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ABSTRACT

My dissertation aims to ameliorate global poverty through the study of development

economics with a focus on education and health. I identify novel interventions for improving

human capital in sub-Saharan Africa, where poverty is most dire, and offer lessons for both

scholars and policymakers.

My first essay observes that, across sub-Saharan Africa, countries with a greater percentage

of overlapping days in their school and farming calendars also have lower primary school

survival rates, as greater overlap between these calendars presumably reduces the time

available for both schooling and farm-based child labor. I causally identify such effects by

leveraging a four-month shift to the school calendar in Malawi that differentially affected

communities based on their pre-policy crop allocations. I find that a 10-day increase in

school calendar overlap during peak farming periods decreases school advancement by 0.34

grades (one lost grade for every three children) and decreases the share of children engaged in

peak-period household farming by 11 percentage points after four years. Secondary analyses

reveal stronger negative schooling impacts for girls and poorer households driven by school’s

overlap with the labor-intensive sowing period. Policy simulations illustrate that adapting

the school calendar to minimize overlap with peak farming periods should increase school

participation by better accommodating farm labor demand.

My second essay implements a randomized experiment to promote learning about

COVID-19 among Mozambican adults–implemented over the phone during the pandemic

lockdown–via a “supply-side” teaching intervention that provided targeted feedback on

knowledge questions, a “demand-side” financial incentives intervention, and a joint treatment.

The paper sets up a framework for how to evaluate whether supply- and demand-side

educational interventions are substitutes or complements by estimating a “complementarity

parameter”. Between the treatments, we find significantly more complementary than predicted

by experts in a forecasting survey, with the joint treatment performing better than the

combined effect of each standalone treatment (increasing COVID-19 knowledge by 0.5

standard deviations), and evidence of the complementarity persisting 9 months after the

intervention. The paper’s framework can also be used to estimate complementary between

supply- and demand-side educational interventions in more complex settings.

xiii



My third essay tests randomized treatments aimed at accelerating social norms on an

emerging preventive health behavior, motivated by early survey work in Mozambique during

the COVID-19 pandemic revealing that respondents underestimated community support for

social distancing. In theory, updating social norms upwards on a publicly beneficial health

behavior can have ambiguous impacts: encouraging free-riding if ”everyone else is doing it”,

or encouraging good behavior if the norm correction also updates the perceived infectiousness

of the disease. Indeed, we find that the effect of correcting individuals’ underestimates of

community support (or affirming accurate estimates) is heterogeneous: decreasing social

distancing where COVID-19 cases were low and free-riding dominated, but increasing it where

cases were high and the perceived-infectiousness effect dominated. The findings highlight

that correcting misperceptions of health behavior norms may have heterogeneous effects

depending on disease prevalence–an important lesson for policymakers on how to schedule

public health interventions for maximum efficacy.
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CHAPTER I

Double-Booked: Effects of Overlap between School and

Farming Calendars on Education and Child Labor

“Different constraints are decisive for different situations,

but the most fundamental constraint is limited time.” -Gary Becker

1.1 Introduction

Understanding how households in low-income settings allocate their children’s time

between schooling and child labor has vital implications for economic development. Child

labor increases household income and consumption in the short run, but can be physically

hazardous (Edmonds, 2007; UIS and UNICEF, 2015). Time in school is an investment

toward educational attainment, which is linked to higher earnings in adulthood (Duflo, 2001;

Psacharopoulos and Patrinos, 2018) and is widely recognized as a key driver of economic

growth (Mankiw et al., 1992; World Bank, 2017). Thus these household allocations can

heavily impact a child’s and even a country’s future economic well-being.

In sub-Saharan Africa (SSA), where over half the workforce is employed in agriculture

(World Bank, 2021), child labor often takes the form of household agricultural production.

Indeed, SSA has the highest prevalence rate of any region for child labor at 27%, with

family work accounting for between 40–80% of all out-of-school child laborers (UIS and

UNICEF, 2015).1 Such household-farm work, especially needed during the labor-intensive

sowing and harvest periods, often occurs when school is in session. Across SSA, the average

school calendar lasts 192 days (excluding weekends and holidays)—over 50% of total days

1Notably, this likely underestimates child labor as the UNICEF definition excludes children ages 7–14
years who performed less than 28 hours of household chores or children 12–14 performing less than 14 hours
of economic activity in the week prior to the survey.

1



in the year.2 When the school calendar overlaps with the farming calendar, schooling and

household-farm work compete for children’s time. Moreover, SSA school calendars do not

change often and remain highly correlated by region and former colonial power, suggesting

that they are not already adapted to seasonal farm labor demand. In this context, this paper

asks: how does overlap in the school and farming calendars affect children’s schooling and

child labor outcomes?

Looking across SSA countries, Figure 1.1 presents some correlational evidence that overlap

between the school and farming calendars may impede primary school completion. The figure

shows a significant negative correlation between a country’s survival rate to the fifth grade

(on the vertical axis) and the percent of school and sowing/harvest days that overlap (on the

horizontal axis). For every additional percentage point increase in overlap, the survival rate

is 2.39 percentage points lower, on average. With overlap’s percent of the school and farming

calendars ranging from 15% to 32% across SSA countries, overlap may help to explain large

differences in advancement within primary school.

In theory, greater overlap between the school and farming calendars should indeed reduce

schooling investments, and it should reduce child labor too. This is because, when these

calendars overlap at time t, a child wanting to do both must choose one activity—schooling

or farm work. Therefore, holding fixed the school calendar and farming calendar, the

overlap between calendars defines the child’s stock of total time available for schooling and

household-farm work. When there is no overlap between the calendars, children are available

to attend every day of scheduled school and work every day during the sowing and harvest

on the household farm. But when there is overlap, a time ”budget constraint” limits the

time allocation opportunity set. For households with positive allocations to schooling and

household-farm work on that frontier, a further increase in overlap forces households to adjust

with reductions to both activities (assuming each have positive but diminishing returns to

lifetime utility). This makes overlap theoretically unique from interventions that change

either the marginal benefit or marginal cost of schooling, including its opportunity cost.

Conceptually, overlap does not change the economic returns to school or outside activities

at time t, but rather determines the number of time periods during which these returns are

competing in the household problem.

To test the theory, I study a four-month shift to the school calendar in Malawi—one of

only six major school calendar changes across SSA from 1997-2019. Implemented to better

align with the government’s, universities’ and neighboring countries’ calendars, Malawi’s

school calendar change provides a plausibly exogenous shock to overlap between school and

crop calendars. Malawi is a setting in which both schooling and farm work are common

2Author’s calculations from daily pre-Covid public school calendars for 78% of SSA’s 46 countries.
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activities. At the time of the school calendar shift, 81.3% of children aged 6–13 years in my

sample were enrolled in school, and 78.1% lived in a farming household. In Figure 1.3, I

compare the net change in school days resulting from the school calendar shift to the typical

farming calendar in Malawi, which shows how the policy transferred school days into the

rainy-season planting (i.e., sowing)—a period of high farm labor demand. Thus, at a high

level, it appears that the policy increased overlap between the school and farming calendars,

reducing the total time available for schooling and household-farm work. Supported by the

theory, I hypothesize that this likely caused decreases in time allocation to both economic

activities.

To obtain causal estimates, I use Malawi’s Integrated Household Panel Survey (IHPS) to

compare pre- and post-policy schooling and time use outcomes for children of primary-school

age (6-13) in the pre-policy year, who are fully exposed to the shock over the four-year study

period. My primary outcomes are completed grade level—a key educational outcome—and an

indicator for working on the household farm during sowing and harvest periods. To measure

the policy-induced change in overlap between school and farming calendars, I construct a novel

shift-share variable. The “shift” is a crop-level shock: the policy-induced change in the number

of days a crop’s calendar overlaps with the school calendar. The identification assumption

is that these crop-level overlap shocks are as-good-as-randomly assigned. This assumption

is supported by the non-agricultural rationale for implementing the policy, balance tests of

pre-policy characteristics, and a ”pretrend test” of a primary outcome. Crop-level shocks are

then weighted by a community’s exposure to the policy as determined by its pre-policy “share”

of labor devoted to producing each crop. I then regress outcomes on shift-share overlap

controlling for the sum of community crop shares, among other controls. To assuage recent

concerns about over-rejection in shift-share estimation, I perform a randomization inference

procedure following Borusyak and Hull (2021) that perturbs the plausibly exogenous shock

to overlap between school and crop calendars, while holding fixed the endogenous community

crop shares.

Consistent with my theoretical predictions, I find that increases in overlap between the

school and farming calendars reduces both schooling and household-farm labor. An increase

of 10 days of overlap during the rainy-season sowing and harvest in the average sample

community—estimated at a 1.21 standard deviation increase in shift-share overlap—leads

to a significant reduction in school advancement by 0.34 grades (one lost grade for every

3 children) and an 11 percent decline in children doing household-farm work during peak

periods (a 44% decline from baseline levels) after four years. Secondary analyses reveal

stronger negative schooling impacts for girls and poorer households. Channels vary between

the two outcomes: school participation is most impacted by sowing-period overlap along
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its intensive margin (i.e., not via enrollment), while household-farm child labor reacts more

to harvest-period overlap along its extensive margin and is then substituted with increased

household expenditure on hired labor without affecting farm profits. Further analysis of a

sub-sample surveyed 10 years later suggests persistent negative effects on school advancement

and incidence of household-farm work.

This paper contributes to the literature on trade-offs between schooling investments and

child labor by obtaining causal estimates from a unique natural experiment that negatively

shocks both activities equally without changing their nominal returns. Previous studies

of positive shocks to expected returns of schooling find they increase schooling—e.g., via

correcting mis-perceived returns (Nguyen, 2008; Jensen, 2010), merit-based scholarships

(Kremer et al., 2009a), or access to skilled labor opportunities (Jensen and Miller, 2017).

Other studies have looked at positive shocks to returns to wage labor and find they reduce

schooling—e.g., via new factory openings (Atkin, 2016), booms in gold mining (Santos, 2014),

or positive rainfall shocks (Shah and Steinberg, 2017)—or at how improved healthcare access

can differentially change returns to both (Adhvaryu and Nyshadham, 2012). Rather, I study

a plausibly exogenous decrease to children’s stock of total time available for both school and

farming that forces households to reduce both activities significantly. First, the magnitude

of the effects signify the important role that farm labor demand plays in competing for

schooling investments (and vice versa) in low-income agrarian settings. Second, heterogeneity

analyses of this trade-off reveal for whom the perceived value of schooling is lower relative to

household-farm labor: younger girls compared to younger boys, and children of low-income

households compared to middle-income households. I also compare overlap impacts between

sowing and harvest periods and find greater inelasticity in labor demand during the sowing

period, which is when farm labor demand is most concentrated.

Second, my paper is the first, to my knowledge, to analyze the effects of a plausibly

exogenous shock to a household time constraint and conceptualize it as such, providing yet

another application of Becker (1962)’s seminal work on incorporating time allocation in

household models.3 Since then, household models typically constrain time allocation at some

fixed amount of total time. However, in this paper, time allocation is further restricted by

some tighter constraint: the school calendar and the farming calendar each constrain one

time allocation—time in school and farm work, respectively—and then the overlap between

3Studies that perhaps come close include Gibson and Shrader (2018)’s analysis of sunset time on time
allocated for sleep, Montero and Yang (2022)’s look at religious festivals limiting time allocated for agricultural
production, and Baker et al. (2008)’s study of universal child care on maternal labor supply via increasing
time available for work (if some time in child care is assumed to be exogenous and fixed). However, none of
these studies quite frames their mechanisms in these terms. See Heckman (2015) for a brief review of Becker
(1962) and its influence.
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these calendars jointly constrains these two time allocations. With regards to improving

household welfare in the developing world, this is important as previous works have analyzed

a multitude of inputs to the household’s income budget constraint: household income, costs

of schooling, savings, credit, insurance, seasonal liquidity constraints, and the like. My paper

suggests that activity-specific time constraints may too limit household decision-making and

warrant future research with regards to their impact on education and other topics.

Third, in addition to identifying time constraints as a problem, my paper also suggests

a solution: the school calendar itself is a feasible policy lever to increase time available for

schooling, which in turn can increase educational attainment. The results validate at least 40

years of descriptive evidence (e.g., Schiefelbein (1987); Admassie (2003)) and recommendations

from international educational development practitioners (e.g., Bustillo (1989); Kadzamira

and Rose (2003)) about the benefits of adapting the school calendar around agricultural

labor demand. They also expand evidence that overlapping end-of-year examinations with

the harvest has detrimental effects (Ito and Shonchoy, 2020) by showing negative schooling

effects can persist across sowing and harvest periods regardless of timing within the school

year. Additionally, school calendars can affect school participation by changing the length

of the school year (Watkins, 2000) and making it easier for households to finance school

fees (Dillon, 2021). To identify the ideal school calendar, I run a policy simulation that

approximates counterfactual effects of other potential school calendars. I find that the

pre-policy school calendar was actually ideally situated in that it minimized overlap with the

labor-intensive sowing period, and also that overlap falls further when communities adopt

their own overlap-minimizing school calendar rather than the one calendar that minimizes

overlap across all communities on average.

This paper proceeds as follows. Section 1.2 presents a theoretical framework that

conceptualizes overlap as an added time constraint in a household model. Section 1.3

describes the setting, Malawi’s school calendar change, and data on individuals and crop

calendars. Section 1.4 details the estimation strategy, including construction of the shift-share

measure, the randomization inference technique, and falsification tests. Section 1.5 presents

the primary and secondary analyses. Section 1.6 describes policy impacts and insights from

simulating alternative school calendars. Section 1.7 concludes.

1.2 Theoretical Model

I model the school and farming calendars and the overlap between them as additional

constraints on time that limit the amount of available time that a child can spend on either

school or farm work. Using a simple household model, I describe under what conditions an
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increase in overlap (holding fixed the length of each calendar) could be expected to decrease

allocations to both time in school and farming.

1.2.1 Overlap in a Household Model

Consider a household consisting of adults and a child.

Child’s Time Endowments. A child has a total time endowment T which is spent on

schooling s, farm work h, and leisure ℓ such that:

s+ h+ ℓ = T (1.2.1)

The school year has S ∈ (0, T ) days and the farming season has H ∈ (0, T ) days. There

is also an overlap between school and farming days captured by Θ: the number of days in

which school is scheduled during the farming season. On a day when the school year and the

farming season overlap, a child can either attend school or farm, but not both. Therefore,

an ”overlap constraint” limits the amount of available time that a child can spend on either

school or farm work, as follows:

s+ h ≤ S +H −Θ (1.2.2)

The following also holds:

s ≤ S

h ≤ H

Θ ≤ min(S,H)

S +H −Θ < T (1.2.3)

The first two conditions specify that the child will attend at most S days to school and spend

at most H days on the farm (though not both given Equation 1.2.2 unless Θ = 0). Further,

overlap Θ in schooling and farming days can be no more than the minimum value between S

and H. Finally, the total number of school and farming days accounting for overlap is less

than total time T , meaning that there days in which leisure ℓ is the only available activity.

Household Utility. Household income consists of adult income n and child income w · h
where w is the child’s wage. The household will spend income on consumption c.

c ≤ w · h+ n (1.2.4)

The household maximizes a utility function which is additive in the utility from
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consumption, schooling and child leisure, respectively:

U(c, s, l) = uC(c)︸ ︷︷ ︸
consumption

utility

+ uS(s)︸ ︷︷ ︸
schooling

utility

+ uL(ℓ)︸ ︷︷ ︸
leisure

utility

(1.2.5)

Each of the three sub-utilities is monotonic, concave and has infinite derivative at 0, which

ensures an interior solution for the household’s maximization problem.

I make the following two assumptions to simplify the analysis, and then discuss the

implications of relaxing each assumption following the main theoretical result:

Assumption 1. The household always prefers schooling and farming to leisure at the

minimum allocation to leisure:

u′
S(S) > u′

L(T − S −H +Θ)

wu′
C(w ·H + n) > u′

L(T − S −H +Θ) (1.2.6)

The maximum amount of time the child can spend in school and on the farm is S+H−Θ.

Therefore, T − S −H +Θ is time that a child must spend on leisure ℓ. Assumption 1 says

that at this minimum level of leisure, the household prefers the child to spend additional

time either in school or on the farm (earning wage income) rather than on even more leisure,

and thus s+ h = S +H −Θ. This is a reasonable assumption because, in many contexts,

the minimum level of leisure is still a significant amount of time. Given Assumption 1, the

only conflict in time allocation arises between schooling and farm labor: the household will

allocate S +−Θ days to farming and schooling and the remaining T − S −H +Θ to leisure

(which cannot be further reduced).

Assumption 2. The household always prefers some positive level of both schooling and

farming:

u′
S(S) < w · u′

C(w(H −Θ) + n)

w · u′
C(w + n) < u′

S(S −Θ) (1.2.7)

Given that households allocate S +H −Θ days to farming and schooling (Assumption 1),

a household can either choose to maximize school by devoting S to schooling and H −Θ to

farm labor; maximize farm work by devoting H to farm work and S − Θ to schooling; or

somewhere in-between by allocating s < S to schooling and h < H to farm work such that

s+ h = S +H −Θ. Assumption 2 ensures that the latter scenario prevails by stating that
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the household prefer farm work at the maximum level of schooling S, and prefer schooling at

the maximum level of farm work H (via earning wages for consumption).

Given Assumption 2, the household has an interior maximizing solution s and h (i.e.,

S and H are non-binding). This can be solved by taking the first-order condition of the

household problem with respect to schooling: u′
S(s) = w · u′

C(w · h + n).4 This says that

households optimize schooling and farm work where the marginal gains from schooling s

equal the marginal gains of new consumption purchased with wage w from household-farm

work h. The household will send the child to school for S − Θ < s < S days and will let

them farm on H −Θ < h < H days such that the first-order condition is satisfied.

1.2.2 Analysis of an Increase in Overlap

I am mainly interested in comparative statics on the parameter Θ which is under the

control of the policymaker who determines the placement of the school calendar relative to

the known farming season.

Proposition 1. Suppose the policy-maker increases overlap Θ in the school and farming

calendar holding fixed the number of days in the farming calendar H and school calendar S.

Then households respond by decreasing their child’s time allocation to both schooling s and

farming h.

Proof. Recall that household preferences for a child’s time spent schooling s and farming

h are monotonic, concave and have infinite derivatives at 0. By Assumption 1, s + h =

S + H − Θ. Given that S and H are fixed, an increase in Θ must decrease s + h by the

same magnitude, which requires that at least s or h to decrease. Suppose a household

decreases schooling from s to ŝ to satisfy the new constraint. Concave preferences increase the

marginal utility of schooling so that now it is greater than the marginal utility of farm work:

u′
S(ŝ) > w ·u′

C(w ·h+n). By Assumption 2, households optimize allocations to schooling and

farming where u′
S(s) = w · u′

C(w · h+ n). So, if u′
S(ŝ) > w · u′

C(w · h+ n), then households

would allocate time toward schooling s reducing its marginal utility, and time away from h

raising its marginal utility, until both Assumption 1 and Assumption 2 hold. Therefore, an

increase in Θ will reduce allocations to both s and h.

Relaxing Assumption 2 allows households to either allocate time in school at its maximum

S or time in farming at its maximum H. In this case, an increase to overlap from Θ0 to

Θ1 does one of two things: 1) if a household still prefers the maximum allocation of either

4To calculate, I substitute the overlap constraint into the budget constraint via h, then substitute the
combined constraint into the total utility function, and take its partial derivative with respect to s.
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schooling or farming at Θ1, then it will only reduce its allocation to the other activity; or 2)

if a household now prefers an interior solution at Θ1, then it will no longer maximize either

time in school or farming and will instead reduce its allocation to both activities.

Relaxing Assumptions 1 and 2 allows households to allocate additional time to leisure

ℓ greater than T − S − H + Θ. This means that households can choose time allocations

to schooling, farm work and leisure that fall below the schooling-farming time allocation

frontier such that s + h < S +H − Θ. Again, an increase to overlap from Θ0 to Θ1 does

one of two things: 1) if optimal leisure remains greater than minimum leisure at Θ1 (i.e.,

ℓ∗ > T − S −H +Θ1), then the ”overlap constraint” remains non-binding and the optimal

allocation to schooling, farm work and leisure will remain the same; or 2) if optimal leisure is

greater than minimum leisure at Θ0 but is less than or equal to minimum leisure at Θ1 (i.e.,

T − S −H +Θ0 < ℓ∗ ≤ T − S −H +Θ1), then the new ”overlap constraint” is binding (i.e.,

s+ h = S +H −Θ1) and households will have to reduce allocations to schooling and farm

work in the same manner shown above but with smaller expected reductions since the initial

allocation fell below the schooling-farming time allocation frontier.

1.2.3 Graphical Description of Overlap

Figure 1.2 summarizes the main takeaways of the model. The figure depicts the time

allocation trade-off as a budget constraint diagram, where the area from the origin to the

frontier represents a child’s time allocation opportunity set in household-farm work h and

schooling s given the overlap constriant s+ h ≤ S +H −Θ, while leisure ℓ = T − (s+ h)

represents an unseen third dimension. On the horizontal axis, the school-farming time frontier

begins at H, the total number of days in the farming calendar, and continues linearly upwards.

On the vertical axis, the school-farming time frontier begins at S, the total number of days in

the school calendar, and continues extends horizontally rightwards. If there is no overlap in

the school and farming calendars (i.e., Θ = 0), then the time opportunity set extends to the

point (H,S). However, when overlap in the calendars exists—e.g., at Θ0—an ”overlap line”

with a slope of -1 cuts into the opportunity set, limiting possible allocations of schooling and

farm work (and leisure). Further, when overlap increases from Θ0 to Θ1, the ”overlap line”

draws closer to the origin.

Household preferences for s and h (and ℓ) are represented by the convex indifference

curves U0 and U1. Since both s and h provide positive diminishing returns to marginal

utility, households have strictly convex preferences for s and h characterized by a diminishing

marginal rate of substitution between the two inputs. Assumption 1 ensures that households

will choose allocations on the school-farming time frontier where the overlap constraint is

binding—i.e., s+h = S+H−Θ. Assumption 2 ensures that households will choose allocations
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on the ”overlap line” where the marginal utility of time in school is equal to the marginal

utility of time spent farming, and not ”at the kinks” where either s is bound by S or h is

bound by H.

When overlap increases from Θ0 to Θ1, households must reallocate h and s to the newly

constrained time frontier. As an example, a household may have to reallocate from point A to

point B, decreasing utility from U0 to U1. The preferences are also such that households will

choose to reduce allocations to both h and s when overlap increases, though the magnitudes

of the reductions will depend on the shape of the marginal utility curves.

1.3 Data

To test the model’s predictions, I require data to represent children’s time in school s and

on the household farm h that are plausibly affected by an exogenous shock to overlap between

the school and farming calendars. I look in Malawi, where a four-month shift to the school

calendar between 2009 and 2011 coincided with the first wave of the World Bank’s Integrated

Household Panel Survey (IHPS). In addition to outcome data, I also require measures of

community exposure to the school calendar policy change, which I construct using data

on community crop shares and the overlap between the school calendar and crop-specific

calendars on sowing and harvest periods.

In this section, I first describe this study’s setting and then the school calendar change.

Next, I describe the individual- and household-level data taken from the IHPS. Finally, I

describe the crop calendars that collectively comprise the farming calendar in the overlap

measure.

1.3.1 Setting

Malawi is a landlocked country in southeast Africa with an estimated population of

13 million people as of 2008 (World Bank (2010) for all of Section 1.3.1). At the time of

the first IHPS in 2010, 63% lived on less than US$2 a day, and 82% of the population

lived in rural areas where most engaged in subsistence, smallholder, rain-fed agriculture.

Youth malnutrition was estimated at 49%, and adult literacy was 69%. In 2008, 37% of

the population were children ages 5-16—the highest in Southern Africa. Relative to other

countries in sub-Saharan Africa (SSA), Malawi had the fifth lowest GDP per capita.

Malawi’s formal education system consists of 8 grades (or “Standards”) of primary school,

4 grades (or “Forms”) of secondary school, and 4 years at the university level. While private

schools exist, 99% of students in primary and 77% in secondary attend public institutions.

Between 2000 and 2010, school enrollment increased but fell slightly relative to population
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growth. School enrollment is heavily concentrated in primary school, particularly grades 1-4,

due to high rates of initial enrollment into primary school and grade repetition.

High initial enrollment and late entry in primary school are often attributed to Malawi’s

Free Primary Education (FPE) program in 1994 that abolished tuition fees for primary

school. As a result, households in 2007 paid less than US$2 on average annually per student

in primary school, and primary school expenditures only represented 17% of households’ total

education budgets.5 Thus, primary school fees do not majorly prohibit enrollment.

Additionally, grade repetition increased between 1999 and 2006, reaching 20% in primary

education. A 2004 survey found that 47% of grade 1 students were repeating it, with

repeaters of other primary school grades ranging from 13% to 30%. High repetition rates

worsen student-teacher ratios, schooling costs and dropout rates. As such, dropout is common,

and only 35% of primary school students complete grade 8. School principals reported family

responsibilities as the main reason for dropout (44% for boys and 41% for girls) in a 2007

survey, with marriage, pregnancy, and employment stated as other reasons.

1.3.2 School Calendar Shift

School calendars in sub-Saharan Africa (SSA) do not change often and are highly correlated

with former colonial power. According to UNESCO, Institute for Statistics (2022) (UIS) data,

in 45 SSA countries from 1997-2019 (over 900 country-years), there are only 6 instances of

countries permanently shifting the start or end months of their school calendar by 2 months

or more: Angola and Ghana both lengthened their calendar, and Malawi, Rwanda, South

Sudan and Tanzania have shifted their calendar once. Of the latter group, I examine Malawi’s

school calendar change due to the availability of a detailed record of the school calendar

change and contemporaneous household panel data.

In Malawi, the school calendar shifted from an early January start date to an early

September start date over the course of two school years. The 2009 school calendar started in

early January and ended in mid-to-late November. Then, the 2010 school calendar served as

a transition year, starting school one month prior in early December 2009 and ending in early

August 2010. Finally, the 2010/11 school calendar began the new schedule, starting school

an extra three months prior in early September and ending in early-to-mid July.6 In this

5While the FPE program is often credited with a 51% increase in enrollment (e.g., Kattan and Burnett
(2004)), the 1994 educational reform package also included Malawi’s first school calendar change that effectively
reduced overlap between school and periods of peak farm labor demand. Thus, my results suggest that some
of the FPE enrollment boost may have been due to a reduction in overlap with the farming calendar as well
as the reduction in its direct costs.

6Interestingly, this change actually reversed Malawi’s first school calendar change in 1994 (prior to the
earliest year in the UIS dataset), moving the start date from early September to early January, as part of a
large education reform package that also abolished fees for primary school. By contrast, the 2009-11 school
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study I am primarily interested in comparing the change in overlap between the pre-policy

2009 school calendar and the post-policy 2011 school calendar.

As shown in Figure 1.3, this school calendar change reduced school days in July and

August and increased school days in November and December, largely due to the shift in

the end-of-year school break. The exact dates of these school calendars, including breaks,

are well documented by Frye (2011). Using this record, I construct SchoolCalendard,t, an

indicator for if school was scheduled for day d ∈ [1, 365], where d = 1 is January 1st and

d = 365 is December 31st, in time period t, either 2009 (pre-policy) or 2011 (post-policy).

Reasons for the school calendar change as reported by local and district officials (Frye,

2011) include: 1) alignment with the university calendar in Malawi; 2) alignment with the

university and international school calendar of neighboring countries; 3) closer alignment with

the government fiscal calendar, which begins in July; 4) reversing the policy of the previous

administration for politically symbolic reasons; and 5) alignment with the initiation schedule

for the Yao people, a Bantu ethnic and linguistic group. Reasons (1)-(4) build confidence

in the argument that the school calendar change was made without consideration of the

farming calendar. Reason (5) may be correlated with the Yao farming calendar; however,

in Table 1.1, I do not find any correlation between shift-share overlap and the pre-policy

share of Yao households in the community—only 11% of households, on average, across

communities–though I include it as a control in my main specification nonetheless to err on

the side of caution.

1.3.3 Panel Survey Data

Outcome data and household agricultural data come from Malawi’s Integrated Household

Panel Survey (IHPS) 2010-2013. This section summarizes key variable attributes while

additional details are provided in Appendix A.2.

Outcome data include highest grade level completed and variables describing

household-farm work during peak periods. First, Gradei is the highest grade level completed

for individual i in the referenced academic year. Additionally, I have measures of enrollment

and extended absences that I use to examine channels affecting overlap’s effect on grade level.

Second, Farmedi is an indicator equal to one if individual i worked on household plots during

peak periods in the past year, and zero otherwise, and Farm Hoursi is the corresponding

number of hours worked, both of which are reported in the household agricultural survey.

Peak periods are defined as rainy-season sowing and harvest periods, when 93.6% of the

average household’s cultivated acres are under production. Table 1.1 presents summary

statistics of baseline values of these outcomes for the sample of interest.

calendar change was not accompanied with other well-documented educational reforms.
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Household agricultural data from the IHPS include plot-level production and

member-specific time use data, both of which serve as inputs to calculating community

crop shares. For agricultural production, I use pre-policy levels of cultivated acres of each

crop type recalled for the rainy season 2008/09, dry season 2009, and permanent crops. With

member-specific time use data, I estimate off-farm labor as the sum of annual hours of formal

work and ganyu (day) labor and on-farm labor via plot-specific reports on household labor,

both of which are aggregated to the community level.

As controls in the regression, I use individual sex and age, household size, and a household

asset index as the first principal component of a vector of indicator variables for ownership of

12 assets.7 Additionally, from a community-level survey, I use estimates of a community’s

share of Yao households (given possible heterogeneity discussed in the previous section) and

an indicator for if the community experienced a drought in the prior five years.

1.3.4 Crop Calendars

Data on community crop production are matched to crop calendars from the Food and

Agriculture Organization (FAO) Crop Calendar Tool, which provides start and end months

for the sowing and harvest periods for 45 major crops in Malawi, which match to 83% of

pre-policy cultivated acres in the IHPS data. For remaining 17% of cultivated acres, I use the

modal sowing month and harvest month reported by households in the first IHPS. Additional

details are provided in Appendix A.2. Using these data, I generate CropCalendard,c, an

indicator for if crop c is either being sown or harvested on day d ∈ [1, 365], where d = 1 is

January 1st and d = 365 is December 31st.

1.4 Empirical Approach

1.4.1 Constructing Overlap

I construct overlap as a shift-share variable that captures a community’s exposure to

crop-level shocks of changes to overlap between the school and crop calendars. First, I

estimate the crop-level shock as the ”shift” (or change) in the number of days during which

both school is scheduled and crop c is being sown or harvested (times of peak farm labor

demand). Then, I estimate the ”share” of annual labor devoted to producing crop c in the

community, which measures the community’s exposure to crop c’s overlap shock. Crop-level

7Following Yang et al. (2021), the 12 assets are car, motorcycle, bicycle, radio, television, sewing machine,
refrigerator, iron, bed, table, clock, and solar panel. Missing are two assets not reported in the data: freezer
and mobile phone.
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shocks weighted by the community crop shares are then summed across all crops to collectively

capture the community’s exposure to the set of crop-level overlap shocks.

I estimate the crop-level shock using the indicator variables characterizing school and

crop calendars defined in the previous section. I define overlapc,t as the number of days in

year t in which both school is scheduled and crop c is being sown or harvested. Formally,

overlapc,year =
365∑
d=1

(CropCalendard,c ∗ SchoolCalendard,t) (1.4.1)

where time year takes on the values of the pre-policy year 2009 or the post-policy year

2011. I then estimate the shock change in overlap ∆overlapc,2011−2009 as the difference in

overlapc,year for crop c in 2011 relative to 2009. Across the 135 unique crops in the data,

∆overlapc,2011−2009 has a mean of 1.7 days, standard deviation of 10.6, minimum of -27, and

maximum of 21.

I estimate the community’s exposure to crop c’s overlap shock via the community crop

share sharec,ℓ, which captures the relative importance of crop c in community ℓ based on

the labor and land resources devoted to it. Specifically, I estimate sharec,ℓ using IHPS data

on on-farm vs off-farm labor and pre-policy levels of cultivated acres by crop by season, as

shown in Equation 1.4.2. Defining a community by each 16-household enumeration area

in the IHPS, I start by calculating the on-farm share of community ℓ’s total annual hours

worked as farmshareℓ and the share of cultivated acres devoted to crop c in community ℓ as

the variable acresharec,ℓ. Next, I estimate the community ℓ’s share of crop c as the product

of these two shares for each crop:

farmshareℓ = hours onfarmc,ℓ/(hours onfarmc,ℓ + hours offfarmc,ℓ)

acresharec,ℓ = acresc,ℓ/
∑
C

acresc,ℓ

sharec,ℓ = farmshareℓ ∗ acresharec,ℓ

(1.4.2)

All shares are ∈ [0, 1]. Note that the sum of sharec,ℓ across all crops is equal to farmshareℓ

since the sum of acresharec,ℓ across all crops is equal to 1.

Putting these together, I estimate shift-share overlap for each community by weighting

the crop-level shock by community crop share sharec,ℓ ∈ [0, 1] and summing across crops:

ssoverlapℓ =
∑
c

(sharec,ℓ ∗∆overlapc,2011−2009) (1.4.3)

Finally, I normalize ssoverlapℓ to unit variance across all IHPS communities surveyed
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in 2010. Across the 135 communities in the sample, this variable before normalizing has a

mean of 8.0, standard deviation of 4.5, minimum of -3.9, and maximum of 17.8, and after

normalizing has a mean of 1.8, standard deviation of 1.0, minimum of -0.9, and maximum of

4.0. To put ssoverlapℓ into perspective, I use a simulation to estimate that a 1.21 standard

deviation increase in normalized ssoverlapℓ is roughly equivalent to adding 10 days of overlap

during sowing and harvest of rainy-season maize in the average sample community.8

Moreover, for secondary analyses, I construct versions of shift-share overlap that refer

to specific periods of the farming and school calendar. First, I distinguish between sowing

and harvest periods in CropCalendard,c and use the process described above to construct

measures of shift-share overlap during sowing ssoverlap sowℓ and harvest ssoverlap harvℓ,

which together sum to ssoverlapℓ. Second, I identify the first and last four weeks of school in

SchoolCalendard,t to construct measures of shift-share overlap between peak farming periods

and the first month of school ssoverlap admisℓ and last month of school ssoverlap examsℓ,

which represent the important admissions and exam periods. All new shift-share overlap

regressors are normalized to unit variance of ssoverlapℓ to have comparable coefficients.

1.4.2 Sample

I define my sample as individuals surveyed about their schooling outcomes for the pre-policy

school year 2009 when they were 6-13 years old. In the IHPS 2010, this includes households

that were interviewed prior to the last scheduled day of the 2010 school year (i.e., August 7,

2010), so that schooling responses about the previous academic year refer to the pre-policy

2009 school year. The age range of 6-13 years old ensures that the sample is fully exposed to

the shock over the four-year study period. In Malawi, children typically start school at age

six and, if they complete one grade each school year, can complete primary school by age 13

and secondary school by age 17. Thus, from 2009 to when they are ages 10-17 in 2013, the

sample are eligible school-aged children—the population of interest for this study.9

This yields a sample of 2,287 individuals at baseline, 2,142 of which are still present in the

IHPS 2013, producing a sample retention rate of 94% that Table 1.1 shows is not correlated

with shift-share overlap.

8See Appendix A.3.1 for details on the simulation used to make this comparison.
9This age range is also supported by pre-policy data of enrollment by age showing over half of children

being enrolled in school from ages 6 to 17 but not otherwise.
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1.4.3 Regression

1.4.3.1 Primary Analysis

I seek to estimate the causal effect β of ssoverlapℓ in a linear model of:

Yi,ℓ = α + βssoverlapℓ + δYbase,i,ℓ + ρfarmshareℓ + wi,ℓ
′γ + ϵi,ℓ (1.4.4)

where Yi,ℓ is the outcome for individual i in community ℓ; ssoverlapℓ is the shift-share regressor

calculated in Equation 1.4.3; Ybase,i,ℓ is the baseline value of the outcome; farmshareℓ is the

on-farm share of total annual hours worked (i.e., the sum of crop shares); wi,ℓ is a vector of

controls defined below; and ϵi,ℓ is an error term.

The control farmshareℓ represents the sum of community crop shares across crops, as

recommended by Borusyak et al. (2022) in the case of incomplete shares. It ensures that the

regression compares individuals from communities with comparable shares of on-farm labor

while estimating the effect of ssoverlapℓ.

The vector of pre-policy controls wi,ℓ includes the location-level controls and crop-level

controls. Location-level controls include individual sex and age; household size and asset

index; an indicator for three sample communities containing no farming households, the

community’s share of Yao households, and an indicator for if the community experienced a

drought in the prior five years. Crop-level controls include: seasonal dummies (rainy, dry,

permanent) and a dummy for grain crops as share-weighted location-level variables (as in

Borusyak et al. (2022)) and altitude zone. Crop season and altitude are included as controls

as both are correlated with crop calendar length and thus crop-level overlap as well, while

the grain dummy captures the community share of maize—Malawi’s dominant cash and

food crop. Finally, out of caution and to control for baseline imbalance in the Farm Hoursi

(described in Section 1.4.5), I include the baseline values of all three main outcomes Gradei,

Farmedi and Farm Hoursi in each regression of post-policy outcomes.

Given the theoretical model’s predictions that additional overlap in the school and farming

calendars reduces both time in school and hours worked on the household farm, I hypothesize

that β < 0 for the main outcomes Gradei, Farmedi and Farm Hoursi.

1.4.3.2 Period-Specific Analysis

Most secondary analyses will use the primary specification in Equation 1.4.4 but with

alternative subsamples or outcomes. However, one secondary analysis will regress different

specifications to estimate the causal effect ssoverlapℓ at specific periods in the farming and
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school calendar. To compare overlap between the sowing and harvest periods, I regress:

Yi,ℓ = α + β1ssoverlap sowℓ + β2ssoverlap harvℓ +X ′
i,ℓϕ+ ϵi,ℓ (1.4.5)

where ssoverlap sowℓ and ssoverlap harvℓ represent shift-share overlap during the sowing

and harvest periods, respectively, and controls Xi,ℓ = δYbase,i,ℓ + ρfarmshareℓ + wi,ℓ
′γ are

the same as those described in Equation 1.4.4. Here, I expect the impact of overlap in both

the sowing period β1 and harvest period β2 to be negative, but do not make predictions

about their relative effect size. Note that because ssoverlap sowℓ and ssoverlap harvℓ sum

to ssoverlapℓ, the latter does not serve a purpose in the regression.

Moreover, to measure overlap’s effects during critical periods in the school year, I regress:

Yi,ℓ = α + β1ssoverlap ℓ+ β2ssoverlap admisℓ + β3ssoverlap examsℓ +X ′
i,ℓϕ+ ϵi,ℓ (1.4.6)

where ssoverlap admisℓ and ssoverlap examsℓ represent shift-share overlap during the

admissions and exam periods, respectively, and other variables are as described in Equations

1.4.4. Here, coefficients on the new regressors β2 and β3 are interpreted as interaction terms

(i.e., overlap’s effect during the first month of school is β1 + β2) and test how overlap during

the first and last month of school differ from the rest of the school year. I do not make a

formal prediction on β2 and β3. If β2 and β3 estimates have different signs across the two

primary outcomes, then this reveals that overlap during this period affects the trade-off

between schooling and household-farm work. Meanwhile, if β2 and β3 estimates are both

positive (negative) across the primary outcomes, then an interpretation is that overlap during

this period is a less (more) binding constraint on time available for both activities.

Finally, to check the robustness of the secondary results to the full specification, I regress:

Yi,ℓ = α+β1ssoverlap sowℓ + β2ssoverlap harvℓ+

β3ssoverlap admisℓ + β4ssoverlap examsℓ +X ′
i,ℓϕ+ ϵi,ℓ

(1.4.7)

where variables are defined as described above.

1.4.4 Inference

Conventional standard errors in shift-share regressions do not account for unobserved

correlation between observations with similar exposure shares, and tend to over-reject when

this correlation is positive (Adão et al., 2019; Borusyak et al., 2022). Therefore, I test

the hypotheses by employing a randomization inference (RI) procedure that compares my

actual effects to those estimated from counterfactuals of shift-share overlap. Following
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insights from Borusyak and Hull (2021), I specify a shock assignment process aligning with

my assumption that the crop-level change-to-overlap shocks are plausibly exogenous to my

outcomes, while holding fixed the community crop shares that are likely endogenous. By

using shock counterfactuals to simulate an empirical distribution of test statistics, I can

test the sharp null hypothesis that shift-share overlap has no effect for any observation by

checking if actual test statistics are in the tails of the null distribution (Fisher, 1935). This

RI test remains valid despite the high concentration of rainy-season maize in the data that

could hinder asymptotic approximation.

The RI procedure is as follows. First, I randomly draw (with replacement) crop-level

shocks ∆overlapc,2011−2009 from its actual distribution. Second, I weight the redrawn shocks

by actual crop shares sharec,ℓ, and sum across crops to generate a counterfactual shift-share

overlap measure for each location (as in Equation 1.4.3). Third, I run the regression specified

in Equation 1.4.4, replacing only the actual shift-share overlap measure with the counterfactual

one, and collect the counterfactual β, called β̃. Then, I repeat these three steps 1000 times.

Finally, I calculate Fisher exact p-values as the fraction of β̃ for which |β̃| ≥ |β̂|.
In Appendix A.4, I describe alternative, and in some cases more conservative, inference

procedures that I use to test the robustness of my results. Alternative RI procedures include

drawing shocks from a normal distribution defined by the first and second moment of the

actual overlap distribution, redrawing shocks with replacement within season, and estimating

counterfactual shocks based on simulated school calendar changes. I also run a share-weighted

shock-level regression that produces exposure-robust standard errors (Borusyak et al., 2022).

Further, I detail how the high concentration of rainy-season maize in my data possibly

violates a key assumption for their procedure, which explains why I chose the RI procedure

for inference ex ante. As it turns out, the exposure-robust p-values are comparable to those

estimated from RI.

1.4.5 Falsification Tests

To evaluate the key identifying assumption that shocks are quasi-randomly assigned, I

implement falsification tests outlined in Borusyak et al. (2022). First, I conduct traditional

”balance tests” on baseline values of key outcomes and location-level characteristics that

proxy for the unobserved residual evaluated via the RI procedure. Second, I conduct a

district-level ”pre-trend” analyses on the schooling outcome: highest completed grade level.

Collectively, results support the assumption that shift-share overlap is pseudo-randomly

assigned to observations in Equation 1.4.4.

First, I check for balance in the retention between the eligible 2010 IHPS sample and the

2013 IHPS sample to rule out sample selection issues confounding the analysis. Then, I check
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for balance on the baseline values of Gradei, Farmedi and Farm Hoursi and location-level

controls. Balance regressions are estimated on the following:

Ybase,i,ℓ = α + βssoverlapℓ + ρfarmshareℓ + wi,ℓ
′γ + ϵi,ℓ (1.4.8)

where Ybase,i,ℓ is the outcome and the control vector does not include baseline values of

Gradei, Farmedi and Farm Hoursi (as this was motivated by the balance test), but all

other regressors from Equation 1.4.4 are included except when serving themselves as the

dependent variable.

Table 1.1 presents summary statistics and balance test results. Retention between the

2010 and 2013 IHPS sample is 94% and is balanced with respect to shift-share overlap,

as are most other variables. However, there are two incidences of imbalance: First, a one

standard deviation increase in shift-share overlap is correlated with a 3.17 hours increase in

the baseline measure of Farm Hoursi. This imbalance must lie along the intensive margin

of Farm Hoursi, given that its extensive margin Farmedi appears balanced. While the

imbalance in the opposite direction of the hypothesized effect, this motivates prioritizing

Farmedi as a measure of household-farm work and also controlling for baseline values of

Farm Hoursi as well as Gradei and Farmedi in the main specification. Second, communities

with greater exposure to the school calendar change were less likely to experience a drought in

the prior five years, possibly making these communities relatively better off in the pre-policy

period. However, when controlled for, the table shows that the baseline values of the Gradei

and Farmedi are balanced, alleviating concern of these imbalances driving the results for

these outcomes. Also, in regards to the Yao ethnic group’s initiation schedule as a possible

reason for the school calendar change, note that community share of Yao households is

balanced across the sample.

Additionally, Table 1.2 presents a district-level ”pre-trend” analysis of the change in highest

completed grade level between the pre-policy data from 2009 and those collected in Malawi’s

2004 Integrated Household Survey (IHS2). Without individual panel data before 2009, I

examine pre-trends by averaging the individual cross-sectional data from 2004 and 2009 to the

district level, and then matching observations across 26 (of 28) formal districts plus 4 distinct

urban areas. Outcomes include ∆Grade 2004-2009: the change in the district’s average grade

completion between 2004 and 2009. For comparison, I also examine ∆Grade 2009-2013: the

change in the district’s average grade completion between 2009 and 2013. Unfortunately

the IHS2 agricultural modules do not collect time use data for household individuals, so I

cannot examine household-farm work. Adapting main specification Equation 1.4.4 into a

district-level regression, I regress outcomes on district-averaged ssoverlapℓ (called ssoverlapd)
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and district-averaged controls and then infer using a RI procedure with district-averaged

counterfactual shift-share overlap measures. For robustness, I study two district-averaged

samples: the 6–13 age group comparing the study sample’s age range across surveys; and a

cohort of school-aged individuals who are 6–9 years old in 2004, 11–14 in 2009 and 15–18 in

2013.

Regressions of ∆Grade 2004-2009 in Table 1.2 do not detect a significant correlation with

ssoverlapd, suggesting ”parallel pre-trends” between different levels of ssoverlapd in the main

specification. Moreover, regressions of ∆Grade 2009-2013 estimate significant negative effects

in the ”Age 6–13” regressions (RI p-value = 0.026) and marginally significant negative effects

in the ”Cohort” comparison (RI p-value = .108), suggesting that some of the hypothesized

negative effects of overlap on highest completed grade level are even detectable at the district

level.

1.5 Results

1.5.1 Primary Results

Table 1.3 presents results testing the paper’s primary hypotheses with conventional

standard errors in parentheses and randomization inference (RI) p-values in square brackets.

I estimate a statistically significant negative effect of shift-share overlap on both Gradei

and Farmedi. These results support the model’s predictions that the added time constraint

imposed by additional overlap between the school and farming calendars decreases both time

in school and work on the household farm. In Table 1.4, I show that these results are also

robust to other and often more conservative inference procedures.10

These negative effects are substantial across the four year period. Recall from Section

1.4.1 that a 10-day increase in overlap during the rainy-season sowing and harvest in the

sample-average community increases shift-share overlap by 1.21 standard deviations. Then,

multiplying 1.21 by the coefficients in Table 1.3, I estimate that a 10-day increase in overlap

during peak production decreases Gradei by 0.34—equivalent to one grade lost for every

three children. Additionally, a 10-day increase in overlap during peak production decreases

Farmedi by 11 percentage points. With the share of the sample engaged in household-farm

work increasing by 22 percentage points over the four-year panel (as the children age and

physically mature), this represents a sizeable 50% reduction in children working on their

household farm.

In Table 1.3 column (3), I also show that shift-share overlap has a significant negative

10Alternative inference procedures detailed in Appendix A.4.
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effect on overall household-farm hours worked during peak periods.11 While this effect is

driven by changes along the extensive margin in column (2), it is useful to estimate the overall

time lost to household-farm work on average. The results imply that a 10-day increase in

overlap during peak production decreases Farm Hoursi by 6.26 hours on average, which, to

put into perspective, is almost one school day for the median grade level in primary school.12

1.5.1.1 Comparison of Primary Effects

Taken together, the results on Gradei and Farm Hoursi suggest that households appear

to make larger reductions to their children’s time in school relative to time on the household

farm, despite both allocations facing the same constraint. To explore this comparison further,

this section uses the theoretical model to discuss possible effects of overlap on time in

school and then performs some ”back-of-the-envelope” calculations to obtain first-order

approximations of households’ perceived value of time in school.

First, while data limitations prevent the testing of overlap’s direct effect on time in school

(e.g., via daily attendance), I can use my theoretical model to infer some likely possibilities.

Recall Assumption 1 of the theoretical model: households always prefer schooling and farming

to leisure given some number of calendar days in which only leisure (and neither school nor

farming) is available. If Assumption 1 holds, then a child’s time allocation to schooling

and farming is constrained by overlap both before and after the policy change; hence a

10-day increase to overlap must decrease the total allocation to school and farming by exactly

10 days. Then, given the empirical finding that a 10-day increase in overlap during peak

production decreases household-farm work by about 1 day annually, the same 10-day increase

in overlap must decrease time in school by 9 days annually (almost two weeks of school).

However, if Assumption 1 does not hold, then overlap’s effect on time in school may be

smaller, though not so much smaller that it cannot feasibly explain the observed reductions

in highest completed grade level. Given this, it seems likely that overlap has a larger negative

effect on time in school than on time in household-farm work, since a 1-day decrease in

schooling is likely too small to explain the 0.34 reduction in grade advancement. If so, this

suggests that household demand for child labor during peak farming periods is relatively

more inelastic than demand for time in school, on average, though pinning down precise

estimates for overlap’s effect on time in school must be left to future research.

Second, I approximate the perceived value of time in school for the average sample

household, following calculations detailed in Appendix A.5. As a starting point, I assume that

11Alternative inference procedures in Table 1.4 reveal p-values ranging from 0.054 to 0.163, with most
following below 0.10.

12Generally, Malawian public primary school starts at 7:30 for all standards and ends after 4.5 hours for
Standards 1-2, 6.5 hours for Standards 3-4, and 7 hours for Standards 5-8.
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the average overlap-constrained household will reallocate time to each activity until the point

where the expected utility lost from decreases in schooling is equal to the expected utility

lost from decreases in farm work (given monotonic and concave preferences for schooling and

farm work, as assumed in the model). If so, then the results suggest that, on the margin,

households equate 0.34 grades to 3 days of household-farm work (i.e., one day annually

for three post-policy years) in terms of their expected impact on household utility. In my

reference estimate, I multiply the 3 lost days of household-farm work by the average under-15

daily wage for hired farm labor, and divide by 0.34 to estimate the perceived value per

completed grade. I also obtain an upper-bound estimate intended to approximate a more

generous perceived valuation of time in school. Compared to the reference estimate, the

upper bound estimate assumes 1) that the positive baseline imbalance is muting the same

magnitude of negative effect in the main analysis, and 2) the average adult daily wage for

hired farm labor. The reference and upper-bound estimates of the perceived value of a

completed grade of school for the average sample household are $21 and $33 in 2009 USD,

respectively.

How do these estimates of the perceived value of one completed grade level compare to

potential returns to education? Consider Montenegro and Patrinos (2014)’s ”Mincerian”

estimates for the average rate of return for another year of schooling in Malawi of 5.2%

in 2004 and 9.8% in 2010. In this range, the annual return for another year of schooling

for an non-educated worker is between $3.75–$7.07 USD (would be higher for educated

workers), which—if added to annual income for all working-age years—has an approximate

present discounted value to an individual of between $94–$179 USD.13 Even comparing the

upper-bound perceived value of one completed grade level of $33 to the more conservative

estimated lifetime return of $94, the household’s revealed valuation of an additional year of

school is only about one-third of its potential contribution to the child’s lifetime income. This

finding is surprising but also consistent with the literature on households underestimating

the returns to education (Jensen, 2010; Nguyen, 2008) and specifically Dizon-Ross (2019)’s

2012 estimates of Malawian households’ perceived returns to secondary school relative to

primary-school earnings of 3.2% (SD of 3.8%). Other possible explanations include households

strategically under-investing in schooling to benefit the household (Jensen and Miller, 2017),

or simply underestimating the negative effect of lost time in school on grade advancement.

Regardless of the reason, this ”back-of-the-envelope” comparison highlights how households

underestimate the value of time in school when making marginal decisions about how to best

allocate their child’s time under constraints.

13See Appendix A.5 for calculation details.
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1.5.2 Secondary Results

Secondary analyses further characterize the significant negative effects of overlap between

the school and farming calendars. In Section 1.5.2.1, I start by comparing testing for

heterogeneity by a child’s age, sex and household wealth, focusing on the primary outcomes

with the clearest Gradei and Farmedi. In Section 1.5.2.2, I examine the impacts of overlap

during different farming and schooling periods and schooling impacts by grade level. In

Section 1.5.2.3, I analyze possible channels for the school effect. In Section 1.5.2.4, I assess

other adjustments to child’s time allocation and household farm decisions. Finally, in Section

1.5.2.5, I present a useful but somewhat limited long-run analysis.

1.5.2.1 Heterogeneity

In this section, I test for heterogeneity in the primary analysis by individual sex and age

and by household asset wealth. Doing so reveals who is most affected by overlap between the

school and farming calendars: girls, younger boys, and households in the lower two-thirds of

asset wealth.

Table 1.5 examines heterogeneity in the main results by individual’s sex and age. Results

of the main specification are presented for subsamples determined by an individual’s reported

sex and age in 2009. In columns (1)-(4), results for individuals age 6-9 in 2009 (pre-policy)

who become age 10-13 in 2013 (when outcome data were collected post-policy), with distinct

results for boys and girls. In columns (5)-(8), results for individuals age 10-13 in 2009 who

become age 14-17 in 2013, with results for boys and girls.

First, looking at results for the younger age 6-9 group, Table 1.5 columns (1)-(4) reveal

that shift-share overlap has a significant negative effect on both younger boys’ and girls’

highest grade level completed, but only affects boys’ likelihood of working on the household

farm despite similar levels at baseline. Further, if we accept the point estimates and assume

that boys and girls at this age are equally constrained by overlap, then the results suggest that

the school-farming trade-off is different by sex: in response to an overlap shock, girls see a

larger reduction in grade level advancement presumably because they make larger reductions

to time in school,14 while boys see a larger reduction in household-farm work. However, I

make this interpretation cautiously given that point estimates under each outcome are not

significantly different between boys and girls.

Second, looking at results for the older age 10-13 group, Table 1.5 columns (5)-(8) reveal

that shift-share overlap maintains a significant negative effect on girls but not boys. For

14This interpretation does require the additional assumption that the function of time in school to highest
completed grade level is the same for boys and girls.
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girls, point estimates on grade level are very near to those estimated in the younger age

group while estimates on the likelihood of farming are much larger. For boys, I estimate

insignificant estimates in both measures. A possible theory-driven explanation may be that a

large proportion of boys in this age group do not allocate time near the school-farming time

frontier, either because they only do one of these two activities (i.e., schooling or farming

but both) or allocate a relatively large amount of time to other activities including leisure or

other forms of work.

Next, Table 1.6 examines heterogeneity in the main results by household asset wealth.

Results of the main specification are presented for subsamples of individuals belonging to the

bottom, middle or top tercile of their households’ pre-policy asset index.15

First, overlap’s effects appear weaker for wealthier households, as coefficients corresponding

to the top tercile of household asset wealth are much smaller in magnitude and generate

weaker RI p-values than in other sub-samples. This would be the case if wealthier households

are less vulnerable to time constraints on the joint allocation to school and household-farm

work—for example, if wealthier households are less likely to have their children work on a

household farm. Indeed, 27% of top-terciles households do not even have a farm, compared

to 9% of households in the lower two terciles.

Second, I compare the relative trade-off between overlap-induced declines in school and

farming between the lower two terciles. While the poorest households in the bottom tercile

make larger reductions in schooling, households in the middle tercile make larger reductions

to household farming, consistent with the idea that poorest households are most reliant on

child labor. However, I make this interpretation cautiously given these point estimates are

not significantly different for each other.

1.5.2.2 Period-Specific Effects

To test which calendar periods are most sensitive to overlap, Table 1.7 presents variations of

the main specification with regressors representing overlap during different farming and school

periods. The results suggest that labor demand is relatively inelastic during the labor-intensive

sowing period, leading to greater reductions in schooling and smaller reductions in farming.

First, columns (1) and (2) estimate how the impact of overlap varies between sowing and

harvest periods. Column (1) reveals negative effects on grade completion for both sowing and

harvest overlap (though only the coefficient on sowing overlap is significant with an RI p-value

of 0.056), with sowing overlap having a larger coefficient but not significantly so. Column (2)

reveals negative point estimates on the indicator for working on the household-farm, where

15Recall that the asset index is estimated as the first principal component of a vector of indicator variables
for ownership of 12 assets in 2010.
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the coefficient on harvest overlap is a significantly larger (p-value = 0.014) and the only

one that is significantly different from zero. Taken together, the results suggest that labor

demand is relatively inelastic during the sowing period, with households less willing to reduce

their children’s household-farm work as compared to the harvest period at the expense of

time in school.

One possible explanation is that the rainy-season sowing period is generally more

concentrated in the calendar year, meaning that sowing is a period of peak labor demand

even relative to the harvest. Indeed, in Appendix A.3, I find that a 10-day increase during

rainy-season sowing increases shift-share overlap by 1.35 standard deviations, while a 10-day

increase during rainy-season harvest increases it by only 1.07 standard deviations—the

difference caused by the fact that sowing periods across all crops are more concentrated

from mid-November through December, whereas harvest periods across all crops vary from

February through July depending on the length of the crop’s growth cycle. Comparing the

results through this framing only exacerbates sowing overlap’s negative effect on schooling: a

10-day increase in sowing overlap decreases Gradei by 0.49 (i.e., almost one lost grade for

every two children).

Second, columns (3) and (4) estimate how the impact of overlap during school’s admissions

and exam periods (i.e., the first and last four weeks of school, respectively) varies from the

remainder of the school year. Results of admissions-period overlap have near-zero point

estimates and are not statistically significant, suggesting overlap’s effect does not vary during

this time. Results of exam-period overlap on Gradei are also insignificant, perhaps because

most grade levels (particularly in primary school) do not have qualifying examinations to

advance, and thus households may not perceive the value of time in school any differently

during the exam period. However, exam-period overlap has a significant positive effect on

the household-farm work indicator, countering the negative effect of overall overlap but not

enough to make the coefficient statistically different from zero.

Finally, columns (5) and (6) present results for the full specification. Only minor changes

to the point estimates and statistical significance builds confidence in the robustness of

the prior results. The most notable change is column (5)’s significant difference (at the

90% confidence level) between sowing overlap’s larger negative effect and harvest overlap’s

diminished negative effect on Gradei, further emphasizing the conclusion that sowing overlap

is more detrimental to grade advancement while harvest overlap has larger impacts on

household-farm labor.
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1.5.2.3 Channels of Schooling Effect

In this section, I test for possible channels for overlap’s negative effect on schooling. To

start, I analyze enrollment outcomes and find that overlap primarily affects grade advancement

among those who remain enrolled in school. Then, to understand which grades in the school

cycle are most affected by overlap, I estimate the effect of ssoverlapℓ on grade-specific

outcomes. The results show that grade completion is affected through grades 1–6 while grade

survival (i.e., the likelihood of reaching a grade conditional on having started school) is largely

impacted in grades 2–7.

In Table 1.8, I test different ways in which overlap may reduce schooling. First, I test

for overlap’s effect on a cascading set of outcomes that represent three possible extensive

margins for schooling. Column (1) is whether an individual started school by 2013 (i.e.,

initial enrollment). For those who had started school by 2013, column (2) is whether an

individual was enrolled in school in 2013. And for those who were enrolled in 2013, column (3)

is whether an individual is reported by the household respondent to have missed more than

two consecutive weeks of school in the previous school year (i.e., extended absence). Effects

of overlap on these outcomes are statistically insignificant, suggesting that these extensive

margins are not driving overlap’s effect on grade advancement.

Second, I test for overlap’s effect on the intensive margin of schooling by testing on a

sub-sample that was least likely to be affected by these extensive margin channels. Table

1.8 column (4) regresses Gradei on shift-share overlap, as in Table 1.3, but only for the

sub-sample of individuals enrolled in school in both 2009 and 2013 and not reported to miss

more than two consecutive weeks of school in 2013. Even after ruling out these possible

extensive margins, the negative effect on Gradei is estimated with an RI p-value of 0.052,

suggesting that overlap’s effect predominately occurs at the intensive margin. One may

speculate about whether this intensive margin affect is due to reduced school attendance for

shorter durations, less time spent after school on studying or homework, or a reduced ability

to learn caused by physical labor (e.g., exhaustion or injury); however, data limitations push

testing of these intensive margin mechanisms beyond the scope of the study.

To present results on grade-specific outcomes, Figure 1.4 plots the β̂ coefficient on

ssoverlapℓ (on the vertical axis) from regressing the main specification on a vector of

indicators corresponding to grades 1 through 8 (on the horizontal axis). Panel (a) plots the

effect of completing grades 1 through 8 by 2013. Panel (b) plots the effect of ”surviving” to

grades 1 through 8 by 2013, which refers to reaching the grade conditional on having started

school. Each point estimate is accompanied by error bars of the 95% confidence interval from

conventional standard errors and RI p-values in adjacent boxes. I focus on the RI p-values

when discussing significance below.

26



Panel (a) reveals that the negative effect of overlap hinders grade completion throughout

most of primary school, with negative point estimates for all grades, statistically significant

at the 90% confidence level for grades 1–2 and 4–6. The largest negative effect is estimated

for grade 2: a one standard deviation increase in shift-share overlap decreases the probability

of an individual completing grade 2 by 5.0 percentage points. Grade 4 completion is also

notably affected with a one standard deviation increase in shift-share overlap decreasing the

outcome by 4.4 percentage points. As grade 4 is the final grade that a new student could

potentially pass in the four-year period between surveys, the estimate suggests that overlap’s

negative effect on time in school is most concentrated in first half of primary school.

Panel (b) reveals that overlap also negatively affects primary school survival rates, with

the negative point estimates for all grades (except grade 1, which is automatically reached

conditional on having started school). Moreover, estimates are statistically significant at

the 90% confidence level for grades 2–7. The largest negative effect is estimated for grade

3: a one standard deviation increase in shift-share overlap decreases the probability of an

individual who started school reaching grade 3 by 4.6 percentage points. Survival to grade 5

is also substantially impacted with a one standard deviation increase in shift-share overlap

decreasing the outcome by 4.4 percentage points, representing a substantial decline in the

survival rate to mid-level grades in primary school as well. The fact that panel (b)’s findings

on reaching a grade roughly correspond to results for completing the previous grade in panel

(a) is additional evidence that overlap does not seem to affect enrollment decisions.

1.5.2.4 Other Adjustments

Next, I examine if households made other adjustments in response to the school calendar

change that may attenuate the primary results. First, I look at whether overlap affects

children’s time allocation to work activities that may complement or substitute rainy-season

farm labor, for which there is no evidence. Then I check if households made adjustments

to the household farm in order to reduce demand for or substitute away from child labor,

which finds increased expenditures to hired labor and seeds but not enough to affect total

farm costs or profits.

Table 1.9 tests for overlap’s effect on whether or not a child was engaged in other forms

of child labor in the prior 12 months: dry-season household-farm work, tending to household

livestock, working as a day laborer (i.e., ganyu), and working unpaid for another household.16

However, note that incidence of all activities falls below 5% at baseline and at or below 10%

post-policy, so the lack of 12-month recall data on common alternative activities may be a

16Formal work is excluded as it employs less than 0.15% of the sample post-policy.
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limitation of the analysis. No significant effects are identified, suggesting that school-farming

calendar overlap does not have any observable effects on other types of child labor.

Table 1.10 regresses household-level farm outcomes on a household-averaged version of

Equation 1.4.4 for all 1,174 households containing sample individuals. Dependent variables

include the number of acres cultivated on the household farm throughout the year; major

cost categories: labor hired from outside the household, expenses on seeds, and expenses on

fertilizer, pesticide and herbicide; total farm costs including smaller expenses like land rent,

coupon purchases, and transportation; total farm revenue including crop sales, land rent or

coupon sales; and total farm profits. All outcomes are winsorized at their 95th percentile due

to positive outliers, and farm profits is also winsorized at its 5th percentile due to negative

outliers.

The results in Table 1.10 provide evidence suggesting that households respond to the

additional constraint on their children’s time by substituting away from child labor. A one

standard deviation increase in shift-share overlap leads households to purchase significantly

more hired labor and seeds—both increases worth over 70% of average household’s expenses

on these categories at baseline. By comparison, there is no evidence that households reduce

their demand for child labor by reducing their cultivated acres. Moreover, these adjustments

appear to result in positive but statistically insignificant increases to total farm costs, farm

revenues and consequently farm profits. That overlap’s reductions in child labor do not

negatively affect farm profits is an important finding, suggesting that the average household

either places so little value of time in school that they sometimes give up schooling for child

labor despite its zero returns to farm profits, or that households overestimate their child’s

productivity prior to tighter time constraint enacted by the policy.

1.5.2.5 Long-Run Analyses

To analyze the potential long-run effects of overlap on schooling outcomes, I use data from

the 2016 and 2019 wave of Malawi’s Integrated Household Panel Survey (IHPS). Unfortunately,

due to a reduced target sample size and additional participant attrition, 2016 and 2019 data

are only available for 44% and 39% of my original sample, respectively, and retention from

the 2010 IHPS is weakly positively correlated with shift-share overlap suggesting slight

over-sampling from locations that experienced greater overlap due to the school calendar

change.

To address both issues, I broaden my sample to include those ages 0-5 pre-policy who

become school-aged in later years (ages 7-12 in 2016 and 10-15 in 2019). This sample includes

1,918 and 1,714 individuals in 2016 and 2016, respectively, and retention of the sample

that includes this group is slightly less imbalanced at the 90% confidence level in 2016 and
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producing an RI p-value of 0.141 in 2019.17 Still, I interpret the results with caution.

I look at the paper’s two main outcomes in the long-run analysis, Gradei and Farmedi,

regressing the 2016 and 2019 values of these outcomes using Equation 1.4.4. Table 1.11

presents results of this analysis. The results suggest persistent negative effects on grade

completion through 2016 and on household-farm labor. In columns (1) and (2), a one standard

deviation increase in shift-share overlap is shown to decrease Gradei by 0.38 and 0.13 in 2016

and 2019, respectively, though only the 2016 coefficient is statistically significant with an RI

p-value of 0.014. The pattern of the results suggest that overlap’s negative effect persists for

at least three additional years but then may diminish as individuals eventually ”catch up” to

their desired level of schooling. In columns (3) and (4), overlap’s significant negative effects on

Farmedi in 2016 and 2019 are statistically similar in magnitude than in the primary analysis

suggesting a persistent effect of overlap on reducing incidence of working the household farm.

In sub-Appendix A.6.2, I show these results broken down by age groups: ages 0-5 in 2009

(pre-policy) who become ages 7-12 in 2016 and 10-15 in 2019; ages 6-9 in 2009 who become

ages 13-16 in 2016 and 16-19 in 2019; and 10-13 in 2009 who become ages 17-20 in 2016

and 20-23 in 2019. For Gradei, the age breakdown suggests persistent negative effects on

grade level across age groups through 2016, but then effects diminish and become statistically

significant in 2019 with a near-zero coefficient in the middle age group (aged 13-16 in 2019)

and even a positive point estimate in the upper age group (aged 20-23 in 2019). For Farmedi,

the age breakdown suggests larger declines in household farming for younger age groups, with

a one standard deviation increase in shift-share overlap inducing significant decreases in 2019

household farming by 21.8 percentage points for the youngest age group (aged 10-15 in 2019)

and a 12.0 percentage points for the middle age group (aged 16-19 in 2019).

While they should be interpreted with care due to the limitations outlined above, the results

suggest that changes to overlap between the school and farming calendars are potentially

persistent in the medium-run and may have long-run repercussions as well that warrant

future research.

1.6 Policy Implications

Given the primary results, how potentially harmful to educational attainment was Malawi’s

policy to shift the school calendar vis-à-vis increasing overlap?18 I estimate that the policy

17Appendix section A.6.1 provides more details on the 2016 and 2019 IHPS dataset.
18To be clear, I do not assign blame on the Government of Malawi (GoM) for two reasons: 1) these results

were obviously unknown; and 2) there are other potentially beneficial reasons for realignment of a school
calendar, which are not captured in this analysis. Rather, I commend the GoM for their ongoing support of
household data collection that make this research possible.
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increased shift-share overlap by 1.8 standard deviations for the average community in the

sample. Hence, I estimate that the policy reduced schooling after four years by an average of

0.50 grades per youth in my sample (roughly one grade lost for every two children). So while

there are potentially beneficial reasons for changing the school calendar, this paper’s results

suggest that the policy potentially had detrimental effects as well.

So now what? In this section, I aim to address the next question a Malawian policymaker

might ask: “What school calendar then is best for minimizing overlap with the farming

calendar?”. Then I discuss more general implications for sub-Saharan African (and other

developing) settings similar to Malawi.

1.6.1 Simulating Alternative School Calendars

To identify Malawi’s overlap-minimizing school calendar, I simulate 52 other potential

school calendars that could have been used for the 2011 school year and estimate their

effects on shift-share overlap and grade advancement. The simulation’s main findings are

summarized in Figure 1.5, which depicts the simulated policy impacts of alternative 2011

school calendars relative to the actual 2009 school calendar for the average sample community.

The 52 simulated calendars are denoted by the week in which they start, where week 1 begins

the first week of January and week 52 begins in the last week of December. Each calendar’s

counterfactual change in shift-share overlap (measured in standard deviations of ssoverlapℓ)

is measured using drop lines via the left vertical scale, while the projected effects on Gradei

(approximated as a linear extrapolation of the primary results) are measured using bars via

the right vertical scale.19

Starting with Panel (a), Figure 1.5 shows the counterfactual measure of ssoverlapℓ and

the corresponding projected effects on Gradei given the causal results in Table 1.3 column (1).

The simulation reveals that a Malawian school calendar starting in January is typically best

to minimize overlap with the farming calendar. Assuming the structure of the 2011 calendar,

a start date of January 10, 2011 (Week 2) would have minimized overlap. Overall, this

suggests that Malawi’s pre-policy school calendar was ideally situated.20 Indeed, assuming

the structure of the 2009 calendar, a start date of Monday, December 29, 2008 would have

minimized overlap, though the actual start date of January 3, 2009 (one week later) was

second best. Moreover, the post-policy 2011 school calendar that started in September was

far from the worst calendar that could have been chosen. In terms of maximizing overlap

19Additional details on the simulation and projected effects on Farmedi are depicted in Appendix A.3.2.
20Given this, one might have expected the simulated change in shift-share overlap to be near zero in early

January instead of negative, as seen here. This is primarily because the 2011 school year had 5 fewer days
of school (one less week) than the 2009 school year, which is just over a one standard deviation change in
shift-share overlap if occurring during a peak farming period.
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with the farming calendar, March and October would be the worst times to start the school

calendar, increasing shift-share overlap by an additional 78% and 63% (Week 13 and 40,

respectively) more than the actual 2011 school calendar did.

In Panel (b), Figure 1.5 shows counterfactual measures of ssoverlap sowℓ and

ssoverlap harvℓ and the aggregated projected effects on Gradei, which was calculated by

first estimating separate sowing and harvest effects given results from Table 1.7 column (1),

and then summing them together. The simulation reveals that, when it comes to minimizing

overlap’s harmful effect on grade level, there are more gains by minimizing school calendar

overlap with the sowing period relative to the harvest period. Note that in early January—the

start date for the “ideal school calendar”—sowing overlap is at its minimum and harvest

overlap is near its maximum, and the projected effect size is positive. On the contrary, in early

July when sowing overlap is at its maximum and harvest overlap is near its minimum, the

projected effect size is still solidly negative. Then, to minimize sowing overlap, policymakers

should attempt to align school’s end-of-year break (typically 1–2 months long) with the

sowing season. For school calendars starting in January, the end-of-year break falls during

November and December—the designated sowing season for most rainy season crops. Thus,

school calendars starting in January free up students during their end-of-year break for the

most concentrated period of peak labor demand. Overlap with the harvest period is also

important, but harvest dates for rainy season crops are spread out from March through June,

so labor demand is less concentrated.

Furthermore, deeper analysis of the simulation shows that the ideal school calendar varies

by community because crop bundles (and hence the ”farming calendar”) vary by community.

For the 2011 school calendar, while a January 10th start date would have minimized overlap

across all communities on average, it actually turns out that the optimal start date is January

17th for 44% of communities, January 10th for 29% of communities, and other start dates

for the remaining 27%. This suggests that while there may be an optimal school calendar

for Malawi on average, there are potential gains to granting communities some flexibility in

setting the school calendar. The simulation reveals that shift-share overlap improves (falls)

by an additional 12% when communities adopt their own overlap-minimizing school calendar

rather than the one calendar that minimizes overlap across all communities on average.

1.6.2 Implications for Sub-Saharan Africa

For educational policymakers in sub-Saharan Africa (SSA) and similar settings, the

primary results provide evidence of a clear causal link between policies that constrain the

time available for schooling and household-farm work and reductions in time spent on these

activities. To reinforce this point, I identify a Malawi-based causal estimate to compare with
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the SSA cross-sectional analysis. Recall that Figure 1.1 shows across SSA countries that a

one percentage point increase in the overlapping percent of school and sowing/harvest days is

significantly correlated with a 2.39 percentage point decrease in a country’s survival rate to

grade 5 (with a standard error of 0.53). By comparison, in Figure 1.4, Malawi-based causal

estimates on survival rate to grade 5 suggest that a one percentage point increase in the

percent of overlapping school and sowing/harvest farm days should decrease the survival rate

to grade 5 by approximately 1.72 percentage points.21 The similarity in the effect’s magnitude

and significance between the cross-sectional and causal estimation strategies suggest that

Figure 1.1’s correlation likely captures some causality. With overlap’s percent of the school

and farming calendars ranging from 15% to 32% across SSA countries, Figure 1.1 suggests

that overlap may indeed help explain large differences in survival rates within primary school.

For countries with similarly large shares of children participating in school and household

agriculture, such time constraints likely apply as well.

Further, for policymakers outside of Malawi, the policy simulation’s findings suggest

scheduling school outside the labor-intensive sowing and harvest periods if they wish to foster

more school participation (while also factoring in the net effects of additional household-farm

work on child welfare). One approach is to shift the start of the existing school calendar to

best align school breaks, especially between end-of-year exams and the start of the next school

year, with periods of peak farm labor demand like the sowing period.22 Another approach

is to allow for more flexibility and adaptation in the school calendar at the local level—for

example, by allowing local school boards to declare up to two weeks of school holidays that

can be made up at the end of the year. Analysis of such decentralized school scheduling

policies is left as an avenue for future research.

1.7 Conclusion

This paper analyzes a plausibly exogenous change to overlap between the school

and farming calendars in Malawi that constrained total time available for schooling and

household-farm work. Starting in 2009, Malawi shifted its school calendar by four months,

effectively moving school days to a time of higher farm labor demand. Using household panel

data from 2009/10 and 2013, I estimate the policy’s impact by comparing outcomes between

21Figure 1.4 shows that the effect of a one standard deviation increase in shift-share overlap on survival
to grade 5 is -0.044. To translate into comparable terms, I first multiply the coefficient by 1.21 to obtain
the effect of a 10-day increase to overlap (see Section 1.4.1). Then, given that a 10-day increase in overlap
between the school and farming calendars (holding the length of these calendars fixed) corresponds to a 3.1
percentage point increase in the percent of overlapping days, I divide the coefficient by 3.1.

22Take caution not to accidentally align end-of-year exams with peak farming periods, as studied in Ito
and Shonchoy (2020).
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school-aged youth differentially exposed to the shock based on their community’s pre-policy

crop allocation via a shift-share estimation strategy and frontier randomization inference

procedure. I find that, as predicted by theory, overlap between the school and farming

calendars reduces both schooling and incidence of child labor on the household farm during

peak production periods. Further, I find that schooling effects are most negative during the

labor-intensive sowing period. Furthermore, negative education effects are concentrated on

girls, poorer households and those in primary school; are likely driven by reductions in school

participation along the intensive margin; and occur in new students who enter school after

the policy change.

This paper makes several contributions to the study of household decision-making in

low-income settings. First, I estimate households’ trade-off between schooling investments

and child labor by analyzing a natural experiment that shocked a child’s time allocation to

both activities while keeping the returns to each activity fixed. Second, this paper uniquely

identifies and analyzes the impact of a time constraint shock, which may be yet another

binding constraint that poor households face in some developing settings. Third, the findings

suggest that the school calendar itself may be an effective policy tool for increasing time

in school in sub-Saharan Africa by adapting the school calendar to minimize overlap with

peak farming periods, as I illustrate with a policy simulation. Rather than conceptualizing

the time trade-off between schooling and child labor as a zero-sum game, policymakers have

the ability via the school calendar to alleviate the constraint on total time available to both

productive activities. Overall, policymakers aiming to increase rural school participation

should do more to accommodate farm labor demand.
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1.8 Tables and Figures

Figure 1.1: Primary School Survival and Overlap between the School and Farming Calendars
in Sub-Saharan Africa

Notes: Figure depicts the correlation with the linear fit (and 95% confidence interval) between primary school
survival and overlap between the school and farming calendars in 43 sub-Saharan African countries, labeled
by their ISO alpha 3 code. The y-axis shows the survival rate to grade 5 of primary school for both sexes, as
reported in the most recent year available by UNESCO’s Institute for Statistics (UIS). The x-axis shows the
overlapping percent of total days in the country’s school calendar and total days in the sowing and harvesting
periods, as estimated from countries’ official primary school calendars (in most cases) and country-level crop
calendars from the Food and Agriculture Organization (FAO). Further details are provided in Appendix A.1.
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Figure 1.2: A Child’s Time Constraint in the Household Problem

Notes: Figure depicts how the time constraint for schooling and farm work s+ h ≤ S +H −Θ enters into
the household problem, where a household’s allocation of a child’s time in schooling s and household-farm
work h is constrained by the maximum number of school days S and suitable farming days H minus how the
number of days that the farm and school calendars overlap Θ. At Θ = 0, the time allocation opportunity
set extends to the point (H,S). At Θ0 and Θ1, an ”overlap line” with a slope of -1 cuts into the frontier.
Household preferences define indifference curves U0 and U1. As overlap increases from Θ0 to Θ1, the ”overlap
line” draws closer to the origin, potentially forcing reductions of both s and h that reduce household utility.
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Figure 1.3: Malawi’s School Calendar Change Increased Overlap with Peak Farm Labor
Demand

Policy-Induced Change in School Days by Month

Typical Farming Calendar

Notes: The top panel depicts the net change in the number of school days from the 2009 (pre-policy) to the
2011 (post-policy) school calendar, showing that the school calendar change ”shifted” school days out of July
and August and to November and December. The bottom panel depicts Malawi’s typical farming calendar
according to the Famine Early Warning System Network (FEWS NET, 2013), and shows that the ”shift”
increased the number of school days during the rainy-season planting (sowing) period—what FEWS NET
designates as ”peak labor demand”.
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Table 1.1: Summary Statistics and Balance Tests

Summary Statistics Balance Test

VARIABLES N Mean SD Coef. RI pval

Retention:

Included in 2013 Sample 2,287 0.94 0.24 -0.008 0.391

Baseline Controls:

Baseline Values of Primary Outcomes:

Gradei: Highest Grade Completed 2,142 1.43 1.70 -0.098 0.266

Farmedi: Indicator if Farmed in Peak Rainy Season 2,142 0.25 0.43 0.014 0.492

Farm Hoursi: Hours Farmed in Peak Rainy Season 2,142 9.82 21.94 3.165 0.031

Other Location-Level Controls:

Individual Sex: Female Indicator 2,142 0.50 0.50 0.010 0.747

Individual Age 2,142 9.29 2.29 -0.018 0.903

Household Size 2,142 6.64 2.32 0.003 0.999

Household Asset Index 2,142 0.92 1.08 -0.076 0.235

Community had no on-farm labor 2,142 0.02 0.13 -0.009 0.568

Community had drought in prior 5 years 2,142 0.28 0.45 -0.333 0.016

Community share of Yao Hhs 2,142 0.11 0.24 0.021 0.815

Notes: Columns (1)-(3) report sample summary statistics for retention and baseline controls. Columns
(4)-(5) report the coefficient and randomization inference p-values (RI pval) from ”balance test” regressions
of retention and baseline controls on ssoverlapℓ (defined in Table 1.3). Regressions also include specified
controls from Equation 1.4.8: on-farm share of total annual hours worked; individual sex and age; household
size and asset index; community-level indicator for containing no farming households, the community’s share
of Yao households, and an indicator for if the community experienced a drought in the prior five years;
crop-level controls seasonal dummies (rainy, dry, permanent) and a dummy for grain crops as share-weighted
location-level variables and altitude zone. Excluded from the regression is the baseline value of the control
when serving themselves as the dependent variable.
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Table 1.2: Pre-trend Analysis on Change in Grade Completion

Age 6-13 from Each Year Cohort: Age 6-9 in 2004

∆Grade ∆Grade ∆Grade ∆Grade

VARIABLES 2004-2009 2009-2013 2004-2009 2009-2013

(1) (2) (3) (4)

ssoverlapd 0.192 -0.348 0.167 -0.863

(0.268) (0.218) (0.173) (0.659)

[0.247] [0.026] [0.121] [0.108]

Observations 30 30 30 30

R-squared 0.879 0.834 0.991 0.679

DV Mean 0.04 0.35 2.21 3.19

Notes: Without individual panel data before 2009, I examine pre-trends by averaging individual cross-sectional
data from 2004, 2009, and 2013 to the district level, and then matching observations across 30 districts. I
regress outcomes on district-averaged shift-share overlap ssoverlapd and controls, defined at the individual
level in Table 1.3. I study two district-averaged samples: ”Age 6-13 from Each Year” compares the age group
corresponding with the study sample across surveys; and ”Cohort: Age 6-9 in 2004” compares a cohort that
ages to 11-14 in 2009 and 15-18 in 2013 (ages of intended school participation). Regressions of ∆Grade
2004-2009 (the change in the district’s average grade completion between 2004 and 2009) test ssoverlapd’s
correlation with pre-policy movement in the primary outcome Grade, and regressions of ∆Grade 2009-2013
(the change in the district’s average grade completion between 2009 and 2013) provide a comparison to
post-policy effects. Conventional robust standard errors in parentheses. Randomization inference p-values in
square brackets.
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Table 1.3: Children’s Grade Level and Household-Farm Labor in 2013

VARIABLES Grade Farmed Farm Hours

(1) (2) (3)

ssoverlapℓ -0.277 -0.093 -5.170

(0.111) (0.035) (3.704)

[0.014] [0.042] [0.087]

Observations 2,142 2,142 2,142

R-squared 0.637 0.206 0.203

Base DV Mean 1.43 0.25 9.82

∆ DV Mean 2.30 0.22 21.49

Notes: Table presents results of the main specification: ssoverlapℓ is a shift-share measure of change in overlap
between the school and farming calendars for community ℓ, constructed as the policy-induced “shift” in the
number of days during which school and a crop’s production both occurred, weighted by the pre-policy “share”
of community labor devoted to producing each crop, summed across all crops, and normalized to unit variance.
Outcomes are from 2013 from school-aged individuals ages 6-13 pre-policy: column (1) is an individual’s last
completed grade level, column (2) is an indicator equal to one if an individual worked on the household farm
during the rainy-season sowing and harvest periods, and zero otherwise, and column (3) is the corresponding
number of hours worked. Regressions include specified pre-policy controls, which include the baseline value
of the outcome; the on-farm share of total annual hours worked; individual sex and age; household size
and asset index; community-level indicator for containing no farming households, the community’s share
of Yao households, and an indicator for if the community experienced a drought in the prior five years;
crop-level controls seasonal dummies (rainy, dry, permanent) and a dummy for grain crops as share-weighted
location-level variables and altitude zone; and baseline values of Gradei, Farmedi, and Farm Hoursi (when
not already included). Conventional robust standard errors in parentheses. Randomization inference p-values
in square brackets.
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Table 1.4: Main Results: P-values from Alternative Inference Procedures

VARIABLES Grade Farmed Farm Hours

(1) (2) (3)

(a) Conventional OLS 0.013 0.008 0.163

(b) Random draw (w/ replacement) 0.014 0.042 0.087

(c) Random draw (w/ replacement): correlated by season 0.030 0.084 0.133

(d) Random Normal shock 0.005 0.029 0.074

(e) Random Normal shock: correlated by season 0.026 0.062 0.125

(f) Simulated calendar changes: correlated by season 0.018 0.042 0.084

(g) Simulated calendar changes: correlated across all crops 0.029 0.061 0.076

(h) Share-weighted shock-level regression (BHJ) 0.012 0.024 0.054

Notes: Alternative inference procedures test the effect of ssoverlapℓ in same regressions as in Table 1.3
columns (1)-(3). I report p-values from (a) conventional ordinary least-squares (OLS); randomization inference
procedures that perturb the crop-level shock by randomly re-drawing it from (b) the actual distribution of
shocks with replacement (as in Table 1.3), (c) the actual distribution of shocks for same-season crops with
replacement, (d) a normal distribution defined by the actual distribution’s first and second moments, (e)
a normal distribution defined by same-season crops’ actual distribution’s first and second moments, (f) a
simulated distribution of shocks corresponding with the universe of possible school calendar changes between
2009 and 2011, assuming school starts on a Monday and a fixed length and structure of the school calendar,
drawn for all crops with the same season, and (g) a simulated distribution of shocks as described above but
for all crops together; and (h) the share-weighted shock-level regression as described in Borusyak et al. (2022).
Further details provided on all alternative inference procedures in Appendix A.4.
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Table 1.5: Overlap Effects by Sex and Age

Pre-Policy Age 6-9 Pre-Policy Age 10-13

Girls Boys Girls Boys

VARIABLES Grade Farmed Grade Farmed Grade Farmed Grade Farmed

(1) (2) (3) (4) (5) (6) (7) (8)

ssoverlapℓ -0.435 -0.021 -0.179 -0.160 -0.457 -0.151 -0.070 -0.052

(0.181) (0.074) (0.164) (0.065) (0.216) (0.075) (0.275) (0.070)

[0.006] [0.713] [0.088] [0.009] [0.018] [0.019] [0.643] [0.420]

Observations 580 580 577 577 494 494 491 491

R-squared 0.515 0.136 0.497 0.195 0.605 0.206 0.528 0.174

Base DV Mean 0.56 0.19 0.51 0.17 2.61 0.34 2.35 0.34

∆ DV Mean 2.22 0.18 1.98 0.18 2.48 0.27 2.59 0.28

Notes: Table presents results of the main specification on sub-samples determined by individual sex and
age. In columns (1)-(4), results for individuals age 6-9 in 2009 (pre-policy) who become age 10-13 in 2013
(outcome data collection post-policy), with results for boys in columns (1) and (2) and for girls in columns
(3) and (4). In columns (5)-(8), results for individuals age 10-13 in 2009 who become age 14-17 in 2013, with
results for boys in columns (5) and (6) and for girls in columns (7) and (8). ssoverlapℓ and included controls
defined in Table 1.3. Conventional robust standard errors in parentheses. Randomization inference p-values
in square brackets.
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Table 1.6: Overlap Effects by Household Assets

Bottom Tercile Middle Tercile Top Tercile

VARIABLES Grade Farmed Grade Farmed Grade Farmed

(1) (2) (3) (4) (5) (6)

ssoverlapℓ -0.333 -0.087 -0.185 -0.142 -0.058 -0.041

(0.221) (0.055) (0.157) (0.063) (0.195) (0.078)

[0.046] [0.119] [0.095] [0.023] [0.674] [0.414]

Observations 768 768 708 708 666 666

R-squared 0.528 0.156 0.614 0.237 0.652 0.192

Base DV Mean 0.96 0.33 1.24 0.24 2.17 0.18

∆ DV Mean 2.00 0.25 2.13 0.25 2.82 0.17

Notes: Table presents results of the main specification on sub-samples determined by an individual’s household
asset index (estimated as the first principal component of a vector of indicator variables for ownership of 12
assets in 2010). Results for the bottom tercile of the asset index are in columns (1)-(2), middle tercile in
columns (3)-(4), and top tercile in columns (5)-(6). ssoverlapℓ and included controls defined in Table 1.3.
Conventional robust standard errors in parentheses. Randomization inference p-values in square brackets.
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Table 1.7: Heterogeneity by Timing

VARIABLES Grade Farmed Grade Farmed Grade Farmed

(1) (2) (3) (4) (5) (6)

ssoverlapℓ -0.257 -0.041

(0.126) (0.040)

[0.040] [0.400]

ssoverlap sowℓ -0.360 -0.022 -0.431 0.014

(0.160) (0.046) (0.174) (0.053)

[0.056] [0.763] [0.044] [0.867]

ssoverlap harvℓ -0.211 -0.149 -0.049 -0.108

(0.119) (0.042) (0.162) (0.056)

[0.130] [0.018] [0.754] [0.108]

ssoverlap admisℓ 0.018 0.002 0.180 -0.050

(0.122) (0.040) (0.156) (0.052)

[0.851] [0.965] [0.116] [0.286]

ssoverlap examsℓ 0.035 0.088 0.123 0.060

(0.098) (0.030) (0.111) (0.035)

[0.728] [0.036] [0.243] [0.186]

Observations 2,142 2,142 2,142 2,142 2,142 2,142

R-squared 0.638 0.208 0.637 0.209 0.638 0.210

Base DV Mean 1.430 0.252 1.430 0.252 1.430 0.252

∆ DV Mean 2.300 0.222 2.300 0.222 2.300 0.222

Test pval:Sow=Harv 0.369 0.014 0.088 0.101

Test pval:All+Admis=0 0.179 0.461

Test pval:All+Exams=0 0.249 0.434

Test pval:Admis=Exmas 0.912 0.096 0.725 0.043

Notes: Table presents variations of the main specification. Columns (1) and (2) regress Equation 1.4.5:
ssoverlap sowℓ and ssoverlap harvℓ are measures of shift-share overlap for the sowing and harvest periods,
respectively, which add together to equal ssoverlapℓ (as defined in Table 1.3). Columns (3) and (4) regress
Equation 1.4.6: ssoverlap admisℓ and ssoverlap examsℓ are added to ssoverlapℓ as measures of shift-share
overlap between peak farming periods and the first and last month of school, respectively, representing
admissions and exam periods, and can be interpreted as interaction terms (i.e., the additional effect of overlap
during admissions and exam periods). Columns (5) and (6) regress Equation 1.4.7 in which ssoverlap admisℓ
and ssoverlap examsℓ can also be interpreted as interaction terms since ssoverlap sowℓ and ssoverlap harvℓ
sum to ssoverlapℓ. All new regressors are normalized to unit variance of ssoverlapℓ to have comparable
coefficients. Outcomes and controls included in the regression defined in Table 1.3. Conventional robust
standard errors in parentheses. Randomization inference p-values in square brackets.
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Table 1.8: Possible Channels for the Negative Schooling Effect

VARIABLES Started Enrolled if Absent 2 Wks Grade

School Started School if Enrolled Intensive

(1) (2) (3) (4)

ssoverlapℓ -0.008 0.003 -0.019 -0.183

(0.017) (0.022) (0.022) (0.106)

[0.557] [0.790] [0.338] [0.071]

Observations 2,142 2,043 1,874 1,515

R-squared 0.299 0.136 0.022 0.671

Base DV Mean 0.83 0.85 0.04 1.61

∆ DV Mean 0.12 0.06 0.02 2.63

Notes: Table presents results of the main specification but with a cascading set of outcome variables to
analyze possible channels for overlap’s negative effect on schooling. Dependent variables and sub-samples
defined as follows: Column (1) is an indicator equal to one if an individual started school by 2013, and zero
otherwise. Conditional on starting school by 2013, column (2) is an indicator equal to one if an individual was
enrolled in school in 2013, and zero otherwise. Conditional on enrollment in 2013, column (3) is an indicator
equal to one if an individual is reported by the household respondent to miss more than two consecutive
weeks of school in the last year, and zero otherwise. Finally, conditional on enrollment in school in 2009
and 2013 and not missing more than two consecutive weeks of school, column (4) is a measure of highest
completed grade level ruling out possible effects on the extensive margins. ssoverlapℓ and included controls
defined in Table 1.3. Conventional robust standard errors in parentheses. Randomization inference p-values
in square brackets.
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Figure 1.4: Schooling Impacts by Primary School Grade Level

(a) Grade Level Completion by Grade: Dummy if Grade Completed by 2013

(b) Survival Rate by Grade: Dummy if Grade Reached by 2013 after Starting School

Notes: Figure plots the β̂ coefficient on ssoverlapℓ (on the vertical axis) from regressing the main specification
on a vector of indicators corresponding to grades 1 through 8 (on the horizontal axis). Panel (a) plots the
effect of ssoverlapℓ on a vector of indicators for completing grades 1 through 8 by 2013. Panel (b) plots the
effect of ssoverlapℓ on a vector of indicators for attending grades 1 through 8 by 2013 conditional on having
started school (often called ”survival” to each grade level). Each point estimate is accompanied by error bars
of the 95% confidence interval from conventional standard errors and RI p-values in adjacent boxes.
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Table 1.9: Adjustments to Other Child Labor

VARIABLES Farmed: Tended Worked: Worked:

Dry Season Livestock Day Labor Unpaid

(1) (2) (3) (4)

ssoverlapℓ 0.011 0.005 -0.014 -0.020

(0.016) (0.017) (0.022) (0.017)

[0.443] [0.739] [0.289] [0.199]

Observations 2,142 2,142 2,142 2,142

R-squared 0.082 0.036 0.083 0.022

Base DV Mean 0.01 0.04 0.03 0.01

∆ DV Mean 0.04 0.03 0.07 0.02

Notes: Table presents regressions of indicators for other types of child labor on the main specification. All
dependent variables are equal to one if the individual worked any amount of the listed activity in the past
12 months, and are zero otherwise: column (1) is household-farm work during the most recent dry-season
sowing and harvest; column (2) is tending to household livestock; column (3) is working as a day laborer (i.e.,
ganyu); and column (4) is working unpaid. Incidence of each activity falls below 5% at baseline and at or
below 10% post-policy. Formal work is excluded as it employs less than 0.15% of the sample. ssoverlapℓ and
included controls defined in Table 1.3. Conventional robust standard errors in parentheses. Randomization
inference p-values in square brackets.
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Table 1.10: Adjustments to the Household Farm

VARIABLES Acres Cost: Cost: Cost: Farm Farm Farm

Farmed Hired Labor Seeds Other Inputs Costs Revenues Profits

(1) (2) (3) (4) (5) (6) (7)

ssoverlapℓ 0.003 835.0 394.8 -307.8 2451.0 4874.9 2211.8

(0.112) (413.6) (188.3) (1560.8) (2253.7) (3784.3) (3244.3)

[0.969] [0.028] [0.016] [0.862] [0.295] [0.303] [0.630]

Observations 1,174 1,174 1,174 1,174 1,174 1,174 1,174

R-squared 0.442 0.176 0.135 0.332 0.332 0.329 0.192

Base DV Mean 1.68 1175.0 542.3 4686.7 8051.2 9168.4 2030.6

∆ DV Mean 0.03 1076.4 617.7 5539.0 9107.6 13717 4773.1

Notes: Table presents regressions of household-level farm outcomes on a household-averaged version the main specification for all households containing
sample individuals. Column (1) is the number of acres cultivated on the household farm throughout the year. Columns (2)-(4) measure different farm
costs: labor hired from outside the household in column (2), expenses on seeds in column (3), and expenses on fertilizer, pesticide and herbicide in
column (4). Column (5) is total farm costs including other expenses like land rent, coupon purchases, and transportation. Column (6) is total farm
revenue including crop sales, land rent or coupon sales. Column (7) is total farm profits: revenue minus costs. All dependent variables are winsorized
at their 95th percentile, and farm profits is also winsorized at its 5th percentile due to negative outliers. ssoverlapℓ and included controls defined in
Table 1.3. Conventional robust standard errors in parentheses. Randomization inference p-values in square brackets.
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Table 1.11: Long-Run Impacts on Outcomes

Grade Farmed

VARIABLES 2016 2019 2016 2019

(1) (2) (3) (4)

ssoverlapℓ -0.375 -0.128 -0.102 -0.158

(0.168) (0.231) (0.046) (0.050)

[0.014] [0.537] [0.022] [0.010]

Observations 1,918 1,714 1,918 1,714

R-squared 0.727 0.604 0.291 0.164

Base DV Mean 0.65 0.62 0.17 0.17

∆ DV Mean 2.87 4.50 0.33 0.41

Notes: Regressions run main specification but on later panel samples of individuals ages 0-13 pre-policy.
ssoverlapℓ and included controls defined in Table 1.3. Dependent variables were measured for a subset of
individuals in follow-up panel surveys in either 2016 or 2019 and are defined as follows: Gradei and Farmedi
are defined in Table 1.3 but instead refer to the listed year 2016 or 2019. Conventional robust standard errors
in parentheses. Randomization inference p-values in square brackets. Results in Appendix A.6 breakdown
results by age group.
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Figure 1.5: Simulated Policy Impacts of Alternative 2011 School Calendars

(a) Overall Impact

(b) Sowing versus Harvest Impact

Notes: Figure depicts simulated policy impacts of alternative 2011 school calendars relative to the actual 2009
school calendar. Panel (a) plots the expected change in shift-share overlap for the average sample community
using drop lines and projected effects on Gradei using crimson bars. Panel (b) plots these outcomes separately
for both the sowing and harvest periods. Additionally, the top horizontal axis estimates the start of each
month, and the vertical line denotes the actual 2011 school calendar that started on September 6, 2010.
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CHAPTER II

Teaching and Incentives: Substitutes or Complements?

Co-authored with Arlete Mahumane, James Riddell IV, Tanya Rosenblat, Dean Yang, and

Hang Yu

2.1 Introduction

Societies devote substantial resources to helping people acquire knowledge. These efforts

often take place in educational institutions. In addition, outside of school settings, there

are many efforts to promote learning about financial decision-making (raising “financial

literacy”), public health (promoting “health literacy”), and many other areas. Efforts to

promote learning commonly take one of two approaches. First, one can teach, via classroom

instruction, broadcast media, advertising, social media, or other means. Second, one can

improve learners’ incentives to acquire knowledge, such as by informing them about the

returns to education, or providing incentives for good performance on learning assessments

(e.g., merit scholarships or other rewards based on test scores). These two broad approaches

are often described as operating on the “supply” and “demand” sides of education, respectively

(Banerjee and Duflo, 2011; Glewwe, 2014). Supply interventions provide educational inputs

(e.g., teaching and instruction), reducing the marginal cost of learning. Demand interventions

seek to raise learners’ perceived marginal benefit of learning.

Supply and demand educational interventions often operate at the same time. Existing

research, however, says little about interactions between such interventions. Crucially,

are supply and demand interventions substitutes or complements? Understanding

complementarities between interventions is key for cost-effectiveness analyses, and thus

decision-making on optimal combinations of policies (Twinam, 2017). If two interventions are

complements, the gains from implementing both exceed the sum of the gains of implementing

each one singly. The greater the complementarity, the more attractive it could be to implement

both policies together, rather than either one alone. If they are substitutes, by contrast, the
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gains from implementing both are less than the sum of the gains of implementing each one

singly. In this case, it becomes more likely that the optimal course would be to implement

just one or the other of the policies, not both together.

We implemented a randomized controlled trial of a supply and a demand intervention to

promote learning, estimating the degree to which the two are substitutes or complements. We

study learning about COVID-19 among adults in Mozambique, and implement treatments

that are representative examples of supply and demand interventions to promote learning. Our

supply treatment teaches about COVID-19. It provides information targeted at individuals’

specific knowledge gaps, a pillar of the “teaching at the right level” (TaRL) pedagogical

approach (Banerjee et al., 2007; Duflo et al., 2011). We view this feedback as an important

component of teaching; however, we do not attempt to teach principles (e.g., of immunology)

which would allow respondents to answer new questions correctly (“in-depth” teaching). The

demand-side treatment offers individuals financial incentives for correct responses on a later

COVID-19 knowledge test. This treatment is analogous to educational testing with non-zero

stakes for test-takers.

Abiding by COVID-19 health protocols, we interacted with our 2,117 Mozambican study

respondents solely by phone. We registered a pre-analysis plan prior to implementation. We

assessed respondents’ COVID-19 knowledge in a baseline survey, and then implemented the

teaching and incentive treatments in a 2x2 cross-randomized design. The design created a

control group and three treatment groups: “Incentive” only, “Teaching” only, and “Incentive

plus Teaching” (or “Joint”). We measure impacts on a COVID-19 knowledge test several

weeks later.

To theoretically examine interactions between teaching and incentives, we write down a

simple model of knowledge acquisition. Individuals can exert effort to search for knowledge

on their own, and can also learn from teaching. In the model, the Incentive and Teaching

treatments can be either substitutes or complements, depending on the magnitudes of two

countervailing effects. The Incentive treatment has a motivation effect, potentially enhancing

the impact of Teaching. But Teaching can have a crowding-out effect, by reducing the need

to search for knowledge, thus lowering the effectiveness of the Incentive treatment. We define

a parameter λ, representing the degree of complementarity. If motivation effects dominate

crowding-out effects, then Incentive and Teaching are complements (λ > 0). Otherwise, they

are substitutes (λ < 0).

In advance of sharing our results publicly, we determined a reasonable “benchmark” λ by

collecting expert predictions of our treatment effects. The vast majority of surveyed experts

expected the two treatments to be substitutes, predicting that the effect on test scores of the

combination of both treatments would be less than the sum of the effects of each treatment
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implemented singly. In the context of the theoretical model, expert predictors believed that

when offering the Incentive and Teaching treatments together, the crowding-out effect would

dominate the motivation effect.

We find substantially more complementarity than experts predicted: actual estimated

λ is positive, and highly significantly different from experts’ negative prediction of λ. The

Incentive treatment raises COVID-19 knowledge test scores (fraction of questions answered

correctly) by 1.56 percentage points, while Teaching does so by 2.88 percentage points.

By contrast, the Joint treatment raises test scores by 5.81 percentage points, 31% larger

than the sum (4.44 percentage points) of the effects of each treatment provided separately.

Actual estimated λ is also marginally statistically significantly different from zero, another

benchmark of interest. These results are consistent with the theoretical case in which the

motivation effect dominates the crowding-out effect when providing both treatments together.

The effect of the Joint treatment is large in magnitude: 0.5 test score standard deviations.

Additionally, the Joint treatment’s significant positive effect and complementarity pertain to

newly asked questions (not just questions previously asked) and persist over nine months

after the intervention.

We provide a simple illustration of the importance of the estimate of λ for cost-effectiveness

comparisons. We use our actual treatment effect estimates and implementation costs to

calculate cost-effectiveness of the individual Incentive and Teaching treatments, as well as

the cost-effectiveness of the Joint treatment for different values of λ. Our estimated λ is

below the threshold at which the Joint treatment would be the most cost-effective of our

three treatments. That said, governments or NGOs implementing our treatments in different

contexts may come to different cost-effectiveness rankings given their specific implementation

costs.

This research contributes to economics research on education and learning. There is

a substantial literature examining the impacts of supply- and demand-side educational

interventions (Glewwe, 2014; Evans and Popova, 2015; Le, 2015; McEwan, 2015; Conn, 2017;

Muralidharan, 2017).

On the supply side, studies have examined provision of educational supplies (Glewwe

et al., 2000, 2009), school facilities (Duflo, 2001), new teaching technologies (Muralidharan

et al., 2019b), and “teaching at the right level” (TaRL) (Banerjee and Duflo, 2011; Duflo

et al., 2011). Angrist et al. (2020b) show that teaching via cellphone can offset learning

loss during the COVID-19 pandemic. Mbiti et al. (2019) show complementarity between

two supply-side interventions (increased school resources and teacher incentives). Outside of

school settings, supply-side efforts are made to provide health education to promote “health

literacy” (Batterham et al., 2016), financial education to promote “financial literacy” (see
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Kaiser and Menkhoff (2017) for a review), and agricultural “extension” to improve farming

knowledge (Anderson and Feder, 2007; Fabregas et al., 2019).1 Our Teaching treatment

implements a targeted approach to promote COVID-19 health literacy.

Demand-side educational interventions seek to increase the perceived returns to learning.

In school settings, studies have examined impacts of providing information on the wage

returns to schooling (Jensen, 2010), merit scholarships based on test performance (Kremer

et al., 2009b; Berry et al., 2019), or incentives for test performance (Angrist and Lavy, 2009;

Levitt et al., 2011; Fryer, 2011; Behrman et al., 2015; Burgess et al., October 2016; Fryer, 2016;

Hirshleifer, 2017). Outside of school settings, studies have evaluated incentive-based strategies

such as cash payments, deposit contracts, lotteries and non-cash rewards to promote healthy

behaviors (Finkelstein et al., 2019), but do not target learning outcomes. Our Incentive

treatment is analogous to policies providing financial incentives for test performance, making

it a rare example of a demand-side policy to promote learning among non-students.2

The most novel feature of our work is that we explicitly highlight and measure the

complementarity between a supply-side and a demand-side educational intervention. Behrman

et al. (2015) and List et al. (2018) study the interactions between test-score incentives for

teachers (supply-side) and students (demand-side), but do not estimate a complementarity

parameter, as we do.3 In addition to being of policy interest, we view this interaction as of

particular theoretical interest due to the countervailing motivation and crowding-out effects

of combining supply- and demand-side educational interventions.

Our study also contributes to understanding adult education in health crises. Broader

research suggests that adults have higher economic and physiological barriers to learning (Aker

and Sawyer, 2021), and that successful health informational interventions are comprehensive

but not overly complex (Dupas et al., 2011). Additional challenges in health crises often

include underlying institutional mistrust and misinformation (Vinck et al., 2019) and logistical

obstacles to needs assessments and outreach with vulnerable populations (Checchi et al.,

2017). In this context, we demonstrate simple interventions that can complement phone

data collection during epidemics (Angrist et al., 2020a; Maffioli, 2020; Magaço et al., 2021).

In particular, our Teaching intervention shows that providing feedback on knowledge-based

1There are also efforts to improve knowledge of legal issues, often referred to as “legal awareness” or
“public legal education” (American Bar Association, 2021).

2Carpena et al. (2017) find no effect of financial incentives on adult financial literacy test performance.
Thornton (2008) studies incentives to learn about HIV status.

3Fryer et al. (2016) study a supply-side intervention (teacher incentives) jointly with a demand-side
intervention (student incentives). They do not examine the supply- and demand-side treatments separately,
so cannot measure their complementarity. Li et al. (2014) compare results across two different experiments,
rather than measuring complementarity in one experiment, and argue that there is complementarity between
a peer-effects intervention (supply-side) and providing test-score financial incentives (demand-side).
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questions is a feasible and impactful add-on to health surveys—for example, on ”knowledge,

attitudes, and practices (KAP)” surveys common in public health.4

Related studies seek to improve COVID-19-related knowledge among adults. Alsan

et al. (2020) show that messaging tailored to minorities improves their COVID-19-related

knowledge. Mistree et al. (2021) and Maude et al. (2021) find that randomly assigned teaching

interventions improve COVID-19-related knowledge in India and Thailand, respectively, while

Bahety et al. (2021) find no evidence that COVID-19 SMS-based information campaigns

improve knowledge in rural India. Angrist et al. (2020b) and Banerjee et al. (2020) use

phone-based interventions to address issues during the pandemic.

2.2 A Simple Model of Learning

There are N dimensions of knowledge. On each dimension there are two possible states

{A,B}: a correct state A and a incorrect state B. For example, one dimension of knowledge

might be “Hot tea helps to prevent Covid-19,” with the two states being “correct” and

“incorrect”.

Initial Knowledge. Every agent has independent priors on each state which we model

as follows. The agent initially believes that both states are equally likely to be correct. She

then receives a binary signal that informs her about the correct state – that signal is correct

with probability µ > 1
2
. This implies that a share µ of population have a posterior that places

weight µ on the correct state while a share 1−µ of the population has a posterior that places

weight µ on the incorrect state.

Actions. For each knowledge dimension i, an agent takes an action xi ∈ {a, b}: a (b) will

provide utility 1 if the correct state is A (B) and 0 otherwise. The agent will therefore always

choose the action that is appropriate for the state on which she places a greater subjective

probability on being correct. For example, equipped with initial knowledge a share µ of

the population will derive utility 1 by taking the correct action and a share 1 − µ of the

population will derive utility 0. The initial expected utility of agents is therefore µ. Let

R be the benefits or returns that agents gain for knowing the correct state of a knowledge

dimension.

Teaching. Now assume that the government or some other authority seeks to teach the

agent the correct state (our Teaching treatment). The agent will adopt this recommendation

with probability p(R) which captures the credibility of the source (and hence the agent’s

propensity to follow the advice) as well as the attention she pays to the advice. Otherwise

the agent ignores the recommendation.

4See for Puspitasari et al. (2020) for a review of COVID-19 KAP surveys.
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Importantly, attention can depend on the return the agent receives for being correct: p(R)

is (weakly) increasing in R. This creates a positive interaction effect between the return to

knowledge and the propensity to absorb what is taught.

Teaching generates 3 types of posteriors:

• A share p of the population places subjective probability 1 on the correct state. This

group is made up of all agents who followed the advice.

• A share (1− p)µ of the population places subjective probability µ on the correct state.

• A share (1 − p)(1 − µ) of the population places subjective probability 1 − µ on the

correct state.

When the perceived returns to knowledge are negligible (i.e., R = 0), the Teaching

treatment increases the share of correct answers to p(0) + (1− p(0))µ.

Returns to Knowledge. Recall that agents gain benefits or returns R for knowing

the correct state of a knowledge dimension. She can spend effort e ≥ 0 on searching for

knowledge at a cost of αe2 – this will provide a correct signal with probability e. Then with

probability 1− e she does not find the correct answer and follows her initial belief µ. Returns

R may be manipulated by a learning incentive (our Incentive treatment), which increases

the share of correct answers to e∗ + (1− e∗)µ.

• Agents who already experienced the Teaching treatment and paid attention to it expend

effort e = 0 since their posterior is already placing probability 1 on the correct state.

Knowledge depreciation is ignored as it is assumed to be the same, on average, for all

agents.

• The other two groups of agents will in equilibrium spend the same amount e∗ on

searching behavior. Their expected utility equals:

(e∗ + (1− e∗)µ)R− α(e∗)2

The first two terms capture the utility from taking the correct action when she finds the

correct signal, and the last term captures the cost of searching for correct knowledge.

The optimal action therefore equals e∗ = R
2α
(1− µ): she will search more if their initial

knowledge is less precise (lower µ), if searching is less expensive (lower α) or if the

reward R is higher.

To summarize, the Teaching and Incentive treatments give rise to three types of posterior

beliefs:
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• A share p(R) + (1− p(R))e∗ of the population places subjective probability 1 on the

correct state. This group is made up of all agents who followed the advice.

• A share (1− p(R))(1− e∗)µ of the population places subjective probability µ on the

correct state.

• A share (1− p(R))(1− e∗)(1− µ) of the population places subjective probability 1− µ

on the correct state.

Learning. The share of the population with correct knowledge prior to the Teaching

and Incentive treatments is µ.

After the Teaching and Incentive treatments, the share of correct answers increases to:

p(R) + (1− p(R))e∗ + (1− p(R))(1− e∗)µ (2.2.1)

We organize the share of correct answers by treatment in Table 2.1.

We can now compare the effect of the Incentive plus Teaching (Joint) treatment with the

simple sum of each treatment implemented separately. Let this difference be defined as the

complementarity parameter λ:

λ ≡ Joint−(Teaching only+Incentive only) = (p(R)− p(0)) (1− µ)︸ ︷︷ ︸
motivation

− e∗p(1− µ)︸ ︷︷ ︸
crowding out

(2.2.2)

There are two opposing effects. The motivation effect captures that Teaching has greater

impact when the return to knowledge is higher (e.g., because agents are more motivated to

learn, she pays more attention to teaching, or exert more knowledge-search effort). On the

other hand, there is a crowding out effect because Teaching reduces the need to search for

knowledge and hence the effectiveness of the Incentive treatment.

Lemma 1. The Teaching and Incentive treatments are complements if the motivation

effect dominates the crowding out effect. Otherwise, the Teaching and Incentive treatments

are substitutes.

When the Teaching and Incentive treatments are complements, the complementarity

parameter will be positive: λ > 0. When they are substitutes, on the other hand, it will be

negative: λ < 0. When λ = 0, we say the two treatments are additive.

In our empirical analyses, we provide an estimated complementarity parameter, λ̂.
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2.3 Sample and Data

2.3.1 Data

We implemented three rounds of surveys by phone in July-November 2020: a pre-baseline,

baseline and endline survey (see Figure 2.1 for a study timeline). Respondents were from

households with phones in the sample of a prior study (Yang et al., 2021).5 We surveyed

one adult per household. Participants received a small gift of 50 meticais (approx. US$0.70)
after completing each survey, as explained at study enrollment, which was transferred via

MPesa over 93% of the time and phone credit recharge otherwise. Appendix B.1 provides

details on the COVID-19 context and study communities.

Between a pre-baseline survey and baseline survey, we randomly assigned households to

treatments and registered a pre-analysis plan (PAP). The baseline survey was immediately

followed by over-the-phone treatment implementation. There was a minimum of 3.0 weeks

and average of 6.3 weeks between baseline and endline surveys for all respondents. Baseline

and endline surveys occurred when COVID-19 cases were rising rapidly.

The endline sample size is 2,117 respondents, following a sample size of 2,226 at baseline.

The retention rate between baseline and endline is 95.1% overall, at least 94.4% in each of

the seven districts surveyed, and balanced across treatment conditions.

We measured respondents’ COVID-19 knowledge in three categories: 1) general knowledge

(risk factors, transmission, and symptoms); 2) preventive actions (preventing spread to yourself

and others); and 3) government policies (official actions taken by the national government

of Mozambique). Pre-baseline, we tested numerous pilot questions. Then, at baseline and

endline, we administered a pre-specified set of knowledge questions and their correct responses

in our analysis plan submitted to the AEA RCT Registry. At baseline, we asked respondents

knowledge questions randomly selected within each category, and respondents randomly

assigned to the Teaching treatment were given feedback on incorrect and correct responses.

At endline, respondents were asked a full set of knowledge questions to estimate treatment

effects. Poor internet access and low ownership of electronic devices make it very unlikely

that respondents looked up correct answers during the questionnaire. See Appendix B.2 for

details on question selection and the list of questions.6

5AEA RCT Registry for Yang et al. (2021): https://doi.org/10.1257/rct.3990-5.1
6Examples of questions (correct responses in parentheses) include the following. General knowledge:

“How is coronavirus spread? Mosquito bites (No)”. Preventive actions: “Will this action prevent spreading
coronavirus to yourself and others? Shop in crowded areas like informal markets (No)”. Government policy:
“Is the government currently... Asking households to not visit patients infected by COVID-19 at hospitals
(Yes)”.
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2.3.2 Outcomes

Outcomes are COVID-19 knowledge test scores: the share of knowledge questions answered

correctly. Responses are considered “correct” if they match the pre-specified correct answer

and are “incorrect” otherwise. At baseline, each respondent was assigned a randomized

subset of 20 out of 40 questions, distributed as follows across categories: 6 (out of 12) general

knowledge, 8 (out of 16) preventive action, and 6 (out of 12) government policy questions.

We pre-specified two primary outcomes: First, the Overall test score is the share of

correct answers to all 40 knowledge questions asked at endline: 12 on general knowledge, 16

on preventive actions, and 12 on government actions. In the control group (N=847), this

outcome has a mean of 0.781 and a standard deviation of 0.108. Second, the Teaching-Eligible

test score is the share of correct answers to the 20 knowledge questions that were also asked

at baseline—that is, those that were eligible for feedback via the Teaching intervention: 6

on general knowledge, 8 on preventive actions, and 6 on government actions. In the control

group, this outcome has a mean of 0.784 and a standard deviation of 0.123.

Secondary outcomes include test scores for Teaching-Ineligible questions, the remainder

20 questions NOT asked of the respondent at baseline, and newly asked questions, those

questions randomly not asked of the respondent at either pre-baseline or baseline.7 We also

analyze test scores for knowledge categories: general knowledge, preventive actions, and

government policies.

2.4 Empirical Approach

2.4.1 Treatments

To improve COVID-19 knowledge, we designed two interventions to be implemented at the

end of the baseline survey following all baseline questions: 1) “Incentive” and 2) “Teaching”.

Respondents were randomly assigned to one of four groups (probabilities in parentheses):

Incentive alone (20%), Teaching alone (20%), both treatments (“Incentive plus Teaching” or

“Joint”) (20%), or a control group (40%). Randomization was stratified within 76 communities.

We describe the treatments briefly below. Complete implementation protocols can be found

in Appendix B.3.

Incentive treatment: We informed respondents that they would earn 5 Mozambican

meticais (approx. US$0.07) for every correct response to previously-asked and newly-asked

7In the control group, the Teaching-Ineligible test score has a mean of 0.778 (sd=0.125) and the newly-asked
test score has a mean of 0.777 (sd=0.144). The number of Newly-asked questions at endline varies randomly
based on the random selection of questions in the pre-baseline survey and has these summary statistics:
mean=14.4; sd=1.8; min=7; max=20.
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COVID-19 knowledge questions on the endline survey. They were also told that this would

allow them to earn 200 meticais (approx. US$2.80), if they answered all 40 questions

correctly, in addition to their 50 meticais survey completion gift. 250 meticais is equivalent

to half of the sample median pre-pandemic (February 2020) weekly household income. After

endline questioning, the number of correct answers and resulting payment were automatically

calculated in SurveyCTO, displayed for enumerators, read to respondents, and added to the

50 meticais survey completion gift.

Teaching treatment: We provided respondents feedback on 80% of their incorrect

answers and 20% of their correct answers, on average, to COVID-19 knowledge questions

from the baseline survey. Feedback consisted of reminding respondents of their answer, telling

them if they were correct or incorrect, and then telling them the correct answer.8

Joint treatment: We informed respondents of the Incentive treatment first, then

implemented the Teaching treatment.

Sample sizes by treatment condition were as follows: Incentive (N=414, 19.6% of sample),

Teaching (N=418, 19.7%), Joint (N=438, 20.7%) and control group (N=847, 40.0%). In

Appendix C.6, we show that attrition between baseline and endline is low (4.9%) and

balanced across treatment conditions. We also show that chance imbalance between the

baseline outcome and the standalone Incentive treatment is heavily concentrated in only one

district, and that our results are robust excluding it. Finally, we show that baseline measure

of household income, food insecurity, and presence of an older adult in the household are

balanced across treatment conditions.

Randomization of the Incentive, Teaching, and Joint treatments was also stratified by

two cross-randomly assigned treatments to improve social distancing as part of a separate

study (Allen IV et al., 2021): 1) misperceptions correction, which updated beliefs upwards

or confirmed beliefs about high rates of community support for social distancing, and 2)

leader endorsement, which reported to respondents previously collected social distancing

endorsements by community opinion leaders. In Appendix C.8, we present regression results

showing no meaningful interactions between the social distancing treatments and this paper’s

treatments. We also verify that our primary treatment effect estimates are very similar when

the Test Score outcome measure excludes social distancing knowledge questions, which are

most susceptible to being affected by the social distancing treatments.

8For example, one question asks respondents whether “drinking hot tea” helps prevent COVID-19 (which
it does not). If respondents correctly responded “no” to this question, they are told “For ‘drinking hot tea’,
you chose NO. Your answer is CORRECT. The correct answer is NO. This action will NOT prevent spreading
coronavirus to yourself and others.” If respondents incorrectly responded “yes”, responded “don’t know”, or
refused to answer, they were told “For ‘drinking hot tea’, you chose YES / DON’T KNOW / REFUSE TO
ANSWER. Your answer is INCORRECT. The correct answer is NO. This action will NOT prevent spreading
coronavirus to yourself and others.”
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2.4.2 Regression

As pre-specified, we estimate the following OLS regression equation:

Yi,j,t=3 = β0 + β1Incentiveij + β2Teachingij + β3Jointij + ηBijt + γi + εij (2.4.1)

where Yi,j,t=3 is the COVID-19 knowledge test score for respondent i in community j.

Incentiveij, Teachingij, and Jointij are indicator variables for inclusion in each treatment

group. Bijt is a vector representing the share of correct answers to questions asked at

pre-baseline and baseline, respectively.9 γi are community fixed effects, and εij is a mean-zero

error term. We report robust standard errors.

Due to treatment random assignment, coefficients β1, β2, and β3 represent causal effects

of the respective treatments on test scores. We estimate the complementarity parameter as a

linear combination of regression coefficients: λ̂ = β3 − (β1 + β2).

2.4.3 Hypotheses

We hypothesize that each treatment has a positive effect on test scores. Specifically,

as pre-specified, we hypothesize that the coefficient β1 in a regression of the Overall test

score, and the coefficients β2 and β3 in a regression of the Teaching-Eligible test score will be

positive. We adjust p-values for multiple hypothesis testing across these three coefficients.10

Additionally, using our estimated λ̂, we test the following null hypotheses: λ = −0.0265

(the mean of expert predictions, λ̃), and λ = 0.

2.4.4 Pre-Specification

Prior to baseline data collection, we uploaded our pre-analysis plan (PAP) to the AEA

RCT Registry.11 In this paper, we report on a subset of analyses pre-specified in the PAP. In

Appendix C.8, we present the “Populated PAP” for our pre-specified primary analysis. These

results are substantively duplicative of and yield very similar conclusions to the primary

analyses we present here in the main text.

Hypotheses related to the complementarity parameter λ were not pre-specified in the

PAP. The motivations for testing them are the theoretical model’s ambiguous prediction as

to whether λ should be positive or negative, and the fact that the vast majority of experts

9The average respondent correctly answered 72.1% and 77.3% of the 20 knowledge questions at pre-baseline
and baseline, respectively.

10We use the method of List et al. (2019), as implemented by Barsbai et al. (2020) to allow inclusion of
control variables in the regression.

11ID Number AEARCTR-0005862 (https://doi.org/10.1257/rct.5862-1.0).
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predicted that λ < 0.

2.4.5 Expert Predictions

In advance of presenting our results publicly, we surveyed subject-matter experts on their

expectations of our treatment effects.12 The expert prediction survey provided respondents

with an overview of the project, specifics of each intervention, and definitions of the primary

outcomes (summarizing information available in the pre-analysis plan) as well as the control

group mean and standard deviation for those outcomes. The survey then asked respondents

to report their prediction of each treatment effect as a percentage point difference with

respect to the control group mean (positive values representing positive treatment effects,

and negative values representing negative treatment effects).

Experts were asked to predict the treatment effect on test scores (fraction of questions

answered correctly). For the Incentive treatment, experts were asked to predict the treatment

effect on the endline test score for all 40 questions asked. For the Teaching and Joint

treatments, experts were asked to to predict the treatment effect on the endline test score for

the 20 knowledge questions randomly selected at baseline that were eligible the Teaching

treatment.

We received expert predictions from 67 survey respondents before the survey closed on

January 2, 2021. Of these, 73% of respondents were in the field of economics, 45% were

faculty members (most others were graduate students), and 57% had experience working on

a randomized controlled trial.

Table 2.2 summarizes the expert predictions. To be consistent with the figures and tables

in this paper, we display the predictions as fractions (bounded by 0 and 1) rather than

percentage points. On average, respondents expected that Incentive would increase the test

scores by 0.040, Teaching would increase test scores by 0.046, and Joint would increase test

scores by 0.059.

For each expert who provided predictions, we calculate the complementarity

parameter implied by their predictions: Predicted Joint Effect−(Predicted Incentive Effect+

Predicted Teaching effect). 13 We refer to the average of expert-predicted complementarity

parameters as λ̃. This average is negative (λ̃ = −0.0265). The vast majority of experts

12We released an English version of the survey on the Social Science Prediction Platform (see
https://socialscienceprediction.org/ for more information) and circulated an identical Portuguese version of
the survey in Mozambique that we designed and distributed on Qualtrics.

13This requires us to assume that the expert-predicted effect of the Incentive treatment on the test score
based on all 40 questions is the same as the experts-predicted effect on the test score based on the 20
Teaching-Eligible questions. Due to random selection of the subset of 20 questions in the latter case, we
view this as a reasonable assumption—experts should not have predicted a different treatment effect on a
randomly selected subset of 20 questions than on the full set of 40 questions.
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(80.6%) expect the interventions to be substitutes, predicting that the joint treatment effect

would be less than the sum of the standalone treatment effects. There is no significant

difference in predicting that the interventions are substitutes across respondents who are or

are not in the field of economics, faculty members, or have worked on a randomized controlled

trial.

Figure 2.2 displays probability density functions (PDFs) of the predictions. For each

treatment, the vast majority of experts predicted positive effects. The mean Incentive

treatment effect (β1) is 0.040, while for Teaching (β2) it is 0.046. Notably, the mean predicted

effect for the Joint treatment (β2) is 0.059, lower than the sum of the mean predictions for

the separate Incentive and Teaching treatments (0.086): experts expect the treatments to be

substitutes rather than complements.

Graphically, the expectation of substitutability can be seen in the fact that the PDF

of the Joint treatment has considerable overlap with the PDFs of Incentive and Teaching.

Relatedly, in the figure we also display the complementarity parameter implied by each

expert’s predictions. For each expert, we take their predicted Joint treatment effect and

subtract the sum of their predictions for the separate Incentive and Teaching treatments. The

distribution of experts’ λ estimates is the gray dotted line. Most of the mass of λ estimates

lies to the left of zero: 81% of experts predicted negative λ. The mean of experts’ λ estimates

is -0.0265. We refer to this mean as λ̃, and will test the null that our estimated λ̂ equals λ̃.

2.5 Results

2.5.1 Primary Analysis

Table 2.3 presents the results from testing this paper’s primary hypotheses. In Column

1, we test our first pre-specified primary hypothesis regarding the effect of the Incentive

treatment on the overall test score.14 The Incentive treatment has a positive effect, and is

statistically significantly different from zero (p-val=0.0003) after multiple hypothesis testing

(MHT) adjustment. The point estimate indicates a 0.020 increase, relative to the 0.781 mean

control group test score. This effect is substantial in magnitude, amounting to 0.19 standard

deviations of the outcome variable.

In Column 2, we test our remaining pre-specified primary hypotheses on the effect of the

Teaching treatment and Joint treatment on the Teaching-Eligible test score.15 Coefficient

estimates in Column 2 indicate that the Teaching and Joint treatments each also have positive

14Recall the Overall test score is the share of correct answers to all 40 knowledge questions asked at
endline.

15Recall that the Teaching-Eligible test score is the share of correct answers to the 20 knowledge questions
that were also asked at baseline and hence eligible for all interventions.
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effects. The point estimate on Teaching indicates a 0.0288 increase (0.23 standard deviations

of the outcome variable), while the Joint treatment causes a 0.0581 increase (0.47 standard

deviations). Each of these coefficient estimates is statistically significantly different from zero

(p-val=0.0003 for each) after MHT adjustment.

In Column 3, we also estimate treatment effects on the Teaching-Ineligible test score.16

The Incentive intervention, which applied to newly-asked questions, indeed maintains a

significantly positive effect; however, the Teaching treatment does not, suggesting that the

intervention is effective in teaching specific facts but not related information on a topic.

Finally, the Joint intervention maintains a significant but smaller positive effect.

For our analysis of treatment complementarity, we choose to use results on the

Teaching-Eligible test score in Column 2, which contains two of our three pre-specified

treatment effects. Also, as its outcome is based on questions that were eligible for all

interventions, it maximizes the comparability of treatment effects across our treatment

conditions.17 The fourth row of the table displays the estimate, λ̂, of the complementarity

parameter, and its standard error. In Column 2, λ̂ = 0.0137, indicating that the Teaching

and Incentive treatments are complements, rather than substitutes. The key benchmark

is the mean of the expert predictions, λ̃ = −0.0265. We reject the null that λ = −0.0265

(p-val<0.0001).

We also display the p-value of the test that λ = 0, which is 0.1460 in Column 2. Given

the standard error on λ̂, we can reject at the 95% confidence level that λ < −0.0048 (in

other words, we can reject all but a very small amount of substitutability between the two

treatments).

We also present these results on the Teaching-Eligible test score in Column 2 graphically.

In Figure 2.3, we display the estimates of the three treatment effects, Joint treatment effects

implied if λ took on the values of 0 or -0.0265, and p-values of relevant tests of pairwise

differences. In Figure 2.4, we present cumulative distribution functions of test scores by

treatment group, showing that the Joint treatment leads to the largest rightward shift of the

test score distribution.

In sum, our estimates of the complementarity parameter indicate that the Incentive and

Teaching treatments exhibit much more complementarity than experts predicted. We strongly

reject the high degree of substitutability predicted by experts. In addition, we reject at a

16Recall that the Teaching-Ineligible test score is the share of correct answers to the other 20 questions
NOT asked at baseline and hence NOT eligible for the Teaching intervention. For a given respondent, the
Overall test score is the average of the Teaching-Eligible and Teaching-Ineligible test scores.

17The Teaching treatment effect can be made arbitrarily small simply by adding larger numbers of new
questions to the knowledge-measurement test that were not asked before and that therefore would not have
been eligible to be taught.
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marginal level of statistical significance that λ = 0.

This complementarity is also present when evaluating treatment effects on newly asked

questions, building confidence that results are driven by actual learning and not merely rote

memorization or experimenter demand effects. In Column 4 of Table 2.3, we run regression

3.4.2 pre-specified in our PAP as of secondary interest that replaces the outcome with the

share of correct answers to endline knowledge questions that were NOT randomly asked of the

respondent at either pre-baseline or baseline. Thus respondents were not previously told the

answers to these questions as part of the Teaching intervention, making it less obvious what

the experimenters “wanted to hear”. Both the Incentive and Joint treatments have a positive

effect on the newly-asked test score (statistically significant at 1% level). Additionally, we

continue to reject that λ = −0.0265 (the expert prediction) at the 1% level and λ = 0 at a

marginal level of statistical significance.

2.5.2 Cost-Effectiveness

We now illustrate how the relative cost-effectiveness of the treatments we study depends

on λ. We describe the analysis briefly here, providing details in Appendix B.6. The key

inputs are:

• Treatment effect estimates for the Incentive and Teaching treatments (β1 and β2). The

effect of the joint treatment is then β1 + β2 + λ.

• Implementation costs of each treatment, per treated beneficiary (derived from actual

implementation costs in this study).

We consider cost-effectiveness of each treatment, the cost per unit (1-percentage-point)

increase in the test score (lower numbers are better). For a range of values of λ we display the

cost-effectiveness of each treatment in Figure B.4. The cost-effectiveness of the Incentive and

Teaching treatments are horizontal, because they do not depend on λ. The cost-effectiveness

of the Joint treatment is a decreasing function of λ: the greater the complementarity of the

two treatments, the more cost-effective is the Joint treatment.

The intersection of the Joint treatment line with the horizontal lines indicates the

“breakeven” λs, above which the Joint treatment is more cost effective than the respective

single treatment. Breakeven λ is -0.0250 for the Incentive treatment, and 0.0290 for Teaching.

The latter number is more important overall, since the Teaching treatment is the more

cost-effective of the two individual treatments. λ must be above 0.0290 for the joint treatment

to be the most cost-effective of the three treatment combinations.
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For reference, we also show the mean expert prediction, λ̃ = −0.0265, and our empirical

estimate, λ̂ = 0.0137. At λ̂, Joint is more cost-effective than Incentive, but not as cost-effective

as Teaching. Actual costs in a scaled-up program may be different from those of our study,

and could yield different cost-effectiveness rankings across treatments. In Appendix B.6 we

provide an example of alternative relative implementation costs that would lead Joint to be

the most cost-effective at λ̂.

2.5.3 Knowledge Categories

We also estimate impacts of the treatments on Teaching-Eligible and Teaching-Ineligible

test scores across the knowledge categories: general knowledge, preventive actions, and

government policies. Results in Table 2.4 are broadly similar to the estimates in Table 2.3

Columns 2 and 3, though treatment effects for the Incentive and Teaching interventions are

heterogeneous along different dimensions.

Results for the Incentive treatment vary across knowledge category. The results suggest

that the Incentive treatment was least effective at increasing general knowledge (e.g., risk

factors, transmission and symptoms) and most effective at increasing knowledge on government

policy. As the government’s COVID-19 policies changed just prior to and during the baseline

and endline surveys, one possible interpretation is that the Incentive intervention was most

effective at promoting learning of relatively new or updating information.

Results for the Teaching and Joint treatment vary less across knowledge category and more

so between Teaching-Eligible and Teaching-Ineligible test scores. The Teaching treatment

has a significantly positive effect on all knowledge categories for Teaching-Eligible questions,

but insignificant effects otherwise. The Joint treatment remains significantly positive across

all regressions. The estimated complementarity parameter λ̂ appears largest (most positive)

for the preventive actions subcategory (Columns 2 and 5).

2.5.4 Long-Run Analysis

We further estimate the longer-run effects of the treatments over nine months later, using

COVID-19 knowledge questions included in a post-endline survey that had other primary

aims. This analysis was not pre-specified, so results should be considered exploratory. We

briefly summarize here, providing details in Appendix B.7.

In a post-endline phone survey from July-August 2021, we asked 1,886 respondents (89.1%

retention from endline, balanced across treatment conditions) 20 pre-specified questions on

general knowledge and preventive actions. We excluded government policy questions because

many pre-specified questions/answers were no longer true or applicable. Respondents received
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the standard 50 meticais survey completion gift but were offered no other incentives. We

compare endline and post-endline treatment effects on two modified Test Scores of questions

assessing general knowledge and preventive actions: 1) Test Score for all relevant questions

asked in each round, and 2) Test Score for the same set of relevant questions across baseline,

endline, and post-endline. For robustness, we analyze both outcomes, noting that each deviate

from our pre-specified primary outcome due to the exclusion of government policy questions,

and only draw conclusions supported by all regression specifications.

Results are in Table B.13. The Joint treatment has positive effects on long-run COVID-19

knowledge (Columns 2 and 4, statistically significant at 1% level) in both post-endline

regressions. In addition, the complementarity parameter remains positive over this longer

run. We continue to reject that λ = −0.0265 (the expert prediction) at the 1% level, and in

addition also reject that λ = 0 (at the 5% level or better) in all specifications. These results

indicate that the Joint intervention’s impact, and the complementarity between Incentives

and Teaching, were not merely short-run phenomena.

2.6 Conclusion

When governments and educational institutions seek to promote knowledge acquisition,

two approaches are common. First, they can teach the knowledge in question (a “supply”

educational intervention). Second, they can provide incentives for learners to acquire the

knowledge (an educational intervention on the “demand” side). This paper is among the first

to examine the interaction between a supply-side and a demand-side intervention to promote

knowledge gains, estimating a complementarity parameter (λ).

We implemented a randomized study among Mozambican adults studying whether a

teaching and an incentive treatment are substitutes or complements in promoting learning

about COVID-19. Most experts surveyed in advance expected the two treatments to be

substitutes (λ < 0). In reality, the two treatments exhibit much more complementarity than

experts predicted: we estimate λ to be positive and statistically significantly larger than the

expert prediction.

Our findings provide a key input for policy-making. We use our empirical estimates

combined with actual implementation costs to rank potential treatment combinations for

different values of the complementarity parameter (λ) in terms of their cost-effectiveness (cost

per unit gain in knowledge). We identify a threshold value of λ, above which it makes sense

to implement both the Incentive and Teaching treatments, rather than just one or the other.

Our actual estimate of λ does not exceed this threshold, implying that the Joint treatment is

not the most cost-effective policy; rather, the Teaching treatment is. This conclusion about
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relative cost-effectiveness may vary in other contexts with different implementation costs.

Future studies should gauge the generality of these findings. For example, they should

measure the complementarity between teaching and incentive treatments in stimulating

learning about other topic areas (for example, personal finance, legal rights, or agricultural

techniques); motivating behavior change;18 and in other study populations (e.g., students).

It would also be valuable to examine the complementarity between other types of “demand”

and “supply” interventions, particularly demand interventions that are more readily scalable

than monetary payments,19 or supply interventions that involve more actors (e.g., teachers)

than our standardized enumerator-led phone-based interventions. We view these as promising

directions for future research.

18In Appendix C.8, we find mixed and inconclusive effects on self-reported COVID-19 preventive behaviors.
While disappointing, self-reported outcomes and relatively low case counts during surveying are just two
reasons we are uncertain of the null results.

19For example, lottery tickets have been shown to promote safe sexual behavior (Bjorkman Nyqvist et al.,
2018) and food vouchers have been shown to increase HIV testing (Nglazi et al., 2012).
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2.7 Tables and Figures

Figure 2.1: Study Timeline

Notes: Pre-analysis plan uploaded and treatments randomly assigned immediately prior to start of baseline
survey, on Aug. 25, 2020. Treatments implemented immediately following baseline survey on same phone call.
There was at least a three week gap between baseline and endline survey for any given study participant.
Not depicted is the post-endline survey implemented between June 30 and August 30, 2021 that we use in
the long-run analysis described in Section 2.5.4.

Figure 2.2: Distributions of Expert Predictions of Treatment Effects and Complementarity
Parameter

Notes: Probability density functions of predicted treatment effects of 67 experts surveyed prior to results
being publicized (survey closing date Jan. 2, 2021). Experts predicted effects of “Incentive”, “Teaching”,
and “Incentive plus Teaching” (“Joint”) treatments on COVID-19 knowledge test score (fraction of questions
answered correctly). Expert-predicted λ values are calculated from each expert’s predictions. Mean of
expert-predicted λ values is λ̃ = −0.0265. Smoothing uses Epanechnikov kernel with bandwidth 0.9924.
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Figure 2.3: Treatment Effects and Test of Complementarity Parameter λ Against Benchmark
Values

(a) Teaching-Eligible Test Score

(b) Teaching-Ineligible Test Score

Notes: Panel (a) dependent variable on y-axis is the Teaching-Eligible test score (share of correct answers to
knowledge questions asked at baseline and hence eligible for all treatments). Panel (b) dependent variable is
Teaching-Ineligible test score (share of correct answers to knowledge questions NOT asked at baseline and
hence NOT eligible for the Teaching intervention). Bars in first three columns display regression coefficients
representing treatment effects (and 95% confidence intervals) for “Incentive”, “Teaching”, and “Incentive
plus Teaching” (“Joint”) treatments. Floating solid horizontal lines in fourth and fifth columns display
“Incentive plus Teaching” (“Joint”) treatment effects that would be implied by different benchmark values
of complementarity parameter λ. Difference between values in 3rd and 4th columns is actual estimated
complementarity parameter, λ̂; the test that this difference is equal to zero tests the null that λ = 0. Difference
between values in 3rd and 5th columns is difference between λ̂ and mean expert prediction, λ̃ = −0.0265; the
test that this difference is equal to zero tests the null that λ = −0.0265.
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Figure 2.4: Cumulative Distribution Functions of Test Score by Treatment Group

(a) Teaching-Eligible Test Score

(b) Teaching-Ineligible Test Score

Notes: Panel (a) dependent variable on y-axis is the Teaching-Eligible test score (share of correct answers to
knowledge questions asked at baseline and hence eligible for all treatments). Panel (b) dependent variable is
Teaching-Ineligible test score (share of correct answers to knowledge questions NOT asked at baseline and
hence NOT eligible for the Teaching intervention). Figure displays cumulative distribution functions (CDFs)
of test scores in “Control”, “Incentive”, “Teaching”, and “Incentive plus Teaching” (“Joint”) treatment
groups.
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Table 2.1: Test Scores and Treatment Effects Implied by Theoretical Model

Treatment Share of Correct Answers Boost (Versus Control)

Control µ 0

Teaching Only p(0) + (1− p(0))µ p(0)(1− µ)

Incentives Only e∗ + (1− e∗)µ e∗(1− µ)

Incentive plus Teaching (Joint) p(R) + (1− p(R))e∗ p(R)(1− µ) + e∗(1− µ)

+(1− p(R))(1− e∗)µ −e∗p(1− µ)

Table 2.2: Expert Predictions

Expert Prediction Mean Std. Dev. Min Max

Incentive Treatment Effect 0.0399 0.0256 0.0000 0.1000

Teaching Treatment Effect 0.0455 0.0307 -0.0196 0.1007

Joint Treatment Effect 0.0589 0.0296 0.0000 0.1200

Complementarity parameter (λ) -0.0265 0.0333 -0.1108 0.0426

Indicator: Incentive and Teaching treatments are substitutes (λ¡0) 0.8060 0.3984 0.0000 1.0000

Notes: 67 experts provided predictions on the Social Science Prediction Platform (socialscienceprediction.org)
prior to knowing results. Survey closing date January 2, 2021.
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Table 2.3: Treatment Effects on COVID-19 Knowledge Test Scores

VARIABLES Overall Teaching-Eligible Teaching-Ineligible Newly-asked

(1) (2) (3) (4)

Incentive 0.0200*** 0.0156*** 0.0244*** 0.0209***

(0.0054) (0.0060) (0.0069) (0.0081)

[0.0003]

Teaching 0.0160*** 0.0288*** 0.0032 0.0017

(0.0055) (0.0064) (0.0069) (0.0078)

[0.0003]

Incentive plus Teaching 0.0496*** 0.0581*** 0.0410*** 0.0416***

(0.0055) (0.0060) (0.0069) (0.0080)

[0.0003]

λ̂ 0.0136 0.0137 0.0134 0.0189

(0.0084) (0.0095) (0.0104) (0.0120)

Observations 2,117 2,117 2,117 2,117

R-squared 0.319 0.333 0.201 0.150

Control Mean DV 0.781 0.784 0.778 0.777

Control SD DV 0.108 0.123 0.125 0.144

p-value: λ = 0 0.1048 0.1462 0.1956 0.1145

p-value: λ = -0.0265 0.0000 0.0000 0.0001 0.0002

p-value: Incentive = Teaching 0.5292 0.0713 0.0069 0.0332

p-value: Incentive = Joint 0.0000 0.0000 0.0351 0.0235

p-value: Teaching = Joint 0.0000 0.0001 0.0000 0.0000

Notes: Column 1: COVID-19 Knowledge Overall test score, the share of correct answers to 40 knowledge
questions asked at endline that were also randomly selected for the respondent to answer at baseline. Column
2: Teaching-Eligible test score, the share of correct answers to 20 knowledge questions asked at baseline and
hence eligible for all treatments. Column 3: Teaching-Ineligible test score, the share of correct answers to 20
knowledge questions NOT asked at baseline and hence NOT eligible for the Teaching intervention. Column
4: Newly-asked test score, the share of correct answers to the 20 or fewer endline knowledge questions that
were NOT randomly asked of the respondent at either pre-baseline or baseline. λ is the complementarity
parameter (see Section 3.2). “λ̂” is coefficient on “Incentive plus Teaching” (“Joint”) minus sum of coefficients
on “Incentive” and “Teaching”. All regressions include community fixed effects and controls for pre-treatment
(pre-baseline and baseline) test scores. Robust standard errors in parentheses. Significance levels in Columns 1
and 2 adjusted for multiple hypothesis testing across the three coefficients estimated (on Incentive, Teaching,
and Joint treatments); p-values adjusted for multiple hypothesis testing in square brackets. *** p<0.01, **
p<0.05, * p<0.1.
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Table 2.4: Regression of Test Score (TS) Categories on Treatments

Teaching-Eligible Test Scores Teaching-Ineligible Test Scores

VARIABLES General Preventive Government General Preventive Government

(1) (2) (3) (4) (5) (6)

Incentive 0.0018 0.0118 0.0419*** 0.0174 0.0249*** 0.0422***

(0.0099) (0.0088) (0.0099) (0.0112) (0.0090) (0.0110)

Teaching 0.0265*** 0.0234** 0.0299*** 0.0044 0.0016 0.0146

(0.0102) (0.0092) (0.0109) (0.0111) (0.0095) (0.0111)

Incentive plus Teaching 0.0415*** 0.0535*** 0.0749*** 0.0336*** 0.0439*** 0.0538***

(0.0103) (0.0087) (0.0100) (0.0106) (0.0094) (0.0108)

λ̂ 0.0133 0.0183 0.0031 0.0118 0.0173 -0.0030

(0.0157) (0.0136) (0.0154) (0.0166) (0.0141) (0.0165)

Observations 2,117 2,117 2,117 2,117 2,117 2,117

R-squared 0.206 0.257 0.189 0.117 0.080 0.139

Control Mean DV 0.797 0.827 0.789 0.782 0.710 0.790

Control SD DV 0.189 0.170 0.202 0.191 0.157 0.202

p-value: Incentive = Teaching 0.0354 0.276 0.309 0.313 0.0289 0.0268

p-value: Incentive = Joint 0.000845 3.64e-05 0.00254 0.193 0.0732 0.344

p-value: Teaching = Joint 0.213 0.00365 0.000135 0.0182 0.000110 0.00143

Notes: Columns 1-3: the Teaching-Eligible test scores for knowledge categories, the share of correct answers at endline to the 6 questions on general
knowledge, 8 questions on preventive actions, and 6 questions on government policy, respectively. Columns 4-6: the Teaching-Eligible test scores
for knowledge categories, the share of correct answers at endline to the 6 questions on general knowledge, 8 questions on preventive actions, and 6
questions on government policy, respectively. λ is the complementarity parameter (see Section 3.2 of main text). λ̂ is coefficient on “Incentive plus
Teaching” (Joint) minus sum of coefficients on “Incentive” and “Teaching”. All regressions also include community fixed effects and controls for
pre-treatment (Rounds 1 and 2) Test Scores. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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CHAPTER III

Correcting Misperceptions about Support for Social

Distancing to Combat COVID-19

Co-authored with Arlete Mahumane, James Riddell IV, Tanya Rosenblat, Dean Yang, and

Hang Yu

3.1 Introduction

Attitudes toward social distancing have changed rapidly during the pandemic (Janzwood,

April 27, 2020). During such rapid change, people often underestimate support for social

distancing in their communities. Early in the pandemic, 98% of our Mozambican sample

thought that people should be social distancing, but estimated that only 69% of others in the

community felt similarly. This gap motivates a public health policy: simply inform people of

high rates of community support for social distancing. What impact would such messaging

have on social distancing behavior?

In theory, the impact of such a ”misperceptions correction” intervention on social distancing

is ambiguous: on the one hand, informing people that more neighbors support social distancing

than expected encourages free-riding and lowers the perceived benefits from social distancing.

On the other hand, people should revise their belief about the seriousness of COVID-19

upwards in order to rationalize the observed number of infections in their neighborhood

despite the higher than expected social distancing support. This perceived infectiousness

effect increases the perceived benefits from social distancing and dominates free-riding in

communities with high levels of infections.1 Finally, the norm adherence effect should induce

people to follow whatever local social norm is set by their neighbors - in our case this effect

should always increase social distancing.

1Our model is related to the literature on decision-making under misspecified subjective models (Spiegler,
2020). Agents hold incorrect assumptions on one model parameter (e.g., share of population social distancing),
leading them to incorrect conclusions about other parameters (e.g., disease infectiousness).
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We implemented a randomized controlled trial testing the impact of informing people

about high local support for social distancing. The treatment either updated beliefs upwards

or confirmed beliefs about high rates of support for social distancing. Abiding by COVID-19

protocols, we conducted all treatments and surveys by phone among 2,117 Mozambican

households.

Our outcome variable is the extent to which a household engages in social distancing.

Measuring this behavior is challenging due to experimenter demand effects.2 Yet most prior

studies ask for self-reports about general social distancing compliance. When we do so, 95%

claim to observe government social distancing recommendations. We therefore construct a

novel measure of social distancing. First, we ask respondents to self-report several social

distancing actions. Second, we ask others in the community to report on the respondent’s

social distancing. We are aware of no prior study that makes use of other-reports on a

respondent’s social distancing behavior. Incorporating self-reported actions and others’

reports drops social distancing to a more discerning 8% (see Figure 3.1 and Section 3.3.3).

Improved measurement leads the social distancing rate to fall by an order of magnitude.

The average effect of the misperceptions correction treatment in the full sample is small

and not statistically significantly different from zero. However, as theory predicts, there is

substantial treatment effect heterogeneity: the treatment effect is statistically significantly

more positive when local COVID-19 cases (per 100,000 population) are higher. In districts

with few cases, the treatment effect is negative. In the district with the most COVID-19 cases,

the treatment increases social distancing by 9.2 percentage points (statistically significant at

the 5% level), a 70% increase over that district’s control-group mean.

This pattern is consistent with the theoretical prediction that as infection rates rise,

the perceived-infectiousness effect should increasingly dominate the free-riding effect of the

misperceptions correction treatment, leading the treatment effect to become more positive.

We also test a further implication of the model: expectations of future infection rates should

show similar treatment effect heterogeneity. Empirical analyses confirm this prediction,

providing additional support for the theoretical model.

This paper contributes to understanding the impact of providing information about others’

beliefs and attitudes (Benabou and Tirole, 2011; Bicchieri and Dimant, 2019). In health

settings, Yu (2020) and Yang et al. (2021) find (in an overlapping Mozambican sample) that

correcting overestimates of stigmatizing attitudes promoted HIV testing, though Banerjee

et al. (2019b) find that informing Nigerian young adults of peers’ attitudes on healthy

sexual relationships did not change respondents’ own attitude.3 Regarding social distancing,

2Jakubowski et al. (2021) find that self-reported mask wearing is overstated relative to measures based
on observations of others.

3In other contexts, correcting misperceptions of community support or approval (i.e., the injunctive norm)
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Martinez et al. (2021) show that respondents are influenced by others’ social distancing

actions in hypothetical vignettes; however, no prior study has tested the impact of providing

information on community support of social distancing on respondent behavior.

Our emphasis on interactions between free-riding and perceived-infectiousness effects

is novel, but each effect has been studied separately. Free-riding has been studied in the

context of vaccination decisions (Hershey et al., 1994; Lau et al., 2019) and social distancing

(Cato et al., 2020) and in similar Mozambican settings Fafchamps et al. (2020). Perceived

COVID-19 infection risk (e.g., due to vaccine anticipation, Andersson et al. (2021)) has been

shown to lower social distancing intentions.

3.2 Theory

Our model focuses on the interaction between the free-riding and perceived infectiousness

effects for communities with low and high overall infection rates. We view norm-adherence as

a uniform effect that should always increase social distancing.

We consider a community where people have random pairwise meetings. People believe

that a share x of the population supports social distancing and that the probability of

becoming infected from unprotected meetings is α. People treat x as given, but infer the

infectiousness α from the current infection rate R in the community which they can observe

(we describe this inference below). The true infectiousness of the disease is α̂.

Importantly, people in the community have miscalibrated beliefs: the true share of the

population supporting social distancing is x̂ (we are interested in the case x̂ > x). People

infer the true infectiousness α̂ of the disease only if they are correctly calibrated (x̂ = x).

Individual Effort A supporter engages in preventative effort e and assumes that other

supporters choose effort e∗ (in equilibrium we have e = e∗). Non-supporters choose effort

e = 0.

When someone supporting social distancing meets another person, she escapes exposure

with probability:

A(e, eother) =
√
e+ eother

=

{ √
e+ e∗ if other person is supporter

√
e if other person is non-supporter

(3.2.1)

has also been shown to change energy consumption (Schultz et al., 2007), female labor force participation
(Bursztyn et al., 2020), donations to charities addressing climate change (Andre et al., 2021), and recycling
program participation (Fuhrmann-Riebel et al., 2023).
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Hence, the marginal benefit of effort decreases both with own effort e as well as the other

person’s effort e∗.4

The expected probability of escaping exposure is therefore:

A(e, e∗) = (1− x)
√
e+ x

√
e+ e∗ (3.2.2)

An agent becomes exposed with probability 1− A(e, eother). If exposed she gets infected

with probability α and suffers disutility −C from infection.5 If she is not exposed then she

does not get infected. Her baseline utility from no infection equals U . The cost of preventative

effort is e. Hence, her total utility equals:

U − α(1− A(e, eother))C − e (3.2.3)

The agent chooses e to maximize her utility, giving us the following first-order condition:

αC

2
√
e

1− x(1− 1√
1 + e∗

e

)

 = 1 (3.2.4)

In equilibrium it has to be the case that the population effort e∗ equals e. Hence, we can

characterize equilibrium effort as:

e =

(
αC

2

[
1− x(1− 1√

2
)

])2

(3.2.5)

This demonstrates the free-riding effect : increasing the share x of supporters decreases effort

because the marginal utility from own effort decreases. Also, effort increases if the disease is

more infectious (higher α) and if illness is costlier (higher C).

Infection Rate People observe the current infection rate in the community. Infections

come from two sources: non-supporters become sick at rate α (1− x
√
e) while supporters

become sick at rate α(1− A(e, e)). Hence, people in the community assume that the current

4We assume the other person’s effort is unobservable. This is consistent with our finding that respondents
underestimate the extent of social distancing.

5For simplicity, we assume that infectiousness does not vary with the agent’s type (supporter or
non-supporter). Otherwise, we would need to keep track of two levels of infectiousness. The qualitative
results would not change.
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infection rate is generated by the following process:

R = α

(1− x)(1− x
√
e)︸ ︷︷ ︸

non-supporters

+x
(
1−

√
e(1 + (

√
2− 1)x)

)
︸ ︷︷ ︸

supporters



= α

1−√
e 2x

(
1− x

(
1− 1√

2

))
︸ ︷︷ ︸

=G(x)

 (3.2.6)

However, the true process determining current infections is actually:

R = α̂
[
1−

√
eG(x̂)

]
(3.2.7)

In other words, the true infection process is driven by the same social distancing effort of

supporters but different infectiousness α̂ and different x̂.

3.2.1 Basic Equilibrium

Supporters initially assume that the disease has low infectiousness and they adjust their

estimate of α upwards until the current infection rate R stabilizes.

Proposition 2. In equilibrium, effort level e, the current infection rate R, and the assumed

infectiousness α satisfy Equations 3.2.5, 3.2.6 and 3.2.7. Moreover, α̂ > α if x̂ > x.

In equilibrium, both the assumed infection process (Equation 3.2.6) and the real infection

rate (Equation 3.2.7) must produce observed infection rate R. For the second part, note that

G(x) is increasing in x ∈ [0, 1]: hence, x̂ > x implies α̂ > α to generate the same infection

rate R.

3.2.2 Treatment Effect

We now consider the effect of our treatment informing people that the population share

supporting social distancing is really x̂ > x.

Proposition 2 implies that if supporters are informed that the true population share

supporting social distancing is x̂ > x, they must infer higher disease infectiousness than they

initially assumed (because their estimated disease infectiousness immediately jumps from α

to true α̂). This is the perceived-infectiousness effect.
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Supporters of social distancing will adjust their effort level to a new level ê, but there are

two countervailing effects:

1. Holding assumed infectiousness α constant, the free-riding effect decreases effort.

2. The perceived-infectiousness effect increases effort, because the agent now believes the

disease is more infectious than initially thought (perceived α increases), increasing the

gain from social distancing.

Intuitively, the perceived-infectiousness effect varies monotonically with R: when infections

are low, supporters’ effort is low, and both supporters and non-supporters get infected at

similar rates. Hence, agents revise the estimate of infectiousness α only slightly upwards in

response to the treatment. On the other hand, when infections are high, supporters’ effort is

high and the upward revision will be larger.

The following theorem makes this intuition precise. Instead of doing comparative statics

on R (which is determined in equilibrium) we state the comparative statics results in terms

of the infectiousness α̂ (for given x and x̂). Note that R increases with α̂.

Theorem 2. Assume an agent is informed that a share x̃ > x of the population supports

social distancing. Then there is a threshold α̂∗ such that for any α̂ < α̂∗ the free-riding effect

dominates and equilibrium effort decreases, and for α̂ > α̂∗ the perceived-infectiousness effect

dominates and the equilibrium effort increases.

See Appendix C.1 for the proof.

The interplay between free-riding and perceived-infectiousness effects also yields analogous

predictions about a central belief about COVID-19: the future infection rate. In the endline

survey, we ask respondents to estimate this. The expected future rate differs from the current

infection rate R, because this study occurs at a point when infection rates are clearly evolving.

The misperceptions correction treatment changes respondent beliefs about social distancing

support and about infectiousness, and therefore should change expected future infection rates.

Recall that non-supporters are always infected with higher probability than supporters. The

higher the infectiousness parameter α̂, the higher should be future infection rates for both

groups. When α̂ is currently small, the perceived-infectiousness effect is small. Simultaneously,

the treatment corrects beliefs about the share of social-distancing supporters upwards, which

should reduce estimates of future infection rates because supporters have lower infection rates.

Thus, the expected future infection rate decreases when α̂ is currently small. In contrast,

when α̂ is currently large, the treatment leads to a large increase in perceived infectiousness,

implying that the disease will infect higher shares of both supporters and non-supporters.

This will tend to increase expected future infection rates.
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To summarize, the misperceptions correction treatment effect on the expected future

infection rate should show heterogeneity similar to that described in Theorem 2. The

treatment effect on the expected future infection rate is strictly negative if the current local

infection rate (R) (which moves monotonically with α̂) is small enough. The treatment effect

on the expected future infection rate increases with the current infection rate, and can become

positive if current infection rates are sufficiently high.

In our empirical analyses, we test these predictions regarding heterogeneity in the

misperceptions correction treatment effect.

3.3 Sample and Data

3.3.1 Data

We implemented three rounds of surveys by phone in July-November 2020: a pre-baseline,

baseline and endline survey (see Figure C.2 for a study timeline). Respondents were drawn

across 76 communities in Central Mozambique from a sample of a prior study (Yang et al., 2021)

that focused on HIV-vulnerable households—a policy-relevant sample especially vulnerable

to COVID-19.6 To avoid risk of spreading COVID-19 via in-person interaction with study

participants, we also limited the sample to those households with phones. Thus both

HIV-vulnerability and phone ownership are two relevant factors to bear in mind when

considering the external validity of the results. We surveyed one adult per household.

Appendix C.2 provides details on the COVID-19 context, study communities and the study

timeline.

Between a pre-baseline survey and baseline survey, we randomly assigned households to

treatments and registered a pre-analysis plan (PAP). The baseline survey was immediately

followed by over-the-phone treatment implementation. There was a minimum of 3.0 weeks

and average of 6.3 weeks between baseline and endline surveys for all respondents. Baseline

and endline surveys occurred when COVID-19 cases were rising rapidly.

The endline sample size is 2,117 respondents, following a sample size of 2,226 at baseline.

The retention rate between baseline and endline is 95.1% overall, at least 94.4% in each of

the seven districts surveyed, and balanced across treatment conditions. We also surveyed

145 community opinion leaders over the 76 study communities—at least one, an average of

6AEA RCT Registry for Yang et al. (2021): https://doi.org/10.1257/rct.3990-5.1. In that prior study, we
run a randomized evaluation of a bundled community-level HIV/AIDS program whose main component was
home visits by case care workers to promote HIV testing to HIV-vulnerable households, such as those with
HIV-positive or other chronically ill members, orphaned children, or a grandparent as the household head. In
this study, we use community-stratified randomization and regress with community fixed effects to rule out
the influence of this prior intervention on our results.
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2.09, and at most 4 per community—for inputs to the primary outcome and treatments as

described below.

3.3.2 Measuring Misperceptions

We measure both true and perceived support for social distancing as follows. First, to

measure actual community support for social distancing, we asked respondents ”Do you

support the practice of social distancing to prevent the spread of coronavirus? (Yes, No, Don’t

know, Refuse to Answer)”, which captures the respondent’s first-order belief of the injunctive

norm for social distancing. We then calculated the fraction of ”Yes” responses across the

sample and within each community. Directly after, to measure perceived community support,

we asked respondents ”For every 10 households in your community, how many do you think

support the practice of social distancing to prevent the spread of coronavirus? (integer 0-10)”,

capturing the respondent’s second-order beliefs of the injunctive norm for social distancing

within their community. The difference between the true and perceived community support

for social distancing is the respondent’s misperception of the social norm.

Three possible concerns with our measure of perceived support for social distancing

include the role of uncertainty, the restricted scale, and bias from experimenter demand

effects. First, a possible concern is that unawareness and uncertainty around new social

norms and others’ beliefs—plausible at the start of the pandemic—may lead respondents

away from the extreme points of the answer scale. However, in Appendix C.3, we present a

cumulative distribution of our perceived community support measure across survey rounds

that shows that respondents readily utilized the extreme ends of the scale, with 8% and

35% of the sample at pre-baseline reporting perceived community support of 0% and 100%,

respectively, and 51% of the sample at baseline reporting 100%. Second, despite more

common use of a 0-100 scale when measuring perceived norms (e.g., Andre et al. (2021);

Fuhrmann-Riebel et al. (2023)), we simplified our scale to an 11-point 0-10 scale due to

past difficulties eliciting ”percentage” measures in this context, repeated feedback from our

field team and local partners that a 0-100 scale was too complex, and the inability to use a

”slider” mechanism over the phone. Given the high concentration of perceived community

support at 100% at baseline, the restricted scale may attenuate the treatment effect of the

misperceptions correction on perceived community support given that there is “little room

to improve” for many respondents in the sample. Third, experimenter demand effects may

have led respondents to report higher shares of perceived support for social distancing in

order to make their communities look favorable. Such action would lead to an upward-biased

estimate of true perceptions of community support and, in turn, an underestimate of the

misperception of the social norm, which would also lead to an attenuation of the treatment
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effect for the misperceptions correction intervention.7 We ask the reader to bear in mind

these possible limitations when interpreting the results.

3.3.3 Primary Outcome

The primary outcome is an indicator that the respondent practiced social distancing,

as pre-specified in our PAP. It is constructed from self-reports of social distancing as well

as others’ reports of the respondent’s social distancing. The outcome is equal to one if the

respondent is practicing social distancing according to both self-reports and other-reports,

and zero otherwise.

Respondents are social distancing according to their self-report if both of the following

are true: 1) they answer “yes” to “In the past 14 days, have you observed the government’s

recommendations on social distancing?”, and 2) they report doing at least seven out of eight

“social distancing actions” in the past seven days (higher than the sample median number,

six).8 A list of the social distancing actions and their corresponding summary statistics are

presented in Appendix C.4.

To collect others’ reports on a respondent’s social distancing, study participants were

asked about their social interactions with ten other community study participants. These

ten others were identified from social network data and geographic proximity. Additionally,

community leaders were also asked about social interactions with all study participants in

their respective community.9 At baseline, the average respondent household was known

by 0.98 community leaders and 3.21 neighboring survey respondents. Other-reports were

collected at baseline and endline.

In collecting other-reports, we asked others whether they had seen anyone from the

respondent household in the last 14 days.10 If so, we then asked: 1) Did he/she come closer

than 1.5 meters to you or others not of his/her household at any point in the last 14 days?; 2)

7See Section 3.4.1 for description of how the misperceptions correction treatment. If upward-biased
estimates of perceived support remain less than or equal to true community support, then the misperceptions
correction is implemented and may still boost respondents’ true perception of community support in a
way not captured by our measure; however, if the bias leads to overestimating true community support,
then respondents will become ineligible for the misperceptions correction treatment thereby attenuating the
treatment effect (but not biasing upwards).

8While this threshold was pre-specified, regression results (in Appendix C.7.3) are robust to alternate
definitions of this component, such as a threshold of six, or dropping social distancing actions 4 and 6 for
which respondents might misinterpret and answer “no” if not showing symptoms.

9The average community leader was asked about 33.90 households (std. dev.=22.10, minimum=2,
second-highest=99, maximum=228—a special case where one individual was the traditional leader across
multiple communities). To mitigate survey fatigue, leaders were told upfront of the number and offered a
stepwise incentive that increased for each additional set of 25 study households.

10As is common in this context, households were identified by the name of the household head and a list
of other known household members.
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Did he/she shake hands, try to shake hands, or touch you or others not of his/her household

in the last 14 days?; and 3) In general, did he/she appear to be observing the government’s

recommendations on social distancing (avoid large gatherings and keep at least 1.5 meters

distance from people not of his/her household)? Respondents are considered to be social

distancing according to others if all others responded “no”, “no”, and “yes” (respectively)

to these three questions, reported having not seen the respondent in the past 14 days, or

reported not knowing the respondent.11

Figure 3.1 displays how these questions lead to the social distancing outcome. First, 95%

of respondents say “yes” to the self-report on general social distancing. When considering

self-reports of doing at least seven out of eight social distancing actions, the social distancing

rate falls to 36%. Finally, incorporating others’ reports reduces the rate further to 8%.

Limited overlap between self-reports and others’ reports of social distancing suggests that

each is providing different sets of information. We suspect that self-reports likely over-report

social distancing due to experimenter demand bias, whereas others’ reports are likely less

biased by experimenter demand and rather over-report due to recall bias or lack of observation

(as respondents not known or not seen in the past 14 days were not assumed to violate social

distancing behavior).12 Together, we believe the combined measure is a novel improvement

from simple self-reports, though we leave comparison of both measurement methods to

observed behavior as an avenue for future work. Incorporating additional information into

the social distancing measure—using self-reports of specific social distancing behaviors as

well as other-reports—leads to substantially lower social distancing rates.

3.4 Research Design

3.4.1 Treatments

We implemented a randomized controlled trial estimating impacts on social distancing

of two treatments: 1) misperceptions correction, and 2) leader endorsement. Before the

baseline survey, we randomly assigned 30% of households completing the pre-baseline survey

each to one of two treatments and the remaining 40% to a control group. Sample sizes by

treatment condition were as follows: misperceptions correction (N=628, 29.7% of sample),

leader endorsement (N=637, 30.1%), and control group (N=852, 40.3%). Treatment scripts

are located in Appendix C.5.

For the misperceptions correction treatment, we used the following data: 1) respondents’

11At baseline, 90.55% of respondent households were known by some other respondent or community
leader.

12For example, complete lack of observation by others was true for 9% of the sample (see footnote 11).
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own support for social distancing from the pre-baseline survey, from which we estimated

the true share of community support for social distancing (as the fraction of respondents

expressing support within the community), and 2) respondents’ perceived share of community

support for social distancing at baseline (reported as an integer out of 10). Immediately after

completing the baseline survey, treated individuals underestimating the share were told the

true share supporting social distancing, rounded to an integer out of 10.13 Treated individuals

correctly estimating the share were also told that they were correct. In practice, 92.4% of

treated respondents received this treatment, 53.2% of whom underestimated community

support for social distancing and 46.8% of whom correctly estimated it. The small minority

overestimating the share were not provided additional information.14

For the leader endorsement treatment, we identified and surveyed community opinion

leaders prior to the baseline survey and requested their permission to tell others in their

community that they “support social distancing, are practicing social distancing, and

encourage others to do the same”. Then, in this treatment, we reported this endorsement to

respondents, mentioning the community leader(s) by name.15

Attrition between baseline and endline is low (4.9%). In Appendix C.6, we show that

attrition and key baseline variables are balanced across treatment conditions. Further, at

endline, 97.9% recall receiving the baseline survey and, of those, 99.4% report trusting the

COVID-19 information we provided.16

3.4.2 Regressions

A pre-specified ordinary-least-squares regression equation provide treatment effect

estimates:17

Yijd = β0 + β1T1ijd + β2T2ijd + ηBijd + δothersijd + δleadersijd + γjd + εijd (3.4.1)

where Yijd is the social distancing indicator for respondent i in community j and district

d ; T1ijd and T2ijd are indicator variables for the misperceptions correction and leader

endorsement treatment groups, respectively; Bijd is the baseline value of the dependent

variable; δothersijd is a vector of dummy variables for the number of other respondents who

13In 63 out of 76 communities (82.9%) the number we convey to respondents is 10 out of 10, and in 13
communities (17.1%) the number is 9 out of 10.

14While respondents were not incentivized to truthfully guess community support (for scalability), true
beliefs can still be updated for all except those who overestimated true community support with an upward
biased guess; however, the latter case should only attenuate our treatment effect and not bias it upward.

15Communities had at least one and an average of 2.09 endorsements from community leaders (std.
dev.=0.94, maximum=4).

16Trust may have arisen from multiple in-person household surveys since 2017 (see Yang et al. (2021))
17Appendix C.7.1 shows that all conclusions are robust to logit and probit specifications.
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report knowing the respondent’s household from 0 to 8; δleadersijd is a vector of indicators for

the number of community leaders who report knowing the respondent’s household from 0 to

4;18 γjd are community fixed effects; and εijd is a mean-zero error term. We report robust

standard errors.19

Coefficients β1 and β2 represent the intent-to-treat impacts of the misperceptions correction

and leader endorsement treatments (respectively) on social distancing.

We modify Equation 3.4.1 to estimate heterogeneity in treatment effects with respect to

local COVID-19 case loads:

Yijd = β0 + β1T1ijd + β2T2ijd + β3(T1ijd ∗ Covidd) + β4(T2ijd ∗ Covidd)

+ηBijd + δothersijd + δleadersijd + γjd + εijd
(3.4.2)

Equation 3.4.2 adds interactions between treatment indicators and the cumulative number

of district-level COVID-19 cases per 100,000 population at the start of the endline survey.20

Coefficients β1 and β2 in Equation 3.4.2 now represent the impacts of the treatments in

districts where COVID-19 cases are zero (slightly out of sample); β3 and β4 represent the

change in the respective treatment effect for a one-unit increase in district-level COVID-19

cases per 100,000 population.

3.4.3 Hypotheses

We pre-specified the hypothesis that each treatment (β1 and β2 in Equation 3.4.1)

would have positive effects. Subject-matter experts (surveyed without knowing results)

concurred with this expectation.21 The mean expert predictions were that the misperceptions

correction and leader endorsement treatments would increase social distancing by 5.23 and

5.56 percentage points, respectively.

We also test the hypotheses that the impact of the misperceptions correction treatment

on social distancing and on the expected future infection rate will be greater in areas with a

higher current COVID-19 infection rate (β3 in Equation 3.4.2 will be positive). We did not

pre-specify these hypotheses, but advance them on the basis of our theoretical model.

18As pre-specified, we cap δothersijd at the first integer that covers over 90% of the sample, and δleadersijd at
the maximum number of leaders found in any community.

19Appendix C.7.2 shows that clustering standard errors by the 76 communities or 7 districts has minimal
impact on standard errors and does not affect whether any coefficients are statistically significant at
conventional levels.

20The main effect of Covidd is absorbed by γjd.
21Predictions by 71 individuals provided at https://socialscienceprediction.org/ (survey closing date

January 2, 2021).
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3.5 Results

3.5.1 Pre-Treatment Descriptives

Table B.4 presents pre-treatment summary statistics of social distancing support,

perceptions and behavior in the first six months of the COVID-19 pandemic. First, we

document a large and statistically significant gap between actual and perceived support

for social distancing: at both pre-baseline and baseline, over 97% of respondents support

social distancing; however, respondents underestimate the community share expressing such

support, on average estimating 69% in a pre-baseline survey and 80% at baseline. Second, we

observe a large and statistically significant 11 percentage point increase in the perceived share

of community support between pre-treatment survey rounds, consistent with the idea that

misperceptions for new public health behaviors are most prevalent at the start of the public

health crisis and then diminish over time as social networks share information. Third, despite

increases in reported and perceived support for social distancing, we see small decreases in

self-reported social distancing behavior; in the theoretical model, this behavior is predicted

where the current local infection rate is low, as was indeed the case for all study communities

prior to the endline survey.22

3.5.2 Average Treatment Effects

In Table 3.2 Column (1), we present regression estimates for our primary outcome.23 Both

treatment coefficients are small in magnitude and neither is statistically significantly different

from zero. These findings diverge from expert predictions of treatment effects. We strongly

reject the null that our T1 and T2 treatment effect estimates are equal to the positive mean

expert predictions (p-value<0.001 in each case).

However, we find the misperceptions correction has a positive effect on measures of

perceived community support for social distancing. Analyses presented in Appendix C.3

(not pre-specified) shows that the treatment effect is concentrated on the lower end of the

distribution, having a significant positive effect on a respondent perceiving that at least 50%

of households in their community support social distancing.

3.5.3 Treatment Effect Heterogeneity

In Table 3.2 Column (2), we present regression estimates of treatment effect heterogeneity

(Equation 3.4.2) with respect to the local infection rate, measured as COVID-19 cases per

22See Figure C.2 to see relatively low levels of new COVID-19 cases in Mozambique during the pre-baseline
and baseline relative to the endline survey.

23The complete set pre-specified analyses are presented in Appendix C.8.
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100,000 population in the respondent’s district.

The misperceptions correction treatment effect is heterogeneous with respect to local

COVID-19 cases. The coefficient on the interaction term with T1ijd is positive and statistically

significant at the 1% level. The coefficient on the T1ijd main effect is the predicted effect of

misperceptions correction in a district with zero cases (slightly out of sample), and suggests

that the misperceptions correction would reduce social distancing by 3.4 percentage points in

such a location (statistically significant at the 5% level).

Figure 3.2 displays this treatment effect heterogeneity. We plot district-specific treatment

effects (estimating Equation 3.4.1 separately in each of seven districts) on the y-axis (with

95% confidence intervals) against district case counts on the x-axis. In the six districts with

the lowest case counts, coefficients are negative. By contrast, in Chimoio, the district with

the most cases (39.08/100,000) that also accounts for one-quarter of the sample, we estimate

a large positive effect: 9.2 percentage points—a 70% increase over that district’s control

group (statistically significant at the 5% level).

This heterogeneous treatment effect holds up to various robustness checks (presented in

Appendix C.7). First, we run logit and probit specifications of the primary results. Second,

we cluster standard errors by community and district. Third, we vary the threshold by which

self-reported ”social distancing actions” were incorporated in the social distancing indicator.

Fourth, we test four alternative measures of the local COVID-19 infection rate, including

the simple case count (not per capita) and high-case-count indicators, to show that the

treatment effect heterogeneity is not unique to our preferred measure. Fifth, we exclude the

top-COVID-19 and largest-sampled district of Chimoio to verify that it alone is not driving

our results. In all cases, we find that our primary results are very similar.

By contrast, the leader endorsement treatment effect is not heterogeneous with respect

to local case loads. The coefficient on the corresponding interaction term in Column (2)

is small in magnitude and not statistically significantly different from zero. Some reasons

why this treatment may not be effective, even when COVID-19 cases are high, include

limited familiarity of leaders among all community members or limited confidence that the

leader’s endorsement reflected true beliefs rather than political “lip service”. Coupled with

findings from Banerjee et al. (2019a) on gossips spreading information, the result suggests that

network-central individuals may be effective at transmitting information but not necessarily

because their opinions have a dominating influence on community members’ beliefs.

The interplay between the free-riding and perceived-infectiousness effects is the distinctive

feature of our theoretical model. When the perceived-infectiousness effect is large enough, it

overcomes the countervailing free-riding effect, and the misperceptions correction treatment

leads to more social distancing. An additional implication of the theory is that the treatment
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should have similar heterogeneous effects on the expected future infection rate.

We conduct this additional test of the theory, examining treatment effects on the expected

future infection rate.24 In Columns (3) and (4) of Table 3.2, the outcome is the share of the

community the respondent thinks will get sick from COVID-19 (responses were integers out

of 10; we divide by 10 to yield a 0-1 scale). In Column (3), we estimate average treatment

effects. Each coefficient is small in magnitude and not statistically significantly different from

zero.

In Column (4), we estimate heterogeneity in treatment effects with respect to local cases,

and find the same pattern as in Column (2). The misperceptions correction decreases the

expected future infection rate in districts with no cases, and this impact becomes more

positive as current cases rise (the T1ijd main effect and interaction term coefficients are both

statistically significant at the 5% level).

These treatment effect heterogeneity findings in Table 3.2 Columns (2) and (4) jointly

support the theoretical model. When current infection rates are low, the misperceptions

correction treatment does not change perceived infectiousness much, but leads to realizations

that social distancing support is higher than previously thought. People therefore reduce

estimates of the future infection rate, and also reduce their own social distancing (choosing

to free-ride). By contrast, when current infection rates are high, the treatment causes larger

increases in perceived infectiousness. Notwithstanding an increase in the share of social

distancing supporters, people increase their estimate of the future infection rate and increase

their social distancing.

3.6 Conclusion

Support for social distancing increased rapidly during the COVID-19 pandemic. If people

are unaware of the extent to which others’ beliefs on social distancing have changed, would

revealing true high rates of such support lead to more social distancing? In theory, the impact

of providing such information is ambiguous: it could reduce social distancing if free-riding

effects dominate, but could have a positive effect on social distancing if perceived-infectiousness

effects dominate. Perceived-infectiousness effects are more likely to dominate when the current

local infection rate is higher.

We implemented a randomized controlled trial testing the impact of a “misperceptions

correction” treatment revealing high community support for social distancing. The treatment

24The question is “For every 10 people in your community, how many do you think would get sick from
coronavirus?” Sample sizes in these regressions are smaller. We implemented this question midway through
the endline survey, after finding preliminary evidence suggesting the need to explore mechanisms behind
treatment effect heterogeneity.
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effect on social distancing exhibits the spatial heterogeneity predicted by theory: negative

in areas with low infection rates (reflecting the dominance of free-riding effects), and more

positive in areas with higher rates (as perceived-infectiousness effects become increasingly

prominent). In the area with the most cases, amounting to one-quarter of our sample, the

treatment effect is positive and large in magnitude. The treatment effect on the expected future

infection rate shows similar heterogeneity, confirming an additional theoretical prediction.

Our results suggest that when local infection rates are high, health policies shifting

perceptions of community support for social distancing upwards could help promote social

distancing behavior. Future research is needed to confirm the external validity of these

findings and determine how the results translate to other contexts. For example, in cities,

looser social networks among neighbors might lead to larger misperceptions of community

support while population-dense housing might further activate the perceived-infectiousness

effect; alternatively, in communities with lower baseline support for social distancing, a

misperceptions correction treatment may be less motivating but may also potentially ”gain

more ground” among those with the lowest support who also underestimate the social norm.

These findings may also help predict the impacts of analogous public health messaging

revealing community support for preventive measures against other infectious diseases.
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3.7 Tables and Figures

Table 3.1: Summary Statistics of Pre-Treatment Social Distancing Measures

VARIABLES Pre-Baseline Baseline T-test

N Mean SD N Mean SD p-value

(1) Respondent supports social distancing (SD) 2,117 0.976a 0.153 2,117 0.989b 0.104 0.001

(2) Perceived share of community supporting SD 2,109 0.689a 0.313 2,114 0.800b 0.262 0.000

(3) Primary SD indicator: if (4) & (8) 2,117 0.078 0.269

(4) → Self-report SD indicator: if (5) & (6) 2,117 0.383 0.486 2,117 0.355 0.479 0.045

(5) → Self-report: Followed govt rules last 14 days 2,117 0.952 0.214 2,117 0.949 0.219 0.692

(6) → Self-report: SD behaviors above median 2,117 0.396 0.489 2,117 0.361 0.481 0.012

(7) → Others SD indicator: if (9) & (10) 2,117 0.232 0.422

(8) → Other households’ report of SD 2,117 0.378 0.485

(9) → Leaders’ report of SD 2,117 0.519 0.500

Notes: Pre-baseline data collected from July 10 to August 16, 2020, and baseline data collected from August
26 to October 4, 2020. Variables are as follows. Variables are as follows. Row 1: indicator equal to one if
respondent answers “yes” to supporting “the practice of social distancing to prevent the spread of coronavirus”
and zero otherwise. Row 2: perceived share of households (asked as “for every 10 households”) in community
that support social distancing (SD). Row 3: indicator for SD equal to one if respondent is SD according to
self (Row 4) and others’ reports (Row 8), and zero otherwise. Row 4: indicator for SD according to self if
respondent answered “yes” to observing the government’s recommendations on SD in the last 14 days (Row
5) and report following four out of four (above both sample’s median of three) social distancing behaviors
(Row 6), and zero otherwise. Row 7: indicator for SD according to others if all other respondents (Row 8)
and community leaders (Row 9) reported not knowing the respondent household, not seeing the respondent
household in the past 14 days, or—if seen—that the respondent household 1) did NOT come closer than
1.5 meters to others outside their household; 2) did NOT shake hands, try to shake hands, or touch others
outside their household; and 3) appeared to be observing the government’s recommendations on SD, and
zero otherwise. All variables have a minimum of 0 and a maximum of 1. Last column displays the p-value
of a paired t-test on the difference between pre-baseline and baseline measure (where pre-baseline data are
available). Superscripts a and b indicate paired t-tests comparing reported and perceived support for social
distancing at pre-baseline and baseline, respectively, which are significantly different (p-value=0.000).
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Table 3.2: Treatment Effects on Social Distancing and Expected COVID-19 Illnesses

(1) (2) (3) (4)

VARIABLES Primary SD Indicator Primary SD Indicator Perceived share of people Perceived share of people

in community that will in community that will

get sick from COVID-19 get sick from COVID-19

T1: Misperceptions Correction 0.0042 -0.0466** 0.0418 -0.1936**

(0.0140) (0.0191) (0.0322) (0.0944)

T2: Leader Endorsement -0.0054 -0.0258 -0.0209 -0.0598

(0.0137) (0.0198) (0.0308) (0.0944)

T1 × District COVID-19 Cases 0.0030*** 0.0073**

(0.0011) (0.0029)

T2 × District COVID-19 Cases 0.0012 0.0013

(0.0010) (0.0029)

Observations 2,117 2,117 812 812

R-squared 0.158 0.163 0.146 0.152

Control Mean DV 0.0857 0.0857 0.3590 0.3590

Control SD DV 0.2801 0.2801 0.3685 0.3685

Notes: Dependent variable in Columns 1-2 defined in Table B.4. Dependent variable in Columns 3-4 is the expected future infection rate: “For every 10
people in your community, how many do you think would get sick from coronavirus?” (converted to share from 0 to 1). “T1: Misperceptions Correction”
is equal to one if respondent was randomly assigned to the misperceptions correction treatment, and zero otherwise. “T2: Leader Endorsement” is
equal to one if respondent was randomly assigned to the leader endorsement treatment, and zero otherwise. “T1 x District COVID-19 Cases” & “T2 x
District COVID-19 Cases” are the respective treatment indicators interacted with district-level cumulative COVID-19 cases per 100,000 population at
the start of the endline survey (see Appendix C.2.3, Table C.1, Column 2). All regressions control for a baseline measure of the dependent variable, a
vector of indicators for number of community leaders knowing the respondent at baseline (0 through 4), and a vector of indicators for number of
other respondents knowing the respondent at baseline (0 through 8). All regressions also include community fixed effects. Robust standard errors in
parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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Figure 3.1: The Social Distancing Measure

Notes: As pre-specified, respondents considered social distancing (SD) if: 1) self-report they are following government SD recommendations, 2)
self-report they are doing at least seven out of eight SD actions, and 3) be reported by others in community to be SD. Percentages reported are all
shares of full sample (N=2,117). See Table B.4 and Section 3.3.3 and Appendix C.4 of main text for social distancing question definitions.
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Figure 3.2: District-Level Misperceptions Correction Treatment Effects by COVID-19 Cases

Notes: Misperceptions correction treatment effects (triangles) estimated separately for each of seven districts
(with 95% confidence intervals). District-level treatment effects plotted on vertical axis against district-level
cumulative COVID-19 case loads at start of endline survey (per 100,000 population) on horizontal axis.
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APPENDIX A

Appendix to Chapter 1

An outline of this Appendix: Section A.1 details the sub-Saharan Africa cross-sectional

analysis used to create Figure 1.1. Section A.2 provides additional details of the data cleaning

process used for primary outcomes and crop calendars. Section A.3 provides additional details

on the paper’s simulations. Section A.4 details alternative inference procedures used in Table

1.4. Section A.5 provides details of ”back-of-the-envelope” calculations made in the Section

1.5.1.1 of the main text. Section A.6 further details the long-run secondary analysis with

description of the data and additional results by age group.

A.1 Sub-Saharan Africa Country-Level Analysis

This appendix provides data description and robustness checks for Figure 1.1, which

shows across sub-Saharan African (SSA) countries1 a negative correlation between overlap in

the school and farming calendars and primary school survival rates. Specifically, it shows

that as the overlapping percent of total school days plus total sowing/harvest days increases,

the rate at which children who start school complete primary school decreases. Table A.1

summarizes the sources of the country-level data on school calendars, farming calendars, crop

production and the outcome used for this analysis.

1My target sample was 46 countries belonging to SSA according to the United National Development
Programme, listed here: https://www.africa.undp.org/content/rba/en/home/regioninfo.html. Due to data
limitations explained in this appendix, Guinea-Bissau, Seychelles, and South Sudan were unable to be included
in the final sample.
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A.1.1 Data

School Calendars: To estimate the day-level overlap between school and farming

calendars, I start by assembling a novel dataset of the daily primary and secondary school

calendars for 82% (37) of SSA countries.2 Table A.1 lists sources for school calendars. All

school calendars start in either 2018 or 2019 and hence were announced well before and are

not affected by the COVID-19 pandemic. Most school calendar data are taken from official

announcements on government websites, Facebook pages, or correspondence with government

officials. Detailed school calendar announcements include dates of all school holidays, breaks

between terms, differences between primary and secondary schedules, and occasionally exam

schedules. I also include school calendars from other reputable sources that provided start

and end dates of major terms. As an example, Figure A.1 shows an excerpt of the official

2019/2020 school calendar for Malawi. For the few countries in which I was unable to locate

a recent school calendar (after various attempts to contact government officials via email,

phone, or third-parities), I use UNESCO UIS data for school calendar start month and end

month in 2019 to estimate days in the school calendar. To do so, I estimate the average

number of school days in each month as 5/7 of the number of days in the month in 2019 (i.e.,

not during a leap year) and assume that school operates for the start month, the end month,

and each month in between.3 I translate these school calendars into a vector {s1, s2, . . . s365}
of 365 indicator variables (each representing one day of the year) equal to one if school was

scheduled on day d and zero otherwise. Further, I define country-level school requirements as

S =
365∑
d=1

sd, the total number of days during which school is scheduled.

Farming calendars: Farming calendars are conceptualized as country-level crop calendars

weighted by country-level crop production. Table A.1 lists sources for crop calendars.

Crop calendars are mostly taken from “Country Briefs” written by the UN’s Food and

Agriculture Organization (FAO) Global Information and Early Warning System (GIEWS).4

Each FAO/GIEWS crop calendar depicts the sowing, growing, and harvesting periods in

roughly within-month 10-day increments for between three to seven locally important crops.

2This dataset will soon be available on my website https://www.jamesalleniv.com. I thank my amazing
research assistants Danielle-Andree Atangana and Noelle Seward for their efforts in locating and digitizing
school and farming calendars as well as Max Diaz, Flavia Lorenzon and Laston Manja for finding additional
school calendars.

3As this school calendar estimated with UIS data likely overestimates the total number of school days, I
include an indicator for UIS-derived school calendars in regressions below to show the main finding is not
driven by differences in data sources.

4For three countries in which “Country Briefs” were not available, I use data
on planting and harvest periods from the FAO’s Crop Calendar Tool. Finally, the
crop calendar for Comoros came from a World Food Programme (WFP) report:
https://documents.wfp.org/stellent/groups/public/documents/ena/wfp085419.pdf.
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Most crop calendars also highlight “major foodcrops”, such as maize or cassava, specific to

each country. As an example, Figure A.2 depicts the FAO/GIEWS crop calendar for Malawi.

I translate these into vector {fc,1, fc,2, . . . fc,365} of 365 indicator variables (each representing

one day of the year) equal to one if either sowing and harvesting of crop calendar c occurs on

day d and zero otherwise. Further, I define farming time requirements for crop calendar c as

Fc =
365∑
d=1

fc,d, the sum of the total number of days during which sowing or harvesting of the

crop occurs. A crop calendar was not found for Seychelles where farming is not common, so

Seychelles had to be excluded from the sample.

Production Data: Crop production and land allocation data come from FAO Statistics

Division (FAOSTAT). Production is measured in metric tons and land allocation in hectares. I

use data only for crops with a crop calendar. In a few countries where some crops were assigned

different calendars based on season or region, I assumed that land allocation and production

were split 75% and 25% across primary and secondary growing seasons (respectively) and

split evenly across regions.

Calculating Overlap: Using these data, I construct my measure of country-level overlap

as follows. First, I calculate overlap for crop c as the product of the school and crop calendar

indicators on day d, summed across all days to get the total number of days during which

both school is scheduled and sowing/harvesting occurs – i.e., overlapc =
∑365

d=1(sd ∗ fc,d).

Second, I aggregate to the country-level by weighting crop-level farming time requirements Fc

and overlapc by crop c’s share of country-level production for listed crops. Finally, I divide

the sum of country-level school and farming time requirements by country-level overlap to

get Overlap Percent, the fraction of total school and farming days that overlap. Estimating

overlap as a share of total schooling and farming time requirements, as opposed to just total

number of days, effectively controls for possible correlations between length of school and/or

farming calendar and the primary outcome.

Outcome Data: The primary outcome is the survival rate to grade 5 for both sexes

from UNESCO’s Institute for Statistics (UIS), which measures the fraction of a cohort of

students enrolled in first grade who are expected to reach grade 5 of primary school.5 Thus

lower survival rates suggest lower level of retention and higher incidence of dropout within

school. Other outcomes I will test include survival rate to grade 4 and survival rate to

the last grade of primary school, both from UIS, and also primary school complete rate

from the World Development Indicators (WDI). All outcomes are important indicators for

5UIS calculates the outcome by using two consecutive years of enrollment data at each grade level to
”reconstruct” a cohort’s progression through primary school, and then divides the number of students expected
to reach the last grade by the total number of the students in the cohort (i.e., those who originally enrolled
in the first grade). See the UIS Glossary for more information.
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monitoring universal primary education. However, since the number of grades in primary

school varies across SSA countries, I select survival rate to grade 5 as the primary outcome as

the furthest-along consistent measure of primary school progress. I use the most recent data

point available; data come from as recently as 2018, as far back as 2002, and from 2015 on

average across countries. These data are not available for Guinea Bissau and South Sudan,

which are hence excluded from the analysis.

Summary Statistics: Table A.2 presents summary statistics for the 43 countries for

which the primary outcome data are available. Across these countries, the average survival

rate to grade 5 is 71.6% (standard deviation of 17.8). The Overlap Percent of total school

and farming days has a mean of 22.8% (standard deviation of 4.5 percentage points), which

is estimated by dividing the sum of total farm days and total school days by total overlap

days. I use daily school calendars for 81% of sample countries. Other country-level variables

show that 65% of countries are least developed countries, 35% are landlocked, and 9% are

small island developing states. Descriptive statistics on last colonial power and region are

also provided.

A.1.2 Analysis

Regression: Figure 1.1 visually depicts β in the following regression:

Yj = α + β Overlap Percentj + ϵj (A.1)

where Yj is the survival rate to grade 5 in country j; Overlap Percentj is the percent of

country j’s total school and farming time requirements that overlap as measured in days;

and ϵj is an error term. I test the robustness of this result by also regressing Equation A.1

with those country-level controls summarized in Table A.2 as well as year fixed effects. In

other specifications, I Yj with a country’s survival rate to grade 4, survival rate to the last

grade of primary school, and primary school completion rate.

Results: Regression results are presented in Table A.3. Column (1) shows the results

visually depicted in Figure 1.1, finding that a one percentage point increase in the percent of

total schooling and farming requirements that overlap is correlated with a 2.39 percentage

point decline in an SSA country’s survival rate to grade 5. With Overlap Percentj ranging

from 14.6 to 31.8, the coefficient maps to a more than 40 percentage point gap across SSA

countries in the survival rate to grade 5.

Remaining columns show that the significant negative result is robust to other

specifications. Column (2) adds country-level controls. Column (3) adds year fixed effects.

Column (4) define crop shares by land allocation (measured in hectares) instead of production.
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Column (5) conceptualizes country-level farming calendars by only those crops listed by

FAO/GIEWS as “major food crops”. Column (6) excludes countries defined by UIS-derived

school calendars to assess the subsample of SSA countries with only verified daily school

calendars. In Column (7), I analyze using only the UIS-derived school calendars; however,

because these data are available for all countries in the sample annually from 1997 to 2018, I

analyze the data as a panel including the same country-level controls and year fixed effects.

These robustness checks build confidence in the relationship depicted in Figure 1.1.

Additionally, regression results on different but related outcomes are presented in Table

A.4. Outcomes include survival rate to grade 4 in columns (1)-(3), survival rate to the last

grade of primary school in columns (4)-(6), and primary school completion rate in columns

(7)-(9). In each set, the first column has no controls, the second adds country-level controls,

and the third adds year fixed effects. Results are statistically significant in all but one

regression, giving some assurance that the main finding is not specific to its outcome measure.
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Table A.1: Data Sources for Sub-Saharan Africa (SSA) Country-Level Analysis

School Crop Production Outcome Included
COUNTRIES Calendar Calendar Data Data in Sample
Angola Official Daily FAO/GIEWS FAOSTAT UIS Yes
Benin Official Daily FAO/GIEWS FAOSTAT UIS Yes
Botswana Official Daily FAO/GIEWS FAOSTAT UIS Yes
Burkina Faso Official Daily FAO/GIEWS FAOSTAT UIS Yes
Burundi Official Daily FAO/GIEWS FAOSTAT UIS Yes
Cameroon Official Daily FAO/GIEWS FAOSTAT UIS Yes
Cape Verde Official Daily FAO/GIEWS FAOSTAT UIS Yes
Central African Republic UIS Monthly FAO/GIEWS FAOSTAT UIS Yes
Chad UIS Monthly FAO/GIEWS FAOSTAT UIS Yes
Comoros UIS Monthly WFP Report FAOSTAT UIS Yes
Côte d’Ivoire Official Daily FAO/GIEWS FAOSTAT UIS Yes
Demc Repub of the Congo Official Daily FAO/GIEWS FAOSTAT UIS Yes
Equatorial Guinea UIS Monthly FAO CCT FAOSTAT UIS Yes
Eritrea UIS Monthly FAO/GIEWS FAOSTAT UIS Yes
Ethiopia Reliable Daily FAO/GIEWS FAOSTAT UIS Yes
Gabon Official Daily FAO/GIEWS FAOSTAT UIS Yes
Gambia Official Daily FAO/GIEWS FAOSTAT UIS Yes
Ghana Official Daily FAO/GIEWS FAOSTAT UIS Yes
Guinea Official Daily FAO/GIEWS FAOSTAT UIS Yes
Guinea-Bissau Official Daily FAO/GIEWS FAOSTAT X No
Kenya Official Daily FAO/GIEWS FAOSTAT UIS Yes
Lesotho Official Daily FAO/GIEWS FAOSTAT UIS Yes
Liberia Reliable Daily FAO/GIEWS FAOSTAT UIS Yes
Madagascar Official Daily FAO/GIEWS FAOSTAT UIS Yes
Malawi Official Daily FAO/GIEWS FAOSTAT UIS Yes
Mali Reliable Daily FAO/GIEWS FAOSTAT UIS Yes
Mauritania Reliable Daily FAO/GIEWS FAOSTAT UIS Yes
Mauritius Official Daily FAO CCT FAOSTAT UIS Yes
Mozambique Official Daily FAO/GIEWS FAOSTAT UIS Yes
Namibia Official Daily FAO/GIEWS FAOSTAT UIS Yes
Niger UIS Monthly FAO/GIEWS FAOSTAT UIS Yes
Nigeria Official Daily FAO/GIEWS FAOSTAT UIS Yes
Republic of the Congo UIS Monthly FAO/GIEWS FAOSTAT UIS Yes
Rwanda Official Daily FAO/GIEWS FAOSTAT UIS Yes
Sao Tome and Principe UIS Monthly FAO CCT FAOSTAT UIS Yes
Senegal Official Daily FAO/GIEWS FAOSTAT UIS Yes
Seychelles Official Daily X FAOSTAT UIS No
Sierra Leone Reliable Daily FAO/GIEWS FAOSTAT UIS Yes
South Africa Official Daily FAO/GIEWS FAOSTAT UIS Yes
South Sudan Official Daily FAO/GIEWS FAOSTAT X No
Swaziland / Eswatini Official Daily FAO/GIEWS FAOSTAT UIS Yes
Tanzania Reliable Daily FAO/GIEWS FAOSTAT UIS Yes
Togo Reliable Daily FAO/GIEWS FAOSTAT UIS Yes
Uganda Official Daily FAO/GIEWS FAOSTAT UIS Yes
Zambia Official Daily FAO/GIEWS FAOSTAT UIS Yes
Zimbabwe Reliable Daily FAO/GIEWS FAOSTAT UIS Yes

Notes: Target sample was 46 countries belonging to SSA according to the United Nations Development
Programme. School Calendar: ”Official Daily” is a daily calendar from a government announcement, ”Reliable
Daily” is a daily calendar from a reputable website or correspondence (e.g., in-country international schools),
and ”UIS Monthly” refers to monthly calendars from the UNESCO Institute for Statistics (UIS). Crop
Calendar: ”FAO/GIEWS” refers to country briefs written by the UN’s Food and Agriculture Organization
(FAO) Global Information and Early Warning System (GIEWS), ”FAO CCT” refers to the FAO’s Crop
Calendar Tool, and the calendar for Comoros came from a World Food Programme (WFP) report. No crop
calendar was found for Seychelles where farming is not common. All production data came from the FAO
Statistics Division (FAOSTAT). All outcome data came from the UNESCO Institute for Statistics (UIS).
Due to indicated data limitations, Guinea-Bissau, Seychelles, and South Sudan are not in the final sample.
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Figure A.1: Example of an Official School Calendar: Malawi

Notes: The figure shows an excerpt of the official 2019/2020 school calendar for Malawi, which shows the
daily schedule including breaks between terms. Not shown is the description of other school holidays. The
dataset of sub-Saharan African school calendars and source documentation will soon be available on my
website: https://www.jamesalleniv.com.
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Figure A.2: Example of FAO/GIEWS Crop Calendars: Malawi

Notes: The figure depicts the most common source of crop calendars in the analysis. Crop calendars are
mostly taken from “Country Briefs” written by the UN’s Food and Agriculture Organization (FAO) Global
Information and Early Warning System (GIEWS). Each FAO/GIEWS crop calendar depicts the sowing,
growing, and harvesting periods in roughly within-month 10-day increments for between three to seven locally
important crops. Most crop calendars also highlight “major foodcrops”, such as maize or cassava, specific to
each country.
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Table A.2: Summary Statistics for Sub-Saharan Africa Country-Level Analysis

VARIABLE N Mean SD Min Max

Survival Rate to Grade 4 43 77.73 15.15 37.55 98.50

Survival Rate to Grade 5 43 71.64 17.77 27.92 97.21

Survival Rate to Last Grade of Primary School 43 64.34 19.52 24.16 94.61

Primary Completion Rate 43 72.52 17.43 40.56 100.66

Overlap Percent of School and Farm Days 43 22.75 4.51 14.57 31.82

Total Overlap Days between School and Farming 43 81.71 25.98 42.97 142.86

Total Farm Days 43 156.63 45.14 60.16 244.41

Total School Days 43 195.45 15.33 155.00 228.00

Indicator if Daily School Calendar was Found 43 0.81 0.39 0.00 1.00

Indicator if Least Developed Country 43 0.65 0.48 0.00 1.00

Indicator if Landlocked 43 0.35 0.48 0.00 1.00

Indicator is Small Island Developing State 43 0.09 0.29 0.00 1.00

Last Colonial Power: France 43 0.35 0.48 0.00 1.00

Last Colonial Power: Britain 43 0.35 0.48 0.00 1.00

Last Colonial Power: Other 43 0.30 0.46 0.00 1.00

Region: Eastern Africa 43 0.33 0.47 0.00 1.00

Region: Middle Africa 43 0.21 0.41 0.00 1.00

Region: Southern Africa 43 0.12 0.32 0.00 1.00

Region: Western Africa 43 0.35 0.48 0.00 1.00

Notes: Sample size of 43 (out of a possible 46) sub-Saharan African countries due to data availability.
Summary statistics presented for outcomes, overlap measures, and other country-level variables. In the
primary specification, the outcome of the survival rate to grade 5 of primary school is regressed on
Overlap Percent, the sum of Total Farm Days and Total School Days then divided by Total Overlap Days.
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Table A.3: Results for Sub-Saharan Africa Country-Level Analysis

VARIABLES Survival Rate to the Last Grade of Primary School

(1) (2) (3) (4) (5) (6) (7)

Overlap Percent -2.457*** -2.172*** -2.210*** -1.756** -2.021*** -2.590*** -1.200**

(0.560) (0.613) (0.715) (0.719) (0.648) (0.568) (0.463)

Observations 43 43 43 43 43 35 464

R-squared 0.323 0.721 0.763 0.731 0.773 0.869 0.541

Country-level Controls N Y Y Y Y Y Y

Year FE N N Y Y Y Y Y

Crop Shares Defined by Production Production Production Land Production Production Production

Crop Selection All Given All Given All Given All Given Major Crops All Given All Given

School Calendars Used Best Given Best Given Best Given Best Given Best Given Daily UIS monthly

Standard Errors Robust Robust Robust Robust Robust Robust Cluster

DV Mean 64.34 64.34 64.34 64.34 64.34 64.34 63.33
Notes: The table presents results of a regression of survival rate to grade 5 on Overlap Percent, the fraction of total school days and total farm
days that overlap with each other, for 43 countries in sub-Saharan Africa. Column (1) shows the results visually depicted in Figure 1.1. Remaining
columns show that the significant negative result is robust to other specifications: column (2) adds country-level controls, column (3) adds year fixed
effects, column (4) define crop shares by land allocation (measured in hectares) instead of production, column (5) conceptualizes country-level farming
calendars by only those crops listed by FAO/GIEWS as “major food crops”, column (6) excludes countries defined by UIS-derived school calendars to
assess the subsample of SSA countries with only verified daily school calendars, and column (7) analyze using only the UIS-derived school calendars as
a panel from 1997 to 2018 with the same country-level controls and year fixed effects.
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Table A.4: Additional Results for Sub-Saharan Africa Country-Level Analysis

VARIABLES Survival Rate to Grade 4 Survival Rate to Last Grade Primary Completion Rate

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Overlap Percent -2.017*** -1.922*** -2.018*** -2.457*** -2.172*** -2.210*** -1.173** -0.955* -0.661

(0.466) (0.569) (0.634) (0.560) (0.613) (0.715) (0.530) (0.470) (0.595)

Observations 43 43 43 43 43 43 44 44 44

R-squared 0.361 0.695 0.759 0.323 0.721 0.763 0.092 0.635 0.723

Country Controls N Y Y N Y Y N Y Y

Year FE N N Y N N Y N N Y

DV Mean 77.73 77.73 77.73 64.34 64.34 64.34 72.35 72.35 72.35
Notes: The table presents results of different outcomes on Overlap Percent, the fraction of total school days and total farm days that overlap with
each other, for 43 countries in sub-Saharan Africa. Outcomes include survival rate to grade 4 in columns (1)-(3), survival rate to the last grade of
primary school in columns (4)-(6), and primary school completion rate in columns (7)-(9). In each set, the first column has no controls, the second
adds country-level controls, and the third adds year fixed effects.
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A.2 Data Cleaning Details

The appendix builds on Sections 1.3.3 and 1.3.4 to provide additional details on the data

cleaning procedures.

A.2.1 Primary Outcomes

Outcome data come from Malawi’s Integrated Household Panel Survey (IHPS) 2010-2013,

which was implemented as part of the World Bank Living Standards Measurement Study

– Integrated Surveys on Agriculture (LSMS-ISA) initiative.6 While the IHPS 2010 was

implemented during the school calendar change ”transition year”, key measures of schooling

and agricultural production were recalled from the pre-policy period, and I use these whenever

possible. At baseline, the IHPS sample was selected to be representative at the national and

regional levels, covers 26 of Malawi’s 28 districts and 4 urban areas, and surveys households

in 204 16-household enumeration areas (Government of Malawi, 2012). The IHPS defined a

“community” as the village or urban location surrounding an enumeration area; similarly, I

define a ”community” as each 16-household enumeration area. Outcome data include highest

grade level completed and hours spent working on the household farm.

First, Gradei is the highest grade level completed for individual i for the reference

academic year. These data come from the Education module of the Household Questionnaire.

Highest grade for the current academic year at the time of surveying equals the integer

reported for ”What class are you in or what was the highest class level you ever attended?”

if the individual reported NOT attending school in the current academic year; one less the

integer reported for ”What class are you in or what was the highest class level you ever

attended?” if the individual reported WAS currently attending school; or zero if responded

“No” to “Have you ever attended school?” or if both a reason for never attending school was

given and class information was missing. Highest grade for the previous academic year was

constructed similarly but using other questions that referred to the “last completed academic

year”. Then, I used the daily school calendar and the recorded date of the visit during which

the Education module was administered to determine to which academic year each measured

referred. The baseline value of Gradei refers to the pre-policy 2009 academic year, while the

outcome Gradei refers to the 2013 academic year. A similar process was used to generate a

dummy if an individual started school or enrolled in the referenced academic year, both of

which are used in secondary analyses.

To clean Gradei, I set Gradei equal to zero if missing for individuals under five years at

the time of surveying (as they were not eligible for the Education module), though this is

6Documentation can be found at: https://microdata.worldbank.org/index.php/catalog/2248/study-description.
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only relevant for the long-run analysis. Otherwise I perform no additional cleaning but check

that the results are not driven by erroneous or improbable panel data in Table A.5. First,

in column (1), I analyze a dummy variable equal to one if the difference in an individual’s

2013 Gradei and 2009 Gradei is either less than zero or greater than five (i.e., improbable

changes in highest completed grade level), and zero otherwise, which equals one for only 3.6%

of the sample. I find that this dummy is not significantly correlated with shift-share overlap.

Further, Table A.5 columns (2)-(8) show that the main result is robust to alternative cleaning

procedures for Gradei. Columns (2)-(4) assume the 2013 value is the ”true” reference: column

(2) prevents ”grade regression” by setting the maximum 2009 value equal to the 2013 value;

column (3) prevents ”unrealistic grade progression” by setting the minimum 2009 value equal

to the 2013 value minus 5 (preventing six or more grades completed in four years); column

(4) does both. Columns (5)-(7) assume the 2009 value is the ”true” reference: column (5)

prevents ”grade regression” by setting the minimum 2013 value equal to the 2009 value;

column (6) prevents ”unrealistic grade progression” by setting the maximum 2013 value equal

to the 2009 value plus 5; column (7) does both. Column (8) drops the 3.6% of the sample

with such inconsistent observations. The regressions show that the significantly negative

effect on Gradei is robust to these alternative cleaning procedures.

Second, Farmedi is an indicator if individual i was reported to work any hours on the

household farm during the rainy-season sowing and harvest periods. These data come from

the Household Labor section of the Rainy Season Module of the Agriculture Questionnaire,

which reports for each agricultural plot the number of weeks, days per week, and hours per

day of work during the land preparation and planting (i.e., sowing) period and harvesting

period for up to four household members. For each individual i, these time-use variables are

multiplied together to generate plot-level total hours worked and then summed across plots

to construct Farm Hoursi as the total of all hours worked on household plots during the

sowing and harvest periods in the rainy season. Farmedi is equal to one if Farm Hoursi > 0

and zero otherwise. The baseline value refers to the 2009/10 rainy season, while the outcome

itself refers to the 2012/2013 rainy season.

Third, Farm Hoursi, defined in the previous paragraph, is cleaned to address outliers.

In the primary specification, I winsorize it by replacing any value beyond the 95th percentile

with the value at the 95th percentile. Then in Table A.6, I present balance tests and main

effects for alternative cleaning procedures. First, columns (1)-(4) follow the balance test

specification described in Table 1.1 to regress Farm Hoursi not winsorized in column (1),

winsorized at the 95th percentile in column (2) and the 90th percentile in column (3), and

with an inverse hyperbolic sine transformation in column (4). All four regressions reveal

a positive correlation between shift-share overlap and these measures at varying degrees of
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significance. Second, columns (5)-(8) follow the main specification described in Table 1.3 to

test for the effect of shift-share overlap on the 2013 post-policy measure of Farm Hoursi

similarly adjusted for extreme outliers. These regressions reveal significant negative effects

that, relative to each estimate’s corresponding baseline imbalance, are larger in columns

where outliers are addressed.

A.2.2 Crop Calendars

Data on community crop production are matched to crop calendars from the Food and

Agriculture Organization (FAO) Crop Calendar Tool, which provides start and end months

for the sowing and harvest periods for 45 major crops in Malawi. The FAO Crop Calendar

Tool defines a crop c as a unique combination of its altitude zone (high, medium, or low),7

season of production (rainy, dry, or permanent), and basic crop type (e.g., maize, soybean,

etc.). The most common crops, such as maize, have different calendars for different altitudes

and seasons; in general, crop calendars are longer at lower altitudes and in the rainy versus

the dry season.

Crop calendars from the FAO Crop Calendar Tool match to 83% of pre-policy cultivated

acres in the IHPS data. For the remaining 17% of cultivated acres, I use the modal sowing

month and harvest month reported by IHPS households in 2010 (the earliest available). In

using IHPS-based crop calendars from 2010, I assume that the modal crop calendars were

unaffected by the one-month school calendar change between 2009 and 2010, or at least that

any endogeneity has minuscule effect on my analysis after these crops are weighted by their

relatively smaller share of total cultivated acres.

7High altitude is defined as greater than 1300 meters, low altitude is defined as less than 600 meters, and
medium altitude is in between these cutoffs.
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Table A.5: Grade Level in 2013 following Different Cleaning Procedures

VARIABLES Dummy: Assume 2009 value is ”true” reference Assume 2013 value is ”true” reference Drop

’13-’09 Fix Max ’09 Fix Min ’09 Both Fix Min ’13 Fix Max ’13 Both Obs if

<0 or >5 if ’09>’13 if ’13>’09+5 (2) & (3) if ’09>’13 if ’13>’09+5 (5) & (6) ’09>’13

(1) (2) (3) (4) (5) (6) (7) (8)

ssoverlapℓ -0.010 -0.274 -0.259 -0.256 -0.275 -0.265 -0.264 -0.259

(0.013) (0.101) (0.101) (0.091) (0.103) (0.103) (0.095) (0.092)

[0.268] [0.004] [0.015] [0.007] [0.007] [0.015] [0.008] [0.011]

Observations 2,142 2,142 2,142 2,142 2,142 2,142 2,142 2,064

R-squared 0.042 0.703 0.710 0.775 0.685 0.682 0.734 0.759

Base DV Mean 0.04 1.38 1.47 1.42 1.43 1.43 1.43 1.39

∆ DV Mean 2.35 2.26 2.31 2.35 2.26 2.31 2.33

Notes: Dependent variables relate to Gradei, which receives minimal cleaning the primary analysis. Column
(1) is a dummy variable equal to one if the difference in an individual’s 2013 Gradei and 2009 Gradei is either
less than zero or greater than five and is zero otherwise. Columns (2)-(8) tests robustness of the primary
results after implementing different reasonable data cleaning procedures for Gradei. Columns (2)-(4) assume
the 2013 value is the ”true” reference: column (2) sets the maximum 2009 value equal to the 2013 value;
column (3) sets the minimum 2009 value equal to the 2013 value minus 5; column (4) does both. Columns
(5)-(7) assume the 2009 value is the ”true” reference: column (5) sets the minimum 2013 value equal to the
2009 value; column (6) sets the maximum 2013 value equal to the 2009 value plus 5; column (7) does both.
Column (8) drops inconsistent observations from the sample. ssoverlapℓ and included controls defined in
Table 1.3. Conventional robust standard errors in parentheses. Randomization inference p-values in square
brackets.
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Table A.6: Household-Farm Hours: Balance, Effects, Robustness

VARIABLES Balance Test on Baseline Values: Main Test on Post-Policy Values:

No Winz Winz 95 Winz 90 IHS No Winz Winz 95 Winz 90 IHS

(1) (2) (3) (4) (5) (6) (7) (8)

ssoverlapℓ 9.058 3.165 1.384 0.148 -6.289 -5.170 -5.354 -0.364

(3.711) (1.576) (1.066) (0.135) (5.455) (3.704) (2.860) (0.163)

[0.004] [0.031] [0.107] [0.122] [0.090] [0.087] [0.042] [0.043]

Observations 2,142 2,142 2,142 2,142 2,142 2,142 2,142 2,142

R-squared 0.071 0.125 0.138 0.150 0.131 0.203 0.226 0.249

Base DV Mean 1.88 1.88 1.88 1.88 13.96 9.82 7.21 1.03

∆ DV Mean 12.08 7.94 5.33 -0.85 23.65 21.49 19.59 1.06

Notes: Dependent variables relate to the continuous measure of household-farm hours Farm Hoursi. Columns (1)-(4) follow the balance test
specification described in Table 1.1 to regress Farm Hoursi not winsorized in column (1), winsorized at the 95th percentile in column (2) and the 90th
percentile in column (3), and with an inverse hyperbolic sine transformation in column (4). Columns (5)-(8) follow the main specification described
in Table 1.3 to test for the effect of shift-share overlap on the 2013 post-policy measure of Farm Hoursi similarly adjusted for extreme outliers.
ssoverlapℓ and included controls defined in Table 1.3. Conventional robust standard errors in parentheses. Randomization inference p-values in square
brackets.
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A.3 Simulation Details

A.3.1 Overlap Comparison

With its shift-share construction and normalization, changes in the overlap measure

ssoverlapℓ can be hard to interpret in ”real” terms. To put ssoverlapℓ into perspective, I ran

a simulation and estimate that a 1.21 standard deviation increase in ssoverlapℓ is roughly

equivalent to adding 10 days of overlap during sowing and harvest of rainy-season maize in

the average sample community.

To determine this, I averaged crop shares across the 135 sample communities, added new

school days to the 2009 pre-policy school calendar, and re-calculated ssoverlapℓ to simulate

the effect of increasing overlap on the ssoverlapℓ measure. I chose to add school days during

periods of sowing (late November to late December) and harvest (early May to early June)

of rainy-season maize, as it alone accounts for over half of all planted acres in the sample

(when summed across the three altitude zones) and thus likely represents periods of peak

labor demand for most farming communities.

I find that adding five days spaced out during the sowing of rainy-season maize and

another five days spaced out during the harvest of rainy-season maize increases normalized

ssoverlapℓ by 1.21 standard deviations. By comparison, adding ten days spaced out during

rainy-season maize sowing alone increases normalized ssoverlapℓ by 1.35, and adding ten

days spaced out during rainy-season maize harvest alone increases normalized ssoverlapℓ

by 1.07—the difference caused by the fact that sowing periods across all crops are more

concentrated from mid-November through December, whereas harvest periods across all crops

vary from February through July depending on the length of the growing season.

A.3.2 Policy Simulation

To identify Malawi’s overlap-minimizing school calendar, I simulate 52 other potential

school calendars that could have been used for the 2011 school year, each starting on a

Monday and maintaining the structure and length of the original 2011 school calendar. This

is done by effectively shifting the school calendar backward to previous Mondays in the year

or forward to future Mondays using July 1st as the cutoff for the year. Then, for each of

52 simulated school calendars in 2011, I estimate the counterfactual change in shift-share

overlap for each community relative to the original 2009 school calendar. Next, I multiply

the counterfactual change in shift-share overlap by the coefficient in Table 1.3 column (1) to

approximate the calendar’s potential effect on Gradei. A similar process simulates 52 other

potential school calendars that could have been used for the original 2009 school year.

Additionally I use the policy simulation to estimate potential effects on Farmedi, which
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are presented in Figure A.3 below. Projected overall effects on Farmedi in panel (a) follow

a similar pattern to projected effects on Gradei in Figure 1.5 panel (a). However, different

estimates in sowing and harvest periods from Table 1.7 creates divergent patterns in panel

(b) across the two figures. Here, Farmedi is actually projected to increase under many

alternative school calendars, especially when harvest-specific overlap is minimized given that

harvest overlap appears to drive overlap’s overall negative effect on Farmedi.
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Figure A.3: Simulated Impacts on Household-Farm Labor

(a) Overall Impact

(b) Sowing versus Harvest Impact

Notes: Figure depicts simulated policy impacts of alternative 2011 school calendars relative to the actual
2009 school calendar. Panel (a) plots the expected change in shift-share overlap for the average sample
community using drop lines and projected effects on Farmedi using crimson bars. Panel (b) plots these
outcomes separately for sowing and harvest periods. Additionally, the top horizontal axis estimates the start
of each month, and the vertical line denotes the actual 2011 school calendar starting on Sept. 6, 2010.
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A.4 Alternative Inference Procedures

In this appendix, I provide additional details for the alternative inference procedures listed

in Table 1.4. This includes conventional ordinary least squares (OLS), several randomization

inference (RI) procedures, and Borusyak et al. (2022)’s share-weighted shock-level regression

technique. The fact that these alternative procedures produce similar p-values builds

confidence in the primary results.

Table 1.4 starts in row (a) with conventional ordinary least squares (OLS) estimates.

OLS produces valid inference under certain asymptotic assumptions including the absence of

omitted variable bias. However, OLS standard errors may be invalid in shift-shares settings

due to unobserved correlation between observations with similar exposure shares (Adão et al.,

2019; Borusyak et al., 2022). In my setting, this could be unobserved correlation between

individuals living in different communities that have similar sets of crop shares. Of most

concern, when residuals are positively correlated, conventional OLS estimation will likely

overreject. Hence there is motivation for turning to other inference procedures.

Two types of inference that can account for this issue in shift-share settings are RI

approaches (e.g., Borusyak and Hull (2021)) and shift-share asymptotic approaches (e.g.,

Borusyak et al. (2022)). Each type has its strengths and weaknesses. As described by

Borusyak and Hull (2021), RI requires specifying the full shock assignment process used to

generate shock counterfactuals, whereas asymptotic approximation only requires specifying

its first moment. Yet, RI is valid even when asymptotic assumptions of homoskedasticity or

distribution symmetry are violated in the data. One additional assumption for Borusyak et al.

(2022)’s share-weighted shock-level regression approach is that of having many shocks such

that the largest share in the regression converges to zero as the sample size increases, which

ensures a large effective sample size for the shock-level regression. However, the prevalence

of medium-altitude rainy-season maize in my data, which accounts for 41.3% of the sum

of crop shares, threatens to violate this assumption. Indeed, I only estimate an effective

sample size of 15.5, although Borusyak et al. (2022)’s simulations conclude that an effective

sample size of 20 ”may be considered satisfactory” with a rejection rate near 7% instead of

5%. Therefore, I pursued a RI approach ex ante, although it turns out that both procedures

produce similar results.

A.4.1 Alternative RI procedures

In this section, I specify the different shock assignment processes used in alternative

RI procedures, which are each estimated as follows. First, I use the shock assignment

process to generate a set of crop-level shock counterfactuals. Second, I weight the shocks
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counterfactuals by the existing crop shares sharec,ℓ, and sum across crops to estimate a

counterfactual shift-share overlap measure for each location (as in Equation 1.4.3). Third, I

run the regression specified in Equation 1.4.4, replacing only the actualy shift-share overlap

measure with the counterfactual one, and collect the counterfactual β, called β̃. Then, I

repeat these three steps 1000 times. Finally, I calculate Fisher exact p-values as the fraction

of β̃ for which |β̃| ≥ |β̂|.
The various shock assignment processes described below are labeled according to their

row in Table 1.4. Row (b) randomly re-draws with replacement the crop-level shock from

the actual distribution of shocks, which is the RI approach used in the primary analysis

(and hence corresponds Table 1.3). This approach avoids putting additional structure on

the data and assumes that 1) shock assignment is uncorrelated with crop characteristics,

and 2) the actual distribution is representative of true distribution. Row (c) relaxes the first

assumption by imposing that shocks are correlated by season by randomly re-drawing with

replacement shocks from the actual distribution of shocks for crops within the same season

(i.e., rainy, dry, permanent). Row (d) relaxes the second assumption by randomly re-drawing

with replacement from a normal distribution defined by the actual distribution’s first and

second moments. Row (e) combines both features to randomly re-draws with replacement

from a normal distribution defined by same-season crops’ first and second moments.

Rows (f) and (g) take a different approach in specifying the shock assignment process.

Rather than rely on information from the existing distribution, this approach recognizes

Malawi’s school calendar change as the underlying source of variation in shift-share overlap

and thus generates shock counterfactuals from simulations of all possible school calendar

changes that could have occurred between 2009 and 2011. First, for both 2009 and 2011,

I construct 52 hypothetical school calendars, each starting a Monday and maintaining the

structure and length of the year’s original school calendar. This is done by effectively shifting

the school calendar backward to previous Mondays in the year or forward to future Mondays.

I use July 1st as the cutoff for the year (rather than January 1st) so that the simulated 2009,

2010, and 2011 school years do not intersect. Second, for each of 52 simulated school calendars

for 2009 and 2011, I estimate the overlap between it and crop-level farming calendars as in

Equation 1.4.1. Finally, for the 2,704 possible school calendar changes between 2009 and

2011 (i.e., 52 x 52), I estimate the shock counterfactual ∆overlapc for crop c. Together, the

s = 2, 704 simulated shock counterfactuals form the shock distribution for crop c. In row (f),

I assume that shock assignment is correlated by crop season (i.e., rainy, dry, permanent), so

for each iteration I randomly re-draw with replacement the shock counterfactuals for crop c

from the same simulation s for same-season crops. In row (g), I more conservatively assume

that shock assignment is correlated across all crops, and thus for each iteration I draw all
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crop-specific shock counterfactuals from the same simulation s. Further, in row (g), rather

than randomly re-drawing with replacement for 1000 iterations, I cycle through all possible

2,704 simulations when constructing the Fisher exact p-values.

A.4.2 Share-weighted shock-level regression

For completion and robustness, I also use share-weighted shock-level regression technique

pioneered by Borusyak et al. (2022) to estimate exposure-robust standard errors. First,

I transform my location-level outcome and shift-share overlap data into a dataset of

exposure-weighted ”crop-level” aggregates using their ssaggregate command, partialling

out Ybase,i,ℓ, farmshareℓ, and wi,ℓ via the controls option. This aggregatation is equivalent

to the ”recentering” method described in Borusyak and Hull (2021) for eliminating omitted

variable bias when regressing a shift-share variable. Second, following their Proposition 5, I

estimate a crop-share-weighted shock-level regression of:

Ȳ ⊥
c = α + β ¯ssoverlap

⊥
c + season′

cγ + ϵ̄⊥c (A.4.1)

where ¯ssoverlap
⊥
c is instrumented by crop-level shocks ∆overlapc,2011−2009, and seasonc is a

vector of crop-level seasonal dummies (rainy, dry, permanent) and a dummy for crops classified

as grains included as non-transformed crop-level controls. I cluster standard errors by season

and further specify Stata’s ivreg2 ’s small option, which requests small-sample statistics (F

and t-statistics) and performs a finite sample adjustment. Estimates from Equation A.4.1

produce numerically equivalent estimates of β̂ as well as exposure-robust standard errors

reported in Table 1.4.
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A.5 Perceived Value of School Calculations

The appendix provides details for the ”back-of-the-envelope” calculations used to estimate

the perceived value of time in school in Section 1.5.1.1.

In my reference estimate, I approximate the perceived value of one completed grade level

for the average sample household at $21 USD. I start by equating effect sizes in Table 1.3

columns (1) and (3): 0.34 grades with 3 days of household-farm work (1 day annually for three

post-policy years). In Malawi’s 2010 Integrated Household Survey (IHS3) sample, children

under 15 who are hired to do farm labor are paid an average daily wage of 331 kwacha, or

$2.35 in 2009 USD (following an exchange rate of 1 USD to 141 Malawian kwacha in 2009

(St. Louis Federal Reserve Bank, FRED Economic Data, 2012)). Thus, 0.34 grades = 3 days

of farm work = $2.35 * 3 = $7.05 =⇒ 1 grade = $7.05 USD / 0.34 = $20.74.
In my upper-bound estimate, I approximate the perceived value of one completed grade

level for the average sample household at $33 USD. To be more generous, this estimate

assumes 1) that the positive baseline imbalance is muting the same magnitude of negative

effect in the main analysis, and 2) the average daily wage for hired adult farm labor. Baseline

imbalance in Table 1.1 under Farm Hoursi is 3.165 hours, which translates to about 0.59

days of additional lost household-farm hour when applying the conversation assumption

discussed in Section 1.5.1: 3.165 effect * 1.21 to convert effect into 10-day effect / 6.5 hours

per day = 0.59 days. Then, 0.34 grades = 3.59 days of farm work. In the IHS3 sample, adult

hired farm labor is paid an average daily wage of 442 kwacha, or $3.13 in 2009 USD. Thus,

0.34 grades = 3.59 days of farm work = $3.13 * 3.59 = $11.24 =⇒ 1 grade = $11.24 / 0.34

= $33.05.
To approximate the present discounted value to an individual of an additional year of

schooling from the Montenegro and Patrinos (2014)’s ”Mincerian” estimates, I use income

data from the IHS3 survey and reasonable discounting assumptions. First, I consider a range

of possible returns to an additional year of schooling corresponding with Montenegro and

Patrinos (2014) smaller estimate of 5.2% in 2004 (SD of 3.7) and larger estimate of 9.8% in

2010 (SD of 4.5). In the IHS3 sample, the average annual income across wage and ganyu

work for working-age adults with no schooling is 10,165 kwacha or $72.15 in 2009 USD.

Multiplying this by the returns estimates, the annual return for another year of schooling for

an non-educated worker is between $3.75–$7.07 USD. Treating annual income as an annuity,

its present discounted value PDV = Annual return ∗ [1 − (1/1 + r)n]/r is then between

$94.76–$178.66, where I assume interest rate r = 0.03 and number of time periods n = 48 as

the number of working-age years from ages 18–65.
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A.6 Long-Run Analysis

A.6.1 Data Details

Long-run outcome data come from Malawi’s Integrated Household Panel Survey (IHPS)

2010-2016 and 2010-2019, both of which were also implemented as part of the World Bank

Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA)

initiative.8 Citing an increasing number of households and budget/resource constraints, the

IHPS tracked households from only half of baseline enumeration areas (EAs) starting in 2016.

EA selection was stratified by region and urban/rural designation, and selection oversampled

urban areas in order to secure reliable national estimates for both urban and rural areas

(Government of Malawi, 2017).

Unfortunately, due to the reduced target sample and additional participant attrition, 2016

and 2019 data are only available for 43.5% and 38.6% of my sample. Additionally, retention

into these surveys rounds from the IHPS 2010 is positively correlated with shift-share overlap.

Regressing retention on shift-share overlap and controls (akin to Table 1.1’s test of retention

in the 2013 sample) produces a coefficient of 0.154 [RI p-value = 0.079] for 2016 retention and

a coefficient of 0.124 [RI p-value = 0.123] for 2019 retention, suggesting slight over-sampling

from locations that experienced greater overlap due to the school calendar change. To address

both issues, I broaden my sample to include those ages 0-5 pre-policy who become school-aged

in later years (ages 7-12 in 2016 and 10-15 in 2019). This sample includes 1,918 and 1,714

individuals in 2016 and 2016, respectively, and their retention is slightly less imbalanced. In

the broader age 0-13 sample, shift-share overlap’s correlation has a coefficient of 0.145 [RI

p-value = 0.084] for 2016 retention and a coefficient of 0.116 [RI p-value = 0.136] for 2019

retention. Still, I interpret long-run results with some caution.

A.6.2 Additional Results

Table A.7 and Table A.8 break down results of Table 1.11 by age groups: ages 0-5 in 2009

(pre-policy) who become ages 7-12 in 2016 and 10-15 in 2019; ages 6-9 in 2009 who become

ages 13-16 in 2016 and 16-19 in 2019; and 10-13 in 2009 who become ages 17-20 in 2016 and

20-23 in 2019. See brief description and summary of results at the end of Section 1.5.2.5.

8Documentation for 2010-2016 can be found at: https://microdata.worldbank.org/index.php/catalog/2939,
and documentation for 2010-2019 can be found at: https://microdata.worldbank.org/index.php/catalog/3819.
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Table A.7: Long-Run Impacts on Grade Level

Pre-Policy Age 0-13 Pre-Policy Age 0-5 Pre-Policy Age 6-9 Pre-Policy Age 10-13

VARIABLE: Grade in 2016 2019 2016 2019 2016 2019 2016 2019

(1) (2) (3) (4) (5) (6) (7) (8)

ssoverlapℓ -0.375 -0.128 -0.259 -0.212 -0.264 -0.042 -0.426 0.556

(0.168) (0.231) (0.160) (0.233) (0.319) (0.445) (0.528) (0.671)

[0.014] [0.537] [0.094] [0.220] [0.249] [0.913] [0.061] [0.195]

Observations 1,918 1,714 929 834 562 515 427 365

R-squared 0.727 0.604 0.483 0.484 0.452 0.414 0.540 0.508

Age at Outcome Age 7-20 Age 10-23 Age 7-12 Age 10-15 Age 13-16 Age 16-19 Age 17-20 Age 20-23

Base DV Mean 0.65 0.62 0.01 0.00 0.48 0.46 2.26 2.24

∆ DV Mean 2.87 4.50 1.50 3.25 3.93 5.68 4.47 5.68

Notes: Specification and variables are as defined in Table 1.3. Dependent variable Gradei was measured for a subset of individuals in follow-up panel
surveys in either 2016 or 2019. Conventional robust standard errors in parentheses. Randomization inference p-values in square brackets.
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Table A.8: Long-Run Impacts on Farm Work

Pre-Policy Age 0-13 Pre-Policy Age 0-5 Pre-Policy Age 6-9 Pre-Policy Age 10-13

VARIABLE: Farmed in 2016 2019 2016 2019 2016 2019 2016 2019

(1) (2) (3) (4) (5) (6) (7) (8)

ssoverlapℓ -0.102 -0.158 -0.132 -0.218 -0.053 -0.120 -0.036 -0.048

(0.046) (0.050) (0.065) (0.072) (0.081) (0.083) (0.100) (0.112)

[0.022] [0.010] [0.023] [0.014] [0.345] [0.013] [0.493] [0.674]

Observations 1,918 1,714 929 834 562 515 427 365

R-squared 0.291 0.164 0.188 0.178 0.263 0.215 0.209 0.213

Age at Outcome Age 7-20 Age 10-23 Age 7-12 Age 10-15 Age 13-16 Age 16-19 Age 17-20 Age 20-23

Base DV Mean 0.65 0.62 0.01 0.00 0.48 0.46 2.26 2.24

∆ DV Mean -0.15 -0.03 0.30 0.50 0.19 0.20 -1.55 -1.57

Notes: Specification and variables are as defined in Table 1.3. Dependent variable Farmedi was measured for a subset of individuals in follow-up panel
surveys in either 2016 or 2019. Conventional robust standard errors in parentheses. Randomization inference p-values in square brackets.
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APPENDIX B

Appendix to Chapter 2

In this Appendix, we often refer to survey by its round number: Pre-baseline is Round 1,

baseline is Round 2, endline is Round 3, and post-endline is Round 4.

B.1 Study Area

The Mozambican government declared a State of Emergency due to the COVID-19

pandemic on March 31, 2020 (Republic of Mozambique, 3/31/2020). The government

recommended social distancing (at least 1.5 meters) and required it at public and private

institutions and gatherings. The government also suspended schools, required masks at

funerals and markets, banned gatherings of 20 or more, and closed bars, cinemas and

gymnasiums (Republic of Mozambique, 4/1/2020). The government stopped short of

implementing a full economic “lockdown” due to its economic costs (Siuta and Sambo,

April 1, 2020; Jones et al., 2020). On August 5, 2020, the government renewed the State of

Emergency (Republic of Mozambique, 8/5/2020), called for improved mask-wearing, and

announced a schedule for loosening restrictions (Nyusi, 8/5/2020). In September 2020, the

government loosened some restrictions, including resuming religious services at 50% capacity

(Nyusi, 9/5/2020; U.S Embassy in Mozambique).
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Figure B.1: Study Area

Notes: The country of Mozambique is shaded in light gray. District borders are defined by a black
line. Districts within this sample are shaded in dark gray. The geographic center for the 76 communities
encompassed in this sample are highlighted as cyan points on the map.

Study participants come from 76 communities in central Mozambique. The study

communities are in seven districts of three provinces: Dondo and Nhamatanda in Sofala

province; Gondola, Chimoio and Manica in Manica province; and Namacurra and Nicoadala

in Zambezia province. These 76 communities are mapped in Figure C.1. Compared to other

communities in Mozambique, the study areas are relatively accessible to transport corridors

(highways and ports) and are thus important geographic conduits for infectious disease.

We collected survey data in three rounds between July 10 and November 18, 2020. Figure

2.1 depicts the study timeline below a rolling average of new Mozambican COVID-19 cases.

We piloted surveys in Round 1. Immediately before the Round 2 survey, we randomly assigned

households to treatments and submitted our pre-analysis plan to the AEA RCT Registry.

The Round 2 survey served as a baseline, and was immediately followed (on the same phone

call) by our treatment interventions. Round 3 was our endline survey. Surveys collected data

on COVID-19 knowledge, beliefs, and behaviors. While data collection for Round 3 began

only one day after completion of Round 2, there was a minimum of 3.0 weeks and average of

6.3 weeks between Rounds 2 and 3 surveys for any given respondent. While the Round 1

survey occurred when new COVID-19 cases remained relatively steady, both the Round 2

and Round 3 surveys occurred during a period of substantial growth in new COVID-19 cases.

Details on our Round 4 survey to test long-run impacts can be found in Appendix B.7.
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B.2 COVID-19 Knowledge Questions

Survey questions measured COVID-19-related knowledge in the three main categories: 1)

general knowledge, which included questions on risk factors, transmission, and symptoms;

2) preventive actions, which included questions on social distancing (i.e., how to prevent

spreading COVID-19 to others), and household prevention (i.e., how to prevent spreading

COVID-19 to yourself and your household); and 3) government policies (i.e., official actions

taken by the national government of Mozambique to address COVID-19).

In Round 1, we piloted a set of 71 questions (larger than our eventual pre-specified set for

Rounds 2 and 3). The Round 1 question pool had 71 possible knowledge questions: 21 on

general knowledge (6 on risk factors, 8 on transmission, 7 on symptoms), 30 on preventive

actions (14 on social distancing, 16 on household prevention), and 20 on government policy.

For brevity, we do not list the full set of 71 questions in this appendix.1

In Round 1, we asked each respondent 20 knowledge questions randomly selected from

within each question type: 6 on general knowledge (2 on risk factors, 2 on transmission and

2 on main symptoms), 8 on preventative actions (4 on social distancing actions and 4 on

household prevention actions), and 6 on government policy. The Round 1 Test Score (used

as a pre-specified control variable in regressions) is the share of these 20 knowledge questions

answered correctly by a respondent.

Criteria for selecting questions from the Round 1 pilot for the final set of Round 2 and 3

questions included identifying Round 1 questions with larger shares of incorrect answers and

wide variance in responses, each question’s medical significance and relevance to COVID-19

prevention, as well as the diversity of the final question pool (e.g., a mix of “yes” and “no”

correct responses). In total, 33 knowledge questions were taken from Round 1, six questions

were slightly modified from Round 1 to clarify or update the wording to reflect current

information, and one new question was added.

The final question pool used for Round 2 and Round 3 has 40 questions: 12 on general

knowledge (4 on risk factors, 4 on transmission, 4 on symptoms), 16 on preventive actions (8

on social distancing, 8 on household prevention), and 12 on government policy. This question

pool was pre-specified.2. The questions are listed in Tables B.1, B.2, and B.3. Details on

questions included in our Round 4 survey can be found in Appendix B.7.

In Round 2, respondents were asked 20 knowledge questions from the pre-specified question

pool, randomly selected from within each question subcategory: 6 on general knowledge (2

on risk factors, 2 on transmission and 2 on main symptoms), 8 on preventative actions (4 on

1The list of 71 Round 1 pilot questions can be found on our project website [URL here].
2See American Economic Association’s RCT Registry, ID number AEARCTR-0005862: [URL here]

123

https://fordschool.umich.edu/sites/default/files/2021-06/round1-questions-learing-covid-210614.pdf
https://doi.org/10.1257/rct.5862-1.0


social distancing actions and 4 on household prevention actions), and 6 on government policy.

The Round 2 Test Score (used as a pre-specified control variable in regressions) is the share

of these 20 knowledge questions answered correctly by a respondent.

In Round 3, we asked respondents all 40 knowledge questions from the pre-specified

question pool: 12 on general knowledge, 16 on preventive action, and 12 on government policy.

The Overall Test Score (one of two pre-specified primary outcome variables) is the share of

these 40 knowledge questions answered correctly by a respondent. Of these 40 knowledge

questions, survey respondents will have been asked 20 of these knowledge questions in Round

2, immediately prior to treatment implementation. The Teaching-Eligible Test Score (the

other one of two pre-specified primary outcome variables) is the share of these 20 knowledge

questions (also asked in Round 2) answered correctly by a respondent in Round 3. The other

20 knowledge questions asked in Round 3 would not have been asked in Round 2 (but could

have been asked in Round 1).

Table B.4 presents summary statistics in the control group (N=847) of the Overall Test

Score and the Teaching-Eligible Test Score, as well as the Rounds 1 and 2 Test Scores. In

Rounds 1 and 2, respondents answered 71.6% and 76.9% of questions correctly. We observe a

small increase in COVID-19 knowledge over time, with knowledge in both Round 3 indices

increasing to over 78%. We also observe in Round 3 that the Overall Test Score and the

Teaching-Eligible Test Score are remarkably similar, suggesting that the small increase in

knowledge over time is not likely to be driven by repeated exposure to the same questions.
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Table B.1: Pre-specified “General Knowledge” Questions and Correct Answers

Risk Factors: Who do you think is more likely to die from a coronavirus infection?

(1) An adult who does not smoke or an adult who does smoke (Second)

(2) A 60-year-old man with diabetes and hypertension

and 60-year-old man with blindness and hearing loss (First)

(3) A grandparent or their grandchild (First)

(4) A healthy 30-year-old adult or a healthy 60-year-old adult (Second)

Transmission: How is coronavirus spread?

(5) Droplets from the cough of an infected person (Yes)

(6) Drinking unclean water (No)

(7) Sexually transmitted (No)

(8) Mosquito bites (No)

Symptoms: What are the main symptoms of coronavirus?

(9) Fever (Yes)

(10) Cough and breathing difficulties (Yes)

(11) Pain with urination (No)

(12) New loss of taste or smell (Yes)

Notes: Correct answers in parentheses. In Round 2, two questions were randomly selected to be asked of the
respondent from each sub category. In Round 3 all questions were asked of each respondent.
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Table B.2: Pre-specified “Preventive Actions” Questions and Correct Answers

Social Distancing Actions: Will this action prevent spreading coronavirus to yourself and others?

(1) Shop in crowded areas like informal markets (No)

(2) Gather with several friends (No)

(3) Help the elderly avoid close contact with other people, including children (Yes)

(4) If show symptoms of coronavirus, immediately inform my household and avoid people (Yes)

(5) Drinking alcohol in bars (No)

(6) Wear a face mask if showing symptoms of coronavirus (Yes)

(7) Instead of meeting in person, call on the phone or send text message (Yes)

(8) Allow children to build immunity by playing with children from other households (No)

Household Prevention Actions: Will this action prevent spreading coronavirus to yourself and others?

(9) Drinking hot tea (No)

(10) Open the windows to increase air circulation (Yes)

(11) Wear a face mask in public when you are healthy (Yes)

(12) Eat foods with lemons or garlic or pepper (No)

(13) Drink only treated water (No)

(14) Spray alcohol and chlorine all over your body (No)

(15) Avoid close contact with anyone who has a fever and cough (Yes)

(16) Avoid taking taxi-bicycle or taxi-mota to go out (Yes)

Notes: Correct answers in parentheses. In Round 2, four questions were randomly selected to be asked of the
respondent from each sub category. In Round 3 all questions were asked of each respondent.
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Table B.3: Pre-specified “Government Policy (Actions)” Questions and Correct Answers

Government Actions: is the government of Mozambique currently taking this action to address coronavirus?

(1) Order a 14 day home quarantine for all persons who have had direct

contact with confirmed cases of COVID-19 (Yes)

(2) Close all airports (No)

(3) Suspend religious services and celebrations (Yes)

(4) Allow a maximum of 50 participants in funeral ceremonies

where COVID-19 is NOT the cause of death (Yes)

(5) Banning personal travel between provinces (No)

(6) Prohibit use of minibuses for public transportation (No)

(7) Ask household to not visit patients infected by COVID-19 at hospitals (Yes)

(8) Close government offices not related to health (No)

(9) Order all citizens to wear masks when going out of their homes (No)

(10) Prohibit funerals for those with coronavirus or COVID-19 (No)

(11) Declare a State of Emergency (Yes)

(12) Plan to resume Grade 12 classes this year before other primary and secondary grades (Yes)

Notes: Correct answers in parentheses. In Round 2, six questions were randomly selected to be asked of the
respondent. In Round 3 all questions were asked of each respondent.

Table B.4: Summary Statistics of Test Score (TS) in Control Group

Outcome Round Mean Std. Dev. Min Max

Round 1 TS Round 1 0.716 0.116 0.25 1

Round 2 TS Round 2 0.769 0.121 0.35 1

Overall TS Round 3 0.781 0.108 0.45 1

Teaching-Eligible TS Round 3 0.784 0.123 0.35 1

Notes: Number of observations in control group is 847. Rounds 1 and 2 Test Scores pre-specified as control
variables in regressions. Overall test score and Teaching-Eligible test score (Round 3) are the two pre-specified
primary outcome variables in this study. They were referred to in the pre-analysis plan (PAP) as “Knowledge
Index” and “Feedback-Eligible Knowledge Index”, respectively.
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B.3 Treatment Details

We randomized respondents to one of four treatment arms: 1) Incentive, 2) Teaching, 3)

Incentive plus Teaching (Joint), and 4) a control group. Table B.5 shows the distribution of

respondents across treatment arms in the Round 2 and Round 3 samples. Retention in the

sample is balanced across treatment arms.

All treatments were initiated by enumerators directly following the Round 2 (baseline)

survey as part of the same phone call. If a respondent was randomly assigned to a treatment,

the corresponding intervention text would appear on the enumerator’s computer tablet.

Enumerators read a script aloud exactly as shown below. Following the treatment, respondents

were asked if they would like the information repeated. Of the N=832 receiving the incentive

treatment and N=856 receiving the teaching treatment, only 6.0% and 6.7% asked for the

script to be repeated, respectively.

Table B.5: Distribution of Respondents Across Treatment Groups

Treatment Arm Round 2 Sample Round 3 Sample Probability of

Random Assignment

Incentive 433 (19.5%) 414 (19.6%) 20%

Teaching 441 (19.8%) 418 (19.7%) 20%

Incentive plus Teaching (Joint) 464 (20.8%) 438 (20.7%) 20%

Control Group 888 (39.9%) 847 (40.0%) 40%

TOTAL 2,226 2,117 100%

Notes: Randomization of respondents to treatment groups occurred immediately prior to administration of
Round 2 baseline survey and treatment.

Script for Incentive treatment. At baseline, after questioning: “We plan to call you

for another follow-up phone survey in about two or three weeks. During this survey, we will

ask you many of the same questions that we asked you today, and some new questions. This

survey will also be confidential. For responding to this additional survey, you will receive

50Mts. Additionally, we will offer you 5Mts for every correct response you give us in our

next phone survey to reward your knowledge of coronavirus! This reward will apply to the

same questions that we asked you today and new questions about coronavirus symptoms,

prevention, how it spreads, who is most at risk, and actions taken by the government of

Mozambique. If you answer all of the questions correctly, you could earn up to 200Mts in

addition to your 50Mts participation fee in our next survey!”

For the Incentive treatment, additional text was read to respondents at endline. First, at

the start of the endline survey, enumerators reminded treated respondents that both previous
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and new knowledge questions were eligible for the Teaching incentive. Second, at the end of

the endline survey, the number of correct answers and the resulting incentive were calculated

in the SurveyCTO program (and not by enumerators). Then this information was presented

in a final text in which enumerators told respondents how many questions they answered

correctly and additional meticais consequently earned.

At endline, before questioning, just after consent: ”As you were told in the previous

survey, we will offer you 5Mts for every correct response you give us today to reward your

knowledge of coronavirus! This reward will apply to the same questions that we asked you

in the previous survey and new questions about coronavirus symptoms, prevention, how it

spreads, who is most at risk, and actions taken by the government of Mozambique. If you

answer all of the questions correctly, you could earn up to 200Mts in addition to your 50Mts

participation fee!”

At endline, after questioning, just prior to payment: ”In our previous survey, we offered

you 5Mts for every correct response you gave us today to reward your knowledge of coronavirus.

Today you correctly answered XX out of 40 coronavirus knowledge questions. Therefore,

today you will receive an additional XX Mts in addition to your 50 Mts participation gift!”

The additional amount was then added to the respondent’s MPesa transfer or phone credit

recharge.

Script for Teaching treatment. “Now, I want to provide you some feedback on

your responses from today’s survey on questions about actions that prevent the spread of

coronavirus.

• Respondents are randomly given tailored feedback to their response to COVID-19

prevention questions. We inform them of a subset of their correct responses and

correct a subset of their incorrect responses. The script for each action is as follows:

For “ [insert action]”, you chose [insert respondents choice] . Your answer is [insert

respondents choice] . The correct answer is [insert pre-specified correct choice: YES or

NO] . This action [insert pre-specified correct choice: WILL or WILL NOT ] prevent

spreading coronavirus to yourself and others.”

• Respondents are randomly given tailored feedback to their response to COVID-19

general knowledge questions. We inform them of a subset of their correct responses

and correct a subset of their incorrect responses. The script for each question is as

follows: “For “ [insert question]”, you chose [insert respondents choice] but the correct

answer is [insert pre-specified correct answer] . [insert pre-specified correct answer

statement].”

For the 6 general knowledge and 6 government action questions asked in Round 2, feedback
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was given for all incorrect answers. For the 8 preventive action questions asked in Round 2,

feedback was given for roughly half of all correct answers and half of all incorrect answers.

This was done to test the efficacy of positive feedback versus negative feedback, which is

currently under analysis and not discussed in this paper.

Script for Incentive plus Teaching (Joint) treatment. This is a combination of the

Incentive and Teaching treatments. Both scripts are read to the respondent. The Incentive

script is always read first, before the Teaching script.
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B.4 Attrition and Balance

Table B.6 checks that attrition and baseline variables are balanced with respect to

treatment assignment.

Attrition between Round 2 (baseline) and Round 3 (endline) is low, at only 4.6% overall,

and is less than 5.6% in each of the seven districts surveyed. Balance in attrition is confirmed

in column 1, which starts with the Round 2 (baseline) sample and regresses treatments on an

indicator equal to one if the respondent was not reached for the Round 3 (endline) survey.

None of the treatments have a large or statistically significant effect on attrition. Achieving

balance in attrition was not obvious a priori since respondents offered the knowledge incentive

treatment had a higher expected payoff for participation in the Round 3 survey, though

empirically this has no effect.

We examine balance in baseline household characteristics in columns 2-4, which examine

the final Round 3 sample and regresses treatments on Round 1 measures of household income,

an index of food insecurity, and an indicator for presence of an older adult over 60 years.

Treatments are balanced at the 95% confidence level across all three outcomes. In column 5,

we test for balance in the baseline Round 2 Test Score, the primary outcome at baseline.3 We

unfortunately find chance imbalance: a statistically significantly positive correlation between

the baseline outcome and the standalone Incentive treatment, but not in other treatment

arms. Further analysis revealed that this imbalance is heavily concentrated in Nhamatanda,

one of the seven districts surveyed, and that the imbalance is no longer statistically significant

when Nhamatanda is excluded from the sample: results shown in columns 6 and 7.

Note that our pre-specified primary regression equations include controls for Round 1

and Round 2 test scores, including this Round 2 Test Score for which we are finding baseline

imbalance. To further verify that baseline imbalance in Nhamatanda is not driving our

primary results, we re-run our primary analysis as described in the 3.4.2 section but excluding

observations from Nhamatanda district from the sample. Columns 8 and 9 present this

robustness check, showing that the results are not qualitatively different from the ones

presented in Table B.8. Indeed, when excluding Nhamatanda, the p-values on the tests that

λ = 0 are even smaller than in our main analyses. We conclude that our primary results are

not driven by the chance imbalance in the Round 2 (baseline) values of the outcome variables.

We further test for baseline balance in educational attainment in Table B.7. As this

was not measured in the pre-baseline or baseline surveys, we link respondents to their

individual-level data from a prior household survey (Yang et al., 2021) and obtain a measure

3In Round 2 there is only one Test Score, based on a randomly-selected 20 questions, as described
previously.
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of years of schooling for 74.8% of the endline sample. In Column 1, we test for balance in the

availability of these data and find balance. In Column 2, we test for balance in educational

attainment if these data are available and find a positive correlation between a respondent’s

years of schooling and the Incentive plus Teaching (Joint) treatment, significant at the 95%

confidence level. Due to this imbalance, in Columns 3-4, we test and confirm the robustness of

the two pre-specified primary analyses to controlling for years of schooling in the regression.4

Statistical significance for all treatment coefficients remains unchanged from the main results

in Table 2.3 Columns 1-2, and adjusted point estimates differ by less than 0.001. Further, in

Columns 5-6, we test for heterogeneous treatment effects by years of schooling and find no

significant interaction. We conclude that despite chance imbalance in educational attainment

for the Joint treatment, the main conclusions of the paper remain valid.

4We ”dummy out” missing observations by setting missing values of years of schooling to zero and
including a dummy variable for data availability as a control in the regression as well.
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Table B.6: Attrition and Baseline Balance

(1) (2) (3) (4) (5) (6) (7) (8) (9)

VARIABLES Dummy if attrited R1: Household R1: Food R1: Older adult Baseline test Baseline TS Baseline TS Overall TS Teaching-Eligible TS

between R2 & R3 income last week insecurity index (60+) in Household score (TS) (Nhamatanda) (Not Nhamatanda) (Not Nhamatanda) (Not Nhamatanda)

Incentive -0.0031 -14.91 0.0844 0.0149 0.0145 0.0673 0.0083 0.0193 0.0141

(0.0121) (180.50) (0.0904) (0.0289) (0.0066) (0.0218) (0.0069) (0.0057) (0.0064)

Teaching 0.0065 209.90 0.0262 0.0185 0.0023 0.0235 -0.0002 0.0153 0.0274

(0.0128) (210.70) (0.0911) (0.0283) (0.0070) (0.0240) (0.0073) (0.0056) (0.0065)

Incentive plus Teaching (Joint) 0.0120 206.30 0.0724 0.0367 0.0055 0.0016 0.0053 0.0494 0.0573

(0.0130) (211.70) (0.0930) (0.0282) (0.0068) (0.0255) (0.0070) (0.0058) (0.0063)

λ̂ 0.0149 0.0158

(0.0087) (0.0099)

Observations 2,226 1,873 2,117 2,096 2,117 214 1,903 1,903 1,903

R-squared 0.030 0.043 0.125 0.058 0.114 0.061 0.114 0.312 0.321

Districts All All All All All Nhamatanda NOT Nhamatanda NOT Nhamatanda NOT Nhamatanda

Control Mean DV 0.0462 1049 2.407 0.335 0.769 0.719 0.775 0.787 0.790

Control SD DV 0.107 0.123

p-value: λ = 0 0.0871 0.1113

p-value: Incentive = Teaching 0.5381 0.0794

p-value: Incentive = Joint 0.0000 0.0000

p-value: Teaching = Joint 0.0000 0.0001

Notes: Column 1: For Round 2 sample, dummy if attrited between Round 2 baseline (post-intervention) and Round 3 endline. Columns 2-4: Round 1
baseline variables—Household income last week is the specific amount reported, if given, or otherwise is imputed from the selected income range. The
food insecurity index is the total of five indicator variables: 1) lack of food in last seven days; unable to buy usual amount of food due to 2) market
shortages, 3) high prices, 4) drop in income; and reduction in number of meals/portions. Older adult in household is a dummy variable indicating if
the respondent reports that anyone in the household is aged 60 years or over. Column 5: Round 2 baseline Test Score (TS). Column 6: Baseline
TS for sample in Nhamatanda district. Column 7: Baseline TS for sample not in Nhamatanda. Column 8-9: Endline outcomes as described Table
2.3 Columns 1-2 for sample not in Nhamatanda. λ̂ is coefficient on “Incentive plus Teaching” (Joint) minus sum of coefficients on “Incentive” and
“Teaching”. All regressions also include community fixed effects. Robust standard errors in parentheses.
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Table B.7: Years of Schooling: Baseline Balance and Treatment Heterogeneity

(1) (2) (3) (4) (5) (6)
VARIABLES Dummy if have Years of Overall Feedback-eligible Overall Feedback-eligible

schooling data schooling test score test score test score test score

Incentive -0.0317 0.289 0.0195 0.0151 0.0290 0.0204
(0.0263) (0.256) (0.00537) (0.00598) (0.00832) (0.00924)

Teaching -0.0138 0.160 0.0157 0.0285 0.0157 0.0303
(0.0259) (0.254) (0.00547) (0.00636) (0.00926) (0.0107)

Incentive plus Teaching 0.00404 0.564 0.0487 0.0572 0.0464 0.0550
(0.0257) (0.244) (0.00551) (0.00596) (0.00926) (0.00992)

Years of schooling 0.00237 0.00247 0.00261 0.00263
(0.000706) (0.000774) (0.000881) (0.000987)

Incentive x Years of schooling -0.00159 -0.000887
(0.00107) (0.00119)

Teaching x Years of schooling 3.17e-06 -0.000299
(0.00117) (0.00134)

Incentive plus Teaching x Years of schooling 0.000330 0.000316
(0.00114) (0.00122)

Dummy if have schooling data -0.0280 -0.0269 -0.0278 -0.0268
(0.00777) (0.00847) (0.00776) (0.00847)

Observations 2,117 1,584 2,117 2,117 2,117 2,117
R-squared 0.046 0.149 0.325 0.337 0.326 0.337
Control Mean DV 0.753 7.853 0.784 0.784 0.784 0.784
Control SD DV 0.431 3.776 0.123 0.123 0.123 0.123

Notes: Column 1: Dummy if respondent’s years of schooling is known from a prior household survey (Yang et al., 2021). Column 2: Respondent’s
years of schooling (if known). Columns 3-4: The two pre-specified analyses described in Table 2.3 with additional controls for respondent’s years
of school and a dummy for data availability. Column 5-6: Testing for treatment effect heterogeneity by years of schooling in regressions of the two
pre-specified outcomes. All regressions also include community fixed effects. Columns 3-6 including controls for pre-treatment test scores. Robust
standard errors in parentheses.
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B.5 Populated Pre-analysis Plan

On August 25, 2020, prior to baseline data collection, we uploaded our pre-analysis plan

(PAP) “Learning about COVID-19: Improving Knowledge via Incentives and Feedback” to the

American Economic Association’s RCT Registry, registration ID number AEARCTR-0005862:

https://doi.org/10.1257/rct.5862-1.0.

We follow Duflo et al. (2020), assembling the full set of pre-specified analyses in a Populated

PAP document. The full Populated PAP can be accessed at our research website:

https://fordschool.umich.edu/mozambique-research/combating-covid-19. Additionally, in

this appendix, we present results from the Populated PAP for the pre-specified primary

analysis. These results are substantively duplicative of and yield very similar conclusions to

the primary analyses we present in the main text.

Note that we adhere to the nomenclature we used in the main text to refer to outcomes

and treatment conditions that differ from some nomenclature used in a Pre-Analysis Plan

(PAP). Therefore, we refer to the treatments as “Incentive” and “Teaching”, whereas in the

PAP these are referred to as “Knowledge Incentive” and “Tailored Feedback”, respectively.

Additionally, we refer to the two primary outcome variables as 1) ”Overall Test Score” and 2)

”Teaching-Eligible Test Score”, whereas in the PAP these are referred to 1) the Knowledge

Index, and 2) the Feedback-Eligible Knowledge Index, respectively.

B.5.1 Primary Analyses

We estimate intent-to-treat (ITT) effects using the following ordinary-least-squares (OLS)

regression specifications. To estimate the causal effect of the Incentive treatment, we run:

Y all
i,j,t=3 = α0 + α1Incentiveij + α2Teachingij + α3Jointij + ηBijt + γi + εij (B.5.1)

where Y all
i,j,t=3 is the Overall Test Score for respondent i in community j, measured in Round

3 survey; Incentiveij, Teachingij, and Jointij are indicators for inclusion in the respective

treatment groups; Bijt is a vector representing the share of correct answers to questions

asked in Round 1 and Round 2, respectively 5; γi are community fixed effects; and εij is a

mean-zero error term. We report robust standard errors.

To estimate the causal effect of the Teaching and Joint treatments, we run:

Y teaching
i,j,t=3 = β0 + β1Incentiveij + β2Teachingij + β3Jointij + ηBijt + γi + εij (B.5.2)

5The average respondent correctly answered 72.1% and 77.3% of the 20 knowledge questions in Rounds 1
and 2, respectively.
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where Y teaching
i,j,t=3 is the Teaching-Eligible Test Score for respondent i in community j, measured

in Round 3 (endline survey), and other right-hand side variables are as specified in Equation

B.5.1.

Results from estimating these equations are in Table B.8. Overall, the coefficient signs,

magnitudes, and statistical significance levels are very similar in Column 1 (for the Overall

Test Score) and Column 2 (for the Teaching-Eligible Test Score). Each of the treatments

has positive effects on the outcomes that are statistically significant at conventional levels

even after pre-specified multiple hypothesis testing adjustment across three coefficients in the

two regressions (p-values in square brackets, <0.001 in each case). The estimate, λ̂, of the

complementarity parameter is nearly identical across the two regressions.

136



Table B.8: Regression of Test Score (TS) on Treatments

(1) (2)

VARIABLES Overall Test Score (TS) Teaching-Eligible TS

Incentive 0.0200 0.0156

(0.0054) (0.0060)

[0.0003]

Teaching 0.0160 0.0288

(0.0055) (0.0064)

[0.0003]

Incentive plus Teaching (Joint) 0.0496 0.0581

(0.0055) (0.0060)

[0.0003]

λ̂ 0.0136 0.0137

(0.0084) (0.0095)

Observations 2,117 2,117

R-squared 0.319 0.333

Control Mean DV 0.781 0.784

Control SD DV 0.108 0.123

p-value: λ = 0 0.1048 0.1462

p-value: λ = -0.0265 0.0000 0.0000

p-value: Incentive = Teaching 0.5292 0.0713

p-value: Incentive = Joint 0.0000 0.0000

p-value: Teaching = Joint 0.0000 0.0001

Notes: The Overall Test Score (TS) is the share of correct answers to all 40 knowledge questions in Round 3:
12 on general knowledge, 16 on preventive actions, and 12 on government policy. The Teaching-Eligible TS is
the share of correct answers to the 20 knowledge questions in Round 3 that were eligible for the Teaching
treatment (i.e., also asked in Round 2): 6 on general knowledge, 8 on preventive actions, and 6 on government

policy. λ is the complementarity parameter (see Section 2 of main text). λ̂ is coefficient on “Incentive plus
Teaching” (Joint) minus sum of coefficients on “Incentive” and “Teaching”. P-values adjusted for pre-specified
multiple hypothesis testing are in square brackets. All regressions also include community fixed effects and
controls for pre-treatment (Rounds 1 and 2) Test Scores. Robust standard errors in parentheses.

We also pre-specified other secondary analyses. First, we pool the Incentive, Teaching, and

Joint treatments together to examine the effect of any treatment on the primary outcomes.

Results in Table B.9 for the coefficient on the indicator for receiving any treatment, “Pooled

Treatment”, is statistically significantly positive at conventional levels in each regression.

Second, we analyze impacts of the treatments on test scores based on topical categories:
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general knowledge, preventive actions, and government policies. Regressions are as described

above but replacing the respective test scores with corresponding outcomes for the indicated

categories. Results in Table B.10 are broadly similar to the estimates in Table B.8. The

estimated complementarity parameter λ̂ appears largest (most positive) for the preventive

actions subcategory (Columns 2 and 5).

Table B.9: Regression of Test Score (TS) on Pooled Treatment

(1) (2)

VARIABLES Overall Test Score (TS) Teaching-Eligible TS

Pooled Treatments 0.0289 0.0346

(0.0041) (0.0045)

Observations 2,117 2,117

R-squared 0.308 0.320

Control Mean DV 0.781 0.784

Control SD DV 0.108 0.123

Notes: Column 1: the Overall Test Score (TS) is the share of correct answers to all 40 knowledge questions
in Round 3: 12 on general knowledge, 16 on preventive actions, and 12 on government policy. Column 2: the
Teaching-Eligible TS is the share of correct answers to the 20 knowledge questions in Round 3 that were
eligible for the Teaching treatment (i.e., also asked in Round 2): 6 on general knowledge, 8 on preventive
actions, and 6 on government policy. All regressions also include community fixed effects and controls for
pre-treatment (Rounds 1 and 2) Test Scores. Robust standard errors in parentheses.

Third, we analyze impacts of the treatments on self-reported COVID-19 preventive

behaviors. Outcomes include respondents’ stated support for social distancing, self-report

of following government social distancing recommendations, and the number of preventive

actions taken by the household to prevent the spread of COVID-19. All outcomes are socially

desirable and advocated by the government, so positive coefficients would be considered

“good”. Results in Table B.11 are mixed and inconclusive. Six out of nine coefficients in

the table are positive, and three are negative. Two out of nine coefficients are statistically

significantly different from zero at conventional levels: the negative coefficient on Teaching in

Column 1, and the positive coefficient on Incentive in Column 2.
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Table B.10: Regression of Test Score (TS) Categories on Treatments

(1) (2) (3) (4) (5) (6)

VARIABLES General TS Preventive TS Government TS Teaching-Eligible Teaching-Eligible Teaching-Eligible

General TS Preventive TS Government TS

Incentive 0.0094 0.0184 0.0421 0.0018 0.0118 0.0419

(0.0084) (0.0065) (0.0083) (0.0099) (0.0088) (0.0099)

Teaching 0.0154 0.0125 0.0223 0.0265 0.0234 0.0299

(0.0085) (0.0067) (0.0087) (0.0102) (0.0092) (0.0109)

Incentive plus Teaching (Joint) 0.0374 0.0487 0.0644 0.0415 0.0535 0.0749

(0.0087) (0.0065) (0.0084) (0.0103) (0.0087) (0.0100)

λ̂ 0.0126 0.0178 0.0001 0.0133 0.0183 0.0031

(0.0131) (0.0100) (0.0127) (0.0157) (0.0136) (0.0154)

Observations 2,117 2,117 2,117 2,117 2,117 2,117

R-squared 0.199 0.204 0.211 0.206 0.257 0.189

Control Mean DV 0.790 0.768 0.790 0.797 0.827 0.789

Control SD DV 0.159 0.116 0.165 0.189 0.170 0.202

p-value: λ = 0 0.3333 0.0759 0.9955 0.3985 0.1774 0.8410

p-value: Incentive = Teaching 0.5361 0.4486 0.0410 0.0354 0.2756 0.3090

p-value: Incentive = Joint 0.0048 0.0001 0.0170 0.0008 0.0000 0.0025

p-value: Teaching = Joint 0.0278 0.0000 0.0000 0.2130 0.0036 0.0001

Notes: The Overall Test Score (TS) categories (Columns 1-3) are the share of correct answers in Round 3 to the 12 questions on general knowledge, 16
questions on preventive actions, and 12 questions on government policy, respectively. The Teaching-Eligible TS categories (Columns 4-6) are the share
of correct answers to the questions in Round 3 that were eligible for the Teaching treatment (i.e., also asked in Round 2): 6 on general knowledge, 8 on

preventive actions, and 6 on government policy, respectively. λ is the complementarity parameter (see Section 2 of main text). λ̂ is coefficient on
“Incentive plus Teaching” (Joint) minus sum of coefficients on “Incentive” and “Teaching”. All regressions also include community fixed effects and
controls for pre-treatment (Rounds 1 and 2) Test Scores. Robust standard errors in parentheses.
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Table B.11: Regressions of Behavior on Treatments

(1) (2) (3)

VARIABLES Supports Social Followed Government Recommendation Preventive Action

Distancing in past 14 days Practice in Past 14 Days

Incentive 0.0067 0.0278 0.0130

(0.0040) (0.0110) (0.0072)

Teaching -0.0175 0.0121 -0.0007

(0.0085) (0.0123) (0.0075)

Incentive plus Teaching (Joint) -0.0017 0.0104 0.0076

(0.0058) (0.0127) (0.0072)

Observations 2,117 2,117 2,117

R-squared 0.067 0.065 0.278

Control Mean DV 0.992 0.945 0.764

Control SD DV 0.0906 0.229 0.138

p-value: Incentive = Teaching 0.0051 0.2019 0.1122

p-value: Incentive = Joint 0.1398 0.1697 0.5232

p-value: Teaching = Joint 0.1053 0.9049 0.3361

Notes: Column 1: indicator equal to one if respondent answers “yes” to supporting “the practice of social distancing (SD) to prevent the spread
of coronavirus” and zero otherwise. Column 2: indicator for SD according to self if respondent answered “yes” to observing the government’s
recommendations on SD in the last 14 days, and zero otherwise. Column 3: share of eight social distancing behaviors (Column 4) and five household
prevention behaviors (Column 5) that the respondents report doing in the last 14 days. All regressions also include community fixed effects and
controls for pre-treatment (Rounds 1 and 2) Test Scores. Robust standard errors in parentheses.
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Table B.12: Regressions of Interactions of Knowledge Treatments and Social Distancing
Treatments

(1) (2) (3) (4)

VARIABLES Overall Test Score (TS) Teaching-eligible TS Overall TS Teaching-eligible TS

without SD Index without SD Index

Incentive 0.0159 0.00236 0.0205 0.0169

(0.00862) (0.00977) (0.00619) (0.00694)

Teaching 0.00318 0.0120 0.0199 0.0350

(0.00882) (0.0102) (0.00620) (0.00727)

Incentive plus Teaching 0.0477 0.0528 0.0581 0.0688

(0.00842) (0.00895) (0.00636) (0.00704)

Social Norm Correction (SNC) -0.0101 -0.0151

(0.00764) (0.00833)

Leader Endorsement (LE) -0.00797 -0.0169

(0.00728) (0.00790)

Incentive × SNC 0.00654 0.0159

(0.0128) (0.0143)

Incentive × LE 0.00677 0.0279

(0.0133) (0.0147)

Teaching × SNC 0.0181 0.0229

(0.0134) (0.0152)

Teaching × LE 0.0242 0.0323

(0.0136) (0.0157)

Incentive plus Teaching × SNC -0.00304 0.000286

(0.0138) (0.0151)

Incentive plus Teaching × LE 0.00840 0.0161

(0.0130) (0.0138)

Observations 2,117 2,117 2,117 2,117

R-squared 0.322 0.336 0.291 0.311

Control Mean DV 0.781 0.784 0.748 0.751

Control SD DV 0.108 0.123 0.121 0.141

Notes: Dependent variable in Columns 1 and 2 defined in Table B.8. Dependent variable in Column 3:
Overall TS calculated without the 8 knowledge questions on social distancing actions – that is, the share of
correct answers to 32 knowledge questions in Round 3: 12 on general knowledge, 8 on household preventive
actions, and 12 on government policy. Dependent variable in Column 4: Teaching-Eligible TS calculated
without the 4 Teaching-Eligible knowledge questions on social distancing actions. All regressions also include
community fixed effects and controls for pre-treatment (Rounds 1 and 2) Test Scores. Robust standard errors
in parentheses.

Fourth, we run a regression with indicators for knowledge treatments, the cross-randomized
social distancing treatments and their interaction terms to test for significant interactions
between the treatments implemented for two separate experiments in the same population.
Results are in Table B.12, Columns 1 and 2. There are six interaction terms in each regression.
In Column 1, one coefficient (Teaching x LE) is statistically significant at the 10% level. In
Column 2, that same coefficient is statistically significant at the 5% level, and another in that
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column (Incentive x LE) is significant at the 10% level. Looking at the patterns of coefficients
overall, these appear to be chance occurrences. There is no corresponding effect of the LE
(leader endorsement) treatment on the “Incentive plus Teaching” (Joint) treatment, which
we should expect to also appear if the LE treatment truly interacted with the knowledge
treatments. In Columns 3 and 4, we also verify that our primary treatment effect estimates
are very similar when the Test Score outcome measure excludes social distancing knowledge
questions, which are most susceptible to being affected by the social distancing treatments.
Overall, there does not appear to be substantial evidence of interactions between the set of
knowledge treatments and the set of social distancing treatments.6

B.5.2 Additional Figures

We show here additional figures that correspond to those in the main text, but that relate
to the other pre-specified primary outcome (the Overall Test Score based on 40 COVID-19
knowledge questions). We show these to emphasize that key findings and conclusions are
robust to examination of either of the two pre-specified primary outcome variables.

In Figure B.2, we display in Panel (a) treatment effects and the complementarity parameter
from analyses of the Overall Test Score based on 40 COVID-19 knowledge questions. The
corresponding main text Figure 2.3 Panel (a) is replicated here in Panel (b) for comparison.
The key conclusion is stable across the two figures: the test that λ = 0 is rejected at marginal
levels of statistical significance (in fact, in Panel (a) the p-value is a bit closer to conventional
levels of statistical significance, at 0.105).

6Note these are separate experiments with different pre-specified outcomes of interest. As our primary
interest was never to examine interactions between these treatments sets, we do not believe it would be
accurate to characterize our results as focusing on the “short model” (a weighted average of effects across
different cross-randomized treatment groups), along the lines of Muralidharan et al. (2019a)
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Figure B.2: Treatment Effects and Test of Complementarity Parameter λ

(a) Overall Test Score (b) Teaching-Eligible Test Score

Notes: Overall Test Score is fraction of correct responses on COVID-19 knowledge out of 40 questions.
Teaching-Eligible Test Score is a fraction of correct responses on COVID-19 knowledge out of 20 questions
previously asked in the Round 2 (baseline) survey. In each panel of figure, bars in first three columns
display regression coefficients representing treatment effects (and 95% confidence intervals) for “Incentive”,
“Teaching”, and “Incentive plus Teaching” (“Joint”) treatments. Floating solid horizontal lines in fourth and
fifth columns display “Incentive plus Teaching” (“Joint”) treatment effects that would be implied by different
benchmark values of complementarity parameter λ. Difference between values in 3rd and 4th columns is
actual estimated complementarity parameter, λ̂; the test that this difference is equal to zero tests the null
that λ = 0. Difference between values in 3rd and 5th columns is difference between λ̂ and mean expert
prediction, -0.0265; the test that this difference is equal to zero tests the null that λ = −0.0265.

In Figure B.3, we display in Panel (a) CDFs of the Overall Test Score based on 40
COVID-19 knowledge questions. The corresponding main text Figure 2.4 is replicated in
Panel (b) for comparison. Both figures show that the Joint treatment is the most effective,
shifting the CDFs of test scores furthest to the right.

Figure B.3: Cumulative Distribution Functions of Test Score by Treatment Group

(a) Overall Test Score (b) Teaching-Eligible Test Score

Notes: Overall Test Score is fraction of correct responses on COVID-19 knowledge out of 40 questions.
Teaching-Eligible Test Score is a fraction of correct responses on COVID-19 knowledge out of 20 questions
previously asked in the Round 2 (baseline) survey. Figure depicts the cumulative distribution function of this
variable for the “Control” group, the “Incentive” treatment arm, the “Teaching” treatment arm, and the
“Incentive plus Teaching” (“Joint”) treatment arm.
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B.6 Cost-Effectiveness

The estimate of the complementarity parameter λ is a key input into policy-making,
because it determines the relative cost-effectiveness of the different combinations of treatments
(Incentive, Teaching, or Joint). The decision as to which of the three possibilities to implement
in practice is highly influenced by their relative cost-effectiveness. The treatment that
is the most cost-effective among the three would be a strong candidate to prioritize for
implementation from an economic standpoint.

We now illustrate how the relative cost-effectiveness of the treatments we study depends
on λ. Cost-effectiveness in our context is the cost of achieving a unit (1-percentage-point, or
0.01) increase in the COVID-19 knowledge test score. The key inputs in the calculation of
cost-effectiveness are:

• Treatment effect estimates for the Incentive and Teaching treatments (β1 and β2) taken
from estimates of Table 2.3 Column 2 in main text. The effect of the joint treatment is
then β1 + β2 + λ.

• Implementation costs of each treatment, per treated beneficiary, derived from actual
implementation costs in this study. For the Incentive, Teaching, and Joint treatments
we denote the implementation cost per beneficiary as, respectively, cI , cT , and cJ .
Specifically, we use cI = 5.80, cT = 2.83, and cJ = 7.21 (cJ is less than the sum of
cI and cT because there are some economies of scale from providing both treatments
together.)7

For each treatment i, cost-effectiveness ei (cost per 0.01 increase in test scores) is:

• Incentive treatment: eI = 100 ∗ cI/β1

• Teaching treatment: eT = 100 ∗ cT/β2

• Joint treatment: eJ = 100 ∗ cJ/(β1 + β2 + λ)

In Figure B.4 panel (a), we display the cost-effectiveness of each treatment, using actual
treatment effects for the Incentive and Teaching treatments (β1 and β2) and Joint treatment
effects implied by a range of values of λ. The cost-effectiveness of the Incentive and Teaching
treatments are horizontal, because they do not depend on λ. The cost-effectiveness of the
Joint treatment is a decreasing function of λ: the greater the complementarity of the two
treatments, the more cost-effective is the Joint treatment.

7These are marginal costs (project staff wages and study participant incentives) of adding one additional
treatment beneficiary, estimated based on our own study cost data. We use marginal costs, presuming that
fixed costs per beneficiary will be negligible in a sufficiently scaled-up program. Costs expressed in USD using
the nominal exchange rate of 70.74 Mozambican meticais per USD as of August 26, 2020.
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Figure B.4: Cost-Effectiveness of Treatments as Functions of λ

(a) Estimated Treatment Costs per Beneficiary (b) Alternative Treatment Costs per Beneficiary

Notes: Cost per unit (0.01, or 1-percentage-point) increase in COVID-19 Knowledge Test Score as a function

of complementarity parameter λ, for Incentive treatment (horizontal dashed blue line), Teaching treatment

(horizontal dotted green line), and Incentive plus Teaching (Joint) treatment (downward-sloping solid red

line). In the left panel, implementation cost per beneficiary for Incentive, Teaching, and Joint treatments

are, respectively, cI = 5.80, cT = 2.83, and cJ = 7.21. In the right panel, alternative implementation costs

per beneficiary for Incentive, Teaching, and Joint treatments are, respectively, cI = 5.23, cT = 2.83, and

cJ = 5.23. Impact of Incentive and Teaching treatments on test scores (β1 and β2) taken from estimates of

Table 2.3 Column 2 in main text. Impact of Joint treatment is β1 +β2 +λ. Vertical lines indicate “breakeven”

values of λ, at which Joint treatment is as cost-effective as the respective individual treatment: leftmost

vertical line is breakeven with Incentive treatment, and rightmost vertical line is breakeven with Teaching

treatment. Expert-predicted λ̃ (-0.0265) and actual estimated λ̂ (0.0137) are also indicated on horizontal axis.

The intersection of the Joint treatment line with the horizontal lines indicates the
“breakeven” λs, above which the Joint treatment is more cost effective than the respective
single treatment. Break-even λ is -0.0250 for the Incentive treatment, and 0.0290 for Teaching.
The latter number is the more relevant for policy decision-making, since the Teaching
treatment is the more cost-effective of the two individual treatments. For the Joint treatment
to be the most cost-effective of the three treatment combinations, λ must be above 0.0290.

For reference, we also show the mean expert prediction, λ̃, -0.0265, and our estimated
λ̂. At λ̂ = 0.0137, the Joint treatment is more cost-effective (eJ = 1.24) than the Incentive
treatment (eI = 3.72), but not as cost-effective as Teaching (eT = 0.98). Actual costs in
a scaled-up program may be different from those of our study, and could yield different
cost-effectiveness rankings across treatments.

Governments or NGOs implementing our treatments in different contexts may come to
different cost-effectiveness rankings given their specific implementation costs. We provide
an example of alternative relative implementation costs that would lead the Joint treatment
to be the most cost-effective at λ̂ = 0.0137. We use the same implementation cost per
beneficiary for the Teaching treatment (cT = 2.83), but assume that the implementation cost
of the Incentive treatment can be somewhat lower (cI = 5.23). We also assume substantial
economies of scale in implementing both treatments together, so that the cost per beneficiary
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of the Joint treatment is not the sum but just the maximum of the individual treatments:
cJ = 5.23 (equal to the cost of the Incentive treatment).

Panel (b) of Figure B.4 displays the cost-effectiveness of each treatment in this alternative
case. It is identical to panel (a) except we have changed the assumptions regarding the cost
per beneficiary of the Incentive and Joint treatments. In this case, breakeven levels of λ are
lower: -0.0288 for the Incentive treatment, and 0.0088 for Teaching. At λ̂ = 0.0137, the Joint
treatment is the most cost-effective of the three treatments, with eJ = 0.90, compared with
eI = 0.98 and eI = 3.35.

B.7 Long-Run Analysis

We collected a fourth round of survey data over the phone between June 30 and August
30, 2021. We refer to this as the post-endline or Round 4 survey. For any given respondent,
the Round 4 survey came at least 41 weeks and average of 45.8 weeks after treatment
implementation and at least 36 weeks and an average of 39.5 weeks after Round 3 (endline).
Reported COVID-19 cases during the Round 4 survey were significantly higher than previous
survey rounds, with Mozambique’s 7-day average jumping from 78 and 144 at the start of
Rounds 2 and 3, respectively, to 456 at the start of Round 4, a trend we confirmed with
district-level data available in 3 of our 7 districts. In total, Round 4 surveyed 1,886 of the
2,117 respondents surveyed in Round 3, achieving a retention rate of 89.1% overall that is
balanced across treatment conditions.

In Round 4, we measured COVID-19-related knowledge in two main categories: 1) general
knowledge and 2) preventive action, drawing from the same question pool used at baseline
and endline. We did not survey questions on government policy, as many policies had changed
since Round 3 making many questions irrelevant. Specifically, we asked respondents 20
knowledge questions from the pre-specified question pool detailed in Appendix B.2: 12 on
general knowledge (6 of which were asked in Rounds 2 and 3, and 6 of which were only asked
in Round 3 but not Round 2), and 8 on preventive action (all of which were asked in Rounds
2 and 3).

Using these data, we calculated two modified Test Scores that resemble our pre-specified
primary outcomes less the inclusion of questions on government policy:

1. Test Score of all general knowledge and preventive action questions asked of respondents
in each round:

• In Round 4 (post-endline), this includes 12 general knowledge and 8 preventive
action questions;

• In Round 3 (endline), this includes 12 general knowledge and 16 preventive action
questions.

2. Test Score of general knowledge and preventive action questions that were eligible for
the Teaching intervention (i.e., randomly selected to be asked of the respondent at
baseline in Round 2). For a given respondent, this includes the same set of 6 general
knowledge and 8 preventive action questions asked in Rounds 2, 3, and 4.
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As this analysis was not pre-specifed, we evaluate long-term impacts by regressing on both
Round 4 (post-endline) Test Scores outcomes above, running regressions on the equivalent
Round 3 (endline) modified Test Scores for comparison, and only draw conclusions supported
by both outcomes. Specifically, we estimate regression Equation 3.4.2 in four specifications
where:

• Outcomes are the Test Scores (described above) in Round 4 and, for direct comparison,
Round 3.

• Bijt is modified to be a vector representing the share of correct answers to general
knowledge and preventive action questions in Rounds 1 and 2, respectively (i.e.,
excluding government policy questions).

We present results in Table B.13 and discuss their relevance to verifying the robustness of
the Joint intervention’s positive effect and complementarity over time in Section 2.5.4.

147



Table B.13: Treatment Effects on Long-Run COVID-19 Knowledge Test Scores

(1) (2) (3) (4)

VARIABLES Post-endline Endline equivalent Post-endline Endline equivalent

Overall TS Overall TS Teaching-Eligible TS Teaching-Eligible TS

Incentive -0.0104 0.0068 -0.0155 -0.0001

(0.0065) (0.0058) (0.0071) (0.0073)

Teaching 0.0124 0.0113 0.0149 0.0236

(0.0067) (0.0063) (0.0073) (0.0080)

Incentive plus Teaching 0.0342 0.0407 0.0368 0.0462

(0.0066) (0.0062) (0.0071) (0.0073)

λ̂ 0.0321 0.0226 0.0374 0.0227

(0.0101) (0.0094) (0.0110) (0.0116)

Observations 1,886 1,886 1,886 1,886

R-squared 0.203 0.275 0.195 0.282

Control Mean DV 0.797 0.783 0.794 0.819

Control SD DV 0.116 0.108 0.123 0.137

p-value: λ = 0 0.0014 0.0162 0.0007 0.0505

p-value: λ = -0.0265 0.0000 0.0000 0.0000 0.0000

p-value: Incentive = Teaching 0.0026 0.5275 0.0002 0.0089

p-value: Incentive = Joint 0.0000 0.0000 0.0000 0.0000

p-value: Teaching = Joint 0.0043 0.0001 0.0086 0.0119

Notes: Column 1-2: fraction of general knowledge and preventive action questions answered correctly in
Rounds 4 and 3, respectively. Columns 3-4: fraction of general knowledge and preventive action questions
answered correctly in Rounds 4 and 3, respectively, that were eligible for the Teaching intervention (i.e.,

asked in Round 2). λ is the complementarity parameter (see Section 3.2 of main text). “λ̂” is coefficient on
“Incentive plus Teaching” (“Joint”) minus sum of coefficients on “Incentive” and “Teaching”. All regressions
include community fixed effects and controls for corresponding pre-treatment (pre-baseline and baseline) Test
Scores. Robust standard errors in parentheses.
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APPENDIX C

Appendix to Chapter 3

C.1 Proofs

C.1.1 Proof of Theorem 2

The agent will adjust her effort level in response to the treatment to
√
ê = α̂C

2
H(x̂) where

H(x) = 1− x(1− 1√
2
). Hence, the prior and posterior effort levels satisfy:

√
ẽ√
e
=

α̃

α

H(x̃)

H(x)
(C.1.1)

We take the ratios of Equations 3.2.6 and 3.2.7:

α̂

α
=

1−
√
eG(x)

1−
√
eG(x̂)

(C.1.2)

We therefore obtain:

√
ẽ√
e
=

H(x̂)(1−
√
eG(x))

H(x)(1−
√
eG(x̂))

(C.1.3)

Effort increases iff
√
ẽ√
e
> 1:

H(x̂)(1−
√
eG(x))

H(x)(1−
√
eG(x̂))

> 1

√
e [H(x)G(x̂)−H(x̂)G(x)] > H(x)−H(x̂)

149



Now note that G(x) = 2xH(x) such that:

√
e2H(x)H(x̂)(x̂− x) > (1− 1√

2
)(x̂− x) (C.1.4)

√
e >

1− 1√
2

H(x)H(x̂)

This shows that the perceived-infectiousness effect dominates if the initial effort level e is

high enough. Effort is determined by Equation 3.2.5 and increases with α (which increases

with α̂). Therefore, for sufficiently large α̂ the perceived-infectiousness effect dominates.
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C.2 Study Context

C.2.1 Study Area

Study participants come from 76 communities in central Mozambique. The study

communities are in seven districts of three provinces: Dondo and Nhamatanda in Sofala

province; Gondola, Chimoio and Manica in Manica province; and Namacurra and Nicoadala

in Zambezia province. These 76 communities are mapped in Figure C.1. Compared to other

communities in Mozambique, the study areas are relatively accessible to main transport

corridors (highways and ports), and are thus important geographic conduits for infectious

disease.

Figure C.1: Study Area

C.2.2 Study Timeline

We collected survey data in three rounds between July 10 and November 18, 2020. Figure

C.2 depicts the study timeline below a rolling average of new Mozambican COVID-19 cases.

We piloted surveys in Round 1 (pre-baseline). Immediately before the Round 2 survey, we

randomly assigned households to treatments and submitted our pre-analysis plan to the

AEA RCT Registry. The Round 2 survey served as a baseline and was immediately followed
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(on the same phone call) by our treatment interventions. Round 3 was our endline survey.

Surveys collected data on COVID-19 knowledge, beliefs, and behaviors. While data collection

for Round 3 began only one day after completion of Round 2, there was a minimum of 3.0

weeks and average of 6.3 weeks between Rounds 2 and 3 surveys for any given respondent.

While the Round 1 survey occurred when new COVID-19 cases remained relatively steady,

both the Round 2 and Round 3 surveys occurred during a period of substantial growth in

new COVID-19 cases.

Figure C.2: Study Timeline

Notes: Round 1 is pre-baseline survey to collect social distancing support data, Round 2 is baseline survey,
and Round 3 is endline survey. There is at least a three week gap between baseline and endline survey for any
given study participant. Pre-analysis plan uploaded and treatments randomly assigned immediately prior to
start of Round 2 baseline survey, on Aug. 25, 2021. Treatments implemented immediately following baseline
survey on same phone call. Baseline measures reported in Table B.4 come from Round 2 surveys and endline
measures come from Round 3 surveys.

C.2.3 COVID-19 Context

The Mozambican government declared a State of Emergency due to the COVID-19

pandemic on March 31, 2020, recommending social distancing (at least 1.5 meters) and

requiring it at public and private institutions and gatherings. The government also suspended

schools, required masks at funerals and markets, banned gatherings of 20 or more, and

closed bars, cinemas and gymnasiums (Republic of Mozambique, 4/1/2020). The government

stopped short of implementing a full economic “lockdown” due to its economic costs (Jones

et al., 2020). On August 5, 2020, the government renewed the State of Emergency, called

for improved mask-wearing, and announced a schedule for loosening restrictions (Nyusi,

8/5/2020). In September, the government loosened some restrictions including resuming
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religious gatherings at 50% capacity (U.S Embassy in Mozambique). Throughout this period,

the government’s social distancing recommendation remained constant.

COVID-19 cases by district at the start of the Round 3 (endline) survey are estimated

as follows. Data on district-level population come from Mozambique’s 2017 Census

(National Institute of Statistics (INE), 2017). District COVID-19 case counts come

from the government’s COVID-19 Mozambique dashboard (Ministry of Health, 2020) and

correspondence with provincial health offices. Each district’s case count is from the start

date of the endline survey in the district (ranging from October 5 to November 1, 2020). We

also show the number of respondents in our study sample in each district.

Table C.1: COVID-19 Cases by District

(1) (2) (3) (4)

Cumulative COVID-19 Cases per Population Number of Study

DISTRICT Cases 100,000 people Respondents

Sofala Province

Dondo 8 4.137 193,382 323

Nhamatanda 12 4.300 279,081 214

Manica Province

Gondola 3 3.553 84,429 224

Chimoio 142 39.082 363,336 524

Manica 20 9.292 215,239 290

Zambezia Province

Namacurra 4 1.652 242,126 244

Nicoadala 52 28.779 180,686 298

Notes: COVID-19 cases by district at the start of the Round 3 (endline) survey. Column 1: District COVID-19
case counts come from the government’s COVID-19 Mozambique dashboard (Ministry of Health, 2020) and
correspondence with provincial health offices, measured at the start date of the endline survey in the district
(ranging from October 5 to November 1, 2020). Column 2: Calculated from Columns 1 and 3. Column 3:
District-level population come from Mozambique’s 2017 Census (National Institute of Statistics (INE), 2017).
Column 4: Number of respondents in our study sample in each district.

153



C.3 Effect on Perceived Community Support

Table C.2 presents the cumulative distribution of this perceived community support

measure in the final samples at pre-baseline, baseline and endline, and subdivided by treatment

arm at endline. Even at pre-baseline, the distribution is skewed upwards with over 80% of

the sample reporting that the majority (50% or greater) of households in their community

support social distancing, though a sizable 8% use the extreme lower end of the scale to report

that none (0%) of the households in their community support social distancing. At baseline,

the distribution is further skewed upwards with over 90% of the sample reporting that the

majority (50% or greater) of households in their community support social distancing and

over half of the sample reporting that 100% of households do the same.

Table C.2: Sample Distribution (Cumulative %) by Perceived Community Support

Pre-Baseline Baseline Endline

Perceived Share Total Total Total Control T1 T2

0% 8.0 2.7 2.8 3.5 2.2 2.5

10% 9.0 3.1 3.1 3.6 2.4 3.0

20% 10.7 4.4 4.4 5.9 2.9 3.9

30% 14.0 6.5 6.5 7.4 5.1 6.6

40% 19.1 9.6 8.8 9.5 6.9 9.9

50% 34.3 21.1 19.0 19.3 18.3 19.2

60% 41.8 27.1 23.9 24.2 23.0 24.5

70% 49.7 33.4 30.3 29.6 30.5 31.1

80% 59.7 43.4 40.8 39.8 39.1 44.0

90% 65.2 48.9 46.8 45.8 45.3 49.6

100% 100.0 100.0 100.0 100.0 100.0 100.0

Notes: Perceived share of households in the community who support social distancing is estimated by dividing
responses to the question “For every 10 households in your community, how many support social distancing?”
by 10, and hence has 11 categories from 0%, 10%... 90%, 100%. Cells report cumulative percentages from
0% up to the row in question. Pre-baseline ”Total” refers to all responses from the final sample in Round
1 (N=2,109), and Baseline “Total” refers to all responses from the final sample in Round 2 (N=2,114). At
endline, “Total” refers to Round 3 responses from the final sample (N=2,116), “Control” from the control
group, “T1” from the misperceptions correction treatment group, and “T2” from the leader endorsement
treatment group.

We find that the misperceptions correction treatment did increase respondents’ perceived

community support, particularly for those at the lower end of the distribution. Figure C.3

shows the cumulative distribution function for the perceived community support measure at

endline. Relative to the control group, those receiving the misperceptions correction treatment
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were less likely to report that fewer than 50% of households in their community supported

social distancing, instead reporting higher perceptions of community support. Further, Table

C.3 presents three regressions estimating the treatment effects on the perceived community

support. In Column (1), the dependent variable is the perceived share of households in

the community who support social distancing. The coefficient is positive and marginally

statistically significant (p-value=0.12). Regressions in Columns (2) and (3) find that the

misperceptions correction treatment has a positive effect on an indicator for the respondent

believing the majority (50% or more) of households in their community support social

distancing, and an indicator that the respondent’s perceived community support increased

between baseline and endline (both coefficients are statistically significantly different from

zero at the 5% level).

Figure C.3: Cumulative Distribution of Perceived Community Support by Treatment

Notes: Perceived share of households in the community who support social distancing is estimated by dividing
responses to the question “For every 10 households in your community, how many support social distancing?”
by 10, and hence has 11 categories from 0%, 10%... 90%, 100%. Figure depicts the cumulative distribution
function of this variable for the “Control” group and “Misperceptions Correction” treatment arm. The leader
endorsement treatment is excluded for clarity.
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Table C.3: Treatment Effects on Perceived Community Support (PCS)

(1) (2) (3)

VARIABLES Continuous Indicator if Indicator if

PCS PCS ≥ 50% PCS increased

T1: Misperceptions Correction 0.0196 0.0291** 0.0507**

(0.0128) (0.0138) (0.0241)

T2: Leader Endorsement 0.0041 0.0036 0.0358

(0.0128) (0.0149) (0.0236)

Observations 2,116 2,116 2,113

R-squared 0.164 0.118 0.043

Control Mean DV 0.8115 0.9049 0.2550

Control SD DV 0.2681 0.2935 0.4361

Notes: Dependent variables are defined as follows. Column 1 is the perceived share of households in community
that support social distancing, which takes on the values shown in Table C.2. Column 2 is an indicator equal to
one if respondent reports that majority (50% or more) of households in community support social distancing,
and zero otherwise. Column 3 is an indicator equal to one if the respondent’s perceived community support
increased between the baseline (pre-treatment) and endline (post-treatment) surveys. “T1: Misperceptions
Correction” “T2: Leader Endorsement” and controls are as defined in Table 3.2, except column 3 does not
include a baseline value of the outcome as a control as it was used to calculate the outcome. All regressions
also include community fixed effects. Robust standard errors in parentheses. Significance levels: *** p<0.01,
** p<0.05, * p<0.1.
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C.4 Social Distancing Index

The list of actions included in the Social Distancing Index and their corresponding

summary statistics are presented below.

Social Distancing Actions: Is this something your household has been doing for the last

seven days? (Answers indicating social distancing in parentheses.1)

1. Shop in crowded areas like informal markets (No)

2. Gather with several friends (No)

3. Help the elderly avoid close contact with other people, including children (Yes)

4. If show symptoms of coronavirus, immediately inform my household and avoid people

(Yes)

5. Drink alcohol in bars (No)

6. Wear a face mask if showing symptoms of coronavirus (Yes)

7. Instead of meeting in person, call on the phone or send text message (Yes)

8. Allow children to build immunity by playing with children from other households (No)

Below are the summary statistics for the questions that comprise the self-reported social

distancing index at baseline and endline. Respondents were asked “Is this something your

household has been doing for the last seven days?” about a randomly determined four social

distancing actions at baseline and all eight social distancing actions at endline. Responses

were coded as indicators equal to one if indicative of social distancing (answers that indicate

social distancing shown in parentheses), and zero otherwise.

1For items 4 and 6 that are conditional on showing symptoms, survey staff instructed respondents to
answer “Yes” (doing social distancing) if not showing symptoms.
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Table C.4: Summary Statistics for Components of Social Distancing Index

Baseline Endline T-test

VARIABLES N Mean SD N Mean SD p-value

Shop in crowded areas 1,032 0.642 0.480 2,115 0.678 0.467 0.5011

like informal markets (No)

Gather with several friends (No) 1,047 0.349 0.477 2,113 0.414 0.493 0.0357

Help the elderly avoid 1,094 0.877 0.329 2,114 0.923 0.266 0.0000

close contact with other people,

including children (Yes)

If show symptoms of coronavirus, 1,050 0.836 0.370 2,113 0.860 0.347 0.0314

immediately inform my household

and avoid people (Yes)

Drink alcohol in bars (No) 1,082 0.226 0.419 2,113 0.272 0.445 0.0152

Wear a face mask if showing 1,034 0.902 0.297 2,114 0.885 0.319 0.3993

symptoms of coronavirus (Yes)

Instead of meeting in person, call on 1,039 0.935 0.247 2,112 0.930 0.255 0.5922

the phone or send text message (Yes)

Allow children to build immunity 1,070 0.439 0.497 2,113 0.456 0.498 0.0814

by playing with children from

other households (No)

Notes: Variables are coded as indicators equal to one if indicative of social distancing (answers that indicate
social distancing shown in parentheses), and zero otherwise. Respondents were asked “Is this something
your household has been doing for the last seven days?” about a randomly determined four social distancing
actions at baseline and all eight social distancing actions at endline. The baseline sample was asked a subset
of these questions which explains the smaller number of observations at baseline. Last column displays the
p-value of a paired t-test on the difference between baseline and endline measure (where baseline data are
available).
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C.5 Treatment Details and Scripts

Both the misperceptions correction and leader endorsement treatments were implemented

directly following the baseline survey, on the same phone call. If a respondent was randomly

assigned to a treatment, the corresponding intervention text would appear on the enumerator’s

tablet. Enumerators read a script aloud exactly as shown below. Following the treatment,

respondents were asked if they would like the information repeated. Of the N=628 receiving

the misperceptions correction and N=637 receiving the leader endorsement, only 8.6% and

9.4% asked for the script to be repeated, respectively.

Script for T1: Misperceptions Correction – “Now I want to give you some information

about social distancing. In this survey, you indicated that you think [insert respondent’s

answer here] of every 10 households in your community support the practice of social

distancing.”

• If response UNDERESTIMATES community support for social distancing: “However,

more households support social distancing than you think! Based on the results of

our first COVID-19 survey, approximately [insert actual community support for social

distancing here] of every 10 households in your community support social distancing to

prevent the spread of the coronavirus.”

• If response CORRECTLY ESTIMATES community support for social distancing: “You

are correct! Based on the results of our first COVID-19 survey, approximately [insert

actual community support for social distancing here] of every 10 household in your

community support social distancing to prevent the spread of the coronavirus.”

• If response OVERESTIMATES community support for social distancing: (no

information given)

Script for T2: Leader Endorsement – “Our research team recently called and talked to

your [list leaders’ titles and names here]. They said that they support social distancing, are

practicing social distancing themselves, and encourage others to do the same.”
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C.6 Attrition and Balance

Appendix Table C.5 presents regressions examining whether attrition and baseline variables

are balanced with respect to treatment assignment.2 Attrition between Round 2 (baseline)

and Round 3 (endline) is only 4.9% and is less than 5.6% in each of the seven districts

surveyed. Balance in attrition is confirmed in Column (1), which starts with the Round 2

(baseline) sample and regresses treatments on an indicator equal to one if the respondent

was not reached for the Round 3 (endline) survey. Balance in baseline social distancing

outcomes is confirmed in Columns (2)-(4), which examines the Round 2 social distancing

outcomes. Balance in baseline household characteristics is confirmed in Columns (6)-(8),

which examines the final Round 3 sample and regresses treatments on Round 1 measures of

household income, an index of food insecurity, and an indicator for presence of an older adult

over 60 years. In not a single regression in the table is a coefficient on a treatment indicator

statistically significant at conventional levels.

2Figure C.2 shows the study timeline for the three survey rounds collected. Round 1 is a pre-baseline
measure, Round 2 measures baseline values and Round 3 measures endline outcomes.
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Table C.5: Treatment Effect on Attrition and Balance

(1) (2) (3) (4) (5) (6) (7) (8)

VARIABLES Attrition Primary SD Indicator Others’ Report of SD Self-Report of SD Perceived Social Norm Hh Income Food Insecurity Older Adult in Hh

T1: Misperceptions Correction -0.0127 -0.0176 -0.0005 -0.0096 -0.0101 -159.46 0.0011 -0.0029

(0.0111) (0.0134) (0.0203) (0.0247) (0.0138) (181.66) (0.0191) (0.0250)

T2: Leader Endorsement -0.0015 -0.0032 0.0090 0.0042 -0.0201 -39.95 -0.0240 0.0240

(0.0113) (0.0143) (0.0206) (0.0249) (0.0137) (181.76) (0.0193) (0.0252)

Observations 2,226 2,117 2,117 2,117 2,114 1,873 2,117 2,096

R-squared 0.030 0.096 0.199 0.076 0.047 0.043 0.090 0.058

Control Mean DV 0.0533 0.0833 0.2289 0.3556 0.8095 1176 0.8415 0.3424

Control SD DV 0.2248 0.2765 0.4204 0.4790 0.2618 4029 0.3654 0.4748

Notes: Dependent variables are as follows. Column 1: indicator if respondent attrited from the sample between baseline and endline. Columns 2-4:
baseline SD outcomes defined in Table B.4. Column 5: baseline perceived share of community supporting SD, defined further in Table B.4. Column 6:
at pre-baseline, self-reported total income for the previous week (in Mozambican meticais). Column 7: at pre-baseline, indicator if, in the last 7 days,
household has 1) lacked food; 2) reduced number of meals/portions; or was unable to buy their usual amount of food due to 3) market shortages, 4)
high prices, 5) reduced income. Column 8: at pre-baseline, indicator if adult age 60 or older is present in the household. Controls are as defined in Table
3.2. All regressions also include community fixed effects. Robust standard errors in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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C.7 Robustness of Treatment Effects Estimates

In this appendix, we show that our primary results are robust to 1) using a logit or

probit specification, 2) clustering standard errors by community or district, 3) two alternative

measures of the social distancing indicator as the primary outcome, 4) four alternative

measures of COVID-19 case intensity used to test the interaction, and 5) excluding the

district with the highest number of COVID-19 cases.

C.7.1 Logit and Probit Specifications

The primary social distancing indicator is a binary variable that is analyzed using an

ordinary least-squares (OLS) regression, as pre-specified. As a robustness check, we adapt

Equation 3.4.1 to be run using logit and probit regressions.

Table C.6 presents results from the logistic regression on the primary outcomes, while Table

C.7 presents corresponding probit regression results. Regression coefficients are presented

as marginal effects. Results in both tables are consistent with the results from OLS linear

probability models presented in Table 3.2.

Table C.6: Treatment Effects Estimated Using Logistic Regression

(1) (2) (3) (4)

VARIABLES Primary SD Indicator Primary SD Indicator Perceived share of households Perceived share of households

in community that will in community that will

get sick from COVID-19 get sick from COVID-19

T1: Misperceptions Correction 0.0100 -0.0756** 0.0270 -0.4034***

(0.0221) (0.0376) (0.0395) (0.1376)

T2: Leader Endorsement -0.0069 -0.0398 -0.0274 -0.3005**

(0.0222) (0.0349) (0.0394) (0.1354)

T1 × District COVID-19 Cases 0.0038*** 0.0132***

(0.0013) (0.0040)

T2 × District COVID-19 Cases 0.0016 0.0084**

(0.0013) (0.0040)

Observations 1,285 1,285 806 806

Control Mean DV 0.1415 0.1415 0.3563 0.3563

Control SD DV 0.3488 0.3488 0.3680 0.3680

Notes: Dependent variables are defined in Tables B.4 and 3.2. Coefficients presented are marginal effects
from logit regression. Social distancing treatments and controls are as defined in Table 3.2. All regressions
also include community fixed effects. Robust standard errors in parentheses. Significance levels: *** p<0.01,
** p<0.05, * p<0.1.
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Table C.7: Treatment Effects Estimated Using Probit Regression

(1) (2) (3) (4)

VARIABLES Primary SD Indicator Primary SD Indicator Perceived share of households Perceived share of households

in community that will in community that will

get sick from COVID-19 get sick from COVID-19

T1: Misperceptions Correction 0.0089 -0.0709** 0.0288 -0.4015***

(0.0212) (0.0347) (0.0390) (0.1316)

T2: Leader Endorsement -0.0084 -0.0356 -0.0298 -0.3057**

(0.0214) (0.0330) (0.0392) (0.1346)

T1 × District COVID-19 Cases 0.0037*** 0.0132***

(0.0013) (0.0038)

T2 × District COVID-19 Cases 0.0014 0.0085**

(0.0012) (0.0040)

Observations 1,285 1,285 806 806

Control Mean DV 0.1415 0.1415 0.3563 0.3563

Control SD DV 0.3488 0.3488 0.3680 0.3680

Notes: Dependent variables are defined in Tables B.4 and 3.2. Coefficients presented are marginal effects
from probit regression. Social distancing treatments and controls are as defined in Table 3.2. All regressions
also include community fixed effects. Robust standard errors in parentheses. Significance levels: *** p<0.01,
** p<0.05, * p<0.1.

C.7.2 Clustering Standard Errors

In our primary analysis, we report robust standard errors, as pre-specified. As a robustness

check, Table C.8 shows our main regressions clustering standard errors by the study’s 76

communities or 7 districts. The results show that clustering has minimal impact on standard

errors and does not affect whether any coefficients are statistically significant at conventional

levels.
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Table C.8: Treatment Effects Estimated with Clustered Standard Errors

Primary SD Indicator

(1) (2) (3) (4)

VARIABLES Clustered at Community Clustered at District Clustered at Community Clustered at District

T1: Misperceptions Correction 0.0042 0.0042 -0.0466*** -0.0466***

(0.0133) (0.0269) (0.0150) (0.0124)

T2: Leader Endorsement -0.0054 -0.0054 -0.0258 -0.0258

(0.0132) (0.0133) (0.0169) (0.0163)

T1 × District COVID-19 Cases 0.0030*** 0.0030***

(0.0009) (0.0005)

T2 × District COVID-19 Cases 0.0012 0.0012**

(0.0010) (0.0005)

Observations 2,117 2,117 2,117 2,117

R-squared 0.158 0.158 0.163 0.163

Control Mean DV 0.0857 0.0857 0.0857 0.0857

Control SD DV 0.2801 0.2801 0.2801 0.2801

Notes: Standard errors (in parentheses) are clustered at the level of 76 communities (Columns 1 and 3) or 7
districts (Columns 2 and 4). Dependent variable defined in Table B.4, and variables and suppressed controls
(including community fixed effects) are defined in Table 3.2. Significance levels: *** p<0.01, ** p<0.05, *
p<0.1.

C.7.3 Social Distancing Indicator Alternatives

For the social distancing indicator in the primary outcome, one condition is that

respondents must report doing more than the sample median number of “social distancing

actions” in the past seven days, as pre-specified, which worked out to being at least seven

out of eight actions (as the sample median number was six). One concern might be that this

relatively arbitrary threshold of the sample median may be driving the primary results.

Table C.9 shows that our primary results are robust to alternative definitions of the social

distancing indicator based on the a respondent’s self-reported number of social distancing

actions. First, the dependent variable in Columns (1)-(2) is social distancing measure in

which threshold number of self-reported actions to be considered social distancing is 6 out of

8 (i.e., at or above the sample median). Second, the dependent variable in Columns (3)-(4) is

social distancing measure which excludes social distancing actions #4 and #6 from Section

C.4 as these are conditional on experiencing symptoms and thus might be inadvertently

misreported, thereby the threshold number of self-reported actions is changed to 5 out of 6

actions.

Under both alternative social distancing indicators, the main treatment effects in Columns

(1) and (3) remain statistically insignificant while the coefficients relating to the misperceptions

correction treatment in Columns (2) and (4) demonstrate similar treatment effect heterogeneity
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with respect to the local infection rate. Interestingly, Column (4) also shows treatment effect

heterogeneity for the leader endorsement.

Table C.9: Treatment Effects with Alternative Social Distancing Measures

(1) (2) (3) (4)

VARIABLES Alternative SD Alternative SD Alternative SD Alternative SD

Indicator 1 Indicator 1 Indicator 2 Indicator 2

T1: Misperceptions Correction -0.0060 -0.0459** -0.0013 -0.0452**

(0.0159) (0.0215) (0.0144) (0.0198)

T2: Leader Endorsement -0.0073 -0.0313 -0.0018 -0.0372*

(0.0159) (0.0226) (0.0144) (0.0204)

T1 × District COVID-19 Cases 0.0024** 0.0026**

(0.0012) (0.0011)

T2 × District COVID-19 Cases 0.0014 0.0021**

(0.0012) (0.0011)

Observations 2,117 2,117 2,117 2,117

R-squared 0.197 0.199 0.163 0.167

Control Mean DV 0.1244 0.1244 0.0939 0.0939

Control SD DV 0.3302 0.3302 0.2919 0.2919

Notes: Dependent variable in Columns 1-2 is social distancing measure in which threshold number of
self-reported actions to be considered social distancing is 6 out of 8 (instead of 7 out of 8). Dependent
variable in Columns 3-4 is social distancing measure which excludes social distancing actions 4 and 6 that
are conditional on experiencing symptoms (threshold number of self-reported actions is changed to 5 out of
6 actions). Variables and suppressed controls (including community fixed effects) are defined in Table 3.2.
Robust standard errors in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.

C.7.4 Local COVID-19 Infection Rate Alternatives

In the main paper, we measure the local COVID-19 infection rate as the district-level

cumulative COVID-19 cases per 100,000 population at the start of the endline survey. One

concern might be that we only observe treatment effect heterogeneity using this one measure

of the local infection rate but not other potentially justifiable measures.

Table C.10 instead shows that the primary results are robust to various other measures of

the local infection rate: 1) ”District COVID-19 Case Count” is the total count of district-level

cumulative COVID-19 cases at the start of the endline survey (i.e., Table C.1, Column 1); 2)
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“1(Cases Above District Median)” is an indicator for if the respondent’s district has above

median COVID-19 cases relative to the sample’s seven districts, thus applying to the top three

districts; 3) “1(Cases Above Sample Median)” is an indicator for if the respondent’s district

has above median COVID-19 cases relative to all sample respondents, applying to the top

two districts (due to the large sample in the top-COVID-19 district); and 4) “1(Cases Above

National Average)” is an indicator if the respondent’s district-level cumulative COVID-19

cases per 100,000 population is estimated at above Mozambique’s national average at the

start of the endline survey, which applies to only the top-COVID-19 district in the sample.3

In Columns (1)-(4), we observe that the misperception correction intervention has

statistically significant treatment effect heterogeneity with respect to the local infection

rate, as before, except in Column (4) where the standalone treatment effect is marginally

significant (p-value=0.101). We conclude then that the finding is not an exception driven by

our specific measure of the local COVID-19 infection rate.

3The national average of COVID-19 cases per capita at the start of the endline
survey is estimated by taking the 9,296 cumulative COVID-19 cases in Mozambique
on October 5, 2020 (https://coronavirus.jhu.edu/region/mozambique) and dividing by
the World Bank estimate of the 2021 population of Mozambique at 320.8 per 100,000
(https://data.worldbank.org/indicator/SP.POP.TOTL?locations=MZ). Thus, we estimate 28.98 cases per
100,000 as the national average at this time.
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Table C.10: Treatment Effects with Alternative Local COVID-19 Infection Rates

(1) (2) (3) (4)

VARIABLES Primary Primary Primary Primary

SD Indicator SD Indicator SD Indicator SD Indicator

T1: Misperceptions Correction -0.0375** -0.0342* -0.0312* -0.0218

(0.0164) (0.0188) (0.0159) (0.0133)

T2: Leader Endorsement -0.0208 -0.0212 -0.0203 -0.0140

(0.0172) (0.0199) (0.0168) (0.0141)

T1 × District COVID-19 Case Count 0.0009***

(0.0003)

T2 × District COVID-19 Case Count 0.0003

(0.0003)

T1 × 1(Cases Above District Median) 0.0727***

(0.0281)

T2 × 1(Cases Above District Median) 0.0292

(0.0274)

T1 × 1(Cases Above Sample Median) 0.0909***

(0.0305)

T2 × 1(Cases Above Sample Median) 0.0378

(0.0288)

T1 × 1(Cases Above National Average) 0.1034**

(0.0410)

T2 × 1(Cases Above National Average) 0.0358

(0.0375)

Observations 2,117 2,117 2,117 2,117

R-squared 0.163 0.161 0.163 0.163

Control Mean DV 0.0857 0.0857 0.0857 0.0857

Control SD DV 0.2801 0.2801 0.2801 0.2801

Notes: Dependent variable defined in Table B.4, and treatment indicators and suppressed controls (including
community fixed effects) are defined in Table 3.2. Remaining displayed variables interact treatment indicators
with ways to specify the local COVID-19 infection rate other than our preferred measure: district-level
cumulative COVID-19 cases per 100,000 population. ”District COVID-19 Case Count” is the total count
of district-level cumulative COVID-19 cases at the start of the endline survey (i.e., Table C.1, Column 1).
“1(Cases Above District Median)” is equal to one if the respondent’s district has above median COVID-19
cases relative to the sample’s seven districts, and zero otherwise. “1(Cases Above Sample Median)” is equal
to one if the respondent’s district has above median COVID-19 cases relative to all sample respondents,
and zero otherwise. “1(Cases Above National Average)” is equal to one if the respondent’s district-level
cumulative COVID-19 cases per 100,000 population is estimated at above Mozambique’s national average at
the start of the endline survey, and zero otherwise. Robust standard errors in parentheses. Significance levels:
*** p<0.01, ** p<0.05, * p<0.1.
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C.7.5 Excluding Chimoio District

A central finding of the paper is the heterogeneity in the treatment effect of the

misperceptions correction treatment with respect to local COVID-19 cases per 100,000

population (Table 3.2 Column 2). A question that arises is whether this heterogeneity

is entirely driven by the Chimoio district, which has the highest COVID-19 case load in

the sample by a fair margin (see Figure 3.2 and Appendix C.2.3). We therefore test the

robustness of our findings to excluding from the sample the 524 respondents in Chimoio

district (one-quarter of the sample), thereby only exploiting the more limited variation in

district-level case loads across the remaining six districts.

Table C.11 below presents coefficient estimates from this restricted sample. First of all,

Column (1) reveals that the coefficient on the misperceptions correction treatment is negative

and statistically significant at the 10% level. Because this sample drops the district with the

highest case loads, this result is consistent with theoretical predictions and previous findings

that at lower case loads, the misperceptions correction treatment effect is more likely to be

negative.

In Column (2), where we test for heterogeneity in the treatment effect, results are quite

similar to the findings in Column (2) of Table 3.2 in the main text. The T1 main effect and

interaction term coefficients are of similar magnitudes to those in Column (2) of Table 3.2,

and maintain statistical significance at conventional levels (the T1 interaction term coefficient

is now significant at the 10% instead of 5% level).

In sum, our central findings regarding heterogeneity in the treatment effect of the

misperceptions correction treatment are robust to excluding from the sample respondents

from the district (Chimoio) with the highest COVID-19 case loads.
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Table C.11: Treatment Effects Excluding Chimoio District

(1) (2)

VARIABLES Primary SD Indicator Primary SD Indicator

T1: Misperceptions Correction -0.0237* -0.0410**

(0.0131) (0.0194)

T2: Leader Endorsement -0.0150 -0.0263

(0.0141) (0.0208)

T1 × District COVID-19 Cases 0.0019*

(0.0010)

T2 × District COVID-19 Cases 0.0012

(0.0010)

Observations 1,593 1,593

R-squared 0.141 0.142

Control Mean DV 0.0710 0.0710

Control SD DV 0.2570 0.2570

Notes: Regressions exclude 524 respondents from Chimoio district. Dependent variable defined in Table B.4,
and variables and suppressed controls (including community fixed effects) are defined in Table 3.2. Robust
standard errors in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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C.8 Populated Pre-analysis Plan

On August 25, 2020, prior to baseline data collection, we uploaded our pre-analysis

plan (PAP) to the American Economic Association’s RCT Registry, registration ID number

AEARCTR-0005862: https://doi.org/10.1257/rct.5862-3.0.

In our PAP, we specify the following regression for our primary analysis, which is the

same as Equation 3.4.1 in the main text:

Yijd = β0 + β1T1ijd + β2T2ijd + ηBijd + δothersijd + δleadersijd + γjd + εijd (C.8.1)

where Yijd is the social distancing indicator for household i in community j and district

d ; T1ijd and T2ijd are indicator variables for the misperceptions correction and leader

endorsement treatment groups, respectively; Bijd is the baseline value of the dependent

variable; γjd are community fixed effects; and εijd is a mean-zero error term. We report robust

standard errors. The regression also controls for the number of other survey respondents

and community leaders who report knowing the survey respondent at baseline (in Round 2).

Specifically, δothersi is a vector of dummy variables for the distinct number of other surveyed

study respondents who report knowing the household (0, 1, 2. . . , 7, 8 or more; where 8 is the

first integer where over 90% of the sample is represented by previous non-negative integers),

and δleadersi is a vector of dummy variables for the distinct number of community leaders

who report knowing the household (0, 1, 2, 3, 4; where 4 is maximum number of leaders

found within one of the 76 sample communities). Including this control variable helps reduce

residual variance in the dependent variable, because respondents who are known by more

others in the community will also have more reports of social interactions with others. These

results are presented in the main paper in Table 3.2 Column (1) and are also replicated in

Column (1) of Table C.12.

Additionally, we pre-specified the following secondary analyses. First, we analyze impacts

of the social distancing treatments on the separate components of the social distancing
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index—the others’ and self-report. These results are presented in Table C.12 Columns (2) and

(3), respectively. Treatment effects on these outcomes are very similar to those in Column

(1).

Second, we also pool SD1 and SD2 together to examine the effect of some endorsement of

social distancing (whether by other community members or by community leaders) on the

primary social distancing outcome. These coefficient in Table C.12 Column (4) is small in

magnitude and not statistically significantly different from zero at conventional levels.

Table C.12: Additional Pre-specified Analyses

(1) (2) (3) (4)

VARIABLES Primary SD Indicator Others’ Report of SD Self-Report of SD Primary SD Indicator

T1: Misperceptions Correction 0.0042 0.0010 0.0134

(0.0140) (0.0181) (0.0238)

T2: Leader Endorsement -0.0054 0.0145 -0.0189

(0.0137) (0.0183) (0.0234)

Pooled SD Treatments -0.0006

(0.0116)

Observations 2,117 2,117 2,117 2,117

R-squared 0.158 0.333 0.211 0.158

Control Mean DV 0.0857 0.2113 0.4061 0.0857

Control SD DV 0.2801 0.4084 0.4914 0.2801

Notes: Dependent variables are defined in Table B.4. “T1: Misperceptions Correction” is an indicator
equal to one if respondent was randomly assigned to the misperceptions correction treatment, and zero
otherwise. “T2: Leader Endorsement” is an indicator equal to one if respondent was randomly assigned to
the leader endorsement treatment, and zero otherwise. “Pooled SD Treatments” is an indicator equal to
one if respondent was randomly assigned to the misperceptions correction treatment or leader endorsement
treatment, and zero otherwise. Controls are as defined in Table 3.2. All regressions also include community
fixed effects. Robust standard errors in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.

We also randomly assigned a family of treatments to improve COVID-19 knowledge in

the same study population.4 Randomization of the misperceptions correction and leader

endorsement treatments were stratified within 76 communities and within the separate

4The pre-analysis plan (PAP) for the knowledge study can be found here:
https://fordschool.umich.edu/mozambique-research/combatting-COVID-19.
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knowledge treatment conditions (i.e., the knowledge and social distancing treatments were

cross-randomized). As pre-specified, we run a regression on the primary social distancing

outcome with indicators for social distancing treatments, the cross-randomized knowledge

treatments and their interaction terms. Results are presented in Table C.13, and show no

large or statistically significant interaction effects between the social distancing and knowledge

treatments.
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Table C.13: Interactions between Social Distancing and Knowledge Treatments

(1)

VARIABLES Primary SD Indicator

T1: Misperceptions Correction -0.0237

(0.0214)

T2: Leader Endorsement -0.0210

(0.0222)

K1: Incentive -0.0218

(0.0241)

K2: Feedback -0.0025

(0.0251)

K3: Incentive & Feedback -0.0144

(0.0238)

T1 × K1 0.0545

(0.0390)

T2 × K1 0.0249

(0.0372)

T1 × K2 0.0467

(0.0397)

T2 × K2 0.0139

(0.0385)

T1 × K3 0.0404

(0.0382)

T2 × K3 0.0374

(0.0372)

Observations 2,117

R-squared 0.160

Control Mean DV 0.0857

Control SD DV 0.2801

Notes: Dependent variable is defined in Table B.4. Social distancing treatments are defined in Table 3.2.
“K1 Incentive”, “K2 Feedback”, and “K3 Incentive & Feedback” are indicators equal to one if respondent
was randomly assigned to one of these knowledge treatments, and zero otherwise. Remaining regressors
represent interactions between social distancing treatments and the knowledge treatments. Controls are as
defined in Table 3.2. Regression also includes community fixed effects. Robust standard errors in parentheses.
Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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