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ABSTRACT

Game-solving approaches using reinforcement learning often entail a significant computational
cost. This arises from the necessity of training agents to play with or against a series of other-agent
strategies. Each round of training brings us closer to the game’s solution, but training an agent can
require data from millions of games played—typically in simulation. The cost of game solving
reflects the cumulative data cost of repeatedly training agents. This cost is also a result of treating
each training as an independent problem. However, these problems share elements that reflect
the nature of the game-solving process. These similarities present an opportunity for an agent to
transfer learning from previous problems to aid in solving the current problem.

In this dissertation, I develop a collection of new game-solving algorithms that are based on
new methods for transfer learning, thereby reducing the computational cost of game solving. I
explore two types of transferable knowledge: strategic and world. Strategic knowledge describes
knowledge that depends on the other agents. In the simplest case, strategic knowledge may be
encapsulated in a policy that was trained to play, with or against, fixed other agents. To facilitate
the transfer of this kind of strategic knowledge, I propose Q-Mixing, a technique that constructs a
policy to play against a distribution of other agents by combining strategic knowledge regarding
each agent in the distribution. I provide a practical approximate version of Q-Mixing that features
another type of strategic knowledge: a learned belief in the distribution of the other agents. I then
develop two game-solving algorithms, Mixed-Oracles and Mixed-Opponents. These algorithms
use Q-Mixing to shift the learning focus from interacting with a distribution of other agents to
concentrating on a single other agent. This transition results in a significantly easier and, there-
fore, less costly learning problem. Complementary to strategic knowledge, world knowledge is
independent of the other agents. I demonstrate that co-learning a world model along with game
solving allows the world model to benefit from more strategically diverse training data. It also
renders game solving more affordable through planning. I realize both of these benefits in a new
game-solving algorithm Dyna-PSRO. Overall, this dissertation introduces new techniques and
demonstrates their effectiveness in significantly reducing the cost of game solving. By doing so, it
further enables learning-based game-solving algorithms to be applied to more complex games.
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Part I

Preliminaries

CHAPTER 1

Introduction

Consider a trip to your local farmer’s market for weekly grocery shopping. Every Saturday morn-
ing, this journey sees you gathering fresh produce from a varying lineup of stalls, with staples
like onions, potatoes, and bell peppers typically making up your shopping list. However, your
meal plan remains flexible, always on the lookout for the freshest, highest-quality seasonal goods.
While this routine might appear straightforward at first glance, it underscores the complexities in-
herent in even the most everyday human tasks. Indeed, this market scenario is a game, and our
ability to efficiently navigate it highlights an innate ability to draw upon a lifetime of previous
experiences playing it.

Now, envision the same excursion to the market, but with the need to relearn its mechanics
at every visit. You find yourself continually needing to familiarize yourself with its explicit and
often tacit rules. What is the layout of the vendors? Are their locations fixed, or do you need to
continually search for your favorite baker? What payment methods are accepted? These questions
barely scratch the surface of the market’s basic operations, let alone the additional complexities
introduced by its participants. Securing limited, high-demand goods might necessitate arriving at
specific times. Vendors might be open to bargaining, offering discounts for rapport or bundled
items. And even excessive queues may require replanning your trip.

However, as humans, we are not hampered by the ongoing need to relearn these dynamics with
each market visit. This resilience can be credited to our ability to transfer knowledge. This es-
sential skill allows us to apply lessons learned from a host of related tasks throughout our lives to
swiftly navigate new circumstances. Naturally, regular market visits enhance our understanding
with its processes, thereby increasing our efficiency. Over time changes in the market may occur
that require a change in our approach. These changes can be due to rotating vendors, or the season-
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ality of goods. Regardless, we only need to learn about the changes, transferring our knowledge of
familiar aspects of the problem.

To illustrate the power of knowledge transfer, let’s consider a situation where your goal is to buy
a bâtard, an oval-shaped loaf of bread. You direct your steps towards the usual spot of White Lotus
Farms, famous for their artisanal breads and pastries. Unexpectedly, you find the stall occupied by
Detroit Mushroom Company, with White Lotus Farms nowhere to be seen that week. While this
shift offers an unexpected chance to buy some seasonal morels, it interrupts your plan to acquire
a bâtard. However, during your market exploration, you noticed a stall for Rye Humor Baking.
Despite being a New York-based baker, they are familiar to you from their stint in your town years
ago. From them, you manage to secure a multiseed rye boule, an enticing substitute for the bâtard.
Opting to pay in cash, you evade credit card fees for both yourself and the small business, although
it’s slightly less convenient—a lesson learned from a past experience.

This example demonstrates how the transference of a lifetime of experiences can assist in ad-
dressing new challenges. The transferred knowledge can encompass everything from comprehend-
ing the market’s functioning to perceiving the behaviors of other market-goers. In this dissertation,
I delve into this concept further by interpreting the series of learning challenges in learning-based
game-solving algorithms as a transfer learning problem. I develop algorithms that train artificially
intelligent (AI) agents to effectively play games by combining principles from both reinforcement
learning (RL) and game theory (GT). Through this perspective, I outline a classification of trans-
ferable knowledge and propose a suite of algorithms to facilitate their transfer. I subsequently
demonstrate the capacity of these algorithms to considerably lessen the cost of game solving.

1.1 Learning Solutions to Games

What defines successful behavior for an agent within a multiagent system? To understand this,
let’s first explore the context of a single-agent system. In this setting, the system itself establishes
the agent’s goal. Success is measured by progress towards the completion of this goal. After every
decision, the system provides feedback to the agent through a reward signal. The aggregate reward
garnered by the agent, termed as the return, serves as a straightforward metric for success.

Measuring performance becomes more nuanced when transitioning from single-agent to mul-
tiagent systems. This complexity arises because an agent’s reward is dependent not just on its own
decisions, but also on those made by all other agents within the system. I hereafter refer to “all
other agents” as coplayers or opponents. To facilitate this measure, we could assume certain behav-
iors of our coplayers. For instance, we might posit that our coplayers are rational and consistently
strive to maximize their individual rewards. This act of making assumptions essentially defines a
solution concept—a formal rule that predicts the behaviors exhibited by players in a game. Once
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we account for our coplayers through the selection of a solution concept, return appears to be a
fitting measure of success.

However, using return against a solution concept introduces a cause-effect dilemma. This
measurement requires us to have already solved the game, because we need the solution-playing
coplayers to evaluate against. In small or toy games, this is not a problem, because the game
can be analytically described, facilitating direct computation of a solution. Even so, computing
a solution quickly becomes infeasible as the complexity of the game increases even in ostensibly
simple games.

Up to this point, we have pinpointed two essential requirements for a general method of training
an agent in a game. First, the method should train an agent to maximize their return against a
chosen solution concept. Second, the method should predict the behaviors for all players. These
aspects encapsulate the vital relationship between learning effective behavior and discovering a
game’s solution.

Figure 1.1: Empirical game concep-
tual example. The possible space of
behaviors for a player is every shade
of their respective color. The empirical
game captures only a sample of the pos-
sible behaviors. Payoff estimates are
bar graphs for each combination of be-
haviors.

The need to fulfill both desiderata has spurred the de-
velopment of techniques in Empirical Game Theoretic
Analysis (EGTA) [Wellman, 2006, Tuyls et al., 2020].
EGTA methods construct an approximate model of a
game termed the empirical game that is used as a proxy
for the true game of interest. A more precise definition
is provided in Chapter 2, but for now, think of an empir-
ical game as an approximate subgame—a game contain-
ing a subset of the possible behaviors. An illustration of
an empirical game is included in Figure 1.1, which de-
picts a complex world by a simple payoff matrix. Due
to the diminished size of the empirical game, it affords
analytic solving and reasoning. The outcomes from this
process can be utilized as approximations for the equiva-
lent quantities in the actual game.

Before we can employ an empirical game, we must first address how to construct one. The
construction process unfolds by alternating between two subroutines: game reasoning and strategy
exploration. Game reasoning involves operations that analyze the current state of the empirical
game. Common game-reasoning procedures include determining its current solution and refin-
ing estimated payoffs, as examplified in Figure 1.2. Strategy exploration expands the quality of
the empirical game through the inclusion of additional behaviors. This raises a key question in
empirical-game modeling: how to select which behaviors to incorporate into the model. This gen-
eral question has been termed the strategy exploration problem by Jordan et al. [2010], and plays a
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critical role in the quality of an empirical game, and as we will see later, the cost of its construction.

Figure 1.2: Profile payoff estimation.
A profile payoff, gray box, is esti-
mated by playing the corresponding
policies for many games and averaging
the player’s payoffs.

Repeated execution of strategy exploration enlarges
the empirical game, as shown in Figure 1.3. After each
expansion, game reasoning is typically performed to in-
form subsequent expansions. Moreover, game reason-
ing serves the dual purpose of checking if the empirical
game’s solution has converged.

To facilitate our discussion of strategy exploration,
we need to first refine our terminology about behavior.
A policy is a complete description of an agent’s behavior
in every possible state of the game. Therefore, the strat-
egy exploration problem seeks to determine which policy
should be next included in the empirical game.

Figure 1.3: Strategy exploration iteratively expanding an empirical game. Example of repeated
applications of strategy exploration, the arrow, expanding an empirical game.

A performant answer to this question is to include the best-response (BR) policy to the empir-
ical game’s current solution [Schvartzman and Wellman, 2009a]. This method has demonstrated
empirical success when the chosen solution concept is a Nash equilibrium (NE) [Nash Jr, 1950]—a
prediction that all players will maximize their own return. However, despite its success, computing
exact best responses is often impracticable due to the complexity of the problem, which rivals the
direct computation of the game’s solution. This complexity has necessitated methods that can ef-
fectively compute approximate best-response (ABR) policies, also referred to as response policies.

RL is a logical choice for a method for computing response policies. Schvartzman and Wellman
[2009b] initially demonstrated the efficacy of RL as an ABR method for EGTA. RL computes
an ABR by training an agent to maximize its return to any fixed configuration of coplayers. In
this approach, RL computes an ABR by training an agent to maximize its return against a fixed
configuration of coplayers. In the context of game solving, this fixed configuration corresponds to
the coplayers adhering to the solution of the current empirical game.

Policy-Space Response Oracles (PSRO) is one such realization of a RL-based EGTA algo-
rithm [Lanctot et al., 2017]. PSRO expanded the space of considered ABR computation methods
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to include deep learning (DL) based RL methods, so-called deep reinforcement learning (DRL)
methods. The incorporation of DL allows EGTA to be applied to games with complex state in-
formation, such as high-resolution images, an obstacle that traditional, non-DRL methods were
computationally impractical.

In summary, it’s evident that learning to play a game is not a straightforward undertaking. It
requires not only mastering an effective policy for a single player, but also learning policies for all
players that conform to the intended solution concept. However, due to the inherent complexity
present even in seemingly small games, directly solving these problems is infeasible. As such,
rather than solving the game directly, an empirical game is constructed and solved as a surrogate.
The construction of an empirical game necessitates the repeated application of DRL to compute
new policies for inclusion in the empirical game.

1.2 Transfer Learning in Game Solving

The application of DRL often entails significant costs. These costs stem from the method’s need
for extensive game-playing experiences to train a policy—a complete description of a behavior. In
real-world scenarios, each gameplay session can demand considerable time with human partici-
pants [Hester and Stone, 2012]. To circumvent the need for human interactions or other real-world
expenses, we often turn towards computer simulations.

Despite these measures, DRL can still necessitate billions of experiences to effectively train
a policy [Obando-Ceron and Castro, 2021]. Moreover, even when these experiences are simu-
lated using a distributed high-performance computing center, they can still demand a considerable
amount of time, ranging from several days to months, to generate [Vinyals et al., 2019]. These
costs serve as a limiting factor for the practicality of DRL, consequently restricting the utilization
of PSRO due to the need for repeated applications of DRL.

Nonetheless, there is reason for optimism. The high computational cost of PSRO is a result of
its default treatment of each ABR calculation as an independent problem. This treatment overlooks
that these problems are intrinsically interconnected through a shared structure that reflects their
respective step in the empirical game solving process. To reveal the nature of this structure, we can
examine their common components.

Figure 1.4 illustrates consecutive ABR problems encountered in a run of PSRO. Firstly, con-
sider the game itself. Given that the formulation of an empirical game is aimed at solving a singular
real game, all ABR computations must involve the same game. Concurrently, the strategy sets of
the empirical game expand incrementally with each ABR calculation, marked by the inclusion of
policies obtained from the preceding iteration (in this example depicted, one dark-blue policy
). The distribution that coplayers utilize to choose their policy generally evolves, mirroring insights
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gleaned from the interim game-reasoning step. These common structures offer abundant oppor-
tunities for transfer learning. Efficient transfer learning will allow us to focus exclusively on the
novel aspects of the problem, thereby enabling us to optimize the use of our costly experiences.

Figure 1.4: Best-Response Problem
Comparison. Best response problems
for the yellow player when build-
ing an empirical game, such as in Fig-
ure 1.1. The blue player’s strategy
set only marginally changes. The bar
graph about the opponent policies is
their distribution of play, which is sub-
ject to change.

In fact, the series of ABR problems proposed by
PSRO resembles a subproblem in transfer learning called
lifelong learning [Thrun, 1995]. The lifelong learning
framework proposes a scenario where a learner is con-
fronted with a sequence of tasks, using knowledge gained
from previous tasks to assist with the current task. In the
context of PSRO, each task is represented by an ABR cal-
culation, and the “lifetime” of the learner corresponds to
the game-solving process. Drawing an analogy, an agent
might spend its entire lifetime learning to play the game
of life. However, unlike life, the empirical game-solving
process introduces a shared and predictable structure into
the sequence of tasks. The pressing question becomes:
what should we transfer, and how should we transfer it
across ABR calculations?

Before we can start addressing this question, we must
first clarify its exact nature1. Assume we are trying to solve a game Γ using a learning-based game-
solving algorithm. The empirical game evolves iteratively, as policies are calculated and added.
New policies are determined by computing an ABR in relation to a strategic context, which is
defined by the current state of the empirical game. This context is dictated by the strategies σ of
all coplayers −i, which in turn are distributions over their respective policies (π ∈ Π).

Returning to our transfer question, it asks us to compute an ABR using minimal samples of
experiences from the game. Any artifacts generated from previous ABR computations can be
used freely in the current ABR computation. This establishes our Sequential-Response Transfer
problem stated fully in Problem 1.

Problem 1 (Sequential-Response Transfer). Consider a game Γ and a series of c strategic

contexts defined by the coplayers’ strategies σ0
−i, . . . , σ

c
−i ∈ ∆(Π−i). Given:

• the current strategic context σt
−i, and

• any artifacts produced by computing best-responses to the previous [0, t− 1] contexts,

1Chapter 2 provides full definitions of the concepts briefly introduced here.
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compute a best-response to σt
−i using the fewest samples of experience from the game.

The many contexts that can be transferred from are a boon and a bane. On one hand, they
provide the opportunity to maximize knowledge reuse. On the other, they introduce significant
complexity into the transfer operation. To facilitate our analysis of the solution, we simplify the
problem through logical induction.

Consider that, across ABR calculations, the size of the players’ strategy sets only increases.
Consequently, elements to learn are exclusively added, never subtracted. This simplification en-
ables us to reduce the problem to the evaluation of what can be transferred across a single step
of response calculations. This simplified scenario is referred to as the one-step response transfer
problem (Problem 2).

Problem 2 (One-Step Response Transfer). Consider a game Γ and the two strategic contexts

σ0
−i ∈ ∆(Π̂0

−i) and σ0
−i ∈ ∆(Π̂0

−i), where Π̂0
−i ⊆ Π̂1

−i ⊆ Π−i. Given:

• the current strategic context σ1
−i, and

• any artifacts produced by computing a best-response to σ0
−i,

compute a best-response to σ1
−i using the fewest samples of experience from the game.

The one-step problem is able to fully substitute for the sequential problem only if all coplayers
play in full support in every context. This is not typically the case, and instead, it is common for
policies to come in and out of support through game solving. The one-step problem instead allows
us to focus directly on the problem of what is transferable and how to transfer it. Moreover, as
discussed below, intermediate solutions can be deployed to extend one-step solutions to sequential
solutions.

In this dissertation, I utilize these problem statements and their instances to pinpoint and struc-
ture opportunities for transfer learning. From these opportunities, I will categorize transferable
knowledge and formulate algorithms to disseminate it. Solutions to these problems can lessen the
expense of each ABR calculation, consequently reducing the overall cost incurred by learning-
based game-solving algorithms. In total, showing the benefit of incorporating transfer learning in
game solving.

1.3 Knowledge Taxonomy

As elucidated above, the sequence of ABR computations performed in game solving share common
elements in the problems they pose. These elements and their structure mirror steps in the process
of constructing an empirical game. It is this structure that I leverage to define the basic units of
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knowledge that can be acquired and subsequently transferred. I employ Ring [2013]’s definition of
knowledge as predictions. This section introduces a taxonomy of such knowledge, as illustrated in
Figure 1.5. Throughout the discussion, I periodically revisit our market example to provide context
for the different types of knowledge.

Knowledge

Strategic

Response

Policy Value Function

Opponent-Policy
Belief

World

World Model

Figure 1.5: Taxonomy of transferable knowledge. Boxed items denote types of knowledge
representations that can be instantiated.

1.3.1 Strategic Knowledge

The initial type of knowledge is termed strategic knowledge, encompassing the potential strategic
interactions between players. This knowledge represents predictions that are dependent on the
strategies chosen by all players.

In the simplest case, an agent can assume that its coplayers will each play a fixed strategy.
An agent can leverage this assumption to inform predictions, which are then utilized to devise an
appropriate response. I term this response knowledge and it encodes predictions that are only valid
in the context of its assumed coplayers’ strategies. In the market, each vendor entered the market
with a fixed policy offering select goods and willingness to sell them at predefined prices2. From
this assumption of fixed coplayers, we generated response knowledge that allowed us to predict
where to find the best bargain for each good. Enabling us to plan an efficient shopping trip before
arriving at the market.

Response knowledge can be represented by various methods. The focus in this dissertation,
however, is on RL-specific representations, specifically the policy and value function. A policy is a
mapping from an agent’s observations to a distribution of their actions. A value function estimates
the expected cumulative discounted reward, or return, anticipated from being in a particular state.

2Vendors may actually have significantly more complicated policies that are stochastic or change preferences
throughout the day. As the analysis stays consistent, I focus here on a simplified example.
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Action-value functions offer a more specific estimate, by additionally assuming a specific action
was selected. Value functions can be used to induce a policy, for example, by selecting actions
with the highest expected return.

Best Response Problem

Responses Belief

Strategic Knowledge

Figure 1.6: Outline of strategic knowledge iconography. Coplayer policies and their respective
response are paired by equivalent saturation in colors. Beliefs are bar graphs portraying the likeli-
hood of each coplayer policy.

Every policy that a coplayer may use is an opportunity to construct corresponding response
knowledge. What happens, though, if the coplayer randomizes their play by sampling a policy
from a distribution? There is now uncertainty in the coplayer’s policy, and therefore, uncertainty
in the appropriate response. To manage this, an agent might either explicitly or implicitly predict
the coplayer’s policy based on their interactions, and utilize this prediction to guide their response
behavior. I refer to the agent’s prediction of the coplayer’s current policy as its opponent-policy

belief knowledge. Note here that while the term opponent is used for historical purposes, belief
knowledge can be maintained over coplayers generally. The agent interprets this belief as a distri-
bution over the opponent’s policies, using in-game observations as evidence to shape this belief.
With a precise belief, the agent can then select the appropriate response.

To illustrate belief knowledge, let’s revisit the marketplace scenario. Imagine one of the ven-
dors occasionally has a sale on their goods. Your typical response to their regular prices is to
bypass their stall; however, during a sale, you would actually prefer to buy their goods. However,
you cannot determine if they are having a sale unless you visit the stall. Consequently, you can
form a belief about the probable occurrence of a sale and use that to decide whether it’s worth
checking.

In Figure 1.6, I provide an overview of the iconography that will be used for strategic knowl-
edge as it relates to ABR learning problems. In Part II, I investigate applications of strategic
knowledge in both transfer learning and game solving.
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1.3.2 World Knowledge

The second type of knowledge is world knowledge3. This knowledge is composed of predictions
that are independent of the players’ strategies. As the term suggests, world knowledge mainly
involves the agent’s capability to predict how the world will react to specific actions. These predic-
tions materialize as models of transition dynamics or the operational mechanisms of the system.
Figure 1.7 depicts the iconography I will use for world models, note that the predicted successor
state of the world is courser and erroneous, mimicking errors in prediction. In our market example,
this is exactly the market’s mechanisms: the vendor selection mechanism, the shared currency and
its exchange methods, the layout of the market, etc..

A significant aspect of these dynamics is the reward signal for all players. The reward signal is
a unique component of an agent’s observation that measures the impact of their actions. However,
it’s critical to understand that rewards may not be immediate; they can instead reflect the effec-
tiveness of a previous action or a sequence of actions. The discrepancy between actions and their
corresponding rewards is known as the credit assignment problem.

Best Response ProblemWorld Knowledge

World
Model

Figure 1.7: Outline of world knowledge iconography. The world model makes predictions of
successor states that may introduce modeling errors. World models typically condition their pre-
diction on action(s) from the agent(s), which is suppressed in this icon.

Learning world dynamics is no easy task, because players often only have a limited view of
the world. Outside of their view, other players may be taking actions, or unseen consequence of
a player’s own action may be realized. This leads to a key problem of multiagent learning that
is disentangling each player’s responsibility for changes in the world. To side-step this problem,
a key assumption I will make throughout this dissertation is access to the coplayer’s actions and
observations throughout training. Importantly, however, all policies will not depend on on this
extra information during evaluation.

In summary, we have now separated the components of knowledge that an agent must learn to
solve a multiagent system. Now we can explore methods that exploit this known structure in order
to more efficiently solve multiagent systems. Throughout this dissertation, I will do just that by
proposing new algorithms for transferring each type of knowledge.

3Hereafter, I use the term world to refer to the system in which the agents interact. This terminology is deliberately
selected to differentiate from alternative terms such as environment, which suggests a single-agent system, and game,
which I will attempt to exclusively use for empirical games given its already overloaded usage.
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1.4 Thesis Statement

After laying down both the game-solving paradigm we intend to utilize and our categorization of
transferable knowledge, we can formulate the principal question this dissertation aims to answer:

How can we lessen the experiential cost of learning-based game-solving algorithms?

As an answer to this question, this dissertation puts forward the following thesis:

THESIS

In learning-based game-solving algorithms, the response learning problems exhibit a

common structure that reflects the empirical-game building process, thus facilitating the

transfer of knowledge from previous responses and consequently reducing the experiential

cost of game solving.

To elaborate, this dissertation develops algorithms designed to minimize the experiential cost as-
sociated with learning-based game-solving algorithms by employing methods of transfer learning.
These algorithms exploit the fact that the response learning problems share common elements that
reflect the steps of building an empirical game. Inspired by this structural similarity, I devise a
corresponding taxonomy of transferable knowledge. Subsequently, I create a suite of algorithms
designed to facilitate the transfer of this knowledge within the context of learning-based game-
solving algorithms.

1.5 Outline & Contributions

Part I: Preliminaries The first part of the dissertation provides the necessary background re-
quired for the remaining parts. It covers fundamental concepts from both the fields of machine
learning and game theory.

Part II: Strategic Knowledge Transfer In Part II, I address the learning of strategic knowledge.
I begin by introducing the opponent-mixture transfer problem (Chapter 3). This problem seeks to
generalize an agent’s knowledge across varying distributions of the same set of coplayers. Chap-
ter 4 reveals that response policies to each coplayer cannot be directly transferred across coplayer
distributions. Consequently, additional structure is necessary for generalizing response policies.
In Chapter 5, I demonstrate that value-based response policies provide this generalizing capability.
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After establishing a method for transferring response knowledge, I explore refinements to this ap-
proach. Chapter 6 considers a suite of opponent-policy likelihood models that form a belief in the
coplayer’s current policy. This belief further informs selecting the appropriate response. Finally,
I propose two algorithms that apply strategic knowledge transfer to game solving. The Mixed-
Oracles algorithm illustrates how transfer can focus learning solely on new coplayer policies. The
Mixed-Opponents algorithm shows how transfer can serve as a heuristic to guide the discovery of
new policies within the game. Compared to methods without transfer, both strategies demonstrate
lower experiential costs and potentially yield stronger solutions. The contributions of this part of
the dissertation appear previously within:

Max Olan Smith, Thomas Anthony, and Michael P. Wellman. Learning to play against any
mixture of opponents. Frontiers in Artificial Intelligence, page to appear, 2023a

Max Olan Smith, Thomas Anthony, and Michael P. Wellman. Iterative empirical game solving
via single policy best response. In 9th International Conference on Learning Representa-

tions, 2021

Max Olan Smith, Thomas Anthony, and Michael P. Wellman. Strategic knowledge transfer.
Journal of Machine Learning Research, 24:to appear, 2023b

Part III: World Knowledge Transfer In Part III, I delve into the study of the learning of world
knowledge. I first demonstrate that the co-learning of an empirical game and a world model offer
reciprocal advantages. Chapter 9 reveals that empirical games provide a diverse perspective on
potential strategies, thereby informing a more general world model. Chapter 10 shows that through
planning world models can reduce the experiential cost of learning new policies to expand the
empirical game. These benefits merge in the creation of a new game-solving algorithm, Dyna-
PSRO, that lowers experiential cost through the transfer of world knowledge (Chapter 11). The
contributions of this part of the dissertation appear previously within:

Max Olan Smith and Michael P. Wellman. Co-learning empirical games and world models.
CoRR, 2023. URL https://arxiv.org/abs/2305.14223

Part IV: Conclusion I conclude the dissertation by summarizing how the previous sections up-
hold the thesis of this work. Moreover, I discuss future avenues of research inspired by this disser-
tation.

Figure 1.8 provides a graphical representation of this dissertation, emphasizing the primary
algorithmic contributions and novelties.
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Figure 1.8: Outline of this dissertation. The contributions of the dissertation are split into two
primary parts: strategic and world. Each part begins with the development of its respective rep-
resentation of knowledge. Subsequently, transfer learning algorithms are devised for the one-step
transfer case. Finally, game solving algorithms are introduced that continually transfer knowledge
for more efficient game solving.
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CHAPTER 2

Background

In this chapter, I provide an overview of the relevant techniques for resolving multiagent systems.
Since this dissertation straddles the fields of RL and GT, I start by defining the pertinent concepts
from both areas. Section 2.1 kicks off by introducing the RL problem. In the traditional RL
approach, agents are trained without explicit regard for the other agents in the system. Section 2.2
reviews adaptations to the RL problem that take coplayers into account. These distinct approaches
constitute the field of Multiagent Reinforcement Learning (MARL). MARL methods typically aim
to train efficient agents to play in a specified set of strategic contexts (often just one). Alternatively,
Game Theory, introduced in Section 2.3, is concerned with play not constrained to any specific
context. In Section 2.4, I introduce the field of EGTA to demonstrate how GT can be applied to
complex games. In the following section, Section 2.5, I take a detour and discuss the related work
in the field of transfer learning. Finally, in Section 2.6 I provide extensive details of the more
complex games that are used to evaluate our game solving algorithms.

2.1 Reinforcement Learning

RL is a computational method for learning through interaction [Sutton and Barto, 2018]. Learning
is achieved by an agent situated within a world, aiming to accomplish a goal. Progress towards this
goal is marked by the reception of reward. Unique to RL is that the agent learns from interaction

data, and the agent’s decisions impact the generation of this data in the future. This demands that
the agent explore diverse behaviors to achieve their goal. This distinction sets RL apart from su-
pervised learning, where the learner has analogous access to the optimal behaviors (i.e., “labels”).

2.1.1 Interaction Loop

To begin defining methods for learning through interaction, we must begin by defining what we are
interacting with. This quantity has been referred to primarily as the environment or world. Within
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this dissertation, I reserve the word environment to refer to single-agent systems (i.e., worlds/games
with one player). I correspondingly use world to refer to the non-player part of the game, the main
purpose of this is to reduce overloading the term game.

The primary class of environments studied within RL are those that can be represented by
a Markov decision process (MDP) [Puterman, 1994]. MDPs are mathematical models of deci-
sion processes with discrete-time and stochastic-control. MDPs also feature the Markov property,
meaning that they are memoryless so a decision-maker need only base their decision on the infor-
mation currently available [Markov, 1954].

Interaction with an MDP begins by the sampling of the environment’s initial state s0 ∼ d0,
where d0 ∈ ∆(S) is a distribution over the environment’s initial state. Generally, the environment
at discrete time t ∈ T exists in state st ∈ S. The agent perceives the environment through its
sensors and then takes an action at ∈ A(st) using its actuators. In other environment definitions,
the sensors and actuators may respectively limit the information received about the environment
or the agent’s ability to influence the current state. However, we ignore these complications for
now and assume that agent perceives the environment’s true state st and has access to all available
actions A(st). A(st) may be denoted A when the referred state is unambiguous or the available
actions are the same across all states.

An agents rule for selecting an action for a state is a decision, and the collection of decisions for
all states constitute the agent’s behavior. There are many possible ways to characterize behavior.
A policy generally prescribes an agent’s behavior in all states:

π : S → ∆(A). (2.1)

A policy may be stochastic mapping to ∆(A), or deterministically select an action.
The agent’s action alter the state of the environment driving it into a potentially new state. This

process is referred to as the transition dynamics or dynamics of the environment p : S × A → S.
p(x) describes a general probability mass function P(X = x) for the random variable taking on
values x ∈ X . Similarly, capital non-stylized characters are left to refer to random variables (e.g.,
X). This particular choice of notation is motivated by the variety of forms used to describe the
environment’s dynamics.

In addition to the agent now perceiving the new state they also receive a reward r : S×A → R
that is a signal for the goodness of choosing the previous action. The space of rewards often doesn’t
cover R, and is typically discrete, so we useR to represent the subspace of rewards defined by the
environment. Notation is also abused to have r refer to both the reward-function and a single
reward, because we will not focus on reward-functions directly through this dissertation. For this
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same reason, we will often combine the dynamics and reward function as

p : S ×A → ∆(S)×∆(R), (2.2)

for ease of notation when no distinction between the two components is required. A discount factor
γ ∈ [0, 1] also indicates an agent’s preference for short- or long-term rewards.

Agent (π)

Environment

atst+1 rt+1

Figure 2.1: Agent-environment interaction loop.

That completes the description of the primitive elements of an MDP. Additional concepts are
built upon these elements for composite reasoning.

The interaction protocol governs the order and frequency of which the agent and environment
respectively make decisions or update. The assumed protocol is simplest one where the agent and
environment alternate acting and transitioning respectively. The interaction begins in the environ-
ment’s initial state and continues for a number of interactions referred as the horizon. The horizon
is typically assumed to be finite, meaning that the interaction ends at a terminal state, instead of
continuing in perpetuity. A round of interaction (st, at, rt+1, st+1) is referred to an agent’s experi-
ence or as a transition. Sequences of transitions are called a trajectory τ . Trajectories that begin in
an initial state and end in a terminal state are called an episode. Experiences and trajectories are the
primary units of data used to train reinforcement learners. As collecting an individual experience
is often costly, counts of experiences serve as a method for evaluating the cumulative cost of a
reinforcement learner’s learning algorithm.

Often an agent’s sensors may not be able to fully capture the state of the environment. Partial
representation of the state of the environment are referred to as an observation ot ∈ O of the
underlying state. Analogous definitions of the composite terms we have introduced previously
can be made with observation histories substituting as states. Transitioning to observations often
forfeits or relaxes any theoretical guarantees about a learning algorithm.
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2.1.2 Value Functions

The agent’s goal is to maximize its received cumulative discounted reward. This quantity, termed
return, is defined as:

Gt ≡ Eπ

[ ∞∑
k=t

γk−tr(sk, ak)

∣∣∣∣∣ π
]
. (2.3)

Note here that the return depends on the policy. This is because future rewards are dependent on
the actions selected by the policy.

A value function is an estimate of the agent’s return for a specific state. There are two main
value functions: the value function Vπ : S → R, defined formally as:

Vπ(s) ≡
∑

a∈A(s)

π(a | s)
∑
s′∈S

∑
r∈R

p(s′, r | s, a) [r + γVπ(s
′)] . (2.4)

It is also common to measure the return expected conditional on an action. This is characterized
as the action-value function Qπ : S ×A → R for a fixed policy π. As shorthand, this function can
be referred to as the Q-value function or Q function. The action-value function is defined using the
value function (Equation 2.4) as follows:

Qπ(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r | s, a) [r + γVπ(s
′)] . (2.5)

A policy can be induced from a value or action-value function by defining a method for action
selection from values. The polic(ies) that exhibit the highest possible return are said to be optimal,
and their corresponding value functions are marked with ∗, as in Q∗, V ∗. For action-values, the
simplest induced policy is the greedy policy that selects the action achieving the highest return in
every state:

πQ(a | s) = 1

{
a = argmax

a′
Q(s, a′)

}
(2.6)

As, during learning, there is impetus to explore behaviors, it is common to use an ϵ-greedy policy.
This policy behaves greedily 1 − ϵ proportion of the time, and randomly the other ϵ proportion of
the time:

πQ,ϵ(a | s) =

1− ϵ a = argmaxa′ Q(s, a
′),

ϵ
|A|−1

otherwise.
(2.7)

2.1.3 Q-Learning

Value-based RL algorithms are the subclass of algorithms that learn a value or action-value func-
tion in the process of learning a policy. The value function can be learned in isolation and a policy
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induced from it post-learning (e.g., greedy). Or, the value function can be learned in tandem with
a direct representation of the policy.

Q-learning [Watkins, 1989, Watkins and Dayan, 1992] is one class of value-based RL algo-
rithms for learning optimal Q-value functions from trajectories. They work by maintaining an cur-
rent estimate of the Q-values and iteratively making refinements to the estimates from experiences.
Notably, this class of algorithms is off-policy, meaning that the experiences may be generated from
any policy and used to learn the optimal Q-value function. The policy used to generate data for
learning is called the behavioral policy. In Q-learning, a standard choice of behavioral policy is
the ϵ-greedy policy induced by the current Q-values.

Tabular Q-Learning. A simple version of Q-learning is called tabular Q-learning. In tabular
Q-learning, the Q-values are stored in a table indexed by state-action pairs. Due to the nature of
this indexing, tabular Q-learning is limited worlds with small and discrete state and action spaces.
The entries of the table are updated as a linear combination of the current estimate and the greedy
value estimate:

Q(s, a)← (1− α) ·Q(s, a) + α · (r + γ ·max
a′

Q(s′, a′)) (2.8)

= Q(s, a) + α ·

r + γ ·max
a′

Q(s′, a′)︸ ︷︷ ︸
target

−Q(s, a)

 , (2.9)

where α is the algorithm’s learning rate. The behavior that an RL algorithm is updating towards is
referred to as the target behavior. In the case of tabular Q-learning it can be shown that a greedy
target converges to the optimal Q-values.

Deep Q-Learning. Due to the combinatorial nature of the joint state-action space, Q-value func-
tions typically cannot be implemented with a table. Deep Q-learning [Mnih et al., 2015, Tsitsiklis
and Van Roy, 1997] addresses this problem by using deep neural network (DNN) [Goodfellow
et al., 2016] as its Q-value function. DNNs are nonlinear function approximators that learn hierar-
chies of features across the layers of the neural network. The resulting DNN-based Q-value func-
tion learns jointly to project the joint state-action space into a compact representation. Q-values
are jointly learned to be associated with these representations. The Deep Q-Network (DQN) [Mnih
et al., 2015] was the first agent implementation to feature large wins for this method on the Atari
game suite [Bellemare et al., 2013]. Paramount to the success of DQN are following methodolog-
ical details:

• Replay buffer: Transitions are stored in a replay buffer [Lin, 1992]. Batches of transitions are
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sampled from the replay buffer and used to update the network. By varying the settings of the
replay buffer, such as its size and sampling method, a practitioner can adjust the correlation
between transitions in a batch.

• Target network: The Q-values used to compute the target are produced by a DNN with older
parameters. Keeping these parameters fixed for a short window creates a more stable training
objective. It also mitigates issues where Q-values would rapidly increase across updates.

Let θ be the current parameters, and θ− be the target’s parameters. Parameterized functions have
their associated parameters marked as a subscript fθ or as a conditional input f(· | θ). Then we
can rewrite the loss function from tabular Q-learning as:

L = Es,a,r,s′

[
(r + γ ·max

a′
Qθ−(s

′, a′)−Qθ(s, a))
2
]

(2.10)

= Es,a,r,s′
[
(y −Qθ(s, a))

2
]
, (2.11)

where y = r + γ ·maxa′ Qθ−(s
′, a′) is the target. From this loss function we can derive an update

rule by gradient descent as:

∇θL = Es,a,r,s′ [(y −Qθ(s, a))∇θQθ(s, a)] (2.12)

θ ← θ − η∇θL. (2.13)

This update is applied periodically from batches sampled from a replay buffer. Periodically θ− is
updated to be closer to θ. This is commonly done by simply copying the parameters, or computing
an average between the parameters between the current and target parameters.

Double DQN. While the incorporation of a target network in DQN mitigates escalating Q-values,
this issue can still persist due to the algorithm’s sensitivity to hyperparameter selection. van Hasselt
et al. [2016] proposed decoupling target estimation and action selection during learning:

y = r + γ ·Qθ−(s
′,max

a′
Qθ(s

′, a′)), (2.14)

where y is again the target and is substituted into Equation 2.12. This implementation trick has
empirically been shown to reduce value overestimation.

2.1.4 Policy Gradient

Alternative to learning a value function and using it to construct a policy, a policy can be directly
learned. These policy gradient algorithms directly estimate a return gradient with respect to the
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policy [Sutton et al., 1999a]. Updating the policy’s parameters following the policy gradient in-
creases the probability of an action proportional to the return it received. Let πθ(a | s) be the policy
π parameterized with θ, we write the policy gradient as:

∇θEπθ

[∑
t

γt · rt

]
= Eπθ

[∑
t

∑
a

∇θπθ(a | st) ·Qπθ(st, a)

]
(2.15)

= Eπθ

[∑
t

∑
a

∇θπθ(a | st)
πθ(a | st)

·Qπθ(st, a) · πθ(a | st)

]
(2.16)

= Eπθ

[∑
t

∑
a

∇θ log πθ(at | st) ·Qπθ(st, a) · πθ(a | st)

]
(2.17)

= Eπθ

[∑
t

Eπθ
[∇θ log πθ(at | st) ·Qπθ(st, at) | st]

]
(2.18)

= Eπθ

[∑
t

∇θ log πθ(at | st) ·Qπθ(st, at)

]
. (2.19)

The first two steps involve multiplying in the identity πθ(a | st)/πθ(a | st) and performing the
likelihood ratio trick [Glynn, 1990]. The next step comes from observing that the inner summand∑

a . . . · πθ(a | st) is the definition of the expectation over the action space. Finally, the inner
expectation can be lifted into the outer expectation by the law of iterated expectations E[E[Y |
X]] = E[Y ]. Applied to our derivation, this states that the outer expectation that averages over all
states and timesteps is equivalent to first averaging over both states and actions (and all timesteps),
without conditioning on the current state1.

Williams [1992] first introduced policy gradients with the REINFORCE algorithm that uses
return samples Rt =

∑∞
k=t γ

k−t · rk as a value estimate:

∇θEπθ

[∑
t

γt · rt

]
= Eπθ

[∑
t

∇θ log πθ(at | st) ·Rt

]
. (2.20)

Baseline. Directly estimating the returnRt can have high variance depending on the stochasticity
of the policy and environment. It is possible to reduce the variance of this estimate using a state-
dependent baseline b(st). Crucially, the baseline must only be state-dependent, because the lack
of action dependence allows it to not modify the policy gradient:∑

a

∇θπθ(a | st) · b(st) = b(st)∇θ

∑
a

πθ(a | st) = b(st)∇θ1 = 0. (2.21)

1The law of iterated expectations requires that the outer variable st is independent of the inner expectation a, which
we get through assuming the policy is Markovian.
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A reasonable choice for the baseline is the state-value function V πθ . This choice modifies our
return estimate with an estiamte of how much advantage an action has over the expected action:

A(st, at) = Q(st, at)− V (st) (2.22)

≈ Rt − V (st). (2.23)

The value function can be learned alongside the policy in a joint optimization:

Lpg = Eπθ

[
Lpg

policy + λvalue · Lpg
value

]
(2.24)

Lpg
policy = − log π(at | st) · (Rt − Vθ(st)) (2.25)

Lpg
value =

1

2
∥Vθ(st)−Rt∥2, (2.26)

where Vθ(st) ≈ V πθ(st), and λvalue weights the relative importance of the value objective com-
pared to the policy objective. Therefore, if an action at offers an advantage the probability will
correspondingly increase, and decrease (or remain the same) otherwise.

Actor-Critic. The combination of learning a policy and a value function is referred to as an
actor-critic algorithm. Here, the policy is the actor generating experiences, and the value function
is the critic offering evaluations of the actor’s decisions. Actor-critic methods afford an additional
means to reducing the variance of the policy gradient estimate through bootstrapping. To apply
bootstrapping, consider splitting the full return estimate Rt into two partitions. The first term,
Rt:t+n, continues to be a sampled return, but is truncated after n timesteps. The remainder of the
full return estimate comes from bootstrapping off the value function Vθ(st+n). Giving us the n-step
actor-critic objective:

Lac = Eπθ

[
Lac

policy + λvalue · Lac
value

]
(2.27)

Lac
policy = − log π(at | st) · (Rn

t − Vθ(st)) (2.28)

Lac
value =

1

2
∥Vθ(st)−Rn

t ∥2 (2.29)

Rn
t =

n=1∑
k=0

γk · rt+k + γn · Vθ(st+n). (2.30)

Bootstrapping off of Vθ introduces biases proportional to its discrepancy with the true value func-
tion. However, empirically n-step actor-critic has demonstrated better sample-efficiency than 1-
step actor-critic.
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Entropy. As we saw in value-based RL, encouraging exploration is crucial to prevent early con-
vergence to a suboptimal policy. In policy gradient methods, a common exploration strategy is to
include a policy-based entropy term:

H(π(st)) = −
∑
a

π(a | st) log π(a | st). (2.31)

This term can be used to encourage the policy to uniformly sample actions. Applied to the actor
critic objective we previously defined leaves us with:

Lac = Eπθ

[
Lac

policy + λvalue · Lac
value + λentropy · Lac

entropy

]
(2.32)

Lac
policy = − log πθ(at | st) · (Rn

t − Vθ(st)) (2.33)

Lac
value =

1

2
∥Vθ(st)−Rn

t ∥2 (2.34)

Lac
entropy = H(π(st)) (2.35)

Rn
t =

n=1∑
k=0

γk · rt+k + γn · Vθ(st+n). (2.36)

Importance Weighted Actor-Learner Architecture (IMPALA). The final detail of policy gra-
dient methods that is concerned within this dissertation concerns scaling learning the algorithm
onto many devices. RL algorithms are often bottlenecked on their experience generation, and not
on the throughput of data through the learner (the process performing the gradient updates). There-
fore, a natural solution to this problem is to increase the number of processes generating data for
the learner. A challenge with this solution is that the behaviors generating data may follow a dif-
ferent policy than the learner, making the learning problem off-policy. We concern ourselves with
the class of solutions integrating this notion with the actor-critic algorithm, the so-called Asyn-
chronous Advantage Actor Critic (A3C) algorithm [Mnih et al., 2016]. In it, many asynchronous
behavioral policies µ generate data used to learn on a target policy π. Differences between the
behavioral and target policies can be corrected through importance sampling (IS). One such effec-
tive method for this correcting is the V -trace operator first introduced in the Importance Weighted
Actor-Learner Architecture (IMPALA) [Espeholt et al., 2018]. The n-step V -trace target for V (st)

is as follows:

vs ≡ V (st) +
s+n−1∑
t=s

γt−1 ·

(
t−1∏
i=s

ci

)
· δtV, (2.37)
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where,

δtV ≡ ρt · (rt + γ · V (st+1)− V (st)), (2.38)

is a temporal difference for V , and

ρt ≡ min(ρ̄,
π(at | st)
µ(at | st)

) ci ≡ min(c̄,
π(at | st)
µ(at | st)

), (2.39)

are truncated importance sampling weights (assuming ρ̄ ≥ c̄). Applying V -trace to A3C gives us
the IMPALA objective:

Limpala
policy = − log πθ(at | st) · (rt + γ · vs+1 − Vθ(st)), (2.40)

Limpala
value =

1

2
∥Vθ(st)− vs∥2, (2.41)

Limpala
entropy = H(π(st)), (2.42)

Limpala = Eπθ

[
Limpala

policy + λvalue · Limpala
value + λentropy · Limpala

entropy

]
. (2.43)

(2.44)

2.1.5 Model-Based RL

Model-Based RL (MBRL) algorithms construct or use a model of the environment (henceforth,
world model) in the process of learning a policy or value function [Sutton and Barto, 2018]. World
models refer to anything that can be used to predict how an environment will respond to a hy-
pothetical action. For example, world models may either predict successor observations directly
(e.g., at pixel level [Wahlström et al., 2015, Watter et al., 2015]), or in a learned latent space [Ha
and Schmidhuber, 2018a, Gelada et al., 2019, Ha and Schmidhuber, 2018b]. World models may
also learn the system’s reward function independently or alongside a predictor of the successor
observations.

The process of utilizing a world model to generate or enhance a policy is termed as planning.
There are two subtly different but significant types of planning for our discussion in Part III.

Decision-time planning is a process that uses a world model to develop or refine a policy for
the agent’s current state, informing its next actionable step. This kind of planning is traditionally
associated with the term planning. It also bears similarity to search and, hence, is sometimes
referred to as lookahead search. For instance, consider an agent π in state st with a world model w.
Monte-Carlo Tree Search (MCTS) [Kocsis and Szepesvári, 2006] is one instance of decision-time
planning. In MCTS, an agent samples numerous hypothetical rollouts of the future utilizing its
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policy and the world model,

At ∼ π, St+1 ∼ w,Rt+1 ∼ w,At+1 ∼ π, . . . , ST ∼ w,RT ∼ w,

with T representing the terminal state (therefore, the environment is episodic). The sampled returns
for all actions noted asAt are averaged per action, and the action with the highest return is selected.
Decision-time planning can also be integrated with learning, by using planned values directly or
indirectly in learning [Silver et al., 2017b, Oh et al., 2017].

Background planning, conversely, is planning that can transpire in any state and does not di-
rectly influence action selection in the real world. This introduces the question of which states
should be prioritized by the agent for planning. The response to this question is known as the
agent’s method of search control. Search control establishes the initial state distribution for back-
ground planning, and rollouts can be accomplished by iteratively sampling between a policy and
world model. However, unlike in decision-time planning, we are not directly using planning to
determine a real-world action in background planning. So, how does background planning im-
prove the policy? It does so by storing planned experiences and learning from them as if they were
real-world experiences. This process should indirectly enhance the policy for any states sampled
by the search control procedure.

Model-based methods are not without fault. Talvitie [Talvitie, 2014] demonstrated that even
in small Markov decision processes (MDP) [Puterman, 1994], model-prediction errors tend to
compound—rendering long-term planning at the abstraction of observations ineffective. A follow-
up study demonstrated that for imperfect models, short-term planning was no better than repeat-
edly training on previously collected real experiences; however, medium-term planning offered
advantages even with an imperfect model [Holland et al., 2018]. Parallel studies hypothesized
that these errors are a result of insufficient data for that transition to be learned [Kurutach et al.,
2018, Buckman et al., 2018]. To remedy the data insufficiency, ensembles of world models were
proposed to account for world model uncertainty [Buckman et al., 2018, Kurutach et al., 2018,
Yu et al., 2020], and another line of inquiry used world model uncertainty to guide exploration in
state-action space [Ball et al., 2020, Sekar et al., 2020].

2.2 Multiagent Reinforcement Learning

RL algorithms generally take no explicit consideration of the presence of coplayers. Nevertheless,
it is possible to directly apply them to games. This is by done by viewing the game as a black-box
with no distinction between coplayers and the world. I review now relevant MARL algorithms,
which are RL algorithms that explicitly consider coplayers in either their design or motivation.
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The notation that we previous applied to single-agent RL is similarly defined in MARL settings.
I will now reserve subscripts for denoting player identities such as player 1: π1, and therefore, will
be moving the notation of time to superscripts (e.g., player 2’s state at timestep 42 is s422 ). The
joint of an element across all agents is represented with a boldface character a = (ati, . . . , a

t
n−1)

(for n players). Negated subscripts represent the joint across all other agents. For example, all but
player i’s action is denoted a−i.

2.2.1 Joint-Action Learners

Claus and Boutilier [1998] demonstrated that learning the values of joint-actions as opposed to only
the ego-agent’s actions reduced the variance in value estimates by controlling for these unobserved
confounders. They fittingly called their approach Joint-Action Learner (JAL), and it learns the
following joint-action value function:

Q(si,a) = Q(si, ai, a−i) =
∑
s′i∈Si

∑
ri∈Ri

p(s′i, ri | si, ai, a−i) · [ri + γ · Vπ(s′i)] . (2.45)

JAL reduces the variance encountered in value learning by directly controlling for the confounding
effects of the other agents in the system. However, this method requires the assumption that oppo-
nent actions are visible, which is not always the case. This has led to the study of the centralized

learning and decentralized execution framework. In this framework, a practitioner trains agents
that can exploit additional information during training, so long as, the agent does not rely on the
extra information during evaluation [Tan, 1993, Kraemer and Banerjee, 2016]. Researchers have
investigated several forms of additional training information, such as opponent actions [Claus and
Boutilier, 1998], opponent states [Rashid et al., 2018], and coordination signals [Greenwald and
Hall, 2003].

A key question then becomes: how to create a policy that can be evaluated without relying
on the additional information. This question has been primarily studied when assuming access to
opponents’ actions as extra training information. A popular approach is to decompose the joint-
action value into independent Q-values for each agent [Guestrin et al., 2001, He et al., 2016, Sune-
hag et al., 2018, Rashid et al., 2018, Mahajan et al., 2019]. An alternative is to learn a centralized
critic, which can train independent agent policies [Gupta et al., 2017, Lowe et al., 2017, Foerster
et al., 2018b]. Some have proposed constructing metadata about the agent’s current policies as a
way to reduce the learning instability present in environments where the opponents’ policies are
changing [Foerster et al., 2017, Omidshafiei et al., 2017].

Most of the aforementioned techniques train the agents concurrently. In contrast, our context
assumes that in each application of learning the opponent plays a distribution over a stationary, or
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non-learning, set of policies. This removes the need to account for moving targets within a learning
operation [Hernandez-Leal et al., 2017], and rather relies on a broader iterative process to address
the joint dynamics of multiagent learning [Foerster et al., 2018a, Tesauro, 2003].

2.2.2 Coplayer Generalization

Another major consideration that pertains to MARL is generalization across coplayers. There are
three settings that are typically, but not exclusively, considered that I detail in this subsection.

Fixed Coplayers. In this first setting, the coplayers are assumed to always follow a fixed policy.
Note, that this policy may be stochastic. This setting can most readily be treated as a vanilla RL
problem. However, considering the coplayers explicitly can dramatically reduce sample complex-
ity.

Learning Coplayers. In this setting, it is assumed that the coplayers are also learning over time.
It is implicitly assumed that the coplayers are learning from the same shared experiences with the
ego-centric learner. These shared experiences can serve as a coordination signal between learners.
This can be useful for improving coordination across players [Tan, 1993]. And can competitively
be exploited by recursively estimating the opponent’s new policy and responding to it [Foerster
et al., 2018a]. The majority of studies self-described as MARL are concerned with this setting.

Population-Based Coplayers. The final setting we will discuss is when coplayers sample a pol-
icy to play at the beginning of an episode. The set of eligible policies is called the “population”
in MARL, and is analogous to a mixed strategy from GT [Lanctot et al., 2023]. The population is
often partitioned into training and evaluation. The challenge with this setting is learning to respond
to a potentially diverse set of coplayers. All the while, not “overfitting” to the training population
such that you cannot coordinate, or get exploited, by the evaluation population. Population-based
generalization analogously returns in our discussion of EGTA in Section 2.4.

Important to solutions to all settings is that any assumptions that are used when learning a policy
must not need to be relied upon once learning is finished. For example, JAL assumes access to the
coplayers’ actions to do value learning. When playing a competitive game we cannot reasonably
assume that our opponent will tell us their actions. Even in cooperative games, communication or
observation may be limited in a way that we cannot definitively know all of our coplayers’ actions.
As a result, we want to ensure our learning algorithm produces a policy that carries-forward as few
assumptions as possible into evaluation.
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This framework for construction a learning algorithm has been referred to as centralized train-

ing and decentralized execution. Here, the centralization of each step refers to the fact that MARL
algorithms often have a central coordinator querying all of the policies that can be used to exchange
additional information. Therefore, in training, the learner may access privileged information re-
garding their coplayers due to the centralized nature of the learning algorithm. However, the final
learned policy must not require said information, because it will be evaluated in a decentralized

setting. In essence, this serves as rebranding of the train-test split used in supervised learning.

2.3 Game Theory

Game Theory (GT) supplies the notion of what it means to solve a game. GT is a branch of
mathematics and economics that provides a framework for analyzing the strategic interactions
between rational decision-makers. It analyzes situations in which the outcomes these decision-
makers depends not only on their own actions but also on the actions of other decision-makers
within the system.

2.3.1 Normal-Form Games

The foundation of GT lies in the concept of a game. Games represent strategic interactions through
the players, strategies, and payoffs. The choice of representation is called the game’s form.

A normal form game (NFG), describes a strategic interaction by way of a matrix where each
cell corresponds to the players’ payoffs for a choice of strategy per-player. Formally, a NFG is
a three-tuple Γ = (Π, U, n). n is simply the number of players in the game. Π is the players’
strategy set, where each player i’s strategy is a distribution over policies2 Πi =

{
π0
i , . . . , π

ki
i

}
,

where player i has ki available policies (ki may be infinite). U is the utility, payoff, matrix that for
each selection of policies assigns all players’ payoffs U : Π→ Rn.

Player 1
Cooperate Defect

Player 0
Cooperate (3, 3) (0, 5)

Defect (5, 0) (1, 1)

Figure 2.2: Prisoner’s Dilemma.

Figure 2.2 illustrates one such NFG called the Prisoner’s Dilemma [Rapoport and Chammah,
1965, Tucker, 1950]. This dilemma presents each player with the opportunity to cooperate for

2These may also be called actions, decisions, etc. Policies are descriptions of behavior making analogies with RL
readily apparent. Therefore, I will use policy throughout this dissertation.
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mutual benefit, or betray their coplayer by defecting and achieving a higher personal reward. This
game is played by 2 players n = 2. Each player has the same strategy set:

Π0 = Π1 = {Cooperate,Defect} = {πCooperate, πDefect}.

And the payoff matrix U is shown in Figure 2.2. For example, if both players choose to cooperate,
then they both receive a payoff of 3. However, if Player 0 chooses to defect, while Player 1

cooperates, then they respectively see payoffs of 5 and 0. When the players do not have meaningful
names to distinguish between them, they will be referred to by their associated axis. In this example
Player 0 would be the row player, and Player 1 the column (col) player.

At the start of a game each player selects their policy following a strategy σi : Πi → [0, 1].
A player is said to be playing a pure strategy if they deterministically select a policy. As pure-
strategies are equivalent to their selected policy the strategy can be referred to as that policy directly
πi ∈ Πi. Otherwise, the player is said to be playing a mixed strategy σ ∈ Σ ≡ ∆(Πi), where ∆

is the probability simplex of the player’s strategy set Πi. A strategy profile is an assignment of
strategies to players. The player keeps their selected policy for the remainder of that gameplay, and
only resamples it at the start of a new gameplay. In the case of NFGs, this may appear reductive,
as the game only requires making a single decision. However, this distinction is important as we
move onto our next game form (extensive).

2.3.2 Extensive-Form Games

Extensive-form games (EFG) offer an alternative game framework that encapsulates the temporal
dynamics of the game [Kuhn, 1953]. The distinguishing feature of EFGs over NFGs is the explicit
consideration of time. EFGs allow the additional specification of the ordering of individual player
decisions and the information available to them for each decision. While a formal treatment of
EFGs is not pertinent to this dissertation, I will use them here to introduce several concepts that
help bridge GT and RL.

Figure 2.3 depicts an extensive-form game tree of the prisoner’s dilemma we saw in Figure 2.2.
The original prisoner’s dilemma was treated as a simultaneous move game, where the players sub-
mit their decisions at the same time. In the extensive-form I have illustrated here, Player 0 makes
the first decision at the hollow node. Their corresponding decision leads the game down its la-
belled branch. Then, Player 1, at the filled nodes makes their decision. Player 1 cannot distinguish
between the situation where Player 0 had previously chosen cooperate or defect. As a result, the
information [state] available to them is equivalent. The set of all nodes with the same information
state, and are as a result indistinguishable, is called an information set. In our example’s figure,
the information set is shown with a dashed oval containing the equivalent information states. The
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πDefect
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Figure 2.3: Extensive-form prisoner’s dilemma.

leaves of the game tree (bottom points without circles) contain the payoff of all players if they
collectively arrive at this end-point of the game.

2.3.3 Payoff Characteristics

When studying a game, an essential characteristic to consider is the players’ payoff relationships.
These characteristics can inform additional assumptions about respective game subclasses, signif-
icantly reducing the complexity required for game reasoning.

A notable category of games is common-interest games, where players share identical payoffs
across all possible outcomes. This commonality can substantially simplify a game as rational
players can be assumed to act cooperatively. Furthermore, cooperative games can be reinterpreted
as a decentralized single-agent control problem where each player’s action serves as a component
of the cumulative “player” action [Oliehoek, 2012]. In all other games, the extent to which players’
payoffs align dictates the level of self-interested behavior the respective player should adopt.

Anonymous games are games where the payoff from a chosen strategy depends only on the
strategies employed by other players, not on who has adopted them. A subclass of anonymous
games is symmetric games where the players additionally have the same utility function. This
characteristic naturally reduces game complexity as various permutations of joint strategies are
now represented by a single, representative combination.

Games can also be characterized by defining relationships between players’ payoffs across
strategy profiles. General-sum games represent the broadest case where no specific relationship
is defined. On the other hand, constant-sum games are games where the combined payoff for all
strategy profiles equals a fixed constant, c:

∀σ ∈ Σ,
∑
i∈n

Ui(σ) = c. (2.46)

Constant-sum games can be additionally called zero-sum games by subtracting c from every payoff.
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In these games, any gain in one player’s payoff is a direct loss to another player’s payoff. Zero-sum
games present a significant assumption about the game’s strategic nature, which can considerably
reduce the complexity involved in solving and reasoning within these games, especially when
compared to general-sum games.

2.3.4 Solution Concepts

A solution to a game is a strategy profile that instantiates a solution concept. A solution concept
defines a set of rules for predicting solution(s) to a game. The choice of solution concept is the
choice of which solutions you find meaningful for analysis.

A common choice for solution concept is the Nash equilibrium (NE). These equilibria describe
solutions where no one player can receive a higher payoff by unilaterally changing their strategy.
Formally, a joint strategy σ∗ is said to be a Nash equilibrium if:

∀i ∈ n, ∀σi ∈ Σi, Ui(σ
∗
i , σ

∗
−i) ≥ Ui(σi, σ

∗
−i).

Throughout this dissertation I empirically demonstrate the performance of game-solving algo-
rithms with respect to NE. However, the algorithms are flexible to their choice of solution concept.

Related to the study of solutions is the study of best responses (BR). BR policies are those
policies that receive the highest payoff against a fixed coplayer strategy σ−i:

π∗
i ∈ BR(σ−i) iff ∀πi ∈ Πi, Ui(π

∗
i , σ−i) ≥ Ui(πi, σ−i). (2.47)

2.3.5 Evaluation Methods

Assessing the quality of a strategy within a game poses a challenge. A typical measure for quality
is the payoff a strategy yields. However, it is unrealistic to assume that we can anticipate our
coplayers’ strategies before the game is played. This creates a dilemma as our payoff will fluctuate
based on any changes in our coplayers’ strategies.

An alternative solution is to evaluate a strategy using a hindsight-based approach. In this case, a
high-quality strategy is one that minimizes regret relative to a coplayer’s strategy. Regret represents
the potential gain a player could have achieved in hindsight by deviating from their chosen strategy.
Formally, the regret of player i towards the joint-strategy σ can be quantified as:

Regreti(σ) = max
πi∈Πi

Ui(πi, σ−i)− Ui(σ). (2.48)

Using the concept of regret, we can define and measure the stability of a strategy profile. A solution
is considered stable if no player can increase their payoff by switching to a different strategy. This
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can be measured by totaling the regret of each player:

SumRegret(σ) =
∑
i∈n

max
πi∈Πi

Ui(πi, σ−i)− Ui(σ). (2.49)

This metric is occasionally referred to as NashConv, as it can be interpreted as a measure of the
distance from a Nash equilibrium. However, this metric is applicable to various solution concepts,
so I refer to it as SumRegret in this dissertation.

2.4 Empirical Game Theoretic Analysis

Algorithms for computing solutions in GT typically require complete descriptions of the game.
This can prove limiting on games with real-world complexity. On the easy end of the problems is
that their are hundreds of policies or players, and as a result, the runtime complexity for solving
the game is untenable. On the harder end, there may be an infinite number possible policies that
cannot be written down let alone computed over.

Empirical Game Theoretic Analysis (EGTA) addresses this problem by reasoning over approxi-
mate game models, called empirical games, estimated by simulation over a restricted strategy set. I
will denote empirical games using the same notation as non-empirical games, but with the addition
of a hat .̂ For example, an empirical normal-form game (ENFG) is then denoted as Γ̂ = (Π̂, Û , n).
Where Π̂ ⊆ Π is a restricted strategy set, and Û ≈ U is an estimated payoff function.

Walsh et al. [2002] first demonstrated the efficacy of EGTA in a study of pricing and bidding
games. Bear in mind, that the fidelity of the empirical game is primarily impacted by the the size
of the restricted strategy set, and the choice of which strategies are included. The general question
of which strategies to include in an empirical game was framed by Jordan et al. [2010] as the
strategy exploration problem. Phelps et al. [2006] introduced the idea of automatically extending
the restricted strategy set through optimization. They showed that this was possible by applying
a genetic search algorithm over policy space. Schvartzman and Wellman [2009b] proposed to use
RL to derive approximate best-responses (ABR) to the current empirical game’s Nash equilibrium.
The PSRO algorithm generalized this approach to include DRL and any solution concept of the
empirical game [Lanctot et al., 2017].

2.4.1 Policies as Actions

A subtle detail that I employed in Section 2.3 is to treat policies as atomic in NFGs. This approach
provides a computational efficiency advantage for game reasoning, as it circumvents the necessity
of reasoning over a complete game tree, where each decision point exponentially escalates the
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complexity. However, it is important to note that while they are treated as atomic for NFG rea-
soning, they are not treated atomically for BR reasoning using RL. BR through RL, contrastingly,
evaluates each action decision in the game.

While the policy abstraction affords convenience, as with any choices in modeling, it can come
with downsides. The amount of time that is abstracted by a policy is directly reflected in the
combinatorial growth of the game matrix. This elevates the importance of a conservative selection
which policies to include in the empirical game. A liberal inclusion may leave the empirical game’s
complexity in its original and intractable state.

2.4.2 Policy-Space Response Oracles

Policy-Space Response Oracles (PSRO) is a general learning-based game-solving algorithm that
interleaves DRL and EGTA [Lanctot et al., 2017]. As its namesake suggests, it takes inspiration
from the Double Oracle (DO) [McMahan et al., 2003] algorithm. In DO, a game is solved by
iteratively, across players, including a BR to the current NE. PSRO operates similar to DO by
alternating between game-reasoning and strategy exploration.

PSRO begins with either player i having a provided initial strategy set Π̂0
i , or the initial strategy

set being initialized to contain a policy that plays randomly Π̂0
i = {πrandom

i }. The payoffs of each
strategy profile are then estimated through play, typically completed through computer simulation.
These payoffs and policies constitute PSRO’s initial empirical game Γ̂0. PSRO then proceeds
to iterate between game-reasoning and strategy exploration, until it has captured an approximate
solution to the real game.

Game reasoning involves solving the current empirical game. This requires specification of a
solution concept. The abstract subroutine that computes the current solution is called the Meta-

Strategy Solver (MSS), and is functionally defined as follows:

MSS : Γ̂→ σ∗,e, (2.50)

the resultant strategy σ∗,e is distinguished as both a solution with ∗ and the current iteration,
“epoch”, of empirical game solving with e. The MSS serves the dual purpose of checking for
convergence of PSRO and a solver. An example choice of a MSS is the NE, as done in DO, which
could be operationalized through any number of NE-solving algorithms.

If the empirical game has not converged, the algorithm proceeds to enrich the empirical game
through strategy exploration. PSRO strategy exploration method is to include ABR, computed
using DRL, to the empirical game’s current solution:

πe
i ∈ ABR(σ∗,e−1

−i ).
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The new policies are then included into the empirical game, and the resulting new strategy pro-
files are estimated. It is within PRSO’s strategy exploration method that we can understand the
algorithm’s opaque name. Oracle methods are those that assumed to freely and instantly provide
answers, as if from an all-knowing oracle. In the case of DO, as the game was non-empirical, the
oracle simply looked-up the BR in the game’s full payoff matrix. Therefore, response oracles, are
oracles that produce responses. And finally, the modifier, policy-space, reflects the absence of a
true oracle, and that instead an approximate oracle must be employed that searches over policy
space. In this case, the search is performed using DRL.

Algorithm 1: Policy-Space Response Oracles [Lanctot et al., 2017]
Input: Initial policy sets for all players Π0

Simulate utilities ÛΠ0 for each joint π0 ∈ Π0

Initialize solution σ∗,0
i = Uniform(Π0

i )

while epoch e in {1, 2, . . . } do
for player i ∈ n do

for many episodes do
π−i ∼ σ∗,e−1

−i

Train πe
i over τ ∼ (πe

i , π−i)

Πe
i = Πe−1

i ∪ {πe
i }

Simulate missing entries in ÛΠe from Πe

Compute a solution σ∗,e from Γ̂e

Output: Current solution σ∗,e
i for player i

These two routines are iteratively applied into convergence. Convergence is typically deter-
mined by when no further ABR can be computed for any players. Practically, convergence can
also be applied by a limited walltime on the algorithm. Algorithm 1 contains PSRO’s pseudocode.

The PSRO framework was designed to provide a flexible template for reasoning about complex
games exploiting DRL as a powerful BR technique. A key idea of PSRO is to abstract the response
target beyond NE, through the concept of a Meta-Strategy Solver (MSS). MSSs offer a lens that
unifies many existing algorithms in multiagent learning and game theory. With an NE solver
as its MSS, PSRO corresponds to DO. Different algorithms for computing NE (e.g., based on
linear-programming, replicator dynamics [Taylor and Jonker, 1978], regret-minimization [Blum
and Mansour, 2007], or regret-matching [Hart and Mas-Colell, 2000] can be considered distinct
MSSs, to the extent they may produce results differing in accuracy or equilibrium selection. An
MSS that selects a uniform distribution over policies in the current strategy set produces the classic
technique of fictitious play [Brown, 1951]. Self-play [Silver et al., 2016, Heinrich, 2017] results
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from the MSS that returns a pure strategy containing only the newest policy. Table 2.1 compares a
selection of these algorithms by their MSSs output.

Table 2.1: Overview of previous MARL algorithms as versions of PSRO differing in MSS.
The lists under MSS correspond to the solution returned for each agent with a coefficient added
for each currently learning oracle as the final item in the list. e corresponds to the current epoch of
PSRO.

Algorithm Meta-Strategy Solver

Independent Reinforcement Learning [0, 0, . . . , 0, 1]
Iterative Best-Response [Monderer and Shapley, 1996] [0, 0, . . . , 1, 0]
Fictitious Play [Brown, 1951] [1/e, 1/e, . . . , 1/e, 0]
Fictious Self-Play [Heinrich et al., 2015] [ 1

e+1
, 1
e+1

, . . . , 1
e+1

, 1
e+1

]

Recent work has investigated and evaluated a variety of new MSSs for strategy evaluation. For
example, Wang et al. [2019] propose a weighted combination of NE and uniform profiles. Wright
et al. [2019] use NE as primary MSS, but then adjust the BR to improve response to a decay-
weighted linear combination of previous solutions. Omidshafiei et al. [2019] employ Markov-
Conley Chains to define a solution concept that relates to their policy evaluation measure α-rank,
and Muller et al. [2020] investigated its use as an MSS. Marris et al. [2021] proposed MSSs based
on various forms of correlated equilibrium. Indeed, any established or new solution concepts is a
ready candidate to serve as an MSS for strategy exploration.

2.4.3 Regret in Empirical Games

The regret of a solution in an empirical game may not exactly match regret in the real game. We
can see this by comparing empirical-game regret with the real game regret (Equation 2.48):

Regreti(σ) = max
πi∈Π̂i

Ui(πi, σ−i)− Ui(σ). (2.51)

The crux of the differences lies in the [deviation] set of policies considered for deviation. In the
real game, the full policy space Πi is considered. Whereas, in this measure of regret, only the
policies contained with the empirical game are available Π̂. Policies absent from the restricted
strategy-set Π̂ present opportunities for miscalculations of regret.

When comparing or evaluating game-solving algorithms, additional estimates of regret may be
employed. To understand this, let us first reformulate regret to be conditional on the deviation set:

Regreti(σ | Π) = max
πi∈Π

Ui(πi, σ−i)− Ui(σ). (2.52)
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One avenue for improving the estimate of regret is by including a set of known evaluation poli-
cies Πeval. These could be any of previous benchmark policies, heuristic policies, or even hand-
designed policies. Evaluation policies can also serve as a common baseline to estimate the relative
regret of algorithms:

Regreti(σ | Π̂ ∪Πeval) or Regreti(σ | Πeval). (2.53)

If you are comparing multiple game-solving algorithms, you can considered the combined

game constructed by joining each method’s empirical game:

Regreti

(
σ

∣∣∣∣∣ ⋃
method

Π̂method

)
. (2.54)

This method takes advantage of every available estimate of regret within a comparison. This
version of regret can be costly to compute, because it requires estimate the payoff of all the new
strategy profiles. Rendering it intractable for comparisons with many methods, or where each
empirical game is already sizable.

2.5 Transfer Learning

Transfer learning is the study of reusing knowledge gained in one context to facilitate learning in
a related but different context. Opportunities for transfer may arise in learning tasks, domains,
policies, or any other learning target. Within the field of transfer learning, this study addresses
two main questions: what type of knowledge is transferred, and how the knowledge is transferred.
Both questions are framed within the context of a game, where the knowledge consists of response
policies, and the transfer target is a different strategic scenario.

Previous work on how to transfer knowledge has tended to follow one of two main directions
[Pan and Yang, 2010, Lampinen and Ganguli, 2019]. The representation transfer direction con-
siders how to abstract away general characteristics about the task that are likely to apply to later
problems. Ammar et al. [2015] present an algorithm where an agent collects a shared general set
of knowledge that can be used for each particular task. The second direction directly transfers
parameters across tasks; appropriately called parameter transfer. Taylor et al. [2005] show how
policies can be reused by creating a projection across different tasks’ state and action spaces.

In the literature, transferring knowledge about the opponent’s strategy is considered intra-agent
transfer [Silva and Costa, 2019]. The focus of this area is on adapting to other agents. One line
of work in this area focuses on ad hoc teamwork, where an agent must learn to quickly interact
with new teammates [Barrett and Stone, 2015, Bard et al., 2020]. The main approach relies on
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already having a set of policies available, and learning to select which policy will work best with
the new team [Barrett and Stone, 2015]. Banerjee and Stone [2007] propose learning features that
are independent of the game, which can either be qualities general to all games or strategies.

In contrast to prior work, our focus is not on adapting to entirely new opponents, but rather on
transferring knowledge about response policies to new configurations or distributions of already
encountered opponent policies. In other words, responses to opponent policies are the source of
information to transfer.

2.5.1 Multi-Task Learning

Multiagent learning is analogous to multi-task learning. In this analogy, responding to each strate-
gic context is analogous to solving a different task. The opponents’ strategies relate to distributions
over shared sets of tasks. Similar analogies from strategies to tasks can be made with objectives,
goals, contexts, etc. [Kaelbling, 1993, Ruder, 2017].

The multi-task learning community has broadly categorized learnable knowledge into two
groups [Snel and Whiteson, 2014]. Task-relevant knowledge pertains to a specific task [Jong and
Stone, 2005, Walsh et al., 2006], while domain-relevant knowledge is common across all tasks
[Caruana, 1997, Foster and Dayan, 2002, Konidaris and Barto, 2006]. Some work has bridged the
gap between these settings; for example, knowledge about a task could be a curriculum to apply
across tasks [Czarnecki et al., 2018]. In task-relevant learning, a leading method is to identify
state information that is irrelevant to decision making and abstract it away [Jong and Stone, 2005,
Walsh et al., 2006]. Our work falls into the same task-relevant category, where we are interested
in learning responses to specific opponent policies.

2.6 Studied Games

In this section I introduce the more complex games that are studied in this dissertation.

2.6.1 Running With Scissors

Running With Scissors (RWS) is a temporarily extended version of Rock Paper Scissors (RPS) [Leibo
et al., 2021]. The agents begin by collecting rock, paper, and scissor items scattered throughout
the gird-world. These are added to the player’s inventory vi, which is initialized to have one of
each item. The game ends when a player challenges the other to play RPS. Each player plays a
distribution over the actions following the distribution of items in their inventory. The reward can
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then be calculated as:

ri =
vi
∥vi∥

M

(
v−i

∥v−i∥

)T

= −r−i, M =

 0 −1 1

1 0 −1
−1 1 0

 . (2.55)

The game is a two-player zero-sum game with a small state and action space, enabling inex-
pensive simulation. The general map layout it depicted in Figure 2.4. In it we can see that the
players randomly spawn in a fixed set of places. Moreover, items within the grid world can spawn
both deterministically and stochastically. This means that if an agent does not know what spawned
in a particular spot they cannot accurately infer the opponent’s inventory. This is critical, because
the game is partially observable. Agents are only able to view a small 5 × 5 sub-grid in around
their position instead of the full 13× 21 grid.

A particular instance of gameplay is provided in Figure 2.5. In this game, we can see that the
starting observations of each player can view the spawn of two randomly spawned items (shown
in the two right sub-grids). This gives each player private information of the state of the game.

Figure 2.4: RWS map layout. The blue squares represent the possible spawn points of the players.
Items either spawn deterministically as rock (orange), paper (white), scissors (green); or, one of
the three possible items is randomly spawned into each position (purple). Black cells are empty,
and light-gray represents walls.

2.6.2 Gathering (aka Harvest)

In Gathering, players move around an orchard picking apples. The challenging commons ele-
ment is that an apple’s regrowth rate is proportional to the number of nearby apples, so that so-
cially optimum behavior would entail managed harvesting. Self-interested agents capture only part
of the benefit of optimal growth, thus non-cooperative equilibria tend to exhibit collective over-
harvesting. The game has established roots in human-behavioral studies [Janssen et al., 2010] and
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Figure 2.5: RWS example observations. (Left) The full state of the RWS game. (Right) The two
player’s observations. Blue is used to represent self in both observations, whereas red is used in
the full state to distinguish between the two agents.

in agent-based modeling of emergent behavior [Pérolat et al., 2017, Leibo et al., 2017, 2021].

Figure 2.6: Gathering game with categorical observations and the small map. (Left) The full
state of the game. (Right) The player observations.

Another benefit of the Gathering game is how it can be easily customized to study a variety of
game qualities. In this dissertation I consider variants of the game that differ in ways listed below:

• The map specifying the player spawn points, apple locations, and walls.

• The observations either being categorical, or RGB images.

• The number of players.

Many qualities of the game are common across all settings. At each step of the game each
player receives a partial observation of the game. The observation is a small rectangular region in
front of the agent referred to as its viewbox. Actions are then simultaneously taken and privately
selected for each player. The possible actions include moving in the four cardinal directions,

38



rotating either way, tagging, or no action. A successful tag temporarily removes the other player
from the game, but can only be done to other nearby players. Players earn a reward of 1 if their
actions result in them landing on an apple, thereby picking it up.

For our initial experiments, I use a symmetric two-player version of the game, where in-game
entities are represented categorically [HumanCompatibleAI, 2019]. This categorical representation
facilitates faster experimentation and simplifies the interpretation of results. Figure 2.6 depicts the
game state and player observations. Each player has a 10×10 viewbox within their field of vision.
The cells of the grid world can be occupied by either agent shown in red and blue, the apples
shown in green, or a wall in gray. I also use categorical observations for a three-player version of
the game on a map called “open”, which is shown in Figure 2.7.

Figure 2.7: Gathering game with categorical observations and the open map.

Another variant of this commons game that I use features RGB observations. To further distin-
guish this game, I refer to it as Harvest: RGB. Harvest: RGB is exactly the harvest implementation
from MeltingPot [Leibo et al., 2021] with the same orchard map. A rendering of the game state
and observations is shown in Figure 2.8. The main difference between the Harvest versions is that
the observations are 88 × 88 × 3 images of the 11 × 11 viewbox in front of them. There are also
minor differences in the implementation of tagging and apple respawn mechanism.
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Figure 2.8: Harvest: RGB game. (Left) The full state of the game. (Right) The player observa-
tions.
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Part II

Strategic Knowledge Transfer

CHAPTER 3

Opponent Mixture Transfer Problem

Strategic knowledge is dependent on the specific strategic context defined by the coplayers’ strate-
gies. This type of knowledge naturally comes up in many challenges of multiagent systems, such
as coordination, establishment of conventions, and communication.

In the realm of our market example, strategic knowledge guides your interactions with vendors
and other market participants. It equips you with insights, such as the realization that the market
gets crowded after 10:30 and parking becomes difficult to find. This knowledge further assists
you in bargaining with a vendors who, for instance, may need to dispose of their Honeycrisp
apples before they spoil And at a more abstract level, strategic knowledge relates to knowing
which language to use and the sociolinguistic conventions of the area.

In this part of the dissertation I focus on strategic knowledge and explore the problem of its
transfer. As we defined in Section 1.3, strategic knowledge refers to predictions that depend on
the strategies employed by an agent’s coplayers. This definition is quite broad, as often an infinite
space of predictions are possible that depend on the coplayers’ strategies. Instead, with the over-
all goal of game solving in mind, it makes sense to focus on strategic knowledge that is effective
against the given coplayers’ strategies. Computation of a response policy is by definition rela-
tive to opponent strategies, and thus incorporates what we are referring to as performant strategic
knowledge. For this reason, I adopt a working definition of strategic knowledge which focuses
on the best-response predictions, contingent on the coplayers’ strategies. This covers any artifacts
that contribute to the predictions such as the accumulated experience, computed value function(s),
etc. As a more flexible approach, I will also regard approximate best-response policies or response
policies as forms of strategic knowledge.

Having defined strategic knowledge, we now shift our focus to the concept of its transfer.
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Strategic knowledge transfer involves moving knowledge from a specific, or source, strategic con-
text to enable more effective play in a different, or target, strategic context. For effective transfer to
occur, it is crucial that the source and target contexts share common features. Consequently, a well-
structured problem in strategic knowledge transfer demands that some behaviors of the coplayers
be consistent across contexts. Within the scope of game solving, strategic knowledge transfer is
clearly defined by exploiting the consistency and expansion of the coplayer’s strategy set across
different iterations. Thus, with every iteration, the previous iteration acts as the source context and
the current iteration becomes the target context.

The opportunity here lies in avoiding redundant learning when playing against a largely known
group of coplayers. In other words, we aim to prevent relearning against coplayer policies that
have already been considered. This setup frames a special case of the one-step transfer problem,
Problem 2, where the coplayer’s strategy set remains constant across different transfer contexts.

With the definitions above, we are ready to give a precise definition of a particular problem in
strategic knowledge transfer. Namely, suppose we have a set of response policies, each an ABR
to a specified opponent policy. Now, we are faced with a randomized opponent, whose behavior
is a distribution, or mixture, over these same opponent policies. Intuitively, the response policies
should contain information useful for generating an ABR to this mixture.

This setup frames what we call the opponent mixture transfer problem. At a high level, this
question asks how response policies to all of the opponent’s pure strategies, or policies, can be
transferred to generate a response to a given opponent mixed strategy.

Problem 3 (Opponent Mixture Transfer Problem). Given:

• the mixed strategy played by the opponent, σ−i ∈ ∆(Π−i), and

• the set of responses to each opponent policy, {BR(π−i)}π−i∈support(σ−i),

construct a response, BR(σ−i), to the opponent mixture σ−i.

The efficacy of a transfer method is judged relative to the cost of deriving a response policy
without strategic transfer—that is, by explicit training against σ−i.

The opponent mixture transfer problem may arise in various contexts. Our particular motivat-
ing context is within population-based game-solving algorithms, which compute response policies
to play against mixtures drawn from an evolving population of policies. The transfer opportunity
arises from the persistence of components of the opponent population across response computa-
tions. Thus, BRs calculated for opponent policies present in the population are likely to remain
relevant for a significant period as the population evolves.

I first consider the direct transfer of policies (Chapter 4) that model probabilities over actions.
Observing practical limitations in this approach, we turn our investigation to value-based policies
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(Chapter 5). Value-based policies directly model the expected discounted return that an agent
should expect for taking an action. I introduce a method, Q-Mixing [Smith et al., 2023a], that
approximately constructs a best-response to a mixed strategy by appropriately averaging the values
of each opponent response policy. Critical to the success of Q-Mixing is the ability of the resulting
agent to maintain an accurate belief in the current opponent policy. In Chapter 6, we explore belief
maintenance methods and the factors contributing to their success.

I next introduce two methods for strategic knowledge transfer to reduce the computational cost
of PSRO (Chapter 7) [Smith et al., 2021]. Mixed-Oracles learns separate response policies to
each policy in the opponent’s mixed strategy; and then, combines the response policies to approx-
imate a response to the full mixed strategy. Mixed-Opponents constructs a novel opponent policy
that represents an amalgamation of the full mixed strategy, facilitating the transfer of non-optimal
behaviors. A response is then calculated against this novel policy, benefiting from the variance
reduction resulting from the elimination of sampling over opponent policies. Both of these algo-
rithms employ, but are not limited to, Q-Mixing as a subroutine capable of aggregating strategies
into a single policy. When compared to standard PSRO, both methods exhibit a decrease in the
cumulative cost necessary to solve a game.
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CHAPTER 4

Direct Policy Transfer

Ideally, we want a method that solves the opponent mixture transfer problem by a direct operation
on the component response policies. By direct operation, I mean a solution that does not require
any additional assumptions about the response policies’ implementations or underlying derivations,
thereby making it applicable to the broadest possible range of contexts. Effective play would be
transferred from the knowledge contained in the response policies, weighted by probabilities that
their targets are played by the opponent.

A general solution of this kind is not possible, however, as we demonstrate below through a
counterexample. The counterexample shows, at minimum, that all actions necessary for the mixed-
strategy response must be among the actions possibly taken in the pure-strategy responses. As a
result, a direct operation is not possible, because additional assumptions must be taken. To under-
stand this limitation, we introduce an example we call the direct policy transfer counterexample

game, depicted in Figure 4.1.

Player 2
π0
2 π1

2

π0
1 10, -10 -10, 10

Player 1 π1
1 -10, 10 10, -10
π2
1 1, -1 1, -1

Figure 4.1: Direct policy transfer counterexample game.

Let us take the perspective of Player 1 in this game, and suppose we are tasked with responding
to the uniform mixed strategy of Player 2. Following the opponent mixture transfer problem,
Problem 3, our inputs are the opponent’s mixture σU

2 ← (0.5, 0.5), and the BRs to each of their
supported policies:

BR(π0
2)→ π0

1 BR(π1
2)→ π1

1.
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From these inputs alone, however we cannot construct the correct BR(σU
2 ), which is π2

1 . In this
case, the BR to the mixture does not involve the response policies to mixture components. We
would need additional information to identify π2

1 as the optimal response policy.
Despite this counterexample, there may still be games where direct policy transfer can be ef-

fective. In some cases relaxations may also be safely made to guarantee correctness. Therefore, for
completeness, we now discuss methods for direct policy transfer that may be used in these settings.

The resultant transferred policy must define the same state distribution over the game as BR(σ−i).
This property is called realization equivalence and was introduced to related stochastic policies
(i.e., behavioral strategies) and mixed strategies in sequence-form games [von Stengel, 1996,
Koller and Megiddo, 1992]. Establishing realization equivalence between our transferred policy
and a target BR(σ−i) enables us to verify successful transfer algorithms. When this is the case, the
set of response policies (to each opponent policy) can be purified1 into a single policy representing
a response to a mixed strategy opponent.

In order to formally define visitation frequencies we must first establish some primitives. Let
d0 : S → [0, 1] or d0 ∈ ∆(S) by the initial state distribution. From this we can derive Pπ as the
probability that the random variables, denoted by capital script, take on the assigned values when
π is acting in the environment. This allows us to describe many useful probabilities:

Pπ(S0 = s) = d0(s)

Pπ(At = a | St = s) = π(a | s)

Pπ(St = st, At = at | S0 = s0) = π(at | st)Pπ(St = st | S0 = s0)

Pπ(St = st | S0 = s) =
∑
st−1

∑
at−1

p(st | st−1, at−1)π(at−1 | st−1)Pπ(St−1 = st−1 | S0 = s0)

It is worth noting explicitly here that this notation takes the viewpoint of one agent; where, they
view all other agents as part of the environment. From these tools we formally define visitation
frequencies in Definition 1.

Definition 1 (Visitation Frequency [Puterman, 1994, §6.9.2]). A visitation frequency is the dis-

counted probability of a policy π occupying either a state ρπ : S → [0, 1] or joint state-action

ρπ : S × A → [0, 1]. For the initial state distribution d0 and the probability of reaching state

and/or action s, a after t timesteps and starting in state s0 as Prπ (St = st, At = at | S0 = s0)

1The moniker of purification refers to representing a set of policies as a pure-strategy (policy).
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with discount factor γ the visitation frequency is as follows:

ρπ(s, a)
.
=
∑
s0∈S

d0(s0)
∞∑
t=0

γn · Prπ
(
St = s, At = a | S0 = s0

)
, (4.1)

ρπ(s)
.
=
∑

a∈A(s)

ρπ(s, a).

This quantity is also referred to as the occupancy frequency or occupancy of a policy.

Through visitation frequencies we can establish a method for purifying a mixed strategy. This
is accomplished by weighting the policies by the likelihood of their respective play, within the
mixed strategy, in a particular state. This relationship is established below in Theorem 2.

Theorem 2. The purified policy πσ of a mixed strategy σ is a the convex combination of each

policy’s action-distribution and the likelihood of that policy for each state:

∀s ∈ S, ∀a ∈ A(s), πσ(a | s) =
∑

π∈support(σ)
p(π | s, σ) · π(a | s). (4.2)

Assuming all state-action pairs are reachable by the pure strategies π ∈ support(σ).

Proof. We begin by establishing the high-level relationship between the purified-policy and its
visitation frequency xσ(s, a) via simple probability rules:

xσ(s, a) = p(s | σ) · πσ(a | s), (4.3)

πσ(a | s) = xσ(s, a)

p(s | σ)
. (4.4)

The remainder of this proof focuses on removing p(s | σ) from Equation 4.4, by unpacking xσ(s, a)
to contribute a corresponding p(s | σ) for reduction. To this end, we first establish the policy-
likelihood for later use:

p(π | s, σ) = p(s | π) · p(π | σ)
p(s | σ)

=
p(s | π) · σ(π)

p(s | σ)
p(π | s, σ) · p(s | σ) = p(s | π) · σ(π) (4.5)
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Now, we focus on expanding xσ(s, a) to include p(s | σ) using Equation 4.5:

xσ(s, a) =
∑
π

p(π, s) · π(a | s)

=
∑
π

p(s | π) · p(π) · π(a | s)

=
∑
π

p(s | π) · σ(π) · π(a | s)

=
∑
π

p(π | s, σ) · p(s | σ) · π(a | s)

= p(s | σ) ·
∑
π

p(π | s, σ) · π(a | s) (4.6)

Finally, we substitute Equation 4.6 into Equation 4.4:

πσ(a | s) = xσ(s, a)

p(s | σ)

=
p(s | σ) ·

∑
π p(π | s, σ) · π(a | s)
p(s | σ)

=
∑
π

p(π | s, σ) · π(a | s)

The construction of a mixed strategy best-response policy is a direct application of this opera-
tion. The response policies to each respective opponent policies are played in the same distribution
that the opponent plays.

There are two limitations with this approach (1) the need for a policy-state likelihood, and
(2) that state-action pairs must be reachable by the component policies. Computing a policy-state
likelihood requires a O(SAΠ) computation. This cost rivals directly computing a response to the
mixed strategy directly, and thus renders the overall approach unavailing. The other limitation of
policy-based transfer approaches is that we have assumed that all joint state-actions are reachable.
Unfortunately, this assumption is difficult to guarantee outside of simple games. Due to these
outstanding issues, we close the door on policy-based transfer methods and leave them for future
work; instead turning towards value-based transfer methods.
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CHAPTER 5

Value Function Transfer

Quality... you know what it is, yet you don’t know what it is. But

that’s self-contradictory. But some things are better than others,

that is, they have more quality. But when you try to say what

the quality is, apart from the things that have it, it all goes poof!

There’s nothing to talk about. But if you can’t say what Quality

is, how do you know what it is, or how do you know that it even

exists? If no one knows what it is, then for all practical purposes

it doesn’t exist at all. But for all practical purposes it really does

exist.

— Robert M. Pirsig,

Zen and the Art of Motorcycle Maintenance

We now turn towards adopting assumptions about the underlying implementation of the re-
sponse policies. Specifically, we consider value-based policies, which are policies derived from an
action-value function. As value-based policy derivation is a ubiquitous technique in reinforcement
learning, it lends support to the pursuit of exploiting value representations in strategic transfer.

With respect to the opponent mixture transfer problem, assuming value-based policies means
that each response policy BR(π−i) has an associated value functionQi(· | π−i). The value function
captures the expected return of all state-action pairs, which allows the evaluation of all actions
relative to the Q-value function, as opposed to just the actions in the support of its policy.

The distinction is clear when we recall direct policy transfer counterexample game from Chap-
ter 4. We could not construct BR(σU

−i), because the solution π2
1 was not contained in the component

response policies. Instead, now with the value-based assumption, we have access to the value func-
tion for both response policies. This provides information about the quality of π2

1 as it pertains to
each of the opponent’s policies, and can be used to exactly derive that π2

1 is the best-response to
σU
−i. As we’ll explore in Section 5.3.1, this assertion holds true when state-actions, instead of

policies, are the atomic units.
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5.1 Normal-Form Game

To build up to a general solution, we first consider the simplified setting of a normal-form game,
which notably has just a single state. The episode plays out by all players participating in one
round of simultaneous action selection. All players then receive a single reward as their payoff and
the episode concludes. The single-state setting is essentially a problem of bandit learning, where
our opponent’s strategy will set the reward of each arm for an episode.

Following from the bandit learning problem, intuitively, our expected reward against a mixture
of opponents is proportional to the payoff against each opponent weighted by their respective likeli-
hood. This insight motivates our method Q-Mixing, where we first train value-based best-responses
to each opponent policy. Then we appropriately average the Q-values following the likelihood of
playing against each policy within the mixture. To formalize this relationship, we introduce state-
and action-values that are conditioned on fixed opponent strategies, called the Strategic Response
Value (SRV) (Definition 3) and Strategic Response Q-Value respectively (SRQV) (Definition 4).

Definition 3 (Strategic Response Value). An agent’s πi strategic response value is its expected

return given an observation, when playing πi against a specified opponent strategy:

Vπi
(oti | σt

−i) = Eσt
−i

∑
a

π(ai | oti)
∑
o′i,ri

p(o′i, ri | oti,a)
[
ri + γ · Vπi

(o′i | σt+1
−i )

] .
Let the optimal SRV be

V ∗
i (o

t
i | σt

−i) = max
πi

Vπi
(oti | σt

−i).

Definition 4 (Strategic Response Q-Value). An agent’s πi strategic response Q-value is its ex-

pected return for an action given an observation, when playing πi against a specified opponent

strategy:

Qπi
(oti, a

t
i | σt

−i) = Eσt
−i

[
rti
]
+ γEot+1

i

[
Vπi

(ot+1
i | σt+1

−i )
]
,

where rti ≡ ri(o
t
i, a

t
i, a

t
−i). Let the optimal SRQV be

Q∗
i (o

t
i, a

t
i | σt

−i) = max
πi

Qπi
(oti, a

t
i | σt

−i).

Note, that the above definitions denote that the opponent’s strategy is a mixed strategy σ−i.
When the opponent plays a pure strategy π−i we can substitute the notation. For example, the
SRQV against an opponent’s first policy is Q(· | π0

−i).
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Q-Mixing captures the relationship between the SRQVs against a mixed-strategy opponent
and the component SRQVs against each policy in the opponent’s mixed strategy. In the single-
state setting, weighting the SRQV against each opponent policy by the opponent’s distribution
supports a BR to that mixture. We define this relationship formally in Theorem 5, and refer to the
single-state formulation as Q-Mixing: Prior.

Theorem 5 (Single-State Q-Mixing). Let Q∗
i (· | π−i), π−i ∈ Π−i, denote the optimal strategic

response Q-value against opponent policy π−i. Then for any opponent mixture σ−i ∈ ∆(Π−i),

the optimal strategic response Q-value is given by

Q∗
i (ai | σ−i) =

∑
π−i∈Π−i

σ−i(π−i) ·Q∗
i (ai | π−i).

Proof. The definition of Q-value is as follows [Sutton and Barto, 2018]:

Q∗
i (ai) =

∑
ri

p(ri | ai) · ri.

In a multiagent system, the dynamics model p suppresses the complexity introduced by the
other agents. We can unpack the dynamics model to account for the other agents as follows:

p(ri | ai) =
∑
π−i

∑
a−i

π−i(a−i) · p(ri | a).

We can then unpack the strategic response value as follows:

Q∗
i (ai | π−i) =

∑
a−i

π−i(a−i)
∑
ri

p(ri | a) · ri.

Now we can rearrange the expanded Q-value to explicitly account for the opponent’s strategy.
The independence assumption enables the following re-writing by letting us treat the opponent’s
mixed strategy as a constant condition:

Q∗
i (ai | σ−i) =

∑
ri

∑
π−i

σ−i(π−i)
∑
a−i

π−i(a−i) · p(ri | a) · ri

=
∑
π−i

σ−i(π−i)
∑
a−i

π−i(a−i)
∑
ri

p(ri | a) · ri

=
∑
π−i

σ−i(π−i) ·Q∗
i (ai | π−i).
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5.1.1 Didactic Example

Player 2
πR
2 πP

2 πS
2

πR
1 0, 0 −1, 1 1, − 1

Player 1 πP
1 1, − 1 0, 0 −1, 1
πS
1 −1, 1 1, − 1 0, 0

Figure 5.1: Rock Paper Scissors. Also known as “Roshambo.”

Consider the RPS game illustrated in Figure 5.1. Each episode consists of only a single state,
then the agents simultaneously submit actions, and receive their rewards. From the perspective of
Player 1, our opponent, Player 2, has the choice of three policies: rock πR

2 , paper πP
2 , and scissors

πS
2 . Notice, that in this game policies are analogous to primitive actions, and that is not generally

the case. For each of the opponent’s policies we can determine the optimal SRQV by inspection:

Q∗
1(· | πR

2 ) =

 0

1

−1

 , Q∗
1(· | πP

2) =

−10
1

 , Q∗
1(· | πS

2) =

 1

−1
0

 .
The SRQVs are found by first fixing the opponent’s policy. In effect, the game is reduced to a

3 × 1 matrix game with known payoffs for each policy. This reduction removes any stochasticity
introduced into payoff estimation that would result in sampling from a distribution of opponent
policies. From the smaller matrix game, we need only consider our agent’s payoffs (for Player 1
these are the first value in each cell of the game matrix).

Playing deterministically in RPS makes you an easily exploitable player. A stronger opponent
may randomly choose between rock and paper yielding the mixed strategy σ−i = (0.5, 0.5, 0.0).
Using single-state Q-Mixing we can compute the SRQV to said mixed strategy, assuming we know
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the mixture:

Q∗
1(· | σ−i) =

∑
π−i

σ−i(π−i)Q
∗
1(· | π−i)

= 0.5

 0

1

−1

+ 0.5

−10
1

+ 0.0

 1

−1
0



=

−0.50.5

0

 .
Therefore, we know that our optimal policy is πP

1 . When we play paper, we have the opportunity
to win (unlike playing rock), and have no opportunity to lose (like scissors). The worst we can do
is tie, making it our best-response.

5.2 Leveraging Information from the Past

Next, we consider enriching the previous setting to incorporate repeated interaction between the
agents across an evolving observation distribution. The joint effect of the agents’ actions influences
this distribution and affords the opportunity to gather information about their opponent during an
episode. Methods in this setting need to (1) leverage information from the past to update its’ belief
about their opponent, and (2) grapple with the uncertainty about the future. Accordingly, extending
Q-Mixing into this setting requires quantification of the agent’s current belief about their opponent
and their future uncertainty.

We will begin by focusing on the first condition: the method must leverage information from
the past to update its’ belief about their opponent. When compared to the single-state setting, each
agent now has access to a history of their observationsO0:t

i . Additionally, we will not presently take
into consideration that the agent may gain future evidence about the identity of their opponent’s
policy (see Section 5.3). In essence, the current setting reflects that of the penultimate state of a
game. Where each agent has all of the previous play to consider; however, they know that they are
deciding their final action for this episode.

During an episode the actual observations experienced generally depend on the identity of the
opponent’s policy, which is drawn from their mixed strategy. Let

ψi : O0:t
i → ∆(Π−i) (5.1)
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Figure 5.2: Conceptual opponent uncertainty over time. The yellow area represents a uncer-
tainty reduction, for some measure, as a result of updating belief about the distribution of the
opponent. The blue area represents approximation error incurred by Q-Mixing.

represent the agent’s current belief about the opponent’s policy using the observations during play
as evidence. From this prediction, we propose an approximate version of Q-Mixing that accounts
for past information. The approximation works by first predicting the relative likelihood of each
opponent policy given the current observation. Then it weights the Q-value-based BRs against
each opponent by their relative likelihood.

Figure 5.2 provides a conceptual illustration of the benefits and limitations of this new prediction-
based Q-Mixing. At any given timestep t during the episode, the information available to an agent
about the opponents may be insufficient to perfectly identify their policy. Nevertheless, the agent
maintains a belief σt

−i of the identity of their opponent’s policy. The yellow area above a timestep
represents the uncertainty reduction from an updated prediction of the opponent σt

−i compared to
the baseline prediction of the prior σ0

−i. Crucially, this definition of Q-Mixing does not consider
updating the opponent distribution from new information in the future (blue area in Figure 5.2).

Let the previously defined ψ be the opponent policy classifier (OPC), which predicts the iden-
tity of the opponent policy. We then augment Q-Mixing to weight the importance of each BR as
follows:1

Qπi
(oi, ai | σ−i) =

∑
π−i

ψi(π−i | oi, σ−i)Qπi
(oi, ai | π−i). (5.2)

We refer to this quantity as Q-Mixing, or Q-Mixing: X, where X describes ψ. The version of

1I suppress the notation that observations include histories of observations. This is for both ease of reading and
because the requisite amount of history required will vary per game.
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Q-Mixing introduced in the single-state setting will be therefore referred to as Q-Mixing: Prior,
where the prior belief σ0

−i is the known mixed strategy of the opponent. By continually updating
the opponent distribution during play, the adjusted Q-Mixing result better responds to the actual
opponent.

An ancillary benefit of the opponent classifier is that poorly estimated Q-values tend to have
their impact minimized. For example, if an observation occurs only against the second opponent
policy, then the Q-value against the first opponent policy would not necessarily be trained well, and
thus could distort the policy from Q-Mixing. These poorly trained cases correspond to unlikely
opponents and get reduced weighting in the version of Q-Mixing augmented by the classifier.

5.2.1 Running With Scissors

We first evaluate Q-Mixing on the RWS grid-world game [Vezhnevets et al., 2020, Leibo et al.,
2021], detailed in Section 2.6.1. With this environment we pose the following questions:

1. Can Q-Mixing transfer Q-values from pure strategy responses to generate a mixed strategy
response?

2. Is Q-Mixing capable of transferring Q-values across all mixed strategies?

3. Does incorporating an OPC that updates the opponent distribution in Q-Mixing enhance its
performance?

In our experiments, we assume the perspective of Player 1 and learn LSTM-based [Hochreiter
and Schmidhuber, 1997] response policies using Double DQN [van Hasselt et al., 2016]. The state
space is a one-hot encoding of the 10 possible occupants of each cell. Resulting in a ravelled
vector with length 253, including observation of the player’s inventory. The agent has the option
of selecting one of 9 actions: move in the four cardinal directions, rotate left or right, challenge
(fire/beam) their opponent, or to take no action. The LSTM has a memory size of 128, and the
output is projected through a series of fully-connected layers with sizes [128, 64, 64, 9].

We learn three different policies for Player 2 that are then fixed for evaluation. Each of these
policies is specialized to prefer collecting one of the three items. To train such a policy, an auxiliary
reward of 1 is added each time the agent collects their preferred item.

5.2.2 Transfer Onto A Mixed Strategy

With our game and opponents established, we can address our first research question: can Q-
Mixing effectively transfer Q-values from pure strategy responses to generate a mixed strategy
response? To assess this, we examine the method’s effectiveness in generating a response policy
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Figure 5.3: BR(Uniform)’s learning curve compared to Q-Mixing. BR(Uniform)’s performance
is reported in terms of a sliding window of return over the last 100 episodes. Q-Mixing transfers
BRs the the opponent’s policies that were trained using equal fractions of the training budget avail-
able to BR(Uniform). Q-Mixing is then evaluated by simulating its return against each opponent
policy for 100 episodes. Both methods’ performances are reported including a 95% bootstrap con-
fidence interval.

to a uniform mixed strategy composed of three opponent policies. As a baseline, we use a best-
response policy trained directly against the mixed strategy, denoted as BR(Uniform). Constructing
a Q-Mixing policy first requires training best-responses directly against the individual opponent
policies. Simultaneously, best-responses are created directly against the individual opponent poli-
cies. These pure strategy best-responses employ the same neural network architecture but divide
the simulation budget allotted to BR(Uniform) evenly. By allocating the simulation budget in this
manner, we account for outcomes potentially influenced by access to larger amounts of simulation
data. The responses thus obtained are then utilized to construct the Q-Mixing: Prior policy.

We plot BR(Uniform)’s training curve in Figure 5.3. On this plot, we also include the simu-
lated performance of Q-Mixing: Prior. It is important to note here that Q-Mixing: Prior requires
having previously trained best-responses to each of the opponents individual policies. Since we
are only investigating here the quality of this transfer operation, we do not account for this prior
simulation time. This disclaimer in mind, we find that Q-Mixing: Prior is able to successfully
transfer Q-values to generate a successful best-response policy. In fact, the Q-Mixing: Prior policy
outperforms to BR(Uniform) without requiring any addition training against the objective. This
performance gap can be potentially explained by

(a) benefits from specialization, and
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(b) limitations of RL as an approximate best-response oracle.

Q-Mixing allows best-responses to be trained directly against each opponent policy, disentangling
the belief in the opponent’s policy from the value of each action. As a result, the Q-values need
not be risk-averse and choose sub-optimal responses, which is crucial for BR(Uniform) as it must
concern itself with the other opponent policies. As for the limitations of RL as an approximate
best-response, we accept this limitation because any approximate method will have its drawbacks.
Moreover, both methods were treated with equal hyperparameter tuning and training budget (mea-
sured in training timesteps). A practitioner should prefer Q-Mixing, because this result suggests it
is much easier to produce quick and strong results (at least for this game). In summary, Q-Mixing
shows efficacy in transferring strategic knowledge from opponent policies onto an opponent mixed
strategy, confirming our first research question.

5.2.3 Opponent Strategy Space Coverage

The previous result suggests that Q-Mixing may be particularly advantageous when we need to
repeatedly generate responses to differing opponent strategies. We investigate this possibility in
our second research question. Can Q-Mixing transfer Q-values across all of the opponent’s mixed
strategies?

In order to investigate this question we evaluate the same two methods against a representative
coverage of the entire strategy space of the opponent. The strategy sets we consider are all mixtures
truncated to the tenths place (e.g., [0.3, 0.4, 0.3]). Q-Mixing methods depend on the changing
opponent mixed strategy, unlike BR(Uniform), which is unchanged across opponent strategies.
Therefore, when evaluating BR(Uniform) we simulate its performance against each respective
opponent policy for 300 episodes2. Then the expected performance against each mixed strategy
can be calculated by appropriately averaging the mean returns against the respective policies. As
for Q-Mixing, we must simulate the performance against each opponent mixture independently.
Q-Mixing must be updated to condition on each opponent mixture, and then be simulated against
each opponent policy for 300 episodes.

We evaluate both methods based on their return and their normalized return. The normalized
return, normalizes an estimated return against an opponent policy by the return received by its
respective BR. The normalized returns are then averaged according to the opponents mixture, as
follows:

∥u(πi, σ−i)∥ =
∑

π−i∈σ−i
σ−i(π−i) · u(πi, π−i)∑

π−i∈σ−i
σ−i(π−i) · u(BR(πi), π−i)

(5.3)

Looking at both performance metrics allows us to more fairly compare the distribution of returns

2The number of episodes was chosen because the mean return empirically converged by 300 episodes.
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Figure 5.4: Coverage of Q-Mixing: Prior on RWS. The opponent strategies are sorted per-BR-
method by the BR’s return. Shaded region represents a 95% bootstrap confidence interval over
five random seeds. The two methods are trained using the same simulation budget. The left plot,
evaluates each method by their return. On the right plot, we instead normalize the return by the
performance of the BR to each opponent policy.

across different opponent policies. For example, consider an opponent with two policies, the later
being vulnerable to dramatic exploitation. If we estimated our returns against these policies as 1
and 1000 respectively, then any evaluations against a mixture of these two policies would not fairly
account for the performance to the first opponent policy.

Figure 5.4 shows Q-Mixing’s performance across the opponent mixed strategy space. As we
can see in both plots, Q-Mixing strictly dominates the performance of BR(Uniform). A Q-Mixing
method that perfectly transfers the component BR knowledge would have a curve that is a hori-
zontal line at 1. This upper bound is unrealistic in practice, because it effectively requires perfectly
identifying the opponent policy prior to play. Nevertheless, the difference between Q-Mixing:
Prior and 1 represents the potential room for improvement. An astute reader then may wonder how
is it possible for Q-Mixing: Prior to achieve a performance greater than 1? This results is from
the serendipitous circumstance where the Q-values from the other responses offer advantageous
information when weighted together.

However, Q-Mixing requires access to the opponent distribution, an assumption that can po-
tential limit its applicability. We will see below, alternative instantiations of Q-Mixing that may
relax this assumption.
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Figure 5.5: Effects of averaging Q-values from DQN. (Left) performance of averaging the Q-
values from an increasing number of DQNs against the uniform mixed-strategy opponent. (Right)
the respective performance of the individual DQNs.

5.2.4 Q-value Regularization

A possible explanation for the performance improvements observed in Q-Mixing is that it benefits
from value ensembling. Value ensembling has been shown to reduce noise in BR learning, leading
to a more stable training target [Anschel et al., 2017]. In the context of Q-Mixing, this would
suggest that the advantage is derived from the aggregation of value predictors, rather than the spe-
cialization of per-opponent policy responses or their weighting. To determine if regularization is
the cause of our previous findings, we examine the benefits of regularization in this domain using
a set of independently trained Q-functions. If averaging these Q-functions corresponds to perfor-
mance improvements, then regularization could be a plausible explanation for the performance
improvements seen in Q-Mixing.

In Figure 5.5, we show the performance of uniformly averaging the Q-values from an increas-
ing number of the independently trained DQNs. There appears to be no consistent trend in per-
formance improvement or degradation as additional DQNs are introduced. Going from one to two
DQNs results in an improvement, but adding a third DQN eliminates the previous gains and further
reduces performance. In the same figure, we show the performance of each DQN in isolation. The
individual performance allows us to better understand the regularization results: changes in regu-
larization performance coincided with the relative performance of each newly added Q-function.

Next, we explore whether any trend emerges when regularizing the outputs of two DQNs to-
gether. This experiment is inspired by the hypothesis that the order in which DQNs are added
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Figure 5.6: Performance improvement of averaging an additional DQN. The x-axis denotes the
IDs of the baseline DQN (first index), and the additional DQN (second index) added to regularize
its’ Q-values.

during evaluation may have confounded our previous results when regularizing a group of DQNs.
In Figure 5.6, we plot the improvement in return when an additional DQN is averaged with a base-
line DQN. 12 of the 25 combinations saw an improvement in performance from the addition of
another Q-value estimate. In conjunction with the previous results, we find no compelling evi-
dence to suggest that Q-value regularization is the primary factor contributing to the benefits of
Q-Mixing.

5.2.5 Opponent Classification

Our third research question is: can the use of an OPC that updates the opponent distribution in
Q-Mixing improve its performance? During play against an opponent sampled from the mixed
strategy, the player is able to gather evidence about which opponent they are playing. We hypothe-
size that leveraging this evidence to weight the importance of the respective BR’s Q-values higher
will improve Q-Mixing’s performance.

To verify this hypothesis, we train an OPC using the replay buffers associated with each BR
policy. These are the same buffers that were used to train the BRs, and cost no additional compute
to collect. This data is used to train an OPC that outputs a distribution over opponent pure strate-
gies for each observation. The OPC is implemented with a deep neural network with the same
architecture as the policies, save the last layer that has size that equals the number of opponent
policies (in this case, 3). The classifier is trained to predict from an observation, sampled across
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the replay buffers, the respective pure strategy index it occurred against with a cross-entropy loss.
We evaluate Q-Mixing: OPC by testing the performance on a representative coverage of the

mixed-strategy opponents illustrated in Figure 5.7. In order to compute coverage curves we follow
two methodologies based off whether the response policy can leverage knowledge of the oppo-
nent’s strategy. For methods where the response policy cannot use the opponent’s strategy (e.g.,
BR(0) cannot benefit from being told they are playing opponent policy 1), the performance against
each opponent policy does not change across strategies. Therefore, we first simulate the perfor-
mance against each opponent policy, then we can compute the performance against each opponent
strategy by appropriately averaging the respective performance against each opponent policy by
the likelihood of playing said opponent. On the other hand, methods such as Q-Mixing can condi-
tion on the opponent’s strategy generating a unique response policy per for each opponent strategy.
To evaluate these methods, we must simulate the response policy’s performance against each oppo-
nent strategy independently. Keeping with a similar sampling procedure as the first methodology,
we first simulate the per opponent policy performance and then average these performances by the
opponent’s strategy. However, this must be uniquely computed for each opponent strategy.

We found that the Q-Mixing: OPC policy performed stronger against the full opponent strat-
egy coverage than Q-Mixing: Prior. This result supports our hypothesis that an OPC can identify
the opponent’s pure strategy and enable Q-Mixing to chose the correct BR policy. However, Q-
Mixing: OPC method has a larger variance in return. This variance is not found in the normalized
return, suggesting that the larger variance is a result of the range of exploitability of the respec-
tive opponent policies. Previously, this trend in variance was thought to be a result of opponent
misclassification.

One limitation of this particular instance of the OPC is the need for retraining the classifier
whenever there are changes in the set of opponent policies. However, the cost of training the OPC
is relatively low compared to training a policy. This is primarily because the training procedure for
the OPC, which is a supervised learning process, does not require interaction with a simulator to
generate training data. This characteristic makes the OPC method viable, but it also underscores a
potential direction for future research: the development of an opponent likelihood model capable
of handling a dynamic set of opponent policies.

5.2.6 Policy Distillation

In Q-Mixing we need to compute Q-values for each of the opponent’s pure strategies. This can be
a limiting factor in parametric policies, like deep neural networks, where our policy’s complexity
grows linearly in the size of the support of the opponent’s mixture. This can become unwieldy
in both memory and computation. To remedy these issues, we propose using policy distillation to
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Opponent Strategy Sorted by Response Performance

Figure 5.7: Coverage of Q-Mixing: OPC on RWS. The opponent strategies are sorted per-BR-
method by the BR’s return. Shaded region represents a 95% bootstrap confidence interval over
five random seeds. The two methods are trained using the same simulation budget. The left plot,
evaluates each method by their return. On the right plot, we instead normalize the return by the
performance of the BR to each opponent policy.

compress a Q-Mixing policy into a smaller parametric space [Hinton et al., 2014, Rusu et al., 2015,
Buciluǎ et al., 2006].

In the policy distillation framework, a larger neural network referred to as the teacher is used as
a training target for a smaller neural network called the student. In our experiment, the Q-Mixing
policy is the teacher to a student neural network that is the size of a single best-response policy.
The student is trained in a supervised learning framework, where the dataset is the concatenated
replay buffers from training pure-strategy best-responses. This is the same dataset that was used
in opponent classifying, which was notably generated without running any additional simulations.
A batch of data is sampled from the replay-buffer and the student predicts QS the teacher’s QT

Q-values for each action. The student is then trained to minimize the KL-divergence between
the predicted Q-values and the teacher’s true Q-values. There is a small wrinkle, the policies
produce Q-values, and KL-divergence is a metric over probability distributions. To make this
loss function compatible, the Q-values are transformed into a probability distribution by softmax
with temperature τ . The temperature parameter allows us to control the softness of the maximum
operator. A high temperature produces actions that have a near-uniform probability, and as the
temperature is lowered the distribution concentrates weight on the highest Q-Values. The benefit
of a higher temperature is that more information can be passed from the teacher to the student
about each state.
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Figure 5.8: Policy distillation simulation performance over training on the Gathering game.
The teacher Q-Mixing-Prior is used as a learning target for a smaller student network. Shaded
region represents a 95% confidence interval over five random seeds (df = 4, t = 2.776).

The learning curve of the student is reported in Figure 5.8. We found that the student policy was
able to recover the performance of Q-Mixing-Prior, albeit with slightly higher variance. This study
did not include any effort to optimize the student’s performance, thus further improvements with
the same methodology may be possible. This result confirms our hypothesis that policy distillation
is able to effectively compress a policy derived by Q-Mixing.

5.3 Accounting for Future Uncertainty

Q-Mixing as we have seen it so far can handle the timeless setting (single-state), and consider
information from the past and present. So far, the belief in the opponent’s policy is assumed
constant into the future. However, the future offers additional opportunities to gather evidence that
may influence the belief in the opponent’s policy. And in these future states, the belief at that point
should be updated to reflect the cumulative evidence gathered about the opponent’s policy.

5.3.1 Opponent-Policy Identification Game

To illustrate this important detail we introduce the opponent-policy identification game. This game,
illustrated in Figure 5.9, is a form of coordination game where an agent has the option to pay a cost
to observe the opponent’s policy prior to coordination. Success in this game requires that the agent
can appropriately trade-off the cost of information gathering with the benefit of a more informed
future belief in the opponent’s policy.
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Figure 5.9: Opponent-policy identification game. Leaf node values reflect the full return for
player i.

At the root, the opponent draws a policy from their mixed strategy σ−i ∈ ∆({πL
−i, π

R
−i}).

Player i begins in initial state s0i , where they have no information about the opponent’s policy.
From this state, player i has the option to observe the opponent’s identity—that is, whether it
chose the L or R policy—for a cost of ϵ. If they exercise this ability, they transition to a state
of knowing the opponent’s identity {sL

i , s
R
i } (where the superscript corresponds to the opponent’s

policy). If they pass on this opportunity, then they remain in a state of ignorance s?i .
After player i has observed or passed, the player chooses L or R. If i’s choice matches the

opponent’s policy label, the reward to both players is 1; otherwise they receive no reward. The
total return, or payoff, for player i in this game is then the cost of observation, if exercised, plus
the reward conditional on successful coordination.

The BR to an opponent in this game depends on both the opponent’s strategy σ−i and the
cost of observation ϵ. For instance, consider the uniform mixed strategy opponent with a small
observation cost:

σU
−i ← Uniform({πL

−i, π
R
−i}) ϵ← 0.03.

The best-response in this setting, BR(σU
−i), is to observe the opponent’s policy and play the appro-

priate response. Consequently, BR(σU
−i) receives a return of 0.97. Had this response policy chosen

to not observe the opponent’s identity, then they can do no better than chance during coordination
and would receive a return of 0.5.

Now, let us consider our transfer learning problem within the aforementioned setting of the
opponent-policy identification game. The problem asks us to construct BR(σU

−i) from

{BR(πL
−i),BR(πR

−i)},
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given σ−i. The pure strategy best-responses in effect already know the identity of the opponent.
This means that they never decide to observe the identity, as doing so incurs an unnecessary cost
without providing any additional information. Hence, we can summarize the pure strategy re-
sponses as follows (the BRs are rewritten as conditioned policies for ease of notation):

πi(s
0
i | πL

−i) = Pass πi(s
0
i | πR

−i) = Pass

πi(s
?
i | πL

−i) = L πi(s
?
i | πR

−i) = R.

From these component policies we cannot construct BR(σU
−i), because it contains a new strategic

behavior not present in the provided responses: the need to gather additional information about the
opponent. As we saw in the problem setup, BR(σU

−i) receives a higher return if it chooses to take
the observe action and appropriately respond. The information-gathering behavior fundamental to
the correctness of a mixed strategy response is, in this example, not present in responses to the
opponent pure strategies.

In the general opponent-policy identification game, we can successfully transfer responses
when acquiring additional information on the identity of the opponent is not worthwhile. Information-
gathering is not worthwhile when

1− ϵ < max
π−i

σ−i(π−i),

where σ−i(π−i) is the probability of the opponent playing π−i. If this inequality holds, then the
cost for observation outweighs its benefit. Conversely, if the inequality is reversed, then BR(σU

−i)

stands to benefit from taking actions to acquire knowledge about the opponent’s identity. This
information-gathering behavior will not be evident in the component response policies, because it
is not optimal for them to incur the information-gathering cost. As a result, BR(σU

−i) cannot be
constructed without injecting additional strategic knowledge related to opponent policy identifica-
tion.

5.3.2 Q-Mixing with Value Iteration

To account for future uncertainty, Q-Mixing must be able to update its successor observation values
given future evidence of the opponent’s policy. This can be done by expanding the Q-value into its
components: expected reward under the current belief in the opponent’s policy, and our expected
next observation value. By updating the second term to recursively reference a new opponent
belief we can account for changing beliefs in the future. The extended formulation, Q-Mixing:
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Value Iteration (QMVI), is given by:

Q∗
i (o

t
i, a

t
i | σ−i) =

∑
π−i∈Π−i

ψi(π−i | oti, σ−i) ·
[
ri(o

t
i, a

t
i | π−i) + γEot+1

i

[
V ∗(ot+1

i | σ−i)
]]
. (5.4)

If we assume that we have access to both a dynamics model and the observation distribution
dependent on the opponent, then we can directly solve for this quantity through Value Iteration
(Algorithm 2). These requirements are quite strong, essentially requiring perfect knowledge of the
system with regards to all opponent policies. The additional step of Value Iteration also carries a
computational burden, as it requires iterating over the full state and action spaces. Though these
costs may render QMVI infeasible in practice, we provide Algorithm 2 below as a way to ensure
correctness in Q-values.

Algorithm 2: Value Iteration: Q-Mixing
Input: S,A, T ,R, ϵ, γ
V0(s | σ−i)←

∑
π−i

σ−i(π−i)Q(s, a | π−i)

do
Qt(s, a | σ−i)←

∑
π−i

ψ(π−i | s, σ−i)
∑

s′, r T (s′, r | s, a, π−i)[r + γVt−1(s
′ | σ−i)]

Vt(s | σ−i)← maxaQt(s, a | σ−i)
πt(s | σ−i)← argmaxaQt(s, a | σ−i)

while ∃s∈S |Vt(s)− Vt−1(s)| > ϵ
Output: Vt, Qt, πt

QMVI is reducible into the traditional value iteration algorithm. Consider we construct a new
aggregate MDP by combining both the original MDP and the opponent’s dynamics (represented
by the combination of their strategy and policies). The aggregated MDP is both stationary and may
be stochastic, because the opponent is not learning and may randomize their play. Convergence
properties of value iteration are inherited by QMVI by considering the application of value iteration
on said aggregate MDP.

Throughout the remainder of this dissertation, I will employ Q-Mixing methods that do not
account for future uncertainty. While the experiments above have demonstrated that these meth-
ods are empirically performant, they are limited in the correctness of the values they compute.
Understanding the discrepancy between these methods and those that accurately anticipate the fu-
ture is crucial for assessing the reliability of Q-Mixing. Future work should also consider stopgap
methods, that trade-off the computational demands required by exact methods with approximate
methods that are more efficient.
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5.4 Related Work

Traditional RL algorithms include no mechanism to explicitly prepare for variability in opponent
mixture. Instead, current solutions either learn a new behavior or update a previously learned
behavior. in lieu of that, researchers designed methods for learning a single behavior successfully
across a set of strategies [Wang and Sandholm, 2003], or quickly adapting in response to new
strategies [Jaderberg et al., 2019].

Alternative multiagent RL methods build a predictive model of their opponent and use this to
inform their decision making processes. He et al. [2016] introduce DRON, which uses a learned
latent action prediction of the opponent as conditioning information to the policy (in a similar
nature to the opponent-actions in the joint-action value area). They also present a variant of DRON
that uses a Mixture-of-Experts [Jacobs et al., 1991] operation to marginalize over the possible
opponent behaviors. More formally, they compute the expected Q-value by marginalizing the
opponent’s action space: ∑

a−i

π−i(a−i | si)Qi(si, ai, a−i). (5.5)

Q-Mixing employs a similar style of operation; however, it marginalizes over the policy-space
of the opponent instead of the action-space. Moreover, Q-Mixing depends on independent BR
Q-values against each opponent policy, whereas DRON learns a single Q-network. Bard et al.
[2013] propose implicitly modeling opponents through the payoffs received from playing against
a portfolio of the agent’s policies.

Q-Mixing also bears resemblance to Bayesian Policy Reuse (BPR) [Rosman et al., 2016]. Both
methods leverage a library of precomputed policies; however, BPR performs single-agent task
identification to select which policy to play during each episode, whereas, Q-Mixing maintains an
online belief and uses this to compute Q-values. The family of PEPPER algorithms have investi-
gated applying BPR to games [Crandall, 2012]. This line of work primarily focuses on identifi-
cation of opponent-policy switching during a single play (episode) [Hernandez-Leal and Kaisers,
2017a,b]; whilst, this study assumes that the opponent policy is constant for the full duration of
each episode.

The multi-task community has also separately explored approaches that have a similar style of
machinery. Progressively growing neural networks is a similar line of work [Rusu et al., 2016],
focused on a stream of new tasks. In our multiagent scenario, the stream of new tasks is learning
responses to each opponent policy independently. They then ensemble these networks together for
inference; however, this operation shares no commonalities with Q-Mixing. Schwarz et al. [2018]
found that this ensembled network growth could be handled with policy distillation.
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CHAPTER 6

Opponent Policy Likelihood

I have no cramps and I feel strong. It is he that has the hook in

his mouth. But what a fish to pull like that. He must have his

mouth shut tight on the wire. I wish I could see him. I wish I

could see him only once to know what I have against me.

— Ernest Hemingway, The Old Man and the Sea

As we have seen from both policy- and value-based strategic knowledge transfer, a crucial
component to their success is the ability to identify their opponent’s policy. It comes at no surprise
that response knowledge against a particular opponent policy may prove fruitless if you cannot
reasonably expect that you are interacting with that opponent policy. With this in mind, we turn
our attention towards the problem of modeling the agent’s belief of their opponent’s current policy.

Correctly identifying your opponent’s policy facilitates playing the appropriate best-response.
The identification problem is typically not straightforward due to the limited information that can
be observed about your opponent’s strategy. Reasonably, it will not be the case that the opponent
will tell their competitor their policy. Instead, one must collect information about their opponent
and use this to inform a belief of the opponent’s policy.

Information about the opponent’s strategy may be collected prior to gameplay and during in-
teraction with a particular policy. The former information informs one’s prior on the opponent’s
policy. Whereas, the later pertains to evidence gained to inform the likelihood of the current op-
ponent policy. The likelihood may be calculated with only the evidence at the current timestep, or
may use the full history of evidence gained from the start of the episode until the present. A prior
and history-based likelihood model together constitute a fully informed belief model. This raises
a key question: what components to the belief model are critical to its success?

Before we answer this question, we must first understand what makes a good likelihood and
prior. In the preceding section we demonstrated the efficacy of two methods for maintaining a
belief of the opponent’s current policy:
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1. the prior defined by the opponent’s mixed strategy, and

2. a neural network likelihood model (trained through the auxiliary task of classification).

Both of these methods failed to fully take advantage of all of the information available; in fact,
each method lacks what the other provides. The prior method fails to account for evidence during
play with a particular opponent policy, and the classifier fails to be amenable to changes in the
prior belief of the opponent policy. Moreover, both previous options do not consider any historical
evidence in their belief calculation.

6.1 Opponent Likelihood Model

We begin by investigating the design of an opponent likelihood model. In the previous section,
we trained a neural network classifier to predict which opponent we are playing against based
on the game history. Assuming a well calibrated model, this will accurately predict the posterior
probability of each opponent, but only if the distribution over opponent policies in the data used to
train the model was the same as the opponent’s strategy used in Q-Mixing. If the distribution of
the data was to differ from the data experienced by the Q-Mixing policy, we would need to correct
for this change.

Let σ̄ be the opponent mixture used to train the OPC and h ∈ H be any realizable history,
then we can define and unpack OPC ψ by Bayes Theorem as follows (up to model approximation
errors):

ψ(π | h) = p(h | π) · σ̄(π)
p(h | σ̄)

∝ p(h | π) · σ̄(π). (6.1)

This results in two terms directly corresponding to the likelihood and prior of our opponent’s
identity. Previously, when investigating the opponent identification, a neural network was trained
to implicitly model this distribution through classification. A prior on the opponent’s policy is
implicitly trained into the OPC through the class balance σ̄ in the dataset. In other words, if the
data used to trained the OPC contained mostly experience against opponent two, then this may
bias the OPC to favor predicting that opponent. In the previous experiments the data was balanced
across classes; following this, the OPC adopted a uniform prior.

When using Q-Mixing in a training procedure (such as in Chapter 7) to respond to a mixed-
strategy opponent, our agent has access to the opponent’s mixture. The OPC fails to take advantage
of this new prior knowledge; the distribution used to train the likelihood model now fails to match
the true opponent distribution. However, because the class distribution in training σ̄ is known,
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rather than using the OPC directly, we can treat it as an Opponent Likelihood Model (OLM), up to
a multiplicative constant.

Instead of assuming the same prior σ̄ across the entire opponent strategy-space we would like
to update ψ, our likelihood model, when given new information about the prior distribution of the
opponent policies. Consider a different mixed strategy σ, we would like to update ψ so that it
instead approximates the distribution:

p(π | h, σ) = p(h | π) · σ(π)
p(h | σ)

∝ p(h | π) · σ(π). (6.2)

By rearranging Equation 6.1 we get the likelihood in terms of our trained model:

p(h | π) ∝ ψ(π | h)
σ̄(π)

. (6.3)

Then we may substitute Equation 6.3 into Equation 6.2, facilitating a correction for the prior:

p(π | h, σ) ∝ ψ(π | h)
σ̄(π)

σ(π)

= ψ(π | h)σ(π)
σ̄(π)

(6.4)

This new formulation addresses the concerns we raised earlier. First, we account for prior
knowledge of the opponent by directly using our prior σ. Second, we can learn a likelihood model
of the evidence h through our previous method for constructing an OPC. Finally, we correct for
the prior used during the training of the evidence likelihood.

By substituting the method used to compute likelihoods in Q-Mixing, we conduct an ablation
study to examine the impact of both the new prior knowledge and the evidence obtained during
gameplay. The respective impacts are assessed by establishing four version of Q-Mixing, as listed
in Table 6.1, each varying in the information sources that inform their likelihood calculations.
The version of Q-Mixing developed in this section, incorporating both sources of information, is
hereafter referred to as Q-Mixing: OLM:

Qπi
(hi, ai | σ−i) ∝

∑
π−i

ψi(π−i | hi)
σ−i(π−i)

σ̄−i(π−i)
Qπi

(hi, ai | π−i). (6.5)

This version of Q-Mixing is constructed derived from substituting the classifier-based likelihood
in Equation 5.2 with the corrected likelihood in Equation 6.4. The likelihood model ψi here is
defined assuming perfect recall, or access to the full history hi. It can be calculated as the product
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of the probability of each observation occurring against said opponent:

ψi(πi | hi) =
∏
oi∈hi

ψi(πi | oi). (6.6)

This can be efficiently calculated with a stateful policy that maintains the previous timesteps’ belief
and updates its posterior with the current observation’s likelihood. We also consider a simpler
likelihood that only depends on the current observation. Comparing these versions illuminates the
predictive power of a single observation.

Table 6.1: Comparison of Q-Mixing with differing opponent likelihood models. The prior
column denotes that the likelihood model can correct for updated prior knowledge. The likelihood
column denotes whether the model updates the posterior given evidence during play.

Formula Prior Likelihood

Qπi
(hi, ai | σ−i) ∝

∑
π−i

σ̄−i(π−i)Qπi
(hi, ai | π−i)

Qπi
(hi, ai | σ−i) ∝

∑
π−i

σ−i(π−i)Qπi
(hi, ai | π−i) ✓

Qπi
(hi, ai | σ−i) ∝

∑
π−i

ψi(π−i | hi)Qπi
(hi, ai | π−i) ✓

Qπi
(hi, ai | σ−i) ∝

∑
π−i

ψi(π−i | hi)σ−i(π−i)
σ̄−i(π−i)

Qπi
(hi, ai | π−i) ✓ ✓

6.2 Baseline Opponent Classifiers

Before we can begin to understand the details of what constitutes a good method for maintaining an
opponent identifier, we must first understand where we start to contextualize progress. Do we even
need to perform opponent identification? If the tools we already have perform well then pursing
this investigation may be a nonstarter.

In the simplest case, let’s suppose that we do not need to explicitly consider the identity of the
opponent. This amounts to selecting a best-response policy irrespective of information provided
about the opponent’s strategy. In Figure 6.1, we compare Q-Mixing: Prior directly against the
best-response policies. We look at each method by evaluating their coverage across the opponent’s
strategy space in the RWS game. This is the same experimental methodology that we introduced
in Chapter 5.

The best-responses to the opponent’s policies are denoted BR(X), where X is the index of the
opponent’s policy in their strategy set. These baselines let us investigate the option of choosing the
simplest opponent classifier: a classifier that outputs a constant value. These also allow us to see if
any one particular best-response policy dominates the others. Such a dominant policy could serve
as a sufficiently good policy against the mixed strategy.
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Opponent Strategy Sorted by Response Performance

Figure 6.1: Coverage of best-response policies. The opponent strategies are sorted per-BR-
method by the BR’s return. Shaded region represents a 95% bootstrap confidence interval over
five random seeds. The two methods are trained using the same simulation budget. The left plot,
evaluates each method by their return. On the right plot, we instead normalize the return by the
performance of the BR to each opponent policy.

We also consider the best-response to the opponent’s uniform mixed strategy, labelled BR(Uniform).
BR(Uniform) implicitly should perform both opponent belief maintenance and best-response to
perform well. Investigation of this baseline should offer some insights into how easily identifiable
the opponent’s policy is from the observation. If this is an easy task, then the implicit two-step re-
sponse strategy of identification and then response is easy to perform at all game states. Therefore,
a good BR(Uniform) should highly correlate its Q-values with the observation features correspond-
ing to the opponent’s identity.

In Figure 6.1, we can see that the best-responses to the opponent pure strategies generalize
poorly. This can be seen in the right plot, where the the curves start out at 1.0, which denotes that
the response policy was playing against the corresponding opponent pure strategy. Then when the
opponent plays any mixed strategy, the performance quickly falls off. Recall, that the normalized
return reports the proportion of the return received when compared to the return received by playing
the true response policies. A decline in this chart suggests that the pure strategy response policies
are unable to exploit the different opponent policies. This indicates that the opponent’s strategy
space is sufficiently diverse that we cannot rely on just a response to an opponent pure strategy.

In the same figure, we can also see that BR(Uniform) at its best performs at just over half its
potential. A reasonable retort is to remark that this result indicates a failure in the approximate best-
response oracle. It is true that using DRL as an approximate oracle method can result in variable

71



performance to the whim of policy implementation and training hyperparameters. It is possible
that under the perfect settings, DRL may produce a response policy to the mixed strategy that also
exhibits generalization capabilities. Despite this true criticism, in practice, finding that setting may
consume more resources than simply directly tackling the problem from a less idealized setting.
In this work, we spent roughly equivalent resources attempting to optimize the learning settings
for the responses to the pure- and mixed-strategies. Therefore, we argue that the results herewithin
represent a roughly fair practical comparison of methods.

Q-Mixing: Prior outperforms both the pure- and mixed-strategy best-response policies. This
should come at no surprise, because Q-Mixing: Prior can use the additional information of the op-
ponent’s strategy at evaluation time. The other methods offer no flexibility given the known change
in opponent strategy. Therefore, there is a clear benefit to explicitly including a mechanism for op-
ponent identification within a policy. Note, that in Figure 6.1 when interpreting outperformance,
it is not the case that Q-Mixing: Prior is better than the specialized BRs against their respective
opponents. The performance of each curve is sorted for each method separately, the strategies
represented by each point on the x-axis often differ between methods.

6.3 Frequency-Based Classification

The result from the previous section indicate that strictly using best-responses may be insufficient.
However, each of these respective best-responses performs well against their respective opponent.
Q-Mixing’s ability to fully utilize the component best-responses depends on its efficacy at identify-
ing the opponent’s policy. In this section we increase the complexity of our Q-Mixing policy by a
single step. Instead of considering only a prior (fixed or adjusted to the correct opponent strategy),
we investigate inclusion of evidence during play to inform the identity of the opponent. As the
trained classifier we saw in Chapter 5 used a neural network, attempting to understand its success
and failure modes presents itself as an entirely disparate research direction.

As a stopgap, we will now consider an observation frequency based opponent-policy likeli-
hood. This likelihood model is based of a simple statistic, and will allow us to dive into what
contributes to the success of Q-Mixing. It will weight the SRQVs by the relative frequency of the
observation occurring against each opponent. We use the replay buffers Bi used to train the respec-
tive responses i as datasets to calculate the observation frequencies. More formally, we compute
the weight of assigned to each response j for player i as:

wj(oi) =

∑
ōi∈B(BRi(π

j
−i))

[ōi = oi]1∑
ōi∈

⋃
k B(BRi(πk

−i))
[ōi = oi]1

, (6.7)
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and Q-Mixing: Observation Frequency (Freq) follows from this formulation:

QFreq
i (oi, ai | σ−i) =


∑

πj
−i
wj(oi) ·Qi(oi, ai | πj

−i) o ∈
⋃

k B(BRi(π
k
−i))∑

πj
−i

1
|Π−i| ·Qi(oi, ai | πj

−i) Otherwise
. (6.8)

We compare Q-Mixing: Freq with its prior-only versions of Q-Mixing and the learned classifier
in Figure 6.2. Q-Mixing: Uniform Prior is another baseline introduced here, representing the
performance of Q-Mixing when it is not given the opponent’s strategy, but rather maintains a
constant strategy (in this case, the uniform strategy) across all opponent strategies. Interestingly,
Q-Mixing: Uniform Prior outperforms its opponent across all strategies. This outcome can be
attributed to the tendency of value functions to overestimate values. As a result, the value functions
associated with less likely opponents are typically suppressed. This phenomenon acts as an implicit
form of opponent modeling, which arises due to the specific experimental setup chosen in this case.
However, this observation may not hold true in general.

The result in Figure 6.2 indicates that the performance of Q-Mixing: Freq falls between Q-
Mixing: Prior and Q-Mixing: Uniform Prior. This finding is initially concerning, as it suggests
that the evidence does not aid in opponent identification. In fact, Q-Mixing: Freq performs only
marginally better than Q-Mixing: Uniform Prior, which receives no information about the oppo-
nent’s strategy.

Why doesn’t the observational evidence lead to improvements in Q-Mixing? To answer this
question, we need to examine the replay buffers underlying Q-Mixing: Freq’s implementation.
Each replay buffer contains 100,000 experiences and corresponding observations. From these
experiences, the replay buffers have 18,854, 20,464, and 21,040 unique states, respectively. This
implies that agents do revisit observations quite frequently.

However, the more critical question is how many of these unique observations co-occur be-
tween pairs of replay buffers? Co-occurrence indicates that the agent should be uncertain about
their opponent’s identity, and the relative frequency could provide valuable information. In Ta-
ble 6.2, we present the co-occurrence frequencies. This table reveals that very few observations
(less than 500) ever co-occur between any two replay buffers. This means that if an observation
appears in a replay buffer, it is highly informative of the opponent’s identity.

So far we have established that our frequency baseline fails to effectively use evidence during
play to improve Q-Mixing. Next, we saw that if an observation is in one of the response policies’
replay buffers then it is highly informative of the opponent’s identity. This suggests an intuitive
contradiction with the former result. The resolution to this conflict lies in the second case present
in the observation-frequency formula (Equation 6.8). What happens when an observation is not

present in any replay buffer?
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Table 6.2: Unique observations common across the responses’ replay buffers. The rows and
columns represent the replay buffers of the approximate best-response policies’ replay buffers.
Each cell represents the count of the number of unique observations that occur in both replay
buffers.

0 1 2

0 18,854 341 237
1 20,464 424
2 21,040

We begin by simulating Q-Mixing: Freq against each respective opponent for 300 episodes.
From this simulation results we looked at the proportion of observations encountered that did not
occur in any replay buffers. We refer to this situation as a cache-miss. The percentage of cache-
misses against each opponent is 87±1%, 69±3%, and 85±2%. Here in lies the problem with this
baseline. Despite the replay buffers being largely informative, the information is never able to bear
fruit, because the agent is mostly experiencing novel states. Thus, it behaves only slightly better
than Q-Mixing: Uniform Prior, because upon a cache-miss it implements the Q-Mixing: Uniform
Prior policy (the second case in Equation 6.8).

The previous result demonstrates that the observations used to construct our policy often differ
from those experienced during evaluation. The key takeaway from this experiment is that this
version of Q-Mixing: Freq does not take the past into account. Currently, the classifier receives the
present observation and predicts the opponent’s identity. This prediction is based on the probability
of each opponent for the current observation, which can be used to create and maintain a belief
about the opponent’s identity throughout an episode.

Upon revisiting our observation-frequency baseline, we can readily identify the significant ben-
efits of belief maintenance. In the initial version of Q-Mixing: Freq, the predicted opponent like-
lihood becomes the uniform distribution in the event of a cache miss. However, by maintaining
a belief over time, the likelihood from the previous prediction is preserved in the case of a cache
miss. This approach facilitates the accumulation of evidence across time, even when faced with
new observations. From this point forward, we will focus on a version of Q-Mixing: Freq that
incorporates belief maintenance over time.

Figure 6.3 displays the coverage curves for various Q-Mixing: Freq variants. These plots show
that maintaining a belief significantly enhances the performance of Q-Mixing: Freq. These im-
provements can be attributed to the agent’s ability to accumulate all evidence about their opponent.
Additionally, when the agent encounters a new observation, they no longer have complete uncer-
tainty about their opponent. Instead, their previous belief about their opponent remains. As most
observations experienced were novel, this means that the agent can now historic evidence of their
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Figure 6.2: Coverage of baseline variants of Q-Mixing. The opponent strategies are sorted per-
BR-method by the BR’s return. Shaded region represents a 95% bootstrap confidence interval over
five random seeds. The two methods are trained using the same simulation budget. The left plot,
evaluates each method by their return. On the right plot, we instead normalize the return by the
performance of the BR to each opponent policy. This is the only figure that contains results for
Q-Mixing: Freq that does not maintain a belief.

75



0 10 20 30 40 50 60

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

R
et

u
rn

0 10 20 30 40 50 60

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
o
rm

a
li
ze

d
R

et
u
rn

Opponent Strategy Sorted by Response Performance

Likelihood
Freq
Freq

Prior
σ−i
Unif

Figure 6.3: Coverage of variants of Q-Mixing with a frequency-based likelihood. The opponent
strategies are sorted per-BR-method by the BR’s return. Shaded region represents a 95% bootstrap
confidence interval over five random seeds. The two methods are trained using the same simulation
budget. The left plot, evaluates each method by their return. On the right plot, we instead normalize
the return by the performance of the BR to each opponent policy.

opponent.
Continuing from the Q-Mixing: Freq results, we can see that the prior plays a much smaller role

in the performance of opponent identification. An informative prior provides a small increase in
performance across the opponent’s strategy space. The prior serves a minor role, because through-
out an episode enough evidence about the opponent is collected to overwhelm the contribution
from the prior. Still, a prior offers benefits early in an episode, by allowing an agent to deviate to
a more exploitative response policy earlier. In practice, we will have access to the true opponent
strategy; therefore, this result unsurprisingly suggests that it should be used as the prior.

6.4 Learned Classifier

Finally, we return to our learned opponent classifier. We provide both coverage curves for Q-
Mixing: OPC in Figure 6.4 and opponent classification accuracy of all methods (at the end of
the episode) in Table 6.3. The learned classifier further improves upon the frequency baseline,
as shown in Figure 6.5. The previous investigation into the performance of the frequency base-
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Figure 6.4: Coverage of variants of Q-Mixing with a learned likelihood. The opponent strate-
gies are sorted per-BR-method by the BR’s return. Shaded region represents a 95% bootstrap
confidence interval over five random seeds. The two methods are trained using the same simula-
tion budget. The left plot, evaluates each method by their return. On the right plot, we instead
normalize the return by the performance of the BR to each opponent policy.

line offers insights into the benefits gained from the learned version. With regards to extracting
evidence of the opponent’s identity: the OPC learns to extract features salient for opponent clas-
sification from its observations; whereas, the frequency baseline can only gather evidence from
known observations contained in a replay buffer.

In summary, we compile all of the coverage curves analyzed in this section in Figure 6.5. The
key take-away is that both the prior and evidence gained matter for successful belief calculation.
The prior, is often of less importance, because it is typical to gain sufficient evidence during play
to overwhelm the impact of the prior. Nevertheless, in games where the first few moves are crucial,
the prior may prove fundamental to the method’s success. A trained opponent-policy classifier may
also learn to extract features that are predictive of the opponent’s policy even in novel settings.

6.5 Future Research Directions

In this study we consider only a simple learned classifer for the OPC. Instead, more sophisticated
methods for reasoning about the opponent’s policy offers ample room for future improvements for
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Figure 6.5: Coverage of all methods on RWS. The opponent strategies are sorted per-BR-method
by the BR’s return. Shaded region represents a 95% bootstrap confidence interval over five random
seeds. The two methods are trained using the same simulation budget. The left plot, evaluates each
method by their return. On the right plot, we instead normalize the return by the performance of
the BR to each opponent policy.
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Table 6.3: Opponent classification accuracy at end of episode. Accuracy is calculated over 100
episodes and intervals are calculated from an empirical bootstrap across 5 seeds. Accuracy is only
calculated for the final timestep in an episode. Tie-breaking favors the smaller opponent index,
resulting in high accuracy for Q-Mixing: Freq.

Likelihood Prior Opponent 0 Opponent 1 Opponent 2

Freq Unif 0.67± 0.16 0.61± 0.10 0.63± 0.06
Freq σ−i 0.73± 0.09 0.69± 0.12 0.78± 0.05
OPC Unif 0.89± 0.03 0.89± 0.02 0.90± 0.03
OPC σ−i 0.92± 0.04 0.93± 0.03 0.91± 0.03

Q-Mixing. A set of assumptions that can be made includes that all players have fixed strategy
sets. Under these assumptions, agents could maintain more sophisticated beliefs about their oppo-
nents [Zheng et al., 2018], and extend this to recursive-reasoning procedures [Yang et al., 2019a,b,
2021b]. This line of work primarily focuses on other-player policy identification and presents a
promising future direction for enhancing the quality of the OPC.

Another potential extension of the OPC is to explore alternative objectives. Rather than solely
focusing on predicting the opponent, in safety-critical situations, an agent may want to consider
an objective that accounts for inaccurate opponent predictions. The Restricted Nash Response
embodies this measure by striking a balance between maximizing performance if the prediction
is correct and maintaining reasonable performance if the prediction is inaccurate [Johanson et al.,
2007].

While both of these research directions revolve around opponent-policy prediction, they ad-
dress different problem statements. Most notably, these works do not consider varying the dis-
tribution of opponent policies as we have investigated in this work. As a result, adapting these
methods to this distinct problem domain presents a fruitful opportunity for future research.
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CHAPTER 7

Game Solving

Up to this point, we have focused on the issue of transferring responses across opponent strategies.
Now, we turn our attention to investigating how these advances may reduce the cumulative cost
of learning in game-solving algorithms. PSRO is one such algorithm for learning a solution to
a in multiagent systems by interleaving empirical game analysis with DRL. At each iteration,
DRL is invoked to train a best-response to a mixture of opponent policies. The learning problems
faced across each iteration share a common structure. This common structure provides us with the
opportunity to transfer knowledge acquired in previous iterations to assist in training subsequent
policies. When consecutive best-response problems are compared only two changes may occur:
inclusion of an additional policy in each opponent’s strategy set, and a change in the distribution
with which each opponent samples their policies. In this section, we introduce two variants of
PSRO that exploit this common strategic structure to reduce the amount of simulation required
during DRL training.

A particular challenge for the RL step in PSRO is that the learner must derive a response under
uncertainty about opponent policies. The profile derived from the empirical game is generally a
mixed-strategy profile, as in strategically complex environments randomization is often a neces-
sary ingredient for equilibrium. The opponent draws from this mixture are unobserved, adding
uncertainty to the multiagent environment. We address this challenge through variants of PSRO
in which all RL is applied to environments where opponents play pure strategies. The proposed
methods employ, but are not limited to, the machinery of Q-Mixing to facilitate operations on pure
strategies instead of mixed strategies. We propose and evaluate two such methods, which work in
qualitatively different ways: Mixed-Oracles learns separate BRs to each pure strategy in a mixture
and combines the results from learning to approximate a BR to the mixture. Mixed-Opponents

constructs a single pure opponent policy that represents an aggregate of the mixed strategy and
learns a BR to this policy.

Our methods promise advantages beyond those of learning in a less stochastic environment.
Mixed Oracles transfers learning across epochs, exploiting the Q-functions learned against a par-
ticular opponent policy in constructing policies for any other epoch where that opponent policy
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is encountered. Mixed Opponents applies directly over the joint opponent space, and so has the
potential to scale beyond two-player games.

7.1 Mixed-Oracles

The first problem we address is that during BR calculation there is an opportunity for transferring
previously learned information. In each epoch, each player learns a BR to a mixed profile of
opponent policies. This mixture typically involves the newly added policies (one per player) for
this epoch, but may also include many policies from previous epochs. Training in previous epochs
already captured experience against those policies, so including them in further training may be
redundant.

The Mixed-Oracles algorithm is a variant of PSRO for two-player games, with a modified BR
oracle designed to transfer learning across epochs. This method works by learning and maintaining
a collection of BRs to each opponent policy Λe

i = {λ1i , . . . , λei}, where λei is the BR to πe−1
−i .

During each epoch of Mixed-Oracles, a BR is learned for the single new opponent policy, rather
than for the mixed opponent-profile generated by the MSS. A BR to the MSS-generated target
mixture is then constructed from the collection of BR results for constituent policies in the mixture.
Constructing the new policy is done through a general TransferOracle function that maps a set of
policies and a distribution over the policies into a single policy

TransferOracle : Π×∆(Π)→ π. (7.1)

The resulting policy should approximately aggregate the behavior of the component policies.
By reusing learned behaviors from previous epochs, Mixed-Oracles allows us to focus training

exclusively on new opponent policies. The key design choice is how to combine knowledge from
the BRs to individual policies into a BR to any distribution of said policies. We provide a general
description of Mixed-Oracles, where the TransferOracle method is abstract, as Algorithm 3.

Chapter 5 introduces Q-Mixing as an approach for constructing policies against any mixture
of opponent strategies. This method utilizes Q-values learned against each individual opponent
strategy, making it well-suited for supporting the desired transfer. As we observed in Chapter 4,
direct policy transfer is not always feasible. Consequently, Q-Mixing’s use of values makes it
particularly appropriate for aiding Mixed-Oracles. Specifically, Q-Mixing calculates the average
Q-values learned against each opponent policy π−i, weighted by their likelihood in the opponent
mixture σ−i:

Qi(oi, ai | σ−i) =
∑
π−i

ψi(π−i | oi, σ−i)Qi(oi, ai | π−i), (7.2)
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where ψ determines the relative likelihood of playing an opponent ψi : Oi → ∆(Π−i). In this
study, we use Q-Mixing as our TransferOracle, where ψ is the prior over the opponent distribution
as given by an MSS.

Algorithm 3: Mixed-Oracles
Input: Initial policy sets for all players Π0

Simulate utilities ŨΠ0 for each joint π ∈ Π0

Initialize solutions σ∗,0
i = Uniform(Π0

i )
Initialize pure strategy BRs Λ0

i = ∅
while epoch e in {1, 2, . . .} do

# Best respond to each new opponent.
for player i ∈ [[n]] do

for many episodes do
Train λei over τ ∼ (λei , π

e−1
−i )

Λe
i = Λe−1

i ∪ {λei}
# Generate new policies.
for player i ∈ [[n]] do

πe
i ← TransferOracle(Λe

i , σ
∗,e−1
−i )

Πe
i = Πe−1

i ∪ {πe
i }

Simulate missing entries in ŨΠe from Πe

Compute a solution σ∗,e from Γ̃e

Output: Current solution σ∗,e
i for player i.

7.1.1 Empirical Convergence of Mixed-Oracles

Does Mixed-Oracles yield a solution of similar quality to PSRO while using fewer simulation
timesteps? We evaluate this question by comparing both methods cumulative simulation timesteps
usage during game solving. We compare the methods on two distinct games: RWS and Gather-
ing [Leibo et al., 2021], which are detailed in Chapter 2.

Figure 7.1 compares convergence speed, measured by their regret over time, of Mixed-Oracles
and PSRO on the RWS game. Both Mixed-Oracles and PSRO converge to an equilibrium within
the budgeted 3.5 × 108 timesteps. However, at 1.5 × 108 timesteps Mixed-Oracles converged to
an equilibrium; whereas, PSRO has not. Mixed-Oracles converges in a similar number of epochs
as PSRO seen on the left plot with both algorithms converging around six. However, Mixed-
Oracles achieves this solution while requiring less usage of the environment simulator (measured
in timesteps on the right plot). It is worth recalling here that both PSRO and Mixed-Oracles in
this experiment is initialized with a strategy-set containing the three specialized policies (rock,
paper, and scissors). This means that both algorithms contain many equilibria before performing
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Figure 7.1: Mixed-Oracles on the RWS game.
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any strategy exploration. Therefore, we turn towards investigating other games where the strategy
exploration step of PSRO has a greater influence on the algorithm’s performance.

Figure 7.2 similarly compares both algorithms on the Gathering game with two-players and the
small map. At epoch 10, Mixed-Oracles has converged to a solution with roughly 25 regret. At the
same time, PSRO approximately triple the regret. By the end of PSRO’s runtime it improves its
performance to roughly 50 regret, double that of Mixed-Oracles. The reduction can be regret may
be contributed to by two factors (a) reduction cost of each epoch (measured in simulated timesteps)
allows more epochs to be run, and/or (b) noise introduced through Q-Mixing’s approximation helps
in exploring the game’s strategy space. In this game, both algorithms appear to converge roughly
around 10 epochs. This suggests that the later factor, noise-induced exploration, may have played
a larger role in the overall algorithm’s performance improvements.

7.2 Mixed-Opponents

We next examine PSRO’s strategy exploration method that is defined by BR to the opponent profile
generated by an MSS. This design choice was motivated by solving for Nash Equilibrium, where
failure to add a beneficial deviation to the restricted strategy set indicated convergence. However,
in an extensive form game it can take infeasibly many iterations to achieve convergence, meaning
that in practice the theoretical convergence in the limit may not be helpful.

In other words, BR within a single iteration serves the short-term goal of checking for conver-
gence presently, but may not serve the long-term goal of building a rich empirical game. This dis-
tinction is akin to the exploration-exploitation dilemma: we may solve a game faster by choosing
not to respond to the current Nash equilibrium, if it leads to strategies that are useful in improving
our empirical game. Exploration-focused objectives promise to reduce the number of iterations of
PSRO, instead of reduce the number of timesteps of a single RL application.

In this section, we introduce Mixed-Opponents, a variant of PSRO that incorporates an exploration-
focused objective. The key insight behind this objective is that each opponent policy is greedy,
which leads to the suppression of potentially useful information already learned about non-greedy
actions. For instance, many opponent policies may agree on a second-best action that is never
played. We propose Mixed-Opponents, which employs the transfer learning methods developed
in this work to help us explore this direction. Similar to Mixed-Oracles, Mixed-Opponents main-
tains the advantage of responding to specific opponent policies, resulting in less stochastic learning
signals and cheaper response learning. To begin, we will present Mixed-Opponents through a con-
structed example.
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7.2.1 Constructed Example

In this example, we consider a hypothetical run of PSRO to solve Rock-Paper-Scissors (RPS) with
Nash equilibrium as its solution concept. We will focus on Player 1’s learning, so will assume
that Player 2 will learn exact Q-values against Player 1’s meta-strategy. However we will consider
Player 1 to only produce approximate best responses. This is to model approximate reinforcement
learning such as observed in experiments on the abstracted RPS game, running-with-scissors For
simplicity, we will consider each player adding a strategy to the empirical game in turn, rather than
simultaneously.

The below table shows a possible outcome of two iterations of PSRO.

R P S R P S

π1
1 = (0.0, 0.3, 0.7) Q1

2 = (0.4,−0.7, 0.3)

π2
1 = (0.4, 0.6, 0.0) Q2

2 = (−0.6, 0.4, 0.2)

The run begins by Player 1 playing an arbitrary initial strategy π1
1 , which consists of mostly

playing S. This play induced a high value for Player 2’s R action, denoted in Q1
2. In turn, Player 1

approximately best-responds to R, by playing mostly P, and never playing S, in π2
1 . Player 1’s

meta-strategy now plays pure π2
1 , against which both P and S score well, as shown by the values of

Q2
2.

These policies construct an empirical game, which closely resembles the matching pennies
game, with the following payoffs:

Player 2

π1
2 π2

2

Player 1
π1
1 −0.4, 0.4 0.7,−0.7
π2
1 0.6,−0.6 −0.4, 0.4

This game is then solved by the MSS resulting in the following solution:

σ2
1 = (0.47 π1

1, 0.52π
2
1)

σ2
2 = (0.52 π1

2, 0.48π
2
2).

Because Player 2’s two policies play only R and P respectively, we can rewrite Player 2’s meta-
strategy σ2

2 in terms of the primitive actions in the full game (0.52R, 0.48P, 0.0S). If, as in
PSRO, Player 1 were then to add their ABR to this meta-strategy, which is P, then their strategy set
does not contain the Nash equilibrium of the game. The problem is that there are already strategies
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in the empirical game that can defeat both of Player 2’s strategies, so the new strategy is not very
useful. This can be detected by inspecting Player 2’s Q-functions: Q1

2 has a very low valuation of
P, and Q2

2 has a very low valuation of R. This phenomena is illustrated in Figure 7.3a. Player 1
could instead respond to S, which is moderately highly valued by both opponent Q functions, as
it is more relevant. To detect this we can mix the opponent strategies through their action-value
estimates, rather than their action distributions. This results in the following Q-values: QMix

2 =

(0.46, 0.414, 0.626). The ABR to this is R, which more usefully extends Player 1’s strategy set
to include the Nash equilibrium of this game. The two different approaches are illustrated in
Figure 7.3b.

7.2.2 Mixed-Opponents

This example motivates our second algorithm: Mixed-Opponents. This method also employs a
combination method, but instead of combining results from training against previously encountered
opponents, it combines the strategies of the opponent mixture themselves to construct a single new
opponent policy as a target for training. We refer to the method for generating a new opponent
policy from a mixture of opponents the OpponentOracle, and it has the same functional form as
the TransferOracle. The generalized Mixed-Opponent algorithm is shown in Algorithm 4. We
employ Q-Mixing (Equation 7.2) as our OpponentOracle. In contrast to Mixed-Oracles, which
uses Q-Mixing to transfer Q-values across epochs, here we apply it to average Q-values to define
a variant training objective.

Algorithm 4: Mixed-Opponents
Input: Initial policies for all players Π0

Simulate ŨΠ0 for each joint π ∈ Π0

Initialize solutions σ∗,0
i = Uniform(Π0

i )
while epoch e in {1, 2, . . .} do

for player i ∈ [[n]] do
π−i ← OpponentOracle(Πe−1

−i , σ
∗,e−1
−i )

for many episodes do
Train πe

i over τ ∼ (πe
i , π−i)

Πe
i = Πe−1

i ∪ {πe
i }

Simulate missing entries in ŨΠe

Compute a solution σ∗,e from Γ̃e

Output: Solution σ∗,e
i for player i.
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(a) PSRO with Nash equilibrium as a solution concept. The two opponents’ Q-functions inform greedy
policies that each play rock and paper, respectively. When the meta-strategy for Player 2 is σ2 =
(0.52π1
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2), Player 1 will add paper as a BR.
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(b) Mixed-Opponents first mixes the opponent policies by their Q-values (in this example using the Q-
Mixing algorithm). The BR to the mixed opponent is rock, and its inclusion expands the strategy space to
include the Nash equilibrium of RPS (middle dot).

Figure 7.3: Empirical game expansion resulting from different strategy exploration methods.
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Figure 7.4: Mixed-Opponents on the RWS game.

7.2.3 Empirical Convergence of Mixed-Opponents

The first research question we address is: does Mixed-Opponents lead to a solution of similar
quality compared to PSRO while utilizing fewer simulation timesteps? To answer this question,
we follow the same experimental procedure used for the Mixed-Oracles experiment in the previous
section.

Figure 7.5 compares the convergence speed of both algorithms on the Gathering-Open game.
After 25 epochs, Mixed-Opponents has discovered a solution with approximately 50% less regret.
However when both algorithms are compared via timesteps, at 5×107 timesteps, Mixed-Opponents
has found a nearly no regret solution; whereas, PSRO has approximately 50 regret.

Mixed-Opponent’s performance on the RWS game is shown in Figure 7.4. In this result, we
can see that PSRO behaves as expected: decreasing regret through epochs and converging to a
low-regret solution. On the other hand, Mixed-Opponents, behaves erratically and does not show
convergence. What appears as a complete failure of the method, provides the practitioner some
valuable insights into the utility gained through differing strategy exploration methods. Recall from
the discussion on Mixed-Oracles applied to RWS that Mixed-Oracles was initialized to contain
several equilibria. The same consideration also applies to Mixed-Opponents; meaning that Mixed-
Opponents need not explore the strategy space of the game to discover equilibria. This means that
we are evaluating Mixed-Opponents in a setting which contradicts its motivation. Naturally, any
gains Mixed-Opponents offers by discovering new strategies would not be advantageous. This also
highlights a downside of Mixed-Opponents: it may fail to exploit the discovered strategy space.
Instead of discovering new strategies, this setting requires exploiting the discovered strategy space
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Figure 7.5: Mixed-Opponents on the Gathering game.

to compute an accurate equilibrium response policy. We discuss this in more detail in Section 7.4.

7.2.4 Many-Player Games

An advantage of Mixed-Opponents over Mixed-Oracles is that it can be applied to games with more
than two players. It is natural to then ask if the trends we observed in the previous experiment,
on two-player games, extend to many-player games? We repeat the previous Mixed-Opponent
analysis on the Gathering game; however, we will now look a three-player version of the game on
the “open” map (maps define spawn points and orchard configurations). We limit each profile in the
empirical game to three simulations, to handle the combinatorial explosion of profiles. Figure 7.6
shows our results where Mixed-Opponents finds a similar quality solution to PSRO in half of the
time.

7.3 Hyperparameter Selection Ablation

In the previous experiments PSRO used a separate set of hyperparameters from the proposed algo-
rithms. These two sets of hyperparameters were specialized for low- and high-variance outcomes
of state induced by facing pure- and mixed-strategy opponents respectively. This was motivated
by the assumption that lower variance would require less training. This raises the question: does
the differing hyperparameters explain the performance gap between the algorithms?

In this section, we question that assumption and ask: do Mixed-Oracles and Mixed-Opponents
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Figure 7.6: Extensions beyond two players and using shared hyperparameters. (Left) Mixed-
Opponents evaluated on the Gathering-Open game with 3 players. (Right) Comparison of algo-
rithms when set to the same DRL hyperparameters.

perform at least as well as PSRO when given the same DRL hyperparameters? To answer this
question we run all three algorithms with the same set of hyperparameters, forcing all to adopt the
same simulation budget.

We report results for the Gathering-Small game in Figure 7.6. The trends observed previ-
ously reoccur: Mixed-Oracles and Mixed-Opponents find solutions at least as good as PSRO after
6 × 107 timesteps. Moreover, by 2.5 × 107 timesteps both Mixed-Oracles and Mixed-Opponents
have converged to a regret of approximately 25, while PSRO has a regret of roughly 50. These
results suggest that our hyperparameter selection methodology does not explain the results from
the preceding experiments.

7.4 Strategy Exploration-Exploitation Dilemma

DO uses response to Nash as a way to guarantee theoretical convergence in the limit. Specifically,
if a new best-response strategy cannot be constructed to add to the empirical game for any player
then a Nash solution is found. PSRO with Nash as a solution adopts this guarantee by inheriting the
same algorithmic structure as DO. However, unlike DO, PSRO is applied to games where we can-
not reasonably run the algorithm long enough to realize convergence. Instead of guaranteeing that
each new strategy serves the additional role of a convergence check, we can also choose to select
strategies that reduce the time till convergence. This trade-off is analogous to the exploration-
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exploitation dilemma in single-agent RL, where now it may be advantageous to first explore and
add diverse strategies, then exploit and attempt to solve the game.

Rectified Nash PSRO is an example of a exploration method that encourages agents to “amplify
their strengths and ignore their weaknesses,” [Balduzzi et al., 2019]. This leads to the inclusion of
generally weak agents that have diverse niches. The rectified Nash objective focuses on increasing
the effective diversity of the population, and does not directly optimize towards solving the game.
While response to the Nash PSRO is a an exploitative objective, where it assumes that all strategic
cycles in the game are included in the empirical game.

We posit that Mixed-Oracles is similarly an exploitative objective, and that Mixed-Opponents
is an exploration objective. Mixed-Oracles includes responses to the MSS’s solution but intro-
duces additional approximation errors by purifying pure-strategy best-response policies. Mixed-
Opponents, on the other hand, attempts to add a more diverse policy to the population; following
the intuition that non-optimal actions may contain interesting strategic dimensions in aggregate.
An open question is characterizing how Mixed-Opponents impacts the quality of the empirical
game. No algorithm so far acts as a panacea alone; however, mixing the insights gained from all
of them together may offer a path towards the remedy.

7.5 Conclusion: Strategic Knowledge Transfer

In this part of the dissertation I investigated how transferring knowledge about previously encoun-
tered opponents can generalize response knowledge across opponent strategies and improve the
efficiency of game-solving algorithms. The story began by introducing a class of problems and
characterizing them as strategic knowledge transfer problems. These problems address the use
of strategic knowledge accrued while learning response policies in one context toward deriving a
response policy for a new strategic context.

We investigate one such problem: the opponent mixture transfer problem. In this problem, we
assume responses to each opponent policy and access to the strategic mixture that the opponent
is playing. First, we show how a general solution to this problem cannot be constructed without
making additional assumptions about the policy’s implementation. Then, we introduce Q-Mixing,
an algorithm that solves the problem under the assumption that all response policies are value-
based. Q-Mixing transfers response knowledge across any distribution of known opponents by
appropriately weighting the responses’ Q-values. We introduced exact methods for Q-Mixing, as
well as approximate versions which we empirically demonstrate offer more practical solutions.

Key to the success of Q-Mixing, and solutions to the opponent mixture transfer problem in
general, is the maintenance of a belief in the opponent’s policy. Belief in the opponent’s identity
informs the select a suitable response behavior. We performed an in-depth analysis to tease apart
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what factors contribute to successful belief maintenance. In the games we tested, we saw that a
opponent-policy classifier, trained using the replay buffers from the pure strategy response policies,
served as an effective opponent-policy likelihood model. Moreover, the belief may be greatly
improved by maintaining a posterior likelihood that is repeatedly updated at each observation.

Finally, we turned to the use of transfer learning to reduce the computational cost of iterative
game-solving algorithms. We introduced two algorithms that share a common theme of modifying
the best-response objective from responding to mixed-strategy opponents to responding to pure-
strategy opponents. Responding to a pure strategy rather than a mixture eliminates the opponent
sampling process, and thus reduces the variance in experiences during training.

The first algorithm, Mixed-Oracles, trains response policies to each policy in the population. A
response-policy to a mixed strategy is then constructed by combining the individual pure-strategy
response policies, using Q-Mixing. The second algorithm, Mixed-Opponents, transforms the
mixed-strategy response target for PSRO into a pure strategy representing the mixture. It does
so by combining the Q-values1 of the opponent policies supported in the original target mixture,
generating a novel policy that captures elements of the previous opponents. Both algorithms reuse
strategic knowledge from previous PSRO iterations: the Q-values derived in training BRs. This
reuse saves cumulative training time in PSRO, as does the variance reduction associated with re-
sponding to pure strategies noted above.

Mixed-Opponents also highlights the potential for novel strategy discovery as part of a strategy

exploration approach in PSRO. As in single-agent RL, introduction of new strategy candidates for
game solving must balance consideration of diverse possibilities (exploration) with fine-tuning of
known effective solutions (exploitation).

These two algorithms are instances of learning-based game-solving algorithms that leverage
strategic knowledge transfer. Their performance serves as evidence to the thesis of this disser-
tation that methods of transfer learning can reduce the cost of game solving. Future research
should explore additional perspectives and extensions that could maximize the benefits derived
from strategic knowledge transfer. With these points addressed, we conclude our discussion on
strategic knowledge and shift our focus to the so far unnamed player: nature.

1Mixed-Opponents, like Mixed-Oracles uses Q-Mixing for the combination. Other approaches are possible, and
should be investigated in future research.
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Part III

World Knowledge Transfer

CHAPTER 8

Co-Learning Empirical Games & World Models

We seldom realize, for example, that our most private thoughts

and emotions are not actually our own. For we think in terms of

languages and images which we did not invent, but which were

given to us by our society.

— Alan Watts

World knowledge refers to the understanding of game attributes that remain constant despite
changes in players’ strategies. This knowledge captures the underlying nature of the game, includ-
ing its dynamics and reward signal. A complete knowledge of the world requires an agent to have
experienced all possible transitions. Instead, an agent experiences only a limited view of the world
that is shaped by the strategies of its inhabitants. This distinction differentiates our approach to
world knowledge from that of strategic knowledge. While instances of strategic knowledge can be
isolated, world knowledge must be continually refined as changing strategies reveal new facets of
it.

Serendipitously, the constructing an empirical game presents us with just such a series of
changing strategies. In this part of the dissertation, I explore how we can take advantage of this fact
to learn, refine, and transfer world knowledge in conjunction with the construction of an empirical
game. I represent world knowledge as a world model, which is a learned predictor of successor
observations and rewards.

From the construction above it is clear that building an empirical game can benefit a world
model. However, we will also see that co-learning both models can enhance both model’s ef-
fectiveness. World models predict successor states and rewards given a game’s current state and
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action(s). However, their performance depends on coverage of their training data, which is lim-
ited by the range of strategies considered during learning. Empirical games can inform training
of world models by suggesting a diverse set of salient strategies, based on game-theoretic reason-
ing [Wellman, 2006]. These strategies can expose the world model to a broader range of relevant
dynamics. Moreover, as empirical games are estimated through simulation of strategy profiles, this
same simulation data can be reused as training data for the world model.

However, the strategic diversity offered by empirical games does carry a cost. As we have
observed, each ABR calculation conducted by PSRO involves significant computational expense.
World models, by facilitating the transfer of world knowledge, may help alleviate this cost through
planning. Planning enables an agent to substitute real-world learning with learning in the world
model, thereby potentially reducing the computational burden.

World
Model

Empirical
Game

Dyna-PSRO

Strategic Diversity

Planning

Figure 8.1: Dyna-PSRO co-learns a world model and empirical game. Empirical games offer
world models strategically diverse game dynamics. World models offer empirical games more
efficient strategy discovery through planning.

We investigate the mutual benefits of co-learning a world model and an empirical game by
first verifying the potential contributions of each component independently. We then show how
to realize the combined effects in a new algorithm, Dyna-PSRO, that co-learns a world model and
an empirical game (illustrated in Figure 8.1). Dyna-PSRO extends PSRO to learn a world model
concurrently with empirical game expansion, and applies this world model to reduce the com-
putational cost of computing new policies. This is implemented by a Dyna-based reinforcement
learner [Sutton, 1990, 1991] that integrates planning, acting, and learning in parallel. Dyna-PSRO
is evaluated against PSRO on a collection of partially observable general-sum games. In our exper-
iments, Dyna-PSRO found lower-regret solutions while requiring substantially fewer cumulative
experiences.
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8.1 Related Work

Previous research intersecting MARL and MBRL has primarily focused on modeling the opponent,
particularly in scenarios where the opponent is fixed and well-defined. Within specific game sub-
classes, like cooperative games and two-player zero-sum games, it has been theoretically shown
that opponent modeling reduces the sample complexity of RL [Tian et al., 2019, Zhang et al.,
2020]. Opponent models can either explicitly [Mealing and Shapiro, 2015, Foerster et al., 2018a,
Lockett et al., 2007, Ganzfried and Sandholm, 2011] or implicitly [Bard et al., 2013, Indarjo,
2019] model the behavior of the opponent. Additionally, these models can either construct a sin-
gle model of opponent behavior, model others as onself [Raileanu et al., 2018], or learn a set of
models [Collins, 2007, He et al., 2016, Shen and How, 2021]. While opponent modeling details
are beyond the scope of this study, readers can refer to Albrecht & Stone’s survey [Albrecht and
Stone, 2018] for a comprehensive review on this subject. Instead, we consider the case where the
learner has explicit access to the opponent’s policy during training, as is the case in empirical-
game building. A natural example is that of Self-Play, where all agents play the same policy;
therefore, a world model can be learned used to evaluate the quality of actions with Monte-Carlo
Tree Search [Silver et al., 2016, 2017a, Tesauro, 1995, Schrittwieser et al., 2020]. Li et al. [2023]
expands on this by building a population of candidate opponent policies through PSRO to augment
the search procedure. Krupnik et al. [2020] demonstrated that a generative world model could
be useful in multi-step opponent-action prediction. Sun et al. [2019] examined modeling stateful
game dynamics from observations when the agents’ policies are fixed. Chockingam et al. [2018]
explored learning world models for homogeneous agents with a centralized controller in a coopera-
tive game. World models may also be shared by independent reinforcement learners in cooperative
games [Willemsen et al., 2021, Zhang et al., 2022].
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CHAPTER 9

World Models & Strategic Diversity

We begin by specifying exactly what we mean by world model. This requires defining some prim-
itive elements. Recall that t ∈ T denotes the time in the real game, with st ∈ S the information

state and ht ∈ H the game state at time t. Note that this a change in definition of s, which was
previously used to refer to Markov states, and h, which was previously used to refer to observation
histories. We can refine our notion of information state st ≡ (mπ,t, ot) as being composed of the
agent’s memory mπ ∈Mπ , or recurrent state, and the current observation o ∈ O. Recall also that
the transition dynamics p : H ×A → ∆(H) × ∆(R) define the game state update and reward
signal.

An agent world model w represents dynamics in terms of information available to the agent.
Specifically, w maps information states and actions to observations and rewards, w :Mw ×O ×
A → O ×R, where mw ∈ Mw is the world model’s memory, or recurrent state. For simplicity,
in this work, we assume the agent learns and uses a deterministic world model, irrespective of
stochasticity that may be present in the true game.

A world model is trained to predict successor observations and rewards, from the current ob-
servations and actions, using a supervised learning signal. Ideally, the training data would cover
all possible transitions. This is not feasible, so instead draws are conventionally taken from a
dataset generated from play of a behavioral strategy. Performance of the world model is then mea-
sured against a target strategy. Differences between the behavioral and target strategies present
challenges in learning an effective world model.

If the target strategy were known, we could readily construct the ideal training data for the
world model. However the target is generally not known at the outset; indeed determining this
target is the ultimate purpose of empirical game reasoning. The evolving empirical game essen-
tially reflects a search for the target. Serendipitously, construction of this empirical game entails
generation of data that captures elements of likely targets. This data can be reused for world model
training without incurring any additional data collection cost.
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9.1 Strategic Diversity

We call the probability of drawing a state-action pair s, a under a joint strategy σ̂ its reach proba-

bility ησ̂. From this, we define strategic diversity as the distribution induced from reach probabili-
ties. These terms allow us to observe two challenges for learning world models.

First, the diversity of the behavioral strategy cover the target strategy’s diversity:

ησ
∗
(s,a)→ ησ(s,a), (9.1)

which says that if there is support under the target strategy their must be support under the be-
havioral strategy. Otherwise, transitions will be absent from the training data. As an aside, it is
possible to construct a weaker claim for coverage. This is done through making additional as-
sumptions about the generalization capacity of a world model across transitions. For example, if
transitions are drawn from two discrete latent variables, unseen combinations of these variables
may be generalized if the individual values are known. However, generalization cannot be gener-
ally guaranteed, so we consider coverage.

The second challenge is that the closer the diversities are, the more accurate the learning ob-
jective will be. In other words, we want

ησ
∗
(s,a) ≈ ησ(s,a). (9.2)

If closeness is not ensured, the learning signal may be arbitrarily noisy, thus hampering learning
the of crucial dynamics knowledge. An example of the issue of closeness can be seen in the “noisy
TV problem” [Burda et al., 2019]. This exploration problem poses that novelty-seeking agents
may be stuck forever watching the ever new TV static, and not experiencing practical novelty. In
the same vein, if a world model is trained almost entirely on “noisy TV”-like experiences it may
never learn. Therefore, we should strive to correct the distribution of experiences to be informed
by a target strategy.

By design, empirical-game building algorithms offer a means to construct the target world
model objective. These algorithms require the specification of a solution concept that serves the
dual roll as the target strategy for a world model. Then through an iterative process, the empirical-
game produces strategies that progressively approach the target strategy. This in turn, means that
the process generates transitions that approach the target world model objective.

97



9.2 Experimental Setup

We evaluate the claims of independent co-learning benefits within the commons game Harvest: RGB,
which is detailed in Chapter 2. To test the effects of strategic diversity specifically, we train a suite
of world models that differ in the diversity of their training data. The datasets are constructed from
the play of three policies: a random baseline policy, and two PSRO-generated policies. The PSRO
policies were arbitrarily sampled from an approximate solution produced by a run of PSRO. We
sampled an additional policy from PSRO for evaluating the generalization capacity of the world
models. These policies are then subsampled and used to train seven world models. The world
models are referred to by icons that depict the symmetric strategy profiles used to train them
in the normal-form. Strategy profiles included in the training data of the world models are shaded
black. For instance, the first (random) policy , or the first and third policies . Each world
model’s dataset contains 1 million total transitions, collected uniformly from each distinct strategy
profile (symmetric profiles are not re-sampled). The world models are then evaluated on accuracy
and recall for their predictions of both observation and reward for both players. The world models
are optimized with a weighted-average cross-entropy objective.

9.2.1 Action-Conditioned Scheduled Sampling

As noted by Talvitie [2014], rolling out trajectories with an imperfect model tends to compound
errors in prediction. Their work suggests training a Markovian world model with previous predic-
tions (referred to as “hallucinated replay”), to train the model to correct errors. For stateful world
models, as studied in this work, it has been demonstrated that curricula of n-step future predictions
can train an effective world model [Michalski et al., 2014, Oh et al., 2015, Chiappa et al., 2017].
However, that body of work was focused on single-agent systems. Therefore, they benefited from
a more stable data distribution for training when compared to a multiagent system. As a result,
these fixed curricula can fail when transitioning them to multiagent systems.

Algorithm 5: Action-Conditioned Scheduled Sampling

m← Initial recurrent state
for t ∈ T do

o← ot if Unif[0, 1] < ϵ(t) else ôt

ôt+1, r̂t+1,m← w(o,at,m)

Output: Predicted trajectory (ô0:T , r̂0:T )

Instead, this work adapts the scheduled sampling algorithm as a stochastic curricula, which
will allow both short- and long-term predictions throughout the course of training [Bengio et al.,
2015]. Scheduled sampling is an algorithm for training auto-regressive sequence prediction models
where at each predictive step during training the model input is sampled from either the previous
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prediction or the ground truth. Adapting this algorithm for world model rollouts requires biasing
each predictive step with the true actions while sampling between the predicted successor obser-
vation and the true successor observation. Therefore, the predictions will always be biased on true
actions, but must learn to handle model-predicted observation. The sampling follows a schedule
ϵ : Z → [0, 1] that determines the probability of sampling the true observation over the previous
prediction. When ϵ is 1.0, the algorithm behaves akin to teacher forcing [Williams and Zipser,
1989] (with the same action-conditional modification); whereas, as it approaches 0.0 it becomes
fully auto-regressive.

9.2.2 World Model Implementation

World Model

Observation
Prediction

Reward
Prediction

Memory
CoreConcat

i  in n

i 

Timestep
Encoder

i  in n

i 

Figure 9.1: World Model Architecture.

The high-level architecture of the world model is illustrated in Figure 9.1. The world model is
composed of several modules that are quite similar to the policy:

• Timestep Encoder: Processes all of the current observation’s information into a single em-
bedding vector. The timestep includes all new observational data that the agent gains at the
current point in time. Different from the agent’s timestep encoder, this encoder also receives
the ID that corresponds with the timestep.

• Memory Core: The component of the agent that maintains and update’s the agent’s memory.
Different from the agent’s timestep encoder, this memory core receives the representation of
each player’s timestep concatenated.

• Observation Prediction (Head): Predicts the successor observation for each player. As all
games considered in this work are gridworld games, the predicted observation is a clas-
sification task for each future grid cell (that are within the respective player’s observation
window).
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• Reward Prediction (Head): Predicts the reward received for each player. Rewards are treated
as categorical values.

Note, that the timestep encoder, observation prediction head, and reward prediction head each use
the same parameters across each player. Similar to the agent, all components are simultaneously
trained and their joint parameters are referred to as θw ∈ Θw. Both observation and reward losses
are optimized with a cross entropy objective, and averaged across players. The total world model
loss is as follows:

Lw = λobservation · Lobservation + λreward · Lreward.

The implementation of each component is as follows:

• Timestep Encoder: The same as the agent’s timestep encoder, but the player’s ID is also
provided alongside the action into the second neural network.

• Memory Core: Identical to the agent.

• Observation Prediction (Head): The observation prediction is based on the memory core’s
output and a one-hot ID of the predicted player’s ID. These inputs are concatenated and fed
into an transposed version of the timestep encoder.

• Reward Prediction (Head): A linear layer of size one. For Harvest: Categorical this output
is handled as a discrete prediction; whereas, it is continuous for the other games.

The world model is implemented using JAX [Bradbury et al., 2018] with Haiku modules [Hennigan
et al., 2020]. The dataset used to train the world model is an Reverb replay buffer [Cassirer et al.,
2021].

A world model is trained for 1,250,000 updates. Each example in the mini-batch is a sequence
of 20 transitions, where the first 5 timesteps are used to burn-in the memory. Burn-in does not occur
for examples where the first 5 transitions are at the beginning of the episode. Moreover, sequences
are added into the replay buffer at a period of 14 so that all timesteps show up as prediction targets.

The world model is trained using action-conditioned scheduled sampling, Algorithm 5. The
schedule ϵ follows the following schedule:

ϵ(t) =


1.0 t < 250000

4
3
− t

750000
250000 ≤ t ≤ 1000000

0.0 t > 1000000.

This schedule starts out training as a variation of teacher forcing [Williams and Zipser, 1989], and
slowly transitions to fully auto-regressive. Additional hyperparameters are specified in Table 9.1.
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Table 9.1: World model hyperparameters per game. Adam was introduced by Kingma and Ba
[2015].

Hyperparameter Harvest: Categorical Harvest: RGB Running with Scissors

λobservation 1.0 1.0 1.0
λreward 10.0 0.01 0.01
Optimizer Adam Adam Adam
Learning Rate 3× 10−4 3× 10−4 3× 10−4

Max Grad Norm 10.0 10.0 10.0
Batch Size 32 24 24

9.3 Findings

Results. Figure 9.2 presents each world model’s per-profile accuracy, as well as its average over
all profiles. Inclusion of the random policy corresponds to decreases in observation prediction
accuracy:

0.75± 0.02→ 0.58± 0.05,
0.80± 0.02→ 0.62± 0.05,
0.83± 0.02→ 0.68± 0.04.

Figure 9.3 contains the world model’s per-profile recall. Inclusion of the random policy corre-
sponds to increases in reward 1 recall:

0.25± 0.07→ 0.37± 0.11,
0.25± 0.07→ 0.36± 0.11,
0.26± 0.07→ 0.37± 0.11.

Figure 9.4 graphically depicts these trends.
We verify the diversity in our set of policies by measuring their action agreement. The method

that we do this is follows. We begin by simulating every pair of policies for 30 episodes each.
We then collect the action that each policy would select for all observations across all episodes.
The similarity between a pair of policies is the fraction of the same actions they would have taken.
Table 9.2 contains the similarity results across all episodes. Table 9.3 contains the similarity results
excluding the episodes played with a random policy. This secondary comparison highlights the
similarity of the policies biased towards more strategically salient episodes.

We further compare our world models by their cross-entropy loss over the full dataset. Fig-
ure 9.5 contains the full per-profile comparison, and Figure 9.6 contains an aggregate comparison.

101



O
b

se
rv

a
ti

o
n

0.27±0.04 0.75±0.02 0.80±0.02 0.58±0.05 0.83±0.02 0.62±0.05 0.68±0.04

R
ew

a
rd

0.73±0.08 0.52±0.10 0.53±0.10 0.68±0.08 0.50±0.10 0.68±0.08 0.69±0.08

0.0

0.2

0.4

0.6

0.8

1.0

Profiles Sampled To Train World Model

Figure 9.2: World model accuracy across strategy profiles. Each heatmap portrays a world
model’s accuracy over 16 strategy profiles. The meta x-axis corresponds to the profiles used to
train the world model (as black cells). Above each heatmap is the model’s average accuracy.

Table 9.2: Policy similarity measured by action agreement.

Policy ID 0 1 2 3

0 1.0000 0.1262 0.1277 0.1279
1 1.0000 0.8868 0.8269
2 1.0000 0.8961
3 1.0000

Table 9.3: Policy similarity measured by action agreement without random observations gen-
erated from random policies.

Policy ID 0 1 2 3

0 1.0000 0.1265 0.1272 0.1283
1 1.0000 0.8542 0.7671
2 1.0000 0.8608
3 1.0000
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Figure 9.3: World model recall across strategy profiles. Each heatmap portrays a world model’s
recall over 16 strategy profiles. The meta x-axis corresponds to the profiles used to train the world
model (as black cells). Above each heatmap is the model’s average recall.
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Figure 9.4: Impact of inclusion of random policy on world model performance.
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Figure 9.6: Aggregate comparison of world models by their cross-entropy loss.
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Discussion. The PSRO policies offer the most strategically salient view of the game’s dynamics.
Consequently, the world model trained with these policies yields the highest observation accu-
racy. However, this world model performs poorly on reward accuracy, scoring only 0.50±0.10. In
comparison, the model trained on the random policy scores 0.73± 0.08. This seemingly coun-
terintuitive result can be attributed to a significant class imbalance in rewards. predicts only the
most common class, no reward, which gives the illusion of higher performance. In contrast, the
remaining world models attempt to predict rewarding states, which reduces their overall accuracy.
Therefore, we should compare the world models based on their ability to recall rewards. When
we examine again, we find that it also struggles to recall rewards, scoring only 0.26 ± 0.07.
However, when the random policy is included in the training data ( ), the recall improves to
0.37 ± 0.11. This improvement is also due to the same class imbalance. The PSRO policies are
highly competitive, tending to over-harvest. This limits the proportion of rewarding experiences.
Including the random policy enhances the diversity of rewards in this instance, as its coplayer can
demonstrate successful harvesting. When we compare the world models by their evaluation loss
(Figure 9.5), obtains the lowest observation loss of 1.45±0.20, whereas, obtains the lowest
reward loss of 1.16 ± 0.57. Given the importance of accurately predicting both observations and
rewards for effective planning, appears to be the most promising option. However, the strong
performance of suggests future work on algorithms that can benefit solely from observation
predictions. Overall, these results support the claim that strategic diversity enhances the training
of world models.
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CHAPTER 10

Empirical Games & Planning

In this dissertation I will investigate transferring a world model through a process called planning.
Planning is any procedure that takes a world model and produces or improves a policy. In the
context of games, planning can optionally take into account the existence of coplayers. This con-
sideration can reduce experiential variance caused by unobserved confounders (i.e., the coplayers).
However, coplayer modeling errors may introduce further errors in the planning procedure [He
et al., 2016].

Planning alongside empirical-game construction allows us to side-step this issue as we have di-
rect access to the policies of all players during training. This allows us to circumvent the challenge
of building accurate coplayer models. Instead, the policies of coplayers can be directly queried and
used alongside a world model, leading to more accurate planning. In this section, we empirically
demonstrate the effectiveness of two methods that decrease the cost of response calculation by
integrating planning with a world model and other agent policies.

10.1 Experimental Details

In this section, I discuss the agents within this part of the dissertation. I first detail the implemen-
tation of the agents and then their training.

V

π

Agent

Timestep
Encoder

Memory
Core

Policy
Head

Value
Head

Figure 10.1: Agent Architecture.
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All agents follow the general architecture depicted in Figure 10.1. This consists of four mod-
ules:

• Timestep Encoder: Processes all of the current observation’s information into a single em-
bedding vector. The timestep includes the new observation and the policy’s previous action.

• Memory Core: The component of the agent that maintains and update’s the agent’s memory.

• Policy Head: Computes the agent’s policy.

• Value Head: Computes the agent’s state value function.

All of the components are simultaneously trained and their joint parameters are θπ ∈ Θπ. The
policies are trained using the IMPALA algorithm [Espeholt et al., 2018]. For the IMPALA loss,
the coefficients for each component loss are:

LIMPALA = λπ · Lπ + λV · LV + λentropy · Lentropy,

with a discount factor of 0.99. Similar to the world models, the policies are implemented using
JAX [Bradbury et al., 2018] with Haiku modules [Hennigan et al., 2020]. Reverb is used as the
replay buffer implementation [Cassirer et al., 2021].

The training details for each specific response calculation are itemized below.

Baseline Parameters The learning rate begins is linearly decayed over 10,000 updates. Each
update is computed from a mini-batch of 128 examples that are generated from 8 arenas1 Policy
parameters are synchronized at the beginning of each episode. Each example in the mini-batch
is a sequence of 20 transitions. Moreover, sequences are stored in a replay buffer with a period
of 19, to ensure that the action played at the end of a sequence is trained. Sequences are stored
in a replay buffer with a max capacity of 1,000,000, and are evicted once sampled. Additional
hyperparameters are specified in Table 10.1.

Harvest: Categorical module implementations:

• Timestep Encoder: The encoder processes two timestep components: the current observation
and the previous action the policy took. First the observation is passed through a two-layer
fully connected neural network with hidden sizes of [256, 256]. The representation of the
observation is then concatenated with the previous action (represented as a one-hot vector),
and passed together through a second neural network with sizes [256, 256]. All of the layers

1The term arena is used to refer to an experience generation process. This is more commonly referred to as an
“actor”; however, this terminology may be confounding with language in RL, Dyna, or multiagent learning.
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Table 10.1: Baseline agent’s hyperparameters per game. See Kingma and Ba [2015] for Adam,
and Hinton [2018] for RMSProp.

Hyperparameter Harvest: Categorical Harvest: RGB Running with Scissors

Optimizer Adam RMSProp RMSProp
λπ 1.0 1.0 1.0
λV 0.2 0.5 0.2
λentropy 0.04 0.01 0.003
Learning Rate Start 6× 10−6 6× 10−4 1× 10−4

Learning Rate Stop 6× 10−9 6× 10−9 1× 10−4

Max Grad Norm 10.0 1.0 0.1
Batch Size 128 128 128

have ReLU [Fukushima, 1975] activations including the final layers of both networks. The
final representation is the output of the timestep encoder.

• Memory Core: A single-layer LSTM [Hochreiter and Schmidhuber, 1997] with 256 units.

• Policy Head: A single linear layer of size 8.

• Value Head: A single linear layer of size 1.

Harvest: RGB and Running with Scissors module implementations:

• Timestep Encoder: The encoder processes two timestep components: the current observation
and the previous action the policy took. The observation is first process by a two-layer
convolutional neural network with ReLU activations [Fukushima, 1975]. The first layer
has 16 channels, a kernel with shape [8, 8], and a stride of [8, 8]. The second layer has 32
channels, a kernel shape of [4, 4], and a stride of [1, 1]. The output of this layer is then
flattened and concatenated with a one-hot encoding of the policy’s previous action. The
resulting embedding is then passed through a two-layer fully connected neural network with
hidden sizes of [128, 128], and ReLU activations.

• Memory Core: A single-layer LSTM [Hochreiter and Schmidhuber, 1997] with 128 units.

• Policy Head: A single linear layer of size 8.

• Value Head: A single linear layer of size 1.

Planning Parameters The planners have the same hyperparameters as the baseline method, but
with the addition of planning-specific settings. For all planners, an additional 4 arenas are used to
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generate planned experiences (for background planning). The additional settings for each version
of planning are as follows:

• Warm-Start Background Planning: An additional 10,000 updates are performed on exclu-
sively planned experiences before play in the real game occurs.

• Concurrent Background Planning: Each mini-batch sampled after warm-starting contains
25% planned experiences, and 75% real experiences.

• Decision-Time Planning: In the training arenas (those that have the real game, and are not
used for evaluation), the agent selects actions with a beam-search of width 3 and depth 1.

Background planning also requires defining a search control procedure [Sutton, 1990, 1991, Sutton
and Barto, 2018]. Search control defines how the agent prioritizes selecting starting states and
actions for background planning. A related concept is that of prioritized sweeping, which defines
how an agent prioritizes using sampled data for training [Moore and Atkeson, 1993]. The notable
difference being search control alters the data generation process; whereas, prioritized sweeping
alters how that data is prioritized for learning. This work considers the simplest search-control
method: maintain a buffer of the initial states and uniformly sample.

10.2 Background Planning

The first type of planning that is investigated is background planning, popularized by the Dyna
architecture [Sutton, 1990]. In background planning, agents interact with the world model to pro-
duce planned experiences2. The planned experiences are then used by a model-free reinforcement
learning algorithm as if they were real experiences (experiences generated from the real game).
Background planning enables learners to generate experiences of states they are not currently in.

Experiment. To assess whether planned experiences are effective for training a policy in the ac-
tual game, we compute two response policies. The first response policy, serving as our baseline,
learns exclusively from real experiences. The second response policy, referred to as the planner,
is trained using a two-step procedure. Initially, the planner is exclusively trained on planned ex-
periences. After 10,000 updates, it then transitions to learning solely from real experiences. The
planner employs the world model from Chapter 9, and the opponent plays the previously held-
out policy. In this and subsequent experiments, the cost of methods is measured by the number
of experiences they require with the actual game. This is because, experience collection is often
the bottleneck when applying RL-based methods [Obando-Ceron and Castro, 2021, Hester and

2Other names include “imaginary”, “simulated”, or “hallucinated” experiences.
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Stone, 2012]. Throughout the remainder of this work, each experience represents a trajectory of
20 transitions, facilitating the training of recurrent policies.
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Figure 10.2: Effects of background planning on response learning using . Left: Return
curves measured by the number of real experiences used. Right: Return curves measured by usage
of both real and planned experiences. The planner’s return is measured against the real game and
the world model. (5 seeds, with 95% bootstrapped CI).
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Figure 10.3: Effects of background planning on response learning using . Left: Return
curves measured by the number of real experiences used. Right: Return curves measured by usage
of both real and planned experiences. The planner’s return is measured against the real game and
the world model. (5 seeds, with 95% bootstrapped CI).

Results. Figure 10.2 presents the results of the background planning experiment. The methods
are compared based on their final return, utilizing an equivalent amount of real experiences. The
baseline yields a return of 23.00± 4.01, whereas the planner yields a return of 31.17± 0.25.

Discussion. In this experiment, the planner converges to a stronger policy, and makes earlier
gains in performance than the baseline. Despite this, there is a significant gap in the planner’s
learning curves, which are reported with respect to both the world model and real game. This gap
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arises due to accumulated model-prediction errors, causing the trajectories to deviate from the true
state space. Thereby, this gap represents an existing limitation in the world model methodology
that we employ. Advances in world modeling methods may further bridge this gap, and improve
the benefits that can be gained by planning. Nevertheless, the planner effectively learns to interact
with the world model during planning, and this behavior shows positive transfer into the real game,
as evidenced by the planner’s rapid learning. The exact magnitude of benefit will vary across
coplayers’ policies, games, and world models. In Figure 10.3, we repeat the same experiment with
the poorly performing world model, and observe a marginal benefit (26.05 ± 1.32). The key
take-away is that background planning tends to lead towards learning benefits, and not generally
hamper learning.

10.3 Decision-Time Planning

The second main way that a world model is used is to inform action selection at decision time

[planning] (DT). In this case, the agent evaluates the quality of actions by comparing the value of
the model’s predicted successor state for all candidate actions. Action evaluation can also occur
recursively, allowing the agent to consider successor states further into the future. Overall, this
process should enable the learner to select better actions earlier in training, thereby reducing the
amount of experiences needed to compute a response. A potential flaw with decision-time planning
is that the agent’s learned value function may not be well-defined on model-predicted successor
states [Talvitie, 2014]. To remedy this issue, the value function should also be trained on model-
predicted states.

Experiment. To evaluate the impact the decision-time planning, we perform an experiment sim-
ilar to the background planning experiment (Section 10.2). However, in this experiment, we eval-
uate the quality of four types of decision-time planners that perform one-step three-action search.
The planners differ in the their ablations of background planning types: (1) warm-start background

planning (BG: W) learning from planned experiences before any real experiences, and (2) concur-

rent background planning (BG: C) where after BG: W, learning proceeds simultaneously on both
planned and real experiences. The intuition behind BG: C is that the agent can complement its
learning process by incorporating planned experiences that align with its current behavior, offset-
ting the reliance on costly real experiences.

Results. The results for this experiment are shown in Figure 10.4. The baseline policy receives
a final return of 23.00 ± 4.01. The planners that do not include BG: W, perform worse, with final
returns of 9.98 ± 7.60 (DT) and 12.42 ± 3.97 (DT & BG: C). The planners that perform BG: W
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Figure 10.4: Effects of decision-time planning on response learning using . Four planners
using decision-time planning (DT) are shown in combinations with warm-start background plan-
ning (BG: W) and concurrent background planning (BG: C). (5 seeds, with 95% bootstrapped CI).
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Figure 10.5: Effects of decision-time planning on response learning using . Four planners
using decision-time planning (DT) are shown in combinations with warm-start background plan-
ning (BG: W) and concurrent background planning (BG: C). (5 seeds, with 95% bootstrapped CI).

outperform the baseline, with final returns of 44.11± 2.81 (DT & BG: W) and 44.31± 2.56 (DT,
BG: W, & BG: C).

Discussion. Our results suggest that the addition of BG: W provides sizable benefits:

9.98± 7.60 DT → 44.11± 2.81 DT & BG:W, and

12.42± 3.97 DT & BG: C → 44.31± 2.56 DT, BG: W, & BG: C.

We postulate that this is because it informs the policy’s value function on model-predictive states
early into training. This allows that the learner is able to more effectively search earlier into
training. BG: C appears to offer minor stability and variance improvements throughout the training
procedure; however, it does not have a measurable difference in final performance. This result
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suggests using planning methods in combination to reap their respective advantages.
However, we caution against focusing on the magnitude of improvement found within this

experiment. As the margin of benefit depends on many factors including the world model accuracy,
the opponent policy, and the game. To exemplify, similar to the background planning section,
we repeat the same experiment with the poorly performing world model. The results of this
ancillary experiment are in Figure 10.5. The trend of BG: W providing benefits was reinforced:

6.29± 5.12 DT → 20.98± 9.76 DT & BG: W, and

3.64± 0.26 DT & BG: C → 33.07± 7.67 DT, BG: W, & BG: C.

However, the addition of BG: C now measurably improved performance

20.98± 9.76 DT & BG: W→ 33.07± 7.67 DT, BG: W, & BG: C.

An additional ablation was performed on BG: C to understand its role alongside BG: W. These
results are shown in Figure 10.6 where we vary the intensity of BG: C by training planners that
train off larger proportions of planned experience. Without DT, we observed no measurable benefit
of including BG: C. As the proportion of planned experience increases in BG: C this corresponded
to a decrease in the planner’s performance. We speculate that this is because the planner better fits
its policy to interact with the world model instead of the real game. This result suggests that BG: C
be used to only supplement a small fraction of the real experiences used during training.

Finally, we completed an ancillary experiment to determine if planning allowed the learner to
escape a locally optimal policy. To measure this we simply continued training the baseline on a
significantly larger data budget to measure if its performance would improve, and even match that
of the planner. In Figure 10.7 we plot our results, and found that DT planning helped learner a
stronger policy than a learner without planning.

The main outcome of these experiments is the observation that multi-faceted planning is un-
likely to harm a response calculation, and has a potentially large benefit when applied effectively.
These results support the claim that world models offer the potential to improve response calcula-
tion through decision-time planning.

10.4 Separate Models

Until now, we have implicitly assumed the need for distinct models. However, if a single model
could serve both functions, co-learning two separate models would not be needed.

Empirical games, in general, cannot replace a world model as they entirely abstract away any
concept of game dynamics. This is not without any exceptions. If the original game is one-shot and
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stateless (i.e., an episode is played through a single action), then a normal-form empirical game is
exactly a world model.

Conversely, world models have the potential to substitute for the payoff estimations in empirical
games through simulated rollouts. Note, that rolling out a trajectory with a world model is an auto-
regressive prediction that tends to result in compounding errors [Talvitie, 2014, Holland et al.,
2018]. Despite this, it is plausible that a world model can substitute as a high-fidelity empirical
game.
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Figure 10.8: Empirical normal-form games (ENFG) estimated by world model rollouts. The
title of each plot is its L2 distance with the real ENFG.

Figure 10.8 compares an empirical game estimated from real game payouts empirical games
estimated with payouts predicted by a world model. In this experiment, the world models are the
same that were used in Chapter 9. In general, the empirical games estimated by world models
have large errors (L2 >100), with several having exceptionally large errors (L2 >1000). These
result suggest that this direction may be possible with future algorithmic improvements; however,
currently, the prediction errors are too large to substitute empirical games with world models.
Especially in games with long time horizons.

Having defined the models and established the need for their separate instantiations, we can
proceed to evaluate the claims of beneficial co-learning. Our first experiment shows that the strate-
gic diversity embodied in an empirical game yields diverse game dynamics, resulting in the training
of a more performant world model. The second set of experiments demonstrates that a world model
can help reduce the computational cost of policy construction in an empirical game.
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CHAPTER 11

Game Solving

In this section we introduce Dyna-PSRO, Dyna-Policy-Space Response Oracles, an approximate
game-solving algorithm that builds on the PSRO [Lanctot et al., 2017] framework. Dyna-PSRO
employs co-learning to combine the benefits of world models and empirical games.

Dyna-PSRO is defined by two significant alterations to the original PSRO algorithm. First,
it trains a world model in parallel with all the typical PSRO routines (i.e., game reasoning and
response calculation). We collect training data for the world model from both the episodes used to
estimate the empirical game’s payoffs, and the episodes that are generated during response learning
and evaluation. This approach ensures that the world model is informed by a diversity of data from
a salient set of strategy profiles. By reusing data from empirical game development, training the
world model incurs no additional cost for data collection.

The second modification introduced by Dyna-PSRO pertains to the way response policies are
learned. Dyna-PSRO adopts a Dyna-based reinforcement learner [Sutton, 1990, 1991, Sutton et al.,
2012] that integrates simultaneous planning, learning, and acting. Consequently, the learner con-
currently processes experiences generated from decision-time planning, background planning, and
direct game interaction. These experiences, regardless of their origin, are then learned from using
the IMPALA [Espeholt et al., 2018] update rule. For all accounts of planning, the learner uses
the single world model that is trained within Dyna-PSRO. This allows game knowledge accrued
from previous response calculations to be transferred and used to reduce the cost of the current and
future response calculations.

11.1 Dyna-PSRO

The Dyna-PSRO builds upon PSRO (Algorithm 7) by including the co-learning of a world model.
The high-level pseudocode of Dyna-PSRO is provided in Algorithm 9 an a high-level application
architecture diagram is depicted in Figure 11.1. There are three main co-routines of Dyna-PSRO:
response computation, world-model learning, and empirical-game simulation. The details of each
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routine are first provided; then, how the routines interact with each other is explained. We imple-
ment Dyna-PSRO using LaunchPad [Yang et al., 2021a] to distribute the coroutines in a design
that is inspired by the ACME library [Hoffman et al., 2020].

Dyna-PSRO

Empirical
Game

Strategy
Server

World Model
Learner

Policy
Learner

Eval
Arena

Sim.
Arena

Train
Arena

Plan
Arena

TrainPlan

Response Oracle: IMPALA

World
τTrain , τ Eval

Figure 11.1: Overview of the major Dyna-PSRO processes.

11.1.1 Empirical Game

The empirical game routine is responsible for maintaining the empirical game, including simulat-
ing new payoffs and game reasoning. New profiles are sent to simulation (sim.) arenas for payoff
estimation in parallel. Once all profiles are estimated, the game is solved, and the solution is based
to the main Dyna-PSRO process. In the experiments in this work, the chosen solution is Nash
Equilibrium, and it is solved through the linear complementarity [Eaves, 1971] algorithm that is
implemented by Gambit [McKelvey et al., 2016].

11.1.2 World Model

The world model routine is responsible for training the world model and serving its parameters.
This routine’s pseudocode is provided in Algorithm 6, and follows mostly the same method details
as the strategic diversity experiment. The difference is that instead of there being a precomputed
fixed dataset, the world model is now trained over a dynamic dataset. The dataset is represented
by a replay buffer that is populated from:

1. trajectories from the simulation arena used for expanding the empirical game, and
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2. trajectories from the training and evaluation arenas from the response calculation.

Notably, all of this data must be generated in the standard PSRO procedure, so it collected with no
additional cost. The world-model learner samples and evicts data randomly from this buffer.

Algorithm 6: World Model Learner
Input: World model w and data buffer Bw

Input: n no. of updates (default: ∞).
for i ∈ [[n]] do

Train w over τ ∼ Bw;
Output: w

11.1.3 Response Oracle

The response oracle uses the IMPALA [Espeholt et al., 2018] algorithm to compute an approximate
best-response to the opponent’s strategy according the the current empirical game. IMPALA uses
several processes that generate experiences for the agent to train on. These process are referred to
in this work as arenas. The train arenas generate real experiences, and the plan arenas generate
planned experiences. If the learner is using decision-time planning they will only use it in the train
arenas. A third set of arenas called eval arenas periodically evaluate the performance of the greedy
policy and record additional metrics. The arenas attempt to synchronize all parameters at the start
of each episode.

The policy learner runs for a fixed number of updates, querying the datastores for experiences
to learn from. The specifics of how each policy learns is described in Section 10.1.

Algorithm 7: PSRO with Subroutine
Input: Initial strategy sets for all players Π0

Simulate utilities ÛΠ0 for each joint π0 ∈ Π0;
Initialize solution σ∗,0

i = Uniform(Π0
i );

while epoch e in {1, 2, . . . } do
for player i ∈ [[n]] do

// Algorithm 8.

πe
i , = response oracle(σ∗,e−1

−i );
Πe

i = Πe−1
i ∪ {πe

i };
Simulate missing entries in ÛΠe from Πe;
Compute a solution σ∗,e from Γ̂e;

Output: Current solution σ∗,e
i for player i

Algorithm 8: Response Oracle
Input: Coplayer strategy profile σ−i

Input: Num updates k
πi ← θπ;
B ← {} ; // Replay Buffer.

for many async episodes do
π−i ∼ σ−i;
B = B ∪ {τ ∼ (πi, π−i)};

for i ∈ [[k]] do
Train πi over τ ∼ B;

Output: πi,B
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Algorithm 9: Dyna-PSRO
Input: Initial strategy sets for all players Π0

Input: No. of world model head-start updates nw

Input: Epoch to begin planning eplan

Simulate utilities ÛΠ0 for each joint π0 ∈ Π0;
Initialize solution σ∗,0

i = Uniform(Π0
i );

w ← θw;
Bw ← {} ; // World Model’s Replay Buffer.
;
while epoch e in {1, 2, . . . } do

for player i ∈ [[n]] do
if e > eplan then

πe
i , τ = async(planner oracle(σ∗,e−1

−i , w)) ; // Algorithm 10.
else

πe
i , τ = async(response oracle(σ∗,e−1

−i )) ; // Algorithm 8.
Bw = Bw ∪ {τ};
Πe

i = Πe−1
i ∪ {πe

i };
Wait on all futures πe, τ ;
;
Simulate missing entries in ÛΠe from Πe;
Add τ from simulation to Bw;
Compute a solution σ∗,e from Γ̂e;
;
if e == 1 then

w = world model learner(w, nw) ; // Algorithm 6.
w = async(world model learner(w)) ; // Parameters periodically
sync.

Output: Current solution σ∗,e
i for player i
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Algorithm 10: Planner Oracle
Input: Coplayer strategy profile σ−i

Input: World model w, real game dynamics p
Input: Warm-start background planning updates nBG:WS

Input: Training updates n
Input: Concurrent background planning fraction fBG:C

πi ← θπ;
Bplan ← {} ; // Replay Buffer with planned experience.

Btrain ← {} ; // Replay Buffer with real experience.

;
// Asynchronously generate data on arenas.;
for many async episodes do

π−i ∼ σ−i;
Bplan = Bplan ∪ {τ ∼ (πi, π−i, w)};

for many async episodes do
π−i ∼ σ−i;
Btrain = Btrain ∪ {τ ∼ (πi, π−i, p)};

;
// Train the response policy.;
for i ∈ [[nBG:WS]] do

Train πi over τ ∼ Bplan;
for i ∈ [[n]] do

Train πi over τ ∼
{
(1.0− fBG:C) · Btrain

}
∪
{
fBG:C · Bplan

}
;

Output: πi,B

11.1.4 Runtime Procedure

A sketch of the respective processes runtime is shown in Figure 11.2 As in PSRO, the main
empirical-game building loop iterates between response computation and empirical-game simu-
lation.

The runtime is defined by a parameter specifying on which PSRO epoch to begin planning.
Before that epoch, the response oracles do not use planning at all, because the world models are
untrained. All of these policies therefore are trained exclusively on real experiences just like stan-
dard PSRO. However, these experiences are also being used to populate the world model’s replay
buffer. Once the first planning epoch has arrived, computing responses is temporarily paused. The
world model is then given a set number of updates to warm-start its parameters, before being used
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Figure 11.2: Example Dyna-PSRO process timeline. In this example, planning is set to occur
after the first epoch. Each players’ response oracle runs in parallel.

in response calculation. Once the world model’s warm-start phase is over, all process proceed
concurrently.

Throughout this work, planning is set to begin during the first epoch. Once sufficient data has
been generated to train the world model, it’s learning coroutine begins. After the world model
has completed one million updates, then the response oracles begin using the world model for
planning.

11.2 Experimental Setup

Games. Dyna-PSRO is evaluated on three games. The first is the harvest commons game used
in the experiments described above, denoted now as “Harvest: Categorical”. The other two games
come from the MeltingPot [Leibo et al., 2021] evaluation suite and feature rich image-based ob-
servations. “Harvest: RGB” is their version of the same commons harvest game, and “Running
With Scissors” is a temporally extended version of rock-paper-scissors. Details of both games are
provided in Chapter 2.

Experiment. Dyna-PSRO’s performance is measured by the quality of the solution it produces
when compared against the world-model-free baseline PSRO. The two methods are evaluated on
their SumRegret of the combined empirical games (detailed below). We measure SumRegret for
intermediate solutions, and report it as a function of the cumulative number of real experiences
employed in the respective methods.

Combined-Game Regret. Combined-game regret is an approximate measure of regret that all
available estimates to approximate the regret within the true game. Intuitively, combined-game
regret is the regret of a strategy with respect to all discovered policies. When comparing empirical-
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game building algorithms this is formalized as follows:

SumRegret(σ,Π) =
∑
i∈n

max
πi∈Πi

Ûi(πi, σ−i)− Ûi(σi, σ−i), Πi ≡
⋃

method

Π̂method
i , (11.1)

where Π̂ is the restricted strategy set from one of the algorithms.

Figure 11.3: Combined-game construction. Left: Constituent empirical games. Middle: Com-
bination of the strategy sets and payoff functions. Right: Completion of the empirical game by
estimating new strategy profile payoffs.

The process of constructing a combined-game is illustrated in Figure 11.3. Where, the strat-
egy sets (depicted by the toons) across methods are first combined. The new combined game

that results from this can be initialized with the payoff estimates from the constituent empirical
games [Balduzzi et al., 2018]. Unestimated payoffs must then be simulated for the new strategy
profiles. Then the complete combined game can be used to compute the combined-game regret
from the solutions computed throughout the empirical-game building algorithms.

11.3 Findings

Results. Figure 11.4 presents the results for this experiment. For Harvest: Categorical, Dyna-
PSRO found a no regret solution within the combined-game in 3.2 × 106 experiences. Whereas,
PSRO achieves a solution of at best 5.45 ± 1.62 within 2 × 107 experiences. In Harvest: RGB,
Dyna-PSRO reaches a solution with 0.89 ± 0.74 regret at 5.12 × 106 experiences. At the same
time, PSRO had found a solution with 6.42± 4.73 regret, and at the end of its run had 2.50± 2.24

regret. In the final game, RWS, Dyna-PSRO has 2e−3 ± 5e−4 regret at 1.06 × 107 experiences,
and at a similar point (9.6 × 106 experiences), PSRO has 6.68e−3 ± 2.51e−3. At the end of the
run, PSRO achieves a regret 3.50e−3± 7.36e−4.
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Figure 11.4: PSRO compared against Dyna-PSRO. (5 seeds, with 95% bootstrapped CI).

Discussion. The results indicate that across all games, Dyna-PSRO consistently outperforms
PSRO by achieving a superior solution. Furthermore, this improved performance is realized while
consuming fewer real-game experiences. For instance, in the case of Harvest: Categorical, the
application of the world model for decision-time planning enables the computation of an effective
policy after only a few iterations. On the other hand, we observe a trend of accruing marginal
gains in other games, suggesting that the benefits are likely attributed to the transfer of knowledge
about the game dynamics. In Harvest: Categorical and Running With Scissors, Dyna-PSRO also
had lower variance than PSRO.

Limitations Although our experiments demonstrate benefits for co-learning world models and
empirical games, there are several areas for potential improvement. The world models used in this
study necessitated observational data from all players for training, and assumed a simultaneous-
action game. Future research could consider relaxing these assumptions to accommodate different
interaction protocols, a larger number of players, and incomplete data perspectives. Furthermore,
our world models functioned directly on agent observations, which made them computationally
costly to query. If the generation of experiences is the major limiting factor, as assumed in this
study, this approach is acceptable. Nevertheless, reducing computational demands through meth-
ods like latent world models presents a promising avenue for future research. Lastly, the evaluation
of solution concepts could also be improved. While combined-game regret employs all available
estimates in approximating regret, its inherent inaccuracies may lead to misinterpretations of rela-
tive performance.
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11.4 Conclusion: World Knowledge Transfer

This study showed the mutual benefit of co-learning a world model and empirical game. First,
we demonstrated that empirical games provide strategically diverse training data that could inform
a more robust world model. We then showed that world models can reduce the computational
cost, measured in experiences, of response calculations through planning. These two benefits
were combined and realized in a new algorithm, Dyna-PSRO. In our experiments, Dyna-PSRO
computed lower-regret solutions than PSRO on several partially observable general-sum games.
Dyna-PSRO also required substantially fewer experiences than PSRO, a key algorithmic advantage
for settings where collecting experiences is a cost-limiting factor.
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Part IV

Conclusion

CHAPTER 12

Conclusion

In this dissertation I investigated the thesis that [i]n learning-based game-solving algorithms the

response learning problems exhibit a common structure that reflects the empirical-game building

process, thus facilitating the transfer of knowledge from previous responses and consequently re-

ducing the experiential cost of game solving. In support of this thesis, I showed how that common
structure can be defined across the BR learning problems posed by learning-based game-solving
algorithms. I further classified this structure into two key categories: strategic knowledge and
world knowledge that can be learned and leveraged. I have presented various methods that utilize
this knowledge for transfer learning and efficient game solving.

With all evidence of the thesis in hand, in this final part, I summarize the story so far and chart
a path forward. I begin by offering a synopsis of the main contributions made by this dissertation.
Following this summary, I turn to the unresolved questions that have emerged from this study or
those closely related to it. Finally, I conclude with some closing remarks.

12.1 Summary of Contributions

Our story began by establishing a taxonomy of game-based transferable knowledge. This classi-
fication of knowledge is deliberately constructed to reflect the shared structure of the response-
learning problems in empirical game building. At its highest level, knowledge is categorized into
strategic or world[ly], aligning with the primary parts of this dissertation.

I begin by delving into the role that strategic knowledge plays in game solving. As per our
definition, response knowledge is represented by a response policy to fixed coplayers. Assuming
the game is fixed, response policies capture the agent’s ideal behavior in relation to its strategic
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context. I frame the primary transfer learning problem faced in game solving with the opponent-
mixture transfer problem. In simple terms, this problem revolves around the utilization of pure-
strategy responses to generate a response for a mixed strategy. In order to effectively transfer our
pure-strategy response knowledge, we need to maintain a belief over which policy our coplayer is
currently playing. Opponent-policy belief knowledge forms the other key type of strategic knowl-
edge.

The most general solution to the opponent-mixture transfer problem would be to transfer re-
sponse policies directly. However, such direct transference is infeasible, as a complete coverage
of the state-action space cannot be generally guaranteed. Ensuring such coverage could, at times,
considerably compromise the quality of response policies.

Instead of direct policy transfers, we need to employ alternative or supplementary representa-
tions of behavior. The Q-value function provides one such representation. It maintains return esti-
mates for all state-action pairs, including those considered sub-optimal within their corresponding
responses. It is in this handling of non-optimal behavior that Q-value functions offers advantages
over direct policy transfer. In direct policy transfer, non-optimal behavior would require support,
potentially undermining the optimality of the response policy. On the other hand, value functions
store data about all state-actions, which can be later utilized to derive an optimal policy. Having
both optimal and non-optimal behavior available enables transfer to any mixed-strategy response.
In light of this, we put forth the Q-Mixing algorithm, which addresses the opponent-mixture trans-
fer problem using Q-values.

The Q-Mixing algorithm operates by taking the mean of the Q-values from response policies
for each policy included in the coplayer’s mixed strategy. The weight assigned to each component
Q-value corresponds to the probability of the coplayer employing that specific pure strategy. In
games limited to a single state and given the coplayer’s strategy, Q-Mixing can exactly compute a
mixed-strategy response. For all other types of games, evidence pertaining to the coplayer’s current
policy can be gathered during gameplay. This aids an agent in updating their belief regarding the
coplayer’s policy. In Chapter 6, I delved into methods that aid in constructing an effective model for
the likelihood of the opponent’s policy. This, in turn, establishes approximate Q-Mixing methods
that are practical and demonstrate strong empirical performance.

Having established a viable solution to the opponent-mixture transfer problem, I then turn
towards its application in game solving. I introduce two game-solving algorithms that utilize
strategic knowledge transfer. A common feature of both algorithms is the modification of the
best-response objective, transitioning from responses to mixed-strategy opponents to pure-strategy
opponents. This alteration eliminates the opponent sampling process, subsequently reducing the
variance in experiences faced by the learner.

The first algorithm, Mixed-Oracles, trains response policies that correspond to opponent indi-
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vidual policies. A response policy to a mixed-strategy opponent is then crafted by combining the
response policies corresponding to the individual opponent policies. In this dissertation, I opera-
tionalize Q-Mixing to combine pure-strategy responses. However, Mixed-Oracles is not restricted
to this; it is broadly applicable to any subroutine capable of combining responses. The exploration
of extensions to Q-Mixing or alternative combination-operations present promising avenues for
future research.

The second game-solving algorithm that implements strategic knowledge transfer is the Mixed-
Opponents algorithm. Mixed-Opponents capitalizes on the additional insight that efficient game
solving might necessitate explicit exploration across the policy space. The exploration heuristic
it uses posits that non-optimal actions across policies in a mixed strategy suggest an aggregate
strategic importance. Bearing this in mind, Mixed-Opponents crafts a new policy that represents
an aggregate of the corresponding mixed-strategy opponent. We once again utilize Q-Mixing as
our combination method in this context, but like Mixed-Oracles, Mixed-Opponents is not limited to
Q-Mixing, and the exploration of alternative combination methods remains an intriguing direction
for future research.

Both Mixed-Oracles and Mixed-Opponents provide persuasive evidence that the transfer of
strategic knowledge can reduce the computational costs associated with learning-based game-
solving algorithms. This forms the initial part of evidence supporting the thesis of this dissertation.

The second part of this dissertation lends further support to the thesis by illustrating how the
transfer of world knowledge can lessen the cost of game solving. As game-solving algorithms
pertain to a fixed game, the game itself represents a shared structure across each response com-
putation. Consistent with this observation, I define world knowledge as those components of the
response learning problem that are independent to strategic variations—thereby, remaining fixed.
One representative of world knowledge is the world model, which is a predictive model of the
world’s transition dynamics and reward function. I explore its potential for reducing the computa-
tional cost of game solving through its co-learning alongside an empirical game.

The concurrent learning of a world model and an empirical game offers mutual benefits. World
models gain from the broadening of their training data, achieved by incorporating data from across
the views of the different strategies that emerge during the building of an empirical game. On
the other hand, empirical games can reduce their construction cost by learning and transferring a
world model, which aids in training response policies through planning. The improvements for
both models were empirically demonstrated by testing their generalization performance to held-
out coplayer policies. This investigation ultimately led to the formulation of the Dyna-PSRO
algorithm, which effectively harnesses both improvements. Dyna-PSRO learns a world model
concurrently with the standard empirical game-building procedures, and as a result, reduces the
overall computational cost of game solving.
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Dyna-PSRO validates the efficacy of world knowledge transfer when utilized to reduce the cost
of game solving. As such, it acts as to capstone the evidence of the second part of the thesis of this
dissertation.

12.2 Future Directions & Open Problems

This dissertation only scratches the surface on studying the relationship between transfer learning
and game solving. Transfer learning is a rich discipline with a variety of approaches outside of
transferring knowledge. In this section, I delineate potential future directions and open problems
that either build upon or are strongly correlated with this dissertation. The selected topics represent
only a minuscule fraction of the full breadth of problems within this domain, serving merely as a
source of inspiration for future researchers.

>2 Player Games. The focus of this dissertation is primarily on two-player games, as the al-
gorithms formulated herein are specifically designed for such scenarios. While it is possible to
extend these algorithms to many-player games, it is important to note that their complexity grows
exponentially with the number of players. As a result, these algorithms become impractical for use
in games with many participants. Further research is needed to address this limitation and develop
efficient methods for analyzing and solving many-player games.

Strategy Discovery. One potential method to decrease the cost of learning-based game solving
involves reducing the number of iterations required for response computation. This can be achieved
through effective strategy discovery, as a smaller number of policies need to be utilized in identify-
ing and then capturing the game’s solution. The process of strategy discovery necessitates a careful
balance between considering a variety of policies (exploration) and fine-tuning already established
effective solutions (exploitation) [Smith et al., 2023b]. Most research in strategy discovery has
focused on exploration alone [Schvartzman and Wellman, 2009a]. Future research should give due
consideration to the explicit treatment of exploration, exploitation, and the interaction between
these two aspects.

Alternative Empirical Game Forms. The primary focus of this dissertation is on analyzing
transfer learning using the structure of ENFGs. However, there are other empirical game forms
that offer opportunities for developing customized transfer learning algorithms by leveraging their
unique structures. One promising game form that has recently gained attention is Extensive-Form
Empirical Games (EEFGs) [Konicki et al., 2022, McAleer et al., 2021]. EEFGs abstract the tempo-
ral structure of a game, which establishes a clear connection with options, a concept that abstracts
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actions into temporal sub-behaviors [Sutton et al., 1999b]. It is intuitive to consider that the chal-
lenges of option discovery and constructing an EEFG are inherently interconnected. Moreover,
options can serve as an alternative representation of behavior that can be effectively transferred
across similar games. Exploring this connection and its implications could yield valuable insights
for future research in this field.

Strategic Planning. The integration of co-learning world models and empirical games opens up
several additional opportunities for their joint utilization. Dyna-PSRO demonstrated that planning
with a world model can significantly reduce the computational costs associated with game solving.
However, Dyna-PSRO’s planning approach relied on direct access to the opponent’s actions and
employed a simple search routine. To further enhance the performance of Dyna-PSRO, more
sophisticated planning routines can be explored. An intriguing direction to pursue is incorporating
knowledge derived from the empirical game directly into the search routine. This integration has
the potential to improve performance during the learning phase as well as when deploying the
solution after solving the game [Li et al., 2023]. Future research could investigate and develop
techniques that effectively leverage empirical game knowledge within the search routine, building
upon the foundations established by Dyna-PSRO.

World Model Extensions. In this dissertation, a deterministic representation was adopted to
model a potentially stochastic game as part of the world modeling approach. To improve the ac-
curacy of world knowledge, incorporating more advanced world modeling technologies, such as
those derived from single-agent RL, would be beneficial. This advancement is expected to enhance
the effectiveness of the transfer process. Additionally, investigating the interplay between different
modeling approaches and different classes of games can offer further advantages. Currently, our
world model architecture assumes a simultaneous action game, which limits its applicability to
games with general interaction procedures. Extending the world model to accommodate various
interaction procedures presents a significant challenge in terms of modeling and learning. Explor-
ing these aspects in future research holds the potential for significant advancements in the field.
By integrating more advanced world modeling techniques and exploring the interactions between
different modeling approaches and game classes, a more accurate and adaptable representation of
world knowledge can be achieved.

Cross-Empirical-Game Transfer. While this dissertation primarily focuses on transfer learning
within the context of reinforcement learning, it is worth noting that transfer learning can also be
applied to the construction of empirical games themselves. Solutions or partial solutions obtained
from similar or identical games can be transferred and utilized to expedite the process of solving
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a new game (e.g., parameterized family of games [Gatchel and Wiedenbeck, 2023]). Additionally,
parallel game-solving procedures applied to similar games can exchange learned knowledge and
collectively enhance each other’s performance. To demonstrate the potential of this approach, let’s
consider the role of an auctioneer who employs empirical game analysis to inform mechanism
design. Suppose the auctioneer has already utilized an empirical game to guide the creation and
deployment of an auction mechanism. If the auctioneer wishes to modify the mechanism, it would
typically require constructing a new empirical game. However, due to the shared nature of auc-
tions, there may exist opportunities to transfer insights from the original empirical game regarding
the strategy space of empirical games. This transfer of knowledge could make the process more
efficient and informative, facilitating the modification of the auction mechanism. By exploring the
application of transfer learning to empirical game construction, researchers and practitioners can
leverage existing knowledge and solutions from similar games to accelerate the process of solv-
ing new games, leading to improved efficiency and effectiveness in mechanism design and other
related areas.

Alternative Transfer Methods. Transfer learning is a diverse and multidisciplinary field that
encompasses various approaches and perspectives influenced by numerous other disciplines. In
this dissertation, the focus was primarily on one specific type of transfer learning, namely the
transfer of knowledge. However, depending on the task dissimilarities, there is a wide range of
other transfer methodologies that could be explored. These alternative transfer methods include
task mappings [Taylor et al., 2007, Fernández and Veloso, 2006], reward shaping, optimization or
learner state transfer, and task selection mechanisms. These approaches can be applied at different
stages, whether at the level of reinforcement learning, during the construction of empirical games,
or at some intermediate point in the process. By considering these different transfer methods, a
more comprehensive and flexible framework for game solving can be established. For a compre-
hensive review of transfer learning methods that can be potentially adapted for game solving, I
recommend referring to the literature review by Taylor and Stone [2009].

12.3 Concluding Remarks

I started this dissertation with the observation that game-solving algorithms often treat learning in
different strategic contexts as independent problems. Naturally, this served as motivation for the
inclusion of transfer learning in game solving. It also highlights a common trend in game-solving
and reinforcement-learning algorithms: the tendency to treat problems in isolation. While isolating
problems can simplify them and focus learning on critical areas, this approach does not fully reflect
reality.
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However, in reality, games are not so conveniently isolated from the rest of the world. Human
players carry a lifetime of experiences that influence their approach to each gameplay [Camerer,
2003, Haruvy and Stahl, 2004, Ho et al., 2007]. Whether it’s derived from similar games or past
encounters with the same game, humans’ inherent ability to transfer knowledge enables them to
swiftly adapt to new games or coplayers.

The design of our AI agents and their learning algorithms should take into account both the
game-focused perspective and the broader, lifelong perspective. Maintaining these dual view-
points allows us to better comprehend the efficiency gap between AI and humans, and take strides
towards reducing it. This isn’t a novel observation, but rather, a crucial thread in the quilt of our AI
development, which is often overshadowed. As our world becomes increasingly interconnected,
the efficient strategic reasoning that transfer learning affords will continue to rise in importance.
I hope this dissertation can serve as a valuable resource, its ideas transferred, reimagined, and
applied to the multitude of unresolved problems that still lie ahead.
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