2 The relative and absolute changes in neuromuscular effort when individually optimizing 

optimal muscle fiber length (OFL) (A & B), tendon slack length (TSL) (C & D), and tendon 

stiffness (TK) (E & F) during walking compared to the default model parameters. Note the results 

for each parameter are presented in descending order. The represented muscle-tendon units 

include: hamstrings (HAM), biceps femoris short head (BFsh), gluteus maximus (GMAX), 
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iliopsoas (IL), rectus femoris (RF), vasti (VAS), gastrocnemius (GAS), soleus (SOL), dorsiflexors 

(DOR). 

 

 Individually optimizing the MTU parameters also lowered whole-body metabolic power, 

even though the simulation objective function was specifically defined to minimize neuromuscular 

effort. The metabolic energy cost of each MTU was not uniformly lower than the default model 

parameter values. (Figure 3.3). Across optimized parameters, the number of MTUs with greater 

metabolic power was comparable to the number of MTUs with lower metabolic power, respective 

to the default parameter values. However, greater metabolic power in some MTUs was more than 

offset by MTUs with lower metabolic power in order to achieve lower whole-body metabolic 

power. The biceps femoris short head consistently had the greatest relative percent decrease in 

metabolic power across all MTU parameters but minimally contributed to the absolute decrease in 

metabolic power (Figure 3.3).  
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Figure 3.3 The relative and absolute changes in metabolic power when individually optimizing 

optimal muscle fiber length (OFL) (A & B), tendon slack length (TSL) (C & D), and tendon 

stiffness (TK) (E & F) during walking compared to the default model parameters. Note the results 

for each parameter are presented in descending order. The represented muscle-tendon units 

include: hamstrings (HAM), biceps femoris short head (BFsh), gluteus maximus (GMAX), 
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iliopsoas (IL), rectus femoris (RF), vasti (VAS), gastrocnemius (GAS), soleus (SOL), dorsiflexors 

(DOR). 

 

Simultaneously optimizing OFL and TSL led to at least some degree of change in every 

MTU parameter compared to the default parameter values (Figure 3.4). The optimized MTU 

parameter values were each different, with some consistencies among muscle groups. OFL became 

longer in the HE and KE groups but shorter in the FX group (Figure 3.4 A & B). TSL became 

longer in the HE group but shorter in the KE and AE groups (Figure 3.4 C & D). The 

simultaneously optimized parameter values were generally similar to the individually optimized 

parameter values. However, the optimized OFL and TSL values for the biceps femoris short were 

transposed between optimizations. 
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Figure 3.4 The relative and absolute changes in metabolic power when simultaneously optimizing 

optimal muscle fiber length (OFL) (A & B) and tendon slack length (TSL) (C & D) during walking 

compared to the default model parameters. Note the results for each parameter are presented in 

descending order. The represented muscle-tendon units include: hamstrings (HAM), biceps 

femoris short head (BFsh), gluteus maximus (GMAX), iliopsoas (IL), rectus femoris (RF), vasti 

(VAS), gastrocnemius (GAS), soleus (SOL), dorsiflexors (DOR). 

 

 Across individually optimized MTU parameters, lower whole-body neuromuscular effort 

and metabolic energy cost were primarily driven by lower demands in the FX group, at the relative 

and absolute levels (Figure 3.5). When OFL and TSL were simultaneously optimized, the relative 

and absolute neuromuscular effort in the FX and AE groups were the primary source of lower 

whole-body neuromuscular effort compared to the default parameter values (Figure 3.5 A & B). 
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However, the relative and absolute metabolic energy cost in the FX, AE, and KE groups were the 

primary source of lower whole-body metabolic energy cost compared to the default parameter 

values (Figure 3.5 C & D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 The relative and absolute neuromuscular effort (A & B) and metabolic power (C & D) 

for the optimized and default parameters for a single limb during a stride of walking across muscle 

groups. The flexors (FX) muscle group is the sum of the iliopsoas, biceps femoris short head, and 

dorsiflexors. The ankle extensors (AE) muscle group is the sum of the gastrocnemius and the 

soleus. The knee extensors (KE) muscle group is the sum of the rectus femoris and vasti. The hip 

extensors (HE) muscle group is the sum of the hamstring and gluteus maximus. 
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3.5 Discussion 

The current study evaluated how OFL, TSL, and TK each affect the neuromuscular effort 

and metabolic energy cost of walking using musculoskeletal modeling and computer simulation. 

Properties of both muscle and tendon, as well as their interaction, play a critical role in determining 

the neuromuscular effort and metabolic energy cost of human locomotion. We hypothesized that 

individually optimizing these MTU parameters in a musculoskeletal model would permit walking 

with less neuromuscular effort and metabolic energy cost across muscles compared to the default 

parameter values. The findings of the current study partially support this hypothesis. Optimizing 

MTU parameters lowered whole-body neuromuscular effort and metabolic energy cost in 

comparison to the default parameter values. However, rather than a uniform reduction across all 

MTUs, the overall reductions in neuromuscular effort and metabolic energy cost were due to 

greater effort and cost in some MTUs that were more than offset by greater reductions in others. 

Among the muscle groups, reductions in the FX muscle group were the key component in reducing 

both whole-body neuromuscular effort and metabolic energy cost during walking. 

All optimized MTU parameter values were at least somewhat different from the default 

musculoskeletal model parameter values. Some MTU parameters became longer or stiffer, 

whereas others became shorter or more compliant, but all values remained within anatomically 

realistic bounds [86], [112], [116] (Figure 3.1). The simulation objection function used in this 

study was defined to minimize neuromuscular effort, not metabolic energy cost, as minimizing 

effort generally produces more realistic simulations of human motion than minimizing metabolic 

cost [105], [175], [176]. In response, neuromuscular effort and metabolic energy cost were not 

uniformly lower across all individual MTUs despite lower whole-body values (Figure 3.2 & 3.3). 

There was no apparent connection between the change in length or stiffness for any of the 
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optimized MTU parameters and the resulting changes in neuromuscular effort or metabolic energy 

cost. For example, muscles with longer optimized OFLs were not linked to a specific uniform 

change in either neuromuscular effort or metabolic energy cost. However, the FX group was 

central to reducing both whole-body neuromuscular effort and metabolic energy cost during 

walking. Compared with the lower limb extensor muscles, the FX group minimally contributes to 

the support and propulsion of the body in walking and thus may have greater potential to reduce 

the demands during walking. 

While neuromuscular effort and metabolic energy cost were both sensitive to individually 

optimized MTU parameters, neuromuscular effort was lowest when simultaneously optimizing 

OFL and TSL (Table 3.1). However, the reduction in metabolic energy cost when simultaneously 

optimizing OFL and TSL was similar to that obtained when optimizing only OFL, and not as low 

as when optimizing only TSL (Table 3.1). All MTU parameters impact the behavior of the MTU 

to varying degrees, yet prior research has consistently found that muscle force is most sensitive to 

TSL [106]–[109]. The results of the current study indicate TSL was also the parameter that had 

the greatest influence on the metabolic energy cost of walking. The muscle-tendon interaction is 

important for economic force production as mechanical work performed by the tendon offsets 

metabolically expensive muscle contractions and affects the operating length and velocity of the 

muscle fibers [12], [55]. 

 Humans are recognized as economical walkers, possibly due to the evolutionary influence 

of bipedal walking [163], [164]. Preferred gait mechanics of human locomotion are often reported 

to correspond to observed minima in neuromuscular effort or metabolic energy cost [73]–[75]. 

Despite this propensity for minimum effort and cost, a previous study found that muscle activation 

patterns across lower limb MTUs were not all turned to be minimized at the preferred walking 
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speed [165]. In the current study, we similarly found lower limb MTU parameters were not 

specialized to minimize neuromuscular effort or metabolic energy cost in simulations at a typical 

walking speed. Both the findings in the literature and the current study add support to the notion 

that despite the presumed importance of bipedal walking in our evolution, human musculoskeletal 

structure and function are not specialized for level walking at the preferred speed. Instead, 

functional trade-offs may be present in order to accommodate different types of locomotion as 

well as other movements. For example, persistence hunting is purported to have played an 

important role in human postcranial musculoskeletal evolution and would have been selected for 

the ability to walk and run at a range of speeds in variable terrain over great distances [99]–[102].  

 During human locomotion, the central nervous system may prioritize minimizing 

neuromuscular effort and metabolic energy cost differently. Though these performance outcomes 

are related, it is important to note the differences between them. Computationally, neuromuscular 

effort is weighted equally among MTUs regardless of size, whereas, the metabolic energy 

contribution of each MTU is weighted by muscle volume [142], [144]. As a result, small muscles 

make the same contribution to the neuromuscular effort term as large muscles with the same 

excitation, but a few large muscles will generally dominate the metabolic energy cost simply due 

to volume. Additionally, the nonlinear relation of neuromuscular effort and the effectively linear 

relation of metabolic energy cost numerically contribute to the effectiveness of minimizing 

neuromuscular effort over metabolic energy cost. There is evidence to suggest humans may 

prioritize lower neuromuscular effort at the expense of greater metabolic energy expenditure 

[177]–[179]. In the current study, the change in whole-body and MTU-specific neuromuscular 

effort was not proportional or indicative of the subsequent change in metabolic energy cost. These 
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findings highlight the complex interaction and differences between the neuromuscular effort and 

metabolic energy cost during walking. 

 This study had several limitations. While OFL, TSL, and TK were individually optimized, 

only OFL and TSL were simultaneously optimized. Simultaneously optimizing all three 

parameters was computationally infeasible using our bilevel optimization approach. We focused 

on simultaneously optimizing OFL and TSL because each parameter individually had a large 

impact on neuromuscular effort and metabolic energy cost. Additionally, the current study only 

examined optimizing MTU parameters under a single condition, level ground walking at a typical 

speed. The optimized MTU parameter values found in the current study would likely not be the 

same for different locomotion speeds, inclines, or terrain. 

 In the current study, we used a novel approach to optimize the lower limb MTU parameters 

for human walking using bilevel optimization. The default musculoskeletal model MTU 

parameters were not optimal for minimizing whole-body neuromuscular effort, though the optimal 

parameter values all lay within anatomically realistic ranges. While humans are adept and 

economical at bipedal locomotion, our MTU anatomy is not exclusively tuned for walking at the 

preferred speed. Instead, our MTUs appear to be designed to accommodate a wide variety of 

movements. 
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Chapter 4 – Shear Wave Velocity of Lower Limb Tendons is not Correlated with Metabolic 

Power in Human Locomotion 
 

4.1 Abstract 

The mechanical behavior of spring-like tendons plays a crucial role in the mechanics and 

energetics of human locomotion by storing and releasing elastic strain energy and influencing 

muscle fiber behavior. Tendon stiffness is susceptible to long-term changes associated with aging 

and disease, and is responsive to physical training. It is challenging to directly measure tendon 

stiffness in vivo, but we can non-invasively estimate soft tissue stiffness using ultrasound shear 

wave elastography (SWE). While tendon stiffness is broadly relevant to a wide range of 

circumstances, our understanding of how lower limb tendon stiffness specifically affects whole-

body and muscle performance is still incomplete. Therefore, this study aimed to explore the 

relationships between in vivo tendon stiffness of major lower limb tendons estimated using SWE 

and the metabolic energy cost of locomotion. This experimental approach was complemented by 

musculoskeletal simulations where tendon stiffness was systematically varied in a way that 

mirrored the experimental results. Thirty-six healthy young adults walked on a treadmill at slow, 

normal, and fast speeds, and ran at a slow speed while metabolic data were collected. Tendon 

stiffness was estimated in the tibialis anterior tendon, Achilles tendon, patellar tendon, and 

semitendinosus tendon at a resting slack length. Experimentally, net metabolic power for each 

locomotion speed was significantly different from every other speed (all p<0.001), and the mean 

shear wave velocity for each tendon was significantly different from every other tendon (all 

p<0.001). Lower limb tendon stiffness was not a significant predictor of the net metabolic power
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at any of the examined locomotion speeds in the overall regression models (all p>0.13) or for any 

bivariate correlations (all p>0.09). The simulated results suggest MTU-specific correlations may 

be present but are not detectable at the whole-body level. Lower limb tendon stiffness was not 

related to the whole body metabolic cost of locomotion, which may partly reflect the limited 

sensitivity of individual muscle energy consumption to tendon stiffness for most muscle-tendon 

units. 

 

4.2 Introduction 

Tendons are a key element in the musculoskeletal system and are responsible for 

transferring the force generated by muscles to the skeleton. The properties of tendon, such as the 

stiffness, influence muscle contractile mechanics and ultimately determine the metabolic energy 

cost of movement. Tendon stiffness can impact the metabolic energy cost of muscle contraction in 

two ways: 1) through the operating length of the muscle fibers, affecting where on the force-length-

velocity curve the muscle operates [48], and 2) storage and release of elastic strain energy, 

reducing the amount of metabolically expensive mechanical work done by the muscle fibers [45], 

[49], [54]. However, these different aspects of tendon function do not act in complete isolation 

from each other. The storage and release of elastic strain energy also affect muscle fiber dynamics 

because mechanical work done by the tendon affects the kinematics of the muscle fibers [45], [49], 

[54]. Thus, the tendon stiffness of the major lower limb muscle-tendon units (MTUs) will affect 

the muscle fiber dynamics and ultimately the metabolic energy cost of locomotion. 

Tendon stiffness varies among individuals due to both external influences and internal 

physiological factors. For example, distance runners can exhibit increased Achilles tendon 

stiffness, which is correlated with greater running economy [38]. Whereas decreased tendon 
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stiffness, observed in older adults [32] and post-stroke patients [34], is accompanied by an elevated 

metabolic energy cost of walking [180], [181]. The detrimental changes in tendon properties that 

coincide with aging and disease can increase the difficulty and physical demands of everyday tasks 

like walking. More recently, tendon properties have become the target of genetic engineering 

approaches that have shown considerable improvements in physical performance [182], [183]. 

These approaches could potentially intervene in diseases affecting tendon properties and possibly 

restore the tendon. Changes in tendon stiffness ultimately affect the metabolic energy cost of 

movement through the muscle fiber dynamics. Thus, a fundamental understanding of how tendon 

stiffness affects MTU function and the associated metabolic energy cost is necessary for 

understanding how aging, exercise, and disease affect human locomotor performance across the 

lifespan. 

Among mammals, bipedal walking and running are unique to humans and likely played an 

important role in our musculoskeletal evolution [163], [164]. As a result, human locomotion, 

specifically walking, is remarkably economical across the animal kingdom [184]. Among the 

many possible ways we could move, self-selected gait characteristics (speed, stride length, and 

stride frequency) generally minimize the metabolic energy cost of locomotion [84], [96], [185]. 

Despite this phenomenon, the neuromuscular activation of each leg muscle is not uniformly tuned 

to our preferred locomotion speeds, possibly due to an evolutionary adaptation to accommodate a 

wide range of locomotor behaviors [165]. 

While experimental studies often focus solely on the Achilles tendon (AT) due to its 

superficial nature and essential role in locomotion [61], [186], the ankle extensors represent only 

a small fraction of lower limb muscle mass [103] and account for only about 25% of the net 

metabolic energy cost of walking [143]. The effects of tendon stiffness across all major lower limb 
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MTUs on the metabolic energy cost of locomotion remains largely unknown. Investigating the 

tendon stiffness of additional major lower limb MTUs would provide further insights into the 

fundamental effects of the muscle-tendon interaction within the lower limb on the metabolic 

energetics of locomotion. Therefore, the present study took a broad and novel approach to examine 

how tendon stiffness throughout the lower limb impacts the metabolic energy cost of locomotion. 

In order to directly measure tendon stiffness, tendon length must be measured when 

stretched by a force equal to the maximum isometric force (Fmax) of the adjoining muscle to 

determine the force-displacement relation. Historically, tendon stiffness was estimated using 

cadaver specimens and animal models because the tendon could be dissected and manually 

lengthened, but this same process cannot be done in human participants [17], [187]. More recently, 

B-mode ultrasonography emerged as a commonplace and non-invasive method for estimating 

tendon stiffness by imaging the maximum displacement of the tendon during a ramped isometric 

contraction [23], [112]. However, this technique can be physically demanding for the participant 

and present a series of methodological obstacles to the experimenter. As an alternative, ultrasound 

shear wave elastography (SWE) requires minimal effort from the participant and is easier for the 

experimenter. SWE is a reliable and non-invasive approach to quantify the stiffness of tendon 

[127], [188]. SWE measurements can be used as experimental estimates of tendon stiffness, and 

can also be used in musculoskeletal modeling studies to further explore the impacts on MTU-

specific metabolic energy cost. 

Therefore, this study aimed to investigate the relationship between in vivo tendon stiffness 

of the major lower limb tendons, estimated using shear wave velocity (SWV), and the metabolic 

energy cost of locomotion. It was hypothesized that lower limb tendon stiffness will affect the 

metabolic energy cost of locomotion in an MTU-specific manner. For instance, we anticipated 
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greater AT stiffness would lead to a lower metabolic energy cost due to enhanced storage and 

release of elastic strain energy. However, we lack a theoretical basis or prior findings to predict 

the specific relationships for ankle dorsiflexors and knee flexors and extensors. 

 

4.3 Methods 

4.3.1 Participants 

 Thirty-six healthy young adults (18 male, 18 female; mean±SD: age: 25.7 ± 5.9 years, 

height: 1.7 ± 0.1 m, weight: 69.6 ± 14.7 kg) were recruited to participate in this study using flyers 

and an electronic database (UMHealthResearch). All participants reported no recent 

musculoskeletal injuries or diseases that would prevent walking or running, no history of lower 

limb tendon injuries, and no cardio-metabolic diseases. The International Physical Activity 

Questionnaire (IPAQ) short form [189] was used to assess the level of physical activity of 

participants and indicated participants were moderately active on average (2,850.5 ± 2,475.6 

MET·min·wk-1). The protocol was approved by the Institutional Review Board (HUM00221589) 

at the University of Michigan. All participants provided written informed consent before 

participating. 

 

4.3.2 Metabolic Data 

Participants were instructed to fast and refrain from alcohol, caffeine, and smoking for at 

least three hours before the start of the session. We performed indirect calorimetry using a 

lightweight portable metabolic system (Cosmed K5, Rome, Italy) to measure the rate of consumed 

oxygen (V̇O2) and expired carbon dioxide (V̇CO2) gases. The resting metabolic energy cost was 

first measured during quiet sitting for five minutes and then quiet standing for five minutes. 
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Participants were acclimated to each of the tested walking and running speeds on the treadmill 

(FIT, Bertec Corporation, Columbus, OH, USA) while wearing the metabolic testing equipment 

for a total of five minutes. The metabolic energy cost was then measured while participants walked 

and ran on the treadmill at the four fixed speeds: slow walking - 1.0 m/s, normal walking - 1.3 m/s, 

fast walking - 1.6 m/s, and slow running - 2.5 m/s. Participants completed a five-minute trial at 

each speed and reached a steady state after three minutes [190]. Participants completed up to five 

minutes of seated rest between trials. The order of speeds was randomized.  

The metabolic power of each trial was estimated from V̇O2 and V̇CO2 during the last two 

minutes of each trial [191]. The metabolic power during quiet standing was used to determine the 

net metabolic power of each locomotion trial. 

 

4.3.3 Ultrasonography 

 Longitudinal ultrasound SWE images were obtained from tendons in four of the major 

lower limb MTUs: tibialis anterior tendon (TA), AT, patellar tendon (PT), and semitendinosus 

tendon (ST) (Supersonic Imagine Aixplorer system, Aix-en-Provence, France; SL18-5 

transducer). SWE was performed after the completion of the metabolic data collection. The 

ultrasound region of interest was the middle third of the tendons, or the free tendon. The ultrasound 

transducer was aligned parallel to the tendon fascicles and visually identified using B-model 

ultrasonography. Participants were comfortably positioned on an athletic training table supine 

while imaging the anterior tendons and prone while imaging the posterior tendons. Only the 

dominant limb was assessed. We sought to reduce the passive tension in the tendons by 

standardizing the position of the joint corresponding to each targeted tendon (TA - 10° of 

dorsiflexion, AT - 20° of plantarflexion, PT - 0° of knee flexion, and ST - 120° of knee flexion). 



62 

 

The tendons were imaged in a randomized order. The same experimenter collected three images 

from each location across all participants. 

SWV was analyzed in MATLAB (2022a, MathWorks, Natick, MA, USA) from SWE 

images using an established algorithm to ensure sufficient pixel quality [192], [193]. A single 

experimenter identified the region of the SWE images only containing the tendon of interest for 

analysis. The mean SWV of three images for each tendon was used for further analysis. 

  

4.3.4 Statistical Analysis 

The relationships among lower limb tendon stiffness, based on mean SWV, on the 

metabolic energy cost of locomotion at each speed were examined using multiple linear regression. 

One statistical model was used for each locomotion speed and the same four predictors were used 

in each model. Additionally, the relationship of each tendon on the metabolic energy cost of each 

speed was examined using bivariate correlations. 

Differences in tendon mean SWV linked to sex and physical activity level (low, moderate, 

and high as determined by the IPAQ) were examined using independent t-tests using a Bonferroni 

correction.  

 

4.3.5 Musculoskeletal Model 

We used a two-dimensional musculoskeletal model [120] to simulate human locomotion 

with different tendon stiffness values. The model is summarized here and is described in more 

detail in Appendix A (Figure A.1). The sagittal plane model consisted of nine segments, 11 degrees 

of freedom, and 18 muscle-tendon unit actuators [155]. The foot-ground interaction was modeled 

using eight Hunt-Crossley contact elements under each foot [146]. 
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We created thirty-six variations of the musculoskeletal model based on the variations in 

tendon stiffness in the thirty-six human participants in the current study. The musculoskeletal 

model characterizes tendon stiffness as strain produced at a force equal to the associated muscle 

Fmax, which does not map directly to the experimental SWV estimates of tendon stiffness. 

Therefore, we adjusted the stiffness of the corresponding tendons in the model based on the percent 

difference from the mean SWV for each participant. Thus, the 36 musculoskeletal models were 

not meant to be subject-specific models capturing every detail of the individual subjects. Rather, 

the models reflected the ranges of muscle-specific variations in tendon stiffness in our sample, 

while holding all other model parameters constant. 

 

4.3.6 Simulations 

Predictive simulations of a step of walking and running at the same speeds observed 

experimentally were generated using OpenSim Moco 4.4 with a mesh interval density of size 50 

[122] and MATLAB (2020a, MathWorks, Natick, MA, USA). The optimal control problem was 

set to minimize the sum of cubed muscle excitations, which has been shown to lead to realistic gait 

simulations [105]. Simulations were generated on a multicore computer workstation (Intel® 

CoreTM i9-7980XE CPU @ 2.6 GHz, 18-core processor, and 64 GB of RAM). Six cores were 

assigned to each optimal control problem, and three problems were solved in parallel. This parallel 

computing configuration was determined based on the outcomes of Chapter 2. 

 

4.3.7 Evaluation 

The simulated results were used to estimate the whole-body metabolic energy cost using a 

model of muscle energy consumption [144]. The MTU-specific metabolic energy was estimated 
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for the ankle flexors group (dorsiflexors), ankle extensors (gastrocnemius and soleus), knee flexors 

(biarticular hamstrings), and knee extensors (rectus femoris and vasti). 

 

4.4 Results 

 

 Three participants were excluded from the analysis of slow running due to incomplete 

trials. The average net metabolic power increased as locomotion speed increased, and the net 

metabolic power for each locomotion speed was significantly different from every other speed (all 

p<0.001) (Figure 4.1A). The mean SWV for each tendon was significantly different from every 

other tendon (all p<0.001, Figure 4.1B). Moreover, the mean SWV of the ankle tendons (TA & 

AT) was significantly greater than for the knee tendons (PT & ST) (p<0.001). The mean SWV of 

the flexor tendons (TA & ST) was significantly greater than for the extensor tendons (AT & PT) 

(p<0.001). There were no significant differences between males and females (all p>0.05) or  

activity levels across all measurements (all p>0.10). 

 

Figure 4.1 The net metabolic power during different speeds of locomotion (A) and mean shear 

wave velocity (SWV) of four major lower limb tendons (tibialis anterior tendon (TA), Achilles 

tendon (AT), patellar tendon (PT), and semitendinosus tendon (ST)) (B) in healthy young adults. 

 

(A) 
(B) 
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 Mean SWV of the major lower limb knee and ankle tendons was not a significant predictor 

of the net metabolic power at any of the examined locomotion speeds in the overall multiple 

regression models (all p>0.1) (Table 4.1), or for any bivariate correlations (all p>0.09) (Figure 4.2 

& Table 4.2).  

 

Table 4.1 Multiple linear regression summary for each locomotor metabolic power outcome using 

the mean shear wave velocity of four major lower limb tendons (tibialis anterior tendon (TA), 

Achilles tendon (AT), patellar tendon (PT), and semitendinosus tendon (ST) as predictors. 

Model β SE p Adjusted R2 

Slow (1.0 m/s)  0.50 0.44 <-0.01 

Intercept 3.14 0.82   

TA  0.02 0.04 0.53  

AT -0.04 0.03 0.20  

PT -0.03 0.09 0.73  

ST -0.05 0.05 0.25  

Normal (1.3 m/s)  0.64 0.89 -0.09 

Intercept 3.43 1.06   

TA   0.03 0.05 0.52  

AT  -0.01 0.04 0.79  

PT  <-0.01 0.12 0.94  

ST -0.03 0.06 0.58  

Fast (1.6 m/s)  0.84 0.84 -0.08 

Intercept 6.04 1.38   

TA -0.03 0.06 0.60  

AT -0.06 0.05 0.29  

PT  0.02 0.15 0.89  

ST -0.05 0.08 0.54  

Slow Run (2.5 m/s)  1.15 0.14 0.10 

Intercept 10.43 1.89   

AT  0.18 0.09 0.06  

TA -0.15 0.08 0.06  

PT -0.24 0.23 0.30  

ST  0.05 0.11 0.62  
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Figure 4.2 Bivariate correlations between the mean shear wave velocity (SWV) for the tibialis 

anterior tendon (TA), Achilles tendon (AT), patellar tendon (PT), and semitendinosus tendon (ST) 

and the net metabolic power during slow walking (A), normal walking (B), fast walking (C), and 

slow running (D). 
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Table 4.2  Bivariate correlations summary between the mean shear wave velocity for the tibialis 

anterior tendon (TA), Achilles tendon (AT), patellar tendon (PT), and semitendinosus tendon 

(ST) and the net metabolic power during slow walking, normal walking, fast walking, and slow 

running. 

 β SE p R2  β SE 

 Slow (1.0 m/s) 

 Predictor   Intercept 

TA  0.04 0.03 0.29   0.03  2.09 0.48 

AT -0.04 0.03 0.24   0.04  2.95 0.30 

PT -0.03 0.09 0.74 <0.01  2.72 0.36 

ST -0.05 0.04 0.24   0.04  2.92 0.28 

 Normal (1.3 m/s) 

Predictor  Intercept 

TA   0.04 0.04 0.38   0.02  2.99 0.60 

AT  -0.01 0.04 0.81 <0.01  3.60 0.38 

PT  <-0.01 0.11 0.95 <0.01  3.54 0.44 

ST  -0.04 0.05 0.46   0.02  3.76 0.35 

 Fast (1.6 m/s) 

Predictor  Intercept 

TA -0.02 0.06 0.78 <0.01  5.05 0.79 

AT -0.05 0.05 0.34   0.03  5.30 0.50 

PT  0.02 0.15 0.90 <0.01  4.76 0.59 

ST -0.02 0.07 0.74 <0.01  4.98 0.46 

 Slow Run (2.5 m/s) 

Predictor  Intercept 

TA  0.14 0.09 0.12   0.08  8.86 1.23 

AT -0.13 0.07 0.09   0.09  12.16 0.78 

PT -0.07 0.23 0.77 <0.01  11.10 0.93 

ST  0.02 0.11 0.86 <0.01  10.71 0.70 

 

  

Mean SWV was not uniform across the four major lower limb tendons within participants 

or at the joint level. The SWV in one tendon was not indicative of the SWV in any other tendon 

(Figure 4.3).  
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Figure 4.3 Correlation matrix for the mean shear wave velocity (SWV) of the major lower limbs 

tendons of four major lower limb tendons (tibialis anterior tendon (TA), Achilles tendon (AT), 

patellar tendon (PT), and semitendinosus tendon (ST)). 

 

 

 The gait simulations with different tendon stiffnesses followed the same general trends 

observed in the experimental data, with greater metabolic energy cost at faster speeds. The average 

predicted costs for the simulated gaits were slightly lower than the experimental means at each 

speed and there was less variation in metabolic cost at each speed in comparison to the 

experimental results (Figure 4.4). In most modeled MTU groups of interest, there was a weak 

correlation between tendon stiffness and the simulated muscle metabolic energy cost for each 

locomotion speed (Figure 4.5). The strongest relationship in the modeled MTUs was found in the 

ankle extensor muscles. 
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Figure 4.4 The distribution of net metabolic power for each locomotion speed for both the 

experimental and simulated experiments. Black circles are the whole-body net metabolic power of 

each human participant, and gray circles are the whole-body net metabolic power for each 

musculoskeletal model. The horizontal bars represent the mean for each sample. 
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Figure 4.5 Bivariate correlations between tendon stiffness and the net metabolic power during slow 

walking, normal walking, fast walking, and slow running for the musculoskeletal modeling and 

simulation results. The musculoskeletal model represents tendon stiffness as strain produced at the 

maximum isometric force (Fmax). 
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4.5 Discussion 

We aimed to evaluate the relationship between in vivo tendon stiffness of the major lower 

limb tendons and the metabolic energy cost of locomotion using an integrated experimental and 

musculoskeletal simulation approach. We hypothesized that lower limb tendon stiffness would be 

related to the whole-body metabolic energy cost of locomotion in MTU-specific ways. For 

example, we expected greater AT stiffness would lead to a lower metabolic energy cost due to 

enhanced storage and release of elastic strain energy. However, we lacked a theoretical basis or 

prior findings to predict this relationship for the other tendons of the major MTUs. Our 

experimental findings do not support the specific hypothesis regarding AT stiffness, or a 

relationship with metabolic energy cost for any of the other tendons investigated here. Our 

simulation results indicate that the lack of relationships between tendon stiffnesses and whole-

body metabolic energy cost may be due to there being only a weak association between tendon 

stiffness and individual MTU energy consumption, as well as a cancellation effect among certain 

MTUs (i.e., positive relation for one muscle offset by a negative relation for another muscle). 

The current study used SWE to estimate the stiffness in four major lower limb tendons and 

then relate these measures to the metabolic energy cost of locomotion. We demonstrated lower 

limb tendon stiffness, estimated using SWE, is not associated with the metabolic energy cost at 

various speeds of walking or for slow running. There are several possibilities behind the lack of 

significant correlations between tendon stiffness and whole-body metabolic energy costs. We 

anticipated a relationship between tendon stiffness and the metabolic energy cost of location based 

on the findings of previous research [49], [53], [64]. However, it is plausible this relationship is 

simply non-existent. Tendon stiffness may not have a large effect on the metabolic energy cost of 

muscle contraction in locomotion. Moreover, we used SWE to estimate the stiffness of the tendon 
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at rest, but this static measurement may not translate to the mechanical behavior of the tendon 

during locomotion. It is possible that using a different technique to capture in vivo tendon stiffness 

may have identified a relationship between stiffness and metabolic energy cost during locomotion, 

though it remains possible this relationship still may not exist. Furthermore, correlations may be 

present at the MTU-specific level, though the impacts are not detectable at the whole-body level 

due to minimal overall contributions to whole-body metabolic energy cost. Alternatively, there 

may be opposing relationships among the MTUs, resulting in a negligible effect on whole-body 

metabolic energy cost. 

The complementary musculoskeletal simulation approach allowed us to further investigate 

the metabolic energy cost of locomotion at the MTU-specific level with prescribed variations in 

tendon stiffness. The correlations between tendon stiffness and the MTU-specific metabolic 

energy cost were weak for most of the MTUs across the different gaits (Figure 4.5). In some cases, 

there were weak positive correlations between tendon stiffness and MTU-specific metabolic 

energy cost in some MTUs and weak negative correlations in others MTUs, which could result in 

cancellations at the whole-body level (Figure 4.5). AT stiffness had the strongest correlation with 

the MTU-specific metabolic energy cost, yet the change in the energy consumption by this one 

muscle group may be inconsequential at the whole-body level. Moreover, the observed positive 

correlation contradicts our expectation for the AT. Our assumption was that a spring-like tendon 

would store and release elastic strain energy, offsetting metabolically expensive mechanical 

demands of the plantar flexor muscle fibers [45], [49], [54], reducing the whole-body metabolic 

energy cost of locomotion. Our contrary results were, however, consistent with a recent simulation 

study that found that given a 25% stiffer Achilles tendon, the metabolic energy cost of the ankle 

extensors was 7% greater, but the whole-body metabolic energy cost was only 1.5% greater than 
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the default condition [117]. Thus, while AT stiffness was correlated with the metabolic energy 

consumed by the ankle extensors, the impact on whole-body metabolic energy cost is expected to 

be minimal. Both of these factors would limit any correlations between experimentally measured 

tendon stiffness and whole-body metabolic energy cost. 

We found the mean SWV of the AT fell well within the expected range reported in the 

literature for healthy young adults [131], [194]–[197]. The mean SWV of the PT observed in the 

current study was slightly lower than most values reported in the literature but was generally within 

the expected range[135], [188], [197]–[200]. There are limited data on the mean SWV of the ST 

in the literature, though the values that are reported were greater than the results of the current 

study [201]. To our knowledge, no existing literature provides data for comparing in vivo SWV of 

the TA. Discrepancies between mean SWVs of the current and the literature are likely due to much 

of the literature measuring the tendons with some degree of passive strain. SWV is sensitive to 

passive tension [131], [196], and thus the tendons in the current study were imaged at joint angles 

intended to slacken the tendons which would result in lower SWV values. 

Expanding our knowledge of the biomechanical function of tendons during human 

locomotion has broad applications in other fields of research, such as the design of human-

integrated assistive robotic devices. Some powered prosthetic legs (e.g. [202]–[208]) and lower 

limb exoskeletons (e.g. [209]–[213]) are designed with series elastic actuators that share several 

similarities with the MTU [214]. However, the effectiveness of these series elastic actuators relies 

on appropriately tuning the stiffness of the elastic element with the demands of the task [205]–

[208]. Though the use of series elastic actuators and proper tuning can reduce the mechanical 

demands of motorized systems, these systems are sensitive to locomotion variations other than 

preferred speed-level walking [205]–[208]. This concept complements the findings in the current 
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study; however, MTUs in humans are not readily modifiable for specific tasks. Moreover, these 

biologically inspired devices have the potential to reduce the burden and metabolic energy cost of 

human movement, which is important for amputees, individuals with movement disorders, and 

those who experience extreme physical demands. 

There were several limitations to this study. SWE is limited in that it cannot capture the 

properties of the tissue during intermittent changes, such as those experienced by the MTUs during 

locomotion. Additionally, the maximum detectable SWV range is limited, making it challenging 

to examine fairly rigid tissues, such as tendons, except at rest with minimal passive tension. 

Although the leg was positioned to reduce passive tension while the tendons were imaged, some 

of the observed variations in tendon SWV may be due to inter-subject variability in tendon slack 

length. The current study examined only one running speed at a slow place; however, the 

advantage of storing and releasing elastic strain energy may be more pronounced at faster running 

speeds [186]. Moreover, there was no direct correspondence between tendon SWV and the 

representation of tendon stiffness within the musculoskeletal model. Therefore, the experimental 

measurements of tendon stiffness from the human participants were used to produce relative 

changes in tendon stiffness in the musculoskeletal model to investigate MTU-specific response. 

The current study used experimental techniques in conjunction with musculoskeletal 

modeling and simulation to investigate the effects of lower limb tendon stiffness on the metabolic 

energy cost of walking and running. Despite including stiffness measures from several major knee 

and ankle flexor and extensor tendons, we did not observe any effect of lower limb tendon stiffness 

on the whole-body metabolic energy cost of walking or running. The simulation results indicate 

that the lack of significant relationships between the stiffness of individual tendons with whole-

body metabolic cost may be due to weak correlations at the MTU level or trade-offs among MTUs. 
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It is difficult to link the characteristics of any element of the musculoskeletal system to whole-

body metabolic cost in locomotion. 
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Chapter 5 – General Discussion and Conclusions 

The primary objective of this dissertation was to explore the lower limb muscle-tendon unit 

(MTU) properties to gain a deeper understanding of the impacts on the mechanics and metabolic 

energy cost of human locomotion. The MTU functions as a biological motor and is essential for 

voluntary movement. However, the biomechanical properties of muscles and tendons can change 

over the lifespan, and thus impact the performance of the MTU. The impact of MTU properties on 

musculoskeletal function is poorly understood but has broad implications for understanding a 

range of phenomena including clinical gait disorders, human performance, and the evolution of 

human bipedalism. Herein, we present a broad and novel approach using a musculoskeletal 

modeling framework in isolation and integrated with traditional experimental techniques. 

 

5.1 The role of parallel computing on musculoskeletal simulation computational 

performance  

 

 Optimal control musculoskeletal simulation is a valuable research approach capable of 

providing novel insights into several aspects of human movement. However, the high 

computational demand is a major limiting factor of this technique. Solving musculoskeletal 

simulation problems with OpenSim Moco [122] using parallel computing can potentially reduce 

the computational demand. Therefore, we thoroughly investigated how the number of processor 

cores in a single multicore computer interacts with musculoskeletal model complexity, movement 

task, initial guess type, and temporal mesh density to affect musculoskeletal simulation runtime 

and speed-up potential. The first study of this dissertation focused on achieving the computational
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performance necessary to meet the demands of the remaining two studies, both in isolation and 

integrated with experimental data. We found parallel computing on a single multicore workstation 

can substantially improve the computational performance of solving optimal control simulations 

but was broadly problem specific. This investigation enabled us to perform studies that would have 

been computationally infeasible several decades ago. Multicore parallel computing reduces the 

computational demand of optimal control musculoskeletal simulations and enhances the feasibility 

as a research and clinical tool.  

 

5.2 The role of optimal muscle-tendon unit properties in locomotor performance 

 

The MTU is an important component of the musculoskeletal system responsible for 

generating and transmitting forces to produce movement. The structural features of the MTU are 

major determinants of the overall contractile behavior of muscle and the metabolic energy cost of 

movement but can change over the lifespan. We used optimal control musculoskeletal simulation 

to investigate the effects of optimal muscle fiber length, tendon slack length, and tendon stiffness 

on whole-body and muscle-specific locomotor performance. We found lower limb MTU 

parameters can be optimized to lower the whole-body neuromuscular and metabolic energy cost 

of human walking. However, reducing overall demands generally required greater neuromuscular 

effort or metabolic energy cost in some muscles that were offset by greater reductions in others. 

Although human walking is remarkably economical, the MTU parameters are not tuned to 

exclusively minimize the neuromuscular effort or metabolic cost of walking. MTU-specific 

performance outcomes may reflect evolutionary trade-offs associated with the need to perform 

tasks besides level walking. Continental migration and persistence hunting are widely 

acknowledged for their potential role in the development of bipedalism in human ancestors and 

the evolution of the postcranial musculoskeletal system. The ability to accommodate a range of 
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locomotor tasks, at the expense of being optimized for the task of level walking at a typical speed, 

may have been important for human survival and success as a species. 

 

5.3 The role of in vivo lower limb tendon stiffness on the metabolic energy cost of 

locomotion 
 

Spring-like tendons perform a key function in human locomotion by storing and releasing 

elastic strain energy, thus impacting muscle fiber behavior and metabolic energy cost. The effects 

of tendon stiffness across the major lower limb MTUs on the whole-body and MTU-specific 

metabolic energy cost of locomotion remains largely unknown but have broad implications for 

understanding a range of phenomena including clinical gait disorders, human performance, and 

the evolution of human bipedalism. We explored the relationships between in vivo tendon stiffness 

of major lower limb tendons using experimental techniques integrated with musculoskeletal 

simulation. Despite including measurements from several major knee and ankle flexor and 

extensor tendons, lower limb tendon stiffness was not associated with whole-body metabolic 

power during locomotion. Correlations may be present at the MTU-specific level but are not 

detectable at the whole-body level either due to minimal whole-body contributions or 

counteracting relationships among the MTUs. The simulations illustrate the lack of significant 

relationships between lower limb tendon stiffness and whole-body metabolic cost may be due to 

trade-offs at the MTU-specific level. Even so, it is difficult to link the characteristics of any 

element of the musculoskeletal system to whole-body metabolic cost in locomotion. 

 

5.4 Challenging the role of spring-like tendons during locomotion 

Chapter 3 optimized tendon stiffness in the lower limb MTUs during walking using 

musculoskeletal simulation and examined the subsequent anatomical and physiological changes. 

These parameters are easily modified in a musculoskeletal model, though not in human 
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participants. However, MTU properties can still be measured in human participants. Chapter 4 

estimated tendon stiffness in human participants and used musculoskeletal simulation to better 

explain the experimental observations. Using this integrated approach added useful MTU-specific 

information to the study that could not be obtained experimentally. Chapters 3 and 4 examined 

lower limb tendon stiffness through different methods and both found tendon stiffness to have a 

negligible impact on the whole-body metabolic energy cost of locomotion. However, spring-like 

tendons are widely recognized as an important component of human locomotion that can 

potentially reduce the metabolic energy cost of locomotion. It may be possible the role of tendons 

and their spring-like behavior in locomotion across the lower limb have been overstated relative 

to the function of the ankle extensor MTUs during bounding gaits. The results provide a more 

comprehensive understanding of the inner workings of the MTU and also challenge our current 

understanding.  

 

5.5 Future directions 

 Chapter 4 of this dissertation integrated experimental estimations of tendon stiffness with 

musculoskeletal simulation to isolate the impact of tendon stiffness on MTU-specific metabolic 

energy cost during locomotion. Other than tendon stiffness, the anatomical and physiological 

variations in the musculoskeletal system of the human participants were not present in the 

musculoskeletal models. Future studies could aim to create a more diverse subject-specific set of 

musculoskeletal models, rather than isolate a single MTU parameter. These additions may include 

but are not limited to experimental estimates of tendon slack lengths, muscle maximum isometric 

force, and maximum tendon displacement. In particular, estimating tendon stiffness through 

maximum displacement may better capture the dynamic properties of the tendon. Possibly pairing 
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this with dynamic ultrasound imaging during human locomotion may better explain how the 

muscle and tendon function and interact.
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Appendix A 
 

Here I describe in detail the two-dimension full-body musculoskeletal model used in 

Chapters 2, 3, and 4 by Nguyen et al., 2019 [120].   

 

A1. Full-body Two-dimensional Musculoskeletal Model 

The sagittal plane musculoskeletal model consisted of 9 rigid segments: pelvis, torso, right 

and left femur, tibia, talus, calcaneus, and toes. The torso-pelvis and subtalar joints were each 

rigidly fused. The 11 degrees of freedom included: pelvis translation and planar rotation and a 

single rotation at each hip, knee, ankle, and metatarsophalangeal joint. The 18 Hill-type muscle-

tendon unit actuators (nine for each leg) [155]: the biarticular hamstrings (HAM), biceps femoris 

short head (BFsh), gluteus maximum (GMAX), iliopsoas (IL), rectus femoris (RF), vasti (VAS), 

gastrocnemius (GAS), soleus (SOL), and dorsiflexors (DOR). For simplicity, only the elastic 

component of the spring-like tendon is modeled in this muscle model. 

The foot-ground interaction was modeled using eight Hunt Crossley contact elements 

under each foot [146]. 

 

A2. Muscle-tendon Unit Model Properties 

The passive fiber forces used in the musculoskeletal model by Lai et al., 2017 [216] were 

incorporated to adjust tendon slack lengths as determined by static and dynamic data [217]. 

Optimal muscle fiber lengths and pennation angles were derived from cadaver data [103]. Muscle 
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volumes and physiological cross-sectional areas (PSCA) were derived from the MRI data of 

young, healthy subjects [218]. 

 

A3. Tendon Stiffness 

The level of tendon stiffness cannot be readily altered in human subjects but can be within 

a musculoskeletal model. Tendon strain was defined in the model as the relative elongation 

produced at maximum isometric force (Fmax) and was consistently varied between 0 and 20% 

across all muscles in the model. This is typically set to 4.9% at Fmax based on in vivo measurements 

of Achilles tendon strain using ultrasonography [23], [116]. This characteristic was altered directly 

in the musculoskeletal model as a property of the tendon force-length curve within the muscle 

model.  

 

 

 

 

 

 

 

 

 

 

 

Figure A.1 The two-dimensional 

musculoskeletal model stance phase of 

walking. This model was used in 

Chapters 2, 3, and 4. 
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