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Abstract 

 
There is a wealth of disease-related proteins that are ‘undruggable’ by common 

therapeutic modalities, owing to their difficult location within cells and lacking specific 

structural motifs that facilitate specific targeting. Stapled peptides, a class of therapeutic that 

leverages synthetic biology and protein engineering, are a promising approach to overcome these 

barriers, but their development is rendered difficult by complex chemical synthesis and myriad 

design factors. In this thesis, Stabilized Peptide Engineering by E. coli Display (SPEED), a 

technique that can greatly accelerate stapled peptide development, is used to explore new design 

criteria for stapled peptides, such as staple location, amino acid hot spots, and stapling chemistry.  

In this technique, methionine auxotrophic bacteria are transformed with DNA that encodes for a 

peptide and azide-containing non-natural amino acids are incorporated. Then, copper catalyzed 

click chemistry (CuAAC) is performed on the cell surface before treatment with any 

combination of fluorescently- or magnetically- activated proteins for subsequent property 

measurement or cell sorting application.  

To demonstrate how SPEED coupled with an expanded set of design criteria can yield 

therapeutic leads towards these challenging targets, high affinity and specific stapled peptides are 

developed towards two important targets: p53 and Bcl-2. The thesis describes the generation of 

highly focused protein variant libraries for multi-objective optimization. In Chapter 2, SPEED 

was used to confirm the hot spot analysis of p53-MDM2 with reduced affinity resulting from 

mutations to F19, W23, and L26. Likewise, it was used to show the importance of staple 

chemistry and location on binding affinity and specificity. With BIM peptides, for example, a 
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staple location at p1 and p5 showed significant preference for Mcl-1 binding, while p7 and p14  

bound Bfl-1, Bcl-xL, Bcl-w, and Bcl-2 more than Mcl-1. This analysis establishes that both 

staple sequence and staple location are key determinants of peptide binding affinity and 

specificity. Then, in Chapter 3, I engineered stapled peptides targeting Bcl-xL (a protein in the 

B cell lymphoma 2 protein family that promotes cancer cell survival) with high specificity. 

Using an enriched library design and directed evolution campaign sorting for Bcl-xL specificity, 

I engineered Bcl-xL binding peptides with 10 nM affinity and 100-fold specificity with novel 

mutations that act in accordance with apoptosis biochemistry. Finally, in Chapter 4, I describe a 

machine learning approach that captures hidden information from simple binary sorting 

experiments by using next generation sequencing datasets. The trained model is able to predict 

fitness in unseen sequence space to expand discovery beyond experimentally measured 

sequences. To validate this method, I curate five protein directed evolution campaigns via cell 

surface display and find that across many protein families (single chain variable fragments, 

fragment antigen binding, globular proteins, among others) and objectives (fluorescence, 

specificity, binding affinity), this method consistently predicts continuous properties and 

identifies high functioning variants. We then prospectively design stapled peptides to identify 

high functioning Bcl-2 binders using sequence optimization when experimental techniques fail to 

yield consistent hits. Overall, this work presents novel peptide engineering strategies for stapled 

peptides, next-generation sequence analysis for selecting specific binders against homologous 

proteins, and machine learning methods to extract data and design novel peptides and proteins 

beyond experimentally measures space, which should find use in many protein engineering 

campaigns.  
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Chapter 1 Introduction 

Proteins are a diverse class of biomolecules capable of catalyzing chemical reactions, 

binding diverse biomolecules, forming complex systems with emergent behavior, giving 

structure to cells, and much more. They are also responsible for many aspects of modern life, 

from the enzymes in laundry detergent to monoclonal antibodies used for treating cancer and 

immune disease. It is therefore unsurprising that a longstanding goal of biochemistry is to map 

the sequence of a protein to its structure and function.1 However, the complex biophysics that 

govern the protein fitness landscape, including how a protein folds and how its structure 

influences function make the coupling of sequence to function an extremely difficult task. 

Protein engineers thus often focus on a much smaller subdomain of the protein fitness landscape, 

using the confined resources of experimental protein science to explore variants close to a known 

functional protein with the goal of incrementally improving function. In this doctoral thesis, new 

methods towards the design of proteins and peptides are described. 

1.1 Challenging targets and the motivation for development of novel therapeutic modalities 

There are a wealth of proteins involved in disease that cannot be targeted by current 

therapeutics (Figure 1.1).2 The two modalities of therapeutics that dominate the market are small 

molecule drugs and protein biologics. Small molecule drugs are characterized by their rapid 

distribution across biological barriers (such as cell membranes) and subsequent rapid entry into 

cells. However, their small size means that they are largely limited to targeting disease related 

proteins with a small hydrophobic binding pocket. Conversely, protein biologics, which are most 

commonly an immunoglobulin (IgG) or antibody, are characterized by their large size and ability 
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to interact with proteins of all shapes and sizes. However, their large size inhibits transport across 

multiple scales of biological barriers. One of the biggest limitations of protein biologics is their 

inability to penetrate cell membranes to access the intracellular compartment, where many disease 

related proteins are located. It is estimated that 66-90% of all disease related proteins are both 

inside cells and lack hydrophobic binding pockets. The inability of common therapeutic modalities 

to reach such a large class of drug targets highly motivates the further development of new 

modalities that are able to navigate these targeting and transport barriers. 

 

Figure 1.1: The space of druggable proteins is far smaller than the number of disease related proteins, which is 
itself far smaller than the number of proteins that are encoded by the human genome. The key limitation in drugging 
these proteins is that they are inaccessible to the most common modalities of therapeutics: small molecule drugs and 
biologics. Developing new modalities of drugs that can target the remaining disease related proteins may yield new 
treatments for diseases. Figure adapted from ref 3. 

 Peptide therapeutics attempt to overcome these barriers as their intermediate size allows 

entry into cells and permits the targeting of suitably large binding interfaces to inhibit most protein-
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protein interactions.4 Because many protein-protein interactions are mediated through alpha helical 

secondary structural motifs, and linear peptides dynamically conform to form alpha helical 

structures, peptide therapeutics are an obvious choice for the selective targeting and antagonism 

of protein-protein interfaces.5 It is therefore favorable to have peptides that preferentially exist in 

their folded state. However, linear peptides rapidly exchange between their unfolded, non-helical 

state and their folded, helical state. This equilibrium leads to peptide therapeutics suffering in the 

clinic from their low target affinity, low proteolytic stability, and slow uptake into cells.6 Because 

each of these limitations partially arises from a peptide’s secondary structure, improvements to the 

alpha helicity and minimization of unfolded peptide states could evade proteases, improve binding 

affinity, and reduce unfavorable interactions between the hydrophilic peptide backbone and the 

hydrophobic cell membrane.  

To improve the alpha helicity, researchers engineered ‘stapled peptides’, which covalently 

cross link two amino acids’ side chains, locking the peptide into a specific alpha-helical 

conformation.7 This single modification can improve target affinity, facilitate cell entry, and 

enhance proteolytic stability. The stapled peptide field has had modest success developing 

therapeutics towards HIV, cancer, and other diseases.8,9,10 As outlined above, stapled peptides 

overcome many of the challenges associated with traditional peptide therapeutics. Primarily, the 

staple forces the peptide into a conformation with more secondary structure, decreasing the 

entropic penalty of binding and increasing affinity.5 Secondly, since most proteases encountered 

by a peptide in vivo recognize linear epitopes, a peptide in a helical conformation tends to have a 

longer half-life.8 Finally, the enhanced alpha helicity means that intramolecular hydrogen bonds 

shield the hydrophilic peptide backbone from the hydrophobic cell membrane, which has been 

shown to enhance cell permeability.11 
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These findings have motivated researchers to generate numerous chemistries for forming 

stapled peptides (Figure 1.2).12–17 The choice of linker is a very important one as the linker 

influences many properties of the peptide, such as binding affinity, protease stability, cell 

accessibility, and more.5 However, most previous research uses non-natural amino acid chemistry 

necessitating solid-phase peptide synthesis, which is costly, time-consuming, and limits the 

number of variants that can be screened. These restrictions limit exploration of design space and 

are typically limited to less than 100 different sequences.18 Techniques that accelerate the design 

of such chemically modified peptides are highly needed. 

 

 

Figure 1.2: There are many strategies for the formation of stapled peptides. Some examples include hydrocarbon 
stapling through ruthenium catalysis (A), triazole copper catalyzed click chemistry (B), lactam bridge formation (C), 
and thiol chemistry (D). 

1.1.1 Accelerated development of stapled peptides via bacterial surface display 

To overcome the barrier of low-throughput protein engineering, scientists can take 

advantage of natural protein transcription and translation machinery to direct cells to make 

different protein variants and assay their function on an individual cell basis. Directed evolution is 

a powerful approach where researchers select protein variants according to their biological fitness 

analogously to how nature selects organisms that have higher fitness. This technology has been 
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widely applied to engineer proteins since its inception and has since been expanded to include 

multimeric proteins, proteins with non-natural amino acids, and even post translationally modified 

proteins. In brief, this technique works by designing a library of protein variants encoded by DNA, 

which are transcribed and translated into proteins, before selecting for the highest functioning 

variants. While there are many variations of how to perform directed evolution for proteins, cell 

surface display, where a protein variant is expressed as membrane fusion proteins and can easily 

be accessed in the extracellular compartment, has ushered its widespread adoption.19–21 Depending 

on the category of protein, protein fitness via cell surface display is measured by intrinsic 

fluorescence (in the case of green fluorescent protein (GFP))22, binding a fluorescently tagged 

protein (in the case of affinity maturation)23, or a combination of fluorescently tagged proteins 

(when multiple binding events need to be measured, or two signals need to be compared).24 Cells 

are sorted on the basis of the fluorescence (through incubation with a fluorescently tagged proteins) 

using fluorescent activated cell sorting (FACS) and the highest fitness variants are captured. 

Traditionally, several rounds of FACS are performed in series and the variants that emerge are 

assayed for their function in lower throughput experimental assays. 

The design of peptides is well suited for directed evolution and cell surface display: 

peptides are small proteins that are expressed well by common cell surface display technologies 

(yeast, bacteria, and phage alike), require no post translational modification for folding, and are 

easily engineered using molecular cloning protocols. As such, there are many examples of linear 

peptide engineering in high-throughput using cell surface display, which can screen up to 109 

peptides for activity in a single sorting campaign.21,25–38 However, linear peptides have serious 

limitations as therapeutics and the process of optimizing a stapled peptide from its linear 

counterpart is difficult and requires significant quantity of rational design.9,39,40 One reason for this 
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translational challenge is that the discovery of linear peptides does not account for the 

conformational effect of staple chemistry or staple location while screening, which can 

significantly affect drug-like properties such as binding affinity, protease stability, or specificity. 

24 Towards the development of stapled peptides from high-throughput directed evolution 

experiments, researchers needed ways of assaying stapled peptides that could be performed using 

cell surface display. 

One important challenge with the formation of stapled peptides on the cell surface is 

identifying chemistries that are easily accessible to natural protein machinery and chemists alike. 

One strategy is to use cysteine, the only naturally occurring amino acid that has a thiol, because of 

its unique reactivity that can be harnessed to form covalent, intramolecular bonds. The 

intramolecular reaction between two cysteines and a compound containing two bromines has been 

proven to be one effective approach as it includes the conformational effect of stapling while 

screening via phage display (as shown in Figure 1.2D). 13 This improved binding affinities but 

precluded the use of cysteines elsewhere. This is a notable disadvantage as the formation of 

disulfide bonds on alpha-helical peptides is known to improve stability and affinity.23,21 Reliance 

on cysteine stapling also presents a liability as cysteine chemistry is not bio-orthogonal, meaning 

that other proteins expressed on the cell surface containing free cysteines may cross react, 

muddling the ability to assay the fitness of peptides on the cell surface. Other approaches that are 

biologically compatible, such as lactam bridge formation, additionally suffer from reactions with 

native cell proteins. To further complicate matters, these reports of stapled peptide engineering via 

thiol chemistry use phage for surface display. As phage are too small for use in fluorescent 

activated cell sorting (FACS), the most powerful selection tools are inaccessible and therefore 

phage displays suffer from weaker and less interpretable fitness selections. On the other hand, 



 7 

yeast are large enough for selection via FACS and have sufficient valency of expressed protein 

that the signal-to-noise fluorescence ratio is high. Furthermore, this valency ensures that the 

effective binding as measured via FACS is averaged over a large number of individual protein-

protein interactions, minimizing the stochasticity of experimental binding interactions. However, 

because display platforms for yeast rely on cysteine for display (Aga1 and Aga2 are tethered via 

disulfide bonds), there is enhanced likelihood for cysteine containing peptides to disfavorably 

cross react with the expression proteins.20 Furthermore, the incorporation of non-natural amino 

acids on yeast through stop codon manipulation is not efficient enough currently for stapled 

peptide formation.41 

To overcome these limitations of stapled peptide selections via cell surface display, the 

Thurber Lab has developed an approach, Stabilized Peptide Engineering by E. coli Display 

(SPEED), using bacterial cells and uses bio-orthogonal chemistry to ensure minimal off-target 

reactions (Figure 1.3).23 In this approach, azide moieties are expressed on the cell surface 

through incorporation of azidohomoalanine (AHA) residues in place of methionine. Then, azide 

residues are reacted with a bisalkyne using copper catalyzed click chemistry (CuAAC) before 

being assayed for their fitness with magnetically or fluorescently activated cell sorting. In the 

first implementation of this technique, a library of p53-like peptides was engineered towards 

MDM2, an important protein that regulates p53, a tumor-suppressing transcription factor 

commonly known as the ‘guardian of the genome’. The peptide discovered, SPD-V6-M1 had an 

eight-fold higher affinity (1.7nM vs 15nM) than the starting sequence, SPD-M0-E(-2). 

Additionally, this lead molecule had a unique disulfide bond in addition to its click chemistry 
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staple that contributed to its affinity and protease stability. 

 

Figure 1.3: Stabilized Peptide Engineering by E. coli Display (SPEED). First, DNA encoding a peptide of 
interest is transformed into methionine auxotrophic E. coli bacteria. Then, the peptide is expressed, where 
azidohomoalanine (a methionine surrogate that contains an azide) is expressed and presented on the cell surface as a 
transmembrane protein. Copper catalyzed click chemistry (CuAAC) is performed, forming a stapled peptide on the 
cell surface. Finally, a combination of fluorescently- or magnetically- activated proteins is added to facilitate protein 
fitness measurements using flow cytometry. 

1.1.2 Stapled peptide design parameters 

As mentioned previously, there are several parameters that influence the drug-like 

properties of stapled peptide therapeutics (Figure 1.4). With the powerful tool, Stabilized 

Peptide Engineering by E. coli Display (SPEED), the design space of stapled peptides can be 

explored more easily. First, the peptide sequence is the most important variable as the sequence 

contributes most of the chemical diversity through the canonical 20 amino acids and their spatial 

orientation towards the binding target. One factor of sequence design is understanding ‘hot spot 

residues’, or amino acids that contribute large portions of binding enthalpy.42,43 The loss of such 

residues is likely to result in nonfunctional sequences. One challenge is the selection of sequence 

variants to test: because SPEED can only assay ~109 variants, but the sequence space of all 

peptides is much large (~1030), there is great need for selection of which amino acids and which 
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positions should be mutated. Because SPEED uses DNA-encoded peptide libraries, the mutation 

of sequence is easily accomplished with standard molecular biology protocols. Due to the unique 

structure of the DNA codon table, combinations of amino acids can be selected using degenerate 

codons (such as ‘NNC’, which samples all amino acids except E,K,M,Q, and W). These 

commercially available DNA primers are thus able to generate libraries of focused stapled 

peptide variants with ease. Therefore, SPEED is uniquely poised to understand how the sequence 

of a stapled peptide contributes to its function.  

 

Figure 1.4: Parameters of stapled peptide. This includes binding affinity, protease stability, staple location, staple 
chemistry, hot spot residues and their contributions to binding affinity, and specificity. 

Another important design criterion for stapled peptides is the location of the staple. 

Because these staples protrude from the peptide backbone, they can form new interactions that 

are favorable (or disfavorable) towards binding targets. Therefore, the selection of staple location 
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is an important factor for the binding affinity alone. However, the staple location also stabilizes 

secondary structure differently, replaces naturally occurring amino acids that might lend 

properties to peptides, and forms patches of hydrophobicity that can improve cell permeability. 

These considerations led us to use stapled peptide design to perform a staple scan, where each 

staple location is synthesized in the peptide context and its fitness is measured.8,18,44–46 Because 

this step normally involves many rounds of chemical synthesis, staple scanning is very laborious. 

SPEED can easily change the staple location by altering the location of methionine residues (an 

‘ATG’ codon) and thus is able to study the relationship of staple location with relative ease. 

The final important consideration of stapled peptide design is the choice of staple itself. 

Because there are many chemistries that form stapled peptides, different chemical properties that 

arise from the staple influence the design of the peptide itself. One particularly successful design 

of stapled peptides involves the use of hydrocarbon staples, which are extremely hydrophobic 

and thus greatly contribute to cell permeability.5,18,46,47 Other linkers impart different 

functionalities, such as enhanced protease stability, different charge, new hydrogen bonding 

motifs, among others.24,48 While solid phase peptide synthesis builds peptides one amino acid at a 

time and is therefore amenable to changing staple chemistries with relative ease, SPEED presents 

azide residues which enables complete modularity with any bisalkyne motifs without any 

additional synthesis. There are many commercially available bisalkyne compounds, enabling the 

screening of many stapling chemistries with minimal effort.49 

1.1.3 B cell lymphoma 2 targets 

Another important design criteria for stapled peptides is the target itself. While stapled 

peptide therapeutics can inhibit many protein-protein interactions (PPI), not all PPI’s are disease 

related and thus targeting proteins that are highly specific to disease states will minimize the off-
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target activity.3 One important family of disease-related proteins are the B cell lymphoma 2 (Bcl-

2) proteins, which modulate directed cell death or apoptosis (Figure 1.5). In healthy cells, there is 

a careful balance of anti-apoptotic Bcl-2 proteins and pro-apoptotic (Bad/Noxa/Bim, among 

others) proteins in dynamic equilibrium on the mitochondrial cell surface within cells.50,51 Certain 

stimuli can activate this pathway, such as irreversible DNA damage or hypoxia, which signals the 

cell to undergo apoptosis and relinquish function to other cells. In this case, pro-apoptotic proteins 

sequester anti-apoptotic proteins, allowing pore-forming proteins Bak and Bax to hetero-

oligomerize, destroying the proton gradient in mitochondria, which inhibits cellular metabolism 

and starts a biochemical cascade towards apoptosis. However, the dysregulation of this pathway 

is common among many cancers as cells can evade apoptosis through the over expression of Bcl-

2 proteins and facilitate indefinite proliferation (among other factors). Many cancers are 

characterized by this overexpression of Bcl-2 proteins and thus the antagonism of the Bcl-2/ pro-

apoptotic proteins is a powerful approach towards the selective killing of cancer cells.46,50 

 

Figure 1.5: Simplified Bcl-2 apoptosis biochemistry. At the surface of mitochondria, cancer cells overexpress Bcl-
2 apoptosis, which inhibits Bak/Bax from hetero-oligomerizing, depolarizing mitochondria and causing a biochemical 
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cascade that results in apoptosis. Through the displacement of Bak/Bax from Bcl-2 proteins with a pro-apoptotic BH3 
ligand, such as naturally occurring Bim or Bad or synthetic alternatives, normal apoptotic function can occur. 

Despite the promise of selective targeting of cancer cells via Bcl-2 protein antagonism, its 

targeting via common therapeutic modalities has had limited clinical success. Due to the location 

of Bcl-2 proteins on mitochondria, there are no protein-based therapeutics approaches towards 

their antagonism. Small molecule drugs, on the other hand, are difficult to engineer with high 

affinity owing to the structural motifs between the pro- and anti-apoptotic proteins, which is 

relatively flat and not hydrophobic.52,53 An additional challenge facing small molecule drugs that 

is there are multiple members of the Bcl-2 protein family: Mcl-1, Bfl-1, Bcl-xL, Bcl-w, and Bcl-

2.30,51,52,54–58 These proteins are highly homologous but play different roles in regulating apoptosis 

and resistance to chemotherapy. Thus, achieving both affinity and high specificity is necessary to 

produce a therapeutic molecule with minimal off-target activity.  

To overcome these barriers, researchers have proposed peptide therapeutics, which can 

likely antagonize these interactions with high affinity and specificity as evidenced by naturally 

occurring peptides that target a subset of Bcl-2 proteins.30,46,59 While there has been much effort to 

engineer high affinity and specificity linear pro-apoptotic peptides,30–38,55,59–65 there are far fewer 

reports of analogous stapled peptides.40,46,66 SPEED is uniquely poised to develop high affinity and 

specificity stapled peptides for these targets, owing to its ability to rapid evaluate import factors 

like peptide sequence, staple location, and staple chemistry. 

1.1.4 Advancing information gained from binary sorting experiments to expand design space 

Before SPEED can be applied to identify candidates with desired fitness, a library of 

protein variants needs to be designed, and a plan for measuring and selecting high fitness 

variants needs to be constructed. As mentioned earlier, the space of protein variants is vastly 

large compared to the number of sequences even a high-throughput approach like SPEED can 
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assay. Thus, determining which sequences are tested is an extremely important consideration. 

Another important design criteria is the ratio of design space and the experimental throughput. 

For example, if a library of 105 possible protein variants is designed, SPEED can measure each 

clone with confidence. However, if none of the 105 variants have the desired fitness, there is no 

ability to ‘extrapolate’ in the design space by combining mutations that individually contribute 

towards high fitness. Conversely, if a library is designed that has 109 variants, but only 105 points 

are measured, it is equally likely that functional clones are identified (assuming that there are 

equally many sequences that are worth testing) but data driven approaches can be applied to 

identify new candidates using the dataset of experimentally measured peptides (Figure 1.6). This 
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is an emerging approach for the design of protein variants libraries and SPEED is well equipped 

to test its implementation for stapled peptides. 

 

Figure 1.6: The space of all possible peptide sequences is far smaller than experimental capacity. However, by 
leveraging the data gained from a large number of experimentally measured sequences with techniques like machine 
learning, the function of unseen sequences can be predicted, which may be higher than ones experimentally 
observed. 

Generating data in such a manner that is easily amenable to models that connect sequence 

to function is non-trivial. Because sorting experiments are dependent on a multitude of factors, 

such as cell surface display platform, protein target, function of interest, cell sorter used, library 

size, among many others, it is difficult to set heuristics for all sorting campaigns. Furthermore, 

sorting is usually done in a ‘binary’ manner: sort the highest fitness clones and leave the rest 

behind (Figure 1.7). While protein properties exist on a continuous scale (such as binding 
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affinities, which range from 10-15 for streptavidin: biotin to 10-3 M for small molecule: enzyme 

interactions), data generated from sorting is not directly amenable to quantitative measures of 

protein fitness. A method capable of converting data from typical sorting experiments into 

quantitative measures of protein fitness would greatly accelerate not only the design of stapled 

peptides but additionally other proteins. 

 

Figure 1.7: Protein variant libraries are typically sorted into two pools: ones denoted by high function and 
another with low function. While these bins do not explicitly map to quantitative measures of protein fitness, by 
interpreting the protein sequences and their frequencies from cell sorting and deep sequencing, quantitative features 
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of these mutations can be inferred. Then, these quantitative features can be used to score unseen sequences towards 
higher fitness variants. 

1.1.5 Introduction Summary 

In summary, this thesis explores new methods and results in the generation of stapled 

peptides and other proteins using directed evolution. In Chapter 2, this thesis explores new 

methods that accelerate the design of stapled peptides, including several key parameters such as 

hot spot amino acids, staple location, and staple chemistry. In Chapter 3, this thesis applies the 

design parameters from Chapter 2 to design highly specific peptides towards Bcl-xL, an 

important drug-target in many cancers. Finally, in Chapter 4, this thesis describes a new method 

towards the measurement of continuous properties from simple binary sorting experiments using 

machine learning. By applying the weights from machine learning, we optimize peptide 

properties (binding affinity and specificity) by extrapolating beyond experimentally seen 

sequence space. We evaluate this method on several protein engineering tasks, such as 

measuring fluorescence, multi-objective optimization of antibodies, and predicting specificity of 

Bcl-2 linear peptides, and find that it works across all tasks evaluated. 
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Chapter 2 Rapid Evaluation of Staple Placement in Stabilized Alpha Helices using 

Bacterial Surface Display 

 

This chapter is derived from the following publication: 

Marshall Case, Tejas Navaratna, Jordan Vinh, and Greg Thurber. “Rapid Evaluation of Staple 

Placement in Stabilized α Helices Using Bacterial Surface Display.” ACS Chemical Biology 18 

(4), 905-914 (2023). DOI: 10.1021/acschembio.3c00048 

Abstract 

There are a wealth of proteins involved in disease that cannot be targeted by current 

therapeutics because they are inside cells, inaccessible to most macromolecules, and lack small-

molecule binding pockets. Stapled peptides, where two amino acid side chains are covalently 

linked, form a class of macrocycles that have the potential to penetrate cell membranes and 

disrupt intracellular protein-protein interactions. However, their discovery relies on solid phase 

synthesis, greatly limiting queries into their complex design space involving amino acid 

sequence, staple location, and staple chemistry. Here, we use Stabilized Peptide Engineering by 

E. coli Display (SPEED), which utilizes non-canonical amino acids and click-chemistry for 

stabilization, to rapidly screen staple location and linker structure to accelerate peptide design. 

After using SPEED to confirm hot spots in the mdm2-p53 interaction, we evaluated different 

staple locations and staple chemistry to identify several novel nanomolar and sub-nanomolar 

antagonists. Next, we evaluated SPEED in the B cell lymphoma 2 (Bcl-2) protein family, which 

is responsible for regulating apoptosis. We report that novel staple locations modified in the 
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context of BIM, a high affinity but non-specific naturally occurring peptide, improve its 

specificity against the highly homologous proteins in the Bcl-2 family. These compounds 

demonstrate the importance of screening linker location and chemistry in identifying high 

affinity and specific peptide antagonists. Therefore, SPEED can be used as a versatile platform to 

evaluate multiple design criteria for stabilized peptide engineering. 

Introduction 

It is estimated that ~85% of disease-associated proteins are “undruggable”: inside the cell 

and inaccessible to large biologics but lacking small molecule binding sites 3.  Stapled peptides, 

short chains of amino acids where two residues are covalently crosslinked, have been proposed 

as one type of therapeutic framework to fill this gap.46,67,68 Covalent sidechain crosslinking has 

the potential to improve target affinity, facilitate cell entry, and enhance proteolytic stability.5 

Since most protein-protein interactions are mediated through alpha-helical secondary structure, 

there is a natural precedent for binding peptides to be locked in this conformation. The staple 

forces the peptide into a conformation with enhanced alpha helicity, decreasing the entropic 

penalty of binding and increasing affinity.69 The larger size of the peptide enables a greater 

binding surface area, thereby creating the potential for high affinity interactions without the need 

for a deep hydrophobic binding pocket. The intramolecular hydrogen bonding in the peptide 

backbone can reduce the energy barrier to diffuse across the lipid bilayer by shedding solvating 

water molecules.18 Additionally, since most proteases encountered by a peptide in vivo recognize 

linear conformations, a peptide in a helical structure tends to have a longer pharmacological half-

life.8  

Despite this promise, stapled peptides have several challenges that must be overcome. 

These agents must be engineered with high enough membrane permeability and intracellular 
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stability to engage sufficient levels of target based on the binding affinity and specificity.70 

Engineering these properties is challenging, and the discovery and development of stapled 

peptides typically relies on solid-phase synthesis, where peptides are chemically synthesized one 

amino acid at a time, limiting throughput and evaluation. A peptide’s sequence and staple 

location have 1026 possibilities even for a simple peptide of length 20, which presents both a 

design opportunity but also an enormous challenge. Therefore, rational design has been the 

common approach, with the number of evaluated sequences often on the order of 

dozens.16,18,40,45,71–78 Previously, we have developed Stabilized Peptide Engineering by E. coli 

Display (SPEED) to discover high affinity mdm2 binders.23 In this work, we extend this 

approach and demonstrate its ability to accelerate stapled peptide design by identifying hotspot 

residues, functional staple locations, and diverse chemical linkers. 

 

Figure 2.1: Stabilized Peptide Engineering by E. coli Display (SPEED). DNA encoding peptide is transformed 
into E. coli and expressed on the cell surface by incubating bacteria in an azide containing methionine analog. After 
click chemistry is performed directly on the cell surface, bacteria are incubated with fluorescent epitope tag antibody 
and protein target. Finally, bacterial cells are analyzed via flow cytometry. 

Bacteria possess several unique abilities suitable for tackling the challenges of stabilized 

peptide design. First, most stapling chemistries are not compatible with the 20 canonical amino 

acids, and other surface-based presentation approaches such as phage- and yeast surface display 

do not currently have high enough non-natural amino acid incorporation efficiencies to staple on 
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the cell surface, although progress is being made.5,41,79–81 Meanwhile, bacteria are able to 

incorporate many types of non-natural residues, whether from methionine substitution, stop 

codon read through, or other genetic code manipulation.82–85 Of particular importance is 

azidohomoalanine residues which contain copper catalyzed click chemistry (CuAAC) suitable 

azides, and demonstrate exemplary efficiencies  of >95% incorporation.28,86,87 SPEED leverages 

this high incorporation efficiency to display two azides directly on the cell surface to form a 

stapled peptide with an intramolecularly reacted bisalkyne (Figure 2.1).23 The modularity of this 

reaction scheme enables the use of any bisalkyne for reaction, meaning that SPEED is equipped 

to engineer both the peptide sequence and staple. The bio-orthogonality of click chemistry gives 

bacteria an additional advantage over chemistries that use canonical amino acids, such as lactam 

bridge formation or cysteine alkylation, which can interfere with other proteins present on the 

cell surface and may impact peptide property measurement. Ribosome-based display can 

incorporate many types of non-natural amino acids that facilitate peptide stapling, but like phage, 

their small size makes it challenging to use in assays that rapidly measure stapled peptide 

properties like flow cytometry and fluorescent activated cell sorting (FACS).88 Similarly, one-

bead-one-compound approaches have enabled the measurement of ~103 stapled peptides in 

parallel but rely on mass spectrometric based methods and imaging that render property 

measurement difficult.66 This approach also relies on library members having unique masses, 

meaning that residues with the same mass, like leucine and isoleucine, cannot be distinguished. 

Furthermore, this approach is less well-suited to evaluate staple location and peptide sequence in 

tandem as staple location cannot be randomized efficiently using solid phase peptide synthesis. 

In summary, E. coli possess several attractive traits: facile genetic manipulation, efficient non-
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natural acid incorporation, modular bisalkyne linker chemistry, and compatibility with high-

throughput screening methods. 

In this work, we demonstrate that bacteria enable rapid measurement of affinity and 

specificity of peptides with different staple locations, staple types, and sequence mutations in the 

context of two systems, murine double minute-2 (mdm2) and B cell lymphoma 2 (Bcl-2) 

targeted peptides. In the first model system, the critical p53 tumor suppressor transcription factor 

is rendered unstable by mdm2 overexpression.89 Inhibition of mdm2 by a stabilized p53-like 

peptide (PLP) reduces the viability of cancer cells.76 In the second system, overexpression of 

Bcl-2 proteins leads to inhibition of apoptosis factors that prevent cancer cells from dying. 

Inhibition of Bcl-2 proteins by stabilized BH3 peptides regenerates cells’ ability to undergo 

apoptosis.57 We use SPEED to design novel stapled peptides in both these systems in the pursuit 

of higher affinity, greater specificity, and more structurally diverse molecules. We then translate 

these peptides from the cell surface to solution phase binding to confirm that the bacterial surface 

display captures soluble peptide properties. The results demonstrate that bacterial surface display 

can be used to accelerate stapled peptide engineering. 

Methods 

2.1.1 Purification of Mdm2 and Bcl-2 protein 

Mdm2-GST was expressed and purified as described previously.23,38 Briefly, mdm2-

GSTexpressing plasmid was ordered from AddGene (plasmid #16237). (. Protein was harvested 

from pLysS BL21 DE3 E. coli cells and subsequently purified with agarose glutathione beads 

(Thermo Fisher) in phosphate buffered saline (PBS) at pH 7.4. After washing with PBS, mdm2-

GST was eluted with 50mM Tris pH 8.0 and 10mM reduced glutathione before purification via 

size exclusion chromatography in PBS with 1% glycerol and 1mM DTT. Protein was 
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concentrated using a 10kDa centrifugal concentrator and labeled with NHS-EzLink-Biotin 

(Thermo Fisher) and excess biotin was removed via dialysis in PBS with 3.5K molecular weight 

tubing (Thermo Fisher) with 10% glycerol and 1mM DTT.  

Bcl-2 genes were ordered from IDT and cloned into the pqe80L vector using BamHI and 

HindIII with an N-terminal His tag. Briefly, LB with ampicillin was inoculated with cells from 

an overnight grow-out until reaching OD600 ~1.0 and induced with IPTG at 1mM for 5 hours at 

37oC. Cells were resuspended in resuspension buffer (comprised of Tris-HCl buffer at pH 8.0 

with 0.5mM NaCl, 5mM imidazole, protease inhibitor, and 2mM DTT), sonicated, and 

centrifuged at 35,000g x 30 min at 4oC. The supernatant was then loaded onto 2mL of prewashed 

Ni-NTA resin and washed with 10-20mL of resuspension buffer. For protein intended for 

subsequent labeling with NHS-biotin or NHS-fluorophore, it was buffer exchanged on resin into 

PBS with 2mM DTT and 5mM imidazole. Protein was eluted in the resuspension buffer 

supplemented with 500mM imidazole. Proteins were assayed for purity and yield using SDS-

page gel and spectroscopy. Proteins were labeled in 0.1M NaHCO3 and NHS-biotin or NHS-

fluorophore was added at a 10:1 NHS:protein ratio. Proteins were then purified using size 

exclusion chromatography on a S200 10/300 increase GL or S75 10/300 increase GL column in 

PBS with 1mM DTT and 1% glycerol. Fractions corresponding to Bcl-2 proteins were 

concentrated using a 10kDa molecular weight cut-off filter in PBS with 2mM DTT 

supplemented with 10% glycerol at 4oC. Degree of labeling was quantified using a fluorescent 

biotin quantification kit (Thermo Fisher) or quantified directly using spectroscopy. Typically, a 

DoL greater than 0.3 gave sufficient separation between flow cytometry signal and noise. 

2.1.2 Bacterial surface display and on-cell click chemistry 
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Primers encoding peptides were purchased from IDT and incorporated into the eCPX2-pqe80L 

plasmid21,26 with a 2 step PCR protocol using Q5 Hot Start Polymerase, SfiI restriction enzyme, 

and T4 ligase (all from NEB). An extended peptide linker containing an HA tag (final sequence 

YPYDVPDYAAGGGSGGGS) was incorporated into the bacterial cell surface display scaffold 

to normalize binding to display level with two-color labeling.30 The peptide sequence was 

confirmed via Sanger sequencing (Michigan Advanced Genomics Core or Eurofins Genomics). 

Methionine auxotrophic E. coli cells (TYJV2 strain) were used in all surface display experiments 

and were grown overnight in M9 media containing 4mg/mL methionine and 100ug/mL 

ampicillin. Then, media was inoculated with the overnight culture at a 1:20 ratio for 150 minutes 

at 37oC. Cells were then switched to M9-amp with no methionine for metabolic depletion for 30 

minutes at 37oC, followed by a 4 hour induction in M9-amp with 4mg/mL azidohomoalanine and 

1mM IPTG at 22oC. At this point, bis-azide containing peptides on the surface of bacteria were 

reacted to form stapled peptides in 50uM CuSO4, 250uM THPTA, 500uM (p53-like-peptides) or 

100uM (Bcl-2) propargyl ether for 4 hours at 4oC. The extent of reaction was determined as 

previously reported and shown in Figure 2.2.23To measure the affinity of a peptide, the peptide-

displaying bacteria was incubated for at least 4 hours on ice with 6-8 concentrations of 

biotinylated or fluorescently labeled mdm2 or Bcl-2 protein. Cells were washed once with PBS/ 

0.1% BSA, labeled anti-HA-Alexa Fluor 488 for display level measurement and streptavidin-

Alexa Fluor 647 for biotinylated protein detection for 15 minutes on ice, washed again, and then 
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analyzed via flow cytometry (Attune NXT or BioRad Ze5). 

 

Figure 2.2: Efficiency of diverse bisalkyne reactions on bacterial cell surface. Bacteria displaying p53-like 
peptide are reacted with bisalkyne staple before treatment with either fluorophore-azide or fluorophore-alkyne. 
Bacteria with peptide but no reaction with bisalkyne staple are also prepared as a display level control. All samples 
are run on a SDS-PAGE gel (Thermo Fisher) and the bands according to the molecular weight of eCPX are 
quantified (A). A mass balance is done on the azides or alkynes (B,C,D) on the cell surface and the signals are 
converted into fraction stabilized or extent of reaction (E,F). Stabilization efficiency is reported as relative to 
propargyl ether. 

2.1.3 Mdm2 library generation and sorting 

A methionine codon-free version of eCPX (except for the start codon) was used as a PCR 

template for generating the NNC library as described previously.23 After digestion and ligation, 

the library was transformed into electrocompetent methionine auxotrophic TYJV2 E. coli (a 

generous gift from J. van Deventer) achieving a library size of approximately 3 x 108 

members.27 TYJV2 cells were used for all sorting experiments. Bis-alkyne reacted cells, in 

tenfold excess of the library diversity, were first labelled with 18 nM mdm2-GST-biotin in 0.2% 

PBS/BSA. Cells were then washed once with PBS/BSA and incubated with 500 uL MyOne C1 

beads (Thermo Fisher) for 25 min at 4 °C with gentle rotation using MACSmix (Miltenyi 

Biotec). Magnetic beads were pulled down by a DynaMag-5 magnet (Thermo Fisher) and 
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washed gently with 5 mL PBS/BSA. DNA was isolated from bead-bound cells using a Qiagen 

miniprep kit according to Ramesh et al.90 Resulting DNA, generally 100-500 ng total, was 

transformed into fresh TYJV2 cells for additional sorting and analysis. For each linker library, 5 

mL of cells were grown out, induced, and reacted as described above. Serial rounds of FACS 

were carried out with increasing stringency. For the first round of sorting, cells were incubated 

with 4 nM mdm2-GST-AF647 (collecting 2% brightest cells), second round 1 nM (collecting 

0.5% brightest cells) , and the third and fourth rounds incubated with 1 nM of mdm2-GST-

AF647 first and then 30 nM mdm2-GST-AF488 as described previously to select for tight 

binders regardless of display level (roughly 1% of cells collected).23 Sorting was carried out in a 

MoFlo Astrios FACS instrument, and plasmids extracted and re-transformed into TYJV2 cells 

for further analysis and sorting if needed. 

2.1.4 Mdm2 deep sequencing 

Plasmids were isolated from bacterial pellets by miniprep (Qiagen). Illumina sequencing 

regions were added to either side of the eCPX-peptide gene by PCR amplification using Q5 

DNA polymerase (New England Biolabs) following the manufacturer’s protocol and primers 1-F 

and 1-R (see Figure 2.13) PCR products were cleaned by gel extraction and re-concentrated 

using a ZymoClean Clean & Concentrate kit. Another PCR amplification was performed also 

using Q5 to add the P5 and P7 Illumina sequences for flow cell annealing as well as a unique 8 

letter barcode on each end of the amplicon for demultiplexing using primers 5-(0-7) and 7-(0-

7).91 The second round of PCR was cleaned and re-concentrated identically. DNA concentrations 

were quantified using a QuBit fluorimeter, pooled, and submitted to the University of Michigan 

DNA Advanced Genomics core for analysis. Samples were demultiplexed by filtering for 

samples with perfectly matched barcodes and ones that differed by up to one base pair. Filtered 
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reads were then analyzed with FastQC and samples with a PHRED score of less than 36 were 

discarded. Fastq files were then analyzed using custom Python scripts with Biopython and SeqIO 

packages. Forward and reverse reads were pairwise analyzed, discarding any sequences with 

differences in base pairs. The portion of the read that corresponds to the p53-based peptide was 

translated. 

2.1.5 Synthesis and preparation of peptides 

Bcl-2 and mdm2 peptides were synthesized using Fmoc chemistry on a CEM Liberty Blue 

microwave peptide synthesis instrument as described previously or obtained through the 

University of Michigan Proteomics and Peptide Synthesis Core.23 The bis-alkyne stapling 

reaction was performed as described previously. Briefly, peptide in 0.1M NaHCO3 was added to 

a 1:1:6:1.2 ratio of CuSO4: THPTA: Sodium Ascorbate: bis-alkyne (propargyl ether, heptadiyne, 

or other) and reacted for 16 hours under gentle mixing at room temperature. Peptides were 

purified using reverse phase liquid chromatography on a C18 column using 0.1% TFA H2O / 

acetonitrile gradient. Fractions were collected and lyophilized before analysis by mass 

spectrometry using ESI or MALDI through the University of Michigan Mass Spectrometry core. 

HPLC chromatograms, mass spectra, and tabulation of masses can be found in Figure 2.14, 

Figure 2.15, Figure 2.16, Figure 2.17, and Table 2.1 respectively. Chemical structures for all 

compounds in the study are tabulated in Figure 2.18. Circular dichroism measurements and 

extinction coefficient calculations are available in Figure 2.19. 

2.1.6 Circular Dichroism 

Mdm2 or Bcl2 peptides were dissolved in 1:1 (v/v) H2O: acetonitrile at approximately 

0.1mg/mL. Peptides were added to a 3mL quartz cuvette and analyzed on a Jasco J-815 CD 
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Spectrometer at 100nm min-1 at 22oC. Data is reported as baseline-corrected with solvent blank. 

We used the BeStSel webserver to calculate alpha helicity.92 

2.1.7 Biolayer Interferometry 

Peptides and Bcl-2-biotin proteins were quantified using A280 measurements and added to 0.3% 

BSA in PBS pH 7.4. One well was prepared for each Bcl-2-biotin protein at 100-500nM and no 

dependence on concentration for sensor loading was observed. To obtain multiple binding curves 

for each peptide-protein interaction, 5 wells with concentrations varying from 10-1000nM of 

peptide were prepared along with 6 wells with 0.3% BSA in PBS for dissociation. An OctetRED 

96 instrument with super streptavidin tips was used for all BLI experiments. The following times 

were used: load, 900 seconds; wash, 900 seconds; baseline, 60 seconds; association, 1200 

seconds; dissociation, 3600 seconds. Data was analyzed using GraphPad Prism v10.0 using a 

single-phase association and dissociation for all data. Representative biolayer interferometry data 
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can be found in Figure 2.20 and Figure 2.3. 

 

Figure 2.3: Fit Kd from biolayer interferometry. Error bars are standard deviations and significance was 
determined by paired t-test. *: p<0.05. 

Results 

2.1.8 The bacterial surface confirms hotspot residues via alanine scanning mutagenesis 

Protein-protein interactions are known to be driven by a select subset of surface exposed 

residues known as ‘hot-spot’ residues, contributing up to 80% of the interaction strength.43 

Molecular recognition of p53-like-peptides towards mdm2 has long been known to be dominated 

by three hotspot residues: Phe19, Trp23, and Leu26.93 We tested the ability of the bacterial surface 
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to identify hot spot residues via alanine scanning, where each wild type amino acid was replaced 

by alanine (Figure 2.4).  

 

Figure 2.4: Hotspot identification via alanine scanning of the mdm2-p53 interaction on bacteria cell surface. 
(A): Select titrations of p53-like peptide alanine mutants on the bacterial surface. (B): Change in Kd from wild type 
p53-like peptide for each alanine mutant. 

The complete set of titration curves for the alanine scanning mutagenesis data is located 

in Figure 2.5. These results were compared with molecular mechanics approaches94 and 

statistical approaches42 as validation for surface display of p53-like peptides. We generally found 

strong agreement between all three approaches; non-hotspot residues did not affect the affinity 

while F19A and W23A mutants did not bind at any measured concentration (where we display 
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>10,000 relative Kd). L26A yielded a smaller decrease in binding affinity, agreeing with the fact 

that Leu26 contributes less binding free energy than Phe19 or Trp23. Hotspot residue identification 

is an important tool in the design of protein-protein interaction inhibitors as it can inform which 

sites are more amenable to optimization. The magnitude of binding affinity decrease can aid in 

the decision to preserve hotspot residues or mutate them with structurally similar groups. 

 

Figure 2.5: Alanine scanning mutagenesis titration curves. 

2.1.9 Steric hindrance governs p53-like-peptide staple location  

Beyond avoiding the disruption of hotspot residues, the design of a stapled peptide 

requires identification of an optimal staple location. This is an important design criterion, 

because an inappropriate staple location can cause steric clashes with the target protein, resulting 

in decreased affinity, and can influence the physicochemical properties (e.g. amphiphilicity) 

which impact the membrane permeability.18 In contrast, forming new target interactions (e.g 

hydrogen bonds) and structurally stabilizing peptide residues are desired properties of a staple 

since they typically increase target affinity.8,33,95,96 It is difficult to predict a priori whether a 
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given staple location will improve or decrease binding strength beyond high-level observations 

with crystal structures, if available. We hypothesized that peptide display on the bacterial surface 

could both re-confirm the importance of stapling location from previous work and identify steric 

factors that might play a role in abrogating binding by comparing the unstapled and stapled p53-

like peptides. We started by modifying the p53-like peptide (PLP) with alternative stapling 

locations: PLP(1-8) and PLP(6-13), compared to the previously published 4-11 location (Figure 

2.6).76 Competitive inhibition curves can be found in Error! Reference source not found.. We 

selected these positions based on the alanine scanning mutagenesis data, as neither of these 

staple locations replace residues that are responsible for the core interaction of p53 and mdm2. 

These locations are additionally of interest as staples near the protein interface that have greater 

potential to form novel contacts than those solely exposed to the solvent.95 Because the mutated 

residues do not form key contacts with mdm2, we hypothesized that these minimally invasive 

substitutions in the unstapled form would have little effect on binding. In contrast, the stapled 

form could exhibit steric hindrance and/or new contacts that may cause changes in affinity.  

Indeed, affinity determination on the bacterial cell surface found that the 1-8 location was 

more staple-permissive than the 6-13 location, which weakened binding. Peptide alpha helicities 

calculated from circular dichroism spectrophotometry show that PLP(4-11) is considerably more 

alpha helical than the other PLP’s (60% versus 5%). However, CD measurements also showed 

that for all PLP’s, there were minimal changes in alpha helicity upon stapling. This suggests that 

the decrease in affinity for PLP(1-8) and PLP(6-13) as a result of stapling is not related to staple 

mediated secondary structure stabilization, further supporting the hypothesis that new steric 

hindrance effects drive weakened binding. Equilibrium constants from solution phase agreed 
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qualitatively with equilibrium measurements on the bacterial cell surface, confirming that 

SPEED is well equipped to perform staple scanning. 

 

 

Figure 2.6: Staple scanning p53-like peptides using the bacterial cell surface. (A): Helix-wheel diagram of the 
p53-mdm2 interaction overlaid with the mdm2 crystal structure (PDB: 1YCR). Kd’s of p53-like peptide staple scan 
mutants on bacterial cell surface (B) or solution phase (C). PLP(4-11) data was adapted from ref. 24. Helix wheel 
diagrams were made with NetWheels.47 



 

 40 

 

Figure 2.7 : Competitive inhibition experiments of p53-like peptides. Soluble p53-like peptides at various 
concentrations are incubated with 10nM biotinylated mdm2 until equilibration (> 4hr on ice). Then, bacteria 
expressing a high affinity peptide with known affinity are added for a short duration to capture unbound mdm2. 
Fluorescent signal arising from bacteria is inversely proportional to binding of soluble peptide. Ki are converted to 
Kd via the Cheng-Prusoff equation.  

2.1.10 Engineering potent mdm2 binders with diverse bisalkyne linkers 

We sought to explore the capabilities of SPEED to engineer structurally diverse peptides 

by varying the bisalkynes used in the stapling reaction. In our original work23, we used propargyl 

ether to sort a randomized library, where three critical mdm2-binding residues (Phe19, Trp23, 

Leu26) as well as the two sites for stabilization (Aha20, Aha27) were kept fixed (Figure 2.10). 

All other sites were randomized by an NNC codon scheme permitting 15 possible amino acids 

and no stop codons at each position, for a theoretical diversity of 3x1010. We hypothesized that 

by repeating this process with different bisalkynes, we would obtain potent stapled peptides with 

diverse sequences and linkers. We selected three new bisalkyne staples - heptadiyne, a purely 

aliphatic staple; a PEG2 linker with a primary amine for functionalization; and (1,3)-

diethynlbenzene, a non-flexible aromatic linker; and an unreacted control. 49,98 Randomized 

libraries were stabilized and then sorted by one round of magnetic sorting and four rounds of 
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fluorescent sorting with increasing stringency for mdm2 binding. After sorting, we deep 

sequenced the peptides from each of the bisalkyne libraries and identified sequence patterns that 

emerged. Data from the (1,3)-diethynlbenzene library indicated that the sequences failed to yield 

major consensus groups, likely arising from an incomplete reaction due to linker inflexibility 

(Figure 2.8).  

 

Figure 2.8: Logoplots of unreacted and (1,3)-diethynlbenzene p53-like peptides from fluorescent activated cell 
sorting. 

In the other libraries, deep sequencing revealed a number of potential new dual cysteine 

motifs, potentially forming new topologies of i,i+1 and i,i+5 disulfide bonds expanding from the 

i,i+4 disulfide we confirmed in our previous lead molecule via nuclear magnetic resonance.23 

Deep sequencing data additionally yields insights into the proportion and enrichment of potential 

disulfide motifs; if disulfides are forming, frequencies of potential disulfide motifs should 

increase compared to those with single cysteine residues. When we calculate the frequency of 
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disulfide versus single cysteine residues, we see specific enrichment of potential disulfide motifs 

(Figure 2.9).  

 

Figure 2.9: Enrichment of potential disulfide motifs compared to single cysteine peptides. Peptides sequenced 
from Mdm2 linker libraries were grouped according to their cysteine residues. ‘Randomized’ refers to any peptide 
matching our library design scheme, ‘i,i+4’ refers to any sequence with two cysteines separated by 3 residues, 
‘i,i+5’ refers to any sequence with two cysteines separated by 4 residues, and ‘1C’ refers to any sequence with a 
single cysteine. 

This phenomenon was not observed as strongly in libraries that yielded worse enrichment 

((1,3)-diethynlbenzene and the unreacted control). Next, we surveyed some of the most highly 

enriched sequences and performed low-throughput titrations of mdm2 to measure their binding 

affinity. Enrichment trajectories and all measured affinities are reported in Figure 2.21 and 
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Figure 2.22 respectively. We observed that in each of the bisalkyne libraries, there were multiple 

peptides that demonstrated improved affinity compared to the wild type sequence. 

 

Figure 2.10: Engineering diverse bisalkyne stapled peptides. (A) A randomized library of p53-like peptides was 
displayed on the surface of bacteria, reacted with one of three bisalkynes, and subjected to one round of magnetic 
and four rounds of fluorescent sorting. After sorting, cells from each library were analyzed via next generation 
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sequencing (B). Select clones were picked based on frequency in the final library and their affinities were measured 
by titrating mdm2 on the bacterial cell surface (C). Logoplots were made using Logomaker.99 

2.1.11 Identification of optimal staple location in BH3 domains  

To utilize bacterial surface display for the selection of optimal linker location, we varied 

the staple location rather than the staple structure while targeting the Bcl-2 family of proteins. 

The B cell lymphoma 2 class of proteins was chosen for multiple reasons. First, the alpha helical 

domain where Bcl-2 antagonists and Bcl-2 interact is much larger than that of p53-mdm2 and is 

therefore more expensive to screen staple locations using solid-phase peptide synthesis.51 

Second, there are several hotspot residues, like Leu3a and Asp3f that would provide convenient 

controls for non-functional mutants.59 Finally, the Bcl-2 family is comprised of 5 highly 

homologous proteins that have varying levels of cellular expression and play different roles in 

apoptosis and resistance to chemotherapy.35 A standing goal of Bcl-2-targeted therapeutics 

development is therefore to generate highly specific inhibitors.37,40 While previous work has 

evaluated the impact of amino acid mutations on specificity,33,38,47 we sought to investigate if and 

how the staple location can be used to improve specificity among Bcl-2 family proteins, which 

stabilized bacterial surface display is well suited to answer. 

BIM, a naturally occurring BH3 domain with high promiscuity to all 5 Bcl-2 proteins, 

was selected as a scaffold for the staple scan to ensure the generalizability of staple location to 

different Bcl-2 proteins.38 To investigate the effect of how staple location might impact binding 

affinity, we tested every potential location in a 23-length BH3 domain its effect on affinity to the 

Mcl-1 protein, the protein for which BIM has the highest affinity. (Figure 2.11) Select titration 

curves can be found in Figure 2.23. The bacterial cell surface identified seven different staple 

locations that did not completely abrogate binding. These results were consistent with known 

hotspot residues: Leu3a , Gly3b, and Asp3f. Mutation of these residues resulted in a complete loss 
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of function (p8, p9, and p11).33 We then measured the affinity of the BIM staple scan mutants to 

each of the other 4 Bcl-2 targets: Bfl-1, Bcl-xL, Bcl-w, and Bcl-2. Interestingly, we found that the 

specificity trends of the wild type BIM peptide, which has a small degree of specificity (higher 

affinity) for Mcl-1, were not the same as its stapled variants. This suggests that the staple 
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location is playing a role in binding specificity and can serve as an additional handle for 

optimizing specificity. 

 

Figure 2.11: Modulating affinity and specificity of B cell lymphoma 2 peptide antagonists by staple location. 
(A) A helix-wheel diagram of the Bcl-2:BIM interaction overlaid with the Mcl-1 crystal structure (PDB: 2NL9) 
shows were the higher affinity variants were stapled. (B) The affinity and specificity of all BIM staple mutants was 
evaluated for all 5 Bcl-2 proteins. 

2.1.12 Biolayer interferometry confirms bacterial surface display trends 
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We translated select p53-like peptides and stapled variants off the bacterial cell surface 

and measured their binding affinities to each of the Bcl-2 proteins to evaluate whether bacterial 

surface equilibrium association measurements matched kinetic rate constants from biolayer 

interferometry. First, we observe that both PLP(1-8) and PLP(6-13) in their unstapled form bind 

mdm2 as strongly as PLP(4-11), confirming our hypothesis that substitution to 

azidohomoalanine doesn’t result in loss of function. We then measured the binding affinity of 

synthesized peptides in their unstapled and stapled forms and confirmed that stapling in either 

location weakened binding compared to their unstapled versions, to similar extents as with 

bacterial surface display. Overall, there was a strong correlation between BSD and BLI (pearson 

R2 0.82 and p < 0.0001) measurements. The slope from linear regression does not significantly 

differ from 1 (p=0.38) nor does the y-intercept significantly differ from 0 (p=0.13) although we 

observed that generally the bacterial cell surface overestimated binding affinities 3-10 fold 

(Figure 2.12). 

 

Figure 2.12: Solution phase peptide affinity measurement correlates with bacterial surface. BSD clones with 
measurable binding but not saturable binding are plotted as 600 nM. 
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Discussion 

In this work, we used SPEED, which utilizes cell-surface stabilized peptides using non-

natural amino acid incorporation and click chemistry (Figure 2.1), to measure the impact of 

staple chemistry and staple location on affinity peptides for mdm2 and the Bcl-2 family of 

proteins. We first confirmed that alanine scanning mutagenesis via bacterial surface display 

closely agrees with both experimental and computational approaches for hot spot 

identification.42,94 The three major hotspot residues closely agreed with experimental and 

computational work (Figure 2.4). Next, we explored the landscape of stapled p53-like peptides 

(PLPs) with modified linker structure and location. We hypothesized there may be potent PLPs 

that have different staple locations and staple chemistries that maintain high binding affinity but 

allow different linker properties, such as greater charge/lipophilicity or a functional handle.18,98 

Previous work has demonstrated the importance of the linker properties and location.5,8,18,33,40 

Initial work in the optimization of stapled PLPs tested five locations of hydrocarbon staples that 

did not interfere with hot spot residues.76The binding affinity of these five variants spanned 

multiple orders of magnitude, and ultimately the authors focused on one staple location, PLP(4-

11). This staple location improved affinity one hundred-fold over wild type, but it required 

additional mutations based on adding positive charge to have sufficient cytotoxicity. These 

mutations had the negative side effect of reducing the affinity fifty-fold. Chang et al. developed 

ATSP-7041 through rational design, resulting in a more potent version of PLP(4-11) with several 

mutations informed by linear phage display.96 Aileron Therapeutics modified this molecule into 

ALRN-6924 which is currently in Phase 1b clinical trials for chemoprotection in breast cancer 

chemotherapy.100 Using stabilized bacterial surface display, we tested PLP(1-8), PLP(4-11), and 

PLP(6-13) with triazole-based stapled peptides (Figure 2.6) and found that they had comparable 
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affinities to molecules engineered with hydrocarbon staples. This approach can accelerate the 

measurements of mutations effect on affinity and can also serve as a tool to probe protease 

stability by treating the cells with a protease that simulates in vitro or in vivo conditions. In 

previous work, we showed that surface display experiments with protease treatment correlated 

with those from solution, reducing the burden of experimental measurement by synthesis and 

evaluation in vitro.21  

Aside from linker location, we investigated how bacterial surface display could be used 

to probe the importance of the staple’s chemical properties. In many systems, it is difficult to 

simultaneously evaluate the contributions arising from multiple design criteria in high 

throughput, such as staple location, stapling chemistry, or amino acid mutations. Lau et al. 

investigated the effects of different triazole-based chemical linkers, and found PLPs with an 

aromatic linker, 1,3-diethynlbenzene, only had Kd values of greater than 1000nM with the 4-11 

staple location, highlighting the complex trade-off between staple location and its chemical 

properties.45 Because bacterial surface display has modularity for these components, we 

investigated its ability to design stapled peptides with variable sequence and staple chemistry. 

After generating a randomized library, reacting it with diverse bisalkyne linkers, and sorting for 

binding mdm2 with increasing stringency, we identified several new sequences that bind to 

mdm2 with high affinity (Figure 2.10). Importantly, these peptides each have unique sequences 

and staples with varying physicochemical properties such as isoelectric point, hydrophobicity, 

and potential intramolecular disulfide bond topology. Finally, the incorporation of the 

functionalizable linker (3) into high-affinity molecules could accelerate related tasks for peptide 

development such as inclusion of a fluorophore containing linker for imaging applications, a 

polyarginine motif for cellular penetration, or a ubiquitin ligase recruiting modality for formation 
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of a protease targeting chimera (PROTAC).49,98,101 These results highlight the important trade-

offs between affinity, cytosolic access, and cytotoxicity as a function of sequence and staple 

location and the need for a method that can easily explore sequence and staple design space. 

SPEED is a method that can quickly assay staple location, evaluate amino acid mutations, and 

translate to solution phase measurements for greater coverage of design space for potent peptides 

such as p53-like binders. 

 To establish the generalizability of SPEED, we expanded the system to design stapled 

variants of BIM, a high affinity but non-specific inhibitor of B cell lymphoma 2 (Bcl-2) proteins 

that regulate apoptosis. Recent work shows that yeast surface display coupled with machine 

learning and sequence optimization are efficient at generating highly specific linear peptides, but 

rational design was necessary to generate highly specific stapled peptides.10,55 We sought to 

address this challenge by measuring the affinity and specificity of stapled BIM variants (Figure 

2.11). We identified several staple locations that dramatically change the specificity profile of 

BIM. These results recapitulate many factors that have previously been identified about BIM-

based peptides as well as identify new impacts of linker location. For example, staple locations 

that disrupt key hotspots abrogate binding as expected. We find that Bfl-1 has the lowest affinity 

across all variants evaluated, which agrees with Jenson et al. where the authors had to use a 

PUMA-based (p53 upregulated modulator of apoptosis) library rather than BIM to find potent 

inhibitors of Bfl-1 since BIM-based peptides had low affinities.34 Similarly, we find that these 

variants have very high affinities towards Mcl-1 which is consistent with the sub-nanomolar 

affinity of BIM and the lack of interference between the staple and those high affinity 

interactions.38 Finally, we see a high degree of correlation of affinity between Bcl-xL, Bcl-w, and 

Bcl-2, likely resulting from high structural homology between these three proteins.30 We also 
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discovered variable specificity with different double-click linker locations. These BIM staple 

variants displaying altered specificity could serve as starting points for applications that rely on 

specific members within Bcl-2. Future work includes screening randomized libraries of Bcl-2 

antagonists via SPEED using these specificity-driving staple location towards the discovery of 

high affinity, specificity, and efficacious Bcl-2 stapled peptide inhibitors. 

 Finally, we translated PLP and BIM variants off the bacterial cell surface and evaluated 

their binding affinities in solution using biolayer interferometry and competitive inhibition 

experiments (Figure 2.12). While equilibrium affinity measurements from bacterial surface 

display highly correlate with those from solution phase, the bacterial surface tends to 

overestimate solution-phase binding affinities by 3 to 10-fold in our system. The exact cause of 

this discrepancy is unclear. We hypothesize that the molecular crowding on the bacterial cell 

surface improves the conformational stability of displayed peptides and results in lower 

measured Kd values relative to the same sequence in solution regardless of peptide stapling.   

This feature is more pronounced in PLPs than BIM variants as PLPs tend to be less structured in 

phosphate buffers or trifluoroethanol (a helix inducing solvent), likely due to their shorter length 

(13 AA vs 23).53,102 Therefore, synthesis and evaluation of peptides in their soluble form remains 

an important step in the design of new stapled peptide inhibitors. Likewise, bacterial surface 

display may not be able to resolve small differences in affinity, which could be a limitation if 

molecules need to be tuned with high precision. However, in the design of Bcl-2 inhibitors, 

specificities on the order of 100-1000x are needed, which is well within the abilities of surface 

display to measure.37 In conclusion, we have established the discovery of stapled peptides via 

bacterial surface display is a powerful method that can optimize sequence, staple location, and 

staple chemistry with respect to binding affinity and specificity. 
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Appendices 

Table 2.1 contains calculated masses, observed masses, and extinction coefficients for all 

soluble peptides used in the study. Figure 2.2 and other reference figures include information on 

bacterial surface display reaction efficiency; next generation sequencing primer and their 

reaction scheme and subsequent analysis; reaction, structures, and purification of all soluble 

peptides; circular dichroism; and biolayer interferometry and titration curves. 
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Table 2.1: Mass spectrometry calculated masses, observed masses, and molar extinction coefficients 
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Figure 2.13: Next generation sequencing (Illumina NovaSeq) reaction scheme and primers. Next generation 
sequence (A), its primers (B), and all primers used for generation of bacterial cell surface constructs (C).  
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Figure 2.14: B cell lymphoma 2 peptides mass spectra 
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Figure 2.15: p53-like peptide mass spectra  
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Figure 2.16: B cell lymphoma 2 chromatograms 
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Figure 2.17: p53-like peptide chromatograms 
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Figure 2.18: Chemical structures of peptides used in this study 
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Figure 2.19: Circular dichroism, alpha helicity, and calculated extinction coefficients measurements for all 
compounds in this study  
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Figure 2.20: Representative biolayer interferometry data 
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Figure 2.21: Enrichment trajectories of select p53-like peptides from fluorescent activated cell sorting. 
Individual peptides chosen for analysis and their enrichment over rounds of deep sequencing. Gaps in the plotted 
frequencies are places where no sequences were observed (either due to a lack of read depth or a complete loss of 
enrichment). 
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Figure 2.22: Affinities of select p53-like peptides from fluorescent activated cell sorting to mdm2. All flow 
experiments were performed with 8 concentrations with 3 replicates. Kd’s were fit using GraphPad Prism v8.0. 
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Figure 2.23: Titration of select bcl-2 peptides with all 5 Bcl-2 proteins via bacterial cell surface. All flow 
experiments were performed with 7 or 8 concentrations with 3 replicates. Kd’s were fit using GraphPad Prism v8.0. 
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Chapter 3 Discovery of High Affinity and Specificity Stapled Peptide Bcl-xL Inhibitors 

using Bacterial Surface Display 

 

This chapter is derived from the following publication: 

Marshall Case, Jordan Vinh, Mukesh Mahajan, Vivek Subramanian, Anna Kopp, Matthew 

Smith, and Greg Thurber. “Discovery of high affinity and specificity stapled peptide Bcl-xL 

inhibitors using bacterial surface display.” Manuscript to be submitted. 

Abstract 

There is great need for therapeutic modalities that are able to target intracellular protein-

protein interactions involved in disease. One such interaction is the dysregulation of apoptosis, or 

programmed cell death, which is co-opted by cancer to evade cell death and enable proliferation. 

Several diseases are characterized by their overexpression of Bcl-xL, an anti-apoptotic B cell 

lymphoma 2 (Bcl-2) protein expressed on mitochondrial membranes. Bcl-xL overexpression 

inhibits a biochemical cascade ultimately leading to apoptosis; selective inhibition of Bcl-xL has 

the potential to increase cancer cell apoptosis while leaving healthy cells relatively unaffected. 

However, high homology between Bcl-xL and other Bcl-2 proteins has resulted in the difficulty 

of its selective inhibition by small molecule drugs. In this chapter, we engineer stapled peptides, 

a chemical modification that can improve cell penetration, protease stability, and conformational 

stability, towards the selective inhibition of Bcl-xL. To accomplish this task, we built a focused 

combinatorial mutagenesis library of peptide variants on the bacterial cell surface, used copper 

catalyzed click chemistry to form stapled peptides, and sorted the library for high binding to Bcl-
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xL and minimal binding towards other Bcl-2 proteins. We then characterized the sequence and 

staple placement trends that governed specificity and characterized highly selective molecules on 

and off the cell surface for affinity and specificity. Finally, we confirmed the mechanism of 

action of these peptides is consistent with apoptosis biology. The molecules generated in this 

chapter represent improvements to the specificity for stapled peptides against Bcl-xL. 

Introduction 

Bcl-2 family members are involved with the regulation of apoptosis, or programmed cell 

death, via their transient or constitutive interactions with mitochondria. Mitochondria are 

primarily involved in oxidative phosphorylation and energy production, but these organelles also 

play an essential role in governing programmed apoptosis.58,103 When limits on homeostasis of 

the cell are exceeded, the cell initiates a complex series of biochemical pathways to initiate 

programmed cell death. As one of the hallmarks of cancer, cells can evade the protective 

mechanism of apoptosis and allow the continued survival of the cancer cell. Central to cancer’s 

ability to escape apoptosis is blocking the ‘intrinsic’ apoptotic pathway, a carefully regulated 

signaling pathway of cytosolic and mitochondrial proteins.104 On the outer membrane of 

mitochondria, a signaling network regulates whether mitochondrial membranes remain intact or 

start large pore formation, releasing cytochrome c and initiating the formation of the apoptosome 

and eventual cell death.54,57 At the center of this pathway, B cell lymphoma 2 (Bcl-2) proteins are 

interacting with a balance of pro- and anti-apoptotic factors under healthy conditions. However, 

many cancers overexpress these proteins, which dysregulates mitochondrial function and inhibits 

apoptosome formation.105 The inhibition of Bcl-2 proteins via small molecules or peptides is 

therefore a direct way to re-establish apoptosis controls for dysregulated cells, providing a 

powerful approach for the treatment of cancer.106 
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While the Bcl-2 proteins are highly homologous and share many functions, structural 

differences lead to profound differences in how each of the 5 Bcl-2 proteins (Mcl-1, Bfl-1, Bcl-

xL,, Bcl-w, and Bcl-2) contribute to apoptosis among other biochemical phenomena.50,52 

Pathological inquiries have shown that cancers typically overexpress a subset of these 5 proteins. 

Therefore, selective inhibition of anti-apoptotic proteins has been a longstanding goal of the drug 

discovery field towards the minimization of off-target toxicity.105 However, the design of 

selective Bcl-2 inhibitors is impactful beyond therapeutic molecules: highly specific inhibitors 

can be used as ‘tool’ molecules to probe Bcl-2 dependency for novel cancers or used in other 

biochemical assays. Therefore, discovery of highly specific novel agents may accelerate 

pathological analyses.107 In particular, Bcl-xL remains one of the most important targets among 

the Bcl-2 family owing to its link with drug resistance, angiogenesis, and cancer cell 

stemness.36,108 Bcl-xL upregulation in breast, glioblastoma, melanoma, among many others is 

correlated with cancer cell invasion and metastasis.109–111 Specific inhibition of Bcl-xL is 

suggested to address the acquired resistance to poly-specific small molecule drugs like 

venetoclax.105,112–116 However, currently no small molecule drug targeting Bcl-xL has passed 

clinical trials at any stage.105 

 Despite the promise of cancer treatment via Bcl-xL inhibition, the discovery of high 

affinity and selectivity drugs is challenging for several reasons. First, these proteins rely on alpha 

helical binding “BH” motifs for recognition of apoptotic proteins, which are shallow and 

hydrophilic and therefore challenging to target with small molecule drugs.54,117 The lack of a 

traditional hydrophobic binding pocket has led to generation of peptidomimetic drugs which 

possess many shared characteristics with the proteins the cell naturally uses.118 However, the 

small size of these peptidomimetic drugs often limits their specificity between Bcl-2 members, 
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leading to excessive off-target toxicity.105 ABT-737 and its orally bioavailable analog ABT-263 

(Navitoclax) were among the most specific small molecule drugs, having high affinity for only 

Bcl-xL, Bcl-w, and Bcl-2.117 However, these drugs resulted in dose limiting thrombocytopenia 

due to Bcl-xL related toxicity in circulating platelets. Small molecule drugs targeted at Bcl-xL 

specifically have thus far failed in the clinic due to high in vivo toxicity. More recently, A-

1155463 and A-1331852, small molecules engineered through structure-based drug discovery, 

have been engineered for high specificity for Bcl-xL over Bcl-2, though suffer from nanomolar 

binding to Bcl-w (or were not characterized for Bcl-w binding).119,120 To overcome the challenge 

of targeting large hydrophilic protein-protein interaction domains while mitigating off-target 

toxicity, scientists have proposed peptides as therapeutics, resulting in high affinity and in some 

cases high specificity.30,31,34–38,55,59,62–64 . The larger size of peptides enables high affinity and 

specificity interactions with otherwise difficult to target disease related proteins.5 Keating and 

co-authors sorted a library of linear peptides using yeast surface display, trained machine 

learning models, and optimized sequences with integer linear programming to achieve high 

specificities between Bfl-1, Mcl-1, and Bcl-xL.37,61 Dutta et al. sorted a library of linear peptide 

variants based on a non-specific but high affinity wild type sequence (BIM), which yielded 

peptides with ~1000x specificities between Bcl-xL, Bcl-w, and Bcl-2.36 These developments 

represent important milestones in the development of drug-like Bcl-2 inhibitory peptides. 

However, additional modifications are needed, since linear peptides suffer in the clinic from 

short in vivo half-lives and the inability to penetrate cell membranes.46,67,121 Stapled peptide 

therapeutics, formed by crosslinking two amino acids, can help address some of the limitations 

of linear peptides by improving stability, affinity, and membrane 

permeability.5,14,33,40,45,71,73,75,96,122,123 However, the development of stapled peptides is currently 



 

 72 

constrained by low-throughput solid phase peptide synthesis, a bottleneck that limits evaluation 

of stapled peptides on the order of dozens.40  

In this work, we use stabilized peptide engineering by E. coli display (SPEED) to rapidly 

evaluate high affinity and specificity Bcl-xL stapled peptides (Figure 3.1).23,24 SPEED enables 

high-throughput screening of fully stapled peptides in a quantitative format by displaying 

genetically encoded stapled peptides on the surface of bacteria using non-natural amino acids, 

enabling evaluation of up to 109 peptides. To generate specific Bcl-xL inhibitors, we designed a 

library of BIM mutants, a naturally occurring peptide that has high affinity for all Bcl-2 proteins 

but no specificity towards Bcl-xL.50 SPEED was used to simultaneously vary both peptide 

sequence and staple location to determine how staple location governs specificity in the context 

of a BIM-based library.24 We sorted the library using a combination of magnetically activated- 

and fluorescently activated- cell sorting towards highly specific mutations that would target Bcl-

xL with both high affinity and specificity. By analyzing the final peptides in our library using 

next generation sequencing, we identified sequence trends and staple locations that govern 

specificity. We then translated select lead compounds off the bacterial surface and show that the 

peptides discovered retain their properties from surface display in both biolayer interferometry 

and competitive inhibition experiments. 
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Figure 3.1: Engineering of high affinity and specificity pro-apoptotic Bcl-xL antagonistic stapled peptides 
using Stabilized Peptide Engineering by E. coli Display (SPEED). In this work, a library of focused stapled 
peptides variants are presented on the bacterial surface and engineered for high affinity and high specificity towards 
Bcl-xL. 

Methods 

3.1.1 Purification of Bcl-2 protein 

Bcl-2 proteins were purified as described previously.24 

3.1.2 Library Design 

To design the library of BIM variants, BH3 sequences and their affinities were collected 

from literature.30–32,35,37,59 Sequences were split into 5 bins according to their affinities: <1nM, 1-

10nM, 10-100nM, 1000nM. A position specific scoring matrix (PSSM) was generated for each 

of the 5 Bcl-2 proteins (Bcl-xL, Bfl-1, Mcl-1, Bcl-2, or Bcl-w) based on the subset of sequences 

that had reported affinities for that target. To bias the library design towards high affinity clones, 

a weighting was applied based on the discretized bins where sequences were counted 1-10,000X 

in logarithmically spaced bins, depending on which bin it appeared in (high affinity sequences 

were counted more). 
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Another PSSM for each Bcl-2 protein was generated by extracting the weights from BIM 

variant SPOT arrays.55,63 In brief, a SPOT array is a solid support with chemically synthesized, 

anchored peptides that are used to measure dozens to hundreds of peptide variants. First, a binary 

mask was generated based on the SPOT arrays to separate the location of peptide signal from 

background. Then, the average intensity of each SPOT was extracted using Fiji v2.0. For each 

Bcl-2 protein, the two PSSM’s were averaged to capture information from both entire peptide 

sequences and BIM mutations. Then, mutations were selected to maximize the amount of 

specificity-driving residues (ones that were highly scored in one library and very weakly scored 

in others). We excluded Bcl-w and Bcl-2 mutations as they were qualitatively similar to Bcl-xL 

and we wanted to maintain the balance between Mcl-1, Bfl-1, and Bcl-xL residues. Because 

bacterial surface display libraries can only be generated on available equipment with ~109 unique 

sequences, we constrained the design by first locking amino acids in positions that had the 

highest absolute magnitude, such as Leu3a and Asp3f. Next, we fixed amino acids that didn’t 

contribute to specificity based on their low weights in the PSSM, such as Gly1e, Arg1f, Tyr4d,4e, 

and Ala4f. Still, the library had more mutations than were possible to display on bacteria. We 

next eliminated all Cys and Met residues from analysis because we wanted to initially minimize 

potential disulfide bond formation and out-of-position stapling residues respectively. To put a 

hard constraint on the size of the library, we merged the processed PSSM’s for Mcl-1, Bfl-1, and 

Bcl-xL into one by applying the following equation: 

𝑃𝑆𝑆𝑀!,## =	&'2 ∗ 𝑃𝑆𝑆𝑀!,##,$%&'()*+' − 𝑃𝑆𝑆𝑀!,##,$,,&'()*+'−𝑃𝑆𝑆𝑀!,##,$,,&'()*+''
-

./0

 

Where p is the position of the peptide sequence, AA is the amino acid, the on-target 

refers to the PSSM corresponding to the protein target, and the two off-target terms are for the 

other two Bcl-2 proteins. Finally, degenerate codons were optimized using SwiftLib for a given 
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protein sequence diversity of 108.124 The primers and degenerate codon are tabulated in Table 

3.1 and Table 3.2. The design overview is available in Figure 3.2. 

3.1.3 Library construction 

Primers for focused BIM mutants with degenerate codons from the library design step 

were ordered from IDT whose sequences can be found in Table 3.3. Libraries were displayed 

using the pqe80L-eCPX2 plasmid as described previously.23,24 We added an N-terminal HA tag 

and a peptide linker to mitigate steric clashes between display and binding measurements as 

described previously.30 

3.1.4 Synthesis and preparation of peptides 

Bcl-2 peptides were synthesized, stapled, and purified as described previously.23,24  

Peptide structures, mass spectra, and chromatograms are located in Figure 3.14, Figure 3.15, 

and Figure 3.9 respectively. 

3.1.5 Circular Dichroism 

Peptides were dissolved in acetonitrile: water at 1:1 v/v at ~ 0.1 mg/mL and analyzed on 

a Jasco J-815 Circular Dichroism (CD) Spectrometer at 100nm/min at 25oC. Spectra were 

baseline corrected and averaged over 3 runs. Alpha helicity was calculated using the BeStSel 

web server.92 Circular dichroism spectra and alpha helicities are located in Figure 3.9. 

3.1.6 Bacterial Surface Display, Flow Cytometry, and Competitive Inhibition Experiments 

The preparation of bacterial cells for flow cytometry and FACS was performed as 

described previously.23,24 Briefly, bacteria expressing the eCPX gene were grown in 1mL M9-

methionine-ampicillin overnight. Fresh media was inoculated at a 1:20 ratio and grown for 150 
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minutes at 37oC. Next, the cells were metabolically depleted for 30 min, then induced with 

0.5mM IPTG at 22oC for 4hr. Peptides on the surface of cells were clicked using 100µM 

propargyl ether at 4oC for 4hrs. Cells were washed once in PBS before incubation in Bcl-2 

protein and expression markers overnight on ice. Cells were washed once in PBS before 15 min 

incubation with secondary antibody if necessary, then resuspended in PBS before analysis or 

sorting. Flow cytometry was done using an Attune NXT or BioRad Ze5.  

Affinities of peptides on bacterial cell surface were measured using 8 logarithmically 

spaced concentrations of protein in triplicate. Competitive binding inhibition experiments were 

performed by incubating a fixed concentration of Bcl-2-biotin protein (100nM for Bcl-xL, Bcl-

w, and Bcl-2, and 10nM for Bfl-1 and Mcl-1) with BIM-p5, a known binder for all 5 Bcl-2 

proteins, with 8 logarithmically spaced concentrations of peptide in triplicate. After several hours 

of incubation at 0oC, 1uL of BIM-p5 displaying bacteria were added for 15 min to capture any 

unbound Bcl-2 protein. Then the media containing protein-peptide complexes was removed by 

centrifugation and bacterial cells were prepared for flow cytometry as described above. 

3.1.7 Magnetic Activated Cell Sorting (MACS) 

The naïve library was subjected to three total rounds of magnetic sorting (see Table 4.4 

for sorting details). One round of anti-HA MACS was done using anti-HA magnetic beads 

(Thermo Fisher). Then, cells were subjected to two rounds of sequential binding-based MACS 

with 100nM Bcl-xL with the goal of selecting clones below the maximum number of cells that 

can be analyzed via FACS. The sorting progression is described in Figure 3.16. 

3.1.8 Fluorescent Activated Cell Sorting (FACS) 
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Libraries were subjected to four rounds of sequential fluorescent sorting (see Table 3.4 

for sorting details and Figure 3.17 and Figure 3.18 for affinity-based and specificity-based 

representative FACS plots respectively). The first and second rounds were purely based on 

affinity and used 100nM and 10nM Bcl-xL respectively. The highest 5% of cells expressing and 

binding were collected. The third and fourth round were done to improve the specificity of the 

library. The third round used 100nM Bcl-xL and 25nM of each of the four other Bcl-2 proteins in 

competition (Mcl-1, Bfl-1, Bcl-w, and Bcl-2). The fourth used 10nM Bcl-xL and 25nM of each 

of the four other Bcl-2 proteins in competition. In the third and fourth round, the top 5% of cells 

that were positive for Bcl-xL binding and expression but negative for the competitive binding (in 

a third fluorescent channel) were selected. In parallel, another third round and fourth round were 

performed that was a negative sort (25nM each Mcl-1, Bfl-1, Bcl-w, and Bcl-2) and positive 

(1nM Bcl-xL). Ultimately we found that the competitive screens yielded more enrichment based 

on NGS analysis and focused on these sorts for downstream analysis. The sorting progression is 

described in Table 3.4 and Figure 3.16. 

3.1.9 Biolayer Interferometry 

Biolayer interferometry was performed as described previously.23,24 Representative BLI 

traces are found in Figure 3.11.  

3.1.10 Illumina Sequencing and Data Processing 

Libraries identified for deep sequencing analysis were prepared as described previously.24 

Sequencing primers and PCR scheme is shown in Figure 3.19. Forward and reverse reads DNA 

were merged using NGmerge and aligned using in-house python scripts. 125 We filtered out 

sequences that didn’t match the framework region of the eCPX2 protein and condensed identical 
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peptide sequences into read counts. To account for the differences in total read counts per 

library, we converted read counts into frequencies by normalizing to the number of reads. 

Sequence conservation plots were made using the Logomaker Python package.99  

3.1.11 Mitochondrial Membrane Depolarization 

Mitochondrial outer membrane polarization assays were performed as described 

previously.126,127 In brief, mammalian cells were added to a mixture of MEB buffer, digitonin, 

voltage dependent fluorophore (JC-1), oligomycin, beta-mercaptoethanol, with either peptide 

treatment, FCCP (reversible decoupler of oxidative phosphorylation), alamethicin (a peptide that 

induces irreversible mitochondrial depolarization), or DMSO (negative control). Fluorescence 

was measured at 545nm excitation/ 590nm emission using a BioTek Synergy H1 plate reader at 

32oC at 5 min intervals for 180 minutes. MDA-MB-231 and Mcf7 cells were used to test Bcl-xL 

dependence in natural cancer cell lines and the B-ALL leukemia cells were used to test Bcl-2 

family dependence.128 By normalizing peptide data to the negative control (maximum 

mitochondrial polarization) and the positive control (complete mitochondrial depolarization), it 

is possible to measure peptides’ ability to drive cellular apoptosis.  

3.1.12 Crystallography 

Bcl-xL was purified by the University of Michigan Life Sciences Institute Center for 

Structural Biology. Purified and stapled peptide was supplied as a lyophilized powder. 

3.1.13 Nuclear Magnetic Resonance Spectroscopy 

Nuclear magnetic resonance spectroscopy was performed as described previously.23 

Briefly, 1H TOCSY and NOESY data were collected on a 600MHz NMR instrument. 
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Results 

3.1.14 Library Design and Cell Sorting 

Because the sequence space of BH3-like peptides is much larger than the experimental 

throughput to measure them, the primary objective of library design was to identify mutations 

that are likely to impact specificity. To design such peptides, we noted several design criteria: 1) 

the library must sample both sequence space and staple location simultaneously to evaluate the 

impact on affinity and specificity, 2) critical binding residues must be preserved to minimize 

non-functional variants, and 3) select residues that were predicted to improve affinity and 

specificity should be mutated to sample the library more efficiently versus random mutagenesis.  

 

Figure 3.2: Technique used to construct library computationally. First, sequences with labeled affinities for Bcl-
2 proteins are aligned and converted into a weighted position specific scoring matrix (PSSM) (see Methods for 
details). Separately, SPOT array data is aggregated and extracted and added to the position specific scoring matrix. 
One PSSM is constructed for Mcl-1, Bfl-1, and Bcl-xL, and then mutations are sampled until a desired library size 



 

 80 

of ~108 is achieved. Finally, degenerate codons are generated for each staple position to efficiently sample random 
amino acids.  

First, we chose to simultaneously evaluate staple location and sequence. We 

hypothesized that epistatic interactions between the staple and the peptide sequence might enable 

high affinities and/or specificities that would be lost if the staple location was fixed. We chose 

several staple locations that were previously validated to bind Bcl-2 proteins with varying 

specificities in the context of BIM.24 We chose a peptide length of 23 because peripheral residues 

generally strengthen binding but do not significantly affect specificity.36 Next, we aggregated 

sequence and affinity data from literature to design a library of variants predicted to improve 

affinity or specificity towards Bcl-2 members while minimizing the number of non-functional 

variants. 30–32,35,37,55,59,63 We included all naturally occurring and engineered BH3 sequences that 

had been assayed for binding affinities. Data from SPOT arrays, where the change in binding 

was measured for BIM single mutants, was combined with sequence data to generate a position 

specific scoring matrix (PSSM) for each Bcl-2 protein. We weighted mutations based on their 

affinity to each target and then sampled mutations according to their magnitude of specificity 

(mutations that were predicted to be highly specific towards one or multiple Bcl-2 proteins) until 

the desired design space was achieved (~108 sequences). To maximize the number of sequences 

from our PSSM and minimize the number of suboptimal residues from degeneracy in the codon 

table, the final DNA sequences were optimized using SwiftLib.124 More details about the 

computational library design are available in the methods section and Figure 3.2 and Table 3.1, 

Table 3.2, and Table 3.3. After transformation into bacteria, the library had 5.5*108 unique 

peptides (Figure 3.3). 
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Figure 3.3: A library of stapled peptides is designed to be enriched with residues and staple positions that 
govern Bcl-xL affinity and specificity. Staple location and sequence were determined to be two key determinants 
of affinity and specificity and thus a library where they are simultaneously evaluated was generated. Then, the 
library is transformed into bacteria, sorted 3 times magnetically and four times fluorescently (in series) before deep 
sequencing each sort round. 

Initial flow cytometry experiments with the naïve library showed only 10-30% of all cells 

were displaying peptide, indicating that many cells either had ampicillin resistance but did not 

contain functional plasmid or that peptide-eCPX2 was being inefficiently shuttled to the cell 

surface. To enrich the libraries towards functional peptides, we performed 3 rounds of magnetic 

activated cell sorting (MACS) followed by 4 rounds of fluorescent activated sorting (FACS) (see 

Table 3.4 for sorting details, Figure 3.17 and Figure 3.18 for representative FACS plots, and 

Figure 3.20 for logoplots for FACS 1-4). MACS experiments were split into two phases: one 

round to improve the expression of the library and two to improve binding while simultaneously 

shrinking the library to a size that could be sorted by FACS, where more specific boundaries can 

be chosen for desired peptide fitness. FACS experiments were also split into two phases: two 

rounds to improve the affinity of the library towards Bcl-xL by screening with decreasing 

concentrations of protein (100nM and 10nM respectively), and the last two rounds were done to 

improve the specificity by performing competition experiments and selecting towards highly 
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specific binders. We hypothesized that this new library would be optimally sorted via FACS by 

first finding the high affinity Bcl-xL binders and then identifying the subset that were highly 

specific as previously reported.31 After sorting, we performed low throughput flow cytometry 

experiments, which suggested that the library had been highly enriched towards specific binding, 

as evidenced by nearly saturable binding at low concentrations (<10nM) of Bcl-xL but minimal 

binding towards other Bcl-2 proteins even at high concentrations (>100nM). In addition to 

sorting for highly specific peptides with competition sorting experiments, we also tested whether 

a round of negative sorting (the lack of binding to off-target proteins) followed by a positive 

round of sorting (target binding) would yield highly specific clones. Both competitive and non-

competitive sorts yielded a similar set of enriched sequences (Figure 3.21), suggesting the 

library was well suited to finding specific Bcl-xL inhibitory stapled peptides. 

3.1.15 Next Generation Sequencing 

After magnetic and fluorescent sorting, we analyzed the set of enriched peptides along 

the sorting progression using Illumina NovaSeq next generation sequencing (NGS) (Figure 3.4). 

We first investigated how sorting influenced the enrichment and proportions of the library 

composition; all rounds of sorting resulted in an enrichment of sequences and depletion of 

others. We next investigated the relationship between the staple position and the peptide 

sequence among highly functional Bcl-xL peptides. Despite staple scanning in the context of 

BIM suggesting that many positions had high affinity or specificity for Bcl-xL (the 2nd, 6th and 

12-14th staple position BIM mutants had high affinity toward Bcl-xL), surprisingly, all stapled 

positions except the 6th were nearly elimination after the first round of FACS.24 While most 

sequences observed had the 6th staple position, peptide sequence is highly dependent on the 

location of staple (Figure 3.22). For example, while Lys2d is the dominant mutation for the 6th 
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position, Ile is more prevalent for the 5th and 14th position. This suggests that there exists a 

complex relationship between the staple and the sequence that justifies the simultaneous 

screening of staple location and peptide sequence. 

 

Figure 3.4: Next generation sequencing of sorted Bcl-xL peptides yields insights into the staple location and 
sequence patterns that govern specificity. (A) First, the distribution of peptide sequences’ enrichments was 
calculated across sorting rounds. Whereas there is little bias in the library composition in the naïve library, as 
indicated by its nearly uniform distribution, each subsequent round of sorting biases the library towards a subset of 
sequences. By the final rounds of sorting, ~103 sequences represent nearly 100% of all sequences remaining. (B) By 
the second round of magnetic sorting, the 6th staple position nearly dominates the library and continues to displace 
other staple positions, suggesting that this staple position contributes to affinity and specificity. (C) Compared to the 
naïve library (top), which displays no bias towards certain residues in randomized positions, the Bcl-xL sorted 
library has clear sequence conservation patterns. 

Finally, we investigated whether the sequence trends that emerged from sorting resulted 

in conserved patterns and whether those patterns matched other Bcl-xL peptides previously 

described.  Compared to the naïve library, where any position not fixed by design displays nearly 

uniform distribution between selected mutations, the Bcl-xL library has clearly conserved 

sequence patterns. The most dominant mutations, Lys2d, Gly2e, and Asp3g, appeared in nearly 

every peptide that remained in the library. Positions 2a, 2b, and 2f did not display the same level 

of conservation but generally have enriched negative glutamic residues, whereas the naïve 
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library had mostly small hydrophobic residues. Positions 1g, 4b, and 4c had a smaller magnitude 

of enrichment, consistent with their position peripheral to the main alpha helical interface.108 

The naïve library was predicted to contain mutations in the context of BIM that would be 

highly specific towards Mcl-1, Bfl-1, or Bcl-xL based on computational design. Comparing the 

set of mutations that emerged post sorting to the naïve library could lend insight into the utility 

of leveraging prior data in library design.  First, we analyzed the mutational space of Bcl-xL 

specific peptides with the final scores from library design (as detailed in Figure 3.2). These 

scores reflect the total importance of that mutation for overall specificity between these three 

Bcl-2 members. We observed that generally, the mutations that were predicted to significantly 

impact specificity were not exclusive to the set of mutations that were enriched. We found that 

while there was not an obvious correlation between the importance score as predicted in library 

design with the enrichment value post sorting, the mutations predicted to be important were 

increasingly more present in highly enriched sequences.(Figure 3.5). There were several 

residues that were not predicted to be important by overall library design but were highly 

enriched, representing important residues for further analysis, such as Glu2c, Glu2d, and Lys2f. 

This indicates that while library design that incorporates prior information (such as homologous 

sequences or the effect of mutations such as SPOT arrays) can focus on residues with a higher 
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likelihood of increased fitness, it is important to include a large array of mutations for maximum 

specificity. 

 

Figure 3.5: Comparison of mutational importance values from library design versus enrichment in 
experimental sorting. Overall library design importance was calculated as the average of weighted PSSM values 
for each of Bcl-xL, Bfl-1, and Mcl-1. See Figure 3.2 for more information about library design. A significant 
number of residues predicted to be important for specificity were highly abundant in later rounds of FACs, as seen 
by the ~20% of residues in the upper right quadrant. However, 80% of residues had low or no predicted importance. 
This could be due to the use of information from linear peptides sequences for this stapled peptide sorting campaign.  

We then evaluated whether the mutations enriched for Bcl-xL were among those 

predicted to be specific for Bcl-xL specificity specifically (Figure 3.6). Any residues that were 

abundant post sorting but not predicted in library design represent unexpected findings that were 

not present in natural homology or SPOT array data and may yield further improvements to Bcl-

xL specificity compared to previous sorting campaigns. Many mutations predicted to govern 

specificity for Bcl-xL were more enriched than those predicted to not be beneficial. However, we 

were surprised that many mutations predicted to affect specificity minimally played a larger role 

than anticipated. This includes mutations such as His4e, Gly2d and Gly3a (circled residues in 
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Figure 3.6), suggesting there were motifs beneficial for Bcl-xL specificity not predicted from the 

starting dataset. 

 

Figure 3.6: Comparison of mutations predicted to govern specificity for Bcl-xL by library design versus 
preference for those mutations from sorting. Mutations that have high predicted values for Bcl-xL binding (y 
value > 0). Bcl-xL design importance is the weighted PSSM values for Bcl-xL alone. See Figure 3.2 for more 
information about library design. Mutations circled are three selected mutations, His4e, Gly2d and Gly3a, which were 
not previously predicted to significantly contribute to specificity but were highly enriched during cell sorting. 

While we generally observed that the mutations predicted to impact specificity were not 

correlated with their enrichment, this analysis treats mutations as if they were non-interacting; 

mutations could have varying levels of epistasis, and thus deviate from their predicted values 

irrespective of library design strategy. To evaluate this hypothesis, we used position specific 

enrichment ratio matrices (PSERM) to measure the epistasis present within the dataset (Figure 

3.7). This analysis shows the connection between stapled positions (such as methionines 1e and 

2e, which are required to be mutated together by design), which show an epistasis value of 1 

(maximum epistasis).With the exception of the positions not varied (2g, 3a, 3f, 4a, 4e, and 4f), 
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which have zero epistasis by definition, the extent of epistasis across the sequence space is 

consistently higher than zero (which denotes the lack of epistasis). For example, the mutations 

sampled at position 2c, which is central to the binding interface and peripheral to other varied 

positions on the helix (such as 1g and 2f), has epistasis scores consistently around one (denoting 

maximal epistasis). Moreover, the epistasis present in these positions strongly depends on the 

identity of the mutation; at position 2c, residues D, E, H, and Y have higher epistasis than other 

sampled residues, suggesting that these residues are influenced by other proximal mutations. 

This analysis suggests that the mutated residues are interacting epistatically, which could explain 

why the unique sequences identified via the stapled library directed evolution campaign did not 

align with the library design predictions.

 

Figure 3.7: Position specific enrichment ratio matrix reveals the extent of epistasis within the dataset. For each 
position within the peptide, the dependence of each mutation against each other mutation at every position is 
calculated. The higher the context dependence (as indicated by color), the more dependent these mutations are. 

  

3.1.16 Evaluation of peptide hits 

The sequencing results and analyses at the library level suggested that the peptides had 

been selected towards high affinity and specificity Bcl-xL peptides. We next investigated the 

affinity and specificity for individual sequences. We randomly selected thirteen of the highest 

frequency clones from the final round of FACS and evaluated their affinity and specificity 
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towards the Bcl-2 proteins (Figure 3.8). First, we measured binding at two concentrations of 

target, significantly above (100nM) and below (1nM) the median library binding affinity, to 

obtain a crude estimate of affinity. First, we measured the binding of each of these peptides on 

the bacterial cell surface towards Bcl-xL at 1nM in triplicate. This concentration was chosen 

because it does not saturate BIM-p5 for Bcl-xL, which is a double-digit nanomolar binder. Thus, 

increases in binding when normalized to display level are indicative of an improvement in 

binding affinity. All sequences evaluated demonstrated significantly improved binding, 

suggesting that peptide hits had Kd’s in the low double digit nanomolar range. We similarly 

evaluated the binding of the other Bcl-2 proteins and observed significantly decreased binding 

towards Mcl-1 and Bfl-1 (~10,000 fold weaker binding). However, the magnitude of binding 

towards Bcl-w and Bcl-2 was not reduced to the same extent (10-100 fold weaker binding), 

though most clones had statistically significantly reduced binding for all four off-target proteins 

(Figure 3.23). We then tested binding at 100nM, which should saturate all but the weakest 

binders. This analysis suggested that most peptides were highly specific for Bcl-xL, though fewer 

peptides had statistically significant specificity for Bcl-w and Bcl-2.36    

Based on the promising crude estimates from the library, we selected two clones for 

further analysis. These variants were selected based on their diminished binding towards all 4 

off-target Bcl-2 proteins while maintaining high affinity towards Bcl-xL. We titrated two of these 

clones, denoted 12 and 13 with various concentrations of proteins on the cell surface. These 

peptides had high affinities towards Bcl-xL (~10 nM Kd) and greatly weakened affinity towards 

the other targets, except for 13 binding to Bcl-2 with ~80 nM Kd. The identification of these 

specific stapled peptides for Bcl-xL further demonstrated the ability of SPEED to find diverse 

sequences that have desirable activity. 
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Figure 3.8: Individual peptides from the library are highly specific towards Bcl-xL. (A) Thirteen peptides were 
randomly chosen from the final round of cell sorting and their sequences were identified via Sanger sequencing. 
Each of these peptides were measured for their binding against all 5 members of the Bcl-2 protein family at (B, 
bottom) 1nM, which is significantly below the Kd of the wild type sequence for the main target, Bcl-xL, or (B, top) 
100nM, which is a high enough concentration to saturate all but the weakest of binders. (C) Two of the thirteen 
peptides were chosen for more thorough analysis and their binding affinities were measured on the cell surface by 
flow cytometry. 

3.1.17 Solution phase measurements 
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SPEED has been previously validated to predict binding properties of stapled peptides with 

comparable accuracy to solution phase measurements.24 However, to ensure the binding 

affinities measured via bacterial surface agreed with solution phase peptide binding, we 

synthesized the two peptides using solid phase peptide synthesis. After stapling the peptides (as 

detailed in Methods), we characterized the peptides’ secondary structures using circular 

dichroism (Figure 3.9). Both peptides had moderate alpha helicity before stapling (18% and 

47%) but had significantly enhanced helicity when stapled (44% and 67%, respectively). Then, 

we used two techniques to measure the binding affinity and specificity: competitive inhibition 

and biolayer interferometry (Figure 3.11).  

 

Figure 3.9: Circular dichroism and alpha helicities for compounds generated in this study 

We next wondered whether bacterial surface display favors enrichment of helical 

peptides, given the helical nature of the Bcl-2 binding interface. When compared to BIM 

(unstapled, wild type), whose alpha helicity according to circular dichroism is 31% (Figure 

2.19), these peptides (12 and 13) have significantly enhanced helicity in their stapled forms. 

However, in their unstapled forms, they do not demonstrate enhanced helicity across both lead 

Bcl-xL antagonists (12 and 13), suggesting that this sorting campaign may not have selected 

peptides with enhanced helicity. To further query this hypothesis, we used sequence to secondary 
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structure prediction tools to computationally predict peptide secondary structure at higher 

throughput than would be possible chemically. While these tools have limitations – they do not 

account for the chemical differences for non-natural amino acids or the conformational dynamics 

of a stapled peptide - the unstapled and unsubstituted peptide variants’ secondary structure can 

be predicted with modest accuracy. Using the webserver PEP2D 

(http://crdd.osdd.net/raghava/pep2d/index.html), we found that the peptides identified post 

sorting were predicted to have helicities comparable to BIM (between 30 and 70% helicity, see 

Figure 3.10). We also found that peptides randomly selected from the input rounds of 

sequencing (naïve or expression positive) had comparable predicted helicities (between 30 and 

70%). This analysis supports the conclusion from circular dichroism analysis (see Figure 3.9): 

sorting for Bcl-xL did not select significantly more helical peptides than our wild type starting 

molecule.  

Figure 3.10: Predicted alpha helicities of the wild type molecule (BIM), before, and after sorting the designed 
library. Using the webserver PEP2D (http://crdd.osdd.net/raghava/pep2d/index.html), the predicted alpha helicities 
of the wild type peptide, BIM, was compared with ten randomly selected peptides from the naïve library and the 
final FACS round for Bcl-xL. Because the webserver does not account for contributions from non-natural amino 
acids or the stapling reaction, the sequences were submitted using methionine in place of azidohomoalanine. 
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Figure 3.11: Solution phase characterization of select Bcl-xL stapled peptides. (A) Both hits’ binding affinities 
are assayed by competitive inhibition. In this experiment, soluble peptide (in excess) and protein are allowed to 
equilibrate before a high-affinity peptide displayed on bacteria is added, which sequesters any unbound protein. The 
bacteria are then analyzed via flow cytometry and the fraction bound is inversely proportional to soluble peptide 
binding. The Ki is calculated and converted to a Kd using the Cheng-Prusoff equation. (B) The binding affinity is 
also measured using biolayer interferometry, where a sensor is loaded with biotinylated protein and the binding of 
peptide at various concentrations is measured in real time. The on and off rate are fit using GraphPad Prism v10.0. 
The Kd is calculated as the ratio of koff to kon. *: no binding detected. **: p < 0.01  ***: p < 0.005. 

In the competitive inhibition experiments, peptides of various concentrations are 

equilibrated with select soluble Bcl-2 protein before the addition of BIM-p5 displayed on the 

surface of E. coli bacteria. After a short incubation of equilibrated peptide and protein with 

bacteria, any unbound protein is rapidly sequestered by bacteria, which are analyzed via flow 

cytometry. The fraction of protein bound is inversely proportional to the fraction of protein 

blocked by soluble peptide. The Ki is calculated by fitting the fraction bound as the peptide 

concentration is titrated before converting to a Kd based on the affinity of BIM-p5 to soluble 

protein using the Cheng-Prusoff equation. In the biolayer interferometry experiments, a 

streptavidin sensor is loaded with biotinylated Bcl-2 protein and incubated with various 
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concentrations of soluble peptide. Real time measurements allow the determination of 

equilibrium Kd and kinetic rates of kon and koff (kinetic parameters and statistics are available in 

Figure 3.12). Both solution phase techniques gave similar results to bacterial surface display 

measurements, in agreement with previous reports.23,24 As previous reports confirm that bacterial 

surface measurements of affinity may overestimate affinity, disagreement between the value of 

13 binding Bcl-2 via SPEED versus those from solution phase peptides confirm that solution 

phase measurements are still recommended. This analysis further demonstrated that both 

evaluated peptides had specificities towards Bcl-xL over Bcl-w by an order of 100, Bcl-2 by 

1,000, and all others by >10,000.  

 

Figure 3.12: Comparison of fit kinetic rate parameters from biolayer interferometry data. The p-value is 
calculated as a unpaired t-test. 

3.1.18 In vitro characterization 

We next sought to characterize whether peptides functionally induced apoptosis in human cancer 

cell lines Figure 3.13. On the surface of mitochondria, Bcl-2 proteins sequester Bak and Bax, 
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which hetero-oligomerize to form pores and depolarize mitochondria. This phenomenon can be 

measured using a voltage sensitive fluorophore (JC-1) through a mitochondrial outer membrane 

polarization (MOMP) assay.126,127 First, we incubated MDA-MB-231 and MCF7 (human derived 

cancer cells overexpressing Bcl-xL) with various concentrations of 13 and found that the peptide 

was able to depolarize mitochondria with nanomolar concentrations. Next, we tested a peptide 

known to not bind Bcl-xL (F2, binding affinities are shown in Figure 3.24) and demonstrated 

that binding affinity was the determinant of activity. Finally, we measured the B-ALL cell lines 

which are engineered to overexpress specific Bcl-2 proteins and showed that 13 specifically 

depolarized cell lines with Bcl-xL overexpression.128 

 

Figure 3.13: Mitochondrial depolarization is measured for W10 peptide at various concentrations in two Bcl-
xL dependent cell lines: MCF7 and MDA-MB-231. 

  



 

 95 

 

3.1.19 Structural Biology 

To study the molecular basis of specificity, we used nuclear magnetic resonance spectroscopy to 

measure the structure of the peptide and the protein-peptide complex. To study the conformation 

of the peptide, we first used Total Correlation Spectrscopy (TOSCY) which evaluates bond 

connectivity via hydrogens within the peptide. Then, we used Rotating-frame Overhauser 

Enhancement Spectroscopy (ROESY), a variant of Nuclear Overhauser Effect Spectroscopy 

(NOESY), to study both bond connectivity and spatial proximity of hydrogens. See Table 3.5 for 

NMR table and Figure 3.25 for full NMR results. 

Discussion 

Direct targeting of Bcl-2 proteins is a highly effective approach to restore apoptosis in 

cancerous cells. Therefore, high affinity and specificity molecules targeting the B cell lymphoma 

2 (Bcl-2) family of proteins have important therapeutic potential. In this work, we used SPEED 

to screen stapled peptides with varying linker location and sequence to select specific and high 

affinity compounds towards Bcl-xL Figure 3.1. Given the large theoretical sequence space, we 

designed a focused computational library that we hypothesized contained mutations that would 

drive specificity between Bcl-xL and the other Bcl-2 proteins (Figure 3.3). To accomplish this 

design task, we leveraged two sources of data: sequence-affinity databases and SPOT arrays of 

BIM mutants. 30–32,35,37,55,59,63 First, we pooled the body of BH3 peptides’ sequences and affinities 

for Bcl-2 proteins. While it has been shown that higher order epistatic effects are present in BH3 

peptides, many more mutations act non-epistatically, and thus we assumed independent 

mutational effects on affinity as a reasonable simplification.37 We aggregated these data and used 

them to predict which mutations were most likely to govern affinity and/or specificity (see 
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Methods). After optimizing degenerate codons that sampled these critical residues and 

constraining the library size to ~108, we transformed the library into bacteria, yielding a library 

with 5.5*108 diversity. 

A combination of magnetic (MACS) and fluorescent (FACS) sorting, focusing on affinity 

or specificity, were used to enrich the library towards specific Bcl-xL peptides (Figure 3.4). 

While MACS was used to improve the expression of the library and then enrich the library to a 

diversity smaller than 107, FACS was the primary tool used to achieve affinity and specificity in 

the peptide libraries due to its ability to directly select from the binding/ expression landscape. 

We previously established that the staple location is a major driver of specificity.24 Because 

SPEED enables simultaneous evaluation of sequence mutants and staple locations, we were able 

to sample this complex relationship across the sort progression. Sequence patterns that emerged 

among highly specific Bcl-xL peptides generally agree with previous reported sequences. For 

example, we observed that Phe3d was the most highly enriched amino acid and has been 

suggested shown to destabilize binding towards Mcl-1.36,129 Both Glu2f and Glu3g were 

previously shown to be specific for Bcl-xL.59  Both Phe3d and Leu3d appear more abundantly in 

the final round than Ile3d, which has been suggested to drive specificity towards Mcl-1. However, 

we also achieved specificity while not requiring many previously established mutations, such as 

Val4a  or Lys4e, which drives specificity for Mcl-1 or Bcl-2 respectively but was not randomized 

in our library (instead, Phe4a and Tyr4e).36,129 This suggests further improvements could be 

identified by further combining specificity-driving mutations discovered in this report with those 

reported elsewhere.  

Data from both flow cytometry and next generation sequencing at the library level 

suggested that peptides were highly specific towards Bcl-xL. However, to confirm that this was 
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true for individual peptides, we sampled sequences randomly from the final round of sorting and 

evaluated their affinity and specificity compared to a known binder towards all 5 proteins, BIM-

p5 (Figure 3.8).24 With significantly more specificity towards Mcl-1 and Bfl-1 than Bcl-2 or 

Bcl-w, these peptide libraries are consistent with reports that specificity between the three Bcl- 

proteins is a more challenging task and that further improvements to sorting strategy or new 

mutations are necessary to achieve higher margins of specificity.36 Two peptides with maximum 

specificity were chosen for a more thorough analysis beyond the two-concentration binding 

estimates as predictive of affinity. These peptides showed ~10 nM affinity and > 10-fold 

specificity for all 4 family members on the bacterial cell surface, demonstrating a successful 

selection of high affinity and specificity peptides for Bcl-xL. The ability of SPEED to evaluate 

the fitness of a peptide with few flow cytometry samples makes it amenable to analyzing hits 

quickly before more thorough downstream analysis.  

While bacterial cell surface experiments suggested that molecules discovered from 

sorting were high affinity and strongly specific, it may weakly overestimate affinities (i.e. the 

measured affinity via SPEED may be 1-5 fold higher than that reported via solution phase, see 

Figure 2.12) , and we therefore sought to translate those molecules into solution phase to 

confirm their binding properties (Figure 3.11).24 After synthesizing, stapling, and purifying the 

peptides using standard Fmoc chemistry (see Methods), we measured the binding properties of 

the peptides using two methods: competitive inhibition and biolayer interferometry. Both 

methods closely agreed and confirmed SPEED measured affinities; both peptides analyzed were 

extremely specific, having ~10nM affinity for Bcl-xL but >200nM Kd for Bcl-w and >10,000nM 

Kd for all others. Biolayer interferometry measurements additionally allow for measure of kinetic 

parameters, yielding insight into whether the on- or off-rate dominates the specificity differences. 
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Comparing the binding between Bcl-xL and Bcl-w suggests that off-rates drive specificity 

(Figure 3.12); kon for Bcl-w and Bcl-xL are not significantly different (p=0.266) while koff for 

Bcl-w is more than 40 times faster than that of Bcl-xL (p = 0.00201). These results confirm 

previous reports that bacterial surface display measured affinities highly correlate with those 

from solution phase, whether from competitive inhibition experiments or biolayer interferometry. 

24  

We further sought to confirm that the peptides were acting with mechanisms consistent 

with apoptosis biology. To confirm that the affinities and specificities demonstrated by peptide 

on or off the bacterial cell surface were not artifacts of soluble versions of the Bcl-2 proteins, and 

to confirm they act consistently with known apoptosis mechanisms, we measured the 

permeabilization of mitochondrial outer membranes when titrated with peptides (Figure 3.13). 

126,127 First, we confirmed that in Bcl-xL overexpressing cell lines (MDA-MB-231 and MCF7), 

depolarization was the result of Bcl-xL specificity by testing the highly specific peptide (13) and 

a Bcl-xL non-binder (F2). Next, we tested whether the peptide depolarized cell lines not driven 

by Bcl-xL (B-ALL engineered for Mcl-1 or Bfl-1 overexpression. These results confirmed that 

peptides discovered via SPEED act in accordance with apoptosis biology and are minimally 

affected by the presentation of soluble ectodomains. 

Finally, we applied two structural biology techniques to assay the molecular basis of 

specificity by solving the structure of the peptide-protein complex. We initially tried to solve the 

structure of the peptide: protein complex through crystallography, but ultimately they failed to 

co-crystallize and we then applied nuclear magnetic resonance spectroscopy (NMR). First, we 

used total correlation spectroscopy (TOCSY) and nuclear overhauser effect spectroscopy 

(NOESY) to solve the structure of the peptide in isolation. We then used saturation-transfer 
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difference (STD) to identify the interactions between the peptide and the Bcl-xL structure. It is 

the subject of ongoing work to fit a structure to NMR data and use AutoDock Vina  to identify 

the binding confirmation of the 12 peptide using the PDB 1PQ1 template (Chapter 5) . 

While SPEED yielded high affinity and specificity Bcl-xL stapled peptides, there are 

some limitations and future directions for this work. While flow cytometry experiments 

confirmed improvements in fitness as sorting progressed, we speculate that our campaign could 

have been improved by incorporating specificity-based sorting earlier on. High affinity and non-

specific peptides were more abundant than highly specific but weakly binding peptides; the 

elimination of non-specific peptides earlier may have yielded specific hits with fewer rounds of 

sorting. This would likely be more important in future experiments that target Bcl-w and Bcl-2, 

where there are fewer defined mutations that improve specificity compared to Bcl-xL, Mcl-1, or 

Bfl-1. 

In conclusion, we used SPEED to engineer high affinity and highly specific Bcl-xL 

stapled peptide antagonists. We demonstrated they are highly specific when presented on the cell 

surface or synthesized in soluble form, act in accordance with apoptosis biology, and have 

unique structural motifs that enable their high specificity. Future work includes incorporating 

design rules towards cell permeability and protease stability; the diverse set of peptides that 

SPEED generated with desired fitness yield numerous molecules that can be translated for these 

important drug-like properties.8,18 Additionally, the rich set of sequence information generated 

towards Bcl-xL could be used to design sequences that are predicted to have high activity in 

other areas (such as cell permeability). This work suggests that SPEED is a versatile platform 

towards the generation of potent stapled peptide therapeutics. 
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Appendices 

Table 3.1: Predicted and calculated masses for compounds in this study 
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Table 3.2: Degenerate codons sampled for the bacterial cell surface stapled peptide variant library 
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Table 3.3: Primers used to generate the stapled peptide library in bacteria 
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Table 3.4: Details for magnetic and fluorescent cell sorting 
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Table 3.5: Nuclear magnetic resonance spectroscopy parameters 

NMR Instrument Bruker Avance II 600 MHz 

Buffer 
Phosphate Buffered Saline, pH 7.4 + 10% 
D2O 

Peptide Concentration 1.52mM 

Stoichiometric STD 
Ratio 3:1 Peptide: Protein 

TOCSY Mixing Time 80ms 

NOESY Mixing Time 150ms 

TOCSY Scan # 32 

NOESY Scan # 64 
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Figure 3.14: Structures and mass spectra from compounds generated in this study 
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Figure 3.15: Reverse phase high performance liquid chromatography traces for compounds generated in this 
study 
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Figure 3.16: Sorting progression of bacterial surface library 
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Figure 3.17: Representative fluorescent activated cell sorting (FACS) diagrams for FACS 1 and 2 
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Figure 3.18 Representative fluorescent activated cell sorting (FACS) diagrams for FACS 3 and 4 

  



 

 110 

 

Figure 3.19: Next generation sequencing scheme and primers used in this study 
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Figure 3.20: Logoplots for FACS rounds 1-4 from NGS analyses 
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Figure 3.21: Comparison of logoplots for negative/ positive FACS versus competitive binding FACS  
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Figure 3.22: Logoplots for FACS 4 binders when restricted to particular staple locations 
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Figure 3.23: P-values for all single concentration binding assays for FACS 4 stapled peptides. The p-value is 
calculated as a unpaired t-test. 
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Figure 3.24: Competitive inhibition and biolayer interferometry data for F2, a Bcl-xL non binding stapled 
peptide used for comparison in Figure 6. 
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Figure 3.25: TOCSY and NOESY nuclear magnetic resonance spectroscopy results. 
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Chapter 4 Machine Learning to Predict Continuous Protein Properties from Simple Binary 

Sorting and Deep Sequencing Data 

 

This chapter is derived from the following publication: 

Marshall Case, Matthew Smith, Jordan Vinh, and Greg Thurber. “Machine Learning to Predict 

Continuous Protein Properties from Binary Cell Sorting Data and Map Unseen Sequence Space.” 

Manuscript Submitted. 

Abstract 

Proteins are a diverse class of biomolecules responsible for wide-ranging cellular 

functions, from catalyzing reactions and recognizing pathogens to forming dynamic cellular 

structure. The ability to evolve proteins rapidly and inexpensively towards improved properties 

is a common objective for protein engineers. Powerful high-throughput methods like fluorescent 

activated cell sorting (FACS) and next-generation sequencing (NGS) have dramatically 

improved directed evolution experiments. However, it is unclear how to best leverage this data to 

characterize protein fitness landscapes more completely and identify lead candidates. In this 

work, we develop a simple yet powerful framework to improve protein optimization by 

predicting continuous protein properties from simple directed evolution experiments using 

interpretable machine learning. Evaluated across five diverse protein engineering tasks, 

continuous properties are consistently predicted from readily available deep sequencing data. To 

prospectively test the utility of this approach, we generated a library of stapled peptides and 

applied the framework to predict and optimize both affinity and specificity. We coupled integer 



 

 125 

linear programming with interpretable machine learning model coefficients to identify new 

variants from experimentally unseen sequence space that have desired properties. This approach 

represents a versatile tool for improved analysis and identification of protein variants across 

many domains of protein engineering. 

Introduction 

A longstanding goal of biochemistry has been to map the sequence of a protein to its 

structure and function.1 However, the complex biophysics that govern the protein fitness 

landscape, including how a protein folds and how its structure influences function, make the 

coupling of sequence to function an extremely difficult task. Protein engineers thus often focus on 

a much smaller subdomain of the protein fitness landscape, using the confined resources of 

experimental protein science to explore variants close to a known functional protein with the goal 

of incrementally improving function. A common and extremely powerful approach is directed 

evolution, where a protein is encoded by DNA, expressed by cells, and assayed by magnetic or 

fluorescent activated cell sorting (MACS or FACS) and, more recently, next generation 

sequencing (NGS) to identify variants with improved fitness. While these techniques represent 

powerful tools in the protein engineering arsenal, it is unclear how to best leverage information 

from deep sequencing towards the optimization of protein variants. A method capable of 

generating both fitness estimates from directed evolution experiments and predictions of sequences 

with higher activity would greatly expand the power and efficiency of directed evolution 

experiments. 

 The combination of directed evolution and next generation sequencing (NGS) has enabled 

protein engineers to rapidly evaluate millions to billions of protein variants in a highly focused 

manner. With maintenance of the genotype-phenotype connection, any technique that manipulates 
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DNA in a high-throughput manner can be applied to design focused protein variant libraries and 

assay protein function.130,131 Techniques like mRNA display and phage display can evaluate the 

largest libraries, although their small size precludes them from sorting approaches such as 

FACS.132 Cell surface display techniques, which use bacteria or yeast, enable facile measurement 

of the interaction between protein variants with soluble proteins which can be used for assaying 

binding affinity in high-throughput sorting and sequencing technologies.133 Coupling FACS with 

cell surface display technologies allows for the selection of rare protein variants among a large 

library with extreme selectivity.20,134 These techniques have enabled a wide range of protein 

engineering campaigns, from affinity maturation of protein-protein interactions to highly 

enantioselective enzymes.135,136 However, one challenge with these large libraries is how to 

identify the best lead molecules from the hundreds to thousands of observed sequences in the final 

sorted population. Traditional approaches for lead molecule identification select variants according 

to their abundance in the enriched library under the assumption that higher enrichment is indicative 

of higher function.137–139 One downside to this approach is that optimal rare variants are excluded 

from selection and more complex descriptions of how mutations contribute to protein function are 

difficult to ascertain.138 Application of NGS to the output pool of a protein variant sort improves 

the accuracy of clone frequency, but frequency rarely correlates with protein properties 

directly.140–142 These challenges arise from sources of error that are difficult to eliminate: variation 

in cell-to-cell growth, PCR/cloning biases, sequencing errors, and FACS instrument noise.25,143 

With additional sequencing of the input library, enrichment ratios can be calculated, which 

improves the accuracy of protein property prediction.144,145 Despite these improvements, there is 

still little consensus on the best experimental design and analysis of these directed evolution 

experiments. 
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Several approaches have been proposed to mitigate these sources of error and enable the 

prediction of quantitative protein properties from high-throughput sorting experiments. Deep 

mutational scanning (DMS) measures the enrichment of many variants. However, several 

challenges exist; their accuracy in resolving affinity is often limited to a narrow linear region 

(~10X dynamic range), the results are sensitive to the sorting conditions, stability, and expression 

effects, and the outcomes can differ from true quantitative measurements of binding affinity 

(equilibrium dissociation constants or KD’s).146,147 Sort-seq aims to address noise from sorting by 

using multiple bins across the entire fluorescent channel, followed by deep sequencing, to infer 

the distribution of each sequence in fluorescent space.148 These techniques, while often successful, 

require more sorting time and 8-12 fold increased deep sequencing throughput and still have a 

narrow range of resolution. Several more sophisticated sorting techniques address these issues: 

SORTCERY creates a rank ordering of affinities by sorting cells according to their binding and 

expression at a single concentration;61 amped SORTCERY further improves this technique by 

converting rank order to free energy changes by adding titration standards;37 TiteSeq sorts protein 

variants at multiple ligand concentrations and fits the affinity to the fraction bound.147 These 

methods leverage additional sorting and sequencing to improve the predicted outcomes. In this 

work, we seek to utilize deep sequencing with interpretable machine learning approaches to 

determine if we can predict continuous protein properties (like affinity) from binary sorting data 

(positive versus negative sorting).
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Methods 

4.1.1 Curation of NGS Data for Validation  

Five datasets were used to test the simple method of using binary labels to predict continuous 

properties (Table 4.1). The datasets and brief descriptions are given below. 

1. Adams et al. 2016147 

NGS data was downloaded from their GitHub repository:   

https://github.com/jbkinney/16_titeseq. The read counts and CDR1H and CDR3H sequences 

for each clone were extracted and aligned using in-house python scripts. Read counts were 

converted to frequencies. 

2. Starr et al. 2022 and Greaney et al. 2021149,150 

NGS data was downloaded from their GitHub repository:   

https://github.com/jbloomlab/SARS-CoV-2-RBD_DMS_variants. The data for the Delta 

mutation is stored in a different repository: https://github.com/jbloomlab/SARS-CoV-2-

RBD_Delta. Due to limits in Illumina paired end reading length, each sequence was given 

a unique molecular barcode, which was sequenced in high depth, but each full-length 

sequence was sequenced with its unique barcode separately. The sequences and their 

TiteSeq profiles were associated with their corresponding barcodes and read counts were 

converted to frequencies. In the current method, sequences with more than one mutation 

were not discarded. 

3. Makowski et al. 2022151 

Processed data was downloaded from their GitHub repository: https://github.com/Tessier-

Lab-UMich/Emi_Pareto_Opt_ML. Raw data was available from their repository. 

4. Sarkisyan et al. 201622 
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Like Starr et al. 2022, the GFP sequence is too long for high-depth Illumina sequencing, 

and therefore the authors gave each sequence a unique molecular barcode. We downloaded 

the accurate full length protein sequences, their matching unique barcodes, and the high-

depth sequencing of Sort-seq data from their repository:   

https://figshare.com/articles/dataset/Local_fitness_landscape_of_the_green_fluorescent_

protein/3102154. The read accuracy on the barcodes was low and the authors used a 

Levenshtein distance of <= 1 to connect barcodes that were close but not identical to the 

full protein sequence. We used the Levenshtein module with in-house python scripts to 

cluster sequences to their barcodes, which were available at 

https://pypi.org/project/python-Levenshtein/. After clustering, sequences and their 

barcodes were merged with their Sort-Seq distributions like Starr et al. Read counts were 

converted to frequencies. 

5. Jenson et al. 201837 

NGS data was obtained from their GitHub repository:  

https://github.com/KeatingLab/sortcery_design. The peptides’ short lengths permitted 

high depth deep sequencing and thus counts were directly converted to frequencies without 

further preprocessing. 

4.1.2 Binarization of FACS/NGS Data 

The variety of factors that influence the design of an experiment makes it challenging to 

generalize a sorting and sequencing workflow for any given protein engineering campaign. Each 

of these projects were analyzed by a different group, using different cell sorters, expression 

platforms, sequencing instruments, and protein types among other parameters (see Table 4.1 for 

dataset property summaries). Thus, controlling each of those parameters in our data processing 
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workflow was an important consideration towards the application of this approach to existing 

datasets and new targets alike. Many of the experiments use sophisticated sorting techniques to 

infer quantitative protein properties. We simulated a simple binary sort experiment by truncating 

the dataset such that it only includes the top or bottom 20% of sorted sequences (or as close as 

possible). This subsample of sequencing data approximates a simple sorting campaign from these 

quantitative sorting techniques. For example, Sarkisyan et al. contains sequencing data of GFP 

variants that were sorted into 8 bins; to simulate a simple binary sort, we aggregated the top two 

bins as positive and the bottom two bins as negative. For TiteSeq experiments (Starr 2022, Greaney 

2021, and Adams 2016) we only included data from sorts that used ligand concentrations near the 

average KD of the library (10-9, 10-9 , and 10-8 M respectively). Because the KD of a library can be 

readily obtained from low-throughput flow cytometry experiments, sorting at the KD of the library 

is a feasible approach to yield the largest separation between high and low affinity variants.143 This 

was 10-8 M  for  the COVID datasets, this was 10-8 M and 10-9 M, respectively. For the Makowski 

dataset, data was provided as a positive and negative dataset with varying cutoffs for each 

selection.  

4.1.3 Machine Learning Method 

In all cases, in-house python scripts were used to perform the data preparation and 

modeling on each of the datasets. Scikit-learn (https://scikit-learn.org/stable/) was used for linear 

discriminant analysis (LDA), one-hot encoding, scaling label vectors, and other pre-processing 

steps. Pandas (https://pandas.pydata.org/) and NumPy (https://numpy.org/) were used to handle 

sequencing and numerical data. PyTorch (https://pytorch.org/) was used to train neural network 

models. 
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First, sequences were one-hot encoded, eliminating positions that were not randomized in 

the study or appeared with very low abundance. Then, we calculated the frequencies of each 

sequence for the high- and low- protein property, and a multi-sequence alignment (MSA) was 

performed to ensure every vector was the same length and columns corresponded to the correct 

residues. The data was split into positive and negative groups by computing the ratio of high- and 

low- frequency of each clone and selecting a percentile cutoff. Initial percentiles were chosen as 

the top or bottom 20% of sequences, setting any sequences that contained zero frequency in the 

low property pool to the maximum ratio observed and any sequences that contained zero frequency 

in the high property pool to the minimum ratio observed. Positive (‘1’) and negative (‘0’) labels 

were assigned accordingly. The one-hot encoded protein sequences and their labels were then split 

into an 80:20 training:test split. The test set was held aside until all analyses were complete and 

used to validate the model training process. In later analyses, to explore the hyperparameter space 

of these cutoff parameters, we tested all combinations of the read count, replicate count, and ratio 

percentile and measured the change in modeling performance. Sensitivity to training:test splitting 

and the ratio of positive negative labels was tested by performing five-fold cross validation using 

SciKit Learn’s ShuffleSplit function. 

We selected linear discriminant analysis for several reasons. First, this method has 

previously been shown to predict continuous properties from binary sorting data.151 Next, 

hyperparameter optimization for this model was straightforward, as the Sci-Kit Learn 

implementation of LDA has very few parameters, including the solver (‘svd’ was the only one to 

converge consistently), n_components (which is fixed to 1 for projection to a single dimension to 

correlate with protein properties), and tol (which did not change the outcome). Another benefit of 

using LDA is its simplicity; the linear nature of the model allows for the direct interpretation of 
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how certain residues contribute to function. While we also evaluated several other models that can 

create an internal continuous representation for classification (such as support vector classifiers, 

with the option of using different kernels), we found that LDA models trained much faster. The 

transform method was used to project data into the 1-dimensional LDA projection after training. 

Because LDA is a classification model and does not have a regression analog, we used ridge 

regression, a modified version of linear regression that penalizes large weights, to compare LDA 

projections to models trained on continuous data. Furthermore, ridge regression did not result in 

extreme overfitting that was observed by regular linear regression. Finally, ridge regression has 

been shown to be a powerful modeling technique for protein engineering tasks.152  

Neural network models were used to evaluate whether non-linear models would capture 

additional useful information that linear models are unable of modeling, as proposed previously.151 

Standard fully connected, feed forward networks were used with dropout p = 0.5 as shown to be 

effective in the literature.153 The hidden size (32-256) and number of layers (1-3) did not 

dramatically affect the results and we ultimately chose the midpoint for both, 128 and 2 

respectively (data not shown). We used 700 epochs and a batch size of 32 was for all datasets. 

Binary Cross Categorical Entropy Loss was used as the loss function, and Stochastic Gradient 

Descent optimizer with a learning rate of 0.01 was used for all datasets. Training was done on a 

Nvidia Tesla V100 and typically took between 5 minutes and 2 hours depending on the size and 

complexity of the dataset. 

4.1.4 Stapled peptide cell sorting, sequencing, and flow cytometry 

Experimental stapled peptide libraries targeting B cell lymphoma 2 (Bcl-2) proteins were 

used to evaluate the computational methods on novel datasets. These libraries were sorted and 

sequenced as described previously in Chapter 3. In brief, a computational library of BIM mutants 
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(a non-specific anti-apoptotic peptide) was designed and transformed into bacteria that displays 

stapled peptides (see Table 4.2 for mutagenesis codons, Table 4.3 for sampled amino acids, and 

Table 4.4 for library primers).23,24 This library was sorted using a combination of MACS and 

FACS as follows: one round of expression MACS, two rounds of affinity MACS, two rounds of 

affinity FACS, and two rounds of specificity FACS. Two of such libraries were sorted in parallel: 

one towards Bcl-xL and another towards Mcl-1. These libraries were deep sequenced using 

Illumina NovaSeq S4, demultiplexed, merged using NGMerge, and analyzed using in-house 

python scripts (see Table 4.5 for NGS primers).125 Each peptide sequence was identified by 

aligning the DNA with the scaffold eCPX protein and then translating the peptides in the 

corresponding open reading frame. Peptide sequences and their frequencies were aligned across 

all rounds of sorting, and sequences that had mutations not specified by the original library design 

were removed (~10% of all sequences). Sequences from the four rounds of FACS were denoted 

as ‘hits’ and sequences from the expression sort were denoted as ‘not hits’ (see Table 4.1 for 

dataset summary). Then, the ratio of each round of FACS to the expression was computed and fed 

into the machine learning pipeline. LDA models were trained identically to the other datasets. 

 A smaller number of peptide sequences were expressed on the surface of bacteria and 

measured in low-throughput flow cytometry experiments. To evaluate whether LDA projections 

were predictive of continuous properties, we expressed 57 stapled peptides on the surface of 

bacteria from various rounds of sorting (Mcl-1 FACS 2, 3, or 4, and Bcl-xL FACS 2 or 4) to capture 

a wider distribution of specificities: peptides from later in the rounds of sorting should have more 

specificity while those from earlier rounds should be less specific if sorting enriched towards 

higher performing sequences. We then measured their binding at the approximate KD of the wild 

type sequence in triplicate (1nM and 10nM for Mcl-1 and Bcl-xL respectively). Fraction bound 
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was calculated by normalizing to expression and dividing by a saturated binder (BIM-p5 at 

250nM).24 LDA projections were calculated and compared to continuous values identically to the 

other datasets.  

4.1.5 SORTCERY 

To get continuous estimates of binding properties from cell sorting, peptides from the final 

round of FACS for both Mcl-1 and Bcl-xL were evaluated using SORTCERY. Peptides were 

incubated with either Mcl-1 or Bcl-xL at 1nM and sorted into twelve bins following the protocol 

from Reich et al.61 Briefly, cells labeled with target Bcl-2 protein and anti-HA display tag were 

sorted into twelve bins along the ‘axis of affinity’, the diagonal gates that resolves the fraction 

bound. To compare the SORTCERY value with those measured from binary sorting, we computed 

the gate score of each sequence as described in the original work.61 Each of these gates were 

collected individually and processed for deep sequencing as described previously. The deep 

sequencing data from these experiments was processed identically to the stapled peptide libraries 

as above. 

4.1.6 Sequence Optimization via Integer Linear Programming 

To optimize protein sequences, we applied integer linear programming (ILP), an approach 

that solves an objective problem given discrete input variables and constraints. Compared to other 

techniques that maximize an objective given an input, ILP scales more efficiently with a large 

number of samples and does not rely on iterative predict and test loops that require additional 

experimental resources.154–156 Furthermore, ILP is directly amenable to multi-objective 

optimization through the addition of inequality requirements.37 We set up this problem using the 

PuLP python module.157 First, we defined the objective as maximizing the dot product of the model 
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coefficient vector and the positions and amino acid constraints as defined by the library design. 

This objective is the maximization of the confidence of binding for a given sequence. Next, we 

constrained the optimization by only allowing one amino acid at each position, requiring that each 

peptide had two azidohomoalanine residues (responsible for peptide stapling), and that the two 

stapled residues were at a distance as specified by the library design (i,i+7). Finally, we formulated 

the problem as a multi-objective problem by adding the additional constraint that the dot product 

of the off-target coefficients and peptide sequence was in the non-binding regime.
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Results 

4.1.7 Overview of Method 

Despite significant efforts to gather quantitative data from high throughput sorting, most 

directed evolution campaigns rely on basic metrics of protein fitness. We utilized a simple 

workflow to extract continuous protein properties from NGS datasets while keeping the 

experimental design simple and affordable (Figure 4.1). To accomplish this task, we generated 

binary labels from enrichment ratios, trained machine learning models using these binary labels to 

infer continuous protein properties,151 and optimized protein sequence and function beyond 

experimentally sampled space into unseen sequence space.37 We hypothesized that continuous 

protein properties can be obtained from simple sorting and sequencing analyses for three primary 

reasons. First, because cell sorting is a stochastic process, cells sorted into discrete bins are sampled 

from an underlying continuous distribution. Thus, cells sorted in a binary manner may allow 

inference of this distribution.158 Second, biased sampling towards the most and least functional 

variants may allow models to ‘interpolate’ function of intermediate fitness. Finally, sampling many 

epistatically interacting motifs may allow inference between them.159 We also hypothesized this 
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approach would work across multiple protein engineering objectives, including affinity 

maturation, fluorescence, deep mutational scanning, and specificity. 

 

Figure 4.1: Extraction of quantitative protein fitness data from simple binary sorting and sequencing 
experiments and extrapolation into unseen sequence space towards higher fitness variants. (A) A library of 
protein variants is expressed on the cell surface and sorted on the basis of fitness (fluorescence, binding affinity, etc.). 
The library is sorted into two pools: one that denotes function (positive sort) and one that denotes lack thereof (negative 
sort). While these pools don’t map to quantitative fitness, they are indicative of qualitative fitness. Through analysis 
of the sequence patterns in each pool, quantitative features can be inferred and used to extrapolate beyond 
experimentally measured sequences (B). Because cell surface display can assay far fewer sequences than are possible, 
extrapolating beyond experimentally seen sequences may identify higher fitness variants.  

To validate the approach, we aggregated data from multiple protein engineering campaigns 

that fulfilled two criteria: 1. they had many data points of multi-mutant proteins from a sorting 

campaign and 2. they had measured many continuous protein properties among these variants. 

These datasets were the fitness landscape of GFP,22 the directed evolution of a fluorescein-binding 

scFv,147 and the fitness landscape of SARS-COV-2 Spike protein .149,150 Because the co-

optimization of multiple properties is often needed, we also gathered datasets that design high-

affinity and high-specificity monoclonal antibodies151 and highly specific peptides between three 

B cell lymphoma 2 (Bcl-2) proteins.37  
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4.1.8 Data processing pipeline for varying protein variant libraries and sorting schemes 

The modular data processing and machine learning pipeline to analyze multiple protein 

variant libraries consists of multiple steps Figure 4.2. First, a library of protein variants is sorted, 

and the ratio of the positive to negative gate frequencies is calculated for all sequences based on 

the deep sequencing data. If a sequence found in the positive gate but was unobserved in the 

negative gate, the ratio was set to the maximum observed; conversely, if a sequence found in the 

negative gate was unobserved in the positive gate, the ratio was set to 0. We hypothesized this 

ratio scheme balances the information gained from enrichment ratios while still including clones 

that were overwhelmingly enriched or depleted. Labels (‘1’ for high performing variants and ‘0’ 

for low performing variants) were assigned by determining a cutoff based on the average ratio 

(percentile ≥0.8 and ≤0.2 respectively) across how many replicates they appeared in (≥2). We 

hypothesized that while splitting the positive and negative labels at the 50th percentile would 

increase the data size, sorting noise around the midpoint would confound information gained from 

binary ratios (Figure 4.11, Figure 4.12, Figure 4.13, Figure 4.14, and Figure 4.15). We also 

hypothesized that removing sequences with 1 replicate would further reduce noise from sorting. 

Initial estimates of these parameters were chosen to balance the size of the dataset, the strictness 

of inclusion, and the confidence of the sequencing data. Having easily modifiable parameters for 

label assignment serves as both a tool for sequencing quality processing and a powerful 

hyperparameter in the subsequent machine learning steps (see Figure 4.11, Figure 4.12, Figure 

4.13, Figure 4.14, and Figure 4.15 for hyperparameter effect on dataset size for each of five 

datasets). 
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Figure 4.2: Deep sequencing, data pre-processing, and machine learning overview. The most and least functional 
protein variants from the binary sort are sequenced (A) and the ratio of sequence reads in the positive versus negative 
gate is calculated (B). Binary labels are assigned to each sequence according to its ratio (C); the label thresholds are 
easily modified depending on the library construction, sorting strategy, and sequencing data quality. Protein sequences 
are one hot encoded for machine interpretability (D) before being used to train a Linear Discriminant Analysis (LDA) 
model (E), which is evaluated on a hold-out test set (F). Then to calibrate the LDA model, continuous protein 
properties are obtained either from a quantitative sort (SORTCERY, Sort-Seq, or TiteSeq) or from low throughput 
measurements (flow cytometry titrations, ELISA, etc.) (G,H). Finally, the projections from the LDA model are used 
to predict continuous protein properties (I). 

 Armed with a dataset of sequences and binary function labels, a linear discriminant analysis 

(LDA) machine learning model was trained because it fulfilled two criteria: it could perform 
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classification of sequence with its function label, and it had an internal continuous measurement 

that could be used to correlate with continuous properties. Because LDA models project high 

dimensional sequence data to maximize class separation, the final projection is a continuous 

representation that has been previously shown to correlate with continuous properties.151 The 

model was trained and tested by splitting the sequencing data into train and test sets randomly 

(80:20 train:test). To evaluate whether the weights learned by the LDA model correlated to 

meaningful continuous properties, a subset of the sequences were assayed for their property from 

a lower throughput but more accurate technique. For all but the Makowski dataset, this was a 

quantitative cell sorting experiment, and otherwise a low throughput measurement of affinity or 

specificity via flow cytometry with individual sequences. We then predicted the continuous 

properties of proteins by comparing the projections from LDA with actual continuous 

measurements. 

4.1.9 Binary labels predict protein properties with equal correlation power 

To evaluate whether the LDA models trained on binary sorting data inferred meaningful 

features of the protein properties, we curated five datasets as described in the methods (see Table 

4.1 for dataset summaries). Using data from each of the these, we compared the measured 

continuous properties of protein variants to their predicted values from LDA models trained on 

binary sorting data, as shown in Figure 4.3 (A, left) for the Sarkisyan et al. dataset.  We next 

sought to determine the performance of a comparable model trained on continuous data. 

Continuous data is more expensive and/or complicated to obtain but presumably is more 

information rich. Therefore, we hypothesized models trained on continuous data would have 

stronger correlative power. To evaluate this hypothesis, we trained Ridge regression models, which 

have been previously shown to be powerful linear models that are not prone to over-fitting.152 We 
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then compared the ability for both LDA and Ridge models to predict continuous properties (Figure 

4.3 A, right). Surprisingly, for the Sarkisyan 2016 dataset, the LDA models performed similarly 

to the Ridge regression models as evidenced by a similar Spearman’s r (0.846 for the LDA model 

and 0.855 for the Ridge regression model). 
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Figure 4.3: Predictions from models trained on binary data are highly correlated with continuous protein 
properties and equally powerful as models trained on continuous data. Evaluated on the Sarkisyan data, LDA 
models trained on binary data (A, left)  or Ridge models trained on continuous data (A, right) are correlated with 
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fluorescence. Across five protein engineering datasets, models trained on binary data are equally predictive of 
continuous properties (B). 

We then tested whether the other four datasets had similar performance. First, we observed 

that LDA models achieved high classification performance on the held-out test set for all datasets 

(see Table 4.6 for accuracy, precision, recall and F1 score) and were not overfit as evidenced by 

similar performance on the training and test sets. Next, we observed that LDA projections were 

highly correlated with continuous measurements, as evidenced by Spearman’s r between 0.5 and 

0.85 (Figure 4.3b, additionally see Figure 4.11, Figure 4.12, Figure 4.13, Figure 4.14, and 

Figure 4.15for hyperparameter effect on performance on each of five datasets). To get an estimate 

of model sensitivity to dataset splitting, we performed 5-fold cross validation (see Methods) on 

each training dataset (Figure 4.16).  Strikingly, for each of the datasets, we observed no significant 

difference in the correlation (significance was measured as a t-test on the unbounded Z transform 

of the Spearman r).160 Encouraged by the success of correlation, we also sought to explain the 

magnitude of correlation, which was consistently high but had two outliers. Adams 2016 dataset 

had a significantly lower predictive value of r~0.5. We suspect this decrease in performance has 

two sources: noise in the dataset due to an abundance of unresolvable low affinity variants (see 

Figure 4.17 for correlation plots for each dataset), and the lack of discrimination between binding 

affinity and expression level in the experimental sorting design, which can attribute higher affinity 

to sequences with higher display and vice versa.143 The Makowski 2022 specificity dataset also 

had lower than average performance; we hypothesize this model suffered due to the difficult nature 

of measuring antibody off-target binding.151,161,162  

To test whether linear models were limiting the predictive capabilities of continuous properties, 

we also tested fully connected, feed forward neural networks, which have been shown to 

similarly identify continuous values from binary data.151 While non-linear models may capture 
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higher order epistatic behavior, these models generally performed as strongly as LDA models 

(Figure 4.18). Over this wide range of protein engineering objectives, this approach consistently 

predicts continuous properties and has comparable accuracy to models trained on state-of-the-art 

sequencing and sorting data. 

 
Figure 4.4: LDA Projections from binary sorting versus multi-gate predicted continuous affinity (see Jenson et 
al. 2018 PNAS for more details). 

4.1.10 Prediction of stapled peptide affinity and specificity from binary labels 

To apply this method prospectively to a new dataset following the promising retrospective 

analysis, we chose B cell lymphoma 2 (Bcl-2) stapled peptide antagonists as our design case. In 

addition to requiring non-natural amino acids, making it incompatible with modeling approaches 

based on naturally evolved proteins, these peptides are well suited for this approach because we 

can evaluate not just a single property but the tradeoff between affinity and specificity. We 

generated a dataset of B cell lymphoma 2 (Bcl-2) stapled peptide variants that were sorted over 

several rounds (Figure 4.5a) using the bacterial cell surface display.23,24 This library was designed 

based on naturally occurring peptide sequences, SPOT arrays of BIM mutants, and previously 
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designed high-affinity or specificity BH3 variants (Case 2023, manuscript in progress) (see Table 

4.2, Table 4.3, and Table 4.4)36,37,129 Because bacterial surface display libraries are highly limited 

by size compared to the theoretical diversity of BH3 peptides (~1030), mutations were prioritized 

that were predicted to govern specificity between Mcl-1 and Bcl-xL. The final library of ~109 was 

transformed into bacteria (Figure 4.5b) and sorted against either Mcl-1 or Bcl-xL with a 

combination of three magnetic and four fluorescent activated cell sorting (MACS/FACS) (Figure 

4.5c). The magnetic cell sorting was performed until the library was sufficiently reduced in 

diversity for analysis with FACS, which offers more precise control over property selection. We 

deep sequenced these pools to isolate highly active peptides (Figure 4.5d), which enabled an 

understanding of sequence trends that governed high affinity and specificity (see Figure 4.19 for 

sequence trends) and provided a source of data to train and evaluate the capabilities of LDA models 



 

 146 

to predict peptide function (Figure 4.5 e and f). We observed high correlation between for both 

Mcl-1 and Bcl-xL LDA models (Spearman’s r of 0.893 for Mcl-1 and 0.708 for Bcl-xL). 

 

Figure 4.5: Prospective analysis of B cell lymphoma 2 (Bcl-2) pro-apoptotic stapled peptides via bacterial 
surface display, deep sequencing, and machine learning. A combinatorial mutagenesis library of stapled BIM 
variants was designed including  staple locations (left) and sequence (red positions fixed, blue positions variable, right) 
(A), transformed into bacteria (B), sorted using a combination of magnetic activated cell sorting (MACS) (C) and 
fluorescent activated cell sorting (FACS) towards Bcl-xL and Mcl-1 (two members of the Bcl-2 family) in parallel. 
The library was next generation sequenced (NGS) to calculate frequencies of each unique sequence along the sorting 
progression (D). Finally, a LDA model was trained on the binary labels from NGS and used to predict the continuous 
binding of 57 peptide variants, which were selected randomly from FACS 2-4 for both Mcl-1 (E) and Bcl-xL (F). 
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To generate training data, we aggregated all four rounds of FACS and the expression 

positive MACS sorts, hypothesizing that would provide additional confidence for ‘hits’ and 

expressing but non-binding sequences. The ratio of these counts was computed as described above 

and used to generate labels for LDA training and testing (see Figure 4.19 for logoplots of negative 

and positive sequences). First, we observed that LDA models had high classification performance 

and were not overfit (see Table 4.7 for performance statistics and Figure 4.20 for hyperparameter 

effect). We then tested the performance of LDA to predict continuous properties by randomly 

sampling 57 sequences among the FACS sorts, measuring their continuous binding via flow 

cytometry, and measuring the correlation between predicted LDA binding and the sequences’ 

actual binding (Figure 4E-F) (see Figure 4.21 for sequences and data). We observed a strong 

correlative power between LDA projections and continuous measurements of peptide affinity: 

spearman ρ of ~0.7 and ~0.8 for Mcl-1 and Bcl-xL respectively (p < 0.00001). Finally, we sorted 

the final round of sorted cells via SORTCERY for a comparison with high-throughput, semi-

quantitative measurements of binding affinity. Surprisingly, the binary sorting data coupled with 

an LDA model trained with NGS data had better performance than selecting clones from the final 

2 rounds of sorting for Mcl-1 specificity (Figure 4.4), suggesting that the information contained 

from simple sorting experiments provides a powerful method to predict continuous protein 

properties. 

4.1.11 Optimization of stapled peptides using machine learning and integer linear 

programming 

While directed evolution campaigns may yield the desired properties after sorting, sequencing, 

and modeling, it is also possible that further optimization is necessary. In such cases, protein 

engineers rely on a combination of manual and automated approaches to further optimize lead 



 

 148 

candidates.37,154–156 We sought to explore how our modeling workflow could not only score entire 

sequences, but how the contributions of individual amino acids contributed, potentially enabling 

the generation of new, unsampled sequences. Because linear models have associated weights for 

each amino acid and sequence position, the same scoring tools to find the best measured clones 

can also be used to score sequences that have never been evaluated experimentally. We therefore 

applied an optimization approach that can optimize discrete inputs for continuous properties and 

explore unseen sequence space: integer linear programming (ILP) (Figure 4.6),  which has 

previously been applied to design specific linear peptides towards the Bcl-2 proteins.37 To establish 

the baseline of specificity from sorting, we further characterized variants from the final round of 

sorting that were predicted to be specific for Bcl-xL and Mcl-1. Interestingly, most peptides from 

the Bcl-xL library were highly specific (Figure 4.21), while fewer from Mcl-1 performed favorably 

(~80% had significant off-target binding, Figure 4.6a). We hypothesized we could recover 

specific Mcl-1 clones by optimizing sequences from sorting and sequencing data that otherwise 

yielded mixed results. We solved the ILP model three times, once for Bcl-xL specific peptides, 

once for Mcl-1 specific peptides, and once more for bispecific peptides (see Methods for more 

details). Out of many sequences predicted to have high activity for Mcl-1 (Figure 4.22), we 

randomly selected several sequences for low-throughput flow cytometry analysis (Table 4.8). 

Strikingly, we observed that the optimized Mcl-1 sequences displayed similar or improved 

specificity compared to the highest activity clones assayed experimentally. 
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Figure 4.6: Extrapolation of interpretable ML model weights to generate novel, highly specific Mcl-1 inhibitors. 
Of 20 sequences randomly selected from the final two rounds of sorting towards Mcl-1, many did not display high 
levels of specificity towards Mcl-1 when measured in low throughput binding assays (A). We hypothesized the 
weights from linear discriminant analysis (LDA) machine learning could be used to design peptides with high affinity 
to Mcl-1 (B) or Bcl-xL (C). To optimize the sequences, we applied integer linear programming (ILP) (C) to maximize 
the likelihood a peptide binds Mcl-1 while minimizing its binding to Bcl-xL (D). ILP identified numerous sequences 
that were predicted to be highly specific (E) that were not among the 105 sequences assayed experimentally. Two 
variants were randomly chosen among this set and were found to be as specific as the best clones identified from 
sorting (F). 

Sequences initially identified by minimizing Mcl-1 binding while maximizing Bcl-xL 

binding resulted in peptides that did not bind either Mcl-1 or Bcl-xL (Figure 4.7 and Table 4.8); 
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it has been previously shown that subtle differences in ILP set up can affect the efficiency of 

outcome.37  

 

Figure 4.7: Initial designs for Bcl-xL using ILP yielded non-binding sequences for both Bcl-xL and Mcl-1. The 
optimization problem was set up as a maximization of Bcl-xL affinity subject to a low cutoff of Mcl-1 binding. 

We suspect this failure was due to the model being overly sensitive to mutation at Asp at 

position 4b, which was the only mutation consistently sampled that had a high score for both Bcl-

xL and Mcl-1 but was slightly higher for Mcl-1. To address this issue, we maximized Bcl-xL 
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binding then chose the sequences which had the lowest Mcl-1 scores, which preserved Bcl-xL 

binding and resulted in highly specific peptides (Table 4.9 and Figure 4.8).  

 

Figure 4.8: Second iteration for Bcl-xL specific stapled peptides using ILP. *: no binding detected up to 250nM. 

While our sorting campaign was originally designed to identify highly specific peptides, 

we also pursued bispecific peptides, which serve as proof that the model can interpolate in 

sequence-function space but could also serve as therapeutics in diseases driven by both Bcl-2 

proteins. Sequences were identified by maximizing both Mcl-1 and Bcl-xL binding, yielding 
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peptides with relatively high affinity for both targets that had significant sequence difference from 

wild type (BIM) (Figure 4.9). 

 

Figure 4.9: Bispecific peptides designed via ILP. The ILP objective was set as the maximization of both Mcl-1 
and Bcl-xL score.  

 To show generalizability of ILP to generate functional protein variants, we additionally 

set up the optimization problem using the Makowski dataset (Figure 4.10). We defined the 

objective of this optimization as the minimization of off-target binding, subject to the 

maintenance of affinity. We solved the model and compared the highest functional sequences 

according to our predictions to those described in the original manuscript. We found that the 

predicted sequences were extremely close to those identified as co-optimal by Makowski and co-

authors. 
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Figure 4.10: High affinity and specificity antibodies from Makowski et al. (2022) Nature Communications via 
ILP. The ILP objective was set as the maximization of affinity and minimization of specificity, subject to a 
minimum affinity threshold. 

 

Discussion 

In this work, we developed a method to utilize NGS data from simple binary sorting results with 

machine learning to infer continuous protein properties. These results can also be utilized to extend 

the sequence space beyond sequences directly observed in the library (Figure 4.1). The workflow 

consists of two important parts: the label assignment process from deep sequencing data, and the 

use of linear machine learning models to predict continuous protein properties from binary data 

(Figure 4.2). Currently, there is a lack of consensus on how to best analyze directed evolution data 

for lead molecule selection and protein optimization. This lack of consensus likely arises from 

variations in how experiments are set up, which depends on surface display platform, sequencing 

instrumentation, FACS instrumentation, the design of sort gates, sequencing depth, among other 

factors. This technique provides a practical but powerful method compared to typical enrichment 

ratio analysis through a simple binary classification from any sorting experiment. By defining a 

ratio of frequencies based on any two gates (positive/negative sort, input/output sort, etc.) and 
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binarizing the ratios into ‘1’ and ‘0’, any directed evolution experiment can be transformed into a 

dataset for downstream analysis. The transformation to binary labels is important because the next 

component of the workflow is the use of linear machine learning models that can be used to predict 

continuous properties from directed evolution data (linear discriminant analysis, LDA).151 The 

noise in enrichment ratios is likely mitigated by binarization, and the information contained from 

labels and sorted protein sequences facilitates the continuous transformation yielded by machine 

learning models.  

 To test our method, we curated data from five large protein engineering campaigns: the 

fluorescent landscape of avGFP,22 the directed evolution of a fluorescein-binding scFv,147 the RBD 

affinity  landscape towards SARS-COV-2 Spike protein,149,150 high-affinity and high-specificity 

Fabs,151 and the design of highly specific peptides against B cell lymphoma 2 (Bcl-2) proteins 

(Figure 4.3).37 Proteins in these data vary in complexity from short alpha helical peptides to large 

globular proteins and in objective from protein fluorescence to multi-objective affinity and 

specificity optimization. Furthermore, each of these datasets varied in both sorting strategy and 

complexity: Makowski et al. sorted for the top ~5% of antibody variants while Adams et al. 

quantified the binding of an entire family of fluorescein binders. While many of the projects relied 

on complex sorting techniques to obtain quantitative protein labels, we simulated simple binary 

sorting experiments by limiting the sequencing data (see Methods). We then evaluated the 

predictive power of LDA models trained on these simple sorting experiments and observed both 

impressive classification performance and strong prediction of continuous properties from LDA 

binary projections. Interestingly, models trained on binary data were highly correlated with 

continuous data (Spearman correlation coefficients ranged from 0.5-0.9). Furthermore, when we 

compared the predictive power of LDA models trained on binary data to regression models trained 
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on continuous data, we observed no increase in rank order performance, suggesting that models 

trained on simple sorting experiments yield comparable information to models trained on data 

from experiments that generate hundreds to thousands of continuous measurements.37,61,147  

 Next, we sought to explore how this workflow could be used for prospective analysis in 

addition to retrospective analysis (Figure 4.5). We hypothesized that because the workflow is 

agnostic to protein type and display platform, any directed evolution campaign with sufficient 

sorting and sequencing data is a suitable environment for testing. As such, we chose to analyze 

libraries of stapled peptides, an important class of protein formed by a covalent crosslinking of 

two amino acids.46 Stapled peptides are being explored as therapeutics for previous ‘undruggable’ 

disease related proteins, owing to their location inside the cell and untargetable by small molecule 

drugs.5 Stabilized Peptide Engineering by E. coli Display (SPEED) has previously been 

demonstrated to accelerate the development of stapled peptides by displaying them on the surface 

of bacteria, where libraries of peptides varying in sequence and staple location simultaneously can 

be optimized for protein-peptide interactions.23,24 One additional challenge in the optimization of 

stapled peptides is their reliance on non-natural amino acids, which generally results in the 

incompatibility of models trained on naturally occurring sequences.163–166 We built on previous 

work by generating a library of randomized stapled peptides towards two B cell lymphoma 2 

proteins (Bcl-2), an important class of apoptosis regulatory proteins that is responsible for cancer 

cells immortality.50 We sorted this library against two important members: Mcl-1 and Bcl-xL,51 

each of which drives immortality in different diseases.57 Selective targeting among Bcl-2 proteins 

is an outstanding goal in drug targeting but is difficult due to the highly homologous nature of 

these proteins. After several rounds of cell sorting and subsequent deep sequencing, we trained 

LDA models on a subset of the binary sequencing data, evaluated the model on both the hold-out 
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test set, and generally observed high classification performance. We then measured the binding of 

57 sequences from various rounds of sorting with low throughput flow cytometry experiments and 

observed that many of the clones did not demonstrate favorable affinity or specificity properties 

when sampling from these enriched libraries. However, we did observe a high degree of correlative 

power between LDA projections and continuous peptide binding. Finally, these models were able 

to identify molecules within the set of experimentally observed sequences that were highly specific 

but may not have been selected for lead compounds due to their rarity.138 Several sequences along 

the Pareto frontier, or the boundary of co-optimality where an increase in one property leads to a 

decrease in the other, were translated into bacteria and assayed via flow cytometry. We also 

characterized several clones that were bispecific, which could have applications in specific 

diseases, but also serves as a test case if the model can interpolate function where it wasn’t directly 

engineered via cell sorting. The specificities of these peptides agreed with model predictions, 

indicating the model was able to identify functional and rare peptides from across the specificity 

landscape. 

Finally, we sought to use the interpretive nature of the linear machine learning models to 

explore unseen sequence space and generate highly diverse and novel sequences (Figure 4.6). To 

accomplish this task, we used integer linear programming and the coefficients from machine 

learning to mathematically optimize peptide sequences beyond the properties that were 

experimentally observed (from deep sequencing or flow cytometry).37 We hypothesized that such 

an approach could recover functional peptides with consistency where sorting did not; while the 

final round of Bcl-xL sorting yielded consistently high affinity and specificity variants (Figure 

4.21), the Mcl-1 sort had a small fraction of sequence variants with desired properties. We thus 

prioritized the design of Mcl-1 binders and identified a new peptide sequence that improved 
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peptide properties beyond the experimentally measured Pareto front. Importantly, this variant 

demonstrated specificity at least as potent as the most specific clone identified from experimental 

work. 

To test whether our sequence optimization workflow generalizes beyond small alpha 

helices, we also applied ILP to the Makowski dataset (Figure 4.10). While antibodies have been 

the subject of optimization using highly sophisticated models,167–170 we hypothesized that the high 

performance from linear ML models would make it amenable to ILP optimization. Like Bcl-2 

inhibitors, antibodies need to demonstrate properties beyond high affinity to be considered 

therapeutic, and ILP is uniquely suited to tackle co-optimization.171 We observed that the set of 

sequences predicted to be co-optimal by ILP are similar to their most optimal clones identified 

experimentally. Furthermore, their lead antibody identified as co-optimal (EM1) was among the 

set of antibodies predicted by ILP. Makowski and co-authors designed a comparatively small 

library (~106) for their experimentally measured sequences (~104), resulting in a more confident 

sampling of mutated amino acids experimentally. In contrast, the library of stapled peptides we 

designed had a much larger ratio of design space (~109) to experimentally measured sequences 

(~105), making this library suitable for extrapolation beyond experimentally measured space using 

machine learning. For protein variant libraries where mutations are sufficiently independent 

(minimal higher order epistatic interactions), a strategic subsampling of design space can be 

advantageous for subsequent protein optimization with linear models172,173 and help to de-risk 

sorting campaigns, as exploration through the full design space can improve function beyond those 

originally assayed. 

The use of ML with NGS data from binary sorting campaigns has many advantages, but 

the approach also has a few limitations. It is important to note that LDA projections are correlated 
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with, but not predictive of, continuous measurements. Therefore, LDA-informed properties may 

not match 1:1 with continuous properties. However, because many protein engineering campaigns 

do not seek to quantify the exact magnitude of fitness, but rather seek to maximize or minimize a 

property or trade-off between properties, this correlation can still provide direct insight into protein 

fitness and accelerate optimization efforts. We also found that ILP optimization was sensitive to 

model weights as evidenced by the initial failure of generating highly specific Bcl-xL peptides. 

Two approaches to address this are incorporating uncertainty into model predictions that could 

yield more confident extrapolation into unseen sequence space,154 or selecting a range of sequences 

from multiple modes of optimization simultaneously.37 Despite identifying peptides with high 

specificity towards Mcl-1 and Bcl-xL, more work is needed to yield effective peptide therapeutics: 

it is equally important to show these peptides do not bind the other 3 Bcl-2 members.57 Lacking 

knowledge of the sequence space of high affinity binders, we were unable to explore this aspect 

of peptide design; future work includes designing stapled peptides against the entire Bcl-2 family, 

which play additional roles in off-target toxicity and are responsible for immortality in other 

cancers.  Because this approach is amenable to higher dimension multi-objective optimization, we 

expect that optimizing specificity for five proteins with this approach is possible.  

Despite these limitations, the ability to score sequences beyond those observed 

experimentally is important because drug-like properties not easily assayable by high-throughput 

techniques (immunogenicity, stability, cell permeability, etc.) are often highly dependent on 

sequence and may need further optimization.18,122,171,174 For example, minimization of positive 

charge in CDR regions of antibodies has been shown to minimize off-target binding,162 while 

selective placement of hydrophobicity and positive charge has been shown to improve cell 

penetration for stapled peptides.18,175 This combined machine learning and optimization approach 
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provides a powerful method to identify highly functional protein variants if experimentally 

measured clones did not meet fitness criteria or further sequence optimization is necessary. 

In summary, the data processing and modeling workflow designed in this work is a 

versatile tool towards the improved analysis and identification of protein variants across many 

domains of protein engineering by utilizing machine learning and NGS data to predict 

continuous properties from binary sorting data.  

Appendices 

Table 4.1 contains metadata about datasets used in this study; Table 4.2 is the library codon 

table and Table 4.3, Table 4.4, and Table 4.5 are DNA primers for library design and 

sequencing; Table 4.6 and Table 4.7 are LDA performance statistics; Table 4.8 and Table 4.9 is 

DNA primers for ILP design. Figure 4.11, Figure 4.12, Figure 4.13, Figure 4.14, and Figure 

4.15 are dataset hyperparameter effect on performance; Figure 4.16 is training and test 

correlation statistics; Figure 4.17 is correlation plots for all datasets; Figure 4.18 is neural 

network modeling statistics; Figure 4.19 is stapled peptide input and output logoplots; Figure 

4.20 is hyperparameter performance for stapled peptide modeling; Figure 4.21 is sequences and 

binding specificities of random stapled peptides; Figure 4.4, Figure 4.22, Figure 4.7, Figure 

4.8, Figure 4.9, and Figure 4.10 are sequences and information about ILP sequence optimization 

for Mcl-1, Bcl-xL, Bcl-xL round 2, bispecific, and Makowski et al. 2022 datasets respectively. 
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Table 4.1: Parameters of each dataset used in this study 
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Table 4.2: Degenerate codon design for pro-apoptotic anti-Bcl-2 bacterial surface display library 
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Table 4.3: Sampled amino acids for pro-apoptotic anti-Bcl-2 bacterial surface display library 
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Table 4.4: Library design primers for pro-apoptotic anti-Bcl-2 bacterial surface display library 
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Table 4.5: Next generation sequencing primers for bacterial cell surface display 
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Table 4.6: Linear discriminant analysis classification performance for previously reported datasets 
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Table 4.7: Linear discriminant analysis classification performance for stapled peptide library 
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Table 4.8: Integer linear programming designed sequence and primers 
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Table 4.9: Integer linear programming designed sequences for Bcl-xL design 2 
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Figure 4.11: Dataset hyperparameters for Makowski et al. (2022) Nature Communications. 

  

Makowski 2022 - Affinity

Makowski 2022 - Specificity
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Figure 4.12: Dataset hyperparameters for Starr et al. (2022) Science. 

   

Starr 2022
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Figure 4.13: Dataset hyperparameters for Sarkisyan et al. (2016) Nature. 

  

Sarkisyan 2016
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Figure 4.14: Dataset hyperparameters for Adams et al. (2016) eLife. 

  

Adams 2016
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Figure 4.15: Dataset hyperparameters for Jenson et al. (2018) PNAS. 
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Figure 4.16: Training and Test Set Performance statistics 
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Figure 4.17:  Kernel density estimates for linear discriminant models projects’ correlations with continuous 
protein property values.  

Bcl-xL 
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Figure 4.18: Neural net performance statistics. (Left) Neural net performance statistics versus linear discriminant 
analysis for test set. For all datasets, neural nets are on the left and LDA is on the right. (Right) Neural net classifier 
prediction of continuous mode versus neural net regressor for test set. For all datasets, neural net classifiers are on 
the left and the regressors are on the right. (*: p < 0.05, ***: p<0.0001). 
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Figure 4.19: Logoplots of input and output (pre- and post- sorting, respectively) for Bcl-xL and Mcl-1 stapled 
peptide libraries 
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Figure 4.20: Dataset hyperparameter data size and performance for pro-apoptotic anti-Bcl-2 stapled peptide libraries. 
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Figure 4.21: Random variants from Mcl-1 and Bcl-xL FACS 2-4 for low-throughput continuous binding 
measurement via bacterial cell surface and flow cytometry. 
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Figure 4.22: Sequences for select variants from Figure 4.6.  
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Chapter 5 Conclusion 

This thesis has advanced protein engineering methods towards the design of stapled 

peptide therapeutics, the extraction of hidden information from simple binary sorting and 

sequencing data, and a powerful optimization tool to extrapolate beyond assayed sequence space. 

 

Summary  

In Chapter 2, this thesis describes how stabilized peptide engineering by E. coli display 

(SPEED) can be expanded to assay more design parameters than previously measurable: binding 

specificity, staple location, staple chemistry, and hot spot analysis. To establish these design 

parameters as assayable via SPEED, we generated numerous novel stapled peptide constructs on 

the bacterial cell surface and measured their binding affinities and specificities. We start by 

performing a hot spot analysis and analyzing the sequence space of mdm2 peptide variants 

stapled with different bis-alkynes and report many new high affinity sequences with diverse 

chemical properties. Interestingly, many of these sequences include new disulfide motifs, 

including i,i+1, i,i+4, and i,i+5 motifs, each of which likely results in a different peptide structure 

that may contribute differently to important drug-like properties such as protease susceptibility 

and cell permeability. Next, this chapter establishes that both staple sequence and staple location 

are key determinants of peptide binding affinity and specificity. Among the two classes of 

protein-protein interactions studied, mdm2/p53 and Bcl-2, both the staple location and sequence 

were key determinants of binding affinity, suggesting that methods that can simultaneously 

evaluate both criteria may yield better therapeutics. We also show that there is a complex 
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relationship between the staple position and specificity among Bcl-2 proteins in the context of 

BIM, which suggests that approaches able to simultaneously evaluate sequence and staple 

position are best poised for Bcl-2 antagonist design owing to the importance of specificity. To 

demonstrate SPEED’s accuracy for peptide property prediction, we also synthesize many mdm2- 

and bcl-2-targeted stapled peptides and compare the binding properties in solution with cell 

surface measurements and show they are highly correlated. With these new design criteria 

evaluated for high-throughput analysis via SPEED, staple peptide antagonists of protein-protein 

interactions can be developed with improved speed and cost. This work also confirms that 

SPEED is a reliable tool in a peptide engineer’s arsenal towards the accurate measurements of 

binding affinities through the comparison of dozens of bacterial surface displayed- peptides with 

their soluble counterparts. We generated a large dataset of peptides measured via SPEED and via 

established solution phase assays such as biolayer interferometry and confirmed that these 

measurements were in close agreement.  

To apply these new design principles and to generalize SPEED to new protein-protein 

interactions, Chapter 3 describes the design of highly specific Bcl-xL stapled peptides. This 

chapter details high-throughput cell sorting strategies to identify high fitness proteins or proteins 

that demonstrate favorable trade-offs between properties (affinity and specificity). Bcl-xL is a 

protein within the B cell lymphoma 2 (Bcl-2) family whose role in regulating (and resistance of) 

apoptosis makes it a highly important drug target. Its structure and location has rendered it a 

difficult target for common therapeutic modalities; the stapled peptides generated in this chapter 

are an advance in the binding affinities and specificities and may yield improved therapeutics 

with subsequent analysis and optimization in vitro and in vivo Stapled peptides targeting Bcl-xL 

(a protein in the B cell lymphoma 2 protein family) are engineered, which promote apoptotic 
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pathways in dysregulated cancer cells with high binding affinity and specificity. We describe an 

approach for building libraries of protein variants using multiple sequence alignments (MSAs) 

based on natural and engineered proteins in tandem with SPOT array data. By analyzing the 

peptides that emerge from this library via deep sequencing, we report many new mutations that 

were previously not reported nor predicted to govern specificity among Bcl-2 proteins. We then 

confirm the affinity and specificity properties of these Bcl-xL antagonists at the library level 

analyses both via surface display and in solution (following chemical synthesis), which further 

supports SPEED’s robust predictive capabilities from Chapter 2. We describe the discover of 

two novel compounds, denoted 12 and 13, which antagonize Bcl-xL with 100X specificity over 

Mcl-1 and 10nM affinity. Finally, we evaluate the mechanism of action of these peptides via 

BH3 profiling assays and confirm they act in accordance with apoptosis biology. 

Towards the generation of stapled peptides specific for each of the 5 Bcl-2 proteins, 

Chapter 4 describes a new approach involving machine learning to predict highly specific 

peptides. Because experimental data is laborious and costly to obtain, computational methods 

that accelerate and improve protein design are highly needed for protein engineering. They are 

particularly needed for multi-objective engineering, where complex trade-offs between important 

properties (such as binding affinity and specificity) limit the optimization of lead candidates. 

This chapter describes the generation of highly specific peptides for Mcl-1 over Bcl-xL and vice 

versa, both of which are important drug targets in the resistance to apoptosis. We design Mcl-1 

specific peptides with >10,000X specificity and Bcl-xL specific peptides with >100X specificity. 

To test the generalizability of this method, we also design Mcl-1 and Bcl-xL bispecific peptides, 

which could serve as potent therapeutics for personalized medicine, where a disease is 

characterized for its Bcl-2 dependency and specific drugs are administered for each patient. 
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Using this optimization method, we report several bispecific peptides that bind both targets with 

high affinity. Furthermore, it sheds light on the value of quantitative labels in sequence-fitness 

landscape and protein design. Surprisingly, binary information obtained from simple sorting 

experiments provides similar value to complex quantitative experimental methods. This chapter 

sets a precedent of design, where sequencing data with qualitative labels from sequencing can be 

transformed to high quality data for the design of high fitness stapled peptides for multiple 

parameters. Finally, it shows that with careful sequence optimization and adequate sampling of 

sequence-fitness space, an under-sampling of experimental design space coupled with machine 

learning can allow extrapolation into a much larger design space. 

Future Work 

There are several areas of this thesis that are subject to future work. From Chapter 2 and 

Chapter 3 and the work involving the design of pro-apoptotic stapled peptides, future work 

includes designing inhibitory stapled peptides for each of the Bcl-2 proteins: Bfl-1, Mcl-1, Bcl-

xL, Bcl-2, and Bcl-w. Because the throughput of experimental work is far below the sequence 

space of all peptide variants, future work that expands the scope of design are likely to yield 

more potent peptide therapeutics. In this chapter, we showed that a library design informed by 

thousands of experimentally sequences yielded many mutations that improved specificity that 

were not predicted to; this suggests that expanding the design space of peptides measured 

(potentially coupled with techniques that allow interpolation among sequences, such as that 

detailed in Chapter 4) are promising future directions for protein design. With such focused 

computational library, sorting strategies for Bcl-2 proteins, and high-quality sequencing data for 

several of the targets, the addition of new members and fitness objectives should be relatively 

straightforward.  
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Furthermore, using integer linear programming (or other optimization tools), other drug-

like properties such as protease stability and cell permeability can be explored while maintaining 

favorable affinity and specificity. These peptides would be similarly tested for mechanism of 

action in various cancer and engineered cell line models for activity before being translated for in 

vivo testing.  Finally, the structure of the protein-peptide complex would yield key structural 

biology insights into how specificity was achieved. A molecular understanding of specificity 

may yield further insights into mutations or peptide motifs that improve drug-like properties 

(such as how a staple location and chemistry contributes to alpha helicity and stability). This 

structure could be explored using crystallography or nuclear magnetic resonance spectroscopy. 

Another direction for future work is the more complete characterization and comparison 

of binary sorting and sequencing versus Sort-seq and Tite-seq experiments. In Chapter 4, 

machine learning predicted protein fitness with equal predictive capabilities when presented with 

inexpensive and readily available binary data versus more expensive/resource intensive 

continuous data. However, there may be certain protein engineering tasks that may be better 

suited for high-throughput quantitative cell sorting. At the trade-off between predictive power 

and model interpretability, datasets containing more epistasis (higher order interactions between 

mutations and resulting function) can be modeled with simple linear models but with each 

mutation acting non-linearly, the predicted fitness deviates further from actual fitness. Therefore, 

proteins displaying high levels of epistasis increasingly benefit from tools that leverage non-

linear information, like neural network based models. 

The field of protein engineering has seen a rapid adoption of techniques that leverage 

information from well folded proteins (such as those from organism genome databases); transfer 

learning of the motifs that govern stability and function is an exciting approach to de novo 



 

 193 

protein design. In these cases, more accurate labels (as obtained via TiteSeq, for example) for 

protein fitness may be necessary to adequately sample sequence-fitness space. A complete 

description of when these more complex techniques yield improve modeling outcomes would 

save resources and accelerate protein engineering efforts. For example, binding affinity among a 

library of variants can span several orders of magnitude. If a specific affinity is needed, which is 

the case for some enzymatic or pharmacokinetic challenges, then having high resolution on 

intermediate values could yield improved variants. To test this, a library of variants spanning 

fitness of several orders of magnitude (such as an error prone PCR library of a monoclonal 

antibody) would be sorted quantitatively (TiteSeq) and compared with a standard sort (positive/ 

negative). Then, these data would be used to train models and measure the affinity of promising 

variants. 

One question of particular importance is regarding the exploit-explore trade-off. Given 

the limitations of experimental protein science (such as 96 well plate assays and ~109 member 

directed evolution experiments), how sparse can a design space be sampled before machine 

learning/ deep learning approaches are unable to accurately interpolate towards variants with 

higher function? One simple experiment to probe this would be to design a large library with a 

significantly larger design space than what is measurable experimentally, sort the variants for 

increased fitness, then compare modeling techniques’ ability to extrapolate successfully as you 

increasingly withhold data from model training. This analysis not only shows what modeling can 

do in the best case (maximal experimental information) but also shows how effective they are 

when data quantity is limited. To demonstrate generalizability, repeating this experiment for 

multiple unique proteins would be critical. In Chapter 4, we show that a 10,000X under 

sampling of design space provides sufficient accuracy for interpolation with relatively simple 
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machine learning techniques. It will be interesting to see how this ratio improves with 

increasingly powerful models and high-resolution protein property measurements. Because these 

tasks’ performance is highly dependent on the class of protein, modeling details, among many 

other factors, another exciting aspect is how lessons about library design are translated between 

distant classes of proteins. Answers to these questions will dictate the scope of protein design 

experiments with available modeling tools. 

In conclusion, the space of proteins that are undruggable by current therapeutic 

modalities continue to be challenging to target. Improvements described here represent powerful 

tools that can accelerate the development of novel therapeutic modalities. With continued 

investment in methods that improve 1) the ability to rapidly assay binding affinity and specificity 

2) guide design towards drug-like properties that are heavily dependent on sequence such as 

protease susceptibility and cell penetration and 3) the ability to easily assay function in 

representative environments (such as reporter assays), these modalities will become more and 

more promising approaches towards the targeting of difficult-to-target disease-related proteins.  


