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ABSTRACT

With the expanding landscape of data science, it becomes increasingly crucial for data sci-
entists to foster collaborative practices to enhance productivity. Computational notebooks
enable data scientists to run and share exploratory analysis. The notebook design facil-
itates the rapid iteration of code chunks and inspection of intermediate results through
an interactive execution interface. The combination of exploratory code and human-
readable explanations creates computational narratives that are e↵ortlessly shared and
reproduced. This dissertation investigates the challenges associated with the ine↵ective
usage of computational notebooks for collaboration, and proposes possible interactive
designs to improve the notebooks for both data science professionals and educational set-
tings. This dissertation unfolds into three parts aimed at enhancing the usability of data
science programming environments. Firstly, to discern the obstacles faced in collabora-
tive data science, I conducted mixed-methods inquiries to understand how data scientists
currently utilize real-time collaborative editing in computational notebooks. Based on the
findings, I proposed a series of design approaches for addressing the challenges, including
providing contextually-linked discussions, leveraging AI-assisted data science code doc-
umentation, visualizing data changes, and lightweight editing control mechanisms that
can make computational notebooks more narrative. Lastly, my dissertation illuminates
the distinct collaboration needs required to support data science teaching and learning. I
explored a series of designs that support live peer evaluation for testing and reviewing in-
class programming exercises and authoring explorable multi-stage tutorials. In summary,
my dissertation contributes to improving the usability and e↵ectiveness of computational
notebooks for data science collaboration and learning, facilitating their ability to create
and share computational narratives.
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CHAPTER 1

Introduction

Over the past decade, data science plays an increasingly important role across many sec-
tors of the economy. [116]. Data science uses statistical techniques to interpret data from
various sources and make data-driven decisions. This can help businesses identify new
opportunities, optimize marketing strategies, and increase e�ciency. In areas like public
health and environmental science, data science can help solve critical societal challenges,
from predicting disease outbreaks to moderating climate change. E↵ective collaboration
and communication are crucial for data scientists working on complex large-scale prob-
lems. For example, data scientists work across disciplines with a variety of stakeholders in
practice [204]; data scientists collaborate with both internal and external teams throughout
the analysis pipeline [138]; citizen data scientists collaborate in an open source manner
to collectively explore topics of shared interests [80, 35].

However, it is worth noting that collaboration remains a challenge for many data sci-
ence tools [181]. Although there are many mature collaborative tools for software engi-
neering (e.g., version control and social coding tools), they may not be as e↵ective for
data scientists due to some key di↵erences between the two fields [204, 181]. For in-
stance, data science work tends to be more exploratory, which can result in lower-quality
code and incomplete documentation. Furthermore, it is di�cult to manage the exploration
history when iterating ideas quickly [91]. These issues can be amplified in a collaborative
setting, where maintaining a shared understanding of past design decisions across team
members becomes crucial.

On the other hand, computational notebooks such as Jupyter Notebooks have been
widely used for data-related work among academia, industry, and data science education
[137]. These unique programming environments allow programmers to integrate code,
tables, graphs, and prose into a single, cohesive narrative referred to as a computational
narrative.
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Figure 1.1: In this dissertation, I aim to enhance the usability of programming environ-
ments for data scientists by amplifying three core design characteristics – collaborative,
narrative, and exploratory. This objective is achieved through a three-pronged approach:
understanding challenges encountered in collaborative data science; improving collab-
orative computational notebook environments for data scientists; and streamlining the
process of knowledge sharing for future data scientists.

Computational notebooks possess three key characteristics that make them e↵ec-
tive for data science programming — they are collaborative, narrative, and exploratory.
Firstly, computational notebooks are a collaborative medium, allowing data scientists to
work together by creating and sharing computational narratives that encompass not only
the code assets but also the thought processes, ideas, and rationales behind the code. Re-
cent computational notebook platforms like JupyterLab [17], Deepnote [16], and Observ-
able Notebook [18] have revolutionized the collaborative experience of working together
on computational notebooks through real-time technologies. These platforms enable col-
laborators to synchronize edits in real-time and execute code on a shared interpreter. Sec-
ond, computational notebooks are narrative, embodying the practice of the literate pro-
gramming paradigm pioneered by Knuth [96]. By interweaving source code with natural
language descriptions, data scientists can write programs as if they are crafting an essay,
allowing for the convenient sharing of thoughts, hypotheses, and explanations. Lastly,
computational notebooks support code exploration by executing code through an inter-
active kernel, providing the Read-Eval-Print Loop (REPL) execution paradigm. Jupyter
notebooks consist of “cells” which typically contain small chunks of code or narrative
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text in the Markdown format. Users can execute cells (usually from top to bottom) and
observe their outputs, which may include visualizations, data frames, or rendered nar-
rative text. This structure enables computational notebooks to be a live and exploratory
programming environment, allowing consumers of the notebook to actively engage with
the content by reproducing results and experimenting with alternative approaches.

However, studies have identified several limitations with computational notebooks
[157, 158, 91]. For quick exploration, data scientists sometimes generate messy and
informal notebooks, which can be di�cult for others (or even the author) to read later on
[157]. Data scientists have to use strategies like actively pausing the experiment to curate
and clean notebooks into narratives, which may hinder the exploration process [91]. The
tension between quick exploration and instructive explanation can be contextually sen-
sitive depending on how exploratory and open-ended the task is. These problems may
become more pronounced when the process involves multiple stakeholders — for exam-
ple, when data scientists work closely together or when using computational notebooks
for teaching and learning data science programming.

In my dissertation, I re-envision the workflow and interfaces for data science program-
ming environments, adhering to the design characteristics of collaborative, narrative, and
exploratory. I first conduct mixed-methods inquiries to understand challenges in collabo-
rative data science. This work has identified the advantages of working closely together
on a real-time shared notebook over working on individual notebooks, such as creating a
shared context and reducing communication costs. In the meanwhile, this work has found
several remaining challenges with synchronous editing, such as producing less organized
notebooks. To solve the challenges with collaborative data science, I build and deploy
systems for improving collaboration for data science practitioners, which include: (1)
designing interactive techniques for capturing connections between discussions and note-
book entities, (2) leveraging AI techniques for summarizing data science code, (3) using
visualization techniques to explain the impact of code changes, and (4) designing editing
control mechanisms to avoid conflict edits in real-time collaboration. Lastly, this disserta-
tion also facilitates the knowledge-sharing experience in programming through building
systems that support: (1) live peer evaluation for in-class programming exercises, and (2)
authoring explorable multi-stage tutorials.

Specifically, my dissertation is driven by an overarching research question: How can
we design interactive programming environments that support data scientists and
learners in communicating and accomplishing various data-related tasks?
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In the next few subsections, I will briefly delineate the three-pronged approach of
my thesis work: (1) understanding challenges in collaborative data science, (2) designing
collaborative computational notebook environments for data scientists, and (3) facilitating
knowledge sharing for future data scientists.

1.1 Understand Challenges in Collaborative Data Sci-
ence

Computational notebooks (like Jupyter) are often used by data scientists doing ex-
ploratory work because they enable interactive and incremental development, allow in-
line documentation, and provide immediate visual output. Collaborative notebook editing
platforms like Jupyter, Google Colab, and Deepnote allow collaborators to synchronize
edits in real time and execute code on a shared interpreter. Understanding how these tools
fit in with the unique workflows of data scientists can help improve the design of future
data science collaborative tools. Through a mixed-method study [181], I examined two
main approaches data scientists use for collaboration: (1) working on individual note-
books and updating work asynchronously, and (2) working closely together on a shared
notebook with edits synchronized in real-time.

1.1.1 A Mixed-Methods Study to Understand Real-Time Collabora-
tive Notebooks

While real-time computational notebooks enable new modalities for collaboration, syn-
chronous editing comes with its own challenges and may not always improve work e�-
ciency. To motivate the problem, I conducted a mixed-method study to understand how
synchronous notebook editing may change the way data scientists collaborate in compu-
tational notebooks [181] (chapter 3). I first conducted a formative survey to understand
the common tools and mechanisms that data scientists use for collaboration and com-
munication. The results suggest two approaches for data scientists to collaborate: (1)
the traditional collaboration setting where team members work on individual notebooks
and update the progress asynchronously by sending each other the notebooks; (2) the
emerging collaboration setting where team members work closely together on a shared
notebook where all the edits are synchronized in real-time. To further explore the di↵er-
ences between these two approaches, I carried out an observational study with pairs of
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data scientists working remotely to solve a predictive modeling problem. This work has
created a taxonomy of common collaboration styles in data science and identified several
advantages of synchronous editing, such as creating a shared context, encouraging more
exploration, and reducing communication costs. Despite all the benefits, synchronous
editing comes with its own challenges and may not always improve work e�ciency. This
work further discovered several challenges with synchronous notebook editing such as
producing messy and less organized notebooks, causing conflict edits when there is no
strategic planning.

Meanwhile, this work suggests that the collaboration needs and challenges may shift
based on a number of factors. For example, the type of data science problem, the expertise
of collaborators [138, 132, 55], team size, the synchronicity of collaboration, and whether
the purpose of collaboration is for productivity or learning [177, 32], may all a↵ect how
users perceive the collaboration experience.

1.2 Design Collaborative Computational Notebook Envi-
ronments for Data Scientists

Beyond understanding the challenges in collaborative data science through studies, I also
build systems to understand and expand the design space to aid collaboration. Due to
the exploratory nature of the work, data scientists benefit from documentation that covers
the explanations of the process, reasoning about the decision-making, and interpretation
of the results. Unfortunately, data scientists often write messy and drafty analysis code
in computational notebooks as they need to quickly test hypotheses and experiment with
alternatives [157]. All these tensions can be amplified in a collaborative setting where it is
important to keep a shared understanding of past design decisions across team members.
This work explored the space by studying how interactive techniques such as providing
contextually-linked discussions [184], leveraging AI-assisted data science code documen-
tation [183], visualizing data changes [179], and lightweight editing control mechanisms
[185] can make computational notebooks more narrative.

1.2.1 Contextualizing Shared Notebooks with Discussions

To help collaborators better understand the rationale of a shared notebook, I built Callisto
[184], a Jupyter extension with the ability to connect discussion messages with the shared
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notebook elements with minimal e↵ort from users (chapter 4). When teams of data sci-
entists collaborate on computational notebooks, their discussions often contain valuable
insight into their design decisions, but are very long and disconnected from the compu-
tational notebook. Callisto extends the Jupyter platform in several ways: (1) it enables
users to connect discussions with elements in the shared notebook, including code, out-
put, cells, or edits, (2) it then leverages these connections to make it easier to navigate
discussions and notebook content — for example, to find discussions about a particular
part of the notebook. A two-stage evaluation study showed that Callisto can ease user
onboarding to new notebooks by helping them understand the design rationales of its
authors.

1.2.2 AI-Assisted Data Science Code Documentation

Contextualizing notebook elements with discussions helps data scientists to make sense
of a shared notebook that is constructed through synchronous editing. To improve the
documentation of messy analysis notebooks that are written asynchronously, I further
explored AI-assisted documentation [183] (chapter 5). Existing NLP and AI literature
suggested deep learning models that can “translate” code into natural language descrip-
tions as if translating two languages. However, these code summarization models are
examined in the context of software engineering. As I discovered in a formative study,
data science documentation captures more aspects than software engineering documen-
tation (e.g., explaining the code, interpreting results, and reasoning about hypothesis).
Thus, I built Themisto, a Jupyter extension that combines a deep-learning approach with
a query-based approach to retrieve online API documentation for source code, and user
prompt approach to nudge users to write documentation [183]. Our evaluation showed
that automated documentation generation techniques [109] reduced the time for writing
documentation, reminded participants to document code they would have ignored, and
improved participants’ satisfaction with the final notebook.

1.2.3 Improving Awareness with Data Changes

Callisto and Themisto enable data scientists to better understand the code changes. I
further argue that understanding the iterative data changes that the code produces should
be as important as code changes throughout an analysis. Code di↵erences do not always
reveal data di↵erences. For example, removing missing values from one column of a
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dataset may also a↵ect the distributions of the dataset’s other columns. Data scientists
currently need to take the initiative to write additional code to browse or plot the data in
order to track the e↵ect of code changes. I explored the idea of visualizing di↵erences in
datasets as a core feature of exploratory data analysis, a concept called Di↵ in the Loop
(DITL) (chapter 6). Using a table-based di↵ view, users can either compare di↵erent
datasets or compare the same dataset at di↵erent snapshots. The evaluation shows that
DITL helps data scientists understand the impact of code changes in debugging, gain
insights into data through comparisons, and improve awareness in collaboration.

1.2.4 Resolving Editing Conflicts in Real-Time Collaboration

To help data scientists avoid interference with each other’s work in a shared notebook, I
proposed a real-time collaborative editing framework (PADLOCK) to address the chal-
lenges [185] (chapter 7). PADLOCK leverages the context of data science development
to provide three domain-relevant mechanisms to improve collaboration on computational
narratives. The first, cell-level access control, prevents collaborators from viewing or
editing a collection of cells. This mechanism aims to allow ad-hoc locking of code cells
to support volatile collaboration patterns. The second mechanism, variable-level access
control, extends the access control from cell-level to shared variables. This mechanism
is designed to prevent implicit editing conflicts and allow collaborators to protect impor-
tant shared variables. The third, parallel cell groups, leverages the familiar programming
concept of encapsulation through scoping with the Jupyter cell user interface control.
This mechanism allows individuals to pursue exploratory solutions while not having to
be concerned about interference with others. The evaluation of PADLOCK has shown
that these mechanisms can e↵ectively prevent editing conflicts in shared notebooks; and
they support a wide range of ad-hoc and volatile collaborative workflows.

1.3 Facilitate Knowledge Sharing for Future Data Scien-
tists

The growth of the data science industry has led to a growing demand for introductory pro-
gramming and data science education. Computational notebooks have seen widespread
adoption as a medium for creating rich descriptive documents about code. In particular,
such notebooks have been used by data science instructors to create code tutorials and
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exercises [103, 44]. They support a kind of exploration and tinkering that is central to
“learning by doing” [97] — as in a computational notebook, a code cell can be modified
and executed, allowing readers to explore how changes to the code influence the results.
How can we design systems to support collaborative teaching and learning data science
programming? I explored a series of designs that support live peer evaluation for testing
and reviewing in-class programming exercises [177] and authoring explorable multi-stage
tutorials [180].

1.3.1 Real-Time Sharing for In-Class Programming Exercises

In-class programming exercises are small-scale programming exercises for students to
practice during lectures or labs. In-class exercises allow students to receive real-time
feedback from instructors and peers. This immediate feedback can help students correct
mistakes and misconceptions on the spot, reinforcing the correct programming concepts.
Yet, a key challenge that remains is the insu�cient support provided by existing teaching
platforms and programming environments for integrating live peer assessment, especially
within the context of in-class programming exercises. I designed PuzzleMe [177], a novel
programming notebook that allows instructors to conduct engaging in-class programming
exercises (chapter 8). PuzzleMe leverages peer assessment to support a collaboration
model where students provide timely feedback on their peers’ work. In particular, it
supports live peer testing, which can improve students’ code robustness by allowing them
to create and share lightweight tests with peers. I conducted a two-week deployment study
in introductory Python courses at the University of Michigan. The evaluation proves that
the sharing of the test cases and the code solution encourage students to write useful
test cases, identify code problems, correct misunderstandings, and learn a diverse set of
problem-solving approaches from peers.

1.3.2 Authoring Explorable Multi-Stage Tutorials

In many domains of programming, code is developed through a cyclical process of edit-
ing, compiling, and running the code. This resulted in the granularity of the changes do
not allow the code to be executed piecewise. Thus, many programming tasks do not fit
for the REPL model in computational notebooks. Moreover, in authentic practice, these
changes may take place between various code assets. The implementation of a single fea-
ture might be split across many places in the code and di�cult to isolate into a single cell.
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As a result, tutorial authors often need to manually curate these steps from their coding
environment into a static text document. It is a tedious process for learners as well to fol-
low these static text tutorials and reproduce the process in their local coding environment.
What if we could harness the advantages of computational notebooks to aid programmers
in documenting their incremental code construction for a wider range of programming
tasks? This dissertation explores how we can extend the computational notebook design
to support authoring explorable multi-stage tutorials [180]. Specifically, I am interested
in bridging the divide between the authentic computing environment and the tutorial edit-
ing environment. This would enable authors to capture their authentic coding process
and transform it into a narrative, while also allowing learners to load the process from
a tutorial into their own local computing environment. I designed Colaroid, a VS Code
extension that facilitates the creation of high-quality multi-stage tutorials [180] (chapter
9). Colaroid tutorials are augmented computational notebooks that showcase snapshots
of a project through snippets and outputs. The extension highlights source code di↵er-
ences and provides complete source code context for each snippet. Additionally, users
can load and experiment with any stage of the project within a linked IDE. Through two
laboratory studies, I have discovered that Colaroid provides a simple and e�cient means
of developing multi-stage tutorials, while also o↵ering benefits to readers when compared
to video and web-based tutorials.

1.4 Thesis Statement

E↵ective collaboration and communication are essential for data scientists working on
complex large-scale problems in both professional and learning settings. Through the
forementioned projects, I aim to demonstrate the following thesis statement:

By better understanding the challenges in various data science collaboration
tasks, we can design tailored programming environments that are more col-
laborative, narrative, and exploratory to improve the quality and e�ciency of
collaboration.

More specifically, collaborative programming environments that support seamless
sharing of coding assets, improve the e�ciency and awareness of teamwork; narrative
environments that enable rich, easy-to-create, and up-to-date explanations, facilitate com-
munication and shared sense-making of code and data changes; exploratory environments
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that allow data scientists to easily reproduce an authentic analysis and build on top of it,
encouraging the active exploration of the data science process.

1.5 A Note on Authorship

I am the primary author of the research reported in this dissertation. However, this work is
done in collaboration with my advisors Steve Oney and Christopher Brooks from UMSI,
my colleagues Yan Chen, Ashley Zhang, Zihan Wu, and others from UMSI, my mentor
Steven Drucker and other colleagues from Microsoft Research, and my mentor Dakuo
Wang and other colleagues from IBM Research. Chapter 3 on the data scientists’ col-
laboration styles is published at CSCW’19 [181] and is co-authored with Steve Oney,
Christopher Brooks, and other colleagues from UMSI. Chapter 4 on creating contextual
links between discussions and shared computational notebooks is published at CHI’20
[184] and is co-authored with Zihan Wu, Steve Oney, and Christopher Brooks. Chapter
5 on AI-assisted data science code documentation is inspired by the AutoAI work from
IBM Research. This work is published at TOCHI’21 [183] and is co-authored with my
mentor Dakuo Wang and other colleagues at IBM Research. Chapter 6 on visualizing
data changes is informed by the live data science programming environment Glinda [47]
from Microsoft Research. This work is published at CHI’22 [179] and is co-authored
with my mentors Steven Drucker, Rob DeLine, and other colleagues at Microsoft Re-
search. Chapter 7 on resolving editing conflicts in shared computational notebooks is
currently under submission and is co-authored with Zihan Wu, Steve Oney, and Christo-
pher Brooks. Chapter 8 on in-class exercise notebooks is published at CSCW’21 [177]
and is co-authored with Yan Chen, John Joon Young Chung, Steve Oney, and Christo-
pher Brooks. Lastly, chapter 9 on explorable tutorial authoring environments is published
at CHI’23 [180] and is co-authored with Andrew Head, Ashley Zhang, Steve Oney, and
Christopher Brooks. In chapters 3-9, I use the first-person plural (we/our) to indicate
co-authorship.
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CHAPTER 2

Related Work

To contextualize the dissertation, I draw upon prior research on data science work prac-
tices and computational notebooks. This helps to situate the design principles within the
broader context of existing research and establishes a strong theoretical foundation for the
subsequent chapters.

2.1 Data Science Programming

Data science refers to the process of extracting knowledge and insights from data [50].
Data scientists use computational methods to collect data, understand data, and help busi-
ness stakeholders to make decisions [50]. The field of data science has grown rapidly
over the last decade amidst the rise of big data and breakthroughs in technologies like
machine learning that expand our capabilities for understanding data [43]. According to
a survey of the United States workforce on LinkedIn [4], the demand for data scientists
will continue to increase as more industries (e.g., finance, business, healthcare) adopt big
data to make business decisions.

2.1.1 Data Science Workflow

The process of doing data science has been categorized and discussed among statisticians,
computer scientists, HCI researchers, and others (e.g., [124, 86, 93, 71, 118]). O’Neil and
Schutt distinguished the data science process into several iterative phases [124]:

1. Collecting data from a variety of sources (e.g., emails, logs, and medical records)

2. Building and using pipelines for data munging (e.g., joining, scraping, and wran-
gling)
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3. Cleaning data to ensure its validity and accuracy for analysis (e.g., manipulating
duplicates, filtering outliers, and tuning missing values)

4. Exploring and hypothesizing the relationship between variables using di↵erent
techniques (e.g., generating statistical summary, plotting pairwise relationships)

5. Applying machine learning algorithms or statistical models based on the type of
problems (e.g., k-nearest neighbor, linear regression, and naive Bayes)

6. Finally interpreting and communicating results to di↵erent audiences (e.g., man-
agers, co-workers, and clients)

Not all stages are required depending on the type of data science task. The exploration
process can be non-sequential, as feedback from later stages may result in additional work
in earlier stages. Based on the workflow, Zhang et al. studied how di↵erent roles of data
science workers collaborate in practice [204]. They identified five distinguished roles of
data science workers (including engineers, managers, researchers, communicators, and
domain experts) and aligned their interactions and collaboration practices with the data
science workflow. They found two types of documentation practices. One type of docu-
mentation is for explaining and collaborating with data science colleagues, which is usu-
ally inline with the source code or reported in document-editing tools during the analysis.
The other type of documentation is for delivering to clients, which are usually presenta-
tions or reports after the analysis. In addition, their findings highlighted the importance
of documentation for both data and code artifacts, where the former is often absent in
practice and the latter can sometimes miss details on lower-level decision-making.

2.1.2 Research Programming

Research programming is another activity that is related to data science, mainly used
by the field of science and engineering. Research programming describes any program-
ming activities that seek to obtain insights from data [71]. Guo characterized research
programming into four main phases, including preparation of the data, analysis, reflec-
tion, and dissemination of results. The preparation phase includes acquiring, reformating,
and cleaning data. The analysis phase and reflection phase can take place alternatively
to explore alternatives and make comparisons. The dissemination process involves writ-
ing reports and deploying executable code. Guo highlighted several challenges related to
documentation:
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• In the analysis phase, programmers su↵er from data management problems to track
the provenance of repeatedly generated results and modified scripts;

• In the reflection phase, programmers often take notes in both physical and digital
formats while both formats are di�cult to organize and connect back to the original
context;

• In the dissemination phase, programmers face the challenge to consolidate all the
notes, scripts, emails, output files to aid report writing.

Followed by the discussion on exploring alternatives and making comparisons, Liu
et al. [110] studied how researchers make analytic decisions and report the decision-
making process in end-to-end data analysis. They used analytic decision graphs to vi-
sualize the decision processes throughout the analysis. They summarized rationales for
analytic decision-making (e.g., methodological concerns, insights from prior work, con-
straints in data). They also identified reasons for conducting alternative analysis (e.g.,
opportunism, robustness, contingency).

2.1.3 Exploratory Programming

Data science is one type of exploratory programming. Exploratory programming refers
to the practice of writing code to explore, experiment, and iterate with di↵erent ideas in
order to solve an open-ended problem. Kery and Myers summarized five common charac-
teristics of exploratory programming [89]. First, exploratory programming can take place
in a variety of scenarios including learning programming through play, creative digital
art and music, data science, and software engineering. Second, code quality tradeo↵s
commonly exist in exploratory programming when programmers need to sacrifice code
quality during the exploration phase to focus on iteration. Third, usability factors such
as the Closeness of Mapping (the close mapping between concepts in task domains and
code representations) and Viscosity (the ease of adding and reverting changes to an ex-
isting program) can a↵ect the work e�ciency of exploratory programming. Fourth, the
exploration process often involves repeated changes to input, parameter, or code snippets.
Lastly, collaboration can be extremely challenging in exploratory programming.

13



2.1.4 Collaboration in Data Science

Prior research has found that data scientists in software companies often work collabo-
ratively [93]. For example, some data science teams have adopted a triangular structure
where they divide the task into collecting data, cleaning data, and analyzing data. How-
ever, collaboration in data science can be challenging. Transferring findings from data
science work to business actions requires successful communication between data scien-
tists and stakeholders who are usually non-technical professionals [135]. Kandel et al.
[86] revealed that collaboration between data scientists rarely happens in domains like
marketing and finance. One major reason is that the diversity of tools and programming
languages has made it laborious to share intermediate code, especially when it is not well
documented. Correspondingly, Kery and Myers [89] addressed the di�culty of maintain-
ing a shared understanding of the exploration progress since the intermediate code and
data artifacts can be experimental and messy. Nonetheless, with the growing demand
for data analysis, e�cient collaboration between data scientists will become increasingly
important and challenging. Building upon the work of Kandel et al. [86], and Kery and
Myers [89], my dissertation further investigates the benefits and trade-o↵s of mechanisms
that enable real-time collaboration and communication in data science work.

2.2 Computational Notebooks

Researchers and practitioners have long explored approaches for creating and sharing dig-
ital documents for data analysis (e.g., [73, 171, 36]). Establishing a common format for
documenting data analysis can make it easier to present, reproduce, share, and collabo-
rate. One approach is to capture digital assets (e.g., code, output, documentation) and
computational environments (e.g., browsing, UI interaction, file versioning) from the OS
level [73] — tracking any computing activities such as browsing histories and note edit-
ings. Another approach integrates digital components (e.g., text-based lab notes, emails,
web pages) into a combined entry [171]. Yet, the most popular tools for data scientists are
computational notebooks — web-based platforms that allow users to write and execute
code, inspect output, and integrate text annotations, figures, interactive visualization, and
other rich media (e.g., Apache Zeppelin1, Spark Notebook2, Observable3, and Jupyter

1
https://zeppelin.apache.org

2
http://spark-notebook.io

3
https://observablehq.com
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Notebook).

2.2.1 Jupyter Notebook

Project Jupyter evolved from IPython [136], a terminal-based interactive shell that origi-
nally designed for creating interactive visualizations for scientific computing. Wrapping
IPython as the kernel, Project Jupyter is designed as a web-based platform for authoring
a single document that combines code cells and intermediate results. The evolution of
Project Jupyter is influenced by the rise of data science. Data science is exploratory and
fluid, and the process benefits from creating reproducible computational narratives for it-
erative exploration and interactive inspect of intermediate results. Jupyter Notebook is an
open source project that is also extensible through optional add-ons. As Figure 9.1 shows,
Jupyter notebooks consist of “cells” — typically small chunks of code or narrative text
in the Markdown format. Users can execute cells (typically, but not necessarily, from top
to bottom) and observe their outputs, which can include visualizations, data frames, or
rendered narrative text.

Most other notebook platforms have a very similar user interface to Jupyter but dif-
fer in the programming languages they support (Jupyter uses Python by default but its
architecture can support other languages). Other computational notebook platforms in-
clude Observable (which uses JavaScript), RStudio4 (which uses R Markdown), Wolfram
Notebooks5 (which uses the Wolfram Programming Languages), and Zeppelin (which al-
lows multiple programming languages to be used in the same notebook). Some notebook
platforms use a di↵erent computational architectures. For example, some notebook plat-
forms enable reactive notebooks that automatically run cells when necessary (as opposed
to requiring that users run cells manually, as Jupyter does). For example, Observable
notebooks run cells in “topological” order—data dependencies between cells are tracked
and changing a cell automatically re-runs other cells that depend on its result. Compared
to other notebook services, Jupyter has a larger community of users given its’ long history
and prevalence among di↵erent contexts. Jupyter also has more customized extensions
because of its large community.

4
https://www.rstudio.com/

5
http://www.wolfram.com/notebooks/
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2.2.2 The Use of Computational Notebook

Several studies have investigated the e↵ectiveness of computational notebooks in various
contexts. This section provides an overview of previous research on (1) the advantages
and challenges associated with computational notebooks, (2) the sharing and recycling of
computational notebooks, and (3) the utilization of computational notebooks for teaching
and learning.

2.2.2.1 Working with Computational Notebooks

Computational notebooks improve the data science workflow compared to traditional
script programming. Subramanian et al. [169] conducted a qualitative inquiry to compare
the two common modalities in data science programming — computational notebooks
and rigid scripts. They found that although scripts are most commonly used in data sci-
ence programming, and are perceived to be formal and reliable, computational notebooks
better serve the exploration needs and suit the actual data science workflow. Randles et
al. [148] investigated how Jupyter notebooks can be used for open science under the prin-
ciples of Findable, Accessible, Interoperable, Reusable (FAIR). In fact, some academic
venues encourage paper authors to include notebooks with their submissions (e.g., the
Distill Journal [49] in the area of machine learning).

However, the flexible structure of computational notebooks can lead to several issues.
When the problem gets complex, data scientists tend to write lower quality code, leave
documentation incomplete, change the execution order, or accidentally overwrite impor-
tant analyses while iterating on di↵erent ideas. Kery et al. studied how professional data
scientists used Jupyter notebooks in their daily work to create computational narratives
[91]. They found that computational notebooks can become easily unorganized if data
scientists do not manage and keep track of the variants they explored. Data scientists
have to use strategies like actively pausing the experiment to curate and clean notebooks
into narratives, which may hinder the exploration process. Rule et al. conducted a large-
scale analysis of over 1 million open-source computational notebooks and found that only
one in four held explanatory text [157]. For quick exploration, data scientists sometimes
generate messy and informal notebooks, which can be di�cult for others (or even the
author) to read later on [157]. The tension between quick exploration and instructive ex-
planation can be contextually sensitive depending on how exploratory and open-ended
the task is. Chattopadhyay et al [30]. categorized nine pain points with computational
notebooks, which include setup (loading and cleaning data), exploring and analyzing,
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managing code, reliability, archival, security, sharing and collaboration, reproducing and
reusing, and delivering to products. Singer [165] examined the complexity in the context
of the Jupyter Notebook framework and divided the complexities into incidental com-
plexities and intrinsic complexities. The incidental complexities refer to the defect in the
user interface design. For example, the code cell outputs are still retained after the client
disconnected from the kernel. This decoupled persistence would cause confusion that the
runtime state is available to generate the output. The intrinsic complexities refer to chal-
lenges that require more engineering e↵ort. For example, the current notebook design
does not support modularity, meaning that one notebook’s code can not be imported to
another notebook.

2.2.2.2 Sharing and Reusing Computational Notebooks

Computational notebooks facilitate sharing and communicating the story of data analysis.
Källén et al. [85] conducted a large-scale analysis of code cloning in Jupyter notebooks
hosted on GitHub. They found that cell-level cloning is common in Jupyter notebooks,
where type 1 clones (exact copy) are seen more often than type 2 clones (with variable
renaming) and type 3 clones (with few statements changing). A qualitative review of
the most common clones suggests that these clones take place unintentionally, which
indicates that data scientists may naturally write similar code snippets without copying
from others. Zhang et al. [205] proposed a novel machine learning model to represent
the code and surrounding comments in Jupyter notebooks. They applied the model to
the corpus of Jupyter notebooks on GitHub to answer open questions about sharing the
reusing computational notebooks. They found that academic notebooks contain more on
data exploration and less on developing models. They also found that including scientific
notebooks can increase the impact of the publications.

Several works have examined the practice of sharing computational notebooks in on-
line communities. For example, Cheng and Zachry [35] studied the practice of sharing
and contributing the data analysis stories on Kaggle — the most popular data science on-
line community. They interviewed data scientists about their motivation, practices, and
challenges when participating in the Kaggle competition and contributing to community
knowledge. Tauchert et al. [174] studied the motivation and usage for organizers to
host Kaggle competitions. They characterized the practice as crowdsourcing data science
where competitions can inspire organizers to discuss with participants and learn state-of-
art approaches.
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On the other hand, keeping a shared understanding of past explorations across team
members can be challenging when working on notebooks together. Kery et al. [89]
highlighted the needs for sharing and group exploration in exploratory programming. In
particular, it can be di�cult for groups to manage notebooks when multiple people are
making exploratory changes to the source code and may leave poor notes to document
the rationales. Koesten et al. [98] examined collaborative practices with structured data
through an interview study. They revealed tools on a spectrum that spans across the
data science life cycle, which includes data portals for storing and sharing datasets (e.g.,
CKAN, Figshare), data analysis tools (e.g., Google Sheets, Jupyter Notebooks), wiki-
based platforms (e.g., Wikidata), and versioning tools (e.g., OSF, GitHub). They iden-
tified several user needs for collaborative data tools, such as change control, supporting
conversation, and allowing custom data access. This dissertation [181] studied the use
of computational notebooks for real-time collaboration. I found that synchronous edit-
ing can improve collaboration by creating a shared context and reducing communication
costs. I also pointed out that synchronous editing can potentially harm collaboration by
activity interference and lack of documentation.

2.2.2.3 Teaching with Computational Notebooks

Given the benefits of supporting exploratory programming, computational notebooks are
widely adopted not only in data science professional work, but also in data science edu-
cation. A handful of resources are available to guide instructors to the best practices of
using Jupyter Notebook in their classrooms (e.g., the open book about using Jupyter for
teaching and learning [24]). Kross and Guo [103] interviewed practitioners who taught
data science and found that Jupyter notebooks have been widely used by instructors to de-
liver course materials. Instructors and students benefit from Jupyter notebooks by easily
writing computational narratives with a low cost for setting up an environment. However,
Johnson [84] pointed out the technical challenges and pedagogical considerations that
may prevent instructors from using the Jupyter notebooks. In particular, he mentioned
technical challenges such as the hidden state in the notebook that may confuse students,
the limited debugging capabilities, and the lack of close integration with learning manage-
ment systems. He also argued that programming in notebooks does not facilitate software
engineering best practices.
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2.3 Improving Computational Notebooks

The popularity of computational notebooks has led to a growing e↵ort to create more
e↵ective and adaptable notebook systems and to develop new interaction techniques in
both academic and industrial settings. Lau et al. conducted a comprehensive review of 60
notebook systems across academia and industry, analyzing their features and the typical
workflow for computational notebooks, including importing data, editing code and text,
running code to generate cell outputs, and publishing notebooks [107]. In this section, I
examine the design goals of notebook features and organize the discussions around sev-
eral themes: (1) lowering the barriers to data science programming, (2) encouraging more
explanations, (3) scaling di↵erent data sources, (4) reactivity of the programming environ-
ment, (5) managing messes with out-of-order cells and throw-away code, (6) improving
the delivering of results, (7) facilitating team collaboration.

2.3.1 Lowering the Barriers to Programming

Given that quick iteration is an important attribute in exploratory programming, many
computational tools have made design decisions to lower the barriers to programming.
Beginning with the choice of languages, Jupyter Notebook supports mainstream and es-
tablished programming languages (e.g., Python and R) for data analysis while Mathemat-
ica and Matlab choose tailored programming languages for novice and end-user program-
mers with math and engineering background.

Novice programmers can benefit from writing code in natural language descriptions.
For example, Gulwani et al. implemented the NLyze system as a natural language-based
interface for spreadsheet data analysis [70]. The core algorithm leverages ideas like key-
word programming and semantic parsing to achieve an accurate and robust result. Wol-
fram released the Wolfram natural language understanding system that converts natural
language descriptions into the Wolfram Language.

Recently, many research prototypes have emerged to explore a close transition be-
tween code and graphical interface. Matlab allows users to explore how di↵erent algo-
rithms work with the data interactively, and generate a program to reproduce or automate
the work. Many editors include contextual hints for function arguments. For example,
providing a dropdown list of candidate argument values for an API call, using colors
to highlight di↵erent types of data structures. Tools like the nteract data explorer [123]
and Pandas Profiling [128] help users automatically generate interactive overview of the
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dataset. Domain specific computational notebook tools like the GenePatternNotebook [6]
allow users to add a new type of cell to run analysis through interactive web forms with-
out having to write code. Drosos et al. proposed the Wrex extension which allows users
to demonstrate data transformation tasks directly on an interactive grid view of the data
frame, and generates synthesized code based on the examples [51]. Kery et al. designed
a set of GUI tools for users to program in computational notebooks through direct manip-
ulation (e.g., filtering data; editing images) [92]. Wu et al. designed the B2 extension that
generates code from operations on interactive visualizations so that users can explore the
problem in interactive visualizations while tracking the steps [195]. Automated machine
learning products like AutoAI [188], H2O.ai [7], and DataRobot [42] provide a graphical
interface for users to simplify the process of analyzing and modeling data, and generate
computational notebooks to reproduce the process.

2.3.2 Encouraging Explanations

As mentioned previously, many programmers did not follow the literate programming
paradigm while working with computational notebooks. Writing thoughts through the
development of code may conflict with some programmers’ goal to quickly experiment
with ideas. However, not keeping detailed notes may result in the hesitation to later polish
notebooks for sharing and presentation. Important decisions and rationales may be missed
from the narratives. In chapter 4, I seek to capture valuable insights in discussions by
connecting the conversations with computational notebooks [184]. This approach is par-
ticularly helpful when the creation of notebooks involves conversations between multiple
collaborators. New notebook collaborators can benefit from the close connected discus-
sions to avoid misinterpretations and duplicated work. However, this approach does not
work when the notebook has a single author. One potential direction to encourage more
explanations is to simplify the process of writing explanations. For example, some tools
(e.g., the GenePattern Notebook [6]) use WYSIWYG editors that allow users to manip-
ulate the text through rich formatting, which benefit users who are not familiar with the
document markup languages. Tools like Paircast [126] demonstrates another possibility
to document the code with audio-based transcribing techniques.
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2.3.3 Scaling Data Sources

Another thread of innovations examines the need for scaling di↵erent data sources and
making it easy to connect the notebook with the data sources. For example, Zhang and
Guo [206] presented the DS.js system which enables users to get started with data analysis
on tables and data source on any webpage. This approach can particularly encourage data
science learners to explore interesting data sources and learn data science techniques. In
addition, tools like Datasette [1] and Qri [146] provide direct integration to Jupyter Note-
book which gives users access to community shared datasets on GitHub. On the other
hand, tools and packages explore ways to create and modify data in notebook tools. For
example, the ipysheet [82] extension integrates the spreadsheet feature in Jupyter Note-
book where users can input values for a data frame. The ipyannotate [81] extension allows
users to annotate data through a graphical interface, which can be useful for many ma-
chine learning tasks. Lau et al. summarized the types of data sources into local files, cloud
storage, large data, and streaming data [107]. It is worth noting the streaming data, where
the notebook is connected to real-time streaming data sources for computation. DeLine et
al. [46] studied the design of data science environments for live data through the Tempe
prototype. In particular, the design of Tempe is informed by Tanimoto’s liveness taxon-
omy [173] where stored data keeps level-3 liveness (edits would trigger any necessary
re-computation) and stream data keeps level-4 liveness (edits would trigger updates to
ongoing computations).

2.3.4 Reactivity

Common computational notebooks implement two di↵erent programming paradigms.
Observable [18] and Pluto.jl [139] implement reactive or dataflow programming where
a↵ected cells would be automatically updated when changing a function or variable.
These tools also enable users to embed functions and variables inline with Markdown
syntax, which allow rendered text to be updated with changes on the notebook or the
data. Another advantage of using the reactive programming paradigm is that users do not
need to worry about cell orders, which makes the notebook logically consistent. Users
can organize the notebook content more flexible by moving interesting visualizations and
narratives upfront, and moving complex and technical function definitions into the ap-
pendix. To achieve reactive programming, both environments limit multiple definitions
across cells so that the cells do not form an infinite dependency loop.
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Other computational notebook tools like Jupyter follow the more conventional REPL
paradigm — reads the users’ command, evaluates the command, and prints the results.
For example, Jupyter notebook prints the output only when users execute the correspond-
ing code cell. Executing other cells do not trigger updates or re-evaluation of this code
cell. This approach will save costs for large computations (e.g., triggering recomputation
on model training manually). This approach also help generate computational narratives
where outputs are clearly matched with the history states of the analysis. A major draw-
back of this approach is that programmers need to mentally manage the execution orders,
which harms the reproducibility of the notebook. Without clear instructions, it is not easy
for collaborators to execute the notebook in a proper order and replicate the analysis. In
next section, we will discuss approaches for managing out-of-order cells.

2.3.5 Managing Out-of-order Cells and Throw-away Code

Although the design of cell structure allows programmers to explore code freely without
having to worry about the order of execution, it leads to messy, cluttered, and inconsis-
tent notebooks with out-of-order cells [157]. In particular, many of the code cells contain
experimental code that may or may not contribute to the narrative. Head et al. use code
gathering techniques to help programmers tracing relevant cells that contribute to a par-
ticular cell output [75]. A usability study shows that the tool can help data professionals
better organize and clean their notebooks. Kery et al. [88] took a di↵erent approach to
develop algorithmic and visualization techniques for programmers to better forage past
exploration histories. Their evaluation found that this approach can improve the success
rate for finding specific information from a past data science project.
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Figure 2.1: Non-traditional methods for evaluating code cells in computational note-
books: (A) The Nodebook extension [208] enforces an ordered flow of cell execution. For
example, no matter how many time A.3 is executed, the output of A.4 would always be
17. (B) The Dataflow extension [100] allows users to call a specific version of the variable
in other cells’ output. For example, B.2 changed the value of df by renaming columns.
B.3 used the value of df from B.2 to run new computations. (C) The Pluto.jl environment
[139] implements reactive programming where relevant cells would be automatically up-
dated when changing a function or variable. For example, updating the statement of x
in C.1 would propagate changes to C.3. Pluto.jl prevents multiple definitions of global
variables across cells. Statement C.2 and C.1 would trigger an error, causing statement
C.3 not able to return values. This figure is adapted from [208, 100, 139].
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Part 1

Understand Challenges in Collaborative
Data Science
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CHAPTER 3

How Data Scientists Use Computational
Notebooks for Real-Time Collaboration

E↵ective collaboration in data science can leverage domain expertise from each team
member and thus improve the quality and e�ciency of the work. Computational note-
books give data scientists a convenient interactive solution for sharing and keeping track
of the data exploration process through a combination of code, narrative text, visualiza-
tions, and other rich media. In this paper, we report how synchronous editing in computa-
tional notebooks changes the way data scientists work together compared to working on
individual notebooks. We first conducted a formative survey with 195 data scientists to
understand their past experience with collaboration in the context of data science. Next,
we carried out an observational study of 24 data scientists working in pairs remotely to
solve a typical data science predictive modeling problem, working on either notebooks
supported by synchronous groupware or individual notebooks in a collaborative setting.
The study showed that working on the synchronous notebooks improves collaboration by
creating a shared context, encouraging more exploration, and reducing communication
costs. However, the current synchronous editing features may lead to unbalanced partic-
ipation and activity interference without strategic coordination. The synchronous note-
books may also amplify the tension between quick exploration and clear explanations.
Building on these findings, we propose several design implications aimed at better sup-
porting collaborative editing in computational notebooks, and thus improving e�ciency
in teamwork among data scientists.
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3.1 Introduction

The complexity of data science work and the demand to adopt data science practices
in various domains has grown rapidly in the last decade. With this increase in adoption,
there is a need to facilitate collaboration among data science workers, domain experts, and
consumers. Data scientists often create computational narratives, which combine data,
code to process those data, and natural language explanations to form a narrative. Some
even consider computational narratives to be the engine of collaborative data science [3].
Computational notebooks allow data scientists to create and share computational narra-
tives. Jupyter Notebook1, a computational notebook platform that supports more than
40 programming languages, has been widely used for writing and sharing computational
narratives in various contexts [137]. For example, data science instructors use Jupyter
notebooks to create interactive lecture notes or textbooks. Data science learners can ex-
periment with these interactive lecture notes to deepen their understanding or explore
alternative solutions [103]. Researchers use Jupyter notebooks to demonstrate their com-
putational work and share their data analysis process for open science, which makes it
easy for others to reproduce the results [148]. As Figure 3.1 shows, Jupyter notebooks
allow users to weave together source code, narrative text, visualization, computational
outputs, and other rich media using structured cells.

Prior studies have revealed the challenges in constructing and sharing computational
narratives through notebooks. For example, data scientists are reluctant to keep up-to-
date explanatory notes, which impedes sharing and collaboration [157]. Studies have
also explored ways to lower the barriers for writing and sharing computational narratives:
folding content selectively [155]; local version control mechanisms [87]; and managing
and reorganizing content [75]. Most of these innovations are designed and evaluated for
sharing the computational narrative after it is finished, leaving data scientists to work on
individual notebooks. Recently, tools like Google Colab2 have demonstrated the possi-
bility for synchronous editing — multiple users are able to edit the same notebook and
changes are updated in real-time, which may revolutionize the ways data scientists col-
laborate.

However, synchronous editing comes with its own challenges and may not always im-
prove work e�ciency. Studies have identified several issues with synchronous editing in
other contexts. For example, in narrative writing, multiple users rarely synchronously edit

1
https://jupyter.org

2
https://colab.research.google.com
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Figure 3.1: An example of a Jupyter notebook. (1) A custom collaborative extension for
users to share their notebook. (2) A notebook cell that contains code to import libraries
and load dataset. (3) An output of a shared data frame. (4) A markdown cell that contains
narrative text. (5) An output of a visualization

adjacent content [41], and programmers can interfere with each others’ work when using
synchronous code editors [65]. While many of these studies are constructed around the
context of collaborative writing and programming, it remains unknown how synchronous
editing in computational notebooks might work for data scientists. More specifically, we
are interested in three questions:

1. What tools and strategies do data scientists currently use for collaboration?

2. Compared to working on individual notebooks in a collaborative setting, how does
synchronous notebook editing change the way data scientists collaborate in com-
putational notebooks?

3. What challenges, if any, do data scientists perceive in synchronous notebook edit-
ing?

To address these questions, we first conducted a formative survey with 195 data scien-
tists who were familiar with Jupyter notebooks. Based on the common tools and mech-
anisms they use for collaboration and communication, we further conducted an obser-
vational study with 24 intermediate data scientists working in pairs remotely to solve a
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predictive modeling problem. To understand a broader spectrum of synchronous note-
book editing, we assigned participants with di↵erent settings for collaboration, which
included: (1) working on synchronized notebooks — participants worked on notebooks
with synchronous editing similar to that in Google Docs, and could communicate through
other tools, (2) working on individual notebooks — participants were not able to edit the
same notebook, but could communicate the intermediate code and output through other
tools. We also provided participants di↵erent options for communication which included:
(1) text-based messaging, (2) video chat. Through this observational study we empiri-
cally probed both the benefits and challenges for the di↵erent ways of collaborating with
computational notebooks.

Our key finding reveals that working on synchronized notebooks can improve the col-
laboration outcomes by reducing communication costs and encouraging more exploration
in a shared context. However, working on synced notebooks requires participants to be
more strategic when coordinating their work. Working on synced notebooks is more
likely to lead to unbalanced participation where one team member does the majority of
implementations and ideation. In addition, participants found other challenges in using
synchronized notebooks such as interference with each other, lack of awareness, and pri-
vacy concerns. These findings suggest ways in which we need to improve the design of
collaborative notebook editing tools to better foster teamwork among data scientists.

The main contributions of this work are the empirical insights we present on how
data scientists collaborate using computational notebooks. These insights lead to design
implications to enhance collaborative computational notebooks for fostering collaboration
among data science learners and practitioners. This work extends prior work on real-
time collaborative systems and is broadly applicable to understanding collaboration in
exploratory and open-ended tasks.

3.2 Overview of the Methodology

This project investigates three research questions:

RQ1 What tools and strategies do data scientists currently use for collaboration?

RQ2 Compared to working on individual notebooks in a collaborative setting, how does
synchronous notebook editing change the way data scientists collaborate in com-
putational notebooks?
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RQ3 What challenges, if any, do data scientists perceive in synchronous notebook edit-
ing?

To understand tools and strategies data scientists currently used in practice (RQ1), we
first conducted a survey with 195 data scientists/data science students who came from
diverse backgrounds. We summarized the tools they used for programming, communica-
tion, and project management, as well as their strategies for collaboration. In particular,
we identified two approaches for data scientists to collaborate: (1) the traditional collab-
oration setting where team members work on individual Jupyter Notebook and update
each others’ work asynchronously, and (2) the emerging collaboration setting where team
members work closely together on a shared Jupyter Notebook and all the edits are syn-
chronized in real-time.

To further compare how data scientists’ collaboration styles varied between two ap-
proaches (RQ2), we conducted an observational study with 24 intermediate data scientists
working in pairs remotely to solve a predictive modeling problem. We summarized the
common collaboration styles that emerged in the two collaboration settings. We reported
the comparison of communication styles, performance, and perceptions of the collabora-
tion experience. We also analyzed the challenges that participants faced in using real-time
collaborative editing features (RQ3).

3.3 Study 1: Formative Survey on Collaborative Data
Science

We conducted a formative survey to investigate data scientists’ previous experiences with
collaboration. In particular, we aimed to understand the tools they used for programming,
communication, and project management, as well as their strategies for collaboration.

We sent the survey to data science interest groups in a university and to individuals who
completed a specialization course on Coursera that teaches data science using Python.
Respondents had to meet the following criteria to take the survey: (1) be familiar with
Python and Jupyter notebooks, (2) have formal training in data science, and (3) have
worked individually on at least one data science project. To motivate participation, we
randomly picked two respondents and rewarded them each a $25 gift card.
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3.3.1 The Survey Instrument

The online survey consisted of four sections: (1) informed consent, (2) demographics and
data science experience, (3) experience with collaborative data science, and (4) willing-
ness to participate in the observational study.

In the first section, we explained the purpose of the survey and collected respondents’
consent. The second section asked about demographics (age, gender, educational back-
ground, job role), experience with data science (e.g., what techniques they have used or
learned in the past), and degrees of identification as the given roles: computer scientists,
software engineers, data scientists, and statistician analysts. In the third section, we asked
respondents to recall their most recent experience of working with other people on a data
science project. If respondents did not have any experience in collaboration, we provided
them a hypothetical scenario:

“Imagine you are participating remotely at a 2-day long data science
hackathon with 2 other team members on a predictive modeling problem.”

Respondents were then asked to provide more details about the project, for example,
describing the context of the project (e.g., purpose, problem, and dataset), and selecting
activities that are involved in the project (e.g., collecting data, sampling data, feature
selection, data visualization). In addition, respondents were asked to list the tools they
have used when collaborating with others on data science projects for the purposes of
programming, communication, and project management. Followed by an open-ended
question, we asked their strategies for keeping a shared understanding across the team.
In the last section, we asked whether respondents would be willing to participate in an
observational study. We collected the names and e-mail addresses of participants that
indicated they were willing to participate.

3.3.2 Data Analysis

We first filtered the responses by deleting incomplete entries and merging duplicated en-
tries from the same respondents. For the open-ended questions, we took an inductive
analysis approach to explore themes for each question. Four coders worked individu-
ally on a small sample of the responses and developed a list of potential codes. After
discussing and merging the coding scheme, we coded the same sample independently.
We then compared the result by computing a Fleiss’ Kappa score to measure both the
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reliability of the coding scheme and the agreement among the coders. We iterated on
the coding scheme until an appropriate level of agreement was achieved among the four
coders (Fleiss’s kappa,  0.74).

3.4 Key Findings from Study 1

We reported the key findings from the formative survey study.

3.4.1 Data Overview

The survey received 195 valid responses in total (23.08% female and 76.92% male).
Among 195 responses, 35 are from data science interest groups in a university and 160
are from individuals who completed a data science specialization course on Coursera.
The majority of respondents (73.8%) were age 20–40. Respondents came from a variety
of job roles: students (29.74%), data scientists (25.13%), software engineers including
Information Technology (IT), system architecture (14.87%), researchers (9.74%), man-
agers including CEOs, VPs, and product managers (9.23%), business analysts (8.20%)
and others (3.09%, e.g., drilling engineer).

The respondents were generally well trained in data science. The majority of them
(94.36%) held or were pursuing a bachelor or higher degree. Most of these degrees are
in technical fields (e.g., computer science, information science, electrical engineering,
applied science, or data science). When asked about their previous experience in apply-
ing common techniques in data sciences, the respondents indicated they were skilled in
linear regression (96.92%), decision trees (92.31%), SVMs (85.64%), neural networks
(82.05%), non-linear regression (70.26%), deep learning (65.13%), Bayesian modeling
(62.56%), and other advanced techniques (e.g., XGBoost, reinforcement learning).

The respondents also reported engaging in a variety of data science activities: data
cleaning (67.69%), applying machine learning algorithms (57.95%), data visualization
(52.82%), exploratory data analysis (49.74%), collecting raw data (44.10%), writing a
report (38.97%), feature selection (38.46%), applying statistical models (31.28%), doing
an oral presentation (31.28%), data sampling (28.20%), hypothesis testing (22.56%), and
building data products (21.03%).
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Purpose Tool Percent

Programming

Jupyter Notebooks 88.72%

Integrated Development Environments (IDEs) (e.g., RStu-
dio, PyCharm)

51.79%

Code Editors (e.g., Atom, Sublime) 46.15%
Google Colab 12.31%

Communication

E-mail 79.49%
Face-to-face Communication 68.72%
Instant Messaging 55.90%
Google Docs 40.51%
Video Conferencing 38.46%

Project Management
Version Control (e.g., Github, Bitbucket) 49.74%
Task Tracking (e.g., Trello, Jira) 21.03%
Shared Storage Services (e.g., Google Drive, Dropbox) 3.07%

Table 3.1: The tools that respondents have used for programming, communication and
project management during collaboration.

3.4.2 Experience with Collaborative Data Science

When asked about their previous experience in collaborative data science, most respon-
dents (73.3%) reported that they had prior experience collaborating with other people
on a data science project. Of the respondents who had previous collaboration experi-
ence, most (72.72%) collaborated on a data science project for work, while the others
mentioned other purposes such as course projects (30.07%), competitions or hackathons
(18.89%), or personal side projects (13.20%).

3.4.2.1 Choices of Tools

We asked respondents to list the tools they have used for programming, communication
and project management during collaboration. For respondents who do not have or can
not remember their past collaboration experience (26.7%), we gave them a scenario of
participating in a data hackathon in teams and asked about their choices of tools and col-
laboration strategies. For programming purposes, most respondents mentioned Jupyter
notebooks (88.72%), IDEs (51.79%), and code editors (46.15%). In addition, some re-
spondents mentioned Google Colab (12.31%), a computational narrative environment
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which is an alternative to, but similar to, Jupyter notebooks. For communication purposes,
e-mails (79.49%) and face-to-face communication (68.72%) are most mentioned by re-
spondents, followed by instant messaging (55.90%), Google Docs (40.51%) and video
conferencing tools (38.46%). For project management tasks, roughly half of respondents
mentioned version control suites (49.74%) such as Github and Bitbucket for sharing code
and datasets. Several respondents also mentioned using shared storage services such as
Google Drive and Dropbox for managing project assets. Some respondents mentioned
task tracking tools (21.03%) such as Trello and Jira. Respondents also mentioned using
Google Calendar, spreadsheets, or physical whiteboards to keep track of tasks and project
progress. Our results are summarized in Table 3.1.

Strategy Percent Example Response

Discussions and meetings 54.36% There were weekly meeting among team mem-
bers to keep track of the progress of each ele-
ment of the project

Frequently check-ups 51.79% Communicate actively and frequently; check-up
on every hour

Documentation 48.20% Keep notes in Google Docs; ... comments in
code;

Organization 28.72% Divide up the work into definable parts, make
sure that everyone knows the progress that ev-
eryone else has made and how it impacts their
part of the project

Shared Assets 25.13% Common repository for files; share the same
place for storing project, and name the file
clearly

Others 5.01% Code review to ensure code matched intent; all
worked in a friendly manner

Table 3.2: Strategies for keeping a shared understanding

3.4.2.2 Strategies for Keeping a Shared Understanding

When asked about their strategies for keeping a shared understanding across team mem-
bers, most respondents mentioned regular discussions and project meetings (54.36%). For
example, respondents mentioned “weekly meetings with the team to follow up the stages
of deployment”, and also frequently reported that they used check-ups (51.79%) such as
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keeping the other team members informed of any changes made to the code. Some of
these respondents reported that they would work closely in a physical space to reduce the
communication cost by talking face-to-face. Documenting (48.20%) is another common
strategy used for collaboration. For example, respondents mentioned that they would
keep all the intermediate findings in shared Google Docs. Some respondents also men-
tioned coordination strategies such as planning ahead and being clear about everyone’s
responsibility (28.72%). In addition, respondents mentioned that they would share any
intermediate results and code using version control tools or shared folders (25.13%). The
others mentioned strategies such as code reviews to help them maintain a shared under-
standing. The results are summarized in Table 3.2.

3.4.3 High-Level Summary of Findings

In summary, respondents to our survey were made up of a variety of practitioners and
students who are well trained in data science and are familiar with Python and Jupyter
notebooks. Most respondents had previous experience in collaborating with others on a
data science project, and working in individual Jupyter notebooks with version control
tools was the most popular setting for collaboration. Team members constantly discuss
and keep everyone informed about the progress of the project, as well as maintain shared
notes. Although Google Colab was relatively new and was not be used by many respon-
dents, several respondents mentioned Google Colab as an option for collaborative editing.
With this more holistic understanding of collaboration among data scientists, we decided
to narrow our focus and probe into the di↵erences a↵orded by traditional collaboration
settings, where team members work on individual Jupyter notebooks and update each oth-
ers’ work asynchronously, and the emerging real-time synchronized editing collaboration
setting, where team members work closely together on a single Jupyter notebook with
shared edits.

3.5 Study 2: Observational Study on Real-time Collabo-
rative Data Science

We conducted an observational study with 24 data scientists working remotely in pairs to
solve a predictive modeling problem. We tested two conditions, with users working on
either individual notebooks or notebooks that enable synchronous editing in a collabora-
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PID GID Country Occupation Major

P01 (M) S1 U.S. Student Master in Information Science
P02 (F) S1 U.S. Student Bachelor in Statistics
P03 (M) N1 U.S. Data Scientist Master in Data Science
P04 (M) N1 U.S. Student Master in Computer Science
P05 (F) N2 Canada Business Analyst Master in Management
P06 (M) N2 Pakistan Software Engineer Bachelor in Computer Science
P07 (M) N3 India Student Bachelor in Information Technology
P08 (M) N3 India Student Bachelor in Computer Science
P09 (M) N4 U.S. Student Bachelor in Computer Science
P10 (M) N4 Brazil Data Scientist Bachelor in Computer Science
P11 (M) S2 Canada Student Master in Computer Science
P12 (M) S2 Canada Student Bachelor in Computer Science
P13 (M) S3 Canada Student Bachelor in Computer Science
P14 (M) S3 Canada Student Bachelor in Computer Science
P15 (M) S4 U.S. Student Bachelor in Economics
P16 (M) S4 U.S. Student Master in Information Science
P17 (M) S5 China Software Engineer Bachelor in Computer Science
P18 (F) S5 China Student Ph.D. in Computer Science
P19 (M) S6 U.S. Data Scientist Master in Computer Science
P20 (F) S6 U.S. Business Analyst Master in Business
P21 (M) N5 India Student Bachelor in Computer Science
P22 (M) N5 India Student Master in Computer Science
P23 (M) N6 India Student Master in Computer Science
P24 (M) N6 India Student Master in Business

Table 3.3: Demographics of Participants in Study 2

tive setting. Our goal was to examine how collaboration styles varied between the two
conditions, and to gain empirical insights on the benefits and trade-o↵s for each setting.

Groups chose from two communication mechanisms that were commonly used for col-
laboration: Slack for text-based messaging and Google Hangouts for video-based com-
munication. In pilot studies, we found it di�cult to control the communication mecha-
nism due to technical limitations (e.g. participant microphone or network issues). Thus
at the beginning of the study, we asked individual groups to decide which communication
mechanisms they wanted to use throughout the study.

35



3.5.1 Participants and Task

We recruited participants who had a su�ciently substantial background in data science:
(1) be familiar with Python and Jupyter notebooks, (2) have formal training in data sci-
ence, and (3) have experience with predictive modeling. For reference, we provided an
example predictive modeling task to potential participants for evaluating whether to opt-
in to the study. We reached out to 12 initial participants from respondents to our first
survey who indicated a willingness to participate in future research, and used them as
seeds to recruit the rest of participants through snowball sampling. Participants (4 fe-
males, 20 males, average age = 24.62) all had basic knowledge in data science related
fields (e.g., computer science, business analytics, statistics, economics), as listed in Table
3.3. Seven participants currently worked as data scientists and analysts, and most (23/24)
have collaborated with others on a data science project before.

Participants were randomly assigned to pairs and were instructed to work collabora-
tively on a predictive modeling problem. The task given was to predict housing sale prices
using 80 features (e.g., lot size, type of road access, original construction date). The task
involved features not relevant to the prediction, outlier records, and missing values. Pairs
were asked to to develop their own strategies to judge the importance of features, handle
pre-processing, and apply predictive models for sales prices. This task was based on a
beginner-level competition on Kaggle3, and indirect questions were asked in the recruit-
ment process to ensure that participants had not worked on the same task previously. We
chose the predictive modeling problem since it captures the majority activities in the data
science pipeline (e.g., exploratory data analysis, data cleaning, modeling, and evalua-
tion). In addition, the problem is open-ended, which left space for groups to try advanced
models and improve the prediction result.

3.5.2 Apparatus

Participants joined the study remotely and their browser screens, webcams, and micro-
phones were recorded by the research team with consent. Groups could choose to use
Slack for sending text, images, or code snippets, or Google Hangouts for video calling.
A JupyterHub4 instance was made available so that participants could access the compu-
tational environment and run their notebooks from the cloud. Groups were assigned to

3
https://www.kaggle.com/c/house-prices-advanced-regression-techniques

4
https://jupyter.org/hub
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work in either the shared condition or non-shared condition as described below.

3.5.2.1 Non-Shared Condition

In the non-shared condition, participants logged on to the JupyterHub platform and
worked on individual notebooks. They were allowed to exchange the notebook file, set
up a git repository, or send code snippets through chat or any other tool.

3.5.2.2 Shared Condition

In the shared condition, a Jupyter notebook collaboration extension was enabled on the
server to support synchronous editing in notebooks. Participants logged on to the Jupyter-
Hub platform, created a shared notebook and invited their teammates to join the notebook.

3.5.3 Collaboration Extension

The collaboration extension allows code to be executed on a single interpreter while the
output and runtime variables are shared among collaborators (Figure 3.1).

3.5.3.1 Workflow

To demonstrate the workflow of the extension, consider a data scientist Bob is working
with his colleague Alice remotely on an exploratory data analysis problem. The extension
allows Bob to enable the collaborative editing mode on the existing notebook, and share
the session code with Alice. Alice then joins the notebook using the session code and edits
the same notebook with Bob. The notebook updates changes in real-time, and shares the
cursor positions and selections between Alice and Bob.

3.5.3.2 Implementation

We use Operational Transformations (OTs) to handle real-time information exchange
among notebooks in the shared session, where OT is a widely-used technology for sup-
porting consistency maintenance and concurrency control in real-time groupware systems
(e.g., Google Docs). There are two types of synchronization strategies in our extension.
For operations that do not involve code interpreter (e.g., editing code, adding cells, delet-
ing cells), we use a decentralized model to update all notebooks in the shared session with
recent edits. For operations that involve with code interpreter (e.g., execution a code cell,

37



rendering a markdown cell), we first send the operation to a host notebook. We then exe-
cute the cell on the host’s interpreter and update clients with output and runtime variables
after the interpreter finishes execution. The extension is implemented by a Node.js web
server that connects to a Postgres database, and a web-based client that implemented as a
Jupyter Extension.

3.5.4 Study Procedure

The observational study consisted of four sessions, each of which lasted an hour. We gave
participants goals for every session: to better understand data (session 1), to clean the
data (session 2), to create a basic predictive model for the data (session 3), and to create a
more advanced prediction model to further improve the results (session 4). Although we
encouraged participants to meet the goals we set, we did not enforce these goals or any
particular task ordering. Before the first session, groups were given 15 minute orientation
to become familiar with each other and the study setting. We provided participants with
written instructions about the study task. Groups were allowed to use external resources
throughout the study.

At the end of each session, participants were asked to fill out a post-session question-
naire wherein they were asked to describe the exploration progress, their own contribu-
tions, and any di�culties they encountered in that session. Participants were also asked
to evaluate a set of statements on a seven-point Likert scale. There are three themes in
the statements: communication (e.g., being able to follow the conversation), awareness of
others (e.g., being aware of what issues teammates are struggling with), and group main-
tenance (e.g., enjoying working with others). Lastly, the first two groups who completed
the study were asked about their feedback on study settings and instructions.

After the final session, groups submitted a final prediction result, together with a
merged notebook report that explained the exploration process. To motivate participants,
we rewarded each participant a $40 base incentive. The group with the best prediction
result was awarded an additional $10 for each member.

In addition, we conducted one-on-one post-task interviews to investigate how partici-
pants perceived the study. We first asked them to reflect on their collaboration experience
(e.g., what was their strategy for coordinating work). Next we used the critical incident
technique [58] to investigate if there was a situation where they could not follow the
conversation, they did not feel aware of others’ work, or they disturbed others’ work.
Participants were then prompted to think about how these incidents could be addressed if
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they could change the features of the tool.

3.5.5 Data Analysis

We used an inductive analysis approach with other methods (e.g., a�nity diagramming,
memoing) from grounded theory [37] to analyze the data. Screen recordings, open-ended
questions from the post-session survey, and interview transcripts were first observed by
the lead author to identify: (1) common collaboration patterns, (2) activities that are in-
volved in the exploration, and (3) any challenges that were faced during collaboration.
Using an open-coding approach, we first created a coding scheme based on initial obser-
vations. Four coders independently coded two samples to refine the coding scheme. We
then discussed and used a�nity diagramming to synthesize emerging themes. Next, we
went through several iterations to check another two samples individually. The purpose
of this step was to confirm the legitimacy of the coding scheme and to check the inter-
rater reliability. After several iterations, four coders reached a suitable level of agreement
(Fleiss’s kappa,  0.71).

Group ID Collaboration Style Notebook Message Error Score

N1 Competitive Authoring 88% 61% 0.21
N2 Divide and Conquer (datasets) 71% 54% 0.36
N3 Competitive Authoring 84% 61% 0.25
N4 Competitive Authoring 69% 55% 0.48
N5 Divide and Conquer (datasets) 68% 59% 0.23
N6 Competitive Authoring 91% 51% 0.12

S1 Divide and Conquer (tasks) 58% 61% 0.13
S2 Single Authoring 94% N/A 0.15
S3 Divide and Conquer (tasks) 71% 58% 0.21
S4 Divide and Conquer (tasks) 67% N/A 0.16
S5 Single Authoring 83% 75% 0.23
S6 Pair Authoring 86% N/A 0.16

Table 3.4: Collaboration Styles. The notebook ratio is the percentage of cells that one
member contributes in the final notebook. The message ratio is the percentage of mes-
sages that one member sends in total Slack messages; N/A means the team uses video-
based communication (Google Hangouts). The error score is calculated using Root Mean
Square Error (RMSE). Lower error scores are better.
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3.6 Key Findings from Study 2

We first present the results of the common collaboration styles that emerged in the two
collaboration settings. Based on the framework of collaborative writing developed by
Posner and Baecker [142], we propose four collaboration styles. Then, we present an
analysis of our comparison of communication styles, finding that working in the synchro-
nized notebook can reduce the communication costs by establishing a shared context. We
also report the di↵erences in performance (e.g., final prediction scores, number of alterna-
tive models, notebook lengths) between the two collaboration settings. Lastly, we present
the challenges that participants faced in using real-time collaborative editing features.

3.6.1 Collaboration and Communication Styles

Based on what we observed in our study and extending the framework developed by
Posner and Baecker [142] for collaborative writing styles, we refine and propose four col-
laboration styles for data science tasks based on team members’ contributions in ideation
and implementation.

• Single Authoring: The single authoring style is extended from the single writer
strategy from Posner’s framework. In this style, one team member contributed the
majority of ideas and did the majority of implementation, while the other did not
provide substantial contributions.

• Pair Authoring: The pair authoring style is extended from the scribe strategy from
Posner’s framework where one team member completed the majority of the imple-
mentation while the other contributed ideas, engaged in discussions and reviewed
the results. We chose the term pair authoring because it is as analogous to the
collaboration style in pair programming where one person writes the code and the
other reviews the code. This is di↵erent from pair programming where two pro-
grammers frequently switch roles: here, the individuals engaged in pair authoring
stick to their roles from the beginning to the end.

• Divide and Conquer: The divide and conquer style is a combination of the sep-
arate writers strategy and joint writing strategy from Posner’s framework. Here,
participants divided the task into subgoals and explored the subgoals independently.
We observed two types of divide and conquer strategies — (1) dividing datasets,
where participants split the dataset into half and explore in parallel using the same
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technique, (2) dividing tasks, where participants split the task and work on di↵er-
ent parts in parallel.

• Competitive Authoring: We proposed this collaboration style based on our obser-
vation of team members going through an idea together and competitively imple-
menting it. It is di↵erent from divide and conquer that team members wrote the
code for the same purpose and reached the consensus to use the code by whoever
finished first. There is no equivalent strategy in Posner’s framework.

We then used these definitions to code each group’s collaboration style. We analyzed
the notebook contribution ratio (the percentage of cells that one member contributes in the
final notebook) and the message ratio (the percentage of messages that one member sends
out of the total number of Slack messages) with the code and notes from screen recordings
to inform our judgment. We report how groups adopted di↵erent collaboration styles
using a collaborative editing notebook (shared condition) and using individual notebooks
(non-shared condition) in Table 3.4.

3.6.1.1 Single Authoring Style

Two groups adopted the single authoring style when working in the synchronized (shared
condition) notebook. We observed an unbalanced contribution in their final notebooks.
Participants who contributed less reported that without strategic coordination and com-
munication, they did not have a task that fit their level of expertise and ended up walking
through the same task with their teammate. One explanation that arose is that the partici-
pants might feel pressured and o↵-topic, not knowing how to engage in the task:

... My teammate is better and faster in doing the task. Sometimes I know he
is trying an idea, but it may take me a while to figure it out and he just jumped
to the next task... I wish I could have a separate window to try the code in my
own pace... (P12 from S2)

3.6.1.2 Pair Authoring Style

One group used the pair authoring style when working in the same notebook. Two mem-
bers agreed that one person was in charge of implementation while the other helped with
ideation and finding documentation. As opposed to single authoring, where one group
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member contributes the majority of code and ideas, in pair authoring, both group mem-
bers felt engaged in decision making. They further explained why they found pair author-
ing useful using the pair programming metaphor of a driver who writes the code, and a
navigator who reviews the code:

... There is a dynamic in pair programming called “Driving and Navigating”.
The idea is that two people on one keyboard is di�cult to do well, so one
should primarily be leading... (P19, the main driver from S6)

... Data science is not just about writing code, you know. My role is as im-
portant as my teammate. I can think about the big picture while my teammate
is working on the details in Python. It is not necessary for me to step into his
code... (P20, the main navigator from S6)

3.6.1.3 Divide and Conquer

We observed the pattern of “divide and conquer” from five groups, with three groups from
the shared condition and two from the non-shared condition. Participants used di↵erent
strategies to decide how to divide the task. Some groups planned ahead to discuss the
goal of the session and used that to guide how to divide the task. These groups often
decided whom to assign the sub-tasks to based on group members’ skills. For example,
participants in group S3 used markdown cells to list things they wanted to explore and
put group members’ name aside to track the tasks. Other groups did not plan ahead and
used ad-hoc planning, keeping each other updated about what they were doing so that the
other group member could find a new task to work on. For example, P2 in group S1 said
to P1, “OK, while you fix the stu↵, I’ll create one hot encoding for categorical variables”.
However, participants explained their concerns that not knowing enough about another
person’s skill set made it di�cult to split the work:

... I wish I had a more personal relationship with my fellow research partici-
pant so I didn’t feel weird about judging who should do what based on skill...
(P13 from S3)

... Basically, I don’t like having to make a judgment about the ability of
my partner without having the benefit of knowing our strengths and desires
relative to each other. It makes me self-conscious that I’m not listening to my
partner enough... (P16 from S4)
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In addition, we identified two types of divide and conquer strategies: dividing datasets
and dividing tasks based on alternative solutions. Both groups from the non-shared con-
dition split the dataset and had each member walked through half of the features. This
strategy can boost e�ciency in exploratory data analysis given that there are roughly 80
features in the dataset. It can help two members to establish common ground in the gen-
eral task. However, this might result in duplicated implementation. For example, both
group members wrote their own code to plot the distribution of certain features. None
of the groups in the shared condition used this strategy. Instead, they divided the task by
alternative solutions. For example, in the data modeling stages, participants came up with
di↵erent models (e.g., decision trees, elastic nets) and assigned each person the task to
explore one model.

3.6.1.4 Competitive Authoring

Non-shared groups often used competitive authoring, where group members would com-
petitively implement the same idea. They would either choose to copy the code from
whomever finishes the implementation first or choose to keep their own version of imple-
mentation. For example, two group members were both working on the implementation
of linear regression, while one member got their code working faster than the other mem-
ber. The other member would agree to copy the code to their own notebook and move
on to the next task. There can be an unbalanced distribution in the final work and work-
ing e�ciency can decrease because one member is always writing “unnecessary” code.
However, from the individuals’ perspective, they sometimes felt it necessary to explore
the code on their own:

... Each would do the same tasks and share the insights ... I don’t think it is
wasting time. When we both wrote the code, at least we were on the same
page. When he shared his code, I can have a better understanding of what
was going on... (P24 from N6)

3.6.2 Communication Channels

Web conferencing is perceived to have high communication bandwidth with synchronous
and immediate information exchange, whereas instant messaging and chat tools have a
lower communication bandwidth and support both synchronous and asynchronous infor-
mation exchange [175]. The fact that participants chose to use Slack rather than Hangouts
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in the non-shared condition (without prompting from the study coordinators) indicates
that the a↵ordances of Slack with a variety of media formats, as well as the ability to
represent conversation artifacts (e.g. source code) in a manner which fit their needs. Data
scientists need to constantly share intermediate code or outcomes with each other. Work-
ing in the shared notebook reduces the communication costs by providing a shared con-
text for discussion. For example, a participant from the non-shared condition explained
that they preferred Slack messaging over Hangouts, and they wished to have the shared
notebook for better communication:

... would be much nicer to work on the same notebook rather than copying
code in Slack but worked much better than Hangouts... (P7 from N3)

In addition, we examined the types of messages participants sent in each condition.
Overall, we found that participants in the non-shared condition used Slack more often
to send files, code snippets, and output (e.g., data pieces, error messages, visualization,
screenshots of the notebook). Every group in the non-shared condition exchanged their
notebooks at least once during the study session. Groups in the non-shared condition
also sent more execution output such as data pieces and images in the Slack channel.
Moreover, they sent at least four times as many code snippets during the study, while
groups in the shared condition rarely did so. This result suggests that working in the same
notebook can reduce the communication costs by establishing a shared context.

3.6.3 Working Across Phases

As we describe in section 3.5.4, we gave participants recommended goals for each of the
four sessions but did not require that they met these goals or worked in any particular
order. In order to understand participants’ exploration patterns and how they di↵er across
both conditions, we segmented the screen recordings into 15-minute intervals and catego-
rized participants’ activities. We found that participants typically did any given activity
for a minimum of 10–15 minutes so 15 minutes was an appropriate level of granularity.
For each 15-minute interval, we categorized their activity into one of the common data
science phases described by O’Neil and Schutt [124]5:

• Preparing: Reading task instructions and setting up the environment
5We omitted the “data munging” and “data collection” phases because participants were given an exist-

ing dataset and did not need to collect raw data themselves.
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Figure 3.2: Overview of how participants iteratively explore the house price prediction
task in 15-minute intervals. Participants in the shared condition tended to switch between
phases more frequently. The initial attempts at modeling occurred earlier in the shared
condition.

• Cleaning: Cleaning data to ensure its validity and accuracy for analysis

• Modeling: Applying machine learning algorithms or statistical models for predic-
tion

• Feature Engineering: Exploring the relationship between variables using di↵erent
techniques

• Submission: Organizing notebooks as final reports and submitting the results

Figure 3.2 shows the activity classifications for every group across every session. Par-
ticipants did not perform tasks in sequence — they frequently backtracked and switched
between di↵erent phases of analysis as necessary. Participants in the shared condition
tended to switch between phases more frequently. We calculated how many times partic-
ipants switched between phases (when the adjacent tiles have di↵erent colors in Figure
3.2) and ran a two-sample T-test on the result. We found that participants in the shared
condition switched more frequently (avg=8.58, p=0.000043) than participants in the non-
shared condition (avg=5.83). This result indicated that working on the same notebook
provides collaborators with convenience to branch through tasks. Perhaps as a result of
this convenience, the initial attempts at modeling (green squares in Figure 3.2) occurred
earlier in the shared condition than in the non-shared condition. As Figure 3.2 also shows,
in every group in the non-shared condition, one participant bore the responsibility of or-
ganizing the notebooks for submission (brown squares in Figure 3.2). By contrast, nearly
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Figure 3.3: Post-task questionnaire results for participants in both conditions.

every participant in the shared condition helped organize the notebook and results for the
final report.

3.6.4 Overall E↵ectiveness — Accuracy and Questionnaire Results

We found an improvement in the exploration process across two conditions. As shown in
Table 4.5, we run a two sample T-test to compare the outcomes from the final notebooks
and prediction results across two conditions. Groups working in the same notebook (avg
error score6 = 0.17) achieved a better prediction result compared to groups working in in-
dividual notebooks (avg error score=0.27, p=0.09). Groups working in the same notebook
explored more alternative models (avg=6.17) compared to groups working in individual
notebooks (avg=3.00, p=0.05). In addition, we compared the post-session survey results
across all sessions, as illustrated in Figure 9.3. Participants’ rating of their enjoyment
working with teammates was significantly improved when working in the shared condi-
tion after the first session (p=0.04). We also compared the total lines of code in the final
notebook and found a significant di↵erence in the shared condition (avg=186.67) and the
non-shared condition (avg=90.33, p=0.04). This result suggests that working in the same
notebook encourages groups to explore more solutions and leads to a better result. For
example, P2 noted:

6The error score is calculated using Root Mean Square Error (RMSE)
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... Overall, I think the tool is amazing! This tech can really increase produc-
tivity in data science teams!... (P2 from S1)

Shared Non-shared

Error Score x 0.17 0.27
� 0.04 0.13

Number of Models x 6.17 3.00
� 2.99 2.10

Lines in the Notebook x 186.67 90.33
� 82.10 64.50

Percentage of Annotation Cells x 0.19 0.20
� 0.11 0.l3

Table 3.5: Comparing the outcomes from prediction results and final notebooks (mean:
x, standard deviation: �). Working in the same notebook encourages groups to explore
more solutions and leads to a better result.

When we compared the ratio of annotation cells and total cells from the final submis-
sion, we did not see di↵erences across two conditions. Moreover, the average ratio of
annotation cells to total cells was lower in the shared condition (avg=0.19) compared to
the non-shared condition (avg=0.20). This result indicates that when working in groups,
participants would not pay extra attention to add annotations into the notebook compared
to working in a private notebook.

3.6.5 Challenges in Using the Collaborative Notebooks

Despite all benefits that collaborative editing features o↵er with respect to sharing context
and improving productivity, we discovered several challenges in using the collaborative
notebooks. We present the key findings below.

3.6.5.1 Interference with Each Other

Over half of the participants in the shared condition (7/12) raised concerns about inter-
ference with each other in the post-task interviews. Participants would take ownership
of the code cells they created. They would expect others not to edit “their” cells. Some
participants even took actions such as inserting blank cells between each others’ editing
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Figure 3.4: Group S3 coordinated the work well by planning subgoals in the notebook

areas to prevent interference. Participants also reported that di↵erent naming styles could
cause trouble, especially changing a variable name halfway through the exploration:

... When using Jupyter notebooks together, it’s hard to keep track of vari-
able names. Everyone might use a di↵erent name and may cause issues. For
example, my teammate used train_df as name, and later changed it to some-
thing else, but I wanted him to keep using the original name... (P2 from S1)

In addition, we observed that during exploration, some participants directly modified
the shared data frame (Figure 3.1.3) without making copies or notifying their teammates.
For example, P14 from S3 spent a long time debugging the error score for the basic linear
regression model and finally realized that his teammate had transformed the scale of the
shared data frame for other purposes.

3.6.5.2 Lack of Awareness

Although the collaborative Jupyter notebook shares cursor positions and selections with
collaborators, participants reported that this mechanism was not enough to understand
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what their teammates’ activities. First, participants would have to scroll the notebook
frequently to check their teammates’ edits, which can be di�cult when the notebook
grows rapidly during quick exploration. Second, if the participant only wants to know the
high-level task his teammate is working on, it takes time for him to read and understand
the code when it is not well annotated. Lastly, the cursor information may not reflect their
teammates’ activities, especially when doing data science needs reasoning and decision
making. For example, participants reported:

... I want it to be easier for my research partner to show me what they’re
working on. I felt it was di�cult to do something quickly on the side without
a↵ecting what my partner was working on... (P17 from S5)

... It’s hard to keep track of what my teammate is doing while he’s not writing
code on notebook because I don’t see him physically... (P12 from S2

3.6.5.3 Problems with the Linear Structure

Cells are displayed linearly in Jupyter notebooks but the actual execution order may not
follow a linear structure. As mentioned, participants may divide notebook cells into re-
gions based on a sense of ownership. Participants may also iterate and jump through the
code cells for ad-hoc divide and conquer. Our analysis of the final notebooks indicates that
although the amount of code grew significantly faster in shared notebooks than in indi-
vidual notebooks, the percentage of annotation cells in the shared notebooks was smaller
than in individual notebooks. Such ill-organized cells made it di�cult for collaborators to
navigate the notebook. In fact, we were not able to run the cells sequentially to reproduce
the results in two of the six notebooks submitted by groups in the shared condition. One
participant suggested separating the preliminary exploration with the main notebook:

... I want to distribute and segment work more easily, but notebooks funda-
mentally struggle with this due to the restrictive UI. The cells are stacked
top to bottom. There is no concept of a “scratch cell” or “main script”. This
makes it di�cult to say, “here is the main section of code, and we’re writing
exploratory code on the side to prototype improvements”. I appreciate that
kind of paradigm ... (P19 from S6)

Participants also referred to di↵erent ways to support non-linear structures. For exam-
ple, one participant proposed to track the execution order in a file which is similar to the
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example of “Makefiles” in C programming. Another participant suggested to break down
the structure of notebook cells into parallel branches. He o↵ered an example:

... I’d love to see cells as nodes and edges to their dependencies. Imagine
LR (logistic regression) and RF (random forest) models. LR needs data to
be scaled and preprocessed. RF does not need it. You could set up cells
with explicit dependencies to the appropriate preprocessing steps. You can
imagine this as data flowing through containers of code... (P15 from S4)

3.6.5.4 Privacy Concerns

Two groups in the shared condition wrote using the single authoring style—one partici-
pant in both groups contributed the majority of ideas and implementation. Both partic-
ipants who shied away from the task mentioned that they felt pressured to edit the code
cells despite knowing that their teammates were better than them. These participants also
mentioned that they only wanted to share the code when it was done. Such concern was
also reported by an experienced participant:

... At the beginning I was hesitant to edit the notebook. It was much better
later on because I knew he was busy with something else so that he wouldn’t
pay attention to my code... (P2 from S1)

These concerns are analagous to the finding of Wang et al. that some writers are
concerned with being judged or distracted in the context of collaborative writing [189].

3.6.5.5 Lack of Strategic Coordination

Lack of strategic coordination also resulted in unbalanced contributions. After the last
session, participants reported a lower agreement on “I have enough work to do in this
session” in the shared condition than in the non-shared condition (p=0.08, Figure 9.3).
The participant who contributed more in the single authoring group acknowledged that
the work was not divided equally because they did not plan ahead:

... I feel I am not splitting work well enough. I was thinking about how to get
the work done and just tried the ideas on myself.... (if doing it again) I will
probably ask him to help with data cleaning... (P11 from S2)
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Figure 3.5: An example of participants manually annotating a graph for discussion: P14
circled the outlier point in a scatter plot using MS Paint and sent it back to P15 using
Slack.

Another group (S3) demonstrated successful coordination. They listed subgoals in the
notebook and assigned tasks based on preferences (Figure 3.4). This planning and nego-
tiation also helped them to divide the code cell regions with nested headings. While some
groups also discussed the subgoals verbally or in Slack, we did not see a clear notebook
structure. Retrieving such information can be useful to automatically help collaborators
to manage their shared notebook. We will elaborate on this in the discussion.

3.6.5.6 Contextual Chatting

As we describe in section 3.6.2, participants in the shared notebook condition sent fewer
code snippets, images, execution results, and screenshots on average — likely because
all of these elements were automatically synchronized across all team members, which
eliminates the need for users to share them manually. As a result, we expected partici-
pants in the shared condition to believe their teams communicated more e↵ectively than
participants in the non-shared condition. However, we found the opposite—participants
in the shared condition reported that they felt their groups communicated worse than par-
ticipants in the non-shared condition (as measured by participants’ agreement with “my
team communicated e↵ectively during the session” after session 2, p=0.08, Figure 9.3).
One possible reason for this is that participants in the shared condition switched between
phases more frequently (as Figure 3.2 illustrates), which could make communication more
challenging.

In the post-task interview, we specifically asked about the di�culties participants had
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with communication. Most participants (9/12) mentioned that constantly switching be-
tween Slack and Jupyter notebook was distracting. Several participants did not enable
notifications of Slack messages and were not able to respond to their teammates immedi-
ately. Participants also felt the need to refer to some output (e.g., a specific column of a
table, an area in visualization) during discussion but current tools do not support deictic
references. Figure 3.5 shows an example of participants manually annotating a visualiza-
tion for discussion: P15 was not clear where the outlier points were in the scatter plot so
P14 had to download the graph from notebook, opened Microsoft Paint to circle the point
and sent it back to P15 through Slack.

3.7 Discussion

Our main findings indicate that synchronous editing helps data scientists maintain a
shared understanding while reducing communication costs, thus improving the overall
e�ciency of collaboration. However, current synchronous editing features can be chal-
lenging to use and require collaborators to be strategic with respect to coordination. Be-
low, we contextualize our findings with existing frameworks and findings on collaborative
editing in other contexts, and highlight the needs for a human-centered approach to study
di↵erent collaboration scenarios in data science. We discuss future directions to improve
the current design of synchronous notebook editing features to better support teamwork
among data scientists.

3.7.1 Extending Our Understanding of Collaborative Editing Across
Contexts

Some of the challenges we identified with real-time notebook editing are related to prior
studies on collaborative writing systems and collaborative coding systems. For example,
the privacy concern of being watched by others while working has been observed in other
contexts [189, 41]. This issue may be more pronounced for collaborative data science,
because data science requires a large amount of experimentation with code and collabo-
rators may hold di↵erent programming backgrounds and domain knowledge, something
noted by others (e.g. [93]) and observed by ourselves in this work. In addition, there is
an opportunity for future human-centered studies to explore di↵erent roles in collabora-
tive data science. Additional surveys and ethnographic work can aid the understanding
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of the whole spectrum of human-centered data science work. It is also worth exploring
novel designs in this space. For example, folding code blocks [155] and implementation
details might allow domain experts (e.g., marketing specialists) to be able to understand
and experiment with model parameters in a notebook. Another challenge for data sci-
entists working on the same notebook is interference of work, which is also a challenge
for collaborative code editors [64]. However, it is less likely for compilation errors to im-
pede collaboration in shared notebooks than in collaborative code editors, as the design of
Jupyter notebooks allows users to run individual cells. If one user writes a code cell with
compilation error, other users can simply skip this cell and run other codes. We found the
interference happened in shared notebooks mainly due to conflicts in shared data frames.

In addition to findings consistent with other studies of collaborative editing, collabo-
rative editing in computational notebooks has its unique aspects. The mixed form of code
and other types of media has distinguished computational notebooks from textual doc-
uments and pure code scripts. For instance, collaborative writing systems usually share
static text synchronously whereas programming typically share their codebase through
asynchronous Version Control Systems (VCSs)7. In shared notebooks, however, it re-
mains unknown what the level of synchronicity should be (e.g., sharing static text and
code, sharing the output, sharing the code interpreter), in part because of the emphasis on
the sensemaking and experimentation processes.

Further, whereas it is common for programmers to segment code into modules based
on their functions and eventually work on di↵erent files, data scientists rarely split their
work into multiple notebooks. Thus, integrating version control locally [87] can be one
potential solution to help collaborators track each others’ edits.

3.7.2 Opportunities and Challenges of Collaboration in Computa-
tional Notebooks

Despite all the benefits of working in shared notebooks—encouraging more exploration
and reducing communication costs—it is not easy to judge whether working in collabora-
tive notebooks as currently designed is better than working on individual notebooks. For
example, data science learners may find it more useful to work on a private notebook and
to explore a task privately first before discussing the results with their collaborators. Re-
flecting on the context of collaborative writing, the common collaborative editing features

7Code editors that synchronize text content in real-time are more useful for learning and tutoring pur-
poses where there are few lines of code and the cost of potential conflicts are minimal.
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for writing include tracking changes for review, adding comments, adding access control
for the whole document. Tools like Google Docs are designed to support more than real-
time editing, and studies have found that users rarely edit the same piece simultaneously
in practice [41]. How teams choose to use collaborative writing tools will depend on their
goals and work preferences. For example, the “track changes” and comments features
may be more useful when collaborators engage in the same document asynchronously.
Thus, designers should take a user-centered design approach and reflect on di↵erent pur-
poses of collaboration when extending the collaborative editing features to the context of
notebook editing.

Our observational study explored one specific scenario where data scientists who did
not know each other worked simultaneously over four hours to solve a predictive model-
ing problem. It may not be representative of all of all data science collaboration scenarios.
Nonetheless, it is important as a first step to understand the challenges in current collab-
orative notebook editing features. We believe that some challenges can transfer to other
collaboration scenarios. For instance, when collaborators edit the same notebook in a
di↵erent time, they may still want more awareness information on what their partner is
working on. Future work should explore how to generalize the design to serve the needs
for various collaboration scenarios in real-world data science practice.

3.7.3 Design Implications

Studies have explored approaches to improve the infrastructure of computational note-
books for individual authoring and sharing (e.g., enabling content folding [156] and track-
ing exploration history [90]). Our study explicitly examined the benefits and challenges
for multiple users to edit the same notebook collaboratively. The results suggest to the
needs for a better collaborative notebook infrastructure. Below we discuss several design
opportunities.

3.7.3.1 Improve Awareness of Collaborators’ Activity

Our current synchronous notebook editor design tracks and displays the locations of cur-
sors of collaborators. However, sharing cursor information did not seem to be enough for
users to perceive changes from others given a shared interpreter (back-end python pro-
cess) state. Further, it is challenging to track the shared cursor when the notebook gets
long. It would be valuable to explore what information requires high awareness and how
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to present the awareness information—particularly for large and complex notebooks. For
example, we may infer the context of the code that one person is working on from the
nearest narrative text or headings and share the heading with other users. We may also
broadcast important changes made to certain cells (e.g., cells that initiate variable names,
or import libraries), or more explicitly share changes to the shared interpreter state..

3.7.3.2 Provide Access Control

We observed a strong tendency for participants to take ownership of the cells they worked
on. Although the notebook and execution environment were shared, participants did not
want others to edit their cells without permission. On the other hand, some participants
did not want others to see their edits on a cell until they deemed it as “finished”. These
findings suggest that access control mechanisms may be appropriate to integrate into the
collaborative notebook infrastructure. We propose that there are at least two types of
access control, which we called either editing control or visibility control. For editing
control, we could imagine integrating the local versioning design [90] to protect a cell so
that collaborators can submit their edits for approving. For visibility control, users could
instead choose to disable the real-time synchronicity for certain cells or choose to fold the
implementation details (e.g., [156]), thus hiding the work until it was ready.

3.7.3.3 Enable Discussions within Notebooks

Frequent communication is important for data scientists to stay updated on progress, rea-
son about decisions, and coordinate work. Participants found it di�cult to use third-party
instant messaging tools because they had to constantly switch between applications. In
addition, we observed that participants referred back to the shared notebook content often.
This suggests that there is value in exploring the design of an in-notebook chat window.
One potential benefit of such design is to support deictic references to a specific part of
the notebook (e.g., [125]).

Moreover, there is rich information in chat messages; users report their progress, make
plans, or explain parts of code. Investigating how to utilize the chat history to help users
annotate the notebook may help moderate the tension between quick exploration and clear
explanation [155].
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3.7.4 Limitations

Since we only looked at one specific scenario of collaboration, our results and design
implications may not e↵ectively represent the needs for a better collaboration tool for
other collaboration scenarios in data science. For example, the type of data science prob-
lems, the expertise of collaborators, team size, the synchronicity of the collaboration, and
whether a final narrative is the end goal may all a↵ect how users perceive the synchronous
editing features. In addition, we scheduled the study sessions with remote participants at
their convenience, which resulted in pairs more likely from the same region. Future work
should explore broader collaboration settings and broader demographics.

3.8 Conclusion

We probed into how synchronous editing in computational notebooks might change the
way data scientists collaborate on a predictive modeling task. Our survey findings high-
light the tools and strategies that data scientists currently used in collaboration practice.
Based on the design of current synchronous editing features in computational notebooks,
our empirical observation reveals that working on the same notebook results in di↵er-
ent collaboration styles compared to working on individual notebooks. The key findings
suggest that synchronous editing tools improve collaboration by helping data scientists
maintain a shared context and improve work e�ciency. However, the current real-time
collaborative editing features may lead to several problems (e.g., interference with each
others’ work, unbalanced contributions). The challenges in using the current real-time
collaboration features suggest that we need better collaborative editing features for com-
putational notebooks. We discuss how our results extend prior work on collaborative
editing and how the HCI community can play a vital role in broadening the understand-
ing of collaborative data science with a human-centered approach. Finally, we propose
design implications to enhance synchronous editing in computational notebooks and to
improve collaboration among data science workers.
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CHAPTER 4

Callisto: Contextualizing Shared Notebooks
with Discussions

When teams of data scientists collaborate on computational notebooks, their discussions
often contain valuable insight into their design decisions. These discussions not only
explain analysis in the current notebook but also alternative paths, which are often poorly
documented. However, these discussions are disconnected from the notebooks for which
they could provide valuable context. We propose Callisto, an extension to computational
notebooks that captures and stores contextual links between discussion messages and
notebook elements with minimal e↵ort from users. Callisto allows notebook readers to
better understand the current notebook content and the overall problem-solving process
that led to it, by making it possible to browse the discussions and code history relevant
to any part of the notebook. This is particularly helpful for onboarding new notebook
collaborators to avoid misinterpretations and duplicated work, as we found in a two-stage
evaluation with 32 data science students.

4.1 Introduction

Data scientists benefit from collaborations to leverage expertise from each other and to
improve the e�ciency of their work. Computational notebooks are powerful tools for
collaborative data science because they allow data scientists to document and replicate
the exploration process through the creation of computational narratives—documents that
combine code, explanatory text, and intermediate output. New tools like Google Colab
[5] and Deepnote [16] enable data science teams to work in the same notebook in real
time, creating new possibilities for collaboration.
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Figure 4.1: Callisto captures and stores contextual links between discussion messages and
notebook elements with minimal e↵ort from users.

E↵ective communication between data science team members is critical for productive
teamwork. Collaborators need to understand what their teammates have done so far, what
they plan to do, what they have given up, and how their work fits in with the team’s overall
goals. Team members can improve their shared understanding by (a) writing clearer code,
(b) documenting their work, and (c) discussing as a team. Improving code clarity (a) and
writing clear documentation (b) are often impractical for data scientists, who frequently
write makeshift code to experiment, explore, and test hypotheses [98, 181, 155, 158, 89].

Data science teams often have rich team discussions (c) through communication chan-
nels such as e-mail, instant messenger, and face-to-face meetings [181, 98]. These discus-
sions are often crucial for collaborators to work together e↵ectively, as they can provide
valuable context about notebook authors’ goals and design rationales. However, these
discussions are disconnected from the computational notebooks being discussed—they
typically occur in channels outside of the notebook and references to notebook content
are implicit (e.g., “there’s a bug in the second cell” or using a notebook screenshot). This
means that team members typically need to have a shared context to make sense of the
discussion (i.e., they need to understand what “the second cell” means or which part of
the notebook a screenshot refers to). This can be particularly challenging as the note-
book evolves (for example, if the “second cell” is moved after it is referred to). As a
result, although discussions are helpful for collaborators who are actively involved in it,
they can be di�cult to understand for new team members or anyone catching up on the

60



discussion [203] who does not have this shared context.
In this paper, we propose to improve collaborative data science by connecting dis-

cussions with computational notebooks. We first describe the results of a formative study
where we found that chat messages can be invaluable to understanding collaborative com-
putational notebooks but are di�cult to comprehend afterwards. We then introduce Cal-
listo, a plugin for Jupyter [3]. We designed Callisto with the insight that discussions are
an integral part of collaborative computational notebooks and connecting discussions
with notebook content can make the notebook easier to understand for its authors and for
subsequent readers. Callisto augments Jupyter with several collaborative features—most
notably, the ability to explicitly reference notebook elements in chat messages. These
connections make it easier to understand the context of a given message and to find dis-
cussions that are relevant to a specific notebook element.

We conducted a two-stage evaluation of Callisto. In the first stage, we evaluated how
Callisto supports real-time team communication and found that it can reduce communi-
cation costs. In the second stage, we evaluated whether Callisto can help data scientists
better understand a discussion that has already taken place. We found that Callisto can
ease user onboarding to new notebooks by helping them understand the design rationales
of its authors. As one of our participants put it, “by reading the code, I know what they
were doing. But with the chat messages, I can know what they were thinking.”

This paper contributes:

• empirical evidence of the challenges that data scientists encounter when catching
up with an ongoing group project,

• the design of Callisto with a set of features to make chat messages more useful for
understanding the past exploration process in the notebook,

• empirical insights into how users engage with and perceive these features, and

• evidence that creating mappings between messages, notebook elements, and ver-
sions helps data scientists understand and follow up on the exploration pipeline.

4.2 Formative Study

To better understand how discussions can be useful for explaining the data-exploration
process, we analyzed chat messages collected from three data science group projects.
In doing so, we aimed to investigate three questions: (1) Why do collaborators send
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messages to one another? (2) How do messages connect with the evolving notebook? and
(3) What aspects of the notebook do collaborators talk about?

4.2.1 Method

We recruited six data science students from data science special interest groups in both
university and online learning environments. We asked participants to work remotely in
pairs on a beginner-level data science task1 using a collaborative Jupyter editor for four
hours. This collaborative Jupyter editor synchronizes edits between users and allows col-
laborators to see each other’s cursors. Pairs also worked in a shared runtime, meaning that
code ran on a single interpreter, with outputs shared between collaborators. There were
no other explicit communication mechanisms (chat, voice, etc.) enabled in the editor, and
participants were given access to a third-party text chat (Slack) for communication. We
collected chat messages, final notebooks, and screen recordings during the study.

4.2.2 Data Analysis

Our formative study uses a similar data analysis approach (in a di↵erent setting) to
Yarman et al.’s work on cross-media referencing [199]. Two members of the research
team used open coding to classify the collected data. We used the first 50 messages to
create an initial code list, using final notebooks and video recordings as secondary evi-
dence to help recall messages’ context. After discussing and merging the code list, the
two members independently coded the same sample of 50 messages and achieved an
agreement of  0.40. We revised codes to reduce ambiguity and achieved an agreement
of  0.83 between raters after two rounds of iteration.

4.2.3 Results

In total, we analyzed 760 chat messages to better understand their purpose, their relation-
ship to the evolving notebook, and the specific aspects of the notebook they mention.

4.2.3.1 Purpose

We found five broad purpose categories: reflection (244), planning (87), check-in (121),
cooperation (67), and out-of-scope messages (244), as Table 4.1 shows. Messages could

1https://kaggle.com/c/house-prices-advanced-regression-techniques
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Purpose Example n

Reflecting “This plot confirms the correlation for sure.” 244
Planning “Let’s throw away columns that have lots of missing val-

ues.”
87

Check-in “Just did a square root.” 121
Cooperation “Ok, while you fix the stu↵, I’ll create one hot encoding for

categorical [variables].”
67

Out-of-scope “Oh no!!” 244

Table 4.1: Purpose of sending a message: reflecting, planning, check-in, cooperation, and
out-of-scope.

Relevance Example n

Ideas that were only discussed but never
implemented

“Do you think we can just assign
1,2,3,4,5 to it and create one col-
umn instead?” (“No, I am afraid
...”)

29

Ideas that had not yet been implemented
when the message was sent, but appeared
in the notebook later

“How about we start with numerical
columns?”

150

Ideas that had been implemented in the
notebook when the message was sent, but
did not appear in the final notebook

“Something went o↵. The MSE
[mean square error] is huge.”

72

Ideas that had been implemented when
the message was sent and appeared in the
final notebook

“For the test data I did a fillna
with 0.”

108

Table 4.2: Relevance between messages, the notebook history, and the final notebook.

Granularity Example n

Directly referred to a specific line of code “I think LabelEconder is going to
treat NA as a new encoding.”

97

Directly referred to the output of a cell “I am not too convinced if our MSE
values are good enough.”

119

High-level ideas across multiple cells “I just converted the categorical
[data] to numerical [data].”

206

Table 4.3: Granularity: the level of detail of the referenced elements
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fit into multiple categories, such as planning and cooperation. Messages coded as reflec-
tion tended to expand on the reasoning behind past decisions, while planning messages
discussed potential features that had not yet been implemented. Check-in messages were
updates between collaborators on what they had done, while cooperation messages gen-
erally discussed collaboration strategies.

These four categories show that chat messages can help explain the data-exploration
process, describe the purpose of the code, and provide a high-level interpretation of the
results. Not surprisingly, however, we categorized an additional 30% of messages as out-
of-scope, because they did not convey useful information for explaining the exploration
process and instead contained duplicate information or socialization messages.

4.2.3.2 Relevance

Our analysis (shown in Table 4.2) revealed that the final notebook is generally not reflec-
tive of the whole exploration process. Data scientists often explored ideas in discussions
that they later rejected and wrote no analysis for. Even if they did implement an analy-
sis to explore an idea, the code was often modified or removed during a “cleanup” stage
[91, 75]. As such, messages between collaborators can fill in missing details of the ex-
ploration process. We suggest that revealing this information to new collaborators (e.g.
someone taking over a project or another data scientist helping with an analysis) may
avoid duplication of work while simultaneously revealing hidden assumptions. However,
given that the Jupyter Notebook’s current design does not have built-in collaboration fea-
tures nor track edit histories (which can give context to discussions), it is di�cult to use
chat messages to understand a previous exploration process.

4.2.3.3 Granularity

We also investigated the granularity of the notebook elements collaborators referred to
(Table 4.3), finding that 97 messages directly referred to a specific line of code. These
messages were related to API usage, debugging, or sharing the current status. A further
119 messages directly related to the output of a cell, including the data frame, visual-
izations, and statistical values. Finally, 206 messages described high-level ideas imple-
mented across one or multiple cells.
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4.2.4 Implications

We derive three design implications from our findings:
Chat messages are useful for explaining the exploration process. We were able

to better understand the motivations for doing specific analyses, the purpose of the code
written to run them, the interpretation of their results, and alternative analysis paths (tested
or rejected without implementation). These details are often missing or poorly captured
in traditional Jupyter Notebook artifacts.

Chat messages are di�cult to follow. Chat messages are long and tedious to read
because of scattered insights, a large amount of out-of-scope information, and informa-
tion that requires notebook context to understand (which is likely to change before being
finalized, as Table 4.2 shows). This makes it di�cult for newcomers to build on earlier
work.

Notebook elements are frequently referred to in chat messages. Notebook ele-
ments, such as fragments of code, output of executions, and cells containing a variety of
statements, are frequently mentioned in chat messages. The lack of connection between
these elements and discourse limits insight into decisions and results.

4.3 Design of Callisto

We designed Callisto to improve collaborative data science by better connecting discus-
sions with notebook content. Callisto extends the Jupyter Notebook platform in several
ways. First, it allows users to share notebooks, collaborate in real time, and discuss with
collaborators. Second, it enables users to connect discussions with elements in the shared
notebook, including code, output, individual cells, or edits. Third, it leverages these con-
nections to make it easier to navigate discussions and notebook content—for example, to
find discussions about a particular part of the notebook. We describe the design of each
of these facets of Callisto in more detail below.

4.3.1 Enabling Sharing and Real-Time Collaboration

Although the creators of Jupyter recognized the importance of real-time collaboration,
they left it as future work2 [95]. Several o↵shoots of the Jupyter project [5, 16] have

2At the time of writing, Jupyter does not support real-time collaboration.
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Current Notebook 5 minutes ago
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Executed a modified cell
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Figure 4.2: Overview of Callisto: (A) The changelog panel shows users’ edit histories;
(B) The collaborative notebook editor synchronizes edits, runtime variables, outputs, an-
notations (see G, H), and cursors (see F) among collaborators; (C) The filter button en-
ables the filtering mode (see Figure 4.3); (D) The user panel lists collaborators that are
connected to the notebook. Users can navigate to others’ cursor locations by clicking
on their name; (E) The embedded synchronous chat pane creates connections between
messages and notebook content. Messages mapped to the selected cell are highlighted
in light green. Users can create explicit references by clicking the magic wand (see J)
and then selecting the relevant part of the notebook—for example, to create an annotation
reference (see I).

incorporated collaborative features such as synchronized editing and shared cursors. Cal-
listo starts by enabling notebook sharing and edit synchronization in Jupyter. We designed
Callisto as a Jupyter plugin, rather than as a fork of the codebase, to allow users to easily
share any standard Jupyter notebook and maintain compatibility with future versions of
the Jupyter platform.

4.3.1.1 Basic Collaboration Features

The Callisto plugin augments the standard Jupyter UI with several widgets, as Figure 9.1
shows. First, Callisto adds a “share” button that generates a unique Uniform Resource
Locator (URL) for collaborators to join the shared notebook session. A panel lists the
collaborators that are connected to the notebook (Figure 9.1.D). When collaborators join
the notebook, their edits are synchronized in real time with other collaborators. They can
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Current Notebook 5 minutes ago
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Figure 4.3: Filter Mode. When filter mode is enabled, it only displays messages and edits
that are marked as relevant to the selected cell.

also see every other user’s cursor location and selection (Figure 9.1.F) and navigate to any
other user’s location by clicking on their name in the list of collaborators (Figure 9.1.D).

4.3.1.2 Shared Runtime and Outputs

One important di↵erence between computational notebooks and standard code is that
computational notebooks are divided into smaller cells that can be run individually. Cells
run in a common variable space, meaning that the ordering and timing of cell execution
can (and typically does) influence execution outputs. This can be confusing for users,
particularly in situations where one user’s output cannot be replicated by other users who
have di↵erent runtime states. Thus, rather than giving users their own runtime, Callisto
connects every collaborator to a single shared runtime. This means that the state of the
program is shared—if the value of a variable is modified (by executing code that modifies
its value), its value is updated for every collaborator. Cell outputs (the results of running a
cell, which can be textual, graphical, or shared data frames) are also shared automatically,
which gives all collaborators a shared point of reference.

4.3.1.3 Synchronous Chat

Jupyter does not have built-in messaging features, which means that data science teams
typically communicate through external tools such as e-mail or Slack [181]. As we found
in our formative study, these communications can be valuable for understanding the de-
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sign behind a notebook, but there is a cost in switching between applications for writ-
ing and communicating. Thus, Callisto embeds a synchronous chat pane directly in the
shared notebook (Figure 9.1.E). This built-in chat pane allows us to capture contextual
information and create connections between messages and notebook content, which we
will introduce later.

4.3.1.4 Edit and Version History

Prior work has found that shared editors and cursors are helpful for collaborators but are
not enough to build awareness of what they have worked on [181]. This is partly because
they only allow users to see what collaborators are working on at that specific moment.
Building awareness of collaborators’ activity instead requires a more complete view of
their actions. To provide this, Callisto includes a panel showing users’ edit histories
(Figure 9.1.A). This panel shows a history of notebook versions and a preview of user
edits (which are displayed as di↵s—additions and deletions from the previous snapshot).
Every user action (such as cell edits, deletions, insertions, and executions) is recorded and
displayed for users to see and better understand what their collaborators are working on.
This panel also allows users to check notebook di↵s in a complete view (by clicking on
any di↵ summary), which will show the code and output di↵erences (see Figure 4.4).

4.3.2 Connecting Messages and Notebook Content

As we found in our formative study, data scientists often refer to the computational note-
book in their discussions. Prior work [125] has proposed enabling chat messages to refer
to regions of code. However, our study participants referenced more than code; they ref-
erenced program output (which can be graphical or textual) and specific notebook cells.
They also referenced things that were not explicitly part of the computational notebook,
such as prior notebook versions or code edits themselves (e.g., “I made this change. . . ”
referring to edits they made to fix the buggy code). These references were implicit; they
required readers to infer what they referred to. Callisto is the first system to explicitly
encode these references.

Encoding connections between messages and notebook content allows users to give
their messages clear context and can make the computational notebook easier to interpret
and navigate for future readers. Inspired by our formative study analyzing the granularity
of the notebook elements collaborators referred to, messages make five types of references
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to notebook elements in Callisto:

• code references are associated with a specific range of code at the time when that
reference was created,

• cell references are associated with a cell in the notebook,

• snapshot references point to a previous notebook version,

• annotation references allow users to refer to a specific portion of output (images
or tables) by drawing annotations on that output and referencing those annotations,
and

• di↵ references point to an edit in the notebook.

References can either be created explicitly by users or inferred by Callisto through
context (as we describe in more detail below). Users explicitly create references by click-
ing the chat input’s magic wand (Figure 9.1.J) and then selecting the relevant part of the
notebook or version history panel.

4.3.2.1 Automatically Inferring References from Context

Although explicitly creating references requires little overhead (clicking the “edit link”
button (Figure 4.5.B) and then the relevant part of the notebook), we built features to
further reduce the e↵ort required by automatically inferring references from users’ work
context—the cell that is currently selected or that they are editing, which their message
likely pertains to. Although active collaborators might have no trouble decoding these
messages’ context (possibly by looking at where that user’s cursor currently is), it can be
more di�cult for future collaborators as they catch up on prior discussions. Thus, Callisto
automatically attaches a cell reference to the currently selected cell if users do not add an
explicit reference.

This method of inference might produce erroneous references. For example, if the
purpose of the message is planning, the message might relate to the cell that the user is
going to edit, instead of the cell he just edited. However, we believe false negatives (when
relevant context is not captured) are much more costly than false positives (when the con-
text captured is not relevant) for users, as it is easier to ignore extraneous information than
to recover missing information. Users can also manually correct errors from automatic
inferences.
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4.3.3 Navigating Messages and Notebook Content

By connecting messages and notebook content, Callisto gives a richer context to notebook
elements and makes it easier to understand prior discussions. This can be helpful for both
current collaborators and future readers. There are two broad uses for these connections:
to understand the context of a given message (from messages to relevant notebook con-
tent) or to find the part of the discussion that is relevant to a specific part of the notebook
(from notebook content to relevant messages). The former demonstrates “what changes
were made” while the latter explains “why changes were made” [172].

4.3.3.1 From Messages to Notebook Content

While collaborating, data scientists often need to determine which part of a notebook a
given message pertains to. Active collaborators and users reading past discussions benefit
from certainty about a given message’s context. In order to help build this context for mes-
sages, Callisto allows users to navigate from a reference in the chat panel to the relevant
part of the notebook. References in the discussion panel appear like Web links. When a
user clicks on the reference, Callisto highlights the relevant elements in the notebook (and
scrolls to them if necessary). Messages might become “out of date” if they reference an
element of the notebook that is later modified or deleted. To ensure references stay rele-
vant, Callisto automatically “backtracks” references; if a user clicks on a reference to an
element that was later changed, Callisto shows them the referenced content in a snapshot
view.

Subsequent notebook readers might also want to understand how the content of the
notebook changed as the discussion moved on—what collaborators were doing between
messages. To allow readers to understand how the notebook evolved through the dis-
cussion, Callisto enables them to compute the di↵erence between any set of notebook
versions. For example, if a user selects two chat messages, a di↵ button will appear
in the chat panel, as Figure 4.5 shows. This will trigger Callisto to render the code and
output di↵erences between the state of the notebook when each of those messages was
sent.

4.3.3.2 From Notebook Content to Messages

Computational notebooks are often shaped by many design decisions, failed experiments,
and progressive iteration. For collaborative computational notebooks, explanations of
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Figure 4.4: Di↵ View. Code di↵erences (see A) and output di↵erences (see B) are high-
lighted in a di↵ view. The new and old outputs are overlapped for comparison: hovering
the mouse over the output will highlight the di↵erence in purple and pink; the slider un-
derneath controls the transparency between new and old output.

why the notebook ended up the way it did can often be inferred through careful exami-
nation of discussions between collaborators. By linking notebook content to discussion
messages, Callisto allows users to see which parts of a discussion are relevant for a par-
ticular part of the notebook. As Figure 4.3 shows, users can click on a cell to display
relevant discussions.

4.4 Evaluation

We designed a two-stage evaluation study with 32 data science students to assess how
Callisto assists new collaborators when joining the collaborative notebook. We first ob-
served participants working in pairs on a data science task in real time to test Callisto’s
usability (the real-time collaboration study). We then conducted a comparison study with
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Figure 4.5: Chat Panel. When selecting one message, a snapshot button (see A) will
navigate users to the snapshot of the notebook. When selecting two messages, a di↵
button (see C) will navigate users to the di↵ view comparing two snapshots (see Figure
4.4). Users can manually refine the links using the edit button (see B).

a third individual joining the shared project using Callisto or a lite version of the system
with no contextual links (the follow-up study).

4.4.1 General Study Protocol (for Both Stages)

The real-time collaboration study and the follow-up study follow a similar study protocol.
We invited each participant for a 90-minute lab session. Before the study, participants re-
ported their data science backgrounds on a pre-task questionnaire. Each participant was
given a 15–20-minute training session on the tool, with example tasks to complete. After
the study, we conducted a 10–15-minute semi-structured interview with each participant.
We collected data from server-side usage logs, screen recordings, and post-task inter-
views. We also took observational notes during the study.
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4.4.2 Participants (for Both Stages)

We reached out to data science programs and interest groups on campus, filtering qualified
participants based on the courses they had taken and other data science-related experience.
Overall, qualified participants were familiar with Jupyter Notebook, Python, and common
exploratory data analysis packages (e.g., Pandas, NumPy). Most of them had experience
of collaborating on an exploratory data analysis project.

We recruited 32 participants in total (11 female, 20 male, 1 non-binary, average age =
25). Participants were from a variety of data science-related programs (8 undergraduate
students, 5 master’s students, 18 Ph.D. students, and 1 full-time employee who recently
graduated; students’ majors included computer science, information science, health in-
formation, statistics, and economics).

Based on participants’ prior knowledge, we rated their experience level as beginner3

(n=6), intermediate4 (n=10), or expert5 (n=16). We randomly assigned participants into
one of the two stages with a balanced distribution of experience level. There was no
overlap in participants across study stages. We compensated participants with $25 United
States Dollars (USD) gift cards.

4.4.3 Stage 1: Real-time Collaboration

In Stage 1, we investigated the perceived usability of Callisto for real-time collaboration.
We observed eight participants (P1–P8) working in pairs to solve a data science task
together using the full version of Callisto. Participants were invited to the study site at
the same time and sat in separate rooms. We informed participants at the outset that they
would not have enough time to complete the task and a new collaborator would take over
the remaining work.

The data science task was modified from a Kaggle competition (predicting house sale
price). To scope the task within the study duration, we asked participants to only perform
exploratory data analysis. We provided a basic framework of the notebook for participants
to begin with, as well as example API usage code for common data analysis packages.

3Beginner: has taken 1–2 data science classes, basic experience with Pandas and Python, but little
experience with data science problems

4Intermediate: limited experience with data science problems
5Expert: is familiar with libraries frequently used in data science, and very experienced in solving data

science problems
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S1 Real-time Collaboration (4 pairs) x �

Cell Edits 64.50 34.57
Messages 101.00 76.40
Creating Pointers 7.25 1.71
Making Annotations 11.25 7.45
Erroneous References 8 15.3
S2 Follow-up (10 individuals) x �

Clicking on Pointers 8.40 4.51
Viewing Notebook Snapshot 10.20 5.45
Viewing Notebook Di↵s 15.30 7.60
Inspecting Cells for Curated Messages 44.80 48.93
Inspecting Messages for Related Cells 40.00 20.95

Table 4.4: Server-side Usage Logs (mean: x, standard deviation: �): (1) Most contextual
links were created by inferred references; (2) The two navigating features were used
equally to understand past decisions.

4.4.3.1 Overall Usage

As Table 4.4 shows, each group edited the notebook an average of 64.50 times during
the 45-minute exploration. We recorded a cell editing event when a cell being executed
was modified from its last execution. Participants frequently used the annotation feature
(11.25 times per group) when discussing outputs. However, not all annotations were
used for creating references. In fact, only 7% of the messages contained references that
participants manually created. Most of these manually created references (26 out of 29)
were cell pointers.

4.4.3.2 Creating References (Manual and Automatically Inferred)

In most cases where participants manually created a reference in a message, they used cell
pointers with the default textual description “cell”. Participants gave a variety of reasons
for using cell pointers over other pointers, including that discussions are often not around
a particular piece of code, and that pointing to a cell requires less e↵ort than creating other
pointers. Participants also mentioned that the ability to check their collaborator’s cursor
served the same function as the pointer when they were talking about code cells in real
time:

I can know my collaborator’s cursor so it is easy to know what she is talking
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about. So we didn’t use much references, only a few cell links. (P3, expert)

We identified five cases where participants could have used references to make their
communication more e�cient. For example, one participant could have directly pointed
to a number in the table by creating an annotation reference, but instead he described it as
“the two values with bigger GrLivArea as rows with IDs 1182& 691”. Worse still, some
participants described locations relative to their field of view, which further increased the
di�culty for new collaborators to parse the message (“If you scroll up to the cell above,
it looks like the ID is always one higher than the Pandas index.”).

Because participants created relatively few manual references (7.25 out of 101 mes-
sages on average per group), Callisto’s ability to automatically infer relationships between
messages and notebook cells is crucial. In order to understand how well Callisto’s ref-
erence inference feature works, we manually checked the messages and found that 92%
of messages were connected to the correct context (only a total of eight messages were
mismatched with the inferred cell references).

4.4.3.3 Annotations Aid Communication

Participants used the annotation feature frequently, and we investigated its popularity
in the post-task interview. Most participants agreed that the annotation feature reduced
communication costs:

A lot of our discussions are about the graphs. I really like the ability to
draw on the graphs so we knew what exactly we were talking about. (P4,
intermediate)

[When using Slack] I have to make a screenshot and save it on desktop. I
do not like saving too many images on the desktop so I like this tool. (P1,
beginner)

4.4.4 Stage 2: Following up with the Collaboration Process

In Stage 2, we evaluated how a new collaborator better followed up with an ongoing
collaborative project. We compared two versions of Callisto in this stage: a lite version
where no contextual links are captured and stored, only basic collaboration features are
enabled; and the full version.
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4.4.4.1 Content Preparation

We designed the assets (the notebook history, chat messages, and their connections) for
the “ongoing collaborative project” by merging and modifying the collaboration assets
produced in Stage 1. The combined project used in Stage 2 contained 42 cell edits, 132
messages, and 19 manual references. In the lite version of Callisto, we replaced the man-
ual references with a textual description of the location in the notebook. To ensure these
textual descriptions were realistic, we observed two more groups (in addition to the pairs
described in the previous section) doing tasks in Stage 1 using the lite version. We iden-
tified several strategies that participants used to point to notebook elements, and replaced
the references based on the three most common strategies: cell execution number, pasting
the content directly, and describing the location of the content.

4.4.4.2 Study Setup

We recruited 20 participants and randomly assigned them to one of the two conditions:
the experimental condition using Callisto, and the control condition using the lite version.
We informed participants that the previous collaborators (Alice and Bob) were in a rush
and did not finish the exploration.

We asked participants to explore the notebook and answer five questions6 related to
Alice and Bob’s prior analysis. The questions were designed using Revised Bloom’s
Taxonomy (RBT) to assess participants’ understanding [102]. For example, outlining
features that Alice and Bob have explored, and summarizing their findings about the dis-
tribution of sale price. Participants had six minutes to read details from the notebook
and answer each question. We collected the answers and measured time and participants’
self-reported confidence level (on a seven-point Likert scale) for each question. At the
end, we gave participants 10 minutes to use the tool in depth to follow up on their work
(e.g., clean the notebook, add more explanations, or continue exploring the problem).

To assess how well participants understood the ongoing collaboration process, we de-
signed a rubric to grade their answers to the five questions (maximum score = 50). Two
external data science experts independently graded their answers. We performed a Pear-
son correlation coe�cient test and found a strong agreement on the rating (r = 0.97, p <
0.001).

6See supplementary materials for the full rubric and set of questions.
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Callisto Control

Questionnaire Score* x 30.05 23.75
� 6.27 3.85

Time (sec) x 1577.21 1416.05
� 237.35 320.28

Self-reported Confidence x 5.00 5.26
� 0.66 1.16

Table 4.5: Comparing the outcomes from the second stage of the evaluation (mean: x,
standard deviation: �). Callisto helps new collaborators achieve a better understanding
of an ongoing project.

4.4.4.3 Overall Performance

As Table 4.5 shows, participants in the experimental condition (avg = 30.05) achieved a
higher score than participants in the control condition (avg = 23.75), with a two-sample
t-test suggesting that the di↵erence is significant (p = 0.014). There was no significant
di↵erence in the time costs or the self-reported confidence level between the two condi-
tions.

To investigate why participants performed better in the experimental condition, we
studied their usage logs and screen recordings. As Table 4.4 shows, participants in the
experimental condition used the two navigating features in Callisto equally to understand
past decisions and discussions.

4.4.4.4 Understanding Discussions Around the Cell

Participants in both conditions reported a need to check the chat messages even though
the notebook already contained some code comments and explanatory texts. They com-
plained that the code comments were not well written:

Some comments are hard to parse. (P22, expert, experimental condition)

They could have used the markdown cells more to conclude the results. (P16,
expert, experimental condition)

Comparatively, participants in the control condition found it di�cult to follow the chat
messages due to the sheer quantity. We observed that three participants in the control con-
dition misaligned the chat messages with the notebook content when answering a ques-
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tion about how Alice and Bob analyzed the linear relationship between SalePrice and
YearBuilt. They answered the question incorrectly because they described the discus-
sions about the linear relationship between SalePrice and another feature (GrLivArea,
which appeared earlier in the analysis). Two participants in the control condition wanted
chat messages to be mapped with notebook content:

I wish there is a way to attach the messages to the cell that they discussed. It
will save me time. (P30, intermediate, control condition)

While participants in the experimental condition benefited from the established con-
nection between messages and notebook, they further reported the filter feature helpful in
curating discussions around cells. On average, each participant inspected cells 44.8 times
to filter related messages, checking 14.9 unique cells. In addition, we observed that most
participants (9 out of 10) preferred to keep the filtering mode enabled as they dove deeper
in the notebook:

Because the chat is so long, I think it is not useful until I filter it down. (P18,
expert, experimental condition)

4.4.4.5 Understanding the Context of the Message

We observed participants used the contextual links in Callisto the other way (from mes-
sages to notebook content) to understand the context of a message. Participants inspected
messages 40 times to check related cells in the final notebook, or perform further actions
such as checking snapshots (10.2 times) or comparing di↵s (15.3 times). 27.4 unique
messages were inspected by each participant, indicating that participants may go back
and forth to check messages and related cells.

We further investigated why checking and comparing notebook edits from messages
helped participants better understand the analysis from observation notes and screen
recordings. We illustrated one interesting case of how participants approached the an-
swers in the questionnaire di↵erently. One question asked how Alice and Bob analyzed
the outliers in the GrLivArea. Participants from the experimental condition were able to
find all relevant analyses with two alternative hypotheses, where the code cell for testing
one hypothesis was overwritten by the code cell that tested the second hypothesis. How-
ever, most participants from the control condition only reported the second hypothesis on
the final notebook.
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In addition, Callisto helped participants better understand how a code change resulted
in an output change. As shown in Figure 4.4, Alice and Bob applied a log transformation
to correct the distribution of SalePrice, only commenting vaguely on the results in the
chat (“the result looks much better”). Participants in the experimental condition were
able to compare the notebook di↵s between this message and the one above, gaining an
intuitive comparison of how the output changed from the di↵ view (see Figure 4.4.B).
In contrast, participants in the control condition needed to first guess what might have
changed in the notebook, then revert changes (e.g., remove the np.log) and execute the
cell to compare the output.

4.5 Discussion

Reflecting on Callisto’s design, we discuss how future tool builders of computational
notebooks and data science researchers can build on our work.

4.5.1 Reducing the Burden of Communication

Our findings revealed that participants in the real-time collaboration setting are hesitant to
make accurate and polished references, or to create references, even if the interaction takes
only two clicks. This corresponds to studies in other domains that report user reluctance
to write quality annotations or comments during active work [27, 113, 22]. Future work
should consider optimizing this process by designing shortcuts or providing suggested
references inferred by edits in the notebook (e.g., a newly added annotation).

As prior work [181] shows, data scientists use a variety of communication tools, in-
cluding high-bandwidth communication channels such as video conferencing or face-to-
face meetings. Capturing information exchanged in these channels is di�cult yet impor-
tant to reduce the burden of text-based communication. It is worth studying the benefits
and challenges of using di↵erent communication channels in data scientists’ daily work
to leverage past discussions for a better understanding of shared work.

In addition, we believe similar techniques could work in other domains where remote
collaborators co-design a shared artifact that changes over time, as long as the reference
types are domain appropriate. For example, Callisto’s features could be adapted for a
shared CAD tool where designers collaborate on a 3D model, but our results and de-
signs may not apply for highly modular work (such as multiple authors writing di↵erent
chapters of a textbook with minimal interaction).
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4.5.2 Improving the Accuracy of Contextual Links

As most of the messages (around 93%) relied on inferred references, we believe that
it is important to explore ways to further improve the accuracy and recall of inferred
references. Mismatched contextual links happened for several reasons. If a message
describes a future action, the relevant cell may not exist when the message is sent. In
this case, we may consider using Natural Language Processing (NLP) techniques to infer
whether the message should be connected to the cell edited before sending the message
or the cell edited after sending the message. Another possible reason is that a message
might reference a cell the writer’s collaborator is working on, instead of the one the writer
is working on. It is worth exploring other strategies (e.g., considering common cells that
nearby messages connect to) to automatically infer the context.

4.5.3 Towards Generating Meta-Narratives

New collaborators not only need to understand the computational narrative itself but
also how that narrative evolved—the meta-narrative behind the narrative. Callisto is
a representation of meta-narratives for computational notebooks. Creating an explicit
meta-narrative object can be useful for onboarding new collaborators during the data-
exploration process, as we found in our evaluation. These meta-narratives could also
be useful in education; many programming lectures involve creating a form of meta-
narrative. They could also be used in “traditional” writing. Future research could explore
alternative representations for meta-narratives for a variety of domains.

4.5.4 Limitations

Callisto is designed and evaluated in the scope of within-notebook collaboration, where
collaborators work in the same notebook and treat the final narrative as an end goal. The
setup of the formative study is designed to encourage real-time chatting and collaboration,
which may not be an accurate representation of most collaboration and communication
scenarios. In addition, our in-lab evaluation contains several limits to external validity:
participants are all students from the authors’ home institution; participants may not be
proficient enough in Callisto given the short training time; we only evaluated one type
of data science problem and provided the framework of the notebook rather than asking
them to start from scratch.
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4.6 System Implementation

Callisto7 consists of two Jupyter Notebook extensions—one small extension for Jupyter’s
file browser (to make it easier to join shared notebooks) and the “main” extension for
Jupyter Notebooks (Figure 9.1)—and a Node.js backend. Callisto keeps collaborators in
sync (including notebook content, chat, lists of collaborators, and runtime state) through
OTs, as implemented through ShareDB [2]. To maintain connections between messages
and cells, Callisto tracks the edit history through the lifetime of the notebook and stores a
unique id in the metadata of each cell, which stays constant as cells are inserted, deleted,
and rearranged.

4.7 Conclusion

In conclusion, we have proposed the design of Callisto to leverage valuable chat mes-
sages in collaborative data science. Our two-stage evaluation study with 32 data science
students confirmed that Callisto eases new-collaborator onboarding by helping them un-
derstand the design rationales of the notebook’s authors. In particular, Callisto success-
fully captures contextual links during the real-time collaborative creation of the notebook
without hindering exploration, while the establishment of contextual links and the set of
interactions for navigating the notebook significantly improve new notebook collabora-
tors’ understanding of past discussions and decisions.
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CHAPTER 5

Themisto: AI-Assisted Data Science Code
Documentation

Computational notebooks allow data scientists to express their ideas through a combi-
nation of code and documentation. However, data scientists often pay attention only
to the code, and neglect creating or updating their documentation during quick itera-
tions. Inspired by human documentation practices learned from 80 highly-voted Kaggle
notebooks, we design and implement Themisto, an automated documentation generation
system to explore how human-centered AI systems can support human data scientists in
the machine learning code documentation scenario. Themisto facilitates the creation of
documentation via three approaches: a deep-learning-based approach to generate docu-
mentation for source code, a query-based approach to retrieve online API documentation
for source code, and a user prompt approach to nudge users to write documentation.
We evaluated Themisto in a within-subjects experiment with 24 data science practition-
ers, and found that automated documentation generation techniques reduced the time for
writing documentation, reminded participants to document code they would have ignored,
and improved participants’ satisfaction with their computational notebook.

5.1 Introduction

Documenting the story behind code and results is critical for data scientists to collabrate
e↵ectively with others, as well as their future selves [89, 138, 104, 118]. The story, code,
and computational results together construct a computational narrative. Unfortunately,
data scientists often write messy and drafty analysis code in computational notebooks
as they need to quickly test hypotheses and experiment with alternatives. It is a tedious

82



process for data scientists to then manually document and refactor the raw notebook into
a more readable computational narrative, thus many people neglect to do so [157].

Many e↵orts have sought to address the tension between exploration and explanation
in computational notebooks. For example, researchers have explored the use of code gath-
ering techniques to help data scientists organize cluttered and inconsistent notebooks [75],
as well as algorithmic and visualization approaches to help data scientists forage past
analysis choices [88]. But these e↵orts focus on the cleaning and organizing of existing
notebook content, instead of creating the new content. Another work developed a chat
feature that enables data scientists to have simultaneous discussions while coding in a
notebook [184], and linked their chat messages as documentations to relevant notebook
elements as in Google Docs [186]. However, these chat messages are too fragmented
and colloquial to be used for documentation; besides, in real practice data scientists and
business analysts rarely work on notebooks at the same time and actively message each
other.

We began our project by asking, “What makes a well-documented notebook?” To an-
swer this question, we first conducted an in-depth analysis of how human data scientists
document notebooks. Publicly shared user notebooks on Githubs are often not well docu-
mented [157], thus we look up to a special set of notebooks – the highly-voted notebooks
users submitted to Kaggle competitions. We conducted a formative study with a sam-
ple of 80 of these notebooks, and our interative indepth coding analysis suggested these
80 notebooks have much better documentations in comparison to the corpus reported in
previous literature [157]. Thus, we refer to them as “well-documented” notebooks.

Our coding process of these 80 notebooks also revealed a taxtonomy of nine categories
(e.g., Reason, Process, Result) for the documentation content, which reflects the thought
processes and decisions made by the notebook owner. These findings together with the
insights from related work motivate us to consider AI automation as a potential solution
to support the human process of crafting documentation.

We propose Themisto, an automated code documentation generation system that in-
tegrates into the Jupyter Notebook environment. To support the diverse types of doc-
umentation content and to complement the AI limitations, Themisto incorporate three
distinct approaches: a deep-learning-based approach to automatically generate new docu-
mentation for source code (fully automated); a query-based approach to retrieve existing
documentation from online API websites for third party packages and libraries (fully au-
tomated); and a prompt-based approach to give users a start of the sentence and encourage
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them to complete the sentence that serves as documentation (semi automated).
We evaluated Themisto in a within-subjects experiment with 24 data science practi-

tioners. We found that Themisto reduced the time for data scientists to create documen-
tation, reminded them to document code they would have ignored, and improved their
satisfaction with their computational notebooks. Meanwhile, the quality of the documen-
tation produced with Themisto are about the same as what data scientists produced on
their own. Base on these findings, we re-imagine that the code documentation task can be
conducted in a Human-AI Collaboration fasion in the future, where this joint e↵ort may
have unique advantages in comparison to the solo e↵ort of a human alone.

Our paper provides a three-fold contribution to the HCI and data science practitioner
communities:

• providing an empirical understanding of best practices of how humans document a
notebook through an analysis of highly-rated Kaggle notebooks,

• demonstrating the design of a human-centered AI system that can collaborate with
human data scientists to create high-quality computational narratives,

• reporting empirical evidence that Themisto can collaborate with data scientists to
generate high quality and highly-satisfied computational notebooks in much less
time.

5.2 Formative Study

In order to build a useful system that can support data scientists to create documentation
and improve their computational narrative quality, we first need to explore and under-
stand the characteristics of good documentation in high-quality notebooks. What does a
well-documented computational narrative look like? We identify “well-documented”
computational narratives with ratings from a broader data scientist community (Kaggle),
and analyze their characteristics specifically around the documentation. We consider the
community voting number is a good indicator to reflect a computational notebook’s qual-
ity for our research goal. Based on this premise, we then conduct a formative study to
analyze the characteristics of a set of most voted computational narratives, and explore
how the data scientists create documentations for these notebooks.
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Figure 5.1: We replicated the notebook-level descriptive analysis by Rule et al. [157] to
the 80 well-documented notebooks on Kaggle. The left side represents the descriptive
visualization of the 80 well-documented computational notebooks from Kaggle (noted
as Sample A) and the right side represents the descriptive visualization of the 1 million
computational notebooks on Github (noted as Sample B). The highly-voted notebooks on
Kaggle are better documented compared to the Github notebooks.

5.2.1 Data Collection

We collected notebooks from two popular Kaggle competitions — House Price Predic-
tion1 and Titanic Survival Prediction2. We chose these two competitions because they are
the most popular competitions (5280 notebooks submitted for House Price and 6300 note-
books submitted for Titanic Survival) and because many data science courses use these
two competitions as a tutorial for beginners [23, 57].

We collected the top 1% of the submitted notebooks from each competition based on
their voting numbers, which resulted in 53 for House Price and 63 for Titanic Survival.
We then filtered out the notebooks that were not written in English and the ones that are
not relevant to the particular challenge (e.g., a computational notebook as a tutorial on
how to save memories can win lots of votes, but it is not a solution to the challenge),
which returned 80 valid notebooks for analysis (39 for House Price and 41 for Titanic
Survival).

1
https://www.kaggle.com/c/house-prices-advanced-regression-techniques

2
https://www.kaggle.com/c/titanic/
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5.2.2 Data Analysis

Five members of the research team conducted an iterative open coding process to analyze
the collected notebooks. Di↵ering from [157], where their qualitative coding stopped
at the notebook level, our analysis goes deep to the cell granularity: we code each cell’s
purposes and types of content; and which step (stages) in the data science lifecycle that the
cell belongs (e.g., data cleaning or modeling training [204, 187]). Our analysis covered
4427 code cells and 3606 markdown cells within the 80 notebooks. Each notebook took
around 1 hour to code as we coded the notebook at the cell level.

Each coder independently analyzed the same six notebooks to develop a codebook.
After discussing and refining the codebook, they again went back to recode the six note-
books and achieved pair-wise inter-rater reliability ranged 0.78-0.95 (Cohen’s ). After
this step, the five coders divided and coded the remaining notebooks.

5.2.3 Results

We found that these 80 well-documented computational notebooks all contain rich docu-
mentation. In total, we identified nine categories for the content of the markdown cells.
In addition, we found the markdown cells covered four stages and 13 tasks of the data
science workflow [187]. Note that a markdown cell may belong to multiple categories.

5.2.3.1 Descriptive statistics of the notebook.

We found that on average, each notebook contains 55.3 code cells and 45.1 markdown
cells. We replicated the notebook descriptive analysis that Rule et al. used to analyze 1
milion computational notebooks on Github [157]. As shown in Figure 5.1, the left side
represents the descriptive visualization of the 80 well-documented computational note-
books from Kaggle (noted as Sample A) and the right side reprersents the descriptive
visualization of the 1 milion computational notebooks on Github (noted as Sample B).
We found that the Sample A has more total cells per notebook (Median = 95) than Sam-
ple B (Median = 18). Sample A has roughly equal ratio of markdown cells and code
cells per notebook, while Sample B is unbalanced with majority cells being code cells.
Notably, Sample A has more total words in markdown cells (Median = 1728) than Sam-
ple B (Median = 218). This result indicates that the 80 well-documented computational
notebooks are better documented than general Github notebooks.
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Table 5.1: We identified 9 categories based on the purpose of markdown cells. Note that
a markdown cell may belong to multiple categories of contents or none of the categories.

Category N Description Example

Process 2115
(58.65%)

The markdown cell describes what the
following code cell is doing. This al-
ways appears before the relevant code
cell.

Transforming Feature X

to a new binary variable

Headline 1167
(32.36%)

The markdown cell contains a headline
in markdown syntax. The cell is used
for navigation purposes or marking the
structure of the notebook. It may be rel-
evant to a nearby code cell.

# Blending Models

Result 692
(19.19%)

The markdown cell explains the output.
This type always appears after the rele-
vant code cell.

It turns out there is a

long tail of outlying

properties...

Background
Knowl-
edge

414
(11.48%)

The markdown cell provides a rich con-
tent for background knowledge, but
may not be relevant to a specific code
cell.

Multicollinearity incre-

ases the standard errors

of the coefficients.

Reason 227
(6.30%)

The markdown cell explains the rea-
sons why certain functions are used or
why a task is performed. This may ap-
pear before or after the relevant code
cell.

We do this manually, be-

cause ML models won't be
able to reliably tell

the differences.

Todo 202
(5.60%)

The markdown cell describes a list of
actions for upcoming analysis. This
normally is not relevant to a specific
code cell.

1. Apply models

2. Get cross validation

scores

3. Calculate the mean

Reference 200
(5.55%)

The markdown cell contains an exter-
nal reference. This is also relevant to
the adjacent code cell.

Gradient Boosting

Regression Refer

[here](https://...)

Meta-
Information

141
(3.91%)

The markdown cell contains meta-
information such as project overview,
author’s information, and a link to the
data sources. This often is not relevant
to a specific code.

The purpose of this

notebook is to build a

model with Tensorflow.

Summary 51
(1.41%)

The markdown cell summarizes what
has been done so far for a section or a
series of steps. This often is not rele-
vant to a specific code.

**In summary**

By EDA we found a strong

impact of features like

Age, Embarked..

5.2.3.2 Data scientists use markdown cells to document a broad range of topics.

As shown in Table 5.1, our analysis revealed that markdown cells are mostly used to
describe what the adjacent code cell is doing (Process, 58.65%). Second to the Process
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category, 32.36% markdown cells are used to specify a headline for organizing the note-
book into separate functional sections and for navigation purposes (Headline).

Markdown cells can also be used to explain beyond the adjacent code cells. We found
that many markdown cells are created to describe the outputs from code execution (Result,
19.19%), to explain results or critical decisions (Reason, 6.30%), or to provide an outline
for the readers to know what they are going to do in a list of todo actions (Todo, 5.60%),
and/or to recap what has been done so far (Summary, 1.41%).

We observed that 11.48% markdown cells explain what a general data science concept
means, or how a function works (Background Knowledge), while 5.54% markdown cells
are connected with external references for readers to further explore the topics (Refer-
ence). We believe these are the extra e↵orts that the notebook owners dedicated, to attract
a broader audience, especially beginners in the Kaggle community. In addition, we found
that authors approached the story in di↵erent styles. For example, some authors want to
leave their own signature, and so they spend spaces at the beginning of the notebooks
to debrief the project, to add the author’s information, or even to add their mottos (Meta-
Information, 3.91%). Some authors prefer to use concise and accurate language to convey
important information; while others write documentation in more creative and entertain-
ing ways — for example, making analogies between data science workflow and starting
a business.

5.2.3.3 Data science stages.

We coded markdown cells based on where they belong in the data science workflow [190].
As shown in Table 5.2, we identified four stages and 13 tasks. The four stages include
environment configuration (4.50%), data preparation and exploration (37.05%), fea-
ture engineering and selection (10.40%), and model building and selection (27.57%).
At the finer-grained task level, in particular, notebook authors create more markdown
cells for documenting exploratory data analysis tasks (26.62%) and model training tasks
(10.45%). The rest of the markdown cells are evenly distributed along with other tasks.

5.2.4 Design Implications

In summary, our analysis of markdown cells in well-documented notebooks suggests that
data scientists document various types of content in a notebook, and the distribution of
these markdown cells generally follows an order of the data science lifecycle, starting with
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Table 5.2: We coded each markdown cell to which data science stage (or task) they be-
long. We identified 4 stages with 13 tasks out of the data science lifecycle [187]. Note
that a markdown cell may belong to multiple stages or none of the stages.

Stage Total Task N

Environment Configuration 162 (4.49%) Library Loading 33 (0.92%)
Data Loading 129 (3.58%)

Data Preparation and Exploration 1336 (37.05%)
Data Preparation 91 (2.52%)
Exploratory Data Analysis 960 (26.62%)
Data Cleaning 285 (7.90%)

Feature Engineering and Selection 375 (10.40%)
Feature Engineering 120 (3.32%)
Feature Transformation 178 (4.94%)
Feature Selection 77 (2.14%)

Model Building and Selection 994 (27.57%)

Model Building 247 (6.85%)
Data Sub-Sampling and
Train-Test Splitting

61 (1.69%)

Model Training 377 (10.45%)
Model Parameter Tuning 81 (2.25%)
Model Validation and As-
sembling

288 (6.32%)

data cleaning, and ending with model building and selection. Based on these findings, we
synthesize the following actionable design considerations:

• The system should support more than one type of documentation generation.
Data scientists benefit from documenting not only the behavior of the code, but also
interpreting the output, and explaining rationales. Thus, a good system should be
flexible to support more than one type of documentation generation.

• Some types of documentations are highly related to the adjacent code cell. We
found at least the Process, Result, Reason, and Reference types of documentations
are highly related to the adjacent code cell. To automatically generate interpreta-
tions of results or rationale for a decision may be hard, as both involve deep human
expertise. But, with the latest neural network algorithms, we believe we can build
an automation system to generate Process type of documentation, and we can also
retrieve Reference for a given code cell.
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• There are certain types of documentations that are irrelevant to the code. Var-
ious types of documentations do not have a relevant code piece upon which the
automation algorithm can be trained. Together with the Reason and Result types,
the system should also provide a function that the human user can easily switch to
the manual creation mode for these types.

• For di↵erent types of documentation, it could be at the top or the bottom of
the related code cell. This design insight is particularly important to the Process,
Result, and Reason types of documentation. It may be less preferable to put Result
documentation before the code cell, where the result is yet to be rendered. The
system should be flexible to render documentation at di↵erent relative locations to
the code cell.

• External resources such as URLs and the o�cial API descriptions may also
be useful. Some types of documentation, such as Background Knowledge and
Reference, are not easy to be generated with the NN-based models, but they are
easy to retrieve from the Internet. So the system should incorporate the capability
to fetch relevant web content as candidate documentation.

• There is an ordinality in markdown cells that is aligned with the data science
project’s lifecycle. The system should consider that Library Loading types of cells
are often at the beginning section of the notebook, and the Model Training type of
content may be more likely to appear near the end of the notebook. In our system
prototype, though, we did not take this design consideration into account, it will be
our future work.

• The notebook would be nice to have documentation with a problem overview at
the beginning and a summary at the end. We considered this design implication
not in the system design, but our evaluation study design. For the two barebone
notebooks we used in the experiment, we always provide a problem overview as a
markdown cell at the top of the notebook.

5.3 Design and Implementation

Based on findings from the formative study and design insights from related works, we
design and implement Themisto, an automatic documentation generation system that sup-
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ports data scientists to write better-documented computational narratives. In this section,
we present the system architecture, the user interface design, and the core technical capa-
bility of generating documentation.

5.3.1 System Architecture

The Themisto system has two components: the client-side UI is implemented as a Jupyter
Notebook plugin using TypeScript code, and the server-side backend is implemented as a
server using Python and Flask.

The client-side program is responsible to render user interface, and also to monitor the
user actions on the notebook to edits in code cells. When the user’s cursor is focused
on a code cell, the UI will send the current code cell content to the server-side program
through Hypertext Transfer Protocol (HTTP) requests.

The server-side program takes the code content and generates documentation using
both the deep-learning-based approach and the query-based approach. For the deep-
learning-based approach, the server-side program first tokenizes the code content and
generates the AST. It then generates the prediction with the pre-trained model. For the
query-based approach, the server-side program matches the curated API calls with the
code snippets and returns the pre-collected descriptions. For the prompt-based approach,
the server-side program sends di↵erent prompts (e.g., for interpreting result or for ex-
plaining reason) base on the output type of the code cell.

5.3.2 User Interface Design

Figure 5.2 shows the user interface of Themisto as a Jupyter Notebook plugin. Each time
the user changes their focus on a code cell, as they may be inspecting or working on
the cell, the plugin is triggered. The plugin sends the user-focused code cell’s content
to the backend. Using this content, the backend generates a code summarization using
the model and retrieves a piece of documentation from the API webpage. When such a
documentation generation process is done, the generated documentation is sent from the
server-side to the frontend, and a light bulb icon appears next to the code cell, indicating
that the there are recommended markdown cells for the selected code cell (as shown in
Figure 5.2.A).

When a user clicks on the light bulb icon which appears next to any selected code cells,
Themisto render all the three options in the dropdown menu: (1) a deep-learning-based
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Figure 5.2: The Themisto user interface is implemented as a Jupyter Notebook plugin:
(A) When the recommended documentation is ready, a lightbulb icon shows up to the
left of the currently-focused code cell. (B – D) shows the three options in the dropdown
menu generated by Themisto, (B) A documentation candidate generated for the code
with a deep-learning model, (C) A documentation candidate retrieved from the online
API documentation for the source code, and (D) A prompt message that nudges users to
write documentation on a given topic.

approach to generate documentation for source code (Figure 5.2.B); (2) a query-based
approach to retrieve the online API documentation for source code (Figure 5.2.C); and
(3) a user prompt approach to nudge users to write more documentation (Figure 5.2.D).
If the user likes one of these three candidates, they can simply click on one of them, and
the selected documentation candidate will be inserted into above the code cell (if it is the
Process, Reference, or Reason type), or below it (if it is the Result type).

5.3.3 Three Approaches for Documentation Generation

In this subsection, we describe the rationale and implementation detail of the three di↵er-
ent approaches for documentation generation (Figure 5.3):

• Our formative study suggests that the system should be able to generate multiple
types of documentation (e.g., Process, Result, Background Knowledge, Reason,
and Reference).
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Figure 5.3: An illustration of the three di↵erent approaches for documentation generation
in Themisto.

• Some types of documentation can be directly derived from the code, thus the au-
tomated approaches can help. The Process type of documentation directly describes
the coding process, and existing ML literature suggests that the deep-learning-
based approach is most suitable for generating it; The Reference type does not
need a learning-based approach, it can be achieved with a traditional query-based
approach, which locates and retrieves the most relevant online documentation as
candidates;

• Some others types of documentation (e.g., Education, Result, and Reason) are not
directly related to the code, thus the fully automated approaches are not capable
of generating such contents. We design the prompt-based approach for users to
complete the generation process.
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Figure 5.4: A code summarization model for the deep-learning-based documentation gen-
eration approach via GNN. There are three steps of data pre-processing (1) We first ex-
tract text code pairs from existing notebooks. (2) We generate AST from code. (3) We
tokenized each word and translated them into embeddings. And (4), the GNN model
architecture.

5.3.3.1 Deep-Learning-Based Approach

We trained a deep learning model3 using the Graph-Neural-Network architecture based
on LeClair et al. [108]. These GNN models can take both the source code’s structure
(extracted as AST) and the source code’s content as input. Thus, it outperforms the tra-
ditional sequence-to-sequence model architectures, which only takes the source code’s
content as an input sequence, in source code summarization tasks for Python code4. We
did not consider T5, BerT or GPT-3 architectures as these models can take minutes to
make one inference (i.e., generate one summary) even with a cluster of GPUs (costing
thousands of dollars per hour), whereas our GNN-based model can make an inference
within a second with one GPU.

In order to fine-tune the model, we constructed a training dataset for our particular
context. We collected the top 10% highly-voted notebooks from two popular Kaggle
competitions – House Price Prediction and Titanic Survival Prediction (N = 1158). For
each of the notebook, we first extracted code cells and the markdown cells adjacent above
as a pair of input and output (similar to the data collection approach in [19]). If there is an
inline comment in the first line of the code cell, we replaced the output of the pair using

3We release a larger dataset and a refined version of the model in a separate paper [109].
4All the collected data science notebooks are in Python.
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the inline comment. In total, our dataset has 5,912 pairs of code and its corresponding
documentation. Following the best practice of model training, we split the dataset into
training, testing, and validation subsets with an 8 to 1 to 1 ratio.

Before feeding data into the training process, we have a three-step pre-processing
stage, as illustrated in Figure 5.4. Step 1 removes the style decoration, formats, and spe-
cial characters that are not in Python grammar (e.g., Notebook Magics). We also generate
an AST for the source code input in step 2 with Python AST library5. The AST result
is equivalent to the source code but with more contextual and relational information. In
step 3, we tokenize source code to a sequence of tokens with an input dictionary, and
parse the AST nodes as a sequence of tokens with the same input dictionary. We parse
the relationship between AST nodes as a matrix of edges. Finally, we tokenize the output
documentation as a sequence of tokens with a separate output dictionary. After this pro-
cess, all the tokens are transformed into an array of word embeddings — vectors of real
numbers. We use these data to train the network for 100 epochs, 30 batch sizes, and 15
early stop points on a two Tesla V100 GPU cluster. Out of all the epochs, we selected the
model with the highest validation accuracy score.

To evaluate our model’s performance against baseline models, we conducted both
quantitative and qualitative evaluations, as suggested by [151]. For the automated quan-
titative evaluation, we use BLEU scores [130] as the model performance metric. BLEU
scores are commonly used in the source code summarization tasks. It evaluates the word
similarity between the generated text and the ground truth text. We selected and trained
Code2Seq model [20] and Graph2Seq model [197] with the same data split.

Our model achieves 11.41 (BLEU–a), which outperforms the baseline models
Code2Seq (BLEU–a = 9.61) and Graph2Seq (BLEU–a = 11.05). These scores suggest
that the data science documentation task is more di�cult than the benchmark code sum-
marization tasks in the software engineering field. For example, in data science, a note-
book code cell can contain multiple code snippets and functions.

In addition to the automated quantitative evaluation, we also conduct a qualitative
analysis of the generated documentation pieces. We found that despite the word-to-word
similarity score is low, the general quality of the content is reasonable and satisfying for
building a prototype system. As an illustration, we provide three examples with both
input and model generated outputs, as shown in Table 5.3. In the Appendix, we provide
full code cells and model-generated outputs for the two experimental notebooks that we

5https://docs.python.org/3/library/ast.html
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Table 5.3: Example output from the model. (Example A) The generated text well de-
scribes the code. (Example B) The generated text vaguely describes the code. (Example
C) The generated text is poorly readable, but still captures the keywords of the descrip-
tions.

Example Code Cell Output from the Model

Example A train = pd.read_csv('./house-input/train.csv')
test = pd.read_csv('./house-input/test.csv')

Read the data

Example B all_data = pd.get_dummies(all_data) Convert all the data
Example C pred = Tree_model.predict(x_test)

pred = pd.DataFrame(pred)

pred.columns = ["ConfirmedCases_prediction"]

Predicate to use a predict
function for tests

used in the user study.

5.3.3.2 Query-Based Approach

Our formative study indicates that the well-documented Kaggle notebooks often have the
description of frequently-used data science code functions for educational purposes. And
sometimes data scientists directly paste in a link or a reference to the external API docu-
mentation for a code function. Thus, we implement a query-based approach that curates a
list of APIs from commonly used data science packages, and the short descriptions from
external documentation sites. In our system, we only cover Pandas6, Numpy7, and Scikit-
learn8 these three libraries as a starting point to explore this approach. We argue that it
can be easily expanded to include other packages in the future. We collected both the API
names and the short descriptions by building a crawling script with Python. When users
trigger this query-based approach for a code cell, Themisto matches the API names with
the code snippets and concatenate all the corresponding descriptions.

5.3.3.3 Prompt-Based Approach

Lastly, the system also provides a prompt-based approach that allows users to manually
create the documentation. Because our formative study found that a well-documented
notebook not only documents the process of the code, but also interprets the output, and
explains rationales. These types of documentation are hard to generate with automated

6
https://pandas.pydata.org/docs/reference/index.html

7
https://numpy.org/doc/stable/reference/

8
https://scikit-learn.org/stable/modules/classes.html
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solutions To achieve it, we implement a prompt-based approach. It detects whether the
code cell has a cell output or not: if the cell outputs a result, Themisto assumes that
the user is more likely to add interpretation for the output result, thus the corresponding
prompt will be inserted below the code cell. Otherwise, the system assumes the user may
want to insert a reason or some educational types of documentations, thus it changes its
prompt message.

5.4 User Evaluation of Themisto

To evaluate the usability of Themisto and its e↵ectiveness in supporting data scientists to
create documention in notebooks, we conducted a within-subject controlled experiment
with 24 data scientists. The task is to add documentation to the given notebook. And each
participant is asked to finish two sessions, one with the Themisto support and one with-
out its support. The evaluation aims to understand (1) how well Themisto can facilitate
documenting notebooks and (2) how data scientists perceive the three approaches that are
used by Themisto for generating documentation.

5.4.1 Participants

We recruited 24 data science professionals as our evaluation participants in a multina-
tional IT company. We used a snowball sampling approach to recruit participants, where
we sent recruitment messages to friends and colleagues, various internal mailing-lists, and
Slack channels. We then asked participants to refer their friends and colleagues. Our re-
cruitment criteria are that the participant must have had experience in data science projects
and they are familiar with Python and Jupyter Notebook environment. As shown in Table
9.1, participants reported a diverse job role backgrounds, including expert data scientists
(N = 8), novice data scientists (N = 9), AI Operators (AIOPs) or Machine Learning (ML)
engineers (N = 2), subject matter experts (N = 1), and application developer (N = 4).

5.4.2 Study Protocol

We conducted a within-subject controlled experiment with 24 data scientist participants.
Their task was to add documentation to a given draft notebook, which only has code and
no documentation at all. The participants were told that they were adding documenta-
tion for the purpose of sharing those documented notebooks as tutorials for data science
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Table 5.4: Demographics of participants

PID Gender Job Role Work Experience in Data
Science

P1 M Expert Data Scientist 5-10 years
P2 M Application Developer 3-5 years
P3 M Novice Data Scientist less than 3 years
P4 M Novice Data Scientist 0 year (just start learning data

science)
P5 M AI Operator or ML En-

gineer
3-5 years

P6 M Novice Data Scientist less than 3 years
P7 M Application Developer 3-5 years
P8 M Novice Data Scientist less than 3 years
P9 F Expert Data Scientist 3-5 years

P10 M Expert Data Scientist 5-10 years
P11 M Expert Data Scientist more than 10 years
P12 F Novice Data Scientist 3-5 years
P13 F Expert Data Scientist 5-10 years
P14 M Novice Data Scientist 0 year (just start learning data

science)
P15 M Expert Data Scientist more than 10 years
P16 M AI Operator or ML En-

gineer
3-5 years

P17 M Subject Matter Expert 3-5 years
P18 M Expert Data Scientist more than 10 years
P19 F Application Developer 3-5 years
P20 F Expert Data Scientist 3-5 years
P21 M Novice Data Scientist 3-5 years
P22 M Novice Data Scientist less than 3 years
P23 M Application Developer less than 3 years
P24 M Novice Data Scientist less than 3 years

students who just started learning data science. Each participant is asked to finish two ses-
sions, one with the Themisto support (Experiment condition) and one without its support
(Control Condition). We prepared two draft notebooks, one for each session, shown in
the Appendix. The two experiment notebooks are adapted from winning notebooks from
two Kaggle challenges, which are not included in the model training dataset: 1) House
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Price Prediction9; 2) COVID Case Prediction10. The two notebooks have the same length
(9 code cells) and a similar level of di�culty. Although the two notebooks are simplified
versions from winning notebooks, they cover most stages in data science lifecycles. In
addition, the length of the notebooks falls into the middle range of the notebook length
distribution on the GitHub corpus (as referred to Figure 5.1). To counterbalance the order
e↵ect, we randomized the order of the control condition and the experiment condition
for each participant, so some participants encountered Themisto in their first session, and
some others experienced it in their second session.

Each participant was given up to 12 minutes (720 seconds) to finish one session. We
conducted three pilot run sessions, and all the three pilot participants were able to fin-
ish a single task within 10 minutes, with or without the support of Themisto. Before
the experiment condition session, we gave the participant a 1-minute quick demo on the
functionality of Themisto. All study sessions were conducted remotely via a teleconfer-
encing tool. We asked the participants to share their screen and we video recorded the
entire session with their permission. After finishing both sessions, we conducted a post-
experiment semi-structured interview session to ask about their experience and feedback.
We had a few pre-defined questions such as “How do you compare the experience of the
documenting task with or without the support of Themisto?” or “Did you notice the mul-
tiple candidates in the dropdown menu? Which one do you like the most?” In addition,
participants were encouraged to tell their stories and experience outside these structured
questions. The interview sections of the video recordings were transcripted into text.

5.4.3 Data Collection and Measurements

We have three data sources: the observational notes and video recording for each session
(N = 48), the final notebook artifact out of each session (N = 48), and the post-task
questionnaire and interview transcripts (N = 24).

Our first group of measurements are from coding participants’ behavioral data from
the session recordings. In particular, we counted the task completion time (in secs) for
all sessions. Then, for experiment condition only, we also counted the followings: how
many times a participant clicked on the light bulb icon to check for suggestions (code
cells checked for suggestions); how many times a participant directly used the gener-
ated documentation (markdown cells created by Themisto); how many times a participant

9
https://www.kaggle.com/c/house-prices-advanced-regression-techniques

10
https://www.kaggle.com/c/covid19-global-forecasting-week-1
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ignored the generated recommendations and manually created the documentation (mark-
down cells created by human); and how many time a markdown cell is co-created by
human and Themisto(markdown cells co-created by human and Themisto). The result of
this analysis is reported in Table 5.5 and 5.6.

Secondly, to evaluate the quality of the final notebook artifact, we define our second
group of measurements by counting: the number of added markdown cells, and the num-
ber of added words as these two are indicators of the quantity and e↵ort each participant
spent in a notebook. Also, we asked the participants to give a self-reported satisfaction
score to each of the two documented notebooks. We considered that score (-2 to 2) as
a self-reported subject feeling of the notebook satisfaction. In parallel, we asked two
experts to rate the notebook-level quality (N = 48) with a 3-dimensional rubric (based
on [59]) to evaluate the documentation’s readability, accuracy, and informativeness in a
notebook. We considered these three scores (-2 to 2) as an objective quality of the note-
book. Readability concerns whether the documentation is in readable English grammar
and words, while accuracy concerns how the documentation matches the code content,
and informativeness evaluates whether the documentation covers more information units.
Two experts iteratively discussed and evaluated the notebooks until the independent rat-
ings achieved an agreement (↵ = 0.76, Krippendor↵’s alpha). The result of this analysis
is reported in Table 5.5.

For the experiment session only, we conducted a cell-level expert rating (N = 194)
using the same approach as in notebook-level expert rating. Two experts iteratively dis-
cussed and evaluated the notebooks until the independent ratings achieved an agreement
(↵ = 0.88, Krippendor↵’s alpha). The result of this analysis is reported in Table 5.6.
In addition, we asked the participants to finish a post-experiment survey (5-point Likert
Scale, -2 as strongly disagree and 2 as strongly agree, Figure 9.3) to collect their feedback
specific on the system’s usability, accuracy, trust, satisfaction, and adoption propensity
(based on [193]).

Lastly, for the interview transcripts, four researchers of this research project conduct
an iterative open coding method to get the code, theme, and representative quotes as the
third group of data. They each independently coded a subset of interview transcripts,
and discussed the codes and themes together. After the discussion, they when back and
reiterated the coding practice to apply the codes and themes to their assigned notebooks.
Some examples of the identified themes are: pros and cons of Themisto; preference of
the three document generation approaches; future adoption, and suggestions for design
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Table 5.5: Performance data in two conditions (M: mean, SD: standard deviation): the
task completion time (secs), participants’ satisfaction with the final notebook (from -2 to
2), graded notebook quality, number of markdown cells, and number of words. In partic-
ular, participants spent less time to complete the task in the experimental condition than
the control condition (p = .001); participants were more satisfied with the final notebook
in the experimental condition than the control condition (p = .04).

Condition M SD

Number of Added Markdown Cells Experiment 8.04 2.40
Control 7.79 1.91

Number of Added Words Experiment 95.75 50.56
Control 100.92 53.27

**Task Completion Time (secs) Experiment 391.12 200.15
Control 494.75 184.28

*Satisfaction with the Final Notebook Experiment 0.96 0.69
Control 0.54 0.83

Expert Rating: Accuracy (-2 to 2) Experiment 1.60 0.47
Control 1.62 0.52

Expert Rating: Readability (-2 to 2) Experiment 0.65 0.83
Control 0.90 0.57

Expert Rating: Informativeness (-2 to 2) Experiment 0.67 0.64
Control 0.75 0.63

improvement. We will report the qualitative results as supporting materials together with
reporting the quantitative results.

5.4.4 Results

In this section, we present the user study results on: how Themisto improved participants’
performance on the task, how participants perceived the documentation generation meth-
ods in Themisto, and how participants described the practical applicability of Themisto.

5.4.4.1 Themisto supports participants to easily add documentations to a notebook.

Our experiment revealed that Themisto improved participants’ performance on the task
by reducing task completion time and improving the satisfaction with the final notebooks.

We performed a two-way repeated measures ANOVA to examine the e↵ect of the two
notebooks and the two conditions (with or without Themisto) on task completion time.
As shown in Table 5.5, participants spent significantly less time (p<.001) to complete the
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Figure 5.5: Results of the post-task questionnaire. Note that the disagrees are not from
the same participant.

task using Themisto in the experiment condition (M(SD) = 391.12 (200.15)) than in the
control condition (M(SD) = 494.75 (184.28)). In addition, there was not a statistically
significant e↵ect of notebooks on task completion time, nor a statistically significant in-
teraction between the e↵ects of notebooks and conditions on completion time.

The post-experiment survey result supported our findings. Most participants believed
it was easier to accomplish the task with Themisto’s help (22 out of 24 rated agree or
higher), as shown in Figure 9.3. And the Themisto generated recommendation was accu-
rate (20 out of 24 rated agree or higher).

Looking into the qualitative interview data, we can find some potential explanations for
why participants believed so. Participants reported that Themisto provided them some-
thing to begin with, thus it was easier than starting from scratch: “The plugin makes it
easy to just pick it and have something simple. And then I got a couple of times where I
went back and said, ‘Oh let me add a few more words.’” (P21).

5.4.4.2 Co-creation yields longer documentation and improves accuracy and read-
ability.

Through coding the video recordings for only the experiment-condition sessions, we were
able to examine the following questions: while the Themisto was available, how did the
participants use it? Did they check the recommendations it generated? Did they actually
use those recommendations in their documentations added into notebooks?

As shown in Table 5.6, we found that while Themisto is available, for 86.11% of
code cells, participants checked the recommended documentation by clicking on the light
bulb icon to show the dropdown menu. Then, 46.90% of the created markdown cells
were directly adopted from Themisto’s recommendation; while 11.86% of the created
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markdown cells were manually crafted by humans alone. The most interesting finding
is that 41.24% markdown cells were co-created by Themisto and human participants
together: Themisto suggests a markdown cell, human participants take it, and modify on
top of it. This result suggested that most participants used Themisto in the creation of
documentation, and some of them formed a small collaboration between humans and the
Artificial Intelligence (AI). This finding inspires us to further explore how participants
co-create the documentation with Themisto [119]. By looking at the log data, we discover
several editing patterns. For example, many participants added supplemental details (e.g.,
expanding the steps into substeps) to Themisto’s suggested documentation. Participants
also added stylistic edits, including modifying document hierarchies, polishing sentences,
and changing conversational tones.

In order to explore the di↵erences among documentation created by three methods
(created by Themisto only, co-created by human and Themisto, created by human only),
we conducted a cell-level expert rating (N = 194) along the dimension of accuracy, read-
ability, and informativeness. We also calculated the word count of the documentation
length. We performed a one-way ANOVA to examine the di↵erences among the three
groups. As shown in Table 5.6, markdown cells that are co-created by humans and
Themisto have significantly more word count (M(SD) = 15.45 (10.97)) than markdown
cells that are manually written by humans alone (M(SD) = 10.26 (7.41)) and the mark-
down cells that are directly adopted from Themisto’s recommandation (M(SD) = 8.88
(7.14)), with F = 11.83, p < 0.001 . Markdown cells co-created by humans and Themisto
also yield better results in terms of accuracy (F = 9.43, p < 0.001) and readability (F =
3.28, p = 0.04), while for informativeness, there is no significant di↵erences across three
groups. Our posthoc analysis suggested that no significant di↵erences were found be-
tween markdown cells created by Themisto and markdown cells created by humans only
along all dimensions (including word count, accuracy, readability, and informativeness).

5.4.4.3 Themisto increases participant’s satisfaction , while maintaining a similar
quality of the final notebook.

The post-task questionnaire revealed that participants were more satisfied with the final
notebook after using Themisto in the experiment condition than in the control condition
(p = .04) (Table 5.5). The interview results also supported this finding. P14 believed that
Themisto helped with wording: “Sometimes I knew what the cells were doing but I did
not know how to put things in a really good sentence for others.”
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Table 5.6: Usage data of the plugin in experimental condition. The results indicate
that participants used the plugin for recommended documentation on most code cells
(86.11%). For markdown cells in the final notebooks, 46.90% were directly adopted from
the plugin’s recommendation, while 41.24% were modified from the plugin’s recommen-
dation and 11.86% were created by participants from scratch.

N % Word
Count

Accuracy Readability Informative
ness

Code Cells Checked for
Suggestions

186 86.11 - - - -

Markdown Cells Created by
Themisto Only

91 46.90 8.88 (7.14) 1.36 (0.54) 1.94 (0.23) 1.34 (0.56)

Markdown Cells Co-created
by Humans and Themisto

80 41.24 15.45
(10.97)

1.68 (0.47) 1.96 (0.17) 1.51 (0.55)

Markdown Cells Created by
Humans Only

23 11.86 10.26 (7.41) 1.28 (0.69) 1.83 (0.36) 1.35 (0.65)

Themisto also motivates participants to document the analysis details. Although we
did not see a di↵erence in the number of markdown cells created in two conditions or the
number of words in total, Themisto helps them overcome the procrastination of writing
documentation and reminds them to document things that they might ignore.

I think I definitely overlooked some details when I was commenting without
the tool, because I just made the assumption that people should know from
the code... To be honest, I do not usually follow a good coding practice. My
notebooks are really messy and I am the only person who can understand it.
I feel sorry for anybody else that has to see it. (P19)

Moreover, participants believed that Themisto can help them form a better document-
ing practice in the long term: “It very useful to remind me to always put some documen-
tation in a timely manner.” (P13).

The two experts’ gradings for the notebook quality suggest that there was not a signifi-
cant di↵erence for the three dimensions of the quality rubric (accuracy, readability, and
completeness). In the post-task interview, participants mentioned that the accuracy of the
generated recommendations plays a role in participant’s experience: “My experience with
the plugin is definitely better. For the most part, the suggestions are pretty accurate. Al-
though sometimes I did make a few minor changes like rearranging the text.” (P5). Some
participants also mentioned that they needed to edit the format of the generated document
to fit their context. We believe that while Themisto o↵ers convenience to improve the data
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scientists’ productivity and saves their time, it may not provide the same level of read-
ability as those notebooks well articulated by humans. Thus, data scientists may want to
further revise the formatting and wording of the Themisto generated documentation.

In summary, our experiment indicated that Themisto improves participants’ productiv-
ity for creating documentation. It also increases their perceived satisfaction with the final
notebook, compared to the notebooks written by participants themselves.

5.4.4.4 The three approaches of generating documentation are suitable for di↵er-
ent scenarios.

In this section, we have an in-depth analysis of how participants perceived the three
di↵erent approaches that Themisto implemented to generate documentations: the deep-
learning-based approach, the query-based approach, and the prompt-based approach. In
the post-experiment interview, we explained how Themisto generated the documentation
with these three approaches, and asked participants if they like or dislike one particular
approach.

Participants reported that they felt the deep-learning-based approach provided concise
and general descriptions of the analysis process: “I think the AI suggestion gives me an
overview. It is short, and has some useful keywords.” (P12).

Participants also suggested that the deep-learning-based approach sometimes gener-
ated inaccurate or very vague documentation: “The first one gives me a very short sum-
mary, though it didn’t always say what the cell is doing.” (P1). But the deep-learning-
based approach is still perceived useful. As it is short and with only a couple of keywords,
many participants believe it may be more suitable for some quick and simple documenta-
tion task, or for the analyst audience who can understand these short keywords.

In terms of the query-based approach, participants believed that the documentation
generated from this approach contains has longer and more descriptive information. This
approach is further perceived to be more suitable for educational purposes: “This one
gives you really good information. For some specific methods or calls, you don’t have to
come up with a high-level summary for others and you can directly use it.” (P14).

Participants also acknowledged that such a query-based approach may not work for
some scenarios. For example, participants found that the query-based approach was not
useful for summarizing the very fundamental level data manipulations, as there was no
core API method in it. Some participants mentioned that the usefulness of this query-
based approach depends on the audience.
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The [deep-learning-based approach] was really useful. The [query-based ap-
proach]... it depends on the audience. It is much more appropriate for a
novice programmer. (P18)

We observed in the video recordings that participants rarely used the prompt-based
approach in the session. The interview data confirmed our speculation. Some partici-
pants said that they liked the idea of user prompts, but they did not use it because the
deep-learning-based approach and the query-based approach already gave them the ac-
tual content. Other participants pointed out that the prompts were not intelligent enough,
so they did not use it: “It always asks the same thing and I just ignored the prompts.”
(P18).

Participants suggested that the prompts could be designed to better fit the context.

Perhaps the system can infer what the code cell was doing [from the deep-
learning-based approach], and show prompts accordingly. Like if I delete a
data point from the dataset, there is a prompt asking why I considered it as an
outlier or something. (P5)

Last but not the least, many participants preferred a hybrid approach to combine the
deep-learning-based approach and the query-based approach. For example, P12 men-
tioned,

The first one (deep-learning-based) tells me what the code cell is doing in
general and the second one (query-based) tells me the details of the function.
I would go with a hybrid approach. (P12)

5.4.4.5 Will participants use Themisto in their future data science project?

Most participants indicated that they would like to use Themisto in the future when an-
swering the survey question as shown in Figure 9.3. The interview data provides more
detail and evidence to elaborate on this result. Participants suggested various scenarios in
which the Themisto could be useful in their future work, such as they need to add doc-
umentation during the exploration process for future selves, or they need to document a
notebook in a post-hoc way for sharing it with collaborators, or they need to mentor a
team member who is a novice data scientist, or they need to refactor an ill-documented
notebook written by others:
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When I am doing data analysis, I tend to write the code first because there is
a flow in my head of what I need to do. And then I will go back afterward to
use the plugin and add the comments needed. I will definitely do that before
sharing that file or handing it over to others. (P12)

There was one participant who did not think Themisto could fit into his workflow:
“I always write documentation before writing code. Maybe Themisto does not work for
people like me.” (P3)

In our experiment, we provided the scenario as they were documenting the notebook
as a tutorial for some data science students. In the interview, we asked how participants
would document a notebook di↵erently if they were created documentation for the note-
books for non-technical domain experts audience. Some participants suggested that com-
putational notebooks may not be a good medium to present the analysis to non-technical
domain experts. They would prefer to curate all the textual annotations in a standalone
report or slide decks. Some others believed that the notebook could work as the medium
but they would change the documentation by using less technical terminology, adding
more details on topics that the non-technical domain experts would be interested in (e.g.,
how data is collected, potential bias in the analysis).

5.4.4.6 Participants suggest various design implications for automated code docu-
mentation.

In the interview, participants provided various design suggestions to improve Themisto
and to design future technologies that can support data scientists to document the note-
book.

Participants expected Themisto to have more functionalities than simply generating
documentation for the code. For example, P13 proposed maybe Themisto can also create
a description to document the changes of versions and the editing histories from di↵erent
team members. P3 and P4 believed that the automatic generation of Reason is very much
needed for explaining decisions such as why selecting a particular algorithm. P19 wanted
the system to automatically add explanations to the execution errors. Participants also
mentioned that Themisto should add more varieties into the generated content’s format-
ting. They would like to see suggested documentation with a better presentation.

And lastly, some participants suggested that maybe such a documentation generation
system can take consideration of the purpose of the notebook, the domain-specific termi-
nology, or the indivials’ habits for writing documentation.
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5.4.4.7 Summary of the Results

In summary, our study found that Themisto can support data scientists in generating doc-
umentation by significantly reducing their time spent on the task, and improving the per-
ceived satisfaction level of the final notebook. When Themisto is available, participants
are very likely to check the generated documentation as a reference. Many of them di-
rectly used the generated documentation, a few of them still prefer to manually type the
documentation, while many of them adopted a human-AI co-creation approach that they
used the AI-generated one as a baseline and keep improving on top of it. Participants per-
ceived the documentation generated by the deep-learning-based approach as a short and
concise overview, the documentation generated by the query-based approach as descrip-
tive and useful for educational purposes, but they rarely used the prompt-based approach.
Overall, participants enjoyed Themisto and would like to use it in the future for various
documenting purposes.

5.5 Discussion

5.5.1 The Documentation Practices in Data Science is Di↵erent from
in Software Engineering

The practice of documentation in data science has both overlaps and strong contrasts in
relation to the ones in software engineering in many facets. Software engineers write
inline comments in their work-in-progress code to help collaborators understand the be-
havior of the code without the burden of going through thousands of lines of code; they
document changes of their code for better version management and improving awareness
of their collaborators; when others need to build upon their work, they write formal doc-
umentation and Readme files to describe how to use functions and API in their packages
or services [112, 159, 204]. Data scientists write computational narratives as a practice of
literate programming [89, 133], and as a way to think and explore alternatives. Thus, note-
books often have orphan code cells or out-of-order code snippets, which leads to lower
reusability of the notebook and further highlights the importance of documentation in the
notebook. As we found in our formative study, well-documented notebooks explain more
than the behavior of the code. Notebooks cover various topics including describing and
interpreting the output of the code, explaining reasons for choosing certain algorithms or
models, educating the audience from di↵erent levels of expertise, and so on.
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Thus, many interventions and lessons learned about documentation in software en-
gineering may not apply in data science context. For example, how can we evaluate
the quality of the documentation? Software documentation can be assessed based on
attributes like completeness, organization, the relevance of content, readability, and accu-
racy [59]. Our experiment found that the quality scores assessed by these rubrics does not
reflect users’ satisfaction with the final notebooks. Despite many people’s e↵orts to creat-
ing a standard documentation practice [154, 99], it remains questionable whether there is
a one-size-fits-all solution. For example, Rule et al. [154] suggested ten rules for writing
and sharing computational analysis in Jupyter notebooks. The first rule they proposed is
to tell a story to the audience. However, this description is very general as people may
approach storytelling di↵erently. As we observed in Kaggle notebooks, some notebook
authors prefer to use concise and accurate language while others use more colloquial and
creative language. These creative notebooks stand out and receive many votes and com-
pliments from the Kaggle community. As we recognize documentation in data science as
a fluid activity, traditional template-based approaches to aid documentation writing may
not work in data science because they can not capture a broader aspects of documentation,
and limit the expressiveness of storytelling.

We argue that future work should recognize the di↵erence between data science and
software engineering, and tailor the documentation experience for data scientists. For
example, Callisto [184] harnessed the fact that data scientists engage in synchronous work
and discussion, and used contextual links between discussion messages and notebook
content to aid the explanation of notebooks.

5.5.2 Human-AI Collaboration in Code Documentation in Data Sci-
ence

We argue that AI-assisted code documentation process can be viewed as a co-creative pro-
cess in which machine learning fits into the human workflow and collaborate together to
create documents in a notebook. The notion of a “partnership relationship” between hu-
man data scientists and AI has been discussion by Wang et al. [190], and is part of a larger
research discussion by many others (e.g., [28, 162, 114]). We consider this partnership
as broadly defined where an AI system does not need an avartar or a conversational inter-
face, but this AI system should be designed to fit into the existing human workflow and
assist some parts of the human task to improve the quality or productivity. Human-AI col-
laboration, as opposed to human-AI competition (portraited by AlphaGo or DeepBlue),
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should be the ultimate goal of human-AI interaction research. Various human-centered
AI design principles (such as human-in-the-loop) are means to get to this end goal. Our
study demonstrated another means to achieve human-AI collaboration, where we com-
bined the fully automated neural network approach and the less advanced rule-based or
prompt-based approaches. This design is to acknowledge the limitation of today’s neural-
network modeling. Our result showed that the combined human + AI e↵ort produced a
satisfied level of quality at a more rapid pace than what human or AI could achieve alone.

We also observed the user interaction pattern in which the AI creates “first draft” of
the documentation, followed by human review and editing, resulted in a final artifact that
not only met the bar for quality, but exceeded it for the level of satisfaction. Participants
were happier with their code documentation when they were assisted by the AI system
to create it, rather than when they worked alone. Thus, we conclude that the benefits of
having an AI partner in this task stem from being able to produce the same high level
of objective quality, but at a much more rapid pace (20% faster on average) and with a
higher level of satisfaction with the end product.

We speculate that one of the contributing factors for why people were accepting of the
AI’s suggestions is because the final decision of taking those suggestions was up to the
human. As an alternative, we could have designed the system to always automatically
produce a markdown documentation cell for each identified code cell, but we decided not
to. Because this fully-automated design is an extreme in the framework of automation
put forth by Parasuraman et al. ([131]; see also [79]), which people may feel being re-
placed. Our results confirmed our assumption — participants reported that they enjoyed
being able to see multiple suggestions, created using di↵erent algorithms, and select the
one that was the closest match to their intent in documenting a code cell. This level of
interaction corresponds to “AI executes a selection only after a human has approved” in
the Parasuraman et al. model [131].

Our result also shed light on the research question in [190] about the conditions under
which human data scientists will enjoy working with AI partnership . In our case, main-
taining control of the initiative and the final decision is an important aspect for people’s
enjoyment and acceptance of the AI system. It remains to be studied whether people
prefer both to control their own initiative and the initiative of a machine teammate, as
proposed in Shneiderman’s recent two-dimensional model [163]. Also, we did not focus
on the explanability or trust aspect of the designed AI system, such as how to visualize
the connection between the generated documentaiton and the original code. In the future,
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the explanability and trust aspects of the AI system in the data science context is a very
critical research topic (e.g., [191, 52]), and should also be prioritized in the research
agenda.

There are many other tasks in a data science project’s lifecycle that could use AI’s
help, such as model presentation or feature engineering [187]. In the future, we plan to
extend our work to design more human-centered AI systems to support users in these data
science tasks as well.

In the future, we plan to explore whether the identified benefits and tradeo↵s per-
sist or not after a long period of adoption by users. One of the potential benefits could
be: the human-AI collaboration work style helps users to learn more from the AI sug-
gested/reminded documentations, thus they realize more of the value of adding code doc-
umentation to notebooks; in contrary, maybe users become over-reliance on AI systems
thus they de-skill in this code documentation task, both hypotheses await future research
to evaluate.

5.5.3 Design Implications

We o↵er designers and tool builders the following suggestions to encourage data scientists
to write better documentation:

5.5.3.1 Towards Hybrid and Adapted Code Summarization

Our evaluation of Themisto indicates that instead of a fully automatic approach, data
scientists prefer to use a hybrid method for helping them write documentation. We ar-
gue that future work for code summarization should investigate a hybrid and adapted
approach. We suggest that adaptive interactive prompting may be a worthwhile research
topic. For example, prompts could be based on the contents of the code cell which the
user was trying to document. Another possibility is that prompts be based on the user’s
own history of writing markdown cells, and could either appeal to the user’s strengths,
or could anticipate and accommodate the user’s weaknesses. In a more socially-oriented
approach, users within an organization might rate the initial set of prompts, voting some
prompts up or down depending on their usefulness. An evolution of this idea might allow
users to propose new prompts for use by selves and others (e.g., [48]). Furthermore, we
argue that future code summarization tools would benefit from a reinforcement learning
approach which learns from users’ modifications to the original proposed texts, and could
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anticipate the users’ preference in subsequent documentation.

5.5.3.2 Customizing the Recommendations based on Usage Scenarios

As prior work stated [204], data science workers engage in various collaborations during
di↵erent stages of the data science lifecycle. Documentation plays an important role in
many scenarios. For example, handing o↵ work between data engineers, communicating
results with stakeholders, or informal notes to future self. Data science workers may have
di↵erent needs of the documentation for di↵erent usage scenarios. Designers and tool
builders should take a user-centered approach to understand the purpose of documenta-
tion, the appropriate level of details, and the best way to present the documentation. For
example, participants suggested that future versions of Themisto being able to document
the changes of versions, errors, and related online forum posts. Participants also suggested
that they would like to see more varieties into the generated narrative’s formatting.

5.5.3.3 Inverting Themisto – Automatic Code Generation from Documentation.

The premise of Themisto was to generate descriptive material based on program code.
Following some of the ideas in Seeber et al. [162], we might invert this strategy. We
recall that P3 told us that he wrote documentation in advance of writing the code itself.
If there are other people who use the same discipline as P3, could we generate code
from the descriptive text? We suspect that this idea would not work for just any textual
description. However, there could be certain stylized ways of writing descriptions that
might be translatable into code; pseudocode could provide a starting point for the design
of such a stylized type of description. We recognize that this kind of approach would need
to have a representation of code packages and libraries, so that it could generate code that
was appropriately structured for those packages. Of course, package documentation could
be used to construct such a representation.

5.5.4 Limitation

Our formative study only explores notebooks from the Kaggle corpus, which may leave
out some varieties of markdown cells that only exist in messy notebooks that can ben-
efit from the support of documentation generation. However, notebooks on the Kaggle
platforms are based on real data and real problems, and they aim for rich explanations
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and narratives, whereas other places do not have high-quality notebooks with rich doc-
umentation. Future work should expand the exploration on the other notebook corpus,
for example, notebooks published with scientific papers which contain fine-grained doc-
umentation.

Our experiment has several limitations: it focuses only on the documenting (instead
of coding) process, it is a controlled experiment study, and participants did not work on
notebooks created by themselves. Thus, for example, we do not know how participants
would perceive the usefulness of the tool in realistic notebooks, which may be longer
and more complicated (e.g., having out-of-order cells) than the notebooks we provided.
However, we believe the result is still promising to shed light on future research and
future system design. Future work can explore the generalizability of Themisto through a
long-term deployment study.

As for the Human-AI Collaboration research initiative, our work only reports the find-
ings on how human and AI collaborated at a coarse-grained level (Table 5.6). In future
work, we will have an in-depth analysis to break down the level of individual cells, and
further analyze the di↵erence between automatically-generated, co-edited, or manually-
produced cells. This detailed analysis will help us to understand how human behavior
and perceive the fine-grained collaboration and interaction with the AI partner. And such
findings and their derived design insights could also help researchers who are studying
Human-AI Collaborations in other usage scenarios (e.g., in Healthcare or in Educational
settings [198]) beyond the notebook documentation context in this paper.

5.6 Conclusion

In this paper, we have designed and built Themisto to support human data scientists in the
notebook documentation task. This research prototype also serves as a prompt to explore
the human-AI collaboration research agenda within the automated notebook documen-
tation user scenario. The system design is driven by insights from previous literature,
and also by a formative study that analyzed 80 highly-voted Kaggle notebooks to un-
derstand how human data scientists document notebooks. The follow-up user evaluation
suggested that the collaboration between data scientists and Themisto significantly re-
duced task completion time and resulted in a final artifact that not only met the bar of
quality, but also exceed it for the level of satisfaction.
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CHAPTER 6

DITL: Improving Awareness with Data
Changes

Data science is characterized by evolution: since data science is exploratory, results
evolve from moment to moment; since it can be collaborative, results evolve as the work
changes hands. While existing tools help data scientists track changes in code, they pro-
vide less support for understanding the iterative changes that the code produces in the
data. We explore the idea of visualizing di↵erences in datasets as a core feature of ex-
ploratory data analysis, a concept we call Di↵ in the Loop (DITL). We evaluated DITL in
a user study with 16 professional data scientists and found it helped them understand the
implications of their actions when manipulating data. We summarize these findings and
discuss how the approach can be generalized to di↵erent data science workflows.

6.1 Introduction

Data scientists try di↵erent transformations, aggregations, and filters until their data is in
a state appropriate for the given task [89]. When producing models from their data, data
scientists similarly iterate on di↵erent model features, architectures, and hyperparame-
ters [21]. Existing tools for tracking changes typically only tackle half of the problem:
di↵erences in code. Development environments, for example, allow users to compare dif-
ferences in notebook code cells between committed revisions [14], and Verdant reduces
the burden of foraging code editing histories in Jupyter notebooks [88]. Yet comparing
versions of data throughout an analysis is just as important [67]. Code di↵erences do not
always reveal data di↵erences. For example, removing missing values from one column
of a dataset may also a↵ect the distributions of the dataset’s other columns. To track the
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Figure 6.1: As users iterate on their data during analysis, they can use DITL to compare
data snapshots. Every time users successfully execute code we save a snapshot (A). Users
can compare the code using traditional code di�ng tools. Users can also use DITL to
compare data iterations with interactive visualizations, descriptive statistics, and data pre-
view (B). User can choose three ways to visualize the di↵erences in each column: delta
view (C), opacity view (D), and parallel view (E).

e↵ect that di↵erent lines of code have on the data currently requires data scientists to take
the initiative to write additional code to browse or plot the data.

Recent work has begun to explore ways for analysts to understand and explain data
iterations. Datamations uses animation to explain data transformation pipelines [145],
and Chameleon allows analysts to compare data iterations simultaneously with model
performance [78]. However, these approaches explain data di↵erences after analysis has
been done. In this paper, we explore adding visualizations of data di↵erences as a core
feature of tools for exploratory data analysis, a concept we call Di↵ in the Loop (DITL).
Our DITL prototype stores a snapshot of the code and runtime variables as users make
changes in the code editor. Using a table-based di↵ view (Fig. 6.1), users can either
compare di↵erent datasets or compare the same dataset at di↵erent snapshots. When
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comparing datasets A and B, the user can choose three ways to visualize the di↵erences in
each column: plotting histograms of A and B side by side; overlaying histograms of A and
B, with cross-fading between them; or as a histogram of the user’s chosen dataset (either A
or B), plus a plot of the di↵erence in the histogram bucket counts (either A subtracts B or B
subtracts A). For each column, the DITL prototype also shows di↵erences in descriptive
statistics that are appropriate for that column’s data (categorical or quantitative). The
DITL view is designed to support both the explicit comparison of datasets and implicitly
monitoring the evolution of a dataset as the user transforms it.

For example, Fig. 6.1 illustrates the e↵ect of filtering a car dataset named df to those
rows whose Cylinders column is greater than 4. The summary under the Cylinders
column directly reflects this change: the top "view" plot shows a histogram of the current
values (all above 4); the bottom "delta" plot shows that this step has the e↵ect of removing
rows with values 3 and 4, but keeping rows with values 5, 6, and 8. This column’s
summary confirms that the filter had the intended e↵ect. Further, the DITL view also
shows the e↵ect this filtering step had on the other columns. For example, the distribution
of Miles_per_Gallon lost the higher end of its distribution, with its median lowering
from 23 to 17. Meanwhile, the columns Displacement and Horsepower lost the lower
ends of their distributions. By having these data di↵erences shown during exploratory
data analysis, the user can maintain awareness of the e↵ects that code has on the dataset
as a whole, not just on columns mentioned in the code. Today, such awareness would
require both the initiative and extra e↵ort to write the code oneself to produce the plots
and summaries.

We evaluated DITL in a user study with 16 professional data scientists, where partic-
ipants were asked to finish typical data science programming tasks. They found DITL
to be useful for tracking and understanding data changes. Furthermore, DITL improved
their awareness of the side e↵ects of some coding activities, guided them towards insights
into the data, and reduced their workload for given data science tasks. We discuss the po-
tential to integrate DITL in various data science programming tools and to generalize this
approach for tracking changes in user-generated charts. To summarize, our contribution
is twofold:

• A demonstration of the benefit of elevating data di↵erences through visualizations
to a core feature in a data science programming environment;

• Insights into users’ needs and uses for leveraging both code and data di↵erences
during exploratory data analytic workflows through a user study with 16 data sci-
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entists.

6.2 Design Motivations

To motivate the problem and guide the design, we present three typical usage scenarios
that demonstrate how showing both code and data di↵erences would be useful during
exploratory data analysis.

6.2.1 Understanding the Impact of Code Changes in Debugging

In exploratory data analysis, data scientists write code to replace values in data tables,
transform and combine data tables, or query subsets of data tables. Debugging data sci-
ence code involves both ensuring that code changes compile, but that they also produce
expected results [150]. However, existing data science code debuggers provide limited
support for probing into the impact of code changes [30, 107]. Data science programmers
often need to formulate temporary code queries to inspect data tables, which are likely
to become stale or commented code that reduces the readability of the analysis scripts
or notebooks [157]. Manual inspection is often performed on demand so analysts may
miss unexpected impacts if they do not thoroughly explore the e↵ects of code changes.
Therefore, it is critical to inspect di↵erences in both code and data throughout analysis.
We believe that showing both code and data di↵erences in data science programming
environments can directly aid debugging.

6.2.2 Gaining Insights in Data Through Comparisons

Data scientists must make decisions throughout exploratory data analysis. Which fea-
tures should be taken into consideration? How should null values be filled in? Does it
matter if this part of the data is dropped? These decisions require making comparisons
between whether or not a certain step improves the analysis. As opposed to comparing
other types of variables, comparing data tables is exploratory and open-ended. Data sci-
entists often need to tailor the comparison strategy according to the task. When tuning
hyperparameters, data scientists must formulate a scoring function to compare the quality
of the generated data tables. In model development data scientists must consider shifts
in feature distribution, train test splits, and model performance when comparing data it-
erations [78]. In addition, understanding di↵erences in model performance often requires
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Figure 6.2: We integrate DITL into a simplified data science programming environment
that allows data scientists to edit code, inspect data tables, and compare di↵erent data
tables. This interface shows that the user is browsing a snapshot tagged 1k9i8j where
the edit took place at 12:18:17. (A) Users are able to navigate among saved snapshots,
compare code di↵erences and output di↵erences, or switch to the current code editor; (B)
Users can edit code in the current code editor which automatically saves a new snapshot
upon successful execution, or view code changes in a snapshot; (C) Users can switch
between the output panel, the data panel, and DITL.

data scientists to consider beyond simply aggregating performance statistics. Comparing
between data tables of the results can give them new insights on regions of impact on
model changes. These examples demonstrate how comparison is an inherent task within
exploratory data analysis.

6.2.3 Improving Awareness in Collaboration

Lastly, comparing data tables improves data scientists awareness of each others’ work
in collaborative settings. Data scientists rely on collaboration to improve the quality of
their work [204]. Tracking and managing versions of scripts, artifacts, and documentation
can help data scientists improve the e�ciency of collaboration, reduce duplicated work,
and avoid interference with each other [181]. Code versioning and editing sharing mech-
anisms (e.g., Git) in traditional software engineering can help data scientists managing
code iterations when handing o↵ work. However, it is not straightforward for data scien-
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tists to interpret the impact of code changes unless they execute various versions of code
and inspect the data tables thoroughly. We believe that showing and tracking both code
and data changes can augment the existing data science collaboration tools by improving
awareness of changes.

6.3 System Design

To address these use cases, we present DITL, a process of inspecting and comparing ver-
sions of data tables using interactive visualizations. We integrate the design into a simpli-
fied notebook experience so that we can examine how data scientists use it for comparing
data tables. We choose to implement the simplified data science programming environ-
ment to highlight the utility of incorporating data table di↵erences during exploratory data
analysis without the distraction of other programming features included in existing tools.

6.3.1 Overview of DITL Study Apparatus

Figure 9.1 shows an overview of DITL study apparatus. As opposed to Jupyter notebooks,
it has a single code editor for editing and running code. Users can make changes in the
code editor (Figure 9.1B) or view the historical contents in previous edits. A snapshot
(Figure 9.1A) is saved upon successful execution, which tracks the code content, output,
runtime variable values, and a timestamp. Each snapshot is marked with a unique hashtag
to aid in history navigation. Below the code editor, users can switch between the output
panel, the data panel, and DITL. The output panel shows the results of users’ consoles.
The data panel (Figure 6.3) allows users to inspect the value of a single data table, using
a design inspired by existing data table inspectors [170, 129]. As shown in Figure 6.3A,
users can select saved data tables across di↵erent code snapshots. For each column, the
data panel displays a visualization of the distribution (Figure 6.3B), summary statistics
(Figure 6.3C), and sample rows (Figure 6.3D). Next, we elaborate on DITL and explain
how the di↵ views are generated.

6.3.2 Tracking Runtime Variables

The programming prototype we built is able to collect runtime variable values upon every
successful execution. The web-based interface executes Python code and stores the names
and values of variables that are dataframes. This approach allows us to create snapshots
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Figure 6.3: The data panel allows users to inspect a single data table. (A) Users can
select saved data frames from the current code snapshot; (B) The data panel shows the
distribution of each column; (C) The data panel shows the summary statistics for each
column; (D) The data panel shows a sample of rows from the selected data frame.

during each code iteration which are later used to create the dataframe di↵ visualizations.
This approach to tracking runtime variable iterations could be easily generalized to other
data science programming tools like Google Colab [66], DeepNote [16], or Jupyter Note-
books [11].

6.3.3 Comparing Changes in Data Frames

In order to visualize the di↵erences between data tables, we must first identify correspon-
dences between two tables. Our notation and method for calculating data table correspon-
dences is inspired by the notation used in the visualization library D3 [10]. In order to
align the two data tables, we use the heuristics of comparing data frame index provided
by the Pandas package [127]. Given an original (old) data table and a current (new) data
table, we use five labels to describe their correspondences. Both corresponds to a point
that is exactly the same in both the original and current data table. Updates occur when a
point has the same primary key but some other column value has changed. Update-Enter
refers to the newly updated point in the current data table, while Update-Exit refers to
the old point in the original data table. Lastly, Enter corresponds to new points while
Exit refers to deleted points. The labels are appended as an additional column in the joint
data table.
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Parallel View Opacity View Delta View

Figure 6.4: DITL uses three approaches for rendering data di↵erences: parallel view,
opacity view, and delta view.

6.3.4 Rendering Data Frame Di↵s

As shown in Figure 6.1, we use this correspondence information to visualize the di↵er-
ences between two data tables. To eliminate information overload, by default, we only
display the columns that have been changed. Users can click on a toggle button to display
all columns. Through early pilot testing, we decided on three views for DITL: parallel
view, opacity view, and delta view (Figure 6.4). The design of these views follows the
best practices from the visualization community for supporting comparisons [63]. We
implemented the interactive visualizations in Vega-Lite.

6.3.4.1 Parallel View

The parallel view shows the original and current distributions of the column side-by-
side. We enable the tooltip to show detailed information about the distribution. While
we purposely chose to implement the parallel view in a fashion consistent with the way
these are currently displayed in comparison views in ReviewNB [149] or VSCode [14],
the parallel view can be easily augmented with the option to display on common axes
scales. We are aware of the potential issues with not unifying the axes and we included
the view to validate these issues.

122



6.3.4.2 Opacity View

While the parallel view allows users to directly inspect and compare distributions of the
columns, it is hard to visually compare the shape of the distributions since they may come
in di↵erent scales. Thus, we designed an opacity view which overlays the distributions
on the same axes. This design implements Gleicher’s guideline [63] that correspondences
can be easier to track when the data is overlaid. We then use the opacity channel to map
the “di↵-label” information. Users can move the opacity slider to cross-fade between the
current and original distributions.

6.3.4.3 Delta View

In our pilot user testing, users demonstrated the desire to visualize not only the distribu-
tions of the current and original data tables, but also the distributions of their di↵erences.
Thus, we introduce the delta view to explicitly show the subtraction results. As shown
in Figure 6.4, the delta view contains two parts. The top view shows either the current
or original distribution. On the bottom, the delta shows how the current distribution dif-
fers from the original by computing Ndelta Nenter Nupdate_enter � Nexit � Nupdate_exit. Red
bars represent negative values of delta, indicating the decreased counts of the data points
falling under the bin, while green bars represent positive values of delta, indicating the
increased counts of the data points falling under the bin. We purposely tweak the scale
for the delta distribution to help amplify small changes.

6.4 Usability Study

We conducted a 60-minute long virtual usability study with each of 16 professional data
scientists to understand the support that DITL can provide for common data science pro-
gramming tasks. In particular, we sought to answer the following research questions:

• Do data scientists find DITL useful for comparing data tables?

• How might DITL provide them with additional insights into the di↵erences between
programming iterations?
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6.4.1 Method

6.4.1.1 Recruitment

We randomly selected 200 data scientists at a large software company based on their job
titles and sent them recruitment emails. To be eligible for the study, participants had to self
report at least basic experience with Python programming. We recruited 16 participants
altogether (3 females, 12 males, 1 prefer not to say). Three of our participants had less
than 1 year of professional data science experience, 11 had 1-5 years of professional
experience, and two had more than 5 years of professional experience. Their job titles
included data scientist (9), senior data scientist (4), principal data scientist (1), research
scientist (1), and senior machine learning scientist (1). We compensated participants with
a US$25 Amazon gift card.

6.4.1.2 Study Setup

The usability study was conducted remotely with participants sharing their screens over
a video conferencing tool. Since the DITL study apparatus is a web-based programming
environment, participants were able to use the tool on their computers within their own
choice of browsers and configurations. Each study consists of three sessions — a training
session and two experiment sessions. After a brief walkthrough of the prototype, we gave
participants a trial task to get familiar with the tool. We presented them with an ongoing
code session to explore a dataset about cars [9]. The trial task is sca↵olded into four
activities: using the data panel to inspect a given data frame; using DITL to compare the
di↵erences between two data frames; understanding historical edits to the code and the
data frame; and, modifying the current code to include an additional step for exploratory
data analysis.

After the training session, we gave participants two existing data science tasks modi-
fied from online data science challenges. One task is about customer satisfaction (noted
as T1), which is modified from Kaggle [12]. The other task is about salary analysis (noted
as T2), which is modified from TidyTuesday projects [13]. We chose these two tasks be-
cause they are shared on popular data science communities [164, 35] and are perceived to
be representative of real-world data science tasks. Since the original challenges are open-
ended and time-consuming, we sca↵olded the tasks into three subtasks: one for cleaning
duplicate presentations in data (noted as S1), one for exploring subsets of the data (noted
as S2), and one for evaluating two model prediction results (noted as S3). To maximize
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Figure 6.5: Participants’ responses to the likert scale questions in the post-task question-
naire.

the time on experiencing DITL, we provided participants hints and code cheatsheets for
the given tasks, and allowed them to ask API-related questions. We counterbalanced the
order of the tasks between subjects. For each task, participants are randomly assigned to
solve it with or without the DITL. We encouraged participants to think aloud throughout
the tasks.

Lastly, we asked participants to fill out a post-study questionnaire and reflect on their
experience with the tasks. Two members from the research team observed each study ses-
sion and took notes. We recorded the screen sharing of the study sessions and transcribed
the audio recording.

6.4.2 Results

6.4.2.1 The need to compare data tables

Our evaluation showed that comparing data tables is a common activity in various data
science tasks. During the study tasks, we frequently observed participants comparing
data tables for various purposes. For S1, many participants inspected and compared the
data tables before and after changes to validate whether the code edits worked as they
expected (14/16). Comparing data tables is also an essential step for generating insights
for exploration purposes. For example, for S2, all participants (16/16) compared the sub-
set of the dataset with the original dataset in order to understand the side e↵ects of the
filtering query and come up with their next step. Participants also reported the need to
compare data tables to make decisions between solutions. For S3, all participants (16/16)
evaluated the performance of the models by comparing the model prediction results either
using DITL or writing code for inspections. In the post-task questionnaire, most partic-
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ipants (14/16) agreed that they often need to compare two data tables in their own work
(Figure 6.5). For example, P14 mentioned that their work involved collecting new data
during model deployment:

One thing we do is comparing the original training data with the scoring
snapshots of the weekly changing data. This is something [comparing data
iterations] we should do but we did not do as often. (P14)

6.4.2.2 DITL makes comparison easier

We observed several di↵erent strategies for comparing data tables. When DITL was not
available, participants wrote code to manually understand and compare data tables. For
instance, they printed summary statistics, previewed the first five rows of the data tables,
manually created distribution plots, or formulated customized queries for examining a
specific attribute (e.g., the ratio of female respondents to male respondents). Most partic-
ipants used DITL (15/16) when it was available during the analysis. As shown in Figure
6.5, participants agreed (15/16) that DITL helps them with the tasks. They explained why
DITL makes comparison easier.

One advantage of DITL is that besides reducing the amount of code that participants
wrote, it also eliminated code that was there just for verification or validation purposes.
When DITL was not available, participants wrote code for logging and querying at-
tributes. This process would produce additional code, reduce the readability of the anal-
ysis, and potentially lead to the rabbit hole of debugging code that was not part of the
primary analysis e↵orts. For example, P4 suggested that DITL helped her maintain a
cleaned code space:

This is useful for quick visual inspection across data frames. I find this helps
to avoid intermittent logging and debugging during the development process.
(P4)

We counted and compared the total lines of code that participants produced for completing
the tasks. Unsurprisingly, participants using DITL wrote significantly fewer lines of code
(17.08 lines vs 25.38 lines, p < 0.001 two-sample t-test). Some participants mentioned
that this tool could be helpful for novice data scientists who are less familiar with relevant
APIs (P9) or for explaining changes to people who are not on the technical side (P10):

That [DITL] is way easier; The di↵ is really helpful for analytical purpose;
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I think this would help people like me to show the changes to other people
who might not know the technical side. (P10)

Next, participants perceived that DITL helps them discover insights about the data
(16/16). Participants described the tool “directly explains what is going on” (P10), “al-
lows me to instantly look at the di↵erences” (P16), “gives me a big picture” (P7), and “is
helpful for formulating the next steps” (P8). In addition, participants mentioned that the
visualizations helped them understand the side e↵ect of code edits: “I was not aware of
the changes in column ‘Horsepower’ when I applied a filter on the column ‘Cylinders’
until I used the tool.” (P6)

6.4.2.3 Feedback on the Visualizations

Overall, 13 out of 16 participants found the visualizations easy to follow (Figure 6.5).
Two participants mentioned that their lack of familiarity with interactive visualizations
“is getting the way” (P4) and wished to “have more practice to use the visualizations”
(P9). Participants also made comments on the usefulness of the three di↵erent approaches
for visualizing the changes. As expected, there was not a single “best” view. Rather, the
three views are complementary depending on the task:

Not necessary every view was useful for di↵erent tasks. It is hard to say
which one is the best for all. It kind depends on the task. (P6)

The parallel view is perceived to be “straightforward” (P1, P6). One participant de-
scribed the parallel view as the default approach they would use when manually compar-
ing two distributions (P6). This corresponds to our rationale to include the parallel view
— to simulate the go-to approach for comparing the distributions by plotting them side-
by-side. However, other participants critiqued that this approach “seems not that helpful”
(P13) and even “misleading” (P3, P13). They raised concerns that this view was not intu-
itive for understanding changes and could be misleading due to the inconsistent axes and
scales (P3, P13).

Participants had split attitudes towards the opacity view and the delta view. Five par-
ticipants (P1, P2, P5, P8, P14) were in favor of the opacity view most, and described it
as “intuitive” and “easy to understand”, particularly for observing shifts in distributions.
For the delta view, six participants (P4, P7, P9, P13, P15, P16) explicitly mentioned it
being most helpful. They found it particularly useful upon slicing and selecting subsets
(P4), providing the exact di↵erences in counts in the tooltip (P15). Yet, some participants
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reported that it requires more time for them to understand the delta view than the two
other views (P6, P8).

6.4.2.4 Preferences for integration

Participants’ feedback on future integration helps us validate the design motivations.
Overall, 12 out of 16 participants responded in a positive manner that they would fre-
quently use DITL if it were available in the future (Figure 6.5). For debugging and under-
standing the impact of code changes, 12 out of 16 participants were positive on the use-
fulness of DITL. Participants explicitly mentioned future usage of “debugging customers’
data over time” (P5), “validating results of cleaning” (P15), “time travel debugging” (P2),
and “debugging during the dev process” (P4). For supporting decision making, all par-
ticipants agreed that DITL gives them insights about the data. In particular, P3 described
how DITL can be useful to compare A/B experiments:

Looking for distributional shifts between A/B experiments. Where the dis-
tributional information is hard to summarize into a neat hypothesis test, the
visual chart really helps. (P3)

Lastly, 13 out of 16 participants agreed that DITL would be helpful for sharing data
science code and assets with colleagues.

Participants described how they see DITL working in their own data science work-
flows. They mentioned integrating DITL in existing data science IDEs like PyCharm
(P15), Jupyter notebooks (P6, P14), RStudio (P10, P13), and VS Code (P7, P8, P9) for
tracking and comparing data tables. Some participants mentioned data science collabora-
tion tools, for example, integrating DITL as part of the git versioning experience (P1), or
augmenting real-time collaborative editing tools like Google Colab (P16) with DITL.

In addition, participants provided suggestions to further improve the comparison fea-
ture. Participants wanted tailored comparisons over certain data types. For example, P15
suggested adding visualizations to demonstrate text attributes, such as word length, num-
ber of characters or character sets, di↵erent topics. Participants also mentioned the need
to compare visual outputs beyond data tables:

Maybe in the future, users can compare other kinds of graphs than distribution
plots. (P16)
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6.5 Discussion and Future Work

6.5.1 Towards a Design Space for Visualizing Data Comparisons

Since the goal of our project is to investigate the idea of data comparison in exploratory
data analysis, we did not extensively explore the design space for these visualizations nor
did we evaluate these possible designs. What we learned at this stage suggests empirical
evidence for the utility of using DITL in exploratory analysis. Participants felt that the
e↵ectiveness of the visualizations themselves greatly depended on the task at hand and
that there was no single visualization that fits all circumstances. For example, the opacity
view might be more suitable for observing the trend of shifting in distributions (e.g., cor-
recting skewed distributions through log-transforms); while the delta view might be more
suitable for showing slicing and filtering to highlight the changes on individual data bins.
In addition, our approach of encoding the di↵ information in additional channels can be
extended to create other types of visualizations, for example, a grouped bar chart render-
ing the current and original distributions along the same axes, or a facet view showing
the distribution of data points marked as “new” or “absent”. Future work can continue to
explore this design space and evaluate the usefulness of the views for various data science
tasks.

6.5.2 Generalizing from Comparing Data Tables to Comparing Ar-
bitrary Charts

DITL demonstrates the idea of tracking and visualizing changes in data tables in data
science programming environments. We further argue that the same techniques used for
visualizing the di↵erences in iterative changes of data tables can be generalized to visu-
alizing changes on a wide variety of charts. Typically, data scientists make two types of
changes on charts: changing the underlying data or changing the visual representations.
If the visual representation and data schema remain the same while only the underlying
data changes, a similar approach can be used to first combine the original and current
data tables to encode the di↵ information for each data point. This di↵ information can
subsequently be rendered with an unused channel (e.g., opacity, color, facet, or z-axis)
in the visual representations. Interactions such as sliders, selections, or brushes can be
used to switch between original and current charts. In addition, we can filter the com-
bined data table and explicitly render the subtractions. For example, the delta view can be
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generalized in charts to represent the visual di↵erences in the visualization. On the other
hand, if the visual representation or the data schema changes (e.g., table pivoting), there
is an opportunity to combine the stateful interactive visualizations with animations (e.g.,
SandDance [161], Datamation [145], Gemini [94]) to explain the transitions. Lastly, if
the changes in charts are multifold, future work can look into ways to break the changes
into the combination of data changes and visual representation changes.

6.5.3 Integrating DITL in Data Science Programming Environments

In this paper, we demonstrate the idea of DITL in a customized data science programming
tool. To integrate DITL in existing data science programming environments, both scal-
ability and task complexity must be considered. In particular, the timescale for creating
snapshots of the data iterations should be tailored to the context. For programming IDEs
that allow execution of script files (e.g., PyCharm), tool designers can leverage built-in
debuggers to track variable values upon each execution and map versions of variable val-
ues to the snapshot of the scripts. For REPL-based programming environments that allow
interactive execution of code snippets (e.g., Jupyter Notebook), mapping the versions of
variable values with the execution orders and the state of the notebooks can be a challeng-
ing task. Future work can explore how approaches used in foraging code versions (e.g.,
Verdant [88], Gather [75]) can be extended for foraging data iterations. In collaborative
data science programming environments, the timescale for creating snapshots should be
tailored towards tracking data iterations and hand-o↵s between collaborators. For exam-
ple, versioning tools like Git or real-time editing tools like Google Colab can support the
di�ng of the data tables and charts when synchronizing collaborators’ edits. Lastly, the
idea of comparing data changes can be helpful in live programming environments. Live
programming is a programming paradigm recently emerging in data science communi-
ties (e.g., Observable Notebook [18], Glinda [47]). Compared to REPL-based program-
ming, live programming updates the execution immediately upon editing [45]. Although
live programming is favored for providing a responsive and consistent experience for ex-
ploratory data analysis, the live experience hides history and may result in mismatched
expectations for the automatic execution [45]. Future work can explore the idea of show-
ing both code and data iterations in live programming environments for browsing and
resurrecting histories.
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6.5.4 Limitations

6.5.4.1 Limitations of DITL

DITL is tailored towards comparing data tables with changes to the column values without
altering the schema. DITL is able to detect small changes to the schema such as adding,
deleting, and renaming column names, while not able to handle full schema transforma-
tions like data pivoting. Recent work [145] has used animations to explain operations
such as pivoting that might be incorporated into future work. In addition, DITL only
compares two data tables. Future work can explore ways to make comparisons between
multiple data tables.

6.5.4.2 Limitations of the Evaluation

Our user study has several limitations. First, in order to control the complexity of the
tasks and the duration of the study, we gave participants data science tasks modified from
online challenges instead of evaluating the tool with their own tasks. Second, we sca↵old
the tasks to ensure that novice data scientists were capable for performing the required
tasks. To further prevent diluting the focus of the study, we provided immediate, verbal
assistance to them when they got stuck on the programming tasks. We did not evaluate
performance in terms of time as we expected this might be a↵ected by participants’ famil-
iarity with the tool. Most statements in the post-task questionnaire are positively framed,
which could cause a priming e↵ect. Future work should consider long-term deployment
to further examine the usefulness of the tool in open-ended, real-world data science tasks.

6.6 Conclusion

This paper presents the idea of Di↵ In The Loop (DITL), integrating data di↵erences
through visualizations as a first class citizen in data science programming environments.
We illustrate the usage of comparing data tables in three usage scenarios grounded in prior
literature. We implement a prototype that incorporates DITL and show how comparing
data tables through visualizations can help in exploratory data analysis. The evaluation of
this system confirmed the needs and benefits of showing both code and data di↵erences
during exploratory data analytic workflows. In particular, DITL helps data scientists un-
derstand the implications of their actions when manipulating data.
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CHAPTER 7

PADLOCK: Resolving Editing Conflicts in
Real-Time Collaboration

Real-time collaborative editing in computational notebooks can improve the e�ciency of
teamwork for data scientists. However, working together through synchronous editing
of notebooks introduces new challenges. Data scientists may inadvertently interfere with
each others’ work by altering the shared codebase and runtime state if they do not set up a
social protocol for working together and monitoring their collaborators’ progress. In this
paper, we propose a real-time collaborative editing model for resolving conflict edits in
computational notebooks that introduces three levels of edit protection to help collabora-
tors avoid introducing errors to both the program source code and changes to the runtime
state. Through a set of evaluations, we found that these three levels of edit protection make
collaborators more satisfied with their collaboration experience compared with notebooks
without these features and are perceived to be useful in a variety of collaborative settings.

7.1 Introduction

“You work on this section, and I’ll work on that one” is a familiar refrain for authors
who work in teams. Working on di↵erent portions of the same document is a natural way
to combine collaborators’ work while preventing conflicts [142]. In the context of data
science programming, collaborators use a variety of collaborative strategies including
“divide and conquer” (splitting work between team members), “competitive authoring”
(working on the same sub-problem simultaneously), and more [181].

However, computational notebooks like Jupyter, which are often used by data scien-
tists, introduce new challenges for collaboration. Although some version control tools
(e.g., Git) can be used for computational notebooks, they mostly support the collabora-
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Why???

Figure 7.1: Editing conflicts in real-time collaborative notebooks can be implicit. As
shown on the left, one can get an unexpected execution result because the collabora-
tor accidentally changed the shared variable. As shown on the right, PADLOCK helps
data scientists resolve editing conflicts in real-time collaborative editing in computational
notebooks.

tion strategies for dividing work (e.g., working in separate, interdependent files). Fur-
ther, data scientists sometimes collaborate synchronously, with tools like JupyterLab1,
Google Colab2, Deepnote3, and RStudio Cloud4 that broadcast code and runtime up-
dates to collaborators in real-time [181]. Consequently, dependencies between di↵erent
authors’ code can hinder collaboration, as upstream changes can break downstream de-
pendent code [65, 64]. This includes changes to code that defines variables that will be
subsequently referenced or even direct changes to the shared runtime state (as shown in
Figure 7.1). Finally, data science work is often exploratory, so the notebooks produced
might be unorganized, fragmented, and poorly documented draft code [157].

Computational notebooks also introduce new opportunities for improving collabora-
tion between data scientists. Synchronized collaborative computational notebooks allow
data scientists to see each other’s edits as they happen and share documentation, code, and
an interpreter runtime state. Real-time collaborative editing improves data science team-
work by creating a shared context, encouraging more explanation, and reducing commu-

1
https://jupyter.org/

2
https://colab.research.google.com/

3
https://deepnote.com/

4
https://www.rstudio.com/products/cloud/
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nication costs [181]. Real-time collaborative editing may also benefit presenting and re-
producing results in the workplace or educational settings [103]. However, editing these
shared computational narratives together comes with unique challenges [181]. To ad-
dress these issues, data scientists establish social protocols similar to those found in other
collaborative writing situations [122] but contextualized to the computational narrative
workflow. For instance, an author may take ownership of a code cell and use formatted
Markdown or code comments to indicate to collaborators they don’t want others to edit
the contents. Depending on the workflow of collaboration, this might result in multiple
variants of an analysis which then need to be managed and potentially reduced to a single
narrative. For instance, after two data scientists work together on a problem, they may
decide to only keep the most e�cient solution found and delete one. Alternatively, two
competing solutions have unique characteristics which warrant keeping them both. For
instance, if di↵erent machine-learned models highlight unique aspects of the underlying
data, the authors might wish to integrate both into a single narrative.

Inspired by these challenges and opportunities, we propose a set of interactive tech-
niques to minimize collaboration friction while maintaining the readability of the shared
notebook. We instantiate these techniques in PADLOCK5, an extension to the open source
JupyterLab platform that provides three di↵erent mechanisms to support conflict free col-
laboration. PADLOCK leverages the context of data science development to provide three
domain-relevant mechanisms to improve collaboration on computational narratives. The
first, cell-level access control, prevents collaborators from viewing or editing a collection
of cells. This mechanism aims to allow ad-hoc locking of code cells to support volatile
collaboration patterns. The second mechanism, variable-level access control, extends the
access control from cell-level to shared variables. This mechanism is designed to prevent
implicit editing conflicts and allow collaborators to protect important shared variables.
The third, parallel cell groups, leverages the familiar programming concept of encapsula-
tion through scoping with the Jupyter cell user interface control. This mechanism allows
individuals to pursue exploratory solutions while not having to be concerned about inter-
ference with others. Our evaluation of PADLOCK has shown that these mechanisms can
e↵ectively prevent editing conflicts in shared notebooks; and they support a wide range
of ad-hoc and volatile collaborative workflows.

This work makes several contributions that advance the state of the art for collaborative
data science tools:

5PADLOCK is short for “Parallelization And Data Locks O↵set Collaboration Kinks”
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• We introduce a mechanism (cell-level access control) that can support collabora-
tive data science work by giving authors more control over who can view or edit
sensitive cells

• We define variable-level access control mechanisms that give data scientists more
control over the runtime state of shared notebooks

• We enable “parallel cell groups”, designated areas where data scientists can manip-
ulate and share their own ideas

• A system (PADLOCK) that instantiates all these features in a JupyterLab plugin

• We present three evaluations of PADLOCK (paired sessions, planning sessions, and
group sessions) to better understand how these features can be used in collaborative
data science.

Further, to the best of our knowledge, PADLOCK is the first system to:

• Give users the ability to specify access control constraints at the level of individual
cells in computational notebooks

• Allow programmers to specify which collaborators (as opposed to which code frag-
ments) can access or overwrite specific variables

• Allow data scientists to work in “parallel cell groups”, that are scoped in a way
where they can access and reference each other’s work without worrying about
introducing conflicting code

7.2 Design Motivations

To motivate our design, we identified three typical real-time collaboration scenarios in
data science that would cause conflict, synthesized by the challenges in real-time collab-
oration by Wang et al. [181].

7.2.1 Implementing the Same-Purpose Code at the Same Time

Data scientists would adopt di↵erent collaboration styles in their work, including compet-
itive authoring, divide and conquer, single authoring, and pair authoring [181]. Editing
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conflicts can arise when collaborators are adopting the competitive authoring collabo-
ration style, editing cells that attempt to solve the same problems to explore di↵erent
alternatives. When multiple people are attempting to edit the same cell, they must be
in close collaboration and frequent communication to avoid conflicts. Thus, in compet-
itive authoring scenarios, some people would choose to make copies and only edit their
own copy as a way of claiming ownership of some cells. For example, Alice and Bob
are experimenting with di↵erent ways to pre-process the data. They each created a few
cells to finish their explorations. Although they are working on separate cells and “claim”
these cells, it does not eliminate the possibility of other users accidentally making edits.
Although some commercial platforms such as Deepnote and Hex prevent two users from
concurrently editing the same cell, the solution is not perfect - once the “cell owner” stops
editing the cell, other users can start editing, even when the owner was only pausing their
activity in that cell and would come back shortly after, not expecting changes from other
people. In many situations, after each collaborator generates a solution, they would want
to save previous exploration results and keep a clean computational narrative. However,
these two needs are often in conflict.

7.2.2 Using or Changing the Same Variable at the Same Time

Even when data scientists are adopting collaboration styles such that the tasks they are
working on are di↵erent, such as divide and conquer, conflicts can happen when multiple
users are using or changing the same variable at the same time. In the second scenario,
we demonstrate that when people are running code that a↵ects the same variable at the
same time, unexpected conflicts can happen.

Imagine Alice and Bob are doing di↵erent analyses on the same variable that contains
the dataframe. In the working process, it is easy for collaborators to forget they are sharing
the same variable, and start to make edits that are unexpected to other collaborators. When
a person changes the variable, it could cause conflict in other people’s exploration. In a
more extreme situation, they might both give a new variable the same name, unaware that
their actions on the variable would influence other collaborators.

Aside from protecting variables from being changed unexpectedly, there are also occa-
sions where data scientists need to sync the changes made by their collaborators working
upstream. In this case, Carol might be working on data cleaning that is upstream of Al-
ice and Bob, and they would need to sync the variable from Carol once they finish. In
terms of preventing conflict in variable change, we would also need to provide flexibility
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in syncing from other collaborators.

7.2.3 Other Needs for Access Control in RTC

The need for access control not only comes from preventing collaborators from uncon-
sciously messing up other collaborator’s code or variable, but can also come from other
aspects, such as concern for social image or project management.

For example, in a team with di↵erent expertise, people may shy away from attempting
exploratory work when they are aware that their progress is visible to other collaborators,
especially more senior ones. In an educational scenario, novices might be self-conscious
about their half-finished code in a collaborative tool being viewed by peers, and might
choose to explore their code in a separate environment and paste the results back after
they finish; or instructors might want to hide the solution from students before they finish
the exploration.

Another reason that calls for access control is from the management perspective. In a
larger team with multiple collaborators and a leader, the leader might want to manage the
tasks for individuals and give di↵erent levels of access. For example, they might want to
freeze the code that is ready and does not want any change, such as importing data. Or
they might only want a subset of people to edit a certain part of the notebook, such as
letting machine learning experts work on training models, and domain experts work on
exploratory data analysis to provide more insights. Although many commercial real-time
collaborative platforms support notebook-level access control, more fine-grained access
control would be appreciated in many scenarios.

7.3 System Overview

Our system uses three complementary techniques for conflict-free protection: cell-level
access control, variable-level access control, and parallel cell groups.

7.3.1 Cell-Level Access Control

Computational notebooks consist of cells. Each cell typically represents a conceptual
unit within the larger notebook. For example, a notebook might consist of one cell to
fetch data from a remote API, another to clean those data, and other cells for various
transformations and visualizations of the data. In PADLOCK, we leverage the structure
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Figure 7.2: Overview of the three conflict-free mechanisms in PADLOCK

of cells in order to allow collaborators to claim ownership of parts of larger collaborative
notebooks. This helps address of the challenges of synchronous editing in traditional text-
based programming tools where there are no clear “dividing lines” between di↵erent parts
of the shared codebase and unclear how to localize the scope and e↵ects of collaborators’
changes.

Specifically, PADLOCK enables cell-level access control where users can prevent col-
laborators from viewing or editing a collection of cells. As Figure 9.1.A shows, users
can select a code cell and specify who can read or edit the code. As prior studies have
found, there are many collaboration styles [181], and cell-level access control benefits
multiple collaboration styles. In a “single authoring” style [181]—where one collabo-
rator contributes the majority of ideas and code—setting cells to be only editable by the
main contributor can prevent others from accidentally introducing errors. In a “divide and
conquer” style [181]—where collaborators split up work—restricting view access might
ease feelings of self-consciousness that authors sometimes feel when collaborators can
see their writing in real-time (which might otherwise lead them to work in a private editor
and then copy its contents to the main notebook, as prior work found in collaborative
writing [189]).

When an author is restricted from editing a cell, the background of the cell (grey strip-
ing) indicates that edit access is not permitted. When an author is restricted from reading
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a cell, the content of the cell is blurred but activity (and thus awareness of contributors’
location in the narrative) is supported.

Thus, the view control of the cell can allow them to focus on early explorations of
ideas while let others aware of where they are working on.

7.3.2 Variable-Level Access Control

Restricting cell access gives collaborators control of how the runtime state is determined
(as determined by the code that computes variables’ values). However, it does not prevent
other cells from subsequently modifying the runtime state. For example, a user might
create a cell that defines df as a data frame (data in a table-like structure) and restrict
write access to the cell. Other collaborators cannot edit the cell that declares df. However,
they could create a new cell that either re-declares or mutates the value of df and breaks
downstream code that references the variable.

Thus, PADLOCK also introduces variable-level access control. Variable-level access
control extends the idea of access control from cells to shared variables—authors can de-
termine if collaborators’ code can view or modify the values of runtime variables. PAD-

LOCK tracks the runtime state of the notebook kernel and extracts the variable informa-
tion. Users can specify the access control of every variable in a side panel (as shown
in Figure 9.1.B). On the other collaborators’ side, the protected variable is highlighted
throughout the notebook. When an individual attempts to execute a code cell a static
analysis on the abstract syntax tree (AST) of the program is done to determine whether
the execution would impact the value of protected variables and, if so, the execution is
halted with an error.

Variable-level access control is especially beneficial for scenarios where there is a lead
collaborator in charge of managing important data tables. Setting variable-level access
control can encourage collaborators to either make a copy or use parallel cell groups
before they do any risky explorations.

7.3.3 Parallel Cell Groups

Data science work is often exploratory. Authors might write code to explore an idea or
approach. In the context of teams, multiple team members might simultaneously work
through di↵erent approaches for the same problem [181]. In these situations, authors
might want to write code that manipulates their own version of some subset of variables
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in the notebook as they explore.
PADLOCK thus also introduces parallel cell groups (which we will call “parallel

cells”). Parallel cells define a designated area where changes of the code and runtime
state stay inside its own scope. As Figure 9.1.C shows, users can split a regular code
cell into parallel cell groups. Collaborators can create new cell groups to branch o↵ and
explore alternatives; add multiple cells to a cell group to write larger and more complex
alternative code; and work individually in each cell group. The parallel cell groups are
folded together into the same area in the notebook, helpings collaborators to maintain an
overall coherent structure of the narrative. In addition, when collaborators are settled on
a solution, they can mark a cell group as “primary”, which merges the execution result
into the main runtime state. Note that the parallel cell groups designed in PADLOCK are
di↵erent notions than the forked cells in [192] in several ways. In terms of the usage
scenario, [192] is designed for a single developer to explore alternative ideas, whereas
PADLOCK is designed for synchronous computational notebooks. For the implementa-
tion, PADLOCK uses a scoping mechanism instead of spawning multiple kernels, making
it easier for managing di↵erent versions of the same variable.

A key di↵erence from prior tools for branching and managing local versions [87] is
that each cell group has its own execution scope, which means changing the variables in
cell group A would not a↵ect the value in cell group B. For example, suppose there is a
parallel cell group is named plel, and within those cells, code creates variables named x
and y. Inside of the cell group, x and y are defined as normal (referencing them returns
the value that they were set to in plel). Outside of the cell group, code that references
variables x and y get their ‘old’ values (or an error if they were not set outside of the
cell group). However, these variables can be referenced outside of the group if the user
explicitly specifies which scope they want to reference. So while x and y are not a↵ected
outside of plel, collaborators can refer to _plel.x and _plel.y to access the values
that were set inside of plel.

Parallel cell groups allow collaborators to flexibly split the notebook for exploring al-
ternatives. It is particularly designed for the “competitive authoring” collaboration style
[181] where team members competitively write code for the same purpose and reach
consensus when an acceptable solution is found. This allows collaborators to work inde-
pendently while making concurrent edits and executions, preventing costly mismatches
between programmers’ mental state and the actual state of the runtime. It also provides
collaborators with the shared context so they do not work too “far” away from one an-
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other, thus supporting awareness of the others’ actions (e.g., working on an individual
notebook for exploration). Finally, this feature preserves the structure of the narratives by
grouping and folding parallel alternatives together.

In the PADLOCK user interface, parallel cell groups are represented as indented cells.
Conceptually, this matches the semantic meaning of indentation in Python (specifying the
bounds of a code block and potentially creating a new scope), which makes the UI more
intuitive and easier to remember for Python programmers.

7.3.4 Implementation

Although the three features of PADLOCK are conceptually related, the implementation of
each feature’s implementation is substantially di↵erent, as detailed below.

7.3.4.1 Cell-Level Access Control

Cell-level access control restricts users’ ability to view or edit cells and is thus imple-
mented primarily in the JupyterLab UI. In order to store and sync access control specifi-
cations (who can edit or view which cells), PADLOCK stores access control permissions in
the metadata for each cell. This information is automatically shared in real-time with ev-
ery collaborator of the notebook through JupyterLab’s Conflict-free Replicated Data Type
(CRDT) syncing mechanism. When appropriate, PADLOCK prevents edits by adding a
‘read-only’ flag to the CodeMirror editor (the underlying Web-based editor used by each
JupyterLab cell). When appropriate, PADLOCK prevents viewing a cell by modifying the
cell’s CSS style to add a “blur” gaussian blur filter to the cell element.

One limitation of our implementation of cell-level access control is that it would not
prevent technically savvy bad actors from bypassing the PADLOCK UI (for example, using
a browser’s debugging panel) and violating the notebook’s access control specification.
However, we believe it is reasonable to assume that collaborators intend to act in the best
interest of the larger team and thus would not go out of their way to sabotage the larger
project. Otherwise, there would be many other attack vectors to address, such as text
spamming or executing computationally expensive code.

7.3.4.2 Variable-Level Access Control

The variable-level access control feature stores and syncs access specifications in the
metadata for the notebook (similar to how the cell-level access control specifications are
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stored). However, unlike cell-level access control, which is implemented primarily as a
UI feature, variable-level access control is implemented primarily as a backend feature.
PADLOCK implements variable-level value locks by performing a static analysis on each
code cell before it is executed. This static analysis searches the Abstract Syntax Tree
(AST) of the code to detect if any restricted variables appear in code and what context
they appear in (assignment vs. reference). If the code uses the variable in a way that it
should not have access to, PADLOCK prevents the entire cell from executing (before any
part of the code runs) and throws an error. If the user has permission to execute the cell,
PADLOCK performs a post-execution query to track every variable and its value. This
allows every variable to appear in the UI for specifying access control rules. After every
cell execution, PADLOCK performs a query to track every variable and its value.

As is the case with cell-level access control, a savvy bad actor could bypass PAD-

LOCK’s variable-level access control rules by directly inspecting and executing custom
code outside of the JupyterLab UI. However, this is acceptable under the assumption that
collaborators are trustworthy in their intentions. Although variable locks are currently
implemented through static analyses, future work could consider instead using dynamic
analysis to avoid only the portions of code that would actually reference or modify re-
stricted variables.

7.3.4.3 Parallel Cell Groups

Parallel cell groups are implemented by dynamically transforming each cell’s code be-
fore it is executed. PADLOCK takes a di↵erent approach from ForkIt [192], which spawns
multiple kernels for its variations. PADLOCK instead executes parallel cell groups within
the same kernel, but uses a scoping mechanism that limits the scope of any variables that
are declared in the cell. The benefit of PADLOCK’s approach is that collaborators can
cross-reference variables in other parallel cells (for instance, they can reference the vari-
able test in fragmentA using _fragmentA.test). Cross referencing variables allows
users to directly compare di↵erent versions of the variables as needed. However, a limi-
tation of PADLOCK’s single kernel approach is that computationally expensive code can
block the kernel for other users if it takes too long to run.

Through dynamic code execution, PADLOCK converts a parallel cell’s code into code
that is functionally equivalent but limits the scope of any variables that are declared in
the cell. Specifically, PADLOCK defines a Fragment class that executes code in a paral-
lel group privately. When a new parallel cell group is created, an instance of Fragment

143



is created and the variables in the main notebook are deep copied through pickle serial-
ization. When a user executes a cell, PADLOCK will send the code content of the cell
through the Fragment execution function. The execution function runs the code using
Python dynamic execution (exec). We create an execution scope that merges the global
scope with the local scope of variables inside the Fragment instance. This allows the exe-
cution function to use the cloned version of the variables under the scope of the Fragment
instance. Lastly, PADLOCK updates variables under the scope of the Fragment instance
to variables from the dynamic execution.

Finally, there are subtle aspects to how JupyterLab executes cells that PADLOCK han-
dles. For example, JupyterLab typically displays the value of the last expression in the
cell as the ‘output’ of the cell. This would be lost in PADLOCK’s rewritten Fragment in-
stances so PADLOCK re-routes system IO in a way that matches JupyterLab’s ‘standard’
behavior.

To illustrate on a high-level how this works, consider the following example, where
the ‘main’ notebook defines a variable named foo and a parallel cell group named plel
re-assigns foo and declares a new variable named bar:

# main notebook

foo = 123

# parallel cell group named 'plel'
foo = foo + 5

bar = 'hello'

foo # note: in "standard" Jupyter, this line outputs '128' when
the user executes this cell,!

PADLOCK first uses a hidden “cell magic”6 command (_privateCell) to convert the
second cell’s text (omitting the original comments in subsequent code samples):

%%_privateCell plel

foo = foo + 5

6
https://ipython.readthedocs.io/en/stable/interactive/magics.html
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bar = 'hello'

foo

The _privateCell cell magic function further transforms the code to new code that:

• Creates a new Fragment instance for this cell group, if it does not exist

• Copies all the global variables into this Fragment instance

• Executes a transformed version of the cell code

This is illustrated in the code below. Note that several function calls (_copyglobal
and _execute) are expanded to demonstrate what they do:

# STEP 1. create an instance of the _Fragment class if it does

not exist,!

# ===========================================================

if not '_plel' in dir():

_plel = _Fragment('_plel')

# STEP 2. deep clone the global variables through pickle

# ======================================================

_plel._copyglobal() # this method does the functions described

below (2.1 & 2.2),!

# 2.1. get all the global variables by dir(),

# the _filter_var function omits variables with some

prefix (default: '_'),!

_global_vars = _filter_var(dir()) # note: this

happens inside _copyglobal(),!

# 2.2. loop through all the global variables

# _vars = ['foo']
_plel.foo = pickle.loads(cPickle.dumps(foo, -1)) # note: this

happens inside _copyglobal(),!

# ... repeat for other global variables in

_global_vars,!
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# STEP 3. execute the code in local scope

# =======================================

_plel._execute(''' # note: this example ignores spacing for

clarity,!

foo = foo + 5

bar = 'hello'

foo

''')

# the _execute method does the functions described below (3.1,

3.2, & 3.3):,!

# 3.1. Construct an appropriate scope

_global_scope = globals() # note: this happens inside

_execute,!

_local_scope = {'foo': _plel.foo } # note: this happens inside

_execute,!

# use the *cloned* version

of foo,!

_merged_scope = dict() # note: this happens inside

_execute,!

# add in global and local variables:

_merged_scope.update(_global_scope) # note: this happens inside

_execute,!

_merged_scope.update(_local_scope) # note: this happens inside

_execute,!

# 3.2. Execute a transformed version of the original cell

code,!

# within the constructed scope using exec()

exec(code, _merged_scope, _merged_scope) # note: this happens

inside _execute,!

# this is equivalent to executing (through exec):

# _plel.foo = _plel.foo + 5
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# bar = 'hello' # note that this assigns 'bar' within
_merged_scope,!

# display(_plel.foo) # A call to display() needed to be

added for consistency,!

# 3.3. Clean up and store variables that were declared.

# _merged_scope.foo has been updated but _plel.foo has

not.,!

# (same with .bar) so store results back in _plel

# _plel.foo = foo # note: this happens inside

_execute,!

# _plel.bar = bar # note: this happens inside

_execute,!

# ... merge anything else in _merged_scope

7.4 Evaluation Overview

To validate the e↵ectiveness of PADLOCK, we designed a three-stage evaluation—a labo-
ratory study with individual participants working with a paired collaborator, a laboratory
study with individual participants planning for various collaboration scenarios, and a case
study with groups of participants. In the first stage (paired session), participants joined
a laboratory study to work on a structured data science task with designed situations of
editing conflicts. After the first stage, participants are optionally allowed to proceed to the
second and third stages. In the second stage (planning session), participants were given
three hypothetical collaboration setups and work on planning the notebook for these col-
laborations. In the third stage (group session), participants were paired with each other
into groups and worked on open-ended data science tasks. Through this three-stage eval-
uation, we aim to answer the following question: How do features of PADLOCK assist or
hinder real-time collaboration among data scientists?

7.4.1 Participants

We recruited data science students and alumni from data science programs and interest
groups in a university. We required participants to have experience with Jupyter and
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Python, and preferred participants to have experience using real-time collaborative note-
books. To match the task di�culty, we required participants to be familiar with Pandas,
but not necessarily with Regex. As Table 9.1 shows, the paired session contains 14 partic-
ipants (3 undergraduate students, 9 graduate students, 2 alumni), where all of them have
used real-time collaborative notebooks. 8 participants volunteered to join the additional
evaluation for planning notebooks for various collaboration scenarios, while 7 of them
signed up for the group session. Based on their time availability for the group session, we
assigned them to two groups, where G1 has 4 participants and G2 has 3 participants.

7.5 Paired Session: Handling Situations of Editing Con-
flicts

We first conducted a laboratory study on handling situations of editing conflicts with a
paired collaborator. We are interested in observing how participants use the features in
a common conflict editing scenario. This conflict editing scenario is synthesized from
literature [181] and reproduced by pairing participants with a member of the research
team who plays the role of a “clumsy collaborator”.

7.5.1 Study Setup

The study session was conducted remotely through a video-conferencing application. We
deployed the extension on a JupyterHub instance to support multiple users accessing the
collaborative editing infrastructure of JupyterLab. In addition, we implemented a basic
chat interface for the clumsy collaborator to communicate with the participant. We chose
to use text chat instead of voice communication because it was easier for the clumsy
collaborator to control how they talked to the participants.

Each session lasted 60 minutes. When participants joined the remote meeting, we
first showed them how to use the real-time collaboration feature provided by JupyterLab.
We then introduced them to the clumsy collaborator and asked them to greet each other
through the chat tool. Participants were informed that not all the study procedures would
be explained until the end of the study, and we did not reveal the clumsy collaborator being
a member of the research team. The clumsy collaborator would then introduce his back-
ground as a data science student who knew Python and regex, but was not experienced
in Pandas. Next, we explained the task and the dataset. We divided the task into three
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sub-goals (noted as T1, T2, and T3), which we will discuss later in the task description.
We then asked the participant to work with the clumsy collaborator to solve T1, where
the clumsy collaborator will not disturb the participant’s work. This is to get participants
familiar with the built-in collaborative editing feature and the clumsy collaborator. Next,
we asked the participant to solve T2 without the conflict editing feature; the clumsy col-
laborator would follow a script to disturb the participant’s work. We would observe how
participants reacted to the unexpected execution results. After T2, we would conduct a
debrief to ask participants what went wrong in the previous session and how they handled
it. Followed by a live demo on PADLOCK, we asked the participant to solve T3 with the
conflict editing feature; the clumsy collaborator would follow the participants’ sugges-
tion to use the notebook. Lastly, we would debrief the whole research process, reveal the
study setup about the clumsy collaborator, and discuss the conflict editing features with
the participants in a reflective interview.

7.5.2 Task Description

The task and the dataset were adapted from a Kaggle challenge to preprocess customer
support twitter contents. The reference solution on Kaggle contains several steps, includ-
ing lower casing, removing twitter user name, removing frequent words, etc. We chose
lower casing as T1 for warm-up, removing twitter user name as T2, and removing URL
as T3. In the notebook, we also inserted sections on removing punctuation and removing
frequent words after T3, with code already implemented.

7.5.3 The Clumsy Collaborator

A member of the research team played the role of clumsy collaborator followed by the fol-
lowing heuristics. First, the collaborator would greet the participant in the chat message
at the beginning of the study. For T1, the clumsy collaborator would first ask partici-
pants how they want to solve the problem. Then, the clumsy collaborator would tell the
participant that she is going to google some API. If the participant got stuck on the task
for more than 5 minutes, the collaborator would come back and send a reference code or
documentation in the chat (not a direct solution).

For T2, the clumsy collaborator would inform the participant that she would explore
the regex in a di↵erent cell. Then, if the collaborator got stuck on the task, the collab-
orator would message an example regex string (not directly how it can be applied to the
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Table 7.1: We recruited students and alumni from data science programs in our institution.
There are 14 participants who finished the paired session, 8 of them chose to participate
in the individual session (S2), and 7 of them chose to participate in the group session (S3).
Grads. refers to graduate students; Ugrd. refers to undergraduate students.

PID S2 S3 Bg. RTC Exp. PID S2 S3 Bg. RTC Exp.
P1 - - Grads. Deepnote P8 - - Grads. Deepnote
P2 - - Alumni Google Colab P9 X G2 Grads. Google Colab
P3 X G2 Ugrd. Deepnote P10 X G1 Ugrd. Deepnote
P4 - G1 Grads. Deepnote; Google

Colab
P11 - - Grads. Deepnote

P5 - - Grads. Google Colab P12 X G1 Alumni Deepnote; Google
Colab

P6 X - Grads. Deepnote P13 X - Grads. Collaborative
JupyterLab

P7 X G1 Grads. Deepnote P14 X G2 Ugrd. Deepnote

dataframe) to the participant. Next, the clumsy collaborator would remove the @ symbol at
a reasonable time — before the participant executes the code to remove the Twitter user-
name. This operation would interfere with the participant’s action to remove the Twitter
username since the @ symbol was no longer in the tweet to indicate the Twitter username.

For T3, the clumsy collaborator would first ask the participant which cell she should
work on. Then, the clumsy collaborator would follow the participant’s suggestion to
work together. The clumsy collaborator would still pretend to “accidentally” execute the
removal punctuation code, which would disturb the regex matching for URLs.

7.5.4 Data Analysis

For each study session, two members of the research team took notes on how participants
responded to the clumsy collaborator in T1, T2, and T3. The research team also used
screen recording to reflect on the observations. For the reflective interview, one mem-
ber of the research team took an inductive approach to identify common feedback and
representative comments.
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7.5.5 Result

7.5.5.1 Conflict editing is hard to notice and prevent

After the second task, most participants (13/14) were not able to correctly find out what
caused the code cell not to return the expected results until we explained it to them. This
aligned with our observations that many participants (12/14) switched their browsers to
search for API documentation and did not stay on the shared notebooks all the time.
Moreover, there are several participants (P5, P10) who did not even notice that the output
was wrong. There is an exceptional case where P9 ran the data loading cell right before
executing the cell for removing the twitter username, leaving no chance for the clumsy
collaborator to modify the shared variable. P9 noted,

Yes, I do prefer to reload the data every time before running a new cell, unless
the data frame is very large, in which case it takes a lot of time to load. So
then I would avoid doing it, but otherwise yes, I do.

Interestingly, although several participants (4/14) were able to recover from the issue
by reloading the dataframe, they still did not find the source of the problem. The majority
of participants (12/14) did not doubt their collaborators’ actions or question what they did.
Instead, they blamed themselves and looked into their own code to debug. For example,
P3 said:

I am familiar with Jupyter Notebook, but I just don’t have the confidence... I
felt like I had the correct code. But I assumed something was wrong with it.
I just didn’t even think that it could have been the collaborator’s code (that
causes the issue).

7.5.5.2 Perceptions of PADLOCK for preventing conflict editing

After debriefing the second task and walking through the three features of PADLOCK, par-
ticipants were asked to finish the third task with the clumsy collaborator. All participants
(14/14) chose to create parallel cell groups and suggested the clumsy collaborator to write
their code in a parallel cell. After they finished the task, some participants (8/14) cleaned
up the notebook by unindenting the parallel cell groups. Several participants (2/14) chose
to keep the clumsy collaborator’s parallel cell and merge their solution into the notebook
by marking their solution as main.
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Overall, participants reported that they felt confident about not messing up with the
shared notebook. For example, P12 reported:

The parallel cells are very useful. In the case of removing punctuations and
removing twitter username, as long as I check the value of df when I start
the indent, that would be okay.

Participants also mentioned that the parallel cell groups made the shared notebook “neat”
(P4), “organized” (P11), and “structured” (P6).

Although participants did not use the cell-level access control and variable-level access
control, they described scenarios where these features could be useful. P10 mentioned
that both features could be helpful in the large classroom setting, and she recalled an
experience of messing up shared notebooks:

I definitely think the cell-level access control and variable-level access control
can be useful in a classroom setting where maybe you have an instructor with
a sample notebook. Maybe they’d want to obscure and not have you be able
to read like a possible solution that they have, or be able to accidentally edit
and screw up some steps that they had put in just to show everyone. Because I
remember that happened a couple of times in my class. Last semester students
would sometimes accidentally edit the wrong thing, and then the professor
would have to backtrack and just make sure his starter code was fixed before
we could continue...

P5 said that variable-level access control can be useful when the cost of restarting the
kernel and running previous code cells is expensive. He described the scenario where
a data science manager would not want interns to accidentally modify large-scale data
tables and had to restart the kernel to recover the results. In addition, P10 mentioned that
she would use the cell-level access control on finished code cells, and use parallel cell
groups on work-in-progress cells. Noticeably, several participants mentioned that read
access in cell access control was not necessary for themselves, but they could see it being
used by other people. For example, P4 said:

For blurring the cells, some of my friends are shy so I could see that this
would be very useful for them. But I personally would not use it. I think
being able to see what your collaborator is doing is a part of that collaboration
experience.
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7.5.5.3 Improvement of the Parallel Cell

Participants shared several ideas on improving the parallel cell feature in PADLOCK. Sev-
eral participants (P6, P9) mentioned adding notifications or activity histories to track if
others have unindented a code cell. P9 illustrated this need by comparing the experience
with git:

When you merge the selected tab with the main thread, that’s like a commit
to the main repository in GitHub. So then, you know, you need to also tell
others that I have launched this, maybe a notification. I was hoping there
would be some way to track that, like GitHub provides a history of commits
that somebody has made to other changes.

In addition, P2 asked for a merging process where she could pull cells from various frag-
ments:

I wish there is an option to maybe merge di↵erent parts of the cell, like maybe
one collaborator has one cell, and then you merge the second part of another
collaborator.

7.5.5.4 Resonate with prior experience

The instance of editing conflict in task 2 resonated with participants’ prior experience
with real-time collaborative editing. P1 mentioned a di↵erent collaborative setting in a
data science classroom. The data science classroom had around 100 students and the
instructor asked everyone to join the same notebook in Deepnote. However, the instructor
asked students to not directly run code cells in the notebook. Instead, students typed out
solutions and commented at the same time. Several participants (P9, P13) mentioned that
their prior experience with shared notebooks was mostly asynchronous collaborating. To
further understand how PADLOCK may improve the issues that participants mentioned in
their prior experience, we conducted an additional study where we asked participants to
plan for a future collaboration scenario, as discussed in the next section.
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7.6 Planning Session: Planning for Various Collabora-
tion Scenarios

Noticeably, none of the participants used the cell-level access control and variable-level
access control features when working with the clumsy collaborator in the paired session,
although they have mentioned the potential of using these features in other collaboration
setups. To better understand the usefulness of PADLOCK under various collaboration
scenarios, we conducted an additional evaluation where we asked participants to plan
a future collaboration session by configuring a collaborative notebook. This additional
evaluation allowed us to explore the usefulness of the PADLOCK features in di↵erent
collaboration scenarios. By asking participants to configure a collaborative notebook for
planning a future collaboration session, we were able to see how they would use the
collaborative features in a more proactive manner. This can provide valuable insights into
how users might use the features of PADLOCK in a variety of collaborative environments.

Overall, our additional evaluation showed that the PADLOCK features can be useful in
various collaboration scenarios, including working on an asynchronous paired program-
ming session, working on tasks with high cost of error recovery, and using collaborative
notebooks as lecture notes. By providing a way to prevent conflicts and improve organi-
zation, PADLOCK can help make collaboration more e�cient and e↵ective.

7.6.1 Study Setup

In the individual study sessions, we used the same deployment as in the paired sessions.
Based on participants’ responses from the previous study, where they mentioned their
prior or future use of collaborative notebooks, we synthesized three collaboration scenar-
ios designed to be representative of various realistic situations. For each scenario, we gave
participants an initial notebook containing skeleton code and a written description of the
collaboration scenario. We asked participants to plan for the collaboration by leveraging
the features of PADLOCK and modifying the notebook content as necessary. When they
finished planning, we asked participants to verbally describe their plans to the study coor-
dinators, who would then ask a set of semi-structured interview questions to gain further
insight into the participants’ plans and the features they used or did not use, as well as any
potential problems that might arise during the collaboration and any additional features
that they felt would be useful. Participants were given as much time as they needed to
think about their plans, with most individual sessions lasting around 30 minutes.
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7.6.2 Collaboration Scenarios

In the individual session, participants were asked to plan for the following three collabo-
ration scenarios:

7.6.2.1 Scenario 1: Asynchronous Collaboration with a Peer

For the first scenario, participants are asked to plan a paired programming session with a
friend named Bob who is inexperienced with libraries like Pandas and Numpy, similar to
the clumsy collaborator case in the previous study. However, due to conflicting schedules,
Bob and the participant are unable to find a synchronous time to work together. This
means that both of them may join and leave the session with incomplete code, and the
participant cannot guarantee how Bob will use the collaborative editing features without
being able to observe and intervene in Bob’s actions.

7.6.2.2 Scenario 2: Working with Trainees and a High Cost of Error Recovery

In this scenario, we asked participants to plan a collaboration session as a full-time em-
ployee distributing tasks to interns on visualizing di↵erent aspects of the data. We pro-
vided participants with a notebook skeleton where the data takes a long time to load. In
this scenario, participants needed to avoid the shared dataframe being polluted by any
accidental changes, which would be costly to recover from. To do this, they could lever-
age the features of the PADLOCK system to ensure that their collaboration was organized
and e�cient, and that the data was protected from any unintended changes. This scenario
simulates the case where error recovery could be costly in a collaboration setting.

7.6.2.3 Scenario 3: Classroom Sharing with Hierarchical Permissions

In this scenario, we provided participants with an educational notebook on the topic of
linear regression, taken from a data science handbook. The first half of the notebook
demonstrated the concepts, while the second half contained an exercise for students to
practice what they learned. Participants were asked to plan the use of the notebook as
an instructor, taking into account the needs of the entire class during a lecture. They
needed to ensure that they could e↵ectively explain the concepts to the students, while also
providing them with an opportunity to practice individually on the exercise. Additionally,
the exercise included a standard solution that the instructor may want to go over with the
class after they have explored their own solutions. Participants were asked to plan how
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they would like to set up the collaborative notebook at the beginning of the lecture, and
how they would modify the configurations as the lecture progressed.

7.6.3 Data Analysis

In each of the above scenarios, participants were asked to configure a shared notebook.
We used three metrics to understand and evaluate the e↵ectiveness of the participants’
specified notebook configurations. First, we summarize the patterns in how participants
set up collaborative notebooks for each scenario. The second data source was a list of
potential editing conflicts that may occur in each scenario, which was identified by the
research team. We used this list to test participants’ configurations against the potential
conflicts and analyze their reliability in addressing them. Lastly, we recorded and tran-
scribed participants’ post-task reflections, in which they discussed their choices, potential
problems, and suggestions for additional features. These data sources gave us a compre-
hensive view of the e↵ectiveness of the configuration in di↵erent collaboration scenarios.

7.6.4 Results

7.6.4.1 Usage of the Collaborative Features for Each Scenario

In Table 7.2, we summarize the strategies that participants described for each scenario
and listed the features of PADLOCK that are involved. For the first scenario of working
in an asynchronous paired programming session, three participants chose to ask the col-
laborator to use the parallel cells for exploration, while the other participants chose to
use cell-level or variable-level access controls. P12 explained why their strategy changed
compared to the clumsy collaborator scenario in the previous paired session:

I can’t really trust that Bob is going to use parallel cells because we are not
working together at the same time. I want to set up everything for him so he
can only access the things he need[s].

For the second scenario, most participants except P10 chose to lock the shared variable
to prevent it from being polluted. Participants suggested that the interns could use parallel
cells or make a copy of the dataframe if needed. In addition, most participants (6 out of
8) chose to restrict the editing access of the code cell for loading the data, while two of
them also chose to set up the editing access for the code cells that are assigned to each
individual intern.
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Session Action or Strategy Feature PID

Paired Nudge the clumsy collaborator to
create parallel cells

Parallel Cell P1-14

Paired Merge parallel cells Parallel Cell P1, P2, P3, P5, P9, P11, P12,
P14

Planning (1) Lock cells for loading package and
data

Cell-Level Access Con-
trol

P3, P7, P10, P12, P13, P14

Planning (1) Lock future cells Cell-Level Access Con-
trol

P6, P10

Planning (1) Lock the original or a copied
dataframe

Variable-Level Access
Control

P3, P10, P12, P13, P14

Planning (1) Create a copy of the dataframe – P3, P7, P12
Planning (1) Ask Bob to use parallel cells Parallel Cell P6, P9, P13

Planning (2) Lock cells for loading data Cell-Level Access Con-
trol

P3, P6, P10, P12, P13, P14

Planning (2) Change cells’ edit access so that
interns cannot change each others’
code

Cell-Level Access Con-
trol

P9, P12

Planning (2) Lock the shared dataframe Variable-Level Access
Control

P3, P6, P7, P10, P12, P13,
P14

Planning (2) Ask the interns to use the parallel
cells

Parallel Cell P3, P6, P9

Planning (2) Create a copy of the dataframe if
needed

– P7, P10

Planning (3) Lock editing access for code cells in
lecture notes

Cell-Level Access Con-
trol

P3, P6, P7, P9, P10, P12,
P13, P14

Planning (3) Lock reading access for code cells
in lecture notes that are not covered
yet

Cell-Level Access Con-
trol

P6, P10

Planning (3) Lock reading access for the stan-
dard solution code cell in the exer-
cise

Cell-Level Access Con-
trol

P3, P6, P9, P10, P12, P14

Planning (3) Lock access for variables generated
in lecture notes

Variable-Level Access
Control

P13

Planning (3) Lock access for the variable for
storing results in the exercise

Variable-Level Access
Control

P14

Planning (3) Create parallel cells for students to
work on the exercise

Parallel Cell P3, P7, P9, P10, P12, P13,
P14

Planning (3) Ask students to use parallel cells if
they want to explore the code (e.g.,
change parameters) in lecture notes

Parallel Cell P9, P12

Group Create parallel cells Parallel Cell P3, P4, P7, P9, P10, P14
Group Merge parallel cells Parallel Cell P4, P7, P9
Group Sync parallel cells Parallel Cell P3

Table 7.2: Features that participants have used for tasks in each study.
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In the last scenario, participants described a mixed strategy for planning the collabora-
tive notebook for a data science classroom. All participants decided to turn o↵ the editing
access for code cells in lecture notes, as P14 explained:

I would turn o↵ the cell editing for the class. Otherwise, if there’s so many
students, it is easy for someone to accidentally hit a backspace somewhere or
something and mess things up.

Some participants (P9 and P12) mentioned that they would create a copy of the cell below
each code cell for lecture notes and make them into parallel cells, in case students want
to explore the code cells in lecture notes. For the same consideration, P13 wanted to
restrict the access for variables generated in lecture notes, in case students modify the
shared runtime in the lecture. Other participants did not worry about protecting the shared
variables, as one participant explained (P6):

Since the content of the code cell is locked, I can always restart the kernel
and run the notebook from the beginning if anything goes wrong.

In addition, two participants (P6 and P10) mentioned that they would like to change the
code cells’ reading access as the lecture progresses so that students can stay focused. For
the exercise part, most participants planned to hide the reference solution code (6 out of
8) and ask students to work on parallel cells for their own practice (7 out of 8).

7.6.4.2 E↵ectiveness of the Collaboration Plan

For each scenario, we solicited three potential conflicts that may arise during collabo-
ration: two that we expect to be common and one that is less likely to occur. We then
evaluated each participant’s use of the collaborative notebook to determine if their con-
figuration could e↵ectively address these conflicts. Two members of the research team
carefully calibrated and discussed the ratings until they reached a consensus. The results,
shown in Table 7.3, indicate that most participants (more than 6 out of 8) were able to
utilize the features in PADLOCK to successfully address common collaboration issues.
Even for the less likely problems (e.g., Bob missing the instruction and starting work on
the last code cell in the first scenario), a small number of participants (1–3) were still able
to successfully handle these rare cases.
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Scenario Editing Conflicts Category Pass Rate

Scenario 1 Bob dropped all the NA values in the dataset. Common 0.75
Scenario 1 Bob changed the importing package cell to only include a

subset of a package.
Common 0.75

Scenario 1 Bob missed the instruction and started to work on the last
code cell.

Rare 0.25

Scenario 2 Intern A changed the shared dataframe. Common 0.88
Scenario 2 Intern A run the code cell for loading the data frame. Common 0.88
Scenario 2 Intern A and intern B have the same naming of a variable. Rare 0.38

Scenario 3 A student edited the code cells for demonstration. Common 1
Scenario 3 Students directly assigned the prediction results to the

shared data frame.
Common 0.88

Scenario 3 Students executed a code cell multiple times. Rare 0.13

Table 7.3: For each scenario, the research team solicited three potential cases for editing
conflicts and run through participants’ notebooks through these cases.

7.6.4.3 Improving Access Control

In the reflective interview, participants mentioned several potential problems and sug-
gested improvements for the collaboration scenarios in the current system design.

First, participants brought up the need for better access control on the notebook level.
For example, P13 mentioned that restarting or interrupting the notebook kernel in the
third collaboration scenario could cause problems when the instructor is demonstrating
concepts. Other types of access control mentioned by participants included preventing
collaborators from executing a code cell (P6) or copying and pasting the content from a
code cell (P13).

Participants also suggested ways to improve the process of configuring access control.
For example, in the first scenario, P6 and P10 mentioned that they would like to restrict
cell edit access for their collaborator for every new code cell that they create under a
section. One participant also suggested adding a “run and lock all cells and variables
above” button (P13) to avoid the need to manually lock all code cells in the lecture notes
in the third scenario.

Lastly, participants (P9 and P12) mentioned the potential benefits of combining cell
access control with parallel cells. This would be particularly useful in the third scenario,
where the instructor may not want students to see each other’s solutions in the parallel

159



cell.

7.7 Group Session: Case Study on Open-Ended Collabo-
ration

The paired session and the individual session demonstrated the usefulness of PADLOCK

in designated collaboration setups. To further understand how PADLOCK would be used
in open-ended and less-structured collaboration tasks, we conducted two case studies by
observing participants as they worked together in groups on a collaborative task.

Overall, our case studies showed that PADLOCK can be useful in open-ended and less-
structured collaboration tasks. By providing a framework for organizing the collaboration,
it can help them divide up the work and ensure that each person is working on a specific
part of the task. This can help make the collaboration more e�cient and reduce the risk
of overlap or duplication of e↵ort. Additionally, PADLOCK can help prevent conflicts
between collaborators, save time and reduce frustration, leading to a more productive
collaboration.

7.7.1 Study Setup

The group study sessions were also conducted remotely, and used the same deployment
as the individual sessions. In the group sessions, participants communicated by talking to
each other through the video-conferencing application.

As all participants had already used the extension in individual sessions, we started
with a brief reminder about its features. Then, one researcher would explain the col-
laborative task to the participants, and ask participants to introduce themselves to their
collaborators. Next, we explained the open-ended tasks and dataset. In the first group (4
participants), we assigned the participant who is most experienced in data science as the
team leader to mitigate collaboration during the task. We did not assign a group leader
in group two, which only had 3 participants. Each session lasted 60 minutes in total, and
participants were given 40 minutes to complete the task. We would remind the partic-
ipants to clean up the notebook to provide final results when there were 5 minutes left.
Finally, we asked each participant to fill out a post-task survey regarding their collabora-
tion experience.
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7.7.2 Task Description

In the group task, participants were asked to conduct an exploratory analysis of papers
accepted by CHI 2022. We provided the participants with two datasets: the first one
contains the paper name, link, and author list of full papers; the second one contains the
name, link, and a�liations of authors. To make the task more authentic, we collected the
raw data by scraping the actual conference program from 2022. Participants were given
a list of open-ended tasks regarding ranking authors and institutions by the number of
full papers they published. To complete the task, they would need to conduct a series of
data pre-processing and cross-referencing between two datasets, and the process is highly
open-ended. For example, the format for authors’ names in two datasets are di↵erent;
authors from di↵erent institutions might have the same name; an author may have multiple
institutions; or even the name of the same institution can be put di↵erently in the system.
We made participants aware of the complication in the dataset, but did not provide detailed
instructions to encourage open-ended exploration.

7.7.3 Data Analysis

During each group session, two members of the research team closely monitored collab-
oration activities and took detailed observational notes. We also recorded participants’
screens and captured key activity logs from the Jupyter Notebook to help us understand
the collaborative workflow of each group. In addition, we conducted a second pass on the
video recordings to identify instances of collaboration challenges and undesired behav-
iors. This allowed us to carefully analyze the collaboration process and identify areas for
improvement.

7.7.4 Result

Overall, we observed di↵erent collaboration patterns among the two groups. We report
how the two groups leveraged PADLOCK to support their workflow.

7.7.4.1 G1: Starting from Pair Authoring

We observed that participants in G1 used a mixed of collaboration styles, including pair
authoring, divide and conquer, and competitive authoring. With a group leader moderat-
ing the discussions, the team naturally started the task by a pair authoring mode. Figure
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Figure 7.3: The collaborative workflow for G1 and G2.

7.3 illustrates the collaborative workflow of G1. We broke down their exploration process
into four stages.

• Stage 1: To begin with, the four participants (P4, P7, P10, P12) discussed the task
and decided to split paper authors first. Then, P4 proposed to begin work and they
used a pair authoring mode where P4 directly wrote code in the notebook. The rest
of the team closely watched him coding and helped him with debugging.

• Stage 2: Next, the team leader P12 proposed two tasks – lower casing the authors’
names and summarizing authors’ paper counts. The team then split into two groups
where P10 worked on lower casing, P4 and P7 worked on summarizing the counts,
and P12 observed the process. P10 quickly implemented lower casing by directly
working on the code cell while the rest of the team is still discussing how to summa-
rize the counts. P10 then turned on the cell editing lock to her finished code cells.
In the meanwhile, P4 and P7 created two parallel cell groups and started to work
on summarizing the counts in competitive authoring style. After P4 figured out the
correct solution, he reported to P12 and they decided to merge his solution into the
main notebook. However, noticing that P7 was still working on his solution, P4
chose to mark his cell group as the main version in the parallel groups and moved
on to the next task with P12.

• Stage 3: Moving on to the next stage, P4, P10, and P12 started to examine the
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author—a�liations table using parallel cell groups. Then, P7 finished his imple-
mentation of summarizing author counts and reported to the team. P7 proposed to
unindent the parallel cell group to keep P4’s solution. After they merged the cells
for summarizing authors count, P7 proposed to branch o↵ and work on creating a
histogram visualization of the authors’ paper count while the rest of the team kept
exploring the author—a�liations table. After P7 finished the histogram visualiza-
tion in a parallel cell, he notified the rest of the team and merged his exploration
code.

• Stage 4: Lastly, all the team members worked together on merging duplicates in
institution names since they realized that there was not much time left. They created
a parallel cell group with four tabs where everyone worked on their own tab. They
were not able to finish this task towards the end of the study.

7.7.4.2 G2: Starting from Divide and Conquer

G2 started with the divide and conquer style where the three members decided to work on
three di↵erent tasks — authors’ paper count, institutions’ paper count, and institutions’
paper count without duplicates. The team also discussed and agreed on using parallel cell
groups whenever they started to work, and merging them to the main notebook after they
verified the results. P3 proposed to lock the shared variables as well. The team decided
to stick with the protocol of using parallel cell groups because they agreed that “If we are
all working in indented cells, we don’t need to lock the dataframes” (P3). We broke down
their exploration process into three stages:

• Stage 1: The three participants started by indenting three cells and working indi-
vidually on the three tasks. However, the tasks for P3 and P9 both required splitting
institution lists. P3 and P9 took two di↵erent approaches for the splitting, where
P3 splitting the institutions into columns and P9 splitting the institutions into rows.
P9 realized it and started a discussion with P3. In the meanwhile, P14 was working
individually on splitting the list of authors for each paper.

• Stage 2: In this stage, P3 and P9 turned into pair authoring mode after realizing that
their tasks need the same pre-processing. After the discussion, P3 was convinced to
split the institution list into rows and she attempted to do it in her previous cell. Af-
ter she finished, she continued to discuss with P9 and observed P9 coding. P9 first
attempted to count institutions’ papers. After realizing the need to cross reference
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two tables, P9 and P3 turned to work on formatting authors’ name in the author–
a�liations table. At this stage, P9 did most of the programming and P3 actively
participated in discussions. On the other hand, P14 continued to work individually
on counting authors’ paper numbers.

• Stage 3: In this stage, P3 and P9 decided to both try to create a cross-reference
between the two tables. P3 asked P9 to merge his previous code into the main
notebook, and performed a sync to update her parallel cell group. Then, they be-
gan to work competitively on cross reference. Meanwhile, P14 continued to work
individually on creating a histogram visualization of the authors’ papers.

7.7.4.3 Reflections on the Collaborative Session

By observing two groups attempting the task with di↵erent collaboration strategies, we
found that PADLOCK was stable and e↵ective in preventing conflict edits while being
flexible to support various ad-hoc combinations of collaboration models. We did not ob-
serve instances of the abused copying of data frames. We also did not observe instances
where participants messed up with the shared notebook and needed to restart the kernel.
In the reflection questionnaire, participants commented that “it’s a very nice tool for col-
laboration” (P7); “it helps a lot when we are exploring the dataset and trying to test some
functions.” (P10). In particular, P9 mentioned:

This tool is very helpful. It allows us to split the tasks amongst the team,
work independently without having to worry about interference, but still be
able to discuss problems with each other’s solutions if needed.

In addition, participants also reported things that did not work well in the collaboration
session. For example, P14 in G2 who spent most of the session working independently
on the authors’ paper count complained that the pre-processing approach in her task (e.g.,
split author list) is similar to her collaborators’ tasks (e.g., split institution list). But they
did not collaboratively work on the pre-processing:

It helped us avoid running cell blocks that would influence each other’s work
and allowed us to work on our own parts. However, it also made us commu-
nicate less and made us focus on our own parts when a lot of the questions
could’ve been solved with the majority of the data cleaning work being the
same.
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7.8 Discussion and Future Work

7.8.1 Lightweight Collaboration Support for Data Science

Compared to collaboration in traditional software engineering, collaborative data science
is more exploratory, ad-hoc, and volatile. Thus, data scientists benefit from real-time
collaboration to quickly exchange ideas and plan the next step. Real-time collaborative
editing improves data science teamwork by creating a shared context, encouraging more
explanation, and reducing communication costs [181]. Although data scientists benefit
from writing code that is exploratory, experimental, and messy, they need to be care-
ful about their programming practices when working on a shared notebook. This limits
data scientists from harnessing the advantage of computational notebooks as they have to
manage the invisible state of the shared kernel through careful practices. We believe that
data science collaboration benefits from lightweight and ad-hoc support in computational
notebooks. Our evaluation of PADLOCK shows that such a design can e↵ectively help
data science teams avoid both implicit and explicit editing conflicts.

7.8.2 From Small Groups to Collaboration at Scale

Collaborative editing in computational notebooks can benefit not just small team collab-
oration, but also collaboration at scale. For example, instructors can share a collaborative
notebook with a classroom of students; researchers can share a collaborative notebook
with a broader audience for open collaboration; data science hobbyists can make their
live streaming session more engaged by sharing the collaborative notebook session. Our
work suggests exciting design opportunities for supporting collaborative editing at scale.
For example, our current design of the parallel cell would horizontally display the parallel
tabs as the number grows. Future work can use mechanisms like searching, tagging, and
filtering for managing multiple parallel cells. Our current design of cross-referencing al-
lows participants to computationally compare versions of variables from di↵erent parallel
cells, which could be improved by integrating visualization techniques to compare data
changes [179], or clustering techniques to explore variance [62]. Additionally, we are in-
terested in incorporating domain-specific features and needs for large-scale collaborative
editing, such as allowing students to test their code cells with shared test cases provided
by peers [177].
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7.8.3 Blending Sync and Async Collaboration in Long Terms

One area of interest in our future work on PADLOCK is exploring how the system might
be adapted to support di↵erent levels of synchronicity in collaborative editing. For ex-
ample, in asynchronous collaboration, collaborators may not work on the same shared
kernel even with a shared notebook. In this case, cell access control may still work to
protect the ownership of the code cell; parallel cell groups may be used to improve the
readability of the notebook and make it more structured. However, managing access con-
trol in a hybrid synchronous-asynchronous collaboration presents unique challenges, such
as deciding who should be in charge of setting and enforcing access rules. The current
design of PADLOCK allows any collaborators to change the cell-level and variable-level
access control. It remains to be explored who should be in charge of managing the access
control. Lastly, it is worth exploring how PADLOCK would a↵ect the presentation of the
shared notebook. In a hybrid synchronous and asynchronous collaboration, collaborators
may leave staled configuration over a code cell or shared variable, making it di�cult for
others to understand the context or history of the notebook.

7.8.4 Improving Awareness of Collaborators’ Activities

PADLOCK focused on the perspective of editing conflicts in real-time collaborative com-
putational notebooks. We believe that e↵ective collaboration can also benefit from com-
bining conflict-free mechanisms with awareness design. For example, the use of parallel
cell groups allows multiple users to work on di↵erent versions of the same document con-
currently, but makes it di�cult for users to see each other’s cursor movements or edits.
By highlighting the active tab for each collaborator, PADLOCK can improve awareness
and help users understand who is working on what. Similarly, notifications can alert users
when others make changes that a↵ect their work, such as unindenting a cell group or
removing tabs. In addition, the design of PADLOCK brings up the unique challenges in
helping collaborators track and forage editing history. With the notebook structure being
not linear anymore, it is worth exploring how notebook history foraging designs [88] can
be extended to support the awareness of complex cell editing.
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7.8.5 Limitations

7.8.5.1 Limitations of the Evaluation

It is worth noting that the results of the evaluation may not be generalizable to all collab-
oration scenarios. The specific tasks in the three study sessions of working with a clumsy
collaborator, configuring a collaborative notebook for planning a future collaboration ses-
sion, and working in small groups to solve an exploratory analysis task together, may not
be representative of all collaboration scenarios, and further research would be needed to
explore the usefulness of PADLOCK in a wider range of collaboration contexts. Addition-
ally, the results of this evaluation may have been influenced by other factors, such as the
participants’ individual preferences and experiences with collaborative tools. As such, it
is important to interpret the results of this evaluation with these limitations in mind.

7.8.5.2 Limitations of PADLOCK

While PADLOCK is designed to address editing conflicts and support flexible explorations
between small-size teams during synchronous editing sessions, it may be limited in its
ability to support the needs of large-scale and long-term collaborations. For example,
PADLOCK may not provide the necessary tools and features for comparing variance across
multiple parallel cells, or maintaining the readability of notebooks and keeping the access
controls updated over long periods of use. However, we are interested in understanding
how features of PADLOCK are e↵ective for large-scale and long-term usage, as well as
ways to extend and adapt PADLOCK to better support these types of collaborative work
in the future.

7.9 Conclusion

Real-time collaborative editing in computational notebooks requires strategic coordina-
tion between collaborators. We investigated common obstacles in real-time notebook
editing and proposed a set of access control mechanisms to support conflict-free edit-
ing: cell-level access control (which restricts collaborators’ ability to see or edit cells),
variable-level access control (which protects runtime variables from being referenced or
modified, and parallel cell groups (which allow collaborators to work in their own space
while staying connected to the larger notebook). As we found in our user studies with
PADLOCK, these features can improve collaboration within data science teams.
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CHAPTER 8

PuzzleMe: Leveraging Peer Assessment for
In-Class Programming Exercises

Peer assessment, as a form of collaborative learning, can engage students in active learn-
ing and improve their learning gains. However, current teaching platforms and program-
ming environments provide little support to integrate peer assessment for in-class pro-
gramming exercises. We identified challenges in conducting such exercises and adopting
peer assessment through formative interviews with instructors of introductory program-
ming courses. To address these challenges, we introduce PuzzleMe, a tool to help Com-
puter Science instructors to conduct engaging in-class programming exercises. PuzzleMe
leverages peer assessment to support a collaboration model where students provide timely
feedback on their peers’ work. We propose two assessment techniques tailored to in-class
programming exercises: live peer testing and live peer code review. Live peer testing
can improve students’ code robustness by allowing them to create and share lightweight
tests with peers. Live peer code review can improve code understanding by intelligently
grouping students to maximize meaningful code reviews. A two-week deployment study
revealed that PuzzleMe encourages students to write useful test cases, identify code prob-
lems, correct misunderstandings, and learn a diverse set of problem-solving approaches
from peers.

8.1 Introduction

Collaborative learning actively engages students to work together to learn new concepts,
solve problems, and provide feedback [166]. Programming instructors often use various
collaborative learning activities in teaching, such as group discussion, project-based work
[115], pair programming [143], code debugging [69], and peer assessment [167]. In par-
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ticular, peer assessment through reviewing and testing each other’s solutions can improve
students’ motivation, engagement, and learning gains [167, 152, 105, 106], while reduc-
ing the e↵ort required for instructors to provide scalable personalized feedback [106].

Despite the benefits of peer assessment, current programming and teaching environ-
ments provide little support to conduct peer assessment for in-class programming ex-
ercises—small scale programming exercises for students to practice during lectures or
labs. As a result, peer assessment is typically conducted asynchronously rather than in a
live classroom setting [167]. Prior research has made it easier for instructors to share and
monitor code with multiple students in real time [31, 72]. However, designing real-time
systems to enable both student-student interactions and student-instructor interactions in
a live setting is still a challenge [33]. Moreover, students often struggle to give each other
high-quality feedback or even start a fruitful conversation without proper moderation and
e↵ective grouping [29, 121]. In a needs analysis, we also found that it is di�cult for
instructors to e↵ectively break students up into groups with appropriate balances of ex-
pertise in physical classroom situations. Further, because of the overall lack of expertise,
peers can find it di�cult to assess whether a given piece of code would fail unknown edge
cases even if it generates the desired output for the test cases given by instructors.

In this paper, we present PuzzleMe, a web-based in-class programming exercise tool
to address the challenges of peer assessment. PuzzleMe consists of two mechanisms:
live peer testing and live peer code review. Live peer testing helps learners assess their
code through moderated collection of test cases from peers. Inspired by the notion of
the “sweep” [140], live peer testing seeks essential examples only for illustrating com-
mon and interesting behaviors rather than writing comprehensive test suites. PuzzleMe
automatically verifies valid test cases by referencing an instructor-provided solution and
shares valid test cases with the whole class. Live peer code review aims to provide person-
alized feedback at scale. It does this by automatically placing students in groups where
they can discuss and review each other’s code. PuzzleMe introduces several features to
encourage meaningful code review, including a matching mechanism to balance student
groups based on the number of correct answers and the diversity of those answers. Puz-
zleMe also includes mechanisms that allow instructors to create improvised in-class pro-
gramming exercises, monitor students’ progress, and guide them through solutions. Our
design is inspired by formative interviews where we investigated the obstacles instructors
face when conducting in-class programming exercises and encouraging peer activities.

To validate PuzzleMe’s e↵ectiveness, we deployed it to an introductory programming
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course for two weeks and conducted several exploratory studies. Our results show that the
peer testing feature can motivate students to write more high-quality tests, help identify
potential errors in their code, and gain confidence in their solutions. Further, the peer
code review feature can help students correct misunderstandings of the course materials,
understand alternative solutions, and improve their coding style. We also report on the
use of PuzzleMe in an online lecture1 and demonstrate its potential to be used at scale
in synchronous online education. We found that PuzzleMe is perceived to be useful in
a wide range of programming classes, reducing the stress of providing near-immediate
feedback, helping instructors to engage students, and providing opportunities to explore
di↵erent types of pedagogy.

The key contribution of this work is the design lessons learned from a series of mixed
methods studies, which add to the body of work on personalized feedback, peer assess-
ment, and in-class exercises. We believe these lessons can guide future interface design
exploration in similar contexts (e.g., live workshops and programming education via live
streaming [33]). shows the potential for increasing learning outcomes via in-class peer
support without increasing teaching costs. Specifically, our contribution includes:

1. an articulation of the needs and challenges that instructors have when conducting
in-class exercises for introductory programming courses based on formative inter-
views with five instructors,

2. two techniques—live peer testing and live peer code review—that enable peer as-
sessment during in-class exercises, and

3. PuzzleMe, a web-based system for instructors to carry out in-class programming
exercises with the support of live peer testing and live peer code review.

8.2 In-class Programming Exercise Challenges

To better understand the current practices and challenges for conducting in-class pro-
gramming exercises, we conducted formative interviews with instructors of introductory
programming courses. We chose to focus on introductory programming courses because
(1) they typically have larger enrollments, (2) students in introductory courses often need
more support, and (3) large knowledge gaps between students are more likely, making it
di�cult for instructors to accommodate all students’ needs.

1During our deployment, this course migrated to a fully online setting due to the outbreak of COVID-19.
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Given Conditions

Expected Output

Student‛s Code

Peer Testing Peer Code ReviewLive Peer Testing Live Peer Code Review

Figure 8.1: PuzzleMe implements two mechanisms for peer assessment: live peer testing
and live peer code review. Live peer testing allows students to create and share test cases
with peers in real time. Live peer code review intelligently groups students to encourage
meaningful code discussions.

8.2.1 Method

We recruited five instructors from di↵erent introductory programming courses at the au-
thors’ university. Table 8.1 presents an overview of the courses that the five interviewees
taught. They include three undergraduate- and two graduate-level courses across three
departments, with the same session time (80 minutes, twice per week). Each interview
lasted 30 minutes. We asked instructors to recall the most recent introductory program-
ming courses they had taught and explain what types of in-class exercises they conducted
and what processes and tools were involved to facilitate the exercises. In addition, instruc-
tors were encouraged to tell us about any challenges they had encountered with conduct-
ing in-class programming exercises. Two authors separately conducted iterative coding
to identify reoccurring themes using inductive analysis. We then merged similar codes to
infer important findings. During the process, the codes of common practices for conduct-
ing in-class exercises, such as the types of exercises and tools, were merged smoothly.
However, those of challenges in conducting programming exercises were rather di�cult
because of the authors’ di↵erent perspectives (e.g., process vs. roles involved). By divid-
ing the in-class exercise activity into di↵erent stages and identifying the major roles of
each party, the authors discussed and finalized the codes.
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Table 8.1: Instructors’ course demographics in formative interviews.

PID Size Name Language(s)

S1 260 Intro. to Prog. I (G) Python
S2 250 Intro. to Engr. (U) MATLAB

S2,S3 300 Intro. to Prog. II (U) Python
S4 260 Intro. to UI Prog. (G) HTML,CSS,JS
S5 260 Intro. to Prog. I (U) Python

8.2.2 Findings

8.2.2.1 In-class exercises are common

On average, interviewees spent a third of the lecture time on programming exercises.
Interviewees often conducted two types of in-class exercises: multiple-choice questions
(where students respond using audience response systems such as i-clickers) and pro-
gramming exercises (where students write code on their laptops). In some cases, students
needed to download starter code from code collaboration applications [201, 65]. None
of the interviewees mentioned using assessment tools to collect and validate students’
solutions. Instead, they often provided an example of an acceptable solution (e.g., on a
projector) and asked students to self-check their code. All interviewees mentioned asking
students to discuss with their peers or providing personalized help during o�ce hours.

8.2.2.2 Impromptu exercises are valuable

To conduct e↵ective exercises, instructors get feedback from students on what they under-
stand and then improvise exercises based on that feedback. Some instructors would live
code in class and call on students to verbally describe what code they should write (S2,
S5). They encountered cases of “a lot of people making similar misconceptions that I did
not expect” (S1), so they would often choose to let students vocally explain them to the
rest of the class (S1, S4). Although vocal feedback has a low overhead cost, interviewees
were concerned that “you always get the same people participating” (S4). S1 wished to
leave more lecture time for students to “share their thoughts”, or “learn from the person
sitting 20 feet away.” Additionally, vocal communication is often not accessible (e.g.,
hard to hear) for students and is not archived for students to revisit.
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8.2.2.3 Hard to scale support for exercises

When conducting the exercises, all interviewees reported that they would walk around
the classroom to observe students’ progress (S1–S5), provide help (S1–S5), “get teaching
feedback” by asking students “what’s hard about this” (S1), or “hearing about low level
problems that we might not have thought about” (S4). Four interviewees emphasized the
physical challenge of navigating the classroom and interacting with students sitting in
hard-to-reach spots: “there are 130 people, you’re going to run into backpacks, walking
between di↵erent chairs. It’s not the best way of walking around” (S4). Moreover, be-
cause exercises were often short, instructors did not have time to gauge students’ mistakes
and adapt their teaching later on: “I want to get a sense for how everyone is reacting so I
can decide what I’m going to talk about next” (S1).

8.2.2.4 Di�culty in connecting students with each other

All interviewees encouraged students to talk to each other while performing exercises: “I
don’t care if they get the answer right. As long as you have the discussion you learn from
it” (S4). Four interviewees applied peer instruction [39] to multiple-choice questions in
their lectures (S1, S2, S3, S5) and found it encourages students to monitor themselves
in learning and build connections with each other. However, instructors reported a lack
of intrinsic motivation for students to interact with their peers (S1–3). Instructors re-
ported ine↵ective grouping as an important reason. Due to the physical distance between
students in classrooms, instructors often pair students with their neighbors. Pairs are
matched without regard to their diverse backgrounds, solutions, and levels of knowledge,
which does not ensure that students in a pair would have meaningful conversations with
each other (S3, S5). In addition, instructors mentioned the social hurdle for nudging peer
interactions. Students would feel hesitant to engage with others socially without proper
prompting. This corresponds to prior work on structuring roles and activities for peer
learners to increase student engagement and process e↵ectiveness [160, 101]. Instructors
also reported that students would feel less comfortable asking for help from peers than
instructors (S3, S4).

8.2.3 Summary of Design Goals

Driven by the findings, we formed three design goals for tools that scale support for in-
class programming exercises:

174



• Improvising in-class exercises and synchronous code sharing: Instructors need a
synchronous code-sharing platform for improvising in-class exercises. Tools should
support various teaching needs, including creating and sharing exercises, verify-
ing students’ solutions, monitoring students’ progress and activities, and walking
through answers.

• Scale student support: Students need to get timely and on-demand support during
in-class programming exercises.

• Encourage live peer interaction: Tools should encourage students to interact with
their peers in real-time to engage them and motivate active learning.

8.3 PuzzleMe Design

We designed PuzzleMe as a platform to improve in-class programming exercises for in-
structors and students. PuzzleMe allows instructors to easily create and share exercises,
monitor students’ progress, improvise exercises as needed, and demonstrate correct solu-
tions through live coding. On the student side, PuzzleMe supports live peer testing and
live peer code review to scale support and encourage peer interaction.

8.3.1 In-Class Programming Exercises

PuzzleMe supports the types of exercises that instructors described in our interviews:
programming exercises2, multiple-choice questions, and free-response questions. For a
programming exercise, an instructor can provide a problem description (Fig.8.2.A) and
starter code (Fig.8.2.C) for students to build on. The editor includes a read-only code area
with instructor-specified input variables (Fig.8.2.B1) and assertions to evaluate program
output (Fig.8.2.B2). Fig.8.2.E shows the code output and error messages.

PuzzleMe also supports creating impromptu exercises in response to students’ feed-
back and performance. Instructors can import exercises they prepared in advance or
improvise and modify exercises during class. As soon as the instructor modifies exist-
ing exercises or creates a new exercise, their modifications are propagated to students.
PuzzleMe propagates character-by-character edits, as we found in pilot tests that these
more frequent updates kept students engaged if they had to wait as instructors wrote the
exercise.

2PuzzleMe currently supports Python but could easily be extended to other programming languages.
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Figure 8.2: PuzzleMe is a peer-driven live programming exercise tool. The student view
shows: (A) a problem description; (B) an informal test that consists of the given condi-
tions (see B1) and the assertion statement (see B2); (C) a code editor where students can
work on their solutions; (D) a test library that contains valid tests shared by instructors
and other students; (E) the output message of the current solution; (F) access to the in-
structor’s live coding window; (G) access to peer code review; (H) a leaderboard of the
number of problems that students have finished; and (I) the number of students who have
finished the current problem.

8.3.1.1 Live coding for answer walkthrough

Prior work has found that students prefer when instructors write out solutions in front of
the class—known as “live coding” [153]. Live coding also allows instructors to teach
through experimentation (for example, by demonstrating potential pitfalls as they go
along), narrate their thoughts, and engage students by asking questions [153]. PuzzleMe
enables live coding and propagates instructor’s code changes to students (Fig.8.3), which
allows students to easily copy and experiment with the instructor’s code. PuzzleMe also
enables free-form sketches and annotations to allow instructors to draw explanatory dia-
grams to augment their code.
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C

Figure 8.3: The live code view and the peer code review view. (A) Instructor can enable
live coding mode to demonstrate coding in real-time, and use the built-in sketching feature
to assist their demonstration; (B) Live peer code review allows students to check other
group members’ solutions and provide reviews in a chat widget (as shown in C).

8.3.1.2 Monitoring class progress

To monitor students’ progress, similar to Codeopticon [72], PuzzleMe allows instructors
to examine an individual student’s response in real time. In addition, PuzzleMe presents
an anonymous leaderboard (Fig.8.2.H) based on exercise completion time. PuzzleMe also
displays how many students have written working solutions, to give a sense of progress
relative to their peers (Fig.8.2.I).

8.3.2 Live Peer Testing

To give students timely feedback during in-class programming exercises, we designed
live peer testing—a practice of writing and sharing lightweight tests in real time—in
PuzzleMe.

8.3.2.1 Conceptual model of testing

One of the challenges of enabling live peer testing in introductory programming courses
is that many testing frameworks require advanced knowledge [54]. For example, Python’s
unittest module requires an understanding of classes, inheritance, user-defined func-
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tions and more. By contrast, students in introductory courses often do not learn how
to define functions or intermediate control flow mechanics until several weeks into the
course. Students in introductory courses benefit more from identifying interesting and
representative examples rather than constructing comprehensive test suites [140]. We thus
designed a model for live peer testing that would be flexible enough to test any number of
configurations while still being conceptually simple enough for students in introductory
classes. In our model, the code editor is split into three parts: 1) setup code that specifies
pre-conditions, 2) the student’s code, and 3) assertion code that tests whether the student’s
code produces the correct output given the pre-conditions. The setup (Fig.8.2.B1) and as-
sertion code (Fig.8.2.B2) are “paired”, independent of the student’s code (Fig.8.2.C). This
can be visualized as a “flipbook” that flips through pairs of pre-conditions and expected
post-conditions.

8.3.2.2 Creating test cases

Students can create a new test case by clicking the “+ Test” button (Fig.8.2.D) and editing
the setup code and assertion code. Instructors can specify whether tests are disabled,
enabled, or enabled and mandatory. In addition, instructors can choose to require that
students write a valid test case before they can start writing their solution, which can be
useful for adapting di↵erent types of pedagogy like test-driven learning [83].

8.3.2.3 Verifying and sharing test cases

To help guide students to create e↵ective test cases (and avoid sharing invalid test cases),
PuzzleMe includes mechanisms for verifying test cases. For this to work, instructors write
a reference solution that is hidden from students. To be considered acceptable, a student
test must pass the reference solution (to prove that it is valid) and fail an empty solution
(to prove that it is non-trivial, such as empty tests).

PuzzleMe notifies students of their test case status and students can always update and
resubmit their unverified test cases. PuzzleMe shares verified test cases with all students
as a test library (Fig.8.2.D). When students execute their code (pressing the ‘Run’ button),
PuzzleMe uses all the cases in the library to examine their answers.
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8.3.3 Live Peer Code Review

Live peer testing provides feedback on students’ test cases and creates a test library to help
them write more robust code. However, passing test cases does not ensure high-quality
code. Valid solutions may contain unnecessary steps or bad coding practices. This might
not a↵ect the output of the program but may harm students’ long-term coding ability
[117, 61]. Thus, it is important for students to get feedback on both the correctness and
the quality of their solutions. Prior work suggests that providing comparisons can help
novice learners better construct feedback [29, 144]. PuzzleMe supports live peer code
review, a feature that allows students to see and discuss each other’s code. As Fig.8.3
shows, students can check other group members’ solutions and provide reviews in a chat
widget.

We originally designed the discussion widget (Fig. 8.3) as a “peer help” tool where
students could press a “help” button to request assistance from another student. However,
in pilot testing, we found that struggling students were hesitant to ask for help, even when
they could do so anonymously. By framing this discussion as peer code review rather than
peer help, however, PuzzleMe removes students’ stigma around asking for help while still
enabling valuable discussions between students.

8.3.3.1 Matching learners

By forming students into groups after working individually on the problem, our goal is to
encourage meaningful conversations around everyone’s solutions—for students who have
incorrect solutions to clarify misconceptions and for students who have correct solutions
to learn from others who use a di↵erent approach to solve the problem. Therefore, match-
ing learners e↵ectively is crucial for encouraging meaningful discussions among group
members. Based on instructors’ needs in the formative study to leverage peer help and
match peers with diverse solutions so that they could learn from each other, we propose
two heuristics for matching learners. First, students who have incorrect solutions should
be paired with at least one student who has a correct solution. Second, if a group has
multiple students who have correct solutions, they should have di↵erent approaches to or
implementations of the problem. We determine group sizes by the proportion of students
with incorrect solutions so that students who have incorrect solutions are paired with at
least one student who has a correct solution. Next, we calculate the Cyclomatic Com-
plexity Number (CCN) of the correct solutions as a proxy measure for approach. We then
allocate the correct solutions by as many di↵erent approaches as possible. In addition,
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students may feel hesitant to start conversations because of social barriers or feel stressed
when their solutions are put together with others [53]. To address this issue, PuzzleMe
keeps students anonymous [121] when sharing their solutions and reviews.

8.3.4 Implementation

We implemented PuzzleMe as a web application. We used ShareDB [2], a library that
uses OTs to keep instructors’ and students’ data updated in real time. To ensure that
it can scale to large numbers of students, PuzzleMe executes all code client-side, using
Skulpt [8], a library that transpiles Python code to JavaScript. We have published our
source code3 for researchers to evaluate and build on.

8.4 Evaluation

In total, we conducted three studies to evaluate the e↵ectiveness of PuzzleMe for scaling
support (Studies 1 and 2) and its general applicability (Study 3). To evaluate its e↵ective-
ness, we deployed PuzzleMe in an introductory programming class for two weeks. For
the first week, we compared students’ performance with and without the support of Puz-
zleMe in four lab sessions. For the second week, we collected and analyzed the PuzzleMe
usage data for an online lecture. We then conducted an interview study with teaching sta↵
from other programming classes to understand the broader applicability of PuzzleMe.

8.4.1 Course Background (Studies 1 and 2)

The introductory programming course consisted of a weekly lecture and two weekly lab
sessions where students were assigned to one of nine smaller lab sections for hands-on
practice of coding. There were 186 undergraduate students enrolled in the class, one
full-time instructor (Professor) and five Graduate Student Instructors (GSIs). Most stu-
dents did not have prior experience in programming. Each GSI individually led one or
two lab sections with 10–30 students. The class format changed to online with optional
participation in lectures and lab sessions during the second week of the deployment.

3https://github.com/soney/puzzlemi

180



8.4.2 Study 1: Using PuzzleMe in Face-to-Face Lab Sessions

To gain a holistic understanding of how PuzzleMe can be used to improve students’ learn-
ing experience in in-class programming exercises, we conducted a user evaluation in four
lab sections during the first week of the deployment. In particular, we aimed to answer
the following questions:

Q1 Compared to conventional methods, would live peer testing encourage students to
write higher quality test cases? Are test cases shared by peers helpful for students
to assess their code?

Q2 Compared to conventional methods, how would live peer code review a↵ect stu-
dents’ willingness to seek feedback from others? Would live peer code review
yield more meaningful and constructive feedback?

We chose self-assessment and face-to-face discussion as a representation of conventional
methods because they were widely applied by instructors in our formative studies.

8.4.2.1 Study setup

The GSIs gave students a set of problems to work on based on the material they were
learning at the time. We used one of the programming exercises to evaluate live peer
testing (noted as E1 for answering Q1) and another programming exercise to evaluate
live peer code review (noted as E2 to answer Q2). For E1, the GSIs gave students 8–10
minutes to work individually and encouraged them to create additional test cases. For
E2, the GSIs gave students around 5 minutes to work on the solution individually before
placing them into groups. They then gave another 5 minutes to discuss with peers and
continue working on their solutions. We used a between-subjects design where the four
lab sections were randomly assigned to use PuzzleMe with or without the live features.

(Treatment) Using PuzzleMe with the Live Features: For E1, students were encour-
aged to write, verify, and share test cases using PuzzleMe, and use others’ test cases to
assess their code. For E2, PuzzleMe assigned students into groups to perform live peer
code review after working individually on the problem.

(Control) Using PuzzleMe without the Live Features: Both live features in Puz-
zleMe were disabled in this case. Instead, students were encouraged to write test cases
in their standard code editor for E1. For E2, students were asked to show their computer
screens to people sitting next to them and discuss each other’s solutions after working
individually.
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Table 8.2: The four lab sections were randomly assigned into the treatment condition or
the control condition.

Session ID Condition GSI Total Students

T1 Treatment I1 16
T2 Treatment I2 16
C1 Control I2 12
C2 Control I1 19

8.4.2.2 Data collection

We gathered the usage log of PuzzleMe (which tracks and timestamps every student sub-
mission attempt), the test cases students created in live peer testing, and the feedback
students sent one another through live peer code review. In addition, we engaged in a
follow-up interview with two GSIs and six students, where we asked about their learning
or teaching experience of the lab sections and how they perceived the usefulness of Puz-
zleMe. Finally, we made observational notes during the lab sessions, where two of the
authors sat at the back of each lab session and collected data on students’ participation
in the class, overall performance on the programming exercises, and usability issues with
PuzzleMe.

8.4.2.3 PuzzleMe encourages students to create and share test cases.

Table 8.3 shows that with the live features, students wrote 0.72 test cases on average
(� = 0.73). Otherwise, students wrote 0.26 test cases on average (� = 0.44). In both
conditions, students wrote less than one test case on average. We believe this reflects
realistic use of the tool with novice programmers in an in-class setting where students
were given less time and were less motivated to engage in the exercises as compared
to writing test cases as an assignment. To evaluate test quality, two authors manually
coded student-written test cases into three levels (Figure 8.4), assigning a 0 if the test case
was invalid or duplicated the default case, a 1 if the test case only performed additional
checks on the output without changing the given conditions, or a 2 if the test case checked
assertions under new conditions. We found that the average quality of the test cases in
the treatment condition was 0.96 (� = 0.71). The average quality of the test cases in the
control condition was 0.63 (� = 0.74). We did not find any incorrect tests that slipped
through the validation procedure. We also found that 37.5% of students improved the code
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quality after the group discussion in the treatment condition, while only 12.9% improved
the code in the control condition.

Our comparison suggests that the number of test cases (p = 0.002, Mann-Whitney U
test with power = 0.98) is significantly di↵erent in the two conditions. We do not find
significant di↵erences between the test quality in the two conditions (p = 0.13, Mann-
Whitney U test with power = 0.353).

In the follow-up interviews, the students and instructors explained why they felt the
live peer testing feature was useful. Live peer testing gives students feedback on their
test cases, ensuring the quality of the shared test pool because PuzzleMe verifies the test
cases against a known correct solution before sharing across the student body. In contrast,
students in the control condition were hesitant to write new tests because they “don’t know
if my code is being tested correctly” (C2). Second, the participants felt that writing tests
improved their understanding of the learning materials overall. Students commented that
the “writing test was helpful to practice the new coding skill learned from class readings”
(T2). Similarly, I2 mentioned that “I think [writing tests] might be helpful for students
to think about what they should expect from their program”. Lastly, both students and
instructors reported that the live peer testing feature helped the former gain confidence in

Score: 0

Score: 1

Score: 2

Figure 8.4: An example of three di↵erent levels of test cases for one exercise (Problem
description: alphabetically sort the given array, names, and assign the output to a variable
named, names_sorted). Test cases were manually coded into three levels: 0 if the test
case was wrong, meaningless, or duplicated the default case; 1 if the test case did not
create new examples of names but added additional checks on the output names_sorted;
2 if the test case contained new examples of names and names_sorted.
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Table 8.3: The number and quality of test cases students wrote in E1 (mean: x, standard
deviation: �). The number of students who improved code (calculated by completion
status) after group discussions in E2 (total: N). Our comparison suggests that the number
of test cases is significantly di↵erent in the two conditions (p = 0.002, Mann-Whitney U
test with power = 0.98); the number of students who improved code is also significantly
di↵erent in the two conditions (p = 0.02, proportions z-test given the binary data type).

E1 Writing Test Condition x �

Number of Test Cases* Treatment 0.72 0.73
Control 0.26 0.44

Test Quality Treatment 0.96 0.71
Control 0.63 0.74

E2 Code Discussion Condition N Total

Number of Students Who Improved Code* Treatment 12 32
Control 4 31

their solutions, and both instructors indicated that PuzzleMe might help identify problems
in students’ solutions. Moreover, the instructors reported that the live peer testing feature
reduced their teaching stress as students gained confidence:

(PuzzleMe) takes o↵ some stress from me to check students’ code. A lot of
times students don’t have a lot of questions, but they want me to check their
code and make sure their code is correct. Students always have more faith in
other students than themselves. If they pass their own assertion, they will still
be unsure. If they pass others’ assertions, they will be definitely more sure.
(I2)

8.4.2.4 PuzzleMe sca↵olds group discussions.

We observed that the face-to-face group discussions were largely a↵ected by the layout
of the classroom in the control condition—“(Face-to-face discussion) depends on the
physical setting and how many people are sitting. One of my lab session[s] is smaller
while the other session is more spread out” (I2). In addition, some students found it
di�cult to have meaningful conversations with their neighbors in the classroom setting.
One student mentioned in the follow-up interview, “Sometimes, neither of us know the
solution. It’s a little awkward” (a student from C2). Instructors reported that the matching
mechanism overcomes the physical limitation of face-to-face discussion:
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In my class, students who sit in the front always finish their code, so talking
to neighbors didn’t really work. I like the matching in PuzzleMe because it
can really pair students based on their solutions. (I2)

8.4.2.5 PuzzleMe encourages students to explore alternative solutions.

PuzzleMe encourages students to explore and discuss alternative solutions, which may
help them better apply the concepts they learned. For example, one session covered sort-
ing and advanced functions. Students could solve a problem by either passing a lambda
expression or a traditional named function to the sorted function. Students found it use-
ful to see others’ solutions and understand both ways to solve the problem—“PuzzleMe is
very helpful especially my classmates ask questions that I didn’t think to ask” (a student
from T1); “Live peer code review is good because we get to see the other ways people do
their code.” (a student from T2).

In addition, the results suggest that the live peer code review feature helps students
improve their completion status. As shown in Table 8.3, the number of students who
improved code (p = 0.02, proportions z-test given the binary data type) after group dis-
cussions in E2 significantly improved with the live peer code review feature. However,
we suspect that multiple factors may lead to an improvement in completion status. For
example, students may directly copy and paste peers’ solutions without thinking, which is
not our intention when designing live peer code review. To understand how the live peer
code review feature helps students complete the code exercise, we continued with Study
2 to collect the PuzzleMe usage logs from an online lecture.

8.4.2.6 Limitation

Although we designed the experiment to balance the multiple confounds (e.g., instructors,
room size, as shown in Table 8.2), it is di�cult for us to conduct a rigorous comparison
between the two conditions given that we deployed PuzzleMe in an authentic usage sce-
nario. Factors like total students who showed up to each session were hard to control and
may reduce the external validity of the results. Thus, we focused on empirical evidence of
how PuzzleMe can be used to conduct in-class programming exercises. A well-controlled
exhaustive study—including use of the application during a complete course and evalu-
ation of the students’ grades or the instructors’ perceived workload—will be needed to
explore the pedagogical benefits of PuzzleMe.
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8.4.3 Study 2: Integrating PuzzleMe in an Online Lecture

Study 1 indicates that the live peer code review feature is related to the improvement of
code completion. To further explore whether students were using the tool as we expected,
we collected and analyzed the PuzzleMe usage data for a lecture. By the time of the
deployment, the class was changed to an online format where students attended lectures
synchronously using video conferencing tools. This allows us to additionally test the
benefits of using PuzzleMe in online classrooms.

8.4.3.1 Study setup

During the live-streamed lecture, the instructor gave students an in-class programming
exercise through PuzzleMe to practice the concepts they learned about that week (higher
order functions—map, filter, and list comprehensions). There were multiple ways to
solve the problem and students were encouraged to explore and find the most concise
solution. After initial exploration for about five minutes, the instructor turned on live
peer code review mode and asked students to discuss with their peers. We collected
and analyzed the events log from the usage data. In total, we collected data from N=48
students who participated in the programming exercise.

8.4.3.2 Results overview

Figure 8.5 shows the event logs where each row represents a student and the x-axis repre-
sents the timeline. We sorted students based on the first time they passed the default test.
On average, each student had 13.75 attempts with incorrect solutions (meaning they ran
their code and failed at least one test case) and 2.63 attempts with correct solutions.

PuzzleMe connected students who were struggling with the problem with their peers
for help. Before the live peer code review started, 17 students passed the problem. After
the peer code review activity, an additional 10 students were able to pass the problem.
Finally, 6 students passed the problem after the instructor revealed the correct solutions,
and the remaining 15 students did not finish the problem within the given time (1000
seconds). We observed an additional 8 students passing the problem after the given time.
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Figure 8.5: Usage logs from the online lecture. With the help of peers, 10 students who
had incorrect solutions were able to pass the problem (as indicated in green horizontal
lines). Live peer code review helps students identify cavities in their code and inspires
them to explore alternative approaches.

8.4.3.3 Code review is correlated to better completion status

For students who were not able to complete the problem before peer code review, we ran a
proportions z-test to identify whether there is a correlation between using the code review
feature (as indicated by blue and orange dots in Figure 8.5) and solving the problem. The
result shows that there is a strong correlation between using the code review feature and
eventually solving the problem (p = 0.02). We examined the editing histories of the code
and did not observe students directly copying and pasting others’ solutions. Our inter-
pretation is that students are self-motivated to work out their own solutions rather than
having a correct solution since the programming exercise is voluntary and not associated
with grades. This corresponds to the observation that students who failed to improve
the code were inspired by their peers’ code while continuing to work on their original
solutions.

8.4.3.4 Who initiates the talk? Conversations need nudging.

Although students reported in Study 1 that they felt more comfortable talking to peers
in PuzzleMe, we observed that there was no discussion going on in 8 of the 16 groups.
Most members in the 8 groups “shied away” from talking to peers, though they still ac-
tively engaged with the tool to check their peers’ code or make code execution requests.
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Solution A

Solution B

Solution C

Figure 8.6: Three example solutions that pass the default test. Solution A is a false
positive because students did not use the function arguments correctly. Solution B is the
most elegant way to solve the problem. Solution C is correct but does not demonstrate an
understanding of advanced list operations.

In half of the other groups, students who already had the correct solutions (in the helper
role) initiated the conversation; in the other half, students who sought help initiated the
conversation. This result corresponds with the general challenge of nudging peer-driven
conversations in formative study. Next, we looked into the content of the conversations
and found that the common topics included making comparisons between various solu-
tions, providing suggestions on variable naming and formatting, seeking help on debug-
ging, and clarifying the lecture content. In addition, we examined the group discussions
and did not find any propagation of misconceptions through peer code review.

8.4.3.5 Code sharing improves engagement.

Lastly, we observed that students who used the live peer code review feature tended to stay
engaged with the exercise. For students who passed the default test, PuzzleMe inspired
them to explore alternative approaches and think about issues in their code that they might
have missed. We manually examined students’ code and found some solutions contained
a similar bug that the default test case did not catch (as shown in Figure 8.6, Solution
A). This bug was caused by students’ misunderstanding of a critical concept in previous
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lecture sessions—using default values for function arguments. Among the 17 students
who initially passed the problem, 8 students made this mistake. Through talking to peers
and checking their code, three students were able to identify the bug in their original
code. In addition, several students passed the problem with correct yet naive solutions
(as Figure 8.6, Solution C shows). PuzzleMe informed these students of the existence
of other solutions and encouraged them to explore them further. In total, we found 13
students who had additional attempts after they passed the problem the first time.

8.4.4 Study 3: The Practical Applicability of PuzzleMe

To explore the practical applicability of PuzzleMe, we conducted an exploratory study
with four programming course instructors from the authors’ university. Participants had
varied experience teaching a wide range of programming topics in both in-class and online
settings (as Table 8.4 shows). We first gave participants a walkthrough of PuzzleMe and
asked them to interact with the features. Then we asked them to brainstorm the possible
use cases of PuzzleMe in their courses. We also encouraged participants to envision other
features they would like to have in a future design.

8.4.4.1 The use case of PuzzleMe in various programming topics

Table 8.5 summarizes the use cases for PuzzleMe. For live peer testing, most of the
use cases (6/7) relate to specific topics (e.g., UI testing), and the rest (peer challenge)
are class activities that can increase students’ engagement (P3). The six specific topics
are categorized as the functionality of a system (e.g., security testing, UI testing, data
visualization), di↵erent modalities (e.g., in-circuit testing, design feedback), and more

Table 8.4: Participants’ background in Study 3.

PID Course Name Course Size

P1 Intro to Computer Security 300
P1,P2 Intro to UI Development 150

P2 Intelligent Interactive System 50
P3 Applied Data Science (On-

line)
145

P4 Natural Language Processing 100
P4 Data Mining 80
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generic topics (e.g., algorithm design).
In particular, P1 listed a series of topics in computer security that could use the live

peer testing feature, including fuzz testing, side channel attacks, and cross-site scripting
attacks. Analogous to the test-driven learning approach [83], P1 envisioned that the live
peer testing feature could help students learn programming concepts by writing test cases
to “break the instructors’ program” (with respect to data security), as prior work has pro-
posed [167]. Instructors (P1, P2) also suggested peer design feedback in which students
can benefit from diverse responses from their peers.

More than half of the use cases (3/5) for the live peer code review feature related to
team collaboration (e.g., guided peer support, working in groups, group competition), and
the other two related to team matching. P1 suggested that rather than showing each other’s
code immediately, which may cause students to “lose the motivation to work on your own
implementation”, a future design of PuzzleMe could allow one student to guide others
to complete the problem first, and then unlock each other’s code for further review. P3
mentioned that using a leaderboard among individuals or groups would motivate students
to be more engaged with the exercise.

Participants also envisioned a set of use cases for other subjects. P2 mentioned that stu-
dents in graphical design or creative writing courses could get peer support and feedback
on their artifacts without solely relying on and waiting for their instructors’ feedback. P3
suggested that PuzzleMe could be used for coding interviews (e.g., “it’s kind of similar
to hackerrank (a coding interview site)”), where one student plays the role of the inter-
viewee to write the program and the other students are interviewers writing test cases to
challenge their peer.

8.4.4.2 PuzzleMe lowers the e↵ort for setting up in-class exercises.

Besides use cases, participants also pointed out the potential benefits of using PuzzleMe
for lowering the e↵ort involved in setting up in-class exercises. For example, in a UI de-
velopment class, students can take a UI front-end-related exercise on PuzzleMe without
the e↵ort of configuring the environment (P3). Similarly, for exercises that require exter-
nal resources (e.g., libraries, data sets), PuzzleMe could provide a resource hub to which
the students can easily connect (P4). More generally, PuzzleMe could support instructors
to create new exercises by modifying the previous ones, making it easier for students to
practice on the same topic iteratively (P1, P4).
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Table 8.5: Use cases of two PuzzleMe features—live peer testing and live peer code
review—in various programming topics.

Live Peer Testing

Computer security-related testing: Test the security level of others’ programs (e.g., login
systems).
UI testing: Navigate each other’s UI (e.g., the responsiveness e↵ect).
Data visualization: Interact with each other’s viz. systems (e.g., missing value, di↵erent input
data).
Algorithm: Test edge cases for others’ algorithms (e.g., regular expression to extract domain
from a URL).
In-circuit testing: Test each other’s circuits (e.g., virtual probe for breadboard testing).
Physical and digital artifact design feedback: Write feedback on each other’s designs.
Peer challenge: One student writes a program, the other writes tests to challenge (break) it.
Live Peer Code Review
Working in a group: Students can work in groups to solve problems.
Roleplay: Students can choose to be a helper or a help seeker based on their interests.
Guided support: Students can provide hints to other students in their group.
Di↵erent matching mechanism: Match students by their process (similar/di↵erent), or en-
gagement level.
Group competition: Students are divided into groups and compete with other groups.

8.5 Discussion

Our evaluation studies demonstrate that the design of PuzzleMe allows instructors to
improvise in-class programming exercises, while e↵ectively leveraging peer feedback
through live peer testing and live peer code review. In particular, PuzzleMe moti-
vates students to write more test cases, identify gaps in their code, and explore alterna-
tive solutions—all important pedagogical goals of an introductory programming course.
We reflect on the design of PuzzleMe and discuss the implications for future HCI and
Computer-Supported Cooperative Work (CSCW) research.

8.5.1 Design Lessons

8.5.1.1 The benefits of learnersourced test creation

Learnersourced test case creation benefits multiple stakeholders. Although individual stu-
dents’ test case coverage might not be as thorough as those written by instructors, they
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save time and e↵ort and enable improvised programming exercises. More importantly,
the process of creating test cases helps learners verify their understanding of the prob-
lem and of test-driven development while simultaneously contributing to a larger pool of
verification instruments to be used by the whole class. Writing tests also helps learners
practice the ability to predict the outcomes of a given input by manually walking through
their code (either in their mind or by writing intermediate results on paper), a critical
strategy for sca↵olding novice programmers [196]. Finally, the test cases themselves pro-
vide additional diagnostic material that might be used by instructors post-hoc, allowing
them to reflect on the misconceptions students formed and aiding in the design of future
learning activities.

8.5.1.2 The social and cultural value of building collaborative learning platforms

The live peer testing and live peer code review features in PuzzleMe sca↵old peer inter-
actions in programming classes. We observed that students used topics related to their
interests when creating test cases (e.g., in the name-sorting exercise, students created test
cases using names that are popular nationally, regionally, and culturally), which shed light
on the unique social and cultural aspects of students’ backgrounds [38]. We believe that
the opportunity to create test cases related to their interests adds additional motivation
for students to engage in the test creation process. In addition, our evaluation indicates
that through sharing tests and discussing code with peers, students feel more engaged and
connected with the class. Particularly in online classrooms, students would largely benefit
from a stronger degree of social presence [111] by interacting with their peers in various
learning activities. Designers of future collaborative learning platforms may learn from
our design and leverage synchronous technologies to build social and structured activities
[33, 29, 121] in platforms that connect students.

8.5.1.3 The challenges of connecting students

We designed PuzzleMe as a platform for easily creating and distributing programming
exercises while engaging students through live peer testing and live peer code review. As
we found when designing PuzzleMe, students might feel shy or hesitant to talk to each
other, especially in situations that might expose their lack of understanding of the ma-
terial to their peers, such as asking for help. We proposed various design decisions to
create an encouraging collaborative space, such as providing real-time feedback on test
cases so that students are comfortable sharing them with others, keeping students anony-
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mous when sharing code and reviews, and allowing instructors to monitor and intervene in
group conversations. However, our evaluation suggests that prompting conversations be-
tween students is still challenging. Compared to live peer code review, students might feel
more comfortable with non-conversational interaction with peers (e.g., sharing and using
test cases created by others). Future research could look into the reasons that students
fail to connect with their peers and address the challenge from both social and technical
perspectives. For example, it is worth exploring the e↵ect of the pairing mechanism on
students’ self-e�cacy and power dynamics in group discussions.

8.5.2 Future Work

8.5.2.1 Towards test-driven learning

As participants in Study 3 mentioned, PuzzleMe can be useful in supporting test-driven
learning, a pedagogical approach that can improve comprehension of concepts but re-
quires extra learning e↵ort in creating test cases, particularly in early programming
courses [83]. PuzzleMe can help address these challenges by reducing the barriers and
learning costs for students to write test cases. PuzzleMe introduces a straightforward de-
sign that maps the given variables, solution code, and assertion statement in a linear order
so that even students who have no experience in testing frameworks can easily pick up
how to create tests. PuzzleMe ensures that students can get immediate feedback on the
test by running it against the instructor’s standard solution. This mechanism increases
students’ confidence in their test cases, and thus the problem formulation, before even
starting to write a solution. Finally, peer-driven test creation provides the opportunity for
HCI and CSCW researchers to further explore di↵erent implementations of test-driven
learning. For example, the instructor can provide a solution with intentional bugs and ask
students to identify edge cases to catch these bugs or misconceptions.

8.5.2.2 Peer assessment beyond introductory programming

Adopting PuzzleMe’s approach beyond introductory programming might require further
design exploration regarding aspects such as assessment format or content presentation.
Prior work has explored ways to improve peer assessment quality in open-ended tasks,
such as providing comparisons [29], framing task goals carefully [77], and using expert
rubrics [202]. Future work could explore the use case of live peer testing and live peer
code review in open-ended assessment on programming-related topics (e.g., providing
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feedback for system architectural design, code review). Content-wise, P3 from Study
3 suggested a “top down camera view” for in-circuit live peer testing. Prior work also
introduced a representation of Graphical User Interface (GUI) test cases that is more
readable than a standard textual log [34]. Future work could explore the appropriate
design for exercises that require more than a text exchange between peers [26].

8.5.2.3 Towards matching peers intelligently

PuzzleMe leverages the correctness of students’ code for peer matching, but future work
could use di↵erent criteria. For example, one could extract code fixes from students who
have achieved the correct solution after multiple attempts and apply them to students who
have incorrect solutions [74], capturing conceptual pathways through the problem space.
One could also connect students who make similar mistakes, where one has resolved the
problem and others have not, ensuring the help giver has experience in addressing their
peers’ issues. The matching criteria may also depend on the deployment context. For
instance, in Massive Open Online Courses (MOOCs), creating culturally diverse groups
of learners may provide additional learning opportunities—students may be able to not
only learn a given programming concept but gain intercultural competencies while doing
so.

8.5.3 Limitations

The design of PuzzleMe was tailored for introductory programming courses, and the de-
sign of the live peer testing component was focused on simple programs made up of a pair
of given conditions and expected outputs. Advanced testing techniques like exceptions,
callbacks, and dynamic tests are not implemented in the current system but may repre-
sent additional opportunities for learner collaborations. PuzzleMe’s current design cannot
be used directly for non-text-based programming and testing, like UI testing or Printed
Circuit Board (PCB) testing. In addition, our evaluation was done on a small scale with
fewer than 50 subjects. Future work should explore the e↵ectiveness of peer assessment
mechanisms in larger classrooms or MOOCs.
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8.6 Conclusion

This paper presents PuzzleMe, an in-class programming exercise tool for providing high-
quality peer feedback at scale. PuzzleMe achieves this by two peer assessment mech-
anisms: live peer testing, which allows students to identify and share test cases for as-
sessing the robustness of programming work, and live peer code review, which groups
students intelligently to improve code understanding. Our evaluation study demonstrates
the usefulness of PuzzleMe in helping students identify cavities in their code and explore
alternative solutions, and in reducing the teaching load for instructors. PuzzleMe opens up
possibilities for HCI and CSCW researchers to further study learnersourced test creation
and test-driven learning in introductory programming courses.
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CHAPTER 9

Colaroid: Authoring Explorable Multi-Stage
Tutorials

Multi-stage programming tutorials are key learning resources for programmers, using
progressive incremental steps to teach them how to build larger software systems. A good
multi-stage tutorial describes the code clearly, explains the rationale and code changes for
each step, and allows readers to experiment as they work through the tutorial. In practice,
it is time-consuming for authors to create tutorials with these attributes. In this paper,
we introduce Colaroid, an interactive authoring tool for creating high quality multi-stage
tutorials. Colaroid tutorials are augmented computational notebooks, where snippets and
outputs represent a snapshot of a project, with source code di↵erences highlighted, com-
plete source code context for each snippet, and the ability to load and tinker with any
stage of the project in a linked IDE. In two laboratory studies, we found Colaroid makes
it easy to create multi-stage tutorials, while o↵ering advantages to readers compared to
video and web-based tutorials.

9.1 Introduction

Programmers often need to communicate how a program is built in increments from
scratch. For instance, instructors teach programming students by showing them not just
final solutions, but also how those solutions are written step-by-step, demonstrating the
process of designing programming solutions as they do so. Streamers [56] broadcast their
programming activities live to show how they build, deploy, and debug software projects
of broad interest. During everyday work and study, programmers write reports and blog
posts describing how they wrote code to reflect on their process and seek feedback. Mem-
bers of software teams explore how code evolves by reviewing versions of that code in
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pull requests and commit records. And authors of software libraries author getting-started
guides [40] that show how to create simple applications that incorporate their software.

Ideally, one could create beautiful records of how programs are constructed with ease.
Such a record might allow readers to easily see what has changed in the code from one
stage of its development to the next, and empower readers to execute and tinker with each
version of the code in their own development environment. However, in reality, creating
such records of program construction can be time-consuming and di�cult [134, 76].

Recently, computational notebooks have seen widespread adoption as a medium for
creating rich descriptive documents about code. Notebooks allow authors to blend pro-
gramming instructions with annotations of that code. In this way, computational note-
books support the practice of literate programming [96], or writing programs as “essays”
intended to be read. Because they support the possibility of integrating code snippets,
documentation, and figures, such notebooks have been used by data scientists to create
code tutorials [103, 44]. They support a kind of exploration and tinkering that is cen-
tral to “learning by doing”[97], because in a computational notebook, a code cell can be
modified and executed, allowing readers to explore how changes to the code influence the
results. Despite their value in describing programs in domains like data science, the note-
book paradigm has yet to influence the practice of describing how code is built in stages.
This is because the predominant execution paradigm of contemporary notebooks is one
where each cell is executed independently by submitting it to a REPL (read-eval-print
loop). Instructions are submitted to an interpreter in sequential order. Thus, in practice,
these tutorials typically consist of cells of code at the granularity of standalone functions
or processes.

In many domains of programming, code is developed through a cyclical process of
editing, compiling, and running the code. For example, a programmer may iteratively
tweak the labels of a data visualization until they arrive at a set that succinctly and clearly
describes the data, or a web programmer may build a web program through incremental
elaborations to “spaghetti code” [120] split across multiple files. Such a process, while
common to software development and imperative to convey in many programming me-
dia, is di�cult to describe in a conventional notebook. How can we help programmers
document incremental code construction for a broader set of programming tasks?

In this paper, we introduce Colaroid,1 a temporal-based notebook that enables au-
thors to flexibly track and document multi-stage code construction, and creates tutorials

1A portmanteau of the words “code,” referring to coding tutorials, and “Polaroid” [194], a series of
cameras that allowed photographers to easily and rapidly take and print a series of photographs.

197



that are interactive, explorable, and IDE-integrated. Colaroid stands out from traditional
computational notebook tools in several ways. First, it is embedded within the context
of the authentic practice environment — the IDE where programmers can work on any
programming activities in their familiar programming environments. Second, each code
cell is made up of code changes, allowing programmers to organize the steps based upon
pedagogical considerations rather than syntactic constraints. Meanwhile, Colaroid orga-
nizes the explanations and code snippets into the computational narrative structure for
storytelling, providing output previews of each cell, and allowing users to easily tinker
and explore an intermediate step.

We conducted two studies to evaluate the usefulness of Colaroid in the context of web
programming tutorials. The first study focuses on the authoring experience where we
asked instructors to create web programming tutorials on given topics using Colaroid.
The second study explores the reading experience where we compared how readers in-
teract and perceive di↵erently among Colaroid, video, and article tutorials. The results
show that the instructors find the process of creating web programming tutorials in Co-
laroid integrates well into their programming workflow. They found it easy to sca↵old the
programming process, annotate their thoughts while working on the programming, and
post-edit the tutorials after they are done. In particular, they found it useful to not only
explain the final solution, but also teach how to think like a programmer, demonstrate au-
thentic practices of decomposing features, and show the hurdles of where things could go
wrong. On the readers’ side, Colaroid ensures that the narratives are easy to follow and
reproduce. They found it better explains the construction of the program and the impact
of code changes between steps. In addition, readers are more willing to explore and tinker
with intermediate steps in Colaroid, and thus more engaged with the tutorials. Moreover,
readers perceive that the Colaroid tutorials allow both quick skimming and deep dive, and
take less time to read in general.

In summary, our work makes the following contributions:

• We contribute an alternative design of temporal computational notebooks that allow
programmers to author computational narratives on incremental code construction;

• We implement Colaroid, a system that integrates the idea of temporal computational
notebooks and tailors for the context of web programming;

• We reveal the advantages and limitations of this new approach from both the au-
thoring and learning experience.
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9.2 An Exploratory Analysis of Multi-Stage Program-
ming Tutorials

Multi-stage programming tutorials allow authors to demonstrate the incremental construc-
tion process of a programming project and encourage learners to learn by doing. Prior
work [76] has been done to describe technical tutorials broadly. In this work we are
interested in the makeup of tutorials in a more narrow context, where the tutorial is in-
tentionally designed to support learners who are replicating the work of the author by
following a set of clearly delineated stages. To gain a better understanding of the nature
and composition of stages in this tutorial format we expand on the work of [76] by en-
gaging in an exploratory content analysis of 44 such tutorials to understand how authors
arranged, formatted, and linked these stages together.

9.2.1 Collecting Representative Multi-Stage Tutorials

9.2.1.1 Selection Criteria

To better collect representative multi-stage tutorials, we came up with the following cri-
teria:

• The tutorial must demonstrate the implementation process of a meaningful pro-
gramming project. We exclude tutorials that are API documentation and example
snippets, or blog posts that draw references to several code fragments from di↵er-
ent projects. For example, tutorials on di↵erent ways to implement asynchronous
programming in JavaScript would be excluded, while a tutorial which uses asyn-
chronous programming in JavaScript as a stage in a project would be included.

• The tutorial must focus on achieving a specific programming project outcome. Thus
we would exclude tutorials that teach configuration processes, such as how to con-
figure a cloud service through GUI or using a given command line tool.

• The tutorial must contain at least two stages that involve coding. As we are inter-
ested in the mixture of technical and pedagogical support, we consider a stage to be
a piece of the writing which has both English text which sca↵olds the learning and
code demonstrating how to achieve an outcome. Stages could also contain other
forms of media support (e.g., images, animated GIFs).
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9.2.1.2 Multi-Stage Tutorials Linked from Stack Overflow

Following the sampling methodology of Head et al [76], we harvested links to multi-
stage tutorials from Stack Overflow. We scraped links from Stack Overflow answers that
contained the keyword “tutorial”. The results were then filtered based on the recency (no
later than 2017) and quality (has more than 5 up-votes) to narrow our investigation, and
considered only the first 500 URLs matched. For each match we manually inspected each
tutorial to determine whether it met our selection criteria. Of these tutorials, 27 (5.4%)
matched our criteria, as many of the outgoing links from Stack Overflow responses were
to API documentation, or tool-based tutorials. From this list of 27, the majority 17 of
the tutorials (63.0%) were authored by o�cial library teams or organizations and the
remaining 7 (25.9%) were personal blog posts.

9.2.1.3 Multi-Stage Tutorials on FreeCodeCamp

To collect a wider variety of tutorials, we additionally collected 17 multi-stage tutorials
that are personal blog posts on FreeCodeCamp, a popular programming tutorial sharing
site. We located the tutorials by searching titles that contain keywords “step-by-step” or
“from scratch”. We then manually skimmed through the tutorials and filtered them based
on the selection criteria. In addition, we only kept one unique tutorial if there are multiple
tutorials from the same author.

9.2.1.4 Data Analysis

Three authors filtered and initially examined the sampled tutorials. The selection criteria
was iteratively refined on a sample of 50 tutorials until substantial agreement was attained
(Fleiss’  � 0.8). In total, we collected 44 step-by-step tutorials. A list of tutorials
that were analyzed appears in Appendix ??. Then one author selected tutorials using
the criteria, and then conducted an initial qualitative analysis via open coding [168] to
identify common themes (as shown in Table 9.3) related to the research questions. The
themes were discussed, refined, and categorized by three authors. More specifically, we
categorized the themes in to five aspects: sca↵olding strategies, composition of code
snippets, presence of code snippets, presence of intermediate results, and strategies to
support learning by doing.
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9.2.2 Results

9.2.2.1 How do authors sca↵old the stages?

As shown in Table 9.3, we identified three di↵erent strategies for sca↵olding the stages
— iterative build-up, module-based build-up, and aggregated build-up:

Some tutorials use an iterative build-up strategy, where the current stage iteratively
builds upon previous stages. In iterative build-up tutorials, authors may make changes at
any line of the codebase. For example, T1 contains a stage where the authors declare a
function definition. It then wrapped the function into a class definition. This sca↵olding
approach is used more in web programming or mobile development tutorials because of
spaghetti code [120].

In contrast, module-based build-up and aggregated build-up have a complete block
of changes that are self-contained. For module-based build-up, the module code blocks
are independent of each other. They may be positioned in separate files and do not need
to be combined in a certain order. We observed module-based build-up for both web
programming and data science programming tutorials. For example, T13 is a data science
tutorial on fine-tuning models. T13 is implemented with the functional programming
paradigm where each stage declares a pure function. This tutorial focuses on how each
function is implemented, rather than how functions are combined and used together.

For aggregated build-up, the new code block can be linearly appended to the end of
the previous code base. This sca↵olding approach is used more often for data science
programming or machine learning programming tutorials.

9.2.2.2 How do authors structure the code snippets for a stage?

Next, we summarized the structures of the intermediate code snippets and discussed how
they fit with the sca↵olding strategies. The first composition structure we observed is
showing changed code only. For example, T5 demonstrates the usage of an API for An-
droid development and it involves changing multiple files. The tutorial contains only
the modified code lines for stages. Without enough context, it might be hard for read-
ers to understand where the changes occur. On the other side, we observed that most
module-based build-up tutorials and aggregated build-up tutorials choose to display only
the changes. Displaying only the changes is enough since the code blocks are indepen-
dent of each other, and the learners can just position them at the end of the codebase. In
addition, it saves space and makes the tutorial concise. For iterative build-up tutorials,
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authors usually provide the context of the changes. Some tutorials provide the complete
context of a relevant code file. However, this may not work when the code file gets long
and the tutorial may contain too many duplicated code. Thus, some tutorials choose to
provide partial context by attaching the code lines nearby the changes.

9.2.2.3 How do authors present the intermediate code snippets?

We found that most code snippets were rendered in the article with visual styles to make
them stand out from the plain text. Most tutorials will wrap the code snippets with a
di↵erent background and font style. And some tutorials further add syntax highlights to
make them more distinct from other elements in the tutorial. In addition, code changes
are highlighted in tutorials that have provided full or partial context. To help readers
locate how the intermediate code snippets fit into the context, several tutorials (T4, T9,
and T10) use mechanisms such as adding line numbers, adding file names, or directly
explaining where the changes should go to. Notably, these styled code snippets with
change highlighting and context locators are more likely to be found in o�cial library
tutorials. Most personal blog post tutorials use Markdown inline code rendering and are
limited at tracking code changes and locating the changes in the entire project source
code.

9.2.2.4 How do authors present the intermediate results?

In addition to the presence of code snippets, we investigated the display of output pre-
views in tutorials. We believe that providing intermediate results can help readers better
understand what they need to achieve in each stage when reading through a tutorial. It
also helps readers to align their progress if they choose to learn by replicating the stages
in the tutorials locally. However, we found that most tutorials have low coverage of inter-
mediate results in general. We observed that authors may directly display the output if the
output is textual (e.g., an output from console), take screenshots (either static image or
animated GIF) of a visual output, textually describe what is expected to happen, or attach
a working demo. Some tutorials only present the output of the project for the last stage.
We suspect that this is due to the additional cost of presenting the intermediate results. For
example, authors may need to embed a working partial version of the application which
they would need to change if the code changes, or save a screenshot and upload it to the
static assets of their site, or rehearse and record a GIF.
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9.2.2.5 How do tutorials support learning by doing?

Lastly, we investigated elements in the tutorial that might encourage readers to learn by
doing. It is common to see tutorials attaching a link to the final source code for read-
ers to dive into details. Some tutorials also provide a starter code and encourage readers
to follow along the way. However, in some cases, readers may not want to follow the
tutorial from the beginning. Instead, they may want to skim the beginning, jump to a
certain stage, and start from there. We observed that some tutorials provide an embedded
code live playground where readers can directly tinker the code and see the updated out-
put. However, these embedded code live playground are rarely provided for every stage
because of the high cost of creating.

9.2.3 Design Opportunities to Improve Authoring and Reading Ex-
perience

To motivate the design of a literate programming approach for authoring multi-stage tuto-
rials, our formative analysis explores the composition of representative multi-stage tutori-
als. Inspired by the results, we discuss potential challenges and opportunities to improve
the authoring and reading experience of these tutorials.

9.2.3.1 Design Tutorial Authoring Tools to Capture and Document the Entire In-
cremental Building Process

Our formative study shows that multi-stage tutorials can be useful for demonstrating and
explaining how a programming project is incrementally built from scratch. Depending
on the programming project, the authors may create small or big incremental stages and
provide the code and explanations for the stages. These tutorials allow learners to not
only understand how the final source code works, but also the authentic practice of how
to decompose the stages and build it incrementally. We argue that tutorial authoring tools
should allow authors to capture the authentic incremental building process as if doing a
video recording of the code editor.

9.2.3.2 Design Tutorial Authoring Tools to Capture the Context of Code Changes

In addition, we discovered three di↵erent ways to break down the coding process. For
module-based build-up and aggregated build-up, existing approaches like computational
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notebooks [137] and Codestrates [147] allow authors to treat each code change as an indi-
vidual code cell and linearly aggregate them together in the final document. However, if
the process can not be simply broken down into individual pieces, authors need to provide
context to indicate where the incremental changes are positioned. More specifically, we
observed several strategies for describing the context, including providing incremental
changes only, providing the complete context of the current code file, and providing the
partial context of the current code file. Comparing the strategies, we argue that it is more
work to capture the complete context of the current code, and would result in a long and
tedious document and cause information overload if the project scales up. However, due
to expert blind spots, providing the partial context of the current code file or providing
incremental changes only may result in learners’ confusion to follow the stages. Thus,
we further argue that tutorial authoring tools should help authors capture and e�ciently
present the full context of the changes.

9.2.3.3 Design Tutorial Authoring Tools to Preview Multi-Stage Output

Multi-stage tutorials usually capture both code changes and the output. The output of the
stages can be presented in the form of screenshots, video recordings, or textual descrip-
tions. However, we found that most tutorials only provide output previews for important
stages, with an exception of a tutorial written in the Jupyter Notebook that captures the
output preview for every stage. We argue that previewing the output of each stage is
important for learners to understand the impact of code changes. Given that the process
of creating an output preview for each stage is time-consuming, we believe that there
is an opportunity to improve tutorial authoring tools to automatically capture the output
overview.

9.2.3.4 Design Tutorial Authoring Tools to Encourage Learning by Doing

From the exploratory analysis, we found that multi-stage tutorials contain elements that
make it easier for learners to try out the code, which include starter code, full source
code, and a live playground. Learners can better understand and follow the tutorial by
replicating and tinkering with the stages. However, we observed that most live code
playgrounds embedded in tutorials are only provided for the last stage. Learners have to
follow the stages and can not flexibly skip stages to explore a stage of their interests. This
indicates a design opportunity for tutorial authoring tools to enable learners to run and
edit stages easily.
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Figure 9.1: An overview of Colaroid. Colaroid is implemented as a VS Code extension.
The user can open the Colaroid Notebook (B) side by side with their main code editor (A).
A Colaroid notebook consists of cells. Each cell captures a history state of the codebase,
which contains three components — a text annotation area explaining the rationale behind
this state (C), a code editor area displaying the state of the code and highlighting the
changes compared to the previous state (D), and an output area rendering the HTML
display of the history state (E).

9.3 System Design

As our formative studies show, tutorial readers benefit from tutorials that are easy to
distribute and enable them to skim the contents of the tutorial while providing enough
detail to revisit individual steps in depth. We designed Colaroid to help authors easily
create tutorials with these properties.

9.3.1 Illustrative Scenario

To illustrate the design of Colaroid for documenting incremental code construction and
sharing tutorials, we will use a hypothetical scenario. Alice is a tutorial author who wants
to create and distribute a tutorial that describes how to build an HTML-based “Flappy
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Bird”2 clone. We will also follow Bob, one reader of Alice’s tutorial. We will use Alice
and Bob to illustrate the features of Colaroid in the following subsections.

9.3.2 Overview of Colaroid Notebooks

As shown in Figure 9.1, every Colaroid notebook exists as part of a larger codebase.
Specifically, we implemented Colaroid as an extension for Visual Studio Code (VS Code),
which is currently the most widely used IDE according to a recent survey3. This helps
optimize Alice’s authoring experience by allowing her to write a tutorial while staying
within her authentic development context. We implemented and tested Colaroid in the
context of web programming (due to its ubiquity) but its design could be easily adapted
and expanded to more languages and paradigms.

To start writing her tutorial, Alice first opens her VS Code editor and creates a new
directory containing a HTML file with several starter lines, as she would do if she were
writing this code outside the context of a tutorial. To create a tutorial, Alice opens the
Colaroid tutorial authoring side-panel (shown in Figure 9.1.B) from the VS Code menu
bar. The Colaroid panel is adjacent to Alice’s regular code editor (Figure 9.1.A). In this
panel, Alice sets the tutorial title and adds a short description of the tutorial in natural
language and Markdown.

9.3.3 Cells as Steps in Colaroid

In Jupyter (and most other computational notebooks), code is divided into “cells” where
each cell usually represents a single conceptual block. For example, a cell might con-
tain all the code responsible for compressing all of the data that another cell produced.
However, this conceptualization of cells is a poor fit for interactive web applications, like
the “Flappy Bird” game that Alice is building. This is because web applications rely
on event listeners and callbacks, which often results highly inter-dependent “spaghetti
code” [120]. As a result, the implementation of a single behavior might be split across
many places in the code and di�cult to isolate into a single cell. This can be particularly
challenging in web programming, which relies on three separate languages (HTML, CSS,
and JavaScript) to perform di↵erent functions on the same UI elements. For example, the
code responsible for properly displaying an element might consist of HTML to define the

2
https://en.wikipedia.org/wiki/Flappy_Bird

3
https://survey.stackoverflow.co/2022/#section-most-popular-technologies-integ

rated-development-environment
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content of that element (which needs to be placed in the appropriate part of the larger doc-
ument), CSS to specify its appearance (which is typically in a di↵erent file), and multiple
distributed segments of JavaScript (which is subject to the aforementioned spaghetti code
phenomenon) that describe its dynamics.

Further, the order in which tutorial authors may want to explain their code often does
not match the order of the code itself. It can me more intuitive to explain a code base
through a description of components that are connected either conceptually or by their
runtime behavior instead of through a line-by-line discussion from top to bottom.

To address these challenges, we re-conceptualized “cells” in Colaroid in a way that
would allow them to represent code distributed across multiple locations, in any order.
Rather than representing the code itself (which is often impossible to group into one cell)
cells in Colaroid contain “pointers” to regions of code in the larger codebase context.
More specifically, these pointers reference code edits—insertions and deletions in the
larger codebase—that explain a part the resulting code. In the context of tutorials, each
cell typically represents a step in the tutorial. In other words, a Colaroid cell represents a
historical state of the programming process.

Every cell contains three components to make the historical state that they represent
more understandable for readers: a text area to describe the explanations and rationales
of the code in this state (Figure 9.1.C), a code preview area showing the state of the
code and highlighting the changes from the previous state (Figure 9.1.D), and an output
area where the code in this state is rendered as a live HTML preview (Figure 9.1.E). For
example, Alice might create a cell describing how to add a “Score” indicator that points
to: 1) HTML code that defines its content, 2) the portion of CSS that specifies its font
and size, 3) the JavaScript code that updates it to add to the score when the user avoids a
boundary, 4) the JavaScript code that resets the score when the user starts a new game, etc.
Alice might augment that cell with a brief description of what the code does and illustrate
its e↵ect by recording an example game session that Bob and other tutorial readers can
replay, see, and interact with. The following sections will describe how Alice does this in
more detail.

9.3.4 Authoring Tutorials by Documenting Incremental Changes

Colaroid optimizes the authoring experience by allowing the authors to write these tuto-
rials while staying within their authentic development context, capturing the context and
highlighting the changes with minimal e↵ort, and enabling rich editing and styling on the
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tutorials. Colaroid automatically tracks the changes across multiple project files and dis-
plays the code preview and the output preview under the explanations. This means users
can progressively author the first draft of the tutorial as they construct the program.

After Alice initializes the tutorial, she begins to write code to create the central ‘bird’
character. In her code editor, she adds a <div> HTML element in the HTML file, writes
CSS code to specify the bird’s size and color, and references the CSS code from within
the HTML file. After testing the page locally, Alice decides to pause here to create a cell
in Colaroid. The new cell automatically references Alice’s edits and Alice can add a more
detailed explanation of her changes in Markdown.

9.3.5 Recording Interactions in Output Widgets

The impact of code changes on the output might be not straightforward to observe. Natu-
ral language explanations might be helpful but insu�cient to understand the code changes
in a cell. It can instead be helpful to have a chance to see and try the resulting program,
particularly for UI code that reacts to user input. Colaroid cells contain an “output” widget
that display the UI at the historical state represented by that cell.

However, the specific part of the output that readers should focus on might not be
readily apparent. For example, a tutorial author might write a cell containing code that
reacts when the user hovers over a given element. The e↵ect of these changes will not be
apparent until a reader interacts with the output in the correct way. Thus, Colaroid allows
tutorial authors to optionally record example interactions (e.g., typing or clicking on UI
elements). These example interactions are automatically replayed for tutorial readers.

For example, suppose that after Alice writes the aforementioned code to create the
‘bird’ character, she decides to implement the interactive behavior of the bird character.
Alice creates a JavaScript file and links to it from her HTML code. In the JavaScript file,
Alice writes code to make the bird jump when users click the screen. Alice makes this a
new step in the tutorial. When she does, Colaroid displays an output preview where Alice
can interact with all of the code up to that cell. As Alice clicks the output preview widget,
she is able to see the bird moving. To make the e↵ect of her code changes more apparent
for readers, Alice records her interactions. Alice is able to replay her interactions by
clicking on the ‘play’ button and can re-record as necessary. Readers like Bob can replay
these interactions and experiment with the code and output at this (and every) step.
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9.3.6 Revising and Editing Colaroid Notebook Cells

In our pilot studies with early prototypes of Colaroid, participants expressed the impor-
tance of correcting errors in post-editing. Colaroid supports a variety of post-editing with
the draft tutorial, including editing text explanations, editing code, and annotating out-
puts. For text explanations, users can toggle the display into a Markdown editor and
make changes to the content. We implemented Markdown styling with Colaroid, which
could be easily extended into a rich text editor for editing and styling the explanations. In
terms of modifying code, Colaroid allows users to zoom into a particular cell by restoring
the local files into the state of the cell and directly making changes from the main code
editor. In order to keep the edits synchronized [60], we chose to propagate these changes
to the follow-up cells.

Thusfar, Alice has created three cells in Colaroid. However, she realizes that she forgot
to change the HTML page title in the initial step, as shown in Figure 9.2. Alice can edit
the initial step in Colaroid by clicking the ‘revise’ button, which then restores the state
of every file in her codebase for that step in the tutorial. Alice then fixes her mistake
by adding a page title and saving her changes. Colaroid automatically propagates her
changes to later steps, which means the page title in steps 2 and 3 are also updated.

9.3.7 Sharing and Distributing Tutorials

After creating the tutorial, authors can share the entire project folder with learners so that
they can open the tutorial in their own code editors. Authors can also export the tutorial
into hosted webpages and static PDFs. Below, we explain how tutorials are stored, and
describe several ways to share and distribute tutorials.

9.3.7.1 Leveraging Git for Code Versioning

Colaroid stores code changes by leveraging the git version control system. Addition-
ally, Colaroid creates a JSON dictionary for storing the tutorial information, including
the mapping between the code commit identification, the text annotations and the output
interaction recordings. Thus, authors can directly pass the project folder to learners in
order for them to open the Colaroid notebook in their own editor. Future front-ends for
Git repositories (e.g., GitHub and GitLab) could easily add native support for Colaroid
tutorials.
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9.3.7.2 Sharing through Cloud Platforms

Alternatively, authors can also host their project folders through repository hosting plat-
forms (e.g., GitHub, Bitbucket). When learners download the project code, they can
access the Colaroid narrative by clicking the “Open Colaroid Notebook” option in the ed-
itor’s menu. With cloud computing environments that connect to these repository hosting
platforms (e.g., GitHub Codespaces), learners can directly play around with the narrative
in their browser. This approach overcomes the burden of cloning the project and opening
it in their own editor, which requires Colaroid to be pre-installed.

Alice completes her tutorial and polishes it by fixing issues in intermediate steps and
adding interaction recordings. Alice uploads her project directory to GitHub, a code
repository sharing site. At some later point, Bob finds Alice’s tutorial and decides to open
the GitHub Codespace to view it on a cloud-hosted VS Code editor.

9.3.8 Reading Tutorials

Colaroid enhances the experience of reading tutorials by encouraging learners to actively
play around and explore the intermediate steps. In addition, it can render tutorials into
several di↵erent formats according to learners’ needs.

9.3.8.1 Explorable Explanation

Inspired by computational notebooks, Colaroid allows learners to freely explore the in-
termediate steps to engage with the narrative. This way of learning concepts through live,
interactive, and reactive environments has been characterized as “explorable explanation”
[176]. We design two mechanisms to support the explorable explanation. First, when
skimming through the narrative, learners can play with the live preview of the output or
watch the recorded interactions to get a better sense of what the current progress is. Next,
if they are interested in exploring an alternative solution, they can load the state of the cell
into their main code editor and tweak around with it.

9.3.8.2 Rendering Notebooks into Multiple Formats

Colaroid notebooks can be rendered into multiple formats according to users’ needs. In
addition to the default article view, learners can browse the steps in a “slide view”, which
gives them the focus on a particular step. They can also browse the steps in a “timeline
view”. As the learners move the progress bar, the state of the intermediate code will be
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loaded to the main editor, which provides learners with a guided tour around the construc-
tion of the program.

After Bob finds Alice’s tutorial, he quickly skims through the initial steps in the ‘arti-
cle’ view. Bob skims through the text annotations and highlighted code changes to skip
steps when he already feels comfortable with the code changes. In addition, Bob can also
visually observe the output of each step to gain an intuitive understanding.

At step 4, Bob notices that the tutorial describes the ‘repeat’ option in CSS. This is the
first time Bob has heard of this property so he wants to do a deep dive and explore what
things look like with alternative values. Thus, Bob clicks on the step to open the state
of the codebase at that step in the VS Code editor. The state of the project is temporarly
restored to that of step 4. Bob is able to browse and directly modify the code to experiment
with its output. After exploring step 4, Bob can continue to read through the notebook
and explore other steps.

9.3.9 Implementation

We implemented Colaroid as a VS Code extension so that we can enable the interaction
between the tutorial panel and the code editor. In this section, we highlight the important
implementation choices for Colaroid.

9.3.9.1 The Notebook View

The front-end component of Colaroid is built with the VS Code Extension Webview API,
which renders HTML content and passes messages between the editor and the extension.

9.3.9.2 Mapping Git Commit with Tutorial Cells

Colaroid uses git to manage code versioning and editing and a separate JSON file
(.colaroid.json) to determine how cells are rendered. Using git allows Colaroid
to leverage a robust, widely-used versioning tool. For every cell in the notebook,
.colaroid.json stores: message (the Markdown text of the step), hash (the corre-
sponding git commit hash for the step), and recording (recorded interaction—mouse
movement, clicks, etc.).

We chose to augment git with a separate data file (.colaroid.json) for several rea-
sons. First, this structure allows us to easily remove a step without having to remove the
commit. Second, we did not directly store the explanation as the commit messages for
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Figure 9.2: Colaroid implements code versioning and change propagating through git.
Suppose the author wants to edit the first step (e.g., changing HTML page title) and
propagate the change to subsequent steps. Colaroid maps steps with the hash ID of the
code commits in Git. As shown in phase 1 and phase 2, Colaroid will first check out the
main branch into a new branch named “change” and reset the head to the code version
that needs to be edited. By doing this, authors would see commit A loaded in their code
editor. Next, tutorial authors can make changes directly in the code editor. Once they
confirm finishing the edits, Colaroid will create a new commit for the changes and merge
commits in the later steps into the change branch.

easy modification and unlimited word length. Lastly, this approach also allows us to store
additional annotations like interactive recording data with each step.

9.3.9.3 Propagating Changes

As Figure 9.2 shows, Colaroid leverages git to implement code versioning and change
propagation. When a user clicks on the ‘edit’ button of a code snapshot, Colaroid checks
out the current branch into a temporal branch, and reset the head to that code snapshot
(say commit A). This loads the code snapshot into the user’s editor and allows them to
make changes. After the changes are done, the user would click on the save button,
which triggers Colaroid to create a new commit in the temporal branch (say commit
A'). Next, Colaroid starts the change propagation process. Colaroid loops through all
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the commit hash IDs for commits in the notebook JSON file. For each commit (say
commit B), Colaroid would execute the git cherry-pick command with the merg-
ing strategy to be ours. This command would attempt to automatically merge the two
commits (commit A' and commit B) and pick the original commit (commit B) if the
changes can not be propagated automatically. After merging, we now get a new commit
(say commit B'). Colaroid then updates the mapping table from [commit A, commit
B] to [commit A', commit B']. The underlying mechanism of git cherry-pick is
implemented using a three-way merge algorithm, similar to [60]. We choose to leverage
git cherry-pick because it is a standard and widely-used implementation.

9.3.9.4 Recording Interactions in Output Snapshot

Colaroid allows users to record interactions to demonstrate behaviors in an output snap-
shot. The output snapshot is implemented as an <iframe /> element that renders the
code snapshot. We implemented the interaction recording by injecting a tracking script
inside the iframe that captures mouse and keyboards input. This input data is times-
tamped and stored in the notebook JSON file.

9.4 System Evaluation Overview

To evaluate how Colaroid supports documenting incremental code construction, we de-
signed two studies to investigate the authoring experience and the reading experience
of Colaroid. To evaluate the authoring experience, we recruited instructors and senior
students to create web programming tutorials from given topics using Colaroid. We sum-
marized how they perceive the usability of Colaroid and how they compare Colaroid with
other tutorial authoring tools. To further investigate the benefit of the Colaroid narra-
tive in communicating the code construction process, we deployed Colaroid tutorials in a
web programming workshop where students learned new programming concepts through
project-based examples and applied them to a di↵erent context. We reported how students
use and perceive Colaroid tutorials di↵erently from a traditional static article tutorial and
a video walkthrough.
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Table 9.1: For study 1, we recruited 10 teaching assistants and senior students who are
experienced in web programming.

PID Background Web
Prog.
Exp.

Teaching Exp. Tutorial Topic Tutorial
Length

Word
Count

I1 Ph.D. in CS 6 Years Teaching Assistant Lottery Number Generator 16 463
I2 Ph.D. in CS 15

Years
Teaching Assistant Counter 4 98

I3 Master in IS 4 Years Tutoring Number Guessing Game 4 485
I4 Senior in IS 2 Years Tutoring Bootstrap 5 102
I5 Master in IS 4 Years Teaching Assistant Counter 7 178
I6 Ph.D. in CS 2 Years None Counter 5 30
I7 Master in IS 3 Years Tutoring Lottery Number Generator 7 152
I8 Master in CS 2 Years None Counter 10 237
I9 Master in CS 3 Years None Calculator 13 1063
I10 Master in IS 8 years Teaching Assistant Todo List 7 219

9.5 Study 1: Evaluating the Authoring Experience

To evaluate the authoring experience of Colaroid, we conducted a user study with 10 expe-
rienced web programmers where participants are asked to create a project-based tutorial
using Colaroid. The scope of this study is to focus on the authoring experience from
the tutorial creators’ perspective, instead of the learning experience from the learners’
perspective. More specifically, we aim to explore whether tutorial authors find Colaroid
easy to use, and understand its usefulness compared to their prior experience in creating
programming tutorials.

9.5.1 Method

9.5.1.1 Recruitment

We reached out to both instructors and senior students from the computer science pro-
gram and the information science program on campus. We asked participants to fill a
screening survey to indicate their prior experience in programming and teaching pro-
gramming. Qualified participants identified themselves as experienced web programmers
— including instructors, teaching assistants, or senior students who have previously taken
an advanced web programming class or believe that they have equivalent skills. In total,
we recruited 10 participants (9 graduate students and 1 senior undergraduate student). As
shown in Table 9.1, their experience in web programming varies from 2 years to 15 years.
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9.5.1.2 Study Task

Each study session consists of four components — a training component, a warm-up
task, a freeform exploration task, and a post-task discussion. When participants joined
the study, we first provided them with a 15 minutes training on how to install and use
Colaroid. To ensure that they get enough practice of using Colaroid, we asked them to
perform some exercises in a pre-made Colaroid tutorial. Participants were given a tutorial
on the topic of creating a stopwatch. Participants need to make a few edits using the core
features of , including making changes to a markdown text to explain a concept, making
changes to a previous step, recording an interaction, and building an additional feature
in the application while making it a new step. We encouraged participants to ask any
questions about the usage of the Colaroid notebook. The warm-up exercises last for 15
minutes.

Then, participants completed a 30-minute open-ended authoring task. In this task, a
participant created a first draft of a tutorial describing the construction of a simple web
application. Participants could write about any web application they wished. To help
participants pick a focus, we provided examples of web applications they could focus
on, including counters, TODO lists, and lottery number generators. These recommended
applications were chosen to be simple enough to implement in the time given, yet just
complex enough that the tutorials would be interesting.

Participants were asked to write for an envisioned audience of students who have just
started learning HTML, JavaScript, and CSS. They were asked to add commentary to their
tutorial that described both the functionality of the code, and engineering considerations,
like the rationale behind requirements, and how to debug the code. The amount of time
allotted for the task was su�cient for creating a tutorial with several steps, and draft text
commentary. Full drafts of text commentary and polish were considered outside of the
scope of the task.

After the study session, we asked participants to complete a questionnaire about the
usability of the tool. We also asked participants several semi-structured interview ques-
tions to probe into their feedback. In addition, we requested participants to upload their
tutorials for additional analysis.

Each study session lasts around 80 minutes. All the sessions were conducted virtually
with participants using Colaroid from their own VS Code editors and sharing screens
through video conferencing tools.
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9.5.2 Results

9.5.2.1 Overall Quality of the Tutorials

As shown in Table 9.1, all the participants were able to create a complete tutorial in Co-
laroid in the 30 minutes freeform exploration session. The topic of the tutorial covered
a diverse range, including lottery number generator, number guessing game, calculator,
todo list, and so on. We examined the tutorial artifacts and found that participants used dif-
ferent strategies to sca↵old the steps (as referred as a base unit of the Colaroid notebook)
of the tutorial. For example, I2, I6, and I8 all created tutorials on building a counter. I2
included 4 steps in the tutorial: setting up boilerplate code for the counter project, adding
all the UI elements, programming interactive behaviors, and adding the style of the UI
elements. I6 divided the steps by features with each step implementing a di↵erent but-
ton. I8 provided more detailed steps on how to link to external stylesheets and JavaScript
files, how to get DOM elements in JavaScript, and how to respond to users’ interactions.
Regardless of the sca↵olding strategies, Colaroid ensures that the code context of each
step is captured and organized together into a single narrative. In addition, we observed
that participants use Colaroid to create di↵erent types of explanations. Some participants
(I2, I5, I6, I9) simply explained the purpose of the code changes to each step — what
they did. Others also included various pedagogical instructions. For example, I4 added
many reference links to the Bootstrap API as he went through example UI components; I9
created a fully explained tutorial (1063 markdown words in total) which not only covers
what he did, but also how he did it and why he did it in styled markdowns. From the
post-task questionnaire, most participants (8 out of 10) are satisfied with the tutorials they
created. Several participants (I4, I8, I10) mentioned that if given more time, they would
like to polish the explanations and add more external references, though the first draft is
“good enough for capturing the process” (I4).

9.5.2.2 Easy to Author

Next, we examined how participants perceived the authoring experience in Colaroid. In
the post-task questionnaire, most participants found the system not di�cult to use (9 out
of 10) and easy to learn (10 out of 10). Participants commented that the interface is
“intuitive” (I1, I6, I7). Participants highlighted two features that improve the authoring
experience — propagating changes from editing previous steps (I1, I4, I6, I9), and record-
ing interactions on the output (I3, I4, I5, I9). For example, I1 and I6 mentioned that they
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Figure 9.3: Results of the post-task questionnaire in study 1.

may want to later polish the code or fix mistakes in previous steps; I3 mentioned the
benefits of recording interactions:

I really like how the recorded interaction would track your mouse. I have
worked on similar tutorials before for react components. It is not always
super apparent to learners on what happened to the output. (I3)

Several participants (I1-3, I6-8, I10) who have used Jupyter notebooks mentioned that
the Colaroid notebook reminds them of Jupyter notebook and it is easy to understand
the idea behind Colaroid. Participants also mentioned the di↵erences between the two
notebooks:

This reminds me of Jupyter notebook where you can use it to teaching things
progressively and see how things are worked through. But with Jupyter Note-
book, cells do not usually build on top of each other. Sometimes you can
mess up with the notebook by executing the same cell multiple times or re-
vise a previous cell and rerun it. I think Colaroid captures the process more
honestly. (I3)

In the post-task questionnaire, we probed into participants’ prior experience in demon-
strating a coding project to others. Some participants mentioned live demo in classroom
(I1, I2) or remote sharing (I3) and pointed out two issues with live demo: di�cult for
async setting — “may have di↵erent schedules” (I3), and hard to archive — “depends on
the students in terms of how they take notes about the process” (I2).
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Other participants mentioned their prior experience of authoring article tutorials and
video tutorials and compared it with Colaroid tutorials. Participants reported several chal-
lenges of authoring article tutorials. For example, I2 reported the challenges of switching
context and interleaving the development context when creating article tutorials — “I pre-
fer creating tutorials directly inside the VS Code editor because I don’t have to go back
and forth between di↵erent authoring tools.” (I2); I6 mentioned that it is a tedious process
to supplement all the details in an article tutorial — “I really like to attach screenshots.
But in a Medium post, I am not going to screenshot everything.” (I6); I7 said that mak-
ing an engaging web article is technically hard — “With web articles, I think the biggest
problem is that it is hard to create interactive elements in it. Some people are able to make
very fancy web articles. But it takes e↵orts you know” (I7). For authoring video tutorials,
participants reported the di�culties in post-editing:

In the past I have had to author documentation videos where I am recording
myself going through things step by step for future programmers. But the
problem with the video is the editing process. If I made a mistake, if it is just
a word cut or something, I will start over and continue on. If it is something I
realized later on, I will probably have to go through the entire process again.
(I9)

9.5.2.3 Perceived Benefits for Learners

Lastly, participants made several comments on how they think the Colaroid tutorials will
benefit learners. We categorized the feedbacks into two aspects: potential usage scenarios
and advantages over other tutorials.

For potential usage scenarios, most participants mentioned the Colaroid can be useful
for instructors to deliver demonstrations to students. For example, I5 mentioned creating
lecture notes in Colaroid to make students “easier to follow along in the class.”; I2 and I10
mentioned that students would “get a better sense of the flow by seeing the intermediate
process”. Participants also mentioned that Colaroid can be useful for students to han-
dle their assignments, which helps instructors understand “how they sca↵old the project
and why they do certain things” (I4). In addition, several participants mentioned using
Colaroid for collaboration:

This tool can be potentially useful for collaboration. Consider working with
massive number of people on an open-source project, the documentation is
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very important. It can be helpful to explain decisions regarding each steps.
(I1)

Participants also solicited the advantages of Colaroid over other tutorials from learn-
ers’ perspective, including capturing all the implementation details compared to article
tutorials (I3, I5, I6, I8), encouraging learning by doing rather than passive reading (I2-3,
I6), and less time consuming than video tutorials (I4-7, I9, I10). These results correspond
to our findings in study 2 on the reading experience of Colaroid. Since this is not the
focus of study 1, we will elaborate on these advantages later in the results of study 2.

9.6 Study 2: Evaluating the Reading Experience

Colaroid introduces not only a novel way of authoring tutorials, but also a new approach to
interact with tutorials. Thus, we conducted a second study to evaluate how the a↵ordances
of Colaroid influence the experience of following a tutorial. In the second study, we
provided learners with expert-created tutorials and asked them to apply what they learn
into a new problem context. We compared Colaroid tutorials to two baseline formats of
tutorials — text articles, and video tutorials.

9.6.1 Method

9.6.1.1 Recruitment

The study takes place as part of an advanced web programming workshop. The topic
of the workshop is building HTML5 games, where the target audience are students who
have basic knowledge of HTML5, but have never programmed HTML5 games before.
We reached out to students who are currently taking or previously took the web program-
ming class from our institution. In total, we recruited 16 participants for the study. All
the participants had formally taken classes on web programming, and none of them had
programmed HTML5 games before.

9.6.1.2 Study Setup

The study consisted of two sessions over a span of two weeks. The final project of the
workshop is to build a dinosaur adventure game in HTML5. We provided participants
with a set of tutorials on building a Flappy Bird game in HTML5. The dinasaur adventure
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Figure 9.4: We used GitHub Codespaces for participants to access tutorials. All the three
types of tutorials are displayed side by side with the main code editor.

game in the final project and the Flappy Bird game in the tutorial use similar APIs but are
di↵erent in several mechanisms. We purposely made the final project challenging so that
participants can maximally utilize the tutorials to help them accomplish the goal. We later
validated the task di�culty with experts evaluating the project submissions and found that
half of the participants were able to satisfy 60% of the final requirements.

The final project is sca↵olded into two subgoals. In week one, students were asked
to implement the layout and basic animation of the game. In week two, they finished the
rest of the game by making the game interactive with users’ input. We scheduled a 60-
minute individual session each week with each participant to observe how they interact
with the tutorials. In the first session, we provided 10 minutes of training on how to
use the tutorial environment. Participants then spent 40 minutes exploring the session
goal. After each session, participants were asked to complete a questionnaire asking them
to assess their experience of following along with the tutorial. Lastly, after the second
session where participants have experienced both conditions, we conducted a reflective
interview for comparing the tutorials. All the sessions were conducted virtually using a
video conferencing tool. Participants were explicitly told not to work on the game outside
of the study session.

Our study used a within-subjects design where participants were given the Colaroid
tutorial and one of the traditional tutorials. We counterbalanced the order of the tutori-
als. More specifically, there are 4 participants in each unique combination of conditions
(Colaroid + article, article + Colaroid, Colaroid + video, video + Colaroid).
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9.6.1.3 Study Apparatus

We used GitHub Codespaces for participants to access the tutorials. GitHub Codespaces
allows participants to view the Colaroid tutorials in an online VS Code editor which has
Colaroid installed. The online VS Code editor is connected to a virtual machine, thus,
participants could edit, run, and test the code as if they are doing it locally. We hosted
the tutorial projects on GitHub, and created the codespace instance ahead of time. We
chose to use GitHub Codespaces because it simplifies the process of sharing the project,
installing the Colaroid extension, and setting up the study environment on participants’
local editors. It also avoids inconsistent versions or any incompatibility issues on users’
local editors. To ensure participants have a similar experience in viewing tutorials and
project code, we embedded the article tutorial and video tutorial inside the code editor.
As shown in Figure 9.4, all three types of tutorials are shown side by side with the main
code editor. Participants can open them in new tabs if needed.

9.6.1.4 Tutorial Preparation

We asked the two instructors of the web programming class to prepare the tutorials. The
two instructors are familiar with participants’ web programming experience and therefore
can create instructional materials that best suit their learning. Each instructor was respon-
sible for creating a set of tutorials for one session. Each set of tutorials contains the same
instructional content in three forms — article, video, and Colaroid. For Colaroid tutorials,
we provided instructors documentation on how to use Colaroid for creating tutorials. For
article tutorials, instructors used a document editing tool (Dropbox paper) for creating
styled texts with screenshots. Instructors can also include external links to provide more
context for the tutorial. For video tutorials, instructors used a screen recording tool to
demonstrate how they build the application while talking over the video to provide expla-
nations. Instructors also did some post-production edits such as cutting and adjusting the
speed. Instructors are explicitly told to create the best version of the tutorial they could
and to make sure that the three types of tutorials convey similar instructional content.
The research team further helped instructors edit the tutorials by fixing typos and styling
issues, improving the quality of the screenshots, making sure the contents are reasonable
and approximately the same quality across three formats.
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9.6.1.5 Data Collection and Analysis

This study collected data from multiple sources. First, we collected students’ background
information on their familiarity with web programming, HTML5 game programming,
and the VS Code editor. This data is used in screening the participants so that partici-
pants meet the same criteria for recruitment. For each session, two members from the
research team were present and took observational notes individually. After discussing,
synthesizing, and iterating the observation notes, we created a code book on interesting
behaviors that emerged from observations. One member from the research team further
applied closed coding on the screen recording to understand how students interact with
the tutorials. For students’ final artifacts for both sessions, we asked two experts to rate
the quality of their submissions. The two experts first discussed the rubric for grading
the functionality of the game (e.g., giving 10 points if the game character reacts to users’
keyboard interaction, an additional 10 points if the game character demonstrates a “jump-
ing” movement, and an additional 10 points of the game character stops movements when
running into a tree.), This analysis is to help us understand how the tutorial formats led to
noticeably di↵erent programming outcomes. In addition, we asked students to fill out a
questionnaire after each session and compared the questionnaire results for each session.
As shown in Table 9.2, we divided the population into two groups — groups that use
Colaroid and article tutorials, and groups that use Colaroid and video tutorials. For each
group, we conducted a paired t-test to understand the significance between the Colaroid
condition and the regular tutorial’s condition. We also conducted an exit interview with
participants after the second session where we asked them additional questions comparing
the tutorials they have experienced in the two learning sessions.

9.6.2 Results

9.6.2.1 How do participants engage with the tutorials?

Firstly, we are interested in how participants engage di↵erently with three types of tuto-
rials. We consider learners’ engagement with the tutorials beneficial to the purpose of
learning, though the frequent use of a tutorial may actually slow them down. We probe
into participants’ engagement by coding and visualizing their interactions with the tuto-
rial.

Figure 9.5 illustrates how participants switch context between the tutorial and their
own project where the x–axis represents the entire experiment duration. All participants
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spent the full duration of 40 minutes on the task. Although there is no significant dif-
ference in participants’ self-reported feeling of engagement, we found that there was a
significant e↵ect for the tutorial type, with participants’ actual engagement time with Co-
laroid tutorials more than video tutorials (M=8.79 mins, SD=5.40, p<0.01) and article
tutorials (M=8.76 mins, SD=2.69, p<0.01). Participants mentioned that they benefited
from tinkering the intermediate steps in Colaroid:

I feel more engaged because I can run the tutorial code for each step and
change the code to see how it works. (P6)

I feel more engaged because there’s literally a workspace in the Colaroid
tutorial which allows you to work alongside it. (P20)

In addition, we counted the occurrence of switching between the tutorial and the
project, and found that participants switched more frequently in Colaroid (M=16.5,
SD=7.46) and article tutorials (M=14.38, SD=8.75) than video tutorials (M=7.13,
SD=4.67). We further observed that many participants switched more frequently in Co-
laroid and article tutorials to either copy the example code or compare their own code with
the example code. In the reflection interview, some participants mentioned that video tu-
torials are less engaging because “you can’t do it on your own pace” (P4), “you can not
copy the code and revise it” (P12), and “I don’t have patience to watch them” (P2). In
particular, we noticed that some participants (e.g., P20, P12) gave up on the video tuto-
rials after watching a segment at the beginning of the study, and decided to only use the
final code of the Flappy Bird game to help them implement the dinosaur game.

9.6.2.2 Are Colaroid tutorials easier to follow along?

As shown in Table 9.2, we found significant di↵erences in how participants perceive the
time costs to follow along with three formats of tutorials. On a scale of 5 where 1 is com-
pletely disagree and 5 is completely agree, video tutorials (M=3.88, SD=0.99, p<0.05)
are perceived to take more time to read than Colaroid tutorials (M=2.38, SD=1.41).

When comparing Colaroid tutorials with article tutorials, many participants mentioned
that showing the code di↵erence and output preview saved them time in reading:

It saves time to only read the code di↵, and the preview works great because
I don’t need to guess myself. (P6)
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Figure 9.5: We manually coded the screen recording to understand how students interact
with the tutorials. All participants used the full 40 mins on the task. Participants’ engage-
ment time with Colaroid tutorials is significantly more than article tutorials (1) and video
tutorials (2). In particular, we noticed that some participants (3) gave up on the video
tutorials after watching a segment at the beginning of the study.

When comparing Colaroid tutorials with video tutorials, most participants mentioned
that video tutorials are lengthy to watch and hard to navigate around:

The explanations in two tutorials (Colaroid and video) are both clear to me.
It (Colaroid tutorial) is easier for me to find what I want, but in the video
tutorial, I have to go over it and find what I need. (P1)

P3 recalled her prior experience with video tutorials:

When I first learn programming, I need to have at least two screens. I need
to watch how professors do the coding, and I need to do it by myself. When
I watch a video, I sometimes need to spend time understanding what the
professor is talking about. So I have to press pause and read the code again.
(P3)

In addition, some participants also mentioned the challenges in navigating between steps
in video tutorials:

I like the Colaroid tutorial because I can skip around, look at the code, and
play around with it for myself. I think I like to look at things twice over
on and maybe read twice. With video, it’s pain to rewind and rewatch and
rewind. (P15)

9.6.2.3 Does Colaroid support more incremental procedure following?

Next, we investigated how di↵erent tutorial modalities communicate the process. Partic-
ipants complained that article tutorials were not good at tracking the process for several
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reasons. First, article tutorials only showed a sliced range of the code snippets. We ob-
served that a common pattern for participants to learn from a tutorial is by trial and error.
Many participants copied and pasted the tutorial’s code into their own projects to see how
it applied to their scenarios. However, it is not straightforward for them to see where
the new code should be pasted. In a step where the instructor inserts a statement into
a declared function, some participants were confused about where to locate the newly
added code and pasted it outside of the declared function. In the post-task questionnaire,
participants perceived that it is clear to them how the steps evolved in Colaroid (M=4.5,
SD=0.73) than in the article tutorial (M=3.63, SD=0.52, p < 0.01). For example, one
participant reported:

I had a harder time with this one (article). I can’t easily compare the steps.
Although each step has a link to a github repo, having them open separately
and not able to see the di↵erences between the repo does make it a bit more
di�cult. And a lot of the article tutorials don’t guarantee to have that. It was
a lot easier to have the centralized space and to see changes between each
step (in Colaroid). (P7)

Colaroid tutorials also provide a better translation of the process by showing how
the step changes a↵ect the output in the tutorial. We observed that when skimming the
tutorial, many participants would try the intermediate output in the Colaroid tutorial to
understand the outcome of the step and then decide whether they are interested to look
into more details. One participant compared the fidelity across three modalities and rated
Colaroid as between video and article:

I think it really helps to see someone do it and be able to understand how
each step they are doing and make sure I understand how to replicate it. The
only issue with video tutorials is sometimes that I don’t have the patience to
watch them because I read much faster than I can. So sometimes I prefer to
skim an article. I think Colaroid is like between the video and article. I could
skim through it, but I can understand the materials much more thoroughly
and comprehensively like actually being able to watch someone go through
every step of the process and explain it. (P2)
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9.6.2.4 Does Colaroid lead to better learning outcomes?

In the post-task questionnaire, we asked participants to rate a few statements regarding to
the task performance. As shown in Table 9.2, there is no significant di↵erences in terms
of participants’ satisfaction to the final artifacts they built. In addition, we did not see
a significant di↵erences in terms of how experts’ evaluation of the artifacts regarding to
di↵erent formats of the tutorials.

Despite that there no evidence showing that Colaroid tutorials can significantly im-
prove participants’ learning outcome, several participants mentioned Colaroid encourage
active learning: “I think I learned by doing. And having an interactive notebook is more
suitable for that.” (P20). One participant provided an interesting analogy of the learning
experience provided by three tutorial modalities:

An analogy to that is like you are in a chemistry class or biology class, Co-
laroid is like the lab where you can quickly do something to a chemical ex-
periment, where the video is like watching a lecture recording and the article
is like reading a textbook. You will learn it but I felt like it’s not as useful be-
cause you don’t see what actually happens in the environment of your world.
(P19)

9.6.2.5 Summary of the Results

In summary, our evaluation shows that Colaroid provides a more engaging reading experi-
ence by following along the sca↵olded steps with active exploration. Colaroid harnesses
the advantages of article tutorials in terms of providing a self-paced and easy-to-skim
reading experience. Colaroid also harnesses the advantages of video tutorials in terms
of capturing the details and context for reproducing, supporting more incremental proce-
dure following. Although there are no significant di↵erences in the learning outcomes of
Colaroid, participants perceive Colaroid to encourage active learning.

9.7 Discussion

This paper describes the design of the Colaroid system and demonstrates how literate
programming principles can be applied to support the instruction of software packages
and libraries. We contribute to the field (1) a novel design for creating step-by-step tech-
nical education content, extending the concept of literate programming into a temporal
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dimension, (2) a system, Colaroid, which supports this design and is embedded within
the software development tools commonly used by programmers, and (3) an evaluation
of this system, looking at how both authors and learners would use it to create and under-
stand learning resources.

By weaving together instructional narrative, code context, and output interactions we
are able to support both the authors who create instructional content and the learners
who aim to use it to improve their skills. Embedding this system within the authentic
work environment for software developers – the integrated development environment –
increases the engagement of learners with the instructional content, supporting an active
learning experience.

Our design presents a new perspective on how literate programming [96] can be ex-
tended to support guided complex instruction. Many of the literate programming sys-
tems in wide use, such as the Jupyter programming environment [137] for computational
notebooks, are “spatially-based”, where the narrative components are generally used to
describe pieces of code in a top-down order through the document. Through the design
of Colaroid we have introduced a new paradigm of “temporally-based” literate artifacts,
where the code being constructed is described in an order in which someone would take
to build a running system. The key di↵erence between our design and existing systems
[137, 18] is that each step in a temporal literate artifact is its own state, and the narrative,
code, and runtime environment (e.g., web browser, or Python interpreter) for that state
is unique. Users can navigate between steps, and doing so shows them the appropriate
execution state and instructions for that step. There is no “run all cells” command or the
like – a user simply chooses to inspect the last step of the narrative to see the final state of
the system.

This design ties together narrative (instruction), code, and system state, and for learn-
ers it promotes both guided instruction as well as active learning. Colaroid expanded
prior studies [141, 25, 200, 68] on linking tutorials with application state into the domain
of learning web programming, revealing the benefits in both authoring in authentic envi-
ronments and learning in authentic environments. Compared to other application domains
(e.g., drawing, 3D modeling), we can leverage existing code versioning tools and sharing
platforms for tracking system states of the target application — code editors. In addition,
Colaroid is di↵erent from existing approaches to annotating and replaying application
states (e.g., CodeTour [15]) as it generates the narrative for learners to skim through and
learn at their own pace. Beyond supporting just the learner, this design also supports the
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iterative authoring process of tutorial content, encouraging encapsulation of instructional
explanations with the appropriate code state.

9.7.1 Outlook

The growth of zero install web-based integrated development environments supported by
software code repositories (e.g., gitpod, GitHub Codespaces, Binder) o↵ers a new oppor-
tunity to streamline education as it relates to the features and use of software packages.
Many open-source software repositories already contain a directory of examples that are
intended to go with web tutorial content. By leveraging the Colaroid system, these reposi-
tories could provide one-click learning opportunities, allowing users to go from the famil-
iar source code version control interface into an authentic IDE with detailed instructional
content. From within the browser, learners could immediately begin to explore both the
code base and the runtime state of tutorials, engaging in active learning immediately.
This also opens the potential for educational content to be woven into the software as a
first-class artifact, by extending the continuous integration systems in place to produce
regression tests against the individual steps of the educational tutorials. Such an approach
would allow project communities to require that a software release include up-to-date ed-
ucational examples of a given library, reducing inconsistencies between online tutorials
and the libraries they aim to teach.

9.7.2 Limitations

9.7.2.1 Limitations of Colaroid

As presented, Colaroid is engineered for creating web programming tutorials specifically
and the current output preview is limited to this task. There is opportunity to consider
how the system might need to be changed in order to support other kinds of tutorial con-
tent. For instance, rendering Python output in the preview, or visualizing data changes
[179], maybe a straightforward way to support data science programming instruction. It
is possible that this approach might go beyond traditional programming as well. For in-
stance, in the field of graphic design step-by-step tutorials are often used for instruction,
and share many similarities to the web programming context we explored. It would be
interesting to apply temporally-based literate techniques inside of a tool such as Adobe
Photoshop, where the software code is replaced with layered images, and the narrative
describes how tool functions are used to manipulate the images to achieve a desired ef-
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fect. Being able to load a given image (state) and set of instructions may be particularly
interesting to study as graphic design often includes a kinesthetic expression component
(e.g., drawing) which may be strengthened through repeated practice.

Through use of the system it became clear that there were many additional supports
which might be integrated to improve experiences for both authors and learners. For in-
stance, voice dictation through speech to text for narrative portions of the tutorial would
naturally fit instructional approaches such as lecturing or massive online courses. We lim-
ited our narrative component markdown text, the rough format used in online tutorials,
but there are other media types which may be appropriate and further the authoring expe-
rience. In addition, Colaroid does not save learners’ exploration of the steps, or compare
them with the reference solution.

9.7.2.2 Limitations of our Evaluation

We chose to explore the Colaroid with an eye to both authoring and learning tasks. For
the authoring study, only a small number of participants (n 10) were observed, and they
created small-size tutorials for simple web development tasks, and were not given explicit
instructions or time for polishing of the educational content. This evaluation method al-
lowed us to study their interactions in-depth, and follow up with interview questions to
understand their thinking. However, a larger field trial of the tool would help to uncover
whether tutorial style has an interaction on adoption and acceptance of the authoring
experience. It would be especially beneficial if Colaroid was enabled for more program-
ming domains as the interaction between domain, tutorial style, and the temporal literate
programming design could be explored.

For the learner study, the tutorial topic (Flappy Bird) and the task topic (Dinosaur
Game) only represent one usage case of tutorials — following a tutorial step-by-step to
create a similar application. It is worth exploring di↵erent usage cases of tutorials, includ-
ing replicating a project by following a tutorial, or learning key concepts as one might do
in lecture content. Importantly, we did not measure learning gains which is one of the
reasons users engage in consuming online tutorial content. The interactions between pro-
ductivity, engagement, and long-term learning (versus immediate performance learning)
are significant, and thus we make no claims here that Colaroid results in longer-term
knowledge retention. However, we are excited by the increased engagement that learners
experienced in the Colaroid condition, as there is significant evidence that active learning
and hands-on practice does result in long-term learning gains [97].
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9.8 Conclusion

This paper presents a literate programming approach to author explorable and multi-stage
tutorials. We implemented a prototype Colaroid, an IDE-integrated tutorial editor that
captures the sca↵olded implementation process in the authentic work environment. On
the other hand, Colaroid provides the IDE-integrated reading experience, allowing learn-
ers to explore and tinker with the steps in the tutorial directly in their authentic work
environment. Our evaluation shows that Colaroid can benefit both the authoring experi-
ence by e↵ective and rich editing, and the reading experience by encouraging learning by
doing.
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Table 9.2: Perceptions of the three tutorials. Participants rated their agreement with nine
questions on a scale from 1 (strongly disagree) to 5 (strongly agree). (M: mean, SD:
standard deviation).

Statement Condition N M SD p Agreement: 1 to 5

This tutorial is easy to fol-
low.

Colaroid 8 4.13 0.64 0.17Article 8 3.63 0.52
Colaroid 8 3.88 1.36 0.32Video 8 3.38 1.19

It is clear to me how the
steps evolved.

Colaroid 8 4.63 0.52 0.001**Article 8 3.63 0.52
Colaroid 8 4.38 0.92 0.19Video 8 4.00 1.07

It is easy to understand how
the step changes a↵ect the
output in the tutorial.

Colaroid 8 4.38 0.74 0.07Article 8 3.63 0.92
Colaroid 8 4.25 1.04 0.11Video 8 3.50 1.51

This tutorial helps me with
making progress on my di-
nosaur project.

Colaroid 8 4.50 0.53 0.10Article 8 4.00 0.76
Colaroid 8 4.13 1.13 0.49Video 8 3.63 1.50

After reading the tutorial, I
am confident that I can repli-
cate the Flappy Bird project
from scratch by myself.

Colaroid 8 4.25 0.70 0.001**Article 8 2.88 1.25
Colaroid 8 3.50 1.69 1.0Video 8 3.50 1.51

After reading the tutorial, I
am confident that I can build
similar HTML5 games from
scratch by myself.

Colaroid 8 3.50 1.20 0.04*Article 8 2.75 0.89
Colaroid 8 3.00 1.69 1.0Video 8 3.00 1.60

The tutorial takes too much
time to read.

Colaroid 8 2.25 0.89 0.06Article 8 3.25 0.89
Colaroid 8 2.38 1.41 0.04*Video 8 3.88 0.99

I feel engaged when reading
the tutorial.

Colaroid 8 4.13 0.64 0.04*Article 8 3.50 0.75
Colaroid 8 3.88 1.25 0.49Video 8 3.38 1.50

I am satisfied with the
progress of the dinosaur
game so far.

Colaroid 8 4.00 0.76 0.04*Article 8 3.38 0.74
Colaroid 8 3.88 1.13 0.84Video 8 4.00 1.07

Expert Evaluation on the Ar-
tifact

Colaroid 8 60.00 27.26 0.12Article 8 54.38 32.12
Colaroid 8 58.13 35.75 0.81Video 8 63.13 35.25

Actual Engagement Time
(mins)

Colaroid 8 14.68 3.00 0.007**Article 8 8.76 2.69
Colaroid 8 14.35 4.87 0.002**Video 8 8.79 5.40
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Category Theme Example Tutorials

Sca↵olding
Strategies

Iterative Build-up: The current stage iteratively
build upon prior stages where the changes can
take place in a nested way or at multiple loca-
tions.

T1 first declared a function def-
inition. It then wrapped the
function into a class definition.

T1-6; T9-10; T15; T17-24;
T26; T29; T31-36; T38-40;
T42-44

Module-based Build-up: The stages are divided
into modules that are independent from each
other. The order of the stages does not matter.

T25 has each stage imple-
mented as an independent
method in its own file.

T13; T16; T25; T27; T37; T41

Aggregated Build-up: The newly added code
can be linearly aggregated to the end of the previ-
ous code base. It is di↵erent from module-based
build-up since the order matters.

T7 uses a Jupyter notebook
styled format where each stage
contains lines of code to be ex-
ecuted after previous stages.

T7-8; T11-12; T14; T28; T30

Composition
of Code
Snippets

Changes Only: The code snippets only present
the changes.

T19 only present the changes in
each stage and never duplicate
the content of adjacent stages.

T5; T7-8; T11-15; T19-20;
T23; T28; T30-31; T34-35;
T37; T41-42; T44

Full Context: The code snippet contains the
complete context of the current code file.

Each stage in T4 shows the en-
tire implementation of the re-
lated code file.

T1-4; T9-10; T15; T17-18;
T21; T24; T27; T33; T36; T38

Partial Context: The code snippet contains par-
tial context of the current code file.

One stage in T6 involves
changing a long xml file. The
irrelevant part in the xml file is
hidden.

T6; T21-22; T25-26; T29;
T39-40

Presence
of Code
Snippets

Changes Highlighted: Changes are highlighted
from the context.

T9 uses a darker background
to highlight the changes in a
stage.

T9; T17-18

With Syntax Highlights: The code snippets
have syntax highlights.

The code snippets in T6 have
syntax highlights.

T2-4; T6-15; T17; T20-27;
T29-35; T38-40; T42-43

Context Locator: The code snippets use context
locators (e.g., line number; file name) to indicate
where the changes are.

T4 marks both file names and
line numbers in each stage.

T4; T9-10

Presence of
Intermediate
Results

Textual Outputs: The textual output from the
console

Several stages in T15 contain
textual output.

T1-2; T7-8; T11; T14-15; T17-
18; T24; T31; T41

Screenshot or Video of Intermediate Output:
The output preview for intermediate stages

T16 takes screenshot of the in-
termediate output.

T20-22; T26; T28-30; T32-36;
T40; T42

Screenshot of the Last Stage Only: The output
preview for the last stage

T25 only has one screenshot of
the final output.

T5; T15; T25; T38

Textual Description: The textual description of
the output

T13 describes what will hap-
pen after executing the stages.

T4; T6; T12-13; T20; T25;
T27; T37; T43

Attach a Working Demo: An interactive work-
ing demo

T3 embeds a working demo
into the tutorial content.

T3-4; T9; T12; T23; T28; T30;
T34; T36; T41

Learn by Do-
ing

Starter Code: Providing the starter code for
learners to follow

T4 links to a starter code at the
beginning of the tutorial.

T4; T22; T33

Full Source Code: Providing the full source
code for reference

T6 attaches a link to the full so;
Source code.

T5-6; T9; T12-13; T16; T20;
T24-31; T33-34; T36; T38-41;
T43-44

Live Playground: An online IDE hosting the full
source code

T12 contains a link to a cloud-
hosted Jupyter notebook

T4; T9; T12; T28; T30; T36;
T38-39; T44

Table 9.3: Exploratory Analysis Results.
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Part 4

Conclusions
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CHAPTER 10

Conclusions and Future Directions

Data scientists must embrace collaboration to improve work e�ciency. In the future,
collaboration in a data-centric world will not just be a matter of fair for data science prac-
titioners, but for everyone on any tasks. In this dissertation, I conduct mixed-methods
inquiries to identify real-world problems that data science practitioners face with col-
laboration, as well as design and build novel interfaces for improving collaborative data
science tools for productivity and learning. In this chapter, I review the summary of the
contributions of each project and discuss future work.

10.1 Summary of Contributions

Through a series of mix-methods studies, tool buildings, and evaluations, this dissertation
makes the following contributions towards interactive programming interface for data
science collaboration and learning:

• In Chapter 2, I synthesize related work across HCI, Software Engineering, and
Computer Science Education to motivate the topic of this dissertation. I summarize
the design and revolution of computational notebook environments and identify the
research gaps in studying the unique challenges and opportunities for data scientists
and learners to collaborate with current programming platforms.

• In Chapter 3, I conduct mixed-methods inquiries to comprehend the specific obsta-
cles that data scientists face while collaboratively using computational notebooks.
This work has created a taxonomy of common collaboration styles in data science
and identified several advantages and challenges with synchronous notebook edit-
ing. These insights lead to design implications to enhance collaborative program-
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ming environments for data science learners and professionals, and serve as the
basis for the tools proposed in the subsequent chapters.

• Drawing from the design implications discussed in Chapter 3 – specifically, that
tools should aid collaborators in better comprehending the rationale behind a shared
notebook – I developed Callisto in Chapter 4. This comes with a suite of features
intended to enhance the utility of chat messages for understanding previous ex-
ploration processes within the notebook. Through an evaluation study, I provide
empirical insights into user engagement with these features and their perception of
them. Moreover, I present evidence demonstrating that establishing connections
between messages, elements of the notebook, and versions assists data scientists in
understanding and following up on the exploration pipeline.

• Conversely, to enhance the documentation of disorganized analysis notebooks com-
posed asynchronously, I delve deeper into AI-assisted documentation in Chapter 5.
This project provides empirical knowledge of best practices regarding how indi-
viduals document a notebook, garnered through an analysis of highly-rated Kag-
gle notebooks; showcases the design of a human-centered AI system — Themisto
— capable of working in conjunction with human data scientists to produce high-
quality computational narratives; and provides empirical evidence that Themisto
can collaborate e↵ectively with data scientists to generate high-quality computa-
tional notebooks that satisfy users’ needs, and does so in considerably less time.

• Chapter 4 and Chapter 5 investigate design approaches to help data scientists better
understand code changes. In Chapter 6, I also contend that the comprehension of
iterative data changes, produced by the code, should hold equal importance to code
changes throughout an analysis. In Chapter 6, I highlight the advantages of using vi-
sualizations to emphasize data di↵erences as a central feature within a data science
programming environment. Additionally, the chapter uncovers insights into users’
needs and their utilization of both code and data di↵erences during exploratory data
analytic processes. This is based on a user study involving 16 data scientists.

• In response to the issue of conflict editing in a real-time shared notebook as dis-
cussed in Chapter 3, I introduce three mechanisms in Chapter 7, exemplified by
the PADLOCK system. The PADLOCK system allows data scientists greater control
over the visibility and editability of sensitive cells, as well as the runtime state of
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shared notebooks. It also designates spaces where data scientists can formulate and
share their unique ideas. Moreover, I present a series of evaluations to gain a deeper
understanding of how these features can be used in collaborative data science.

• The expansion of the data science field has resulted in an increased demand for
foundational education in programming and data science. However, the require-
ments and objectives for collaboration can vary greatly between professional data
scientists and those within educational settings. In Chapter 8, I introduce a unique
methodology for real-time code sharing in educational environments. I design Puz-
zleMe, a web-based platform that allows instructors to conduct in-class program-
ming exercises by sharing code and descriptions in real-time. PuzzleMe incorpo-
rates two strategies—live peer testing and live peer code review—that facilitate
peer assessment during in-class exercises, thereby fostering collaborative learning
among students.

• Computational notebooks are frequently used to develop tutorials for data science
students, but are limited in developing tutorials for other programming activities
where the learners seek authentic programming experience in traditional IDEs. In
Chapter 9, I propose an alternate design for temporal computational notebooks,
enabling programmers to construct computational narratives on incremental code
development. I implement this concept through building the Colaroid system and
assess its strengths and drawbacks from both the authorship and learning perspec-
tives.

10.2 Future Work

This dissertation contributes to the research vision to lower the barriers for users to collab-
oratively explore, understand, and communicate in a data-centric world. Moving forward,
I would like to discuss three future research themes.

10.2.1 Understanding Heterogeneous Collaboration in Data Science

I envision that the workspaces of the future will persistently be a blend of physical and
digital realms, perpetually encouraging a collaborative atmosphere. The role of tech-
nology in facilitating collaboration will be increasingly important, particularly with the
advancement of computer-supported collaborative technologies. These technologies will
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empowering data science practitioners, diverse stakeholders, and even emerging AI col-
laborations to work together harmoniously in a data-centric world. In my previous work,
I have studied how collaboration takes place in various contexts, including real-time edit-
ing [181], multidisciplinary teams [138], knowledge sharing between domain experts and
data scientists [132], reusing analysis code [55], peer collaboration in classrooms [177],
and writing documentation together with AI agents [183]. Moving forward, I am looking
forward to examining the broad spectrum of collaborative data science — for example,
how to support collaboration between mixed synchronicity teams? How does mixed real-
ity technology open new avenues of collaboration and communication?

10.2.2 Human-AI Systems for Data Science Programming

My prior work demonstrates how emerging AI technologies can help solve particular
challenges in data science workflows such as incomplete documentation [183, 207]. In
particular, I found that maintaining control of the initiative and the final decision is an
important aspect of people’s enjoyment and acceptance of the AI system. I believe in the
potential of building human AI data science systems that allow data scientists to maintain
control. In the future, I will continue striving to explore this direction by collaborating
with researchers from machine learning, NLP, and software engineering. For example,
I am particularly interested in the application of AI pair programming and automated
machine learning. How can data scientists leverage large language models for exploratory
data analysis? How can we design interactions to improve the trust and explainability
of the generated code from automated machine learning? To what extent can existing
systems like GitHub Copilot understand domain-specific task descriptions? How can we
design tools to support data scientists rephrasing their high-level domain-specific queries
when things go wrong?

10.2.3 Making Data Science Accessible for Everyone

As the world becomes data-centric, the ability to work with data, understand data, and
tell stories from data becomes a literacy for everyone. Just like computational literacy
[182, 178], I believe that everyone should learn data literacy, and data science tools should
be made accessible to everyone. My prior work explores several data science practitioner
communities, such as the online forum Kaggle [183], or data scientists in software teams
[55]. Looking forward, I would like to study learning resources for the general public
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(e.g., online courses, and informal workshops) to gain data literacy and their e↵ective-
ness. Another area of improvement is to lower the barriers for non-programmers to use
data science tools. Most data science tools are designed for people who are proficient in
programming to work with data, but are not accessible to the general public. Looking
forward, I am excited to explore how techniques like programming by demonstration,
block-based programming, and domain-specific programming languages can build easy-
to-learn data science tools for people who do not have programming backgrounds while
enabling them to author expressive data stories.
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APPENDIX A

Appendix for Chapter 7

A.1 Example of Documentation Generation in Themisto
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Table A.1: Example notebook (House Price) (T - Markdown cells created by Themisto only, C - Markdown cells co-created by
Humans and Themisto, H - Markdown cells created by Humans only).

Source Code DL-Based Query-Based Prompt-Based P2

import pandas as pd
import numpy as np
from sklearn.linear_model import LassoCV
from sklearn.model_selection

import cross_val_score

Importing li-
braries

Pandas is for data ma-
nipulation and analysis;
NumPy is a library for ...

This code cell is for _
_ _ _ _

Importing libraries (T)

train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')

Read the data Read a comma-separated
values (csv) file into
DataFrame; Return the
first 5 rows.

This code cell is for _
_ _ _ _

Read the data (T)

train.head() Let’s see the
values

Return the first 5 rows The table shows _ _ _
_ _

Return the first 5 rows.
(defValue=5) (C)

all_data = pd.concat((

train.loc[:,'SubClass':'SaleCond'],
test.loc[:,'SubClass':'SaleCond']))

A generator for
feature

Concatenate pandas ob-
jects along a particular
axis with optional set logic
along the other axes.

This code cell is for _
_ _ _ _

Concat train and test col
"SaleCondition" (C)

all_data = pd.get_dummies(all_data) Convert all the
data

Convert categorical vari-
able into dummy/indicator
variables

This code cell is for _
_ _ _ _

Convert categorical vari-
able into dummy/indicator
variables. (T)

all_data = all_data

.fillna(all_data.mean())

Check the miss-
ing values

Fill NA/NaN values using
the specified method

This code cell is for _
_ _ _ _

X_train = all_data[:train.shape[0]]

X_test = all_data[train.shape[0]:]

y = train.SalePrice

Create the target
and the test data

Slice string This code cell is for _
_ _ _ _

model_lasso = LassoCV(

alphas = [1, 0.1, 0.001, 0.0005])

.fit(X_train, y)

Model Lasso linear model with it-
erative fitting along a regu-
larization path.

This code cell is for _
_ _ _ _

Fit regression model (H)

def rmse_cv(model):
rmse= np.sqrt(-cross_val_score(

model, X_train, y, scoring=

"neg_mean_squared_error", cv = 5))

return(rmse)
rmse_cv(model_lasso).mean()

A simple exam-
ple model with
the lasso

Evaluate a score by cross-
validation

The result indicates
that _ _ _ _ _

Define score function and
evaluate (H)
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Table A.2: Example notebook (Covid Prediction) (T - Markdown Cells Created by Themisto Only, C - Markdown Ceells Co-
created by Humans and Themisto, H - Markdown Cells Created by Humans Only).

Source Code DL-Based Query-Based Prompt-Based P5

import numpy as np
import pandas as pd
from sklearn.ensemble

import RandomForestClassifier

Importing li-
braries

Pandas is for data manipulation
and analysis; NumPy is a library
for ...

This code cell is
for _ _ _ _ _

Importing libraries (T)

train = pd.read_csv("train.csv")

test = pd.read_csv("test.csv")

train.head()

Read the data Read a comma-separated values
(csv) file into DataFrame; Re-
turn the first 5 rows.

The table shows _
_ _ _ _

Read and sanity check the
data (C)

train.describe() Let’s see the val-
ues

Generate descriptive statistics.
Descriptive statistics include ...

The table shows _
_ _ _ _

train["Date"] = train["Date"]

.apply(lambda x: x.replace("-",""))
train["Date"] = train["Date"]

.astype(int)

train.head()

Convert all the
data

Replace a specified phrase with
another specified phrase

The table shows _
_ _ _ _

Preprocess the data (C)

train.isnull().sum() Check the miss-
ing values

Detect missing values for an
array-like object

The result indi-
cates that _ _ _ _
_

Check the missing values
(T)

test["Date"] = test["Date"]

.apply(lambda x: x.replace("-",""))
test["Date"] = test["Date"]

Convert all the
data

Replace a specified phrase with
another specified phrase

This code cell is
for _ _ _ _ _

Preprocess the date column
(C)

x = train[['Lat', 'Long', 'Date']]
y = train[['ConfirmedCases']]
x_test = test[['Lat', 'Long', 'Date']]

Create the target
and the test data

Select subsets of data This code cell is
for _ _ _ _ _

Create the train/test data and
the target (C)

Tree_model = RandomForestClassifier(

max_depth=200,

random_state=0)

Tree_model.fit(x,y)

Model A random forest is a meta esti-
mator that fits a number of deci-
sion tree classifiers on ...

This code cell is
for _ _ _ _ _

Define and configure the
model
A random forest is a meta ...
We also train the model with
‘.fit()‘ (C)

pred = Tree_model.predict(x_test)

pred = pd.DataFrame(pred)

pred.columns =

["ConfirmedCases_prediction"]

Predicate to use
a predicate func-
tion for tests

A random forest is a meta esti-
mator that fits a number of deci-
sion tree classifiers on ...

This code cell is
for _ _ _ _ _

Run the model to gener-
ate predictions on the test
data and store them as a
‘DataFrame‘(H)
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A.2 Coding Book for the Interview Transcripts

Table A.3: Coding Book for the Interview Transcripts

Theme Code

Pros of Themisto

Easy to Use
Provie Inspirations
Improve Content
E�ciency
Hybrid Approach
Useful for Long Term
Prefer the Plugin

Cons of Themisto Inaccurate
Not Useful

Perceptions of the Deep-Learning-Based Approach

Concise
Useful
Accurate
Inaccurate
For Own Use
For Collaboration Use

Perceptions of the Query-Based Approach

Descriptive
Too Long
Useful
Confusing
Instructive

Perceptions of the Prompt-Based Approach
Tedious
Easy to Use
Inspiring

Future Adoption
Positive Adoption Propensity
Scenarios for Future Adoption
Negative Adoption Propensity

Design Improvements

More Options Generated by AI
Handle Presentation and Formatting
Summarize Other Information (e.g., Rea-
sons, Summary, Errors)
Custimization
Optimize UI
Adaptive Prompts
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APPENDIX B

Appendix for Chapter 9

B.1 Tutorial Lists in Formative Study

ID Tutorial Title Link Author Source

T1 Polymorphism https://docs.oracle.com/javase/tutorial/java/I

andI/polymorphism.html

O�cial Stack Overflow

T2 Guide to Java 8 Compara-
tor.comparing()

https://www.baeldung.com/java-8-comparator-com

paring

Third-
Party

Stack Overflow

T3 React Authenticator https://ui.docs.amplify.aws/react/connected-com

ponents/authenticator

O�cial Stack Overflow

T4 React Router Tutorial https://reactrouter.com/en/v6.3.0/getting-start

ed/tutorial#tutorial

O�cial Stack Overflow

T5 Explore SplashScreen
API, Android 12, Kotlin

https://medium.com/realm/explore-splashscreen-a

pi-android-12-kotlin-7a8bf83b061a

Personal Stack Overflow

T6 Adding a splash screen to
your mobile app

https://flutter.dev/go/android-splash-migration O�cial Stack Overflow

T7 Federated Learning for
Image Classification

https://www.tensorflow.org/federated/tutorials

/federated_learning_for_image_classification

O�cial Stack Overflow

T8 Building Your Own Feder-
ated Learning Algorithm

https://www.tensorflow.org/federated/tutorials

/building_your_own_federated_learning_algorithm

O�cial Stack Overflow

T9 RTK Query Quick Start https://redux-toolkit.js.org/tutorials/rtk-que

ry

O�cial Stack Overflow

T10 Redux Toolkit TypeScript
Quick Start

https://redux-toolkit.js.org/tutorials/typescri

pt

O�cial Stack Overflow

T11 Text generation with an
RNN

https://www.tensorflow.org/text/tutorials/text

_generation

O�cial Stack Overflow

T12 A Visual Guide to Using
BERT for the First Time

https://jalammar.github.io/a-visual-guide-to-u

sing-bert-for-the-first-time/

Personal Stack Overflow

Table B.1: Tutorial Lists in Formative Study (1)
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ID Tutorial Title Link Author Source

T13 Hugging Face Transform-
ers: Fine-tuning Distil-
BERT for Binary Classifi-
cation Tasks

https://towardsdatascience.com/hugging-face-tra

nsformers-fine-tuning-distilbert-for-binary-c

lassification-tasks-490f1d192379

Personal Stack Overflow

T14 Huggingface Fine Tuning https://nbviewer.org/github/omontasama/nlp-hug

gingface/blob/main/fine_tuning/huggingface_fin

e_tuning.ipynb

Personal Stack Overflow

T15 Swift 5.5: Asyn-
chronous Looping With
Async/Await

https://www.biteinteractive.com/swift-5-5-async

hronous-looping-with-async-await/

Third-
Party

Stack Overflow

T16 How do Spring Boot 2.X
add interceptors?

https://programmer.group/how-do-spring-boot-2

.x-add-interceptors.html

Third-
Party

Stack Overflow

T17 Testing Smart Contracts https://hardhat.org/tutorial/testing-contracts

.html#using-a-different-account

O�cial Stack Overflow

T18 Tutorial: Create a Go
module

https://go.dev/doc/tutorial/create-module O�cial Stack Overflow

T19 5 minute guide to deploy-
ing smart contracts with
Tru✏e and Ropsten

https://medium.com/coinmonks/5-minute-guide-t

o-deploying-smart-contracts-with-truffle-and-r

opsten-b3e30d5ee1e

Personal Stack Overflow

T20 Using HDR rendering https://github.com/microsoft/DirectXTK12/wiki/

Using-HDR-rendering

O�cial Stack Overflow

T21 JSF 2.3 tutorial with
Eclipse, Maven, WildFly
and H2

https://balusc.omnifaces.org/2020/04/jsf-23-tut

orial-with-eclipse-maven.html#InstallingWildFly

Personal Stack Overflow

T22 Developing an Accessibil-
ity Service for Android

https://codelabs.developers.google.com/codelab

s/developing-android-a11y-service

O�cial Stack Overflow

T23 Practical use of scoped
slots with GoogleMaps

https://vuejs.org/v2/cookbook/practical-use-o

f-scoped-slots.html

O�cial Stack Overflow

T24 Using Django Check Con-
straints to Ensure Only
One Field Is Set

https://adamj.eu/tech/2020/03/25/django-check-c

onstraints-one-field-set/

Personal Stack Overflow

T25 JWT Auth in ASP.NET
Core

https://codeburst.io/jwt-auth-in-asp-net-cor

e-148fb72bed03?gi=cef51cc81e61

Personal Stack Overflow

T26 How to add SectionIndex-
Titles in SwiftUI

https://www.fivestars.blog/code/section-title-i

ndex-swiftui.html

Third-
Party

Stack Overflow

T27 Creating a React and
Spring REST application
that queries Amazon
DynamoDB data

https://github.com/awsdocs/aws-doc-sdk-example

s/tree/master/javav2/usecases/creating_dynamod

b_web_app

O�cial Stack Overflow

T28 How to Train BPE, Word-
Piece, and Unigram Tok-
enizers from Scratch using
Hugging Face

https://www.freecodecamp.org/news/train-algorit

hms-from-scratch-with-hugging-face/

Personal FreeCodeCamp

T29 React CRUD App Tutorial
– How to Build a Book
Management App in React
from Scratch

https://www.freecodecamp.org/news/react-crud-a

pp-how-to-create-a-book-management-app-from-s

cratch/

Personal FreeCodeCamp

T30 How to Build a Neu-
ral Network from Scratch
with PyTorch

https://www.freecodecamp.org/news/how-to-build

-a-neural-network-with-pytorch/

Personal FreeCodeCamp

Table B.2: Tutorial Lists in Formative Study (2)
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ID Tutorial Title Link Author Source

T31 How to Build a
Blockchain from Scratch
with Go

https://www.freecodecamp.org/news/build-a-block

chain-in-golang-from-scratch/

Personal FreeCodeCamp

T32 PHP Laravel Tutorial –
How to Build a Keyword
Density Tool from Scratch

https://www.freecodecamp.org/news/how-to-build

-a-keyword-density-tool-with-laravel/

Personal FreeCodeCamp

T33 How to Create a
Production-Ready Web-
pack 4 Config From
Scratch

https://www.freecodecamp.org/news/creating-a-p

roduction-ready-webpack-4-config-from-scratch/

Personal FreeCodeCamp

T34 How to build a PWA from
scratch with HTML, CSS,
and JavaScript

https://www.freecodecamp.org/news/build-a-pwa-f

rom-scratch-with-html-css-and-javascript/

Personal FreeCodeCamp

T35 How to build an Angular
8 app from scratch in 11
easy steps

https://www.freecodecamp.org/news/angular-8-tut

orial-in-easy-steps/

Personal FreeCodeCamp

T36 How to Build Your Coding
Blog From Scratch Using
Gatsby and MDX

https://www.freecodecamp.org/news/build-a-devel

oper-blog-from-scratch-with-gatsby-and-mdx/

Personal FreeCodeCamp

T37 How to build a Neural Net-
work from scratch

https://www.freecodecamp.org/news/building-a-n

eural-network-from-scratch/

Personal FreeCodeCamp

T38 Progressive Web Apps
102: Building a Pro-
gressive Web App from
scratch

https://www.freecodecamp.org/news/progressive-w

eb-apps-102-building-a-progressive-web-app-fro

m-scratch-397b72168040/

Personal FreeCodeCamp

T39 How to build a range slider
component in React from
scratch using only div and
span

https://www.freecodecamp.org/news/how-to-build

-a-range-slider-component-in-react-from-scrat

ch-using-only-div-and-span-d53e1a62c4a3/

Personal FreeCodeCamp

T40 How to build an HTML
calculator app from
scratch using JavaScript

https://www.freecodecamp.org/news/how-to-build

-an-html-calculator-app-from-scratch-using-jav

ascript-4454b8714b98/

Personal FreeCodeCamp

T41 You don’t need chatbot
creation tools — Let’s
build a Messenger bot
from scratch

https://www.freecodecamp.org/news/you-dont-nee

ds-chatbot-creation-tools-let-s-build-a-messe

nger-bot-from-scratch-8fcbb40f073b/

Personal FreeCodeCamp

T42 HTML and CSS Project –
How to Build A YouTube
Clone Step by Step

https://www.freecodecamp.org/news/how-to-build

-a-website-with-html-and-css-step-by-step/

Personal FreeCodeCamp

T43 The SaaS Handbook –
How to Build Your First
Software-as-a-Service
Product Step-By-Step

https://www.freecodecamp.org/news/how-to-build

-your-first-saas/

Personal FreeCodeCamp

T44 A step-by-step guide to
making pure-CSS tooltips

https://www.freecodecamp.org/news/a-step-by-ste

p-guide-to-making-pure-css-tooltips-3d5a3e237

346/

Personal FreeCodeCamp

Table B.3: Tutorial Lists in Formative Study (3)
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