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ABSTRACT

One notable feature of wall-bounded turbulent flows is high-$riction drag. Reducing the
turbulent skin-friction drag on engineering surfaces sabil pipelines, aircrafts, or ships, can
lead to significant energy savings and reduction in carboipfint. Hairy surfaces, inspired
by seal fur surfaces and bird feathers, have emerged as asgmgrapproach for skin-friction
drag reduction. Despite their promise, no study has yet detrated the underlying mecha-
nism of skin-friction drag reduction with hairy surfaces this study, turbulent skin-friction
drag reduction with hairy surfaces and its physical medramere investigated by employing
direct numerical simulation (DNS) in turbulent channel flomith hairy surfaces, uniformly
distributed on both channel walls. The simulations weredooted using a lattice Boltzmann,
immersed boundary (LB-IB) method.

An improved reciprocal interpolation-spreading openagids proposed in order to satisfy
the no-slip enforcement on the hairy filaments. The no-glipdition along the hairy filaments
was measured by employing the ratio of the velocity of a Lagian marker along a hairy
filament to the fluid velocity interpolated into that markdf.the ratio is the unity, the no-
slip condition is strictly satisfied; in other words, thepsérror is indicated by the deviation
of this ratio from the unity. In comparison to the previous-lB methods that provided the
slip error up toO(1000)%, the present LB-IB method ensures better no-slip enforo¢oe
the hairy filaments with the slip error less than2%. Due to the improved reciprocity of

the interpolation-spreading operations, the present BBrethod successfully accomplishes

XVi



better numerical accuracy, stability, and robustness eoetpto the previously suggested LB-
IB methods.

A parametric study was performed at a bulk Reynolds numb&260, corresponding to a
friction Reynolds number of approximately 221 in a baseulebt channel flow with smooth,
no-slip walls, for various filament parameters such as Caunimber, filament height-to-
spacing ratio, filament height, density ratio between theyHdament and fluid. When drag
reduction was plotted as functions of the individual filamngsrameters, it did not exhibit con-
sistent trends with respect to each of the filament parasetéowever, when plotted against
the ratio of the characteristic time scale of the hairy filatsd¢o the time scale of the largest ed-
dies in the base turbulent channel flow, the magnitudes of d@uction collapsed into a single
curve. The maximum drag reduction of 5.4% was obtained athleacteristic time scale ratio
of 1.4 — 1.5.

Another significant achievement of this study is to revealuhderlying mechanism behind
skin-friction drag reduction with hairy surfaces. The magtism was investigated by examin-
ing the modulation of intercomponent/interscale energpgfer through budgets of Reynolds
stresses, mean/turbulent kinetic energy budgets, andliomeasional energy spectra. The
mechanism can be attributed to the modulation of intercarapband interscale energy trans-
fer. Specifically, the presence of hairy filaments leads te@ehse in the pressure-strain cor-
relation, which causes an accumulation of turbulence gitgin the streamwise component
while reducing it in the cross-streamwise components. €gumantly, the energy that would
have been distributed from the streamwise component togaevase and wall-normal com-
ponents is transported to wake scale turbulence by haimpéitas, and the transported energy
is eventually dissipated within the viscous sublayer. Hhigly is the first DNS research that
demonstrates skin-friction drag reduction with hairy agés and reveals its underlying physical

mechanism.
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CHAPTER 1

Introduction

1.1 Background

1.1.1 Wall-bounded Turbulence

Wall-bounded turbulence refers to the turbulent flow thatuos adjacent to solid surfaces,
such as walls or boundaries. A notable feature of wall-bednirbulence is high frictional
drag, primarily generated due to the presence of strong releear originating from the no-
slip wall. As a result, the flow exhibits distinct structuesd patterns at different wall-normal
distances from the wall as illustrated in figurd. The dynamics of wall-bounded turbulence are
characterized by two regions in the wall-normal directiaegording to the relative importance
of viscosity (Tennekes & Lumleyl972: The inner layer and the outer layer. These two regions
are further divided into several layers, as depicted in édu?. Very near the wall, the viscous
shear stress arising from the velocity gradient and fluidosgy is important to the dynamics of
the flow. The variables are adequately scaled with the drictielocity,u, = \/7.,/p, wherer,,
is the wall shear stresg,is the fluid density and the kinematic fluid viscosity, The viscous-
scaled variables are often indicated in wall units, whictiasoted by a superscript

The region corresponding to the wall-normal location withi < 5 is defined as the viscous
sublayer, where viscous shear stress predominates obettdnt shear stress. Within the vis-

cous sublayer, the mean velocity varies linearly with thé-warmal locationU+ = z*, which
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Figure 1.1: Robinson’s summary of coherent structures iklvaainded turbulenceRobinson
1997).

is often called ‘law of the wall’. The upper bar denotes timv@raging. Above the viscous
sublayer, the buffer layer extends further away from thd wihin 5 < z* < 30. Within the
buffer layer, both the Reynolds stresses and the viscoess&s are significant. The buffer layer
is characterized by an increase in turbulence intensityta@mdmergence of coherent structures,
which arise as a consequence of the self-sustaining ndacyee (Jimenez & Moin 1993
Hamiltonet al., 1995 Waleffe, 1997 Jimenez & Pinelli1999. The viscous sublayer and the
buffer layer fall into the ‘near-wall region’, as depictadfigurel1.2. A greater distance from
the wall falls into the outer layer, where the influence ofcesity becomes negligible. The
reference length scale is often assumed to be a value cobipaoathat of large scale turbu-
lent eddies. In the case of turbulent channel flows, the hafinel height 1) serves as the
reference length. Asymptotic matching allows for the esthiment of a logarithmic profile

connecting the inner later and the outer laydillfkan, 1938,

Ut ==In(z")+C, (1.1)

wherex =~ 0.41 is the von Karman constant, aidd ~ 5.5 is the intercept of the logarithmic
layer (or log layer). Over the past, it was commonly belietred the log layer begins at approx-

imately 2™ = 30 (Tennekes & Lumley1972 or z* ~ 50 (Pope 2000. However, more recent



studies have indicated that the extent of the log layer magui@ weakly on the Reynolds num-
ber, with a suggested relationship0f > z*3Re;/* at Re, of the order ofO(10%) — O(10)
(Marusicet al., 2013. Re, denotes the friction Reynolds numbé&,. = v, H /v, which rep-
resents the ratio between the characteristic length sdéadeldies in the outer layer and the
viscous length scaleRe, = u,H/v is considered in fluid dynamics, particularly in the study
of turbulent flows over wall-bounded surfaces, because @& iBmensionless parameter that
characterizes the intensity of turbulence and its impactkam friction drag. By using the fric-
tion Reynolds number, researchers can non-dimensioritakzgow and compare different flow
conditions across various systems. It provides a univensalsure that allows for meaningful

comparisons of flow behavior and drag reduction techniques.
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Figure 1.2: Mean streamwise velocity profile showing theemand outer layers. The black
solid line shows DNS data of the turbulent channel flowkat ~ 5200 (Lee & Moset 2015.

The understanding of near-wall turbulence is crucial whars@ering drag reduction strate-
gies. This region is characterized by a self-sustainindecyciven by coherent structures,

namely streaks and quasi-streamwise vortices, as iltestia figurel.3. Streaks are longi-



tudinal stripes with positive or negative streamwise vigyoftuctuations. These fluctuations
show the alternating low-velocity and high-velocity sikgaperiodically observed in the span-
wise direction. Experimental studies have indicated thatstreamwise wavelength of streaks
is typically around)\;} ~ 1000, while their spanwise wavelength is approximatgjy ~ 100
(Kim et al., 1971 Smith & Metzler, 1983. The self-sustaining process involves the interaction
between streaks and vortices, where vortices redistrtbetsmean shear, amplifying the streaks’
instability, which, in turn, generates new vortices, thlosing the cycle \(Valeffe, 1997). The
longitudinal vortices drive the displacement of slow fluidag from the wall within the low-
velocity streaks, while fluid is pushed towards the wallatireg the high-velocity streaks. This
phenomenon leads to an overall increase in the averagedhedr stress, resulting in an in-

crease in skin-friction@rlandi & Jimenez1994).
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Figure 1.3: Sketch of the near-wall cycle across the spanwal normal plane with quasi-
streamwise vortices and low- and high-velocity streaks.

1.1.2 Motivation for Skin-friction Drag Reduction (DR)

One notable feature of wall-bounded turbulent flows is a Isigih-friction drag. Reducing

the turbulent skin-friction drag on engineering surfaagshsas oil pipelines, airplanes or ships,
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DR methods Active/passive DR (%)

Non-surface treatment

Blow/suction Active < 25%
Spanwise wall-oscillation Active < 50%
Gas/bubble injection Active and/or passive< 80%
Polymer additives Passive < 80%

Surface treatment

Riblet surfaces Passive < 10%
Permeable substrates Passive < 20%
Superhydrophobic (SH) surfaces Passive < 75%
Compliant surfaces Passive < 8%
Hairy surfaces Passive < 50%

Table 1.1: DR methods with active/passive flow controls:v8ig/suction Choiet al., 1994,
spanwise wall-oscillationGatti & Quadriq 2016, gas/bubble injectionGecciq 2010, poly-
mer surfactant/additiveSoms 1949, riblet surfacesBechertet al., 19973, permeable sub-
strates Rostiet al., 2018, SH surfacesHarket al., 2014, compliant surfaces~ukagateet al .,
2008, hairy surfacesTakataet al., 1996.

can lead to significant energy savings and reduction in cafbotprint. For exampley;- 30%
reduction in turbulent skin-friction drag on ocean shipsldaesult in an annual decrease in
fuel consumption of- 700 million barrels of oil (McKeonet al., 2013. A mere 1% reduction
in skin-friction drag could enable an Airbus A340 to conseapproximately 400 kiloliters of
jet fuel, amounting to a savings of approximately $300,080 year Kornilov, 2015. The
annual fuel cost for all commercial airlines in the Unitect8s is about $10 billion—an ex-
penditure that has remained relatively stagnant over teedecadesHefner, 1988 Bushnel)
1998 Gad-el Hak2000. A significant amount of aviation fuel, up to 81% of Air Forerergy
budgets is required to overcome the drag, and almost hadiedital drag comes from the skin-
friction drag Felderet al., 2017). In light of these examples, the skin-friction drag reductis
indispensable to achieve energy savings and reduce thercebtprint.

In recent years, two major approaches have emerged foratitgyturbulent skin-friction

drag: Active and passive flow control techniques. Both apgines have been applied to wall-



bounded turbulent flows in order to disturb the near-walb@ilgnce and its dynamics and thus
reduce the skin-friction drag. Tablel presents a comprehensive overview of various DR meth-
ods corresponding to both active and passive flow contrbhigaies, along with their reported
maximum DR values. Active flow control techniques are mostigresented in conjunction
with arrays of sensors and actuators that inject (extracthentum to (from) the targeting
spots [Lin et al., 1955 Choiet al., 1994 Rathnasingham & Breug2003 Diez & Dahm 2004
Benard & Moreay2014) or the spanwise oscillation of wall surfaces to alter tharreall or
outer structuresJunget al., 1992 Leschziney202Q Riccoet al., 2021, Marusicet al., 202]).
Unlike active flow control, passive flow control does not retyexternal energy sources, mak-
ing them more advantageous in terms of achieving higher metgg savings. In addition,
passive strategies do not require the use of additionaJsaofBsensors and actuators, simplify-
ing their implementation and reducing maintenance costsms€quently, passive flow control
has emerged as promising approaches for reducing turtskenfriction drag to date. Passive
flow control is predominantly found in the form of surfacesdttments. In the following section,

further details regarding surface treatments proposed dpte will be discussed.

1.2 Surface Treatments for Skin-friction DR

1.2.1 Drag-reducing Surfaces Inspired by Nature

Surface treatments inspired by the surfaces of living areathave been proposed to reduce
the turbulent skin-friction drag as a passive drag redacsimategy. Nature provides a rich
source of inspiration, from the mucus-coated riblet strtebf shark skinBechert & Barten-
werfer, 1989 Bechertet al., 1997a Garcia-Mayoral & Jimene2011, Walsh 1982 Walsh &
Lindemann1984, to the superhydrophobic (SH) structure of the lotus |€egtheway & Mein-
hart 2002 Parket al., 2014), feather structure of bird€henet al., 2013, seal fur surfacedtph

et al., 2009. A prominent function of these surfaces is the skin-fantDR.



To date, much of the interest in most man-made surfaces reasfbeused on riblet sur-
faces over the past several decades. The initial designsanb#textured surfaces drew in-
spiration from the rib-like protrusions observed on sh&iks specifically the dermal denti-
cles Chernyshov & Zayetsl970. In man-made implementations, the wall boundaries were
carpeted with arrays of longitudinal ribs that rectify thebulent flow in the streamwise di-
rection by hampering the fluctuating cross-flow componentmirous experimentaBéchert
& Bartenwerfer 1989 Bechertet al., 19973b, 2020 and numerical studied_¢chini et al.,
1991 Choiet al., 1993 Garcia-Mayoral & Jimene2011 Endrikatet al., 2021 have shown
a successful skin-friction drag reduction with a systemagitimization of geometrical features
of riblets. The skin-friction DR obtained in laboratoryade experiments was achieved up to
10% for blade riblets with spanwise rib-spacing~of16 wall unit, riblet height of~ 8 wall
unit, thickness-to-spanwise spacingidf, and DRs were more modest, ®f- 7%, in full-size
applications Bechertet al., 1997a Spalart & McLean2011).

Recently, anisotropic permeable substrates have beengedpn the pursuit of further im-
provement in skin-friction DR. Rather than employing ispic permeable surfaces that re-
sulted in drag increas&pstiet al., 2015 Kuwata & Suga2016), the integration of anisotropic
permeable surfaces on the wall provides skin-friction D& far exceeds the maximum limit
obtained from riblets, which is approximatel§%. By modulating the directionality and per-
meability, it becomes possible to address the limitatidmseoved with riblets. As the size of
the riblet surface increases, additional detrimentalceffemerge, causing the breakdown of
drag reduction performance and eventually enhancingfskitien drag. This degradation was
attributed to the spanwise fluctuation induced toward thiasea indentation and the resulting
onset of wall-normal transpiration. The degradation apppeominently when the sqaure root
of groove area exceeds 11 in wall urggrcia-Mayoral & Jimeng2011). On the other hand,
streamwise-preferential substrates where the flow ifiettinto the wall-parallel direction, but
hampered in wall-normal direction provided substantigbiavements in drag reduction can

be achievedRostiet al., 2018 Gomez-de Segura & Garcia-Mayar2l019, suggesting that
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the suppression of wall-normal fluctuation was the prongigathway to achieve higher DRs.
These studies have shown that the streamwise-prefersnbatrates provided the skin-friction
DR up t020 — 25% at Re, =~ 180.

Another category of surface treatments that has garneggfisant attention is superhy-
drophobic (SH) surfaces. These surfaces draw inspiratmmn the water-repellent structure
observed on lotus leaves, butterfly wings, water strideesed beetles, spider webSdrb,
2009. A few of these surfaces possess a rough exterior covetedawater-repellent wax, en-
abling water to effortlessly slide off the surfaddd & Hill , 2014). By mimicking the structure
of natural surfaces, this class of micro-textured surfasesade of a combination of surface
micro-textures and liquid-repelling coatings. In mictwaanels with arrays of SH longitudinal
micro grooves implemented on both channel walls, experimmbave shown DR up to 50%
with the spanwise gap spacing betw&en— 4.8 in wall unit and the spacing-width ratio of 1
(Danielloet al., 2009. Later, DRs of up to 75% have been reported in turbulent dagnlayer
flows with arrays of SH longitudinal micro grooves of spareMg@p spacing between 0.8 and
1.6 and the spacing-to-width ratio between 1 andF&Ket al., 2014).

The skin of dolphins offers an intriguing alternative sedaexture for skin-friction DR
(Kramer, 196Q 1962. This unique surface, known as a ‘compliant surface, sspeely recon-
figuring its surface morphology in response to the surraugduid flows. Several theoretical
and experimental studies (Gad-el-Hak, 2000 and referetinesin) postulated that compli-
ant surfaces suppressed laminar-turbulent transiti@cfely and thus mitigate the effects of
skin-friction drag. Earlier DNS studyr(kagataet al., 2008 demonstrated that an anisotropic
compliant wall with optimized parameter sets successfuityided the skin-friction DR up to

8% in a turbulent channel flow &e, ~ 110.



1.2.2 Limitations of the Existing Drag-reducing Surfaces

Despite the remarkable results from the drag-reducingesarfextures discussed earlier such
as riblet surfaces, anisotropic permeable substratesSHralirfaces, their geometrical features
are generally fixed in ‘physical unit’. In other words, thesefaces have specific surface topol-
ogy, which is optimized at a particular friction Reynoldswher. However, in real engineering
applications involving air, ground, and underwater vedgckheir speed and direction continue
to change over time, leading to dynamic variations in thetibh Reynolds number and the
streamwise direction over the surfaces. Therefore, tHfaitextures unalterably designed for
one friction Reynolds number may perform poorly at a différeiction Reynolds number due
to the change of the characteristic surface size in walkunit

A growing body of evidence has indicated the drawbacks ofdtseirfaces. With increasing
Reynolds number, the riblet surface, characterized by d k& in physical units, experiences
an increase in its size in wall units. This growth eventuldids to a substantial intrusion of
the fluctuating cross-flow component into the surface inatearis. Consequently, there is an
amplification of the wall-normal momentum flux between therbing flow and the surface
indentations, resulting in an increase in skin-fricti@afcia-Mayoral & Jimene2011). Sim-
ilarly, the drag-reducing performance represented by tiigoéropic permeable substrates was
also degraded as the friction Reynolds number incregSethéz-de Segura & Garcia-Mayaoral
2019. For SH surface, its implementation as a practical metloddducing turbulent skin-
friction drag is still limited due to the challenges posedhigh shear rates and high pres-
sure fluctuations at higher Reynolds numbers. As Reynoldseuincreases, the gas pockets
trapped in the surface indentations of SH surfaces tenddietieand get replaced by the work-
ing fluid, negating their drag-reducing capabilitieZhénget al., 2009 Checcoet al., 2014
Samahat al., 2012).

Moreover, several investigations have raised concerrardety the use of compliant sur-

faces for skin-friction DR. Although an earlier study sugigel that compliant surfaces could



achieve skin-friction DR of up to 8% at a friction Reynoldswmier of approximately 110~0k-
agateet al., 2008, recent studies have shown that at higher Reynolds nuntbherpresence of
wall compliance resulted in the generation of large-amagktwaves propagating downstream
(Kim & Choi, 2014 Rosti & Brandf 2017 Xia et al., 2019 Rosti & Brandf 2020. These
waves enhanced the fluid motions and ultimately resultedhimerease in skin-friction rather
than its reduction.

Given the limitations posed by the existing drag-reducingages, it is still necessary to
explore alternative surface-textures that can addrese fivaitations and provide effective re-
duction of skin-friction drag. This entails exploring sacés that adapt to diverse flow condi-
tions by dynamically adjusting their configuration, whils@ensuring consistent and reliable

skin-friction DR.

1.3 Hairy Surfaces as an Alternative Drag-reducing Surface

1.3.1 Hairy Surfaces Existing as Dynamic Functional Surfaes in Nature

Slender and flexible outgrowths or protrusions are calledtdh This description is general,
valid to any similar structure regardless of its biologioghin (Gorb, 2009. Hairy surfaces,
characterized by an assembly of these hair-like structareswidespread in nature and serve
multitude functions. At the microscale, hairy surfaceskdaavater-repellent capabilities, al-
lowing spiders and aquatic insects such as water striden®t@ on water surfaces and protect
their respiratory organs from unwanted water entry (Go@l®2 and references therein). In the
context of respiratory tract, cilia and flagella, which apatractile hair-like structures, facilitate
fluid transport in the mucus layer, thereby preventing theebof chronic respiratory diseases
in human beingsHan & Peskin 2018 Loiseauet al., 2020. At the macroscale, underwater
creatures (e.qg. fish, seals) and flying insects utilized fli@mentous hairs to sense the velocity

field as well as the pressure distribution along the bddw (& Yo, 2012. Poroelastic surfaces
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found in owl’s wing feathers effectively weaken the generabf aerodynamic noisel@worski

& Peake 2013 Clark & Jaworskj 2020. Experimental and numerical studies showed that
hairy surfaces coated along cylinders and airfoils efietyi suppressed the separation region
behind the objects and thus reduced the pressure Beagefet al., 2009 Bricker & Weidney
2014 Hasegawa & Sakay@021; Hasegawat al., 2022).

Another primary function of hairy surfaces is the skin{io DR, which is particularly sig-
nificant in future engineering applications. This can besobsd in the fur of aquatic mammals,
such as sealdtbh et al., 2009. The researchers reported that when real seal fur texivess
attached to turbulent channel walls, they exhibited a batleptability compared to riblet sur-
faces. This adaptability allowed the seal fur textures twijgle a greater skin-friction DR across
a wider range of Reynolds numbers. Given the significanceao§ Isurfaces in skin-friction
DR, they can be considered as a promising candidate fomatiee drag-reducing surfaces.
The subsequent sections will delve into a more detailedoeapbn of the topic, focusing on

the role of hairy surfaces in reducing skin-friction drag.

1.3.2 Experimental Studies of Skin-friction DR with Hairy Surfaces

To the knowledge of the author, very few experimental stidauild be found in the literature
exploring the skin-friction drag reduction using hairyfsiges.Takataet al. (1996 investigated
turbulent skin-friction drag reduction in pipe flow usingaxet of microfibers implanted on the
inside walls of the pipe. The maximum drag reductions of upgproximatelys0% were re-
ported with micro-fibers of heiglit— 8 wall units, implanted with no preferred orientatidtoh
et al. (2000 reported drag reductions of up 1@% using a seal fur surface in turbulent channel
flow at Re, ~ 150. They observed that the hairs are distributed in streampirisierential con-
figuration, with various hair heights ranging from 2 to 18 iallunits. Briicker(2011) carried
out experiments in an oil channel, employing a carpet oftefasric micro-pillars, comprised

of sparsely implanted filaments with height3®fwall units, streamwise and spanwise spacings
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of 15 and 30 in wall units, respectively. He observed a reduced meangemnd stabilization
of the near-wall streaks, arguing that this was the sigeatfithe skin-friction drag reduction,
although DR remained to be reported. Regarding the resolts these experimental studies, a
common feature represented by drag-reducing hairy suwgfadhat their heights do not exceed
the order ofO(10) in wall units and their spacings are comparable to theirfitsigAlthough
these experiments showed that hairy surfaces providedraigedor the skin-friction DR, its

underlying mechanism remains to be revealed.

1.3.3 Computational Studies of Turbulent Flows over Hairy Sirfaces

Numerical investigations of turbulent flow over hairy seda to date have primarily focused
on canopy flows, which are encountered in terrestrial andtacuegetationTschisgaleet al.,
2021 He et al., 2022 Monti et al., 2023 as illustrated in figuré..4 (a). Previous simulations
commonly treated the canopy element as a continuous medidmehed on predefined drag co-
efficients for the prediction of canopy drag. However, tlipach is inadequate when dealing
with deformable canopies interacting with turbulent flok2&formable canopies continuously
change their postures and shapes, necessitating dynajugtradnts of the drag coefficients.
Consequently, there is a need for an explicit solution teatigately resolves the drag forces
acting on deformable canopies.

The immersed boundary (IB) method provides a viable appréacaddressing this chal-
lenge. The IB method explicitly solves the interaction &sdetween the solid structures and
the fluid by employing interpolation and spreading operai@eskin 1972 Romaet al., 1999
Li et al., 2016. By utilizing the IB method, the drag forces exerted on theniients can be
directly obtained without relying on any assumptions ot drag. Thus, this approach al-
lows for a more accurate representation of the drag expmtehy the deformable filaments in
the canopy. Furthermore, employing the IB method enablpsidag the detailed correlation

between the drag force exerted by the hairy filaments and doeu#iting fluid velocity. This
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correlation provides valuable insights into the transpbttrbulent energy associated with the
motion of the hairy filaments. Hence, by resolving the intdéoa forces with IB method, it can
be better understood how turbulent kinetic energy is trartied and distributed by the hairy
filaments throughout the fluid flow.

Recent DNS studies within the IB framewoiMd@nti et al., 2020 Sharma & Garcia-Mayoral
202(a,b) provided valuable insights into the interaction betwearualence and filamentous
canopies, however, their applications were limited to regs elements that increase the drag,
and much of interests was focused on the mixing layer indiakiappeared in the interface
between ‘rigid’ canopies and their overlying flows. In faitte rigid canopies acts as a rough-
ness, increasing the drag. To gain more insights into tre¥antion between realistic canopy
elements and turbulent flows, recent numerical studies baea conducted to study turbu-
lent flows over ‘flexible’ canopies. Wall-resolved largedgdsimulations (LES) carried out by
(Tschisgalest al., 2027) investigated the characteristics of coherent structina&sappear in the
mixing layer and their impacts on the large-scale collecthotion of flexible canopy elements,
commonly referred to as honami/monaide et al. (2022 conducted spectral analysis of turbu-
lent kinetic energy budgets to further comprehend the uyidgrmechanism of the interaction
between flexible canopy elements and turbulent flow. Thegmesl that the canopy motions
are predominantly observed at the monami scale associatiedh& coherent structures in the
mixing layer and the wake scale associated with the intéetleen adjacent canopy elements.
Furthermore, a different DNS studylipnti et al., 2023 revealed that this canopy motion was a
fully-passive behavior in response to the surroundinguiert flows. Although these numerical
studies have provided valuable insights into the inteoadbetween hairy filaments and turbu-
lent flows, none of them showed any skin-friction DR. It carcbajectured that the parameter
sets given in these computational studies are not bendbeiskin-friction DR. Specifically, the
canopy height set in these studies were the ordéx(@60) — O(1000) in wall units. This range
differs significantly from the heights of drag-reducingryaurfaces observed in the aforemen-

tioned experiments where the height of drag-reducing haurfaces did not exceed the order
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KH/HP vortices

Figure 1.4: Flow structures existing above the hairy s@safor canopy). &) Isosurfaces
of pressure fluctuation at a value gf/(0.50;U2) = —0.4 in a turbulent open-channel flow
(Tschisgalest al., 2021). (b) Isosurfaces of the streamwise velocity fluctuations atlaevaf
't = £3inaturbulent channel flow confined by two-parallel, no-slgdls (Sundin & Bagher;
2019.

of O(10) in wall units.

In a separate DNS study conductedSiyndin & Bagher{2019, the effects of elastic hairy
surfaces on turbulent channel flows and their dynamic resptmturbulence were investigated
at Re, =~ 180 as illustrated in figurel.4 (b). In their DNS study, the density ratio ranged
from 1 to 800, and the height and diameter of the hairs werel fiseapproximately 20 and
2 in wall units, respectively. The hairs were distributedaé side of the channel walls with
the uniform-spacing of approximately 8—16 in wall unitstsSef these parameters were deter-
mined corresponding to the range of the characteristic soade of the hairy filaments. The
targeted ratio of the characteristic time scale of the hiligynents to the characteristic time
scale of near-wall turbulence varied from 0.21 to 1.5, antbetingly the density ratio and
flexibility were adjusted. It is noteworthy that the hairyafitents were relatively stiff, resulting
in limited deflection with mean values ranging from 0.48 t28Lin wall units. This limited
deflection caused the hairy filaments to protrude into theeuppar-wall region, and they act
as roughness elements and ultimately increase the skiifridrag. This implies that the sig-

nificance of flexibility in conjunction with height and spagiis indicative of its pivotal role in
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the performance of hairy surfaces on skin-friction DR. Tis #nd, a comprehensive parametric
investigation is warranted to identify an optimal combioatof governing filament parame-
ters, encompassing filament height, spacing, density, ratid flexibility, the latter typically

guantified by the bending rigidity of the hairy filaments.

1.3.4 Plausible Hypotheses Regarding Skin-friction DR wit Hairy Sur-

faces

As can be seen in the literature, none of the numerical stiunlatudies have been able to
reproduce skin-friction DR using hairy surfaces to datespite the existence of experimen-
tal evidence. In the context of skin-friction DR, it can bepegted that increasing the height
and bending stiffness of the hairy filaments as well as magrctheir time scale to that of the
near-wall turbulence may not be a suitable approach in dsgarthe failure of achieving skin-
friction present in the previous simulation studi&si(din & Bagheri2019 Tschisgaleet al.,
2021, Heetal., 2022 Monti et al., 2023. Instead, a more promising pathway could involve the
use of highly flexible filaments, where the characteristitetscale of these filaments is matched
to other relevant time scales. Moreover, the underlyinghmaism behind the skin-friction DR
with hairy surfaces remains to be clarified. One plausibfgoliyesis for the mechanism of skin-
friction drag reduction is that the presence of hairy filateetisrupts the transfer of turbulent
energy, which is essential for sustaining turbulence. Tdigytilaments could absorb and redi-
rect the energy that would contribute to the sustenancerbfilence, ultimately mitigating the
effects of turbulence and thus reducing skin-friction drdg gain better description of these
hypotheses, it would be worthy to analyze the intercomptimt@rscale energy transfer and its

modulation by the presence of hairy filaments.
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1.4 Objectives of the Dissertation

Turbulent skin-friction DR was investigated by direct numoal simulation (DNS) in turbu-
lent channel flow with hairy surfaces, where the one-dinmraihairy filaments are uniformly
distributed on both channel walls. A lattice Boltzmann, iersed boundary (LB-1B) method
was employed in this study. A direct forcing IB scheme, sufgzbby reciprocal interpolation-
spreading of operators, was adopted. The dynamics of timediies was tracked by solving the
dynamic Euler-Bernoulli beam equation. In comparison #ogfevious studies where the hairy
filaments were modeled with two-dimensional plaiechisgaleet al., 2021, He et al., 2022
or three-dimensional cylindrical bodieSyndin & Bagheri 2019, the hairy filaments were
modeled as one-dimensional flexible filament in similar ®dkher studiedonti et al. (2019
2023. Simulations were performed in turbulent channel flows btk Reynolds number of
Re, =~ 7200, corresponding to a friction Reynolds numberid, ~ 221 in a base turbulent
channel flow with smooth, no-slip walls. The primary objeetof the present study is to re-
produce a positive turbulent skin-friction DR with hairyriaces and elucidate its underlying

mechanism. To achieve this objective, several sub-obgtre set as below:

To develop a precise and robust numerical method for sitimgl#luid-structure interac-

tion within LB-IB framework.

* To verify and validate the proposed numerical method amdiico its superiority over the

previously suggested LB-1B methods.

» To conduct a parametric study to investigate the effectiéamhent parameters, such as fil-
ament height, spacings, density ratio between the haimditas and fluids, and bending

rigidity, on the behavior of hairy flaments and the resytilow statistics.

 To explore skin-friction DRs in terms of the filament paraens and identify a governing

parameter that exhibits a consistent trend of DR.
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» To analyze the budget terms of Reynolds stress componeetsamine the modulation

of intercomponent energy transfer in the presence of haaménts.

* To investigate the role of the hairy filaments in terms ofititerscale energy transfer by

analyzing the budget terms of mean kinetic energy and tartbkiinetic energy.

» To gain insights into the overall modulation of interscateergy transfer resulting from
the presence of hairy filaments by analyzing one-dimensgpextra of turbulent kinetic

energy and Reynolds shear stress.

By addressing these objectives, this study aims to advdwecertderstanding of turbulent skin-

friction DR with hairy surfaces and provide valuable inggjimto its physical mechanisms.

1.5 Organization of the Dissertation

The dissertation is organized as follows. Chapter Il presidn overview of the LB method
and IB method, as well as their coupling schemes. Subsdguampirecise and rigorous LB-IB
method will be proposed and compared to previously sugdddBelB methods in terms of
numerical accuracy, robustness, and stability. The vatitio and validation of the proposed
LB-IB method will be presented. In Chapter lll, the charaistecs of filament deflections, re-
sulting skin-friction drag reductions, and flow statistidgained from the parametric study will
be discussed. Chapter IV focuses on investigating the lywdgmechanism of skin-friction
drag reduction with hairy surfaces, specifically analyzihg modulation of intercomponent
and interscale energy transfer. Chapter V provides sumaradyconclusions of this study and

suggests the future research directions.
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CHAPTER 2

Numerical Methodology

Turbulent skin-friction drag reduction with flexible filamtus surfaces is investigated by
direct numerical simulation (DNS) using an immersed bouyiattice Boltzmann (IB-LB)
method. In this method, the dynamics of the fluid flow is démdiby employing LB method
with standard D3Q19, single relaxation time, Guo’s forcingction, Bhatnagar-Gross-Krook
lattice modelsKrugeret al., 2017). The dynamics of elastic, slender hairy filaments can be de-
scribed by solving the dynamic Euler-Bernoulli beam edqugtivhich balances out the inertia,
tension, bending, interaction, and repulsive forces edeoh the hairy filaments$-avieret al.,
2014). A direct-forcing IB method combined with the diffusiveterface scheme is adopted
to simulate the fluid-flexible structure interaction. Theipeocal interpolation-spreading op-
erations, suggested in the previous stuginélli et al., 2010, is improved to achieve better
numerical accuracy, instability, and robustness. Throughll simulations, the mean pressure
gradient is dynamically adjusted to keep the bulk Reynoldslmer constant during the course
of the simulations. A mathematical formulation of maintagithe constant flow rate (or con-
stant bulk Reynolds number) is obtained from a control vaamnalysis over the entire channel
with/without the presence of the hairy flaments. Grid enthed is employed to improve the
accuracy of the computations from the channel wall up to 8B@wvall units above the channel
wall for the ’base’ turbulent channel flow with smooth, ngsballs and the filament tips at
undeformed (or initial) state for the turbulent channel fleith hairy surfaces, respectively. A

two dimensional domain decomposition is applied in paliaidion of the IB-LB simulations.
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The numerical methods utilized in the present study have begfied and validated through
a series of numerical experiments. All of the details in tienerical methods and solution

procedures will be discussed in the following sections.

2.1 Fluid Solver

2.1.1 Lattice Boltzmann (LB) Method

LB method is a numerical simulation technique derived framekc theory. This method
relies on a mesoscopic description of the fluid to computené&scroscopic behavior. It has
gained popularity for simulating incompressible, viscliugl flows due to its advantages over
Navier-Stokes (NS) solver in terms of numerical simplieibd parallelization. Compared to NS
solvers, LB method is solving an inherently explicit, linemuation, obviating the numerical
difficulties resulting from the nonlinear convective terin.addition, the pressure is calculated
in a simpler way, using the equation of stgte= pc?/3, wherec is the lattice speed, and
is the fluid density. This reduces the burden of calculatirggressure gradient, which typi-
cally requires intensive computational costs as well asptmated solution procedures for NS
solvers. Moreover, LB method reduces the challenge of lgdization due to local nature of
its computational stencil. Regarding these advantagesné®od has been the subject of rapid
developments in the recent years.

In the numerical simulation of fluid flows, LB method is typigaadopted employing single-
relaxation-time lattice Boltzmann equation (SRT-LBE). TSEBE was initially developed as an
improvement over the lattice gas automata in a discretedasind time Erischet al., 1986
Chenet al., 1992. It was shown later that SRT-LBE can be derived from the iomatus Boltz-
mann equation with an appropriate collision model in discphase space and timeéd & Luo,
1997a). For its basic formulation, LB method tracks the evolutadrsets of particle distribu-

tion function (or discrete velocity distribution functipnf;(x, t), which represents the density
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of particles with discrete particle velocity = (c;,, ¢y, ¢;») at a lattice positiorx and timet.
Sets of the discrete particle velocitycan be denoted in adi model , wheral is the number
of spatial dimensions anidis the number of discrete velocity vectors in a lattice. Irnigeé-
dimensional simulation of fluid flow, three lattice modele @aommonly leveraged: D3Q15,
D3Q19, and D3Q27. Among these lattice models, D3Q15 modetimaller memory footprint
and less computationally demanding procedures, but it iesesr number of discrete veloc-
ity vectors, resulting in less accurate numerical resuds. the other hand, D3Q27 provides
more accurate results with an increased number of discedbeity vectors, but requires inten-
sive memory usage. To balance numerical accuracy and mamage, D3Q19 lattice model
has been widely adopted as a reasonable choice. Figlishows the lattice arrangements of
D3Q19 model. Set of weight factors; and discrete velocity vectors are tabulated for D3Q19

lattice model as can be seen in Tabl&

Figure 2.1: Lattice arrangements of D3Q19 model

The LB equation can be obtained by discretizing the Boltameguation in lattice velocity

space, physical space, and time, which is given as

fi(X + Ci7 At) - fi (X, At) — Qcol,i- (21)
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i W C;
0 1/3 (0,0,0)

1—6 1/18 (1,0,0), (0,0,1), (-1,0,0), (0,0,-1), (0,-1,@,1(0)

7—18 1/36 (1,0,1),(-1,0,1),(-1,0,-1), (1,0,-1), (1,21/@,1,0), (-1,1,0),
(-1,-1,0), (0,-1,1), (0,1,1), (0,1,-1), (0,-1,-1)

Table 2.1: Set of weight factors;, and discrete lattice velocity vectors, of D3Q19.

The particle collisions are modeled by a collision operdy, ;, to describe the redistribution
of particles at each site. Bhatnagar-Gross-Krook (BGKJisioh operator was introduced to

replicate the macroscopic behavior of fluid@hatnagaet al., 1954):

Qs = 20— 1) 22

wherer is the relaxation time towards the local equilibrium. Thiaxation time is obtained in

relation with the kinematic viscosity of fluids;

T 3vAL

At Ax?

+0.5. (2.3)

The equilibrium distribution functionf;?, is a function of local macroscopic quantities, and
can be derived from Taylor seriddé & Luo, 1997a,b) or Hermite polynomial expansiosfian

& He, 1998 Shanet al., 2006 of the Maxwell-Boltzmann distribution,

+

c-u  (c-u)? u-u
c2 2ct _zcg)’ (24)

perct) = wip (14

whereu is the fluid velocity vectoru(x,t) = [u(X,t),v(X,t),w(X,t)], p is the fluid density,

p = p(X,t), andc; is the speed of sound. With the BGK collision model, the ditzBoltzmann
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equation (Equatiog.1) can be reformulated as the SRT-LBE,

filx+ GAt t + At) — fi(X,t) = g (A%, t) = fi(x, 1)) . (2.5)

The external forces exerted on the fluids (e.g. mean preggadient, interaction force ex-
erted by an immersed solid body) are incorporated into LBadquo via an appropriate forcing

function. In the presence of the forcing function, SRT-LBih e rewritten as:

filx+ CAt t + At) — fi(x,t) = %(ﬁq(x, t) = fi(x, 1)) + AtG. (2.6)

Attaining precise predictions of fluid flows depends on thesifay function, G;, because
the mesoscopic description of the forcing function must yerepriately addressed to ensure
an exact reproduction of macroscopic fluid behavior. Algtoseveral forcing functions have
been proposed from a number of previous studitsdt al., 1997 Martyset al., 1998 Luo,
1998 200Q Buick & Greated 2000, Chapman-Enskog multiscale analysis demonstrated that
the proposed forcing functions failed to reproduce the &faam of the macroscopic equations
such as the continuity equation and NS equati®odet al., 2002. Later, it was shown that
Guo’s proposed forcing function ensured the exact macmsaguations and also held the
second order accuracg(ioet al., 2002 Kang & Hassan2011). Due to its better accuracy and
robustness, Guo’s forcing function has been widely adofmiedcorporate the external forces
into LB equation, expressed as

G = (1—5) wi<°i_2“+ (C"'“)C") f, 2.7)

4
2T 2 o5

wheref_, is the net external force (per unit volume). For a channel flaith smooth, no-

ext

slip walls, the pressure force accounting for the presstadignt imposed in a channel flow is

22



included in the external force, givirfg,, = f,. In the presence of the surface-textured walls,
the interaction force is added, givifig, = f, +f; 5.

The solution procedure of LB equation includes two main stdps: Collision and
streaming steps. More than one particle that arrive at threeg@oint from different directions
collide with each other. Particles under the collision pgscexchange their momentum, then
change their velocities according to the collision ruletefthe collision, particles propagate

and stream into neighboring sites. Their mathematicalrgggms are shown as
Collision step (relaxation)

FE 0 = 000+ 2L 0) — Fix 0) + MG 28)

Streaming step (propagation)

Fi(X+ CALE+ AL) = f5(x,1). (2.9)

After the collision and streaming steps, the macroscopid fikensity and velocity are calcu-
lated by taking the leading moments of the distribution fiorts,

Macroscopic variables

Pl 1) =D fix 1), (2.10)
P O™ (x,8) =Y Cifi(x, 1), (2.11)
u(x,t) = u™(x,t) + mfmt(x, t). (2.12)
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whereu™* is the fluid velocity with no external forces. In the presentéhe pressure force,
f,, as well as the net external fordg;, the net external force is expressedfpy = f, +f;5.

With these components, the equatiht2can be rewritten in terms of the interaction force,

£0t) = [, 1)+ Frp(x,1)] = % (p(x, UK. 1) — px, OUF (%, 1)) . (2.13)
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2.1.2 Physical Constraints of Fluid Flow

Table2.2 presents the basic predefined parameters utilized in LBlations. The simulation
parameters are normalized by the grid spacifdg;, the time step,At, and the discrete
lattice speed¢ = Ax/At, as often expressed in ‘LB units’. In the solution procedafe
LB equation for a channel flow, the bulk Reynolds numbBgy,, the half channel height
(H/Ax), and CFL number, which is equivalent to the centerline ei¢yoof the channel,
CFL = U./c = UAt/Ax are specified. Then, the calculation of other LB simulation
parameters is followed such as the bulk velocity /), kinematic viscosity gAt/Axz?),

relaxation time £/ At).

Parameters Physical domain Parameters in LB units
Bulk Reynolds number Rey Rey, = UyH /v = (U At/ Az)(H/Ax)/ (VAL Az?)
CFL number CFL CFL=U./c=UAt/Ax
Half channel height H H/Ax
Kinematic viscosity v vAt/Ax?
Relaxation time T T/At

Table 2.2: Basic parameters of LB simulations.

For example of a laminar channel flow, the first procedure $&tdReynolds number, channel
height, and CFL number. The bulk velocity is determined wielly from the correlation
between the bulk velocity and the centerline veloéity= %Ub. Once these parameters in LB
units are set, the other variables are subsequently ctdulathe procedure shown below:

(1) Set Rey, H/ Az, CFL
(2) Obtain bulk velocity U,

Rer UpH  (Uy/c)(H/Ax)
T T (vAt/AR?)

(2.14)
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Uy 2U. 2
e Z(OFL 2.15
- =3, —3(CFL) (2.15)

(3) Determin kinematic viscosity and relaxation time

NI CL Céi/ Ar) _2CF gj)%(j/ Az) (2.16)

3w o 3(Un/)(H/Ax)

At =
7/ Ax? Rey

+05 (2.17)

However, in contrast to laminar flow, the correlation betaw&e andU, cannot be obtained
through analytical procedure for turbulent channel flowstéad, Dean’s correlatiorDéan
1978 can be used to correlaté. with U,. OnceU, is determined, the remaining parameters
can be subsequently calculated. Furthermore, the pareradten depends on which physical
constraint is applied, whether it is a constant pressurgigma (CPG) and a constant flow rate
(CFR). The parameterization details for turbulent chafioel under CPG and CFR conditions

are further elaborated in the following sections.

2.1.2.1 Constant Pressure Gradient (CPG)

(1) Set Rey, H/Ax, CFL

(2) Approximate friction Reynolds number Re.,

Cr = 0.073(2Rey) /4 (2.18)

2 2 2

Tw pU 2u 2Re
C, — — T T T 2.19
T = 05pU2 ~ 05pU2 ~ UZ  Re? (2.19)

Re. = 0.1751Re]’® (2.20)
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(3) Determine kinematic viscosity and relaxation time

vAt  u.H At (u;/c)(H/Ax)
Az2  Re, Az2 Re.

= 0.110(H/Az)(CFL)Re;*1?% (2.21)

T

T 3vAt 05— 3(u,/c)(H/Ax)

AL = —1.1296
At Az? Re. +0.5 = 0.330(H/Az)(CFL)Re; "' + 0.5 (2.22)

For CPG formulation, the bulk velocity changes in time. Theam bulk velocity is averaged

over the sufficient time interval, then the skin-frictioreficient is obtained by'; = %.
2.1.2.2 Constant Flow Rate (CFR)
(1) Set Rey, H/Ax, CFL
(2) Approximate bulk velocity U,
% = 1.28%(21[{65,)_0'0116 (2.23)
which is used to compute the target bulk velocity
Ub,tar o uc/c 0.0116
. — 193 (2Rey) (2.24)
Uptar Uc/c oone _ CFL 0.0116
(3) Determine kinematic viscosity and relaxation time
vAt  UyH At (Uy/c)(H/Ax)  H/A(CFL) (2.26)
Ar2  Re, Az? Re, ~ 1.2697 Re-9%84 '
T 3vAt 3(Up/c)(H/Ax) 3(H/Ax)(CFL)
— = 5= 5= . 2.27
AT A TUP Re, 00T agorRenost 00 (2.27)

For CFR formulation, the pressure gradient changes in tififee mean pressure gradient is

averaged over the sufficient time interval, then the skictitm coefficient is obtained by'; =
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2H(dp/dx)avg
pU; '

tar

2.1.3 Grid-embedding Technique

Grid-embedding technique has been employed to improve tingerical accuracy near the
walls, maintaining the computational cost at a reasonahlell In this proposed study, the
multi-domain method is adopted due to the benefits from betenagement of CPU perfor-
mances and higher memory savidgsgravaet al. (2012. The coarser grids are replaced by
conformal patches of fine grids near wall region as shown uwré&@.2. The flow quantities
such as fluid density, velocity, and kinematic viscosity@etinuous across the grids by keep-
ing the lattice speed constant on both gricls; Az./At. = Axy/At;. The subscripts and

f indicate the coarse and fine grids, respectively. The cagideguantities can be scaled to
find grid quantities via the grid-embedding ratioR = Az./Axz; = At./At;. For the coarse
grid, LB equation is advanced from tinte¢o the timet + At¢. For the fine grid, LB equation
is advanced from time+ At/GR,t + 2At/GR, ...,t + At. On transition between the coarse
and fine grids, the fluid density, velocity and non-equililomi distribution functions are trans-
ferred. The find grid is extended to the second layer of theseogrid, whereas the coarse grid
is extended t@7 R + 1 layer of the fine grid, as shown in figuge2(b). Data is directly copied
from coarse to fine grids at the corresponding site, whila dhbuld be interpolated in order to
complete the missing information at the fine grids which areaxisting at the corresponding
site. For temporal interpolation, the second order Herimiterpolation is adopted between the
timest — At andt + At. For spatial interpolation, the second order bi-cubicrimbéation is

used. The distribution functions on both grids are recoiesdd at the grid interfaces,

eq We neq
fi,f(X> t) = fz‘ <X> t) =+ (GR)CUf fi,c (X7 t)? (228)
fuelxot) = 2206 ) 4+ (CT1 preai ) (2.29
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(@ (b)

[ransition

Q3 3 3 e (Coarse — fine)
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h i A G A IS A et et Rait et et teast ,_T Transition
y (Fine — coarse)

Figure 2.2: § Schematic of the computational grid4n— z plane, andlf) the grid transitions
at the grid interface with grid-embedding ratio@f = 2.

wherew is the relaxation frequency which corresponds to the imvefgelaxation timew =
At/7T. Note that rescaling ?(x,¢) is not necessary since it only depends on fluid density
and velocity, which are continuous across the grids. On therdhand, the non-equilibrium
part is proportional to the gradient of the velocity, therefit is necessary to rescale it when
transferring it between grids with different resolutibagravaet al. (2012. This rescaling

between the grids enables a continuous transition of the duantities at the grid interfaces.
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2.2 Solid Solver

2.2.1 Governing Equation of Motion of Deformable/slender Haments

This section outlines the numerical method employed toestile governing equation of mo-
tion of the hairy filament. As mimicking the mammalian haiesgy( seal furs) or bird feather
fibers, transverse shear deformation and rotational bgnalie negligible. Thus, it can be
assumed that the motion of the filaments is described by thardic Euler-Bernoulli beam
equation resulting from the Euler-Bernoulli beam theotheathan the Timoshenko—Ehrenfest
beam theory. The equation of motion is derived through thecjpie of least action, regarding
the variational derivative of the action integral of the tamggian,£ (Goldsteinet al., 2002.
The resulting equation is then non-dimensionalized to ensonsistency in the bending rigid-
ity and tension coefficient of the filaments during the paraimetudy. The dimensionless beam
equation is solved with a second-order central differecbee in both space and time.

The governing equation of motion of the hairy filament can ibgpy derived by finding a
stationary point of the action integral @f with respect to time £ is defined by the difference
of kinetic energy of a dynamical system from its potentiatrgly. Regarding a hairy filament

as a dynamical systenf,can be written as

A XN\ T (dX\?
L:/—pU2ds—/ Kyl 55 ) += (5 dS_/FIBSXdS+/FCXdS7 (2.30)
r 2 I ds? 2 \ ds r r

whereAp = (ps — prAo) is the linear density difference between the filaments ardsth-
rounding fluid, wherg, denotes the linear density of the filament,denotes the density of the
fluid, and A, is the effective cross-sectional area of the filament imiit$al, undeformed state.
U(s,t) = dX(s,t)/dt is the velocity of the Lagrangian marker. The terms presetfté right-
hand side represent the kinetic energy, the elastic patartergy, the works done by the forces
from the fluid-structure interaction, filament-filament ditdment-wall collisions. According

to the principle of least action, the motion of the dynamsgyatem from timé) to ¢ is such that
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the action integral has a stationary value for the actudl pathe motion, and the variation of

the action integral is zerd3oldsteinet al., 2002):

tl A A2X\° T [dX\?
A:/ /_pU2d8_/ Kb _ + — _ dS—/F[BSXdS+/FCXdS dt,
0 r 2 r ds? 2 \ ds r r

(2.31)
SparA = 0. (2.32)

Then, the resulting equation becomes the governing equatimotion of the filament,

b
0s?

P (12) 2 (12X g e, 23)
Here, the position vector of the Lagrangian markers on tham@int is denoted by
X(s,t) = [X(s,t),Y(s,t),Z(s,t)]. The tension force along the filament axis is denoted
by T'(s,t), and the bending rigidity is denoted Hy,. In this study, small elongation of the
filaments, less than%, was allowed by setting the dimensionless stretching aoeffi to
K,/(ApUZh%) = 1, whereU, is the bulk velocity in the channel, arig is the height of the
filament at its initial, undeformed state. The interactioncé per unit length exerted on the
filament by the surrounding fluid is denoted Bygs(s,t). The repulsive forcek., from the
filament-to-filament or filament-to-wall collision is intlaced to prevent the filaments from

crossing each other or crossing the channel walls whilerdefg.
The filaments are modeled with a free end at their tips andrapztd end at their roots. The
boundary conditions at the free end ariénget al., 2007

02X(Stip, t)
0s?

83X(Stip, t)

T(Sti]n t) = 0, 083

=0, =0, (2.34)
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and the boundary conditions at the clamped endlduaiget al., 2007)

0X(0, 1)
0s

X(0,¢) = X(0,0), = (0,0, +£1). (2.35)

In equatior2.35 the positive (negative) signs are for the filaments mouatéle lower (upper)

channel walls, respectively.

2.2.2 Dimensionless Governing Equation of Motion of De-

formable/slender Filaments

A dimensionless form of the equati¢h33 can be obtained by multiplying b,/ (ApU?),

whereh, is the filament length in undeformed state:

%2:2 _ % < *?S(*) _ a(zl (K;‘Z);) — Fips +F (2.36)

s* is the dimensionless arc length/{); X* is the dimensionless position of thieth marker

of a filament K/ho); t* the dimensionless time(, .../ ho); T* is the dimensionless tension
force (I'™* = K*|g—>s<| — 1). The reference quantities used for the non-dimensioaiadiz of
stretching coefficient, bending rigidity, and Lagrangiamcing are K ,.; = ApUb%W and
Kpypep = ApthaThg, andF,.; = % respectively. In this proposed study, dimensionless
form is used to keep consistency in dealing with the stratghbefficient and bending rigidity.
Moreover, the dimensionless forms allows for comparingdtierent sizes of systems in a

consistent manner.

This study adopted a short-range repulsive force modelgsegphbyGlowinskiet al. (1999.
In this model, the repulsive force has a non-zero value ohedth Lagrangian marker of
a filament is closed to the markers of the other neighboriagnints or to the channel walls

within a distance ofl.; or d.,, respectively. The resulting net force on the marker ismgive
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F:, =Fl +FY;, where

S K (XS =X (dy, —dr)?, (dr, < dr
F(J:C*I _ JAI I J ( IJ f) ( IJ f) (2.37)

0, (otherwise)

I (27 — %) (dfy — dz,)* s (dfy < d2,)
Fue = 1 — *0) g 10 (2.38)

0, (otherwise)
whereXj is the position of the'-th marker of a filament normalized Iay; X is the position of
the J-th marker of its neighboring filaments, normalized/by Fi*l is the dimensionless repul-
sive force exerted on thieth Lagrangian marker of a filament by thieth Lagrangian marker of
its neighboring filaments; their dimensionless gap disgtaadenoted byi; ; = |X; — X;|/ho;
F:7 is the dimensionless repulsive force exerted on/tfie Lagrangian marker of the filament
by the channel wall; the dimensionless wall-normal distabetween the marker and the
channel wall is denoted by;, = |Z; — z0|/ho; K} is the dimensionless stiffness parameter,
which is set tal, appropriate enough to prevent the collisions between éidrilament as well
as between filament-channel walls. In this study, margiaaktion in the simulation results
was observed oncE is greater than 1. The repulsive force between Lagrangiakersaand
channel walls was limited to the wall-normal direction imstetudy, as shown in equati@i38
In this study,d; was set t3A* to prevent overlapping the interpolation/spreading rangfe
two or more filamentsg’! was set tol.5A* to avoid overlapping the interpolation/spreading
ranges of the filaments with the channel wall, whéreis the dimensionless Eulerian grid size
(A/hg). The positive (negative) sign in equati@mB8 denotes the filament-wall collisions at
the lower (upper) channel wall. The total repulsive forctrgcon the/-th Lagrangian marker

of a filament turns out to bE* = F/* + Fv*,

A staggered grid is used in Lagrangian coordinate systencaasbe seen in figur@.3.
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Xi*, l]l*

Figure 2.3: Schematic diagram of staggered grid along adi@nirension force is defined on
s;+1/2- Solid position and velocity are defined en

Tension force is defined on the interfaces and the other baga variables are defined on the

nodes.

x;kn-i—l o 2x;kn 4 x;kn—l
At?

=Fii +Fyi — Frgs, +FG (2.39)
X=X = X A (R + B — Pl + L) (2.40)

whereF}; andF}’; indicate the dimensionless tension and bending forcegectigely, which

are described by

T*n X?ﬂl—xf” _ T*n an_xzﬁjl
F*n o i+1/2 As* i—1/2 As*
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XEn _xxn XFn _x*n XET X kn XFn_X*xn (241)
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The position of Lagrangian marked$;"*!, is updated from equatich40and then the filament

velocity is updated in turn using the second order backwéferednce scheme,
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(2.43)
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2.3 Fluid-hairy Structure Interaction

2.3.1 Immersed Boundary (IB) Method

Fluid-structure interaction (FSI) is a ubiquitous phenaorethat is widely observed in various
engineering applications, spanning from aerospace (Aafa engine blade designs), biomed-
ical (Heart valves, beating cilia, and drug particle tramgpto civil (Flow over urban areas,
bridges, and skyscrapers), ocean (Riser, offshore phajfand energy engineering (Wind tur-
bines, marine hydrokinetic devices, nuclear fuel rods)midtous numerical studies have been
conducted to comprehend FSI. The immersed boundary (IBadédtas gained popularity for
FSI simulations. The IB method was first proposed by Peski®i? Peskin 1972 to simulate
flow patterns around heart valves. Later, a number of itsanésihave been proposed to con-
duct a variety of FSI simulations and improve the numericaligacy, stability, and robustness.
FSI simulation with IB methods has provided intuitive sauas to the problem and suggested
promising measures to accomplish a desired system featusegeral engineering applications,
such as separation control with flaps mounted on airfoilsheiy coatings on cylinderssfpan
et al., 200Q Favieret al., 2009 Fanget al., 2019 Maoet al., 2022, turbulent skin-friction drag
reduction with ribbed-surfaceS&arcia-Mayoral & Jimene2011), convective heat transfer or
mixing enhancement with flexible flaps in a heat sink chanRalKet al., 201G Lee et al.,
20172018 Chenet al., 2020, energy harvesting with an inverted piezoelectric flagy(et al .,
2015 Shoele & Mittal 2016.

The key feature of IB method is to separate the solution phoies of the fluid flow and the
motion of a solid body by describing the fluid flow in an Eulerieoordinate and the motion
of the solid body in a Lagrangian coordinate, respectivalfze fluid and solid motions are
coupled via the interaction forces, which are incorporatesach governing equation to satisfy
the fundamental physical principles, Newton’s third lavinisSrmethod can bypass the need for

a tedious re-meshing process for moving geometries at @aetstep, which is a laborious and
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computationally expensive process commonly required tduyditted methods (e.g. arbitrary
Lagrangian-Eulerian approach).

The IB framework is often characterized by two categorieserface schemes and forcing
schemes, which have emerged to improve the accuracy,istaduild robustness of FSI solvers.
The interface schemes can be subdivided into sharp-iotegfad diffusive-interface schemes,
while the forcing schemes can be subdivided into feedbantiffg and direct-forcing schemes.

Further details on the interface and forcing schemes asepted in the following sections.

2.3.1.1 Interface Schemes: Sharp- and Diffusive-interfacSchemes

In IB simulations, the locations of Lagrangian nodes (orkaes) do not generally match with
the locations of Eulerian nodes, requiring an approprigriace scheme in order to satisfy the
basic kinematic rules such as the no-slip, non-penetratiomg the IB. This interface scheme
can be categorized to two types: Sharp-interface schemeditimsive-interface scheme. Figure
2.4 show the schematic diagrams of the sharp- and diffusiverfete schemes. The sharp-
interface scheme is generally used to impose the fluid giigmtn the forcing points near the
surface of solid body whose cross-sectional area or volumaat negligible but large enough
to have a few grid points inside the solid body and distinigtiieem from the fluid nodes. The
interaction force on the IB is computed by using informatmnthe fluid quantities that are
discontinuously distributed across this boundary, whsclhy this scheme is often called ‘dis-
crete’ forcing schemeMittal & Iccarino, 2005. In contrast, the diffusive-interface scheme
imposes the fluid quantities on the IB by interpolating fluigagtities from the neighboring
fluid nodes to the IB. With an appropriate smooth functiog.(emoothed delta function), the
interaction force on the IB is computed by interpolating filned quantities that are distributed
continuously across the boundary, which is why it is oftelledsa continuous forcing scheme
(Mittal & Iccarino, 2005. More details in the smoothed function for the interpaatof Eu-

lerian quantities and the spreading of Lagrangian quastiiill be discussed at the end of this
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section.

In the sharp-interface scheme, the interface between thikdhd the immersed structure
is modeled as a sharp boundakahd-Yusof 1997 Fedlunet al., 2000. Forcing points are
placed on the Eulerian nodes closest to the interface, amtdliantities at the forcing node
are determined using an appropriate interpolation schenweder to satisfy the basic kine-
matic conditions (e.g. no-slip and non-penetration) altregIB. While this method resulted
in acceptable accuracy and stability for stationary, rgptid bodies, it is vulnerable to numer-
ical instability in the case of moving boundary problems.sTis due to spurious oscillations
resulting from temporal and spatial discontinuities atdfiaih nodes within the solid region
during the previous time step, which become exposed to titerégion at the subsequent time
step. To address this issue, various remedies have beeaspobpuch as ghost-cell, cut-cell,
iterative/non-iterative strong fluid-structure couplischemesl(uo et al., 2008 Mittal et al.,
2008 Seo & Mittal, 2011 Yanget al., 2008 Yang & Stern 2015. Although these approaches
improved the numerical stability, it is still doubtful thdte sharp-interface is applicable for
elastic, slender, dynamically deforming solid bodies,duse assigning grid points inside the
solid body and distinguishing them from fluid nodes are @maling for such bodies.

In the diffusive-interface scheme, the fluid velocity isairgolated from the surrounding Eu-
lerian grids into Lagrangian markers along the IB, emplgyinsmoothing technique of the
interpolation procedure (e.g. employing a discrete smalefta function). The interaction
force is dependent on the difference between the integabFRatid velocity and the Lagrangian
marker’s velocity, and the calculated interaction forcdigributed into the adjacent Eulerian
nodes via the same smoothing technique. This scheme haduhetage of mitigating numer-
ical oscillations, making it more accurate and stable forimg boundaries in comparison to
sharp-interface schem#lilmann 2005. With this advantage, the diffusive-interface is widely
adopted for FSI problems, especially elastic, slenderadyoally deforming solid bodies. This
suggests that the diffusive-interface scheme more soualdakfer the present study where the

dynamics of hairy filaments and their effects on the modaitatif turbulent channel flows are
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Figure 2.4: Schematic diagrams @i Eharp-interface and) diffusive-interface schemesa)(

An example of velocity reconstruction methdee@lunet al., 2000 for a rigid, cylindrical solid
body. U denotes the imposed velocity obtained from a linear appration. p) An example

of an elastic, slender body with the support of tfeLagrangian marker in regards to 3-point
discrete delta functiorRomaet al., 1999. The support denoted by the red-dashed box indicates
the interpolation/spreading stencil. The gray shadeda@erates the diffusivity of the interface.

Figure 2.5: Distributions of one-dimensional continuousdtions based on 2-point (Solid),
3-point (Dashed), 4-point-piecewise (Dashed-dot), spoosine (Dashed-dot-dot) smoothed
delta functions.
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investigated, as compared to the sharp-interface scheme.

In the framework of two-way coupling FSI simulation with td#fusive-interface scheme,
the interpolation and force spreading are generally caedidzy using a discrete smoothed delta
function. In this scheme, the interpolation is conductethwi discrete smoothed delta func-
tion as present in figurg.5. Its concept was first proposed by Peskin in 1972 for the smoot
interpolation of the fluid velocity and the force spreadirfgince then, several variants have
been proposed, including 2-point discrete delta functiamch corresponds to the bilinear in-
terpolation in two dimensions and tri-linear interpolatio three dimension; 3-point discrete
delta function Romaet al., 1999; 4-point cosine-type discrete delta functidtegkin 1977); 4-
point piecewise discrete delta functidhgskin 2002); 6-point discrete delta functiorstockie
1997. A choice of the discrete smooth delta function must be nm@adeerly since it affects
the smoothness of the boundary and localization of intatpmi/spreading. If the support size
increases, the interpolation/spreading stencil becongetdathus the boundary becomes more
diffusive, disabling to localize the interpolation/spide®y operations and satisfy the no-slip con-
dition accurately. Conversely, if the support size de@sathe interpolation/spreading stencil
becomes too sharp, increasing the numerical instabilityadhieve a balance between inter-
face smoothness and numerical accuracy and stabilityir8-giscrete smoothed delta function

could be deemed a suitable compromise.

2.3.1.2 Forcing Schemes: Feedback- and Direct-forcing Semes

The feedback-forcing IB method was pioneered by Peskin #218r the simulation of blood
flow in an elastic heart valveGoldsteinet al. (1993 developed the feedback-forcing scheme
for numerical simulations of flow around a stationary rigatly. Later, the penalty IB method
based on the feedback-forcing scheme were proposed to e numerical accuracy and
stability (Kim & Peskin 2007 Huanget al., 2007 Huang & Sung 2010, introducing the

massless as well as massive boundaries that were linketthéwvgea virtual spring and damper.
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In the feedback-forcing scheme, the interaction forcetexeby fluid on solid was computed
by Hook’s law or proper feedback loopSdldsteinet al., 1993 Saiki & Biringen, 1996 Huang
etal., 2007 Tianet al., 2011, where the IB-related force is a function of the differebetween
the fluid velocity interpolated to a Lagrangian marker areddblid velocity at the marker. Then
the computed force is distributed into the surrounding Eaitegrids. Although the feedback-
forcing is simple and straightforward, the numerical aacyrand stability highly depend on
the preconditioned virtual spring and damper constabisn(et al., 2008 Parket al., 2016.
Seeking a proper range of these constants reqaim@sori numerical experiments; however
the range varies significantly depending on the flow conatjageometries, time step, grid
resolutions. Therefore, its less robustness leaves acsosphat the feedback-forcing scheme
is acceptable for numerical simulations requiring a systeparametric study.

In contrast, the direct-forcing scheme obviates the atiitess resulting from the empirical
constants. This scheme directly imposes the boundary tonslion the IB. This direct-forcing
IB method was pioneered ylohd-Yusof(1997); Fedlunet al. (2000 with a sharp-interface
scheme. LaterJhlmann (2005 combined the direct-forcing IB scheme with a diffusive-
interface scheme. He showed that numerical instabilitylteg) from the spurious oscillation
was well suppressed along the IB, and thus numerical acgcuvas improved. Although the
direct-forcing scheme combined with a diffusive-integatiowed a promise, it is still question-
able whether it provides an acceptable basic kinematis ralech as no-slip and non-penetration
conditions along the IB. The no-slip along the IB is not ofsemctly fulfilled, because the force
cannot be fully reconstructed after the interpolation go@ading operationgSsell & Favier
2021]). This problem becomes more substantial for turbulent fiavere the failure of the re-
construction provides a false velocity fluctuation field margnificantly. Thus, a remedy is
required to improve the basic kinematic condition in therfeavork of direct-forcing combined

with diffusive-interface scheme, which will be discussedhe following sections.
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2.3.2 LB-IB Method within the Framework of Diffusive-direc t Forcing 1B

Scheme
2.3.2.1 Limitations of Previous Methods

The direct-forcing IB method, in combination with a diffustinterface scheme, is commonly
used for simulating the interaction between an elastie)dde body and a surrounding fluid
flow in two-way coupled FSI simulations. This is because ®fdabustness and explicit imple-
mentation. However, the explicit nature of this procedwar give rise to slip-errors and flow
penetration, which are contradictory to fundamental kiageprinciples such as the no-slip
and non-penetration conditions.

Several implicit methods have been proposed to overcorsgtbblem. Luo et al., 2007,
Kang & Hassan2011; Kempe & Frohlich 2012 proposed the multi-direct-forcing 1B method
for IB-NS and IB-LB simulations. In this approach, the diréarcing is proceeded multiple
times at sub-iteration steps until the slip-error reducébiw a predefined criterionWu &
Shu (2009 proposed IB-LB method based on the implicit velocity cotien method. In this
method, the interaction force imposed on the IB is set as awkrrather than pre-calculated
and it is determined after the no-slip along the IB is enfdroeplicitly. Although these im-
plicit forcing schemes suppressed the slip-error and flomepation, it becomes much more
computationally expensive when the number of immersed swidies increases. The implicit
implementation should be taken into account for each Lageaamarker along a number of im-
mersed bodies at each time step. Furthermore, it relied olutian procedure of linear matrix
eqguation that brings about an additional implementatiéorefTherefore, it is evident that an
explicit formulation is still desired to maintain the comational costs and the implementation
efforts within reasonable limits while making an effort tdffll the no-slip and non-penetration
conditions.

An explicit approach to fulfill the fundamental kinematidesi can be achieved by ensuring

the reciprocity of interpolation-spreading operatioRselli et al. (2010 introduced a correct-
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ing parameter involved in the spreading operator to endweedciprocity. The main idea is
that a Lagrangian quantity should be reproduced after comise procedures of spreading and
interpolation,

U(s,t) = 1[5 [T (s, 1)] } (2.44)

where/| | andS]| | denote the interpolation and spreading operators, rasphcialso repre-

sented by
U(s,t) =1[p(xt)] = /Qz/;(x, t)5(X — X)dXx, (2.45)
P(x, ) = S [U(s, )] = /F (s, )5(X — X)e(s, £)ds, (2.46)
wheree is the correcting paramete¥(s,t) is a Lagrangian quantity)(s,t) is an Eulerian
guantity, dx is equivalent to the infinitesimal volum&V = AxAyAz in three-dimensional
Eulerian domain§?, andTI’ is the Lagrangian domain. The local coordinate along thenélat
axis is denoted by. I [ ] is the interpolation operator of an Eulerian quantity, is the spread-
ing operator of a Lagrangian quantity.
In this manner, Lagrangian forcings(s, t), exerted on solid by fluid, and momentum forc-
ing, f,g(X, t), exerted on fluid by solid should also satisfy the recipsottitmaintain the forcings
conserved during the interpolation/spreading operatidhgn the Lagrangian quantity can be

replaced byFg(s, t) in equation2.44 and its discrete form can be expressed by

Fiege(ss,t) = Z aske(Sk,t)Fipqe(sk,t), (2.47)
K
AR = Z ASK(S(XJ — Xl,m,n)(s(XK — Xl7m7n)AX, (248)
Xl,m,neQJ

where the subscript = {1,2,3} denotes ther,y, and z directions,2; is the interpola-
tion/spreading window of/-th marker of a filamentx; ,, ,, is the location of Eulerian grids

within €2; as shown in figur@.6. In this study,d(X — x) is 3-point smoothed delta function,
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Figure 2.6: A schematic diagram of the compact supportd ftir and K'-th Lagrangian mark-
ers. Their positions are denoted By, and X, respectively. The corresponding compact
supports are denoted by red and blue shaded dngasnd(2x, respectively. The support size
corresponds to the size of the interpolation/spreadingcdtef 3-point smoothed delta function
(Romaet al., 1999.

comprising the product of 1D delta functions at each diceciRomaet al., 1999,

1 | X — 7] Y -y il
X —x) = AxAyAz¢ < Az ) ¢ ( Ay ) ¢ ( Az ) (2.49)
with )
s (1+V=3r2+1), (0<r<0.5)
o(r)=1q1 (5 —3lr| — /=30 =T+ 1) . (0.5 <7< 15) (2.50)
0, otherwise

wherer is the gap distance between a Lagrangian marker and itsesdj&alerian grids, nor-
malized by the size of the local Eulerian grid.

It is noteworthy that the correcting parameter maintaires dimensional equality during
the spreading operation. The dimension of the correctimgrpater is the same as either the
dimension of the square of the grid resolutian{ A?) for one-dimensional solid body in
three-dimensional flow or the dimension of the grid resohlufior two-dimensional solid body
in three-dimensional flow and one-dimensional solid bodtwia-dimensional flowd{ ~ A).

This is why it is often referred to as ‘hydrodynamic area’ tbe former or ‘hydrodynamic
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thickness’ for the latterKinelli et al., 201Q Favieret al., 2014 Li et al., 2016 Jiang & Liu,
2019.

Accurate evaluation of the correcting parameter is resptnfor ensuring the reciprocity
of interpolation-spreading operations and thus the nmesid non-penetration conditions along
the IB. For examples of rigid cylinders or rigid slender pitith their pre-described velocity,
Pinelliet al. (2010 assumed that the forcings distributed along the IB remanstant, leading

toF,(ss,t) = Fy(sk,t). In this assumption, the equati@mw7can be reduced to

1= aske(si.t), (2.51)
k

and its a matrix equation form is expressed by

[ (s, t) ] 1]
e(s1,t) 1
A = (2.52)
_€(SNF,t)_ _1_

where the coefficients of the matrikare denoted byt x in the equatior?.48 andsy, ..., sy,
denote the Lagrangian markers along the IB. This matrix gguaan be solved to obtain
e(s, t), which can be subsequently incorporated into the spreagpegator whilst maintaining
the dimensional equality during the force spreading. Wik approachPinelli et al. (2010
showed reasonable numerical accuracy with an improvenfem-slip along the IB and the
range of applicability of the proposed methodology foristary and moving rigid solid bodies.
Although this approach showed a promise to fulfill the ng-sh 1B, few drawbacks were found
in this study.

First, a slender filament located with a certain positiorelative to the surrounding Eulerian

grids can result in a set of coefficients of A matrix that letala zigzag distribution of (s, t)
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Figure 2.7: An example of a rigid, slender filament positebaé Eulerian grids in the andy
directions and at the halfway of Eulerian grids in thdirection, respectively. The filament is
uniformly discretized with 5 Lagrangian markers.

along the IB. Assume that a slender rigid filament is locatedlreown in figure2.7. In this
example, the Lagrangian markers are located at the Eulgnidpoints in ther andy directions,
but located at the center of grid cell in thélirection. To evaluate the first coefficient, o, of A,

a set of Eulerian grid points involved in the interpolatspreading support of thieth marker
can be found as denoted by circular symbols in figuBéa). Each circular symbol denoted in
figure 2.8(a) indicates the Eulerian grid points included in the suppbthe 0-th Lagrangian
marker, which is denoted by the blue-colored, square-shapmbol. The resulting coefficient,

ap,0, can then be obtained from

ASO

Q0 = Z As06(Xo = Xim,n)0(Xo — Xz,m,n)Al'g = @ﬁo,o (2.53)
Xl,m,nEQO
Boo = Z d(Xo — Xl,m,n)5(xo — Xl,m,n)
lem’nGQO
_ Z ¢ Lim, 0 ¢ Yim, 0 ¢ Zlm, 0 (2.54)
X nLJrLEQO A'I Ay Ay

Llimmn — XO Yimmn — YE) Zlomn — ZO
() () o (o)

Then the breakdowns @, can be expressed in terms of 4 green-, 4 red-, 8 yellow-, 28&yb
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colored circular symbols denoted in figute3(a) and obtained regarding non-zero outcomes,

Thenag = 0.125As,/Ax? is obtained from the equatio@s53and2.55

Similarly, «; can also be obtained as followed,

As

Qo1 = Z Aspd(Xg — Xl,m,n)5(X1 — Xz,m,n)Al'g = A—x‘}”ﬁo’l (2.56)
Xl,m,nEQO
50,1 = Z 5(X0 - Xl,m,n>5(x1 - Xl,m,n)
lem’nGQO
— X - Y mon — 2

_ Z & Limn — Ao & Yi,mn 0 & l,m, 0 (2.57)

Lo, Az Ay Ay

Llmmn — Xl Yimmnm — Yi Zlomn Zl
() () o (o)

The breakdowns of}, ; can be expressed in terms of 2 green-, 2 red-, 4 yellow-, 1lg&yb

colored circular symbols denoted in figuze3(b), and obtained regarding non-zero outcomes,
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Thenay; = 0.0625As,/Axz? is obtained from the equatio@s56and2.58
In similar fashion, the other coefficients, x, can be calculated and filled iA. In this
example, the indices vary fromto 4, / = 0, ...,4 and K = 0, ..., 4. The resulting linear matrix

equation (Equatiof.52 becomes

[0.125 0.0625 0 0 0 | [etsot)]  [1]

0.0625 0.125 0.0625 0 0 | |e(si,t) 1
0  0.0625 0.125 0.0625 0 = (2.59)
0 0 0.0625 0125 0.0625

|0 0 0 00625 0125 ] |e(sst)| | 1]

This matrix equation can be solved fefs, ¢) by using an appropriate linear solver (e.g. LU
decomposition)e(s, t) obtained from the equation above ends up having a zigzaghbditon
as shown in figur@.9. This zigzag distribution of is incorporated into the spreading operator,
leading to the force distribution which is no longer contna along the IB and eventually
exacerbating the numerical stability.

As a remedy, a modification was made to the spreading opdrgtproposing a uniform
distribution of the correcting parameter along the IB basedhe averaging their local values
over the IB (iang & Liu, 2019. This involved calculating(t) as the sum of (s, ¢) for s, to
sn,, divided by (Ny + 1), giving () = zijff e(s,t)/ (Ny 4+ 1). The resultings(¢) was then
used in place of the local correcting parameter ¢) in the spreading operator (Equatidmi6).
However, this strategy does not provide the accurate poesindition along the IB, but result
in huge slip-errors as it violates the mathematical forrmaibaof reciprocity, as will be shown
in Section2.7.5

Second, the assumption made in the previous stRaye(li et al., 2010, that the interac-
tion force distributed along the IB is constaRy(s;,t) = Fq(sk,t), is no longer valid when

dealing with an elastic, slender body interacting with nmiform flows. To illustrate this
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Figure 2.8: &) Blue-colored, square-shaped symbol denotesOttie Lagrangian marker.
Circle-shaped symbols denote the Eulerian grid pointuged in both supports of théth
marker and the samgth marker. The resulting,  is obtained by summing up the outcome
of the continuous functiongxl e d(Xo = Xim,n)9(Xo — Xi.m.n)- (D) Blue-colored, square-
shaped symbol and skyblue-colored, square-shaped symbotalthe)-th and1st Lagrangian
markers, respectively. Circle-shaped symbols denote titeri&n grid points included in both
supports of th&)-th marker and thést marker. The resulting, ; is obtained by summing up
the outcome of the continuous functio@xl o con (KXo = Xtmn )0 (X1 — Ximn)-

10 T T T

Figure 2.9: The distribution of, resulted from the previous approadhir(elli et al., 2010, for
the example of the rigid, slender filament, discretized Wwittagrangian markers.
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point, consider two different geometries: The flow over adrigylindrical solid body and the
flow over an elastic, slender solid body, as shown in Figui€ While the assumption may
be acceptable for a rigid solid body, which can be assumee @ lnmped body sharing the
same velocity and forcings across the Lagrangian markeissist no longer valid for an elas-
tic, slender body. The velocities interpolated into indival Lagrangian markers are different,
resulting in different magnitudes and directions of thesiiattion forces at each Lagrangian
marker,Fq(s;,t) # Fq(sk,t). Therefore, it is prohibitive to maintain the oversimplifias-
sumption, although the assumption continues to be use@inghiccessord-avieret al., 2014

Li et al., 2016 Jiang & Liu, 2019 O’Connor & Revel] 2019.

Although the previous efforts to meet the no-slip conditabong the 1B have mitigated the
slip-error and flow penetration within a tolerable limitele attempts still need to be extended
to satisfy the no-slip more rigorously, especially for él@sslender bodies interacting with
highly fluctuating, non-uniform flows. This is important fibre present study because the field
of turbulent channel flow over the flexible filamentous susfacs quite sensitive to the slip-
error near the channel walls. Thus, the simulation resuitglavbe no longer reliable without
a rigorous formulation. Furthermore, there is yet to be @ardtcal analysis explaining the
failure of reciprocal interpolation-spreading operasidar elastic, slender IB, and suggesting

its remedy within the framework of diffusive direct-forgiB scheme.

2.3.2.2 A New LB-IB Method with Improved Reciprocity of Interpolation-spreading Op-

erations

This study proposes a precise interpolation-spreadingepiure that rigorously satisfies the
reciprocity of the interpolation-spreading operations dtastic, slender IB and significantly
reduces the slip-error. The proposed approach involvebrong the correcting parameter with

Lagrangian forcing at the same Lagrangian node, expressEgsa(s,t) = e(s,t)F5(s,t).
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Figure 2.10: &) Schematic diagram of the equally distributed Lagranganihg along the 1B
for example of a rigid, cylindrical solid body in a uniform Wo The uniformity of the La-
grangian forcing was resulted from the assumption;(ss,t) = Fip(sk,t). (b) Schematic
diagram of the non-equally distributed Lagrangian forahang the 1B for example of an elas-
tic, slender solid body in non-uniform flows. The Lagrangfarcings varies along the IB,
which is more realistic and rigorous.

This allows for rewriting the equatioh47as

F[B’q(SJ,t) = ZQJ,K{f(SK;t)FIB,q(SKat) = ZQJ,KFIBS,q(3K7t>- (260)
K K

The reformulated equation explains that the interactiowefgoer unit volume is converted
to the interaction force per unit length for the one-dimenal filament immersed in three-
dimensional fluid flow through the straightforward correnti The discrete equation above can

be expressed by a matrix form,

Frpsq(s0,t) Fip4(so,t)
Frpsq(s1,t) Fipq(s1,t)
é - (2.61)
| F185,4(SNps 1) | FrB.4(SNps 1) ]

Note that this matrix equation is distinct from the matribuation derived from the previous

study (Equatior2.52). The difference results from excluding the oversimplifeessumption
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that the interaction force is uniform along the IB. The refatated matrix equation can be
solved forF;z5(s, t), which can be subsequently incorporated to the spreadiagty with a

revised form,

FLu(t) = S [Fin(s,t)] = /F Fos(s,)5(X — X)ds. (2.62)

Unlike the previous method®inelli et al., 201Q Favieret al., 2014 Li et al., 2016 Jiang &

Liu, 2019, this approach avoids numerical instability resultingnfrthe zigzag distribution of
e(s,t) and the oversimplified assumption used for the rigid solidybdThis is accomplished
by solving the linear equatio®.62 derived rigorously from the reciprocity of interpolation

spreading operations.

2.3.2.3 IB-LB Coupling

The IB-LB coupling scheme centers around the computationtefaction forcings and their
allocation into the governing equations of solid and fluid.this study, the direct-forcing 1B
schemel(i et al., 2016 is utilized to compute the Lagrangian forcing, where thelfiglocity is
directly imposed on the Lagrangian marker through intexppoh. In this approach, the velocity-
forcing relation described in equatidhl3 can be expressed at the Lagrangian markers via

interpolation procedures over the Eulerian variablesngiv

T[f,(t) +f15066)] = Fo(t) + Frpls, t) = é [1 06 ] U(s, £) — I [p(x, Hu"F (x, 1)] ]
(2.63)
whereU(s, t) is the velocity of a Lagrangian marker on the IB. Once the hagran forcing
is computed, it is distributed into the surrounding Eulermgids via the spreading operator to
update the momentum forcing field. Then the momentum forigmgnsecutively incorporated

into the LB equation via Guo’s forcing (EquatioBs and2.7, respectively).
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Figure 2.11: Schematic diagram of a turbulent channel

2.4 Maintaining a Constant Bulk Reynolds Number

2.4.1 Control Volume Analysis without IB Force

LB simulations of the pressure-driven channel flow can baexhout maintaining either con-
stant pressure gradient (CPG) or constant flow rate (CFRhignstudy, CFR formulation is
adopted due to its advantages over CPG, which will be predentSectior2.7. The mean
pressure gradient is dynamically adjusted to keep bulk BlegmumberRe, constant for all
simulations and compare drag reductions at the sBmeFigure2.11shows a schematic dia-
gram of a channel flow with periodicity in the streamwisgand spanwisey directions. No-
slip boundary conditions are applied at the channel wallsgusalf-way bounce back boundary

conditionLadd (1994). The integral form of the momentum equation reads

Falt) = 57 [ pctuix.oav .64

whereF ; denotes the resultant force, and the sum of momentum fluxesrditol surfaces,
Jog P HU(X, t){u(x, t) - dA}, is zero due to the periodicity. A force equivalent to theutest
force should be applied to the flow in order to maintain a camdbulk Reynolds number. This

force becomes equivalent to the pressure force accourintpé mean pressure gradient. Then
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the magnitude of the force should satisfy

t+At
/ Fr(X,t)dt = /CV p(X, OUX, t) dV |y — /CV p(X, Hu(x, t) dV|,. (2.65)

The first term in the right-hand side can be interpreted asi¢éis@ed flow rate, which is repre-

sented by

[ o0 DU 0 dV 1150 = (Vhiar) Lol (200, (2.66)
cv

whereU,, ., is the target bulk mean velocity that satisfies a conskapt L, andL, denote the
channel lengths in the periodic streamwise and spanwisetthns, respectively, artf{ is the
full channel height. The mean pressure gradient is imposgdio the streamwise direction.

Equation2.65then can be rewritten in terms of the force per unit volume:

At [ p(x, )u(x,t) dV
/t £ () dt = pUp gar — v , (2.67)

Using the second order explicit Adams-Bashforth integratthe left hand side of equation
2.67can further be expanded to give

3At At [ p(x, t)u(x,t) dV

Tfp(t) - Tfp(t - At) = pUb,tar - f dV

(2.68)

Then the integrand in the right-hand side of the equa®i@8can be reformed regarding the

equation2.11,
3At At [ p(x, yumor (x, t) + £, (x, t) dV
Tfp(t) — 7fp(t — At) = pUb,taT’ — de . (269)
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Without introducing external forces other than the pressoircef, . (x, ) = f (), the equation

above becomes

1 [ p(x,tyumef (x, t)dvV] 1
fp(t) = E pUb,tar fdv + 4fp(t At) (270)

f»(t) is directly computed from equatidgh70and then incorporated to equatidri2to update
the fluid velocity field. Once the fluid variables are computdae equilibrium distribution

function is calculated from equatiéh4.
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2.4.2 Control Volume Analysis in the Presence of IB Force

In the presence of an IB force, the form of the equafiofOshould be reformed. The equation

2.69derived from the control volume analysis can be rewritten as

3At At
Tfp(t) - Tfp(t - At) = pUb,tar
no 2.71
[ U1 + A0 + A pxnay @7
[av ’
3At At 1 [px, urf (x,t)dV] 1 [f,(xt)+T5(x,t)dV
Ry [p htor = Jav T2 [av
_ Yy [ urf(x, ) dv] 1 [ t) +fp(xt) dV
N Tdv 2 Jav
1Rt dV =V
2 [av ’
(2.72)

whereV is the entire volume of the channél, is the volume subject to the spreading operation

of IB-forcing. Reorganizing the equation above in term$§ gk, t),

f(0) E + % (1 - &%)] - %fp(t A
1

[ p(x, t)umeF (x, ) dV

+ E |ipUb,ta7" - de (273)
1 [ S[Fp(t) + Fip(s,t)] dV’
2 [dv '

The last term of the right-hand side can be achieved by dyredting into account the spreading
operation over the outcome obtained from the equati6@ Once the pressure force is obtained
from the equatior2.73 the Lagrangian forcingz(s, t) is obtained by subtracting the pressure
force from the outcome of the equati@r63 F;z(s,t) = [F,(t) + F15(s,t)] — F,(t), then the

calculation of the momentum forcing can be followedfag,(x,t) = S [Fis(s, )] (X, 1).
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2.5 Overview of the Present IB-LB Coupling Algorithm

The details on the time advancing procedures for the prd8ehB coupling algorithm are

shown in Algorithml and figure2.12

Algorithm 1 IB-LB coupling algorithm

Re
1:
2:

quire: fi(x,0), X(s,0), X(s, —1), F15(s,0), f;5(x,0), andf ,(0) are given.
Calculate the fluid densityy(x, 0), and velocityu(x, 0) with equation2.10and2.12
Calculate the equilibrium distribution functiorf;(x, 0), and forcing functionG;(x, 0)
with equation®2.4and?2.7.
Calculate the fluid density(x, 1), and velocity,u™* (x, 1), with equation®2.10and2.11
once the distribution functiory;(x, 1), is updated from collision and streaming steps (Equa-
tions2.8and2.9).
Compute the tension forc€,(s, 0), from the equatior2.41. Compute the bending force,
Fy(s,0), from the equatio2.42 Compute the repulsive forcE, (s, 0), from the equations
2.37and2.38 Prepare the interaction forde;zs(s, 0), obtained at the previous time step
of step 8.
Advance the dynamic Euler-Bernoulli beam equation by tgkine 2nd order central differ-
ence methods in space and time. Obtain the position of LggaammarkersX(s, 1), and
velocity of Lagrangian markersl(s, 1) with equation®2.40and2.43

: Consider the lumped forcefs,(1) + F5(s, 1)]. Individual terms cannot be obtained at

this stage. Obtaiff,(1) + F;5(s, 1)] from the equatior2.63

Obtain the pressure force from the equat?on3

Obtain the Lagrangian forcings,;5(s, 1), by subtracting the pressure force, obtained from
step 7, from the lumped forces, obtained frastep 6. F;(s,1) = [F,(1) + Fp(s, 1)] —
Fo(1)

Update the fluid velocityy(x, 1) with equatior2.12and go to Step 1 for the next time-step.
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Step 0 — Variables initially given
j;(x)o)afp(o)afm(xao): X(S:O)a X(Sa-l)a F[B(SJO)

Fluid " ~~__ Solid

Step 1 Step 4
Px,0), ux,0) Beam eqn.

BETE. | swps

£7(x,0), Gx,0) X(s,D), UGs,1)

Step 3 l gl?géilf‘fil(ijﬁg 1 Step 6

pee,D), 0" (x,)| —————— [ F,()+F,(s,1)]

1 Step 7
£,®

Step 9 l Step 8

— u(x,1) | F(s,). f,, (x,D

Figure 2.12: Main algorithm of the present IB-LB solutiompedure

2.6 Domain Decomposition and Parallelization

A computational domain of turbulent channel flow is partied with a two dimensionak(y)
domain decomposition strategy as shown in figuiiE8 To perform the simulations, each sub-
domains was assigned to a separate processor of a parafipliger. In this domain decompo-
sition, the collision step is not affected due to its locaumna of computational stencils. For the
streaming step, however, the distribution functions leg\a sub-domain should be transferred
to the neighboring sub-domain during a data transfer stapyum appropriate MPI (Mes-
sage passing interface) routines. In this study, non-lhgockommunication is adopted for data
transfer between sub-domains in order to maximize the lea@rformance by overlapping
the communications with the computations. The parallelgoerance of the code was tested
in a turbulent channel flow, corresponding to the geometrthefplanned studies, both with
grid embedding and without it. The numerical simulationseveerformed in channel of size

5H x 2.5H x 2H in the streamwise, spanwise, and wall-normal directioaspectively, at a
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Figure 2.13: &) The global computational domain of turbulent channel flastitioned with
x —y domain decompositionb] Each chunk of sub-domain is assigned to a separate pracesso
of a parallel computer.

bulk Reynolds number ake, = 3600 corresponding tdie, = u.H /v ~ 221. The simulations
without grid embedding were performed with resolution§1of x 256 x 223, in the streamwise,
spanwise and wall-normal directions, respectively, @poading to a uniform grid spacing of
Az ~ 2 wall units in all three directions. F&¥ R = 2, a grid spacing oz ~ 2 wall units
on the coarse grid, artdx]’fo ~ 1 wall units on the fine grid were used. FGIR = 4, a grid
spacing ofAz° ~ 2 wall units on the coarse grid, am}ro ~ 0.5 wall units on the fine grid
were used.

Figure2.14 show the results of the tests for the parallel performandeBofode on Stam-
pede2 of Texas Advanced Computing Center (TACC). The CP¥ sipent per each time step of
the simulation drops linearly with the number of proces$orsion-grid embedding7 R = 2,
andGR = 4, as shown in figur&.14 (a). In addition, the mean computational cost of the
codes, described by CPU time per grid point per time stepeofttimputations, remained nearly
constant for LB method and LB-IB methods, regardless of tmalmer of processors, for tests
in turbulent channel flow with smooth walls and turbulentroma flow with hairy surfaces,
respectively, as seen in figutel4 (b). In figure 2.14(c) shows that the parallel efficiency is

preserved up to the use of 2048 processors.
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Figure 2.14: Parallel performance on Stampede?2 of Texasahd Computing Center for LB
DNS and LB DNS coupled with IB methoda) Wall-clock time per an iterationpj Wall-clock
time per grid points per an iteration, ara) §peed-up as a function of the number of processors.
O (Red), LB DNS without grid-embedding, smooth channel waksolution512 x 256 x 221;
O(Green), LB DNS with grid embedding; R = 2, smooth channel wall, resolutioi)24 x
512 x 28 (NW)/ 512 x 256 x 197 (core)/1024 x 512 x 28 (nw); </ (Blue) , LB DNS with grid
embeddingz R = 4, smooth channel wall, resoluti@948 x 1024 x 56 (nw)/ 512 x 256 x 197
(core)/2048 x 1024 x 56 (nw); & (Brown), IB-LB DNS with grid embedding: R = 2, flexible
hairy surfaces” ~ 8, s7% ~ 8, h** ~ 8, K, = 1, K; = 5 x 107°, resolution1024 x 512 x 36
(nw)/512x256 x 197 (core)/1024x 512 x 36 (nw); I (Brown), IB-LB DNS with grid embedding
GR = 2, flexible hairy surfaces® ~ 4, 50 ~ 4, h™* = 8, K, = 1, K;, = 5 x 107, resolution
1024 x 512 x 36 (nw)/ 512 x 256 x 197 (core)/1024 x 512 x 36 (nw); O(Purple), IB-LB DNS
with grid embedding7R = 4, flexible hairy surfaces® ~ 8, s7% ~ 8, h*’ =~ 8, K, = 1,
K, =5 x 1077, resolution2048 x 1024 x 72 (nw)/ 512 x 256 x 197 (core)/2048 x 1024 x 72
(nw); & (Purple), IB-LB DNS with grid embedding' R = 4, flexible hairy surfaces® ~ 4,
s;0~4,h0 8 K, =1,K,=5x107", resolution2048 x 1024 x 72 (nw)/ 512 x 256 x 197
(core)/2048 x 1024 x 72 (nw).
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2.7 Verification and Validation

A number of numerical experiments have been performed tbyvand validate the present
IB-LB methods. These tests include verification of secordepaccuracy of the LB and LB-IB
codes in laminar flow, grid independence studies in turkildeannel flow with smooth no-slip
walls and comparisons to pseudo-spectral results, andrgtegbendence studies in turbulent
channel flow with rigid, blade riblets and comparisons talate experimental data. The slip-
errors are evaluated for a turbulent channel flow with hausfeges in terms of the present
and previous IB-LB methods. Details on the verificationtiation studies can be found in the

following subsections.

2.7.1 Laminar Channel Flow

LB formulations based on the constant flow rate (CFR) and tmestant pressure gradient
(CPG) have been tested in Poiseulle channel flows. The badg that drives the laminar
channel flow is the pressure gradient, which is adjustediduhie course of simulation to keep
the flow rate constant for CFR formulation, whereas the badyef is fixed during the course
of simulation for CPG formulation. The streamwise velogtpfile with respect to the wall
normal direction is compared to the analytical solutione Tonvergence test is performed to
verify the present LB formulations and examine the orderagiugacy for both CFR and CPG
formulations.

Figure2.15shows the normalized streamwise velocity profile with respethe wall normal

directionz (2D simulation) and the relative, norm which is defined adVei et al., 2000,

SO (tar (1) — ul(zi))2A 270

L2 - )
> (uar(21))? Az

as a function of the wall normal grid poinfé. = 10, 20, 40, and80 for CPG and CFR formu-
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Figure 2.15: §) The streamwise velocity normalized the centerline v&§oaej., with respect to
the wall normal directionz, normalized by the channel heigh’}. (b) The relativeL, error
norm as a function of grid points along the wall normal diil@ctV,. The black solid line,
square, circle, triangle, diamond symbols indicate théyéisal solution, NV, = 10, 20, 40, and
80, respectively.

lations. u,,; is the analytical solution of the velocity profile in a Poidewchannel flow. Using
the Chapman-Enskog expansion, the resulting LB schemeda®the second order accuracy
(Kruigeret al., 2017. The second order accuracy of the proposed scheme is dettifieugh
the convergence test as shown in FigRré5b). For CFR formulation, the magnitudes of the
relative L, error norm are about 2.3 times smaller than those for thetanhpressure gradient
formulation. This suggests that CFR formulation is moresogable for all numerical simula-

tions in this study.

2.7.2 Womersley Flow with and without Flexible Flaps

The present study aims to validate the numerical methodastghe experimental results ob-
tained fromFavieret al. (2017). First, the convergence test is performed to verify if thesent
LB formulation reproduces the analytical solution andsegs the second order accuracy with-
out the presence of the hairy filaments. Figuzessand?2.17 show the simulation results of
Womersley flow with Womersley number of Reynolds numbeRef= U,,..(3hy)/v = 360

and Wo = ho(27/v)"/? = 15. The analytical solutionGhandrasekaraet al., 2005,
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U, 1S represented in figurd.16a). Figure2.1gb) shows that the velocity profile is con-
verged to the analytical solution with increasing numbegids at the specific time instant,

t/T = 1.0. To quantify the numerical error, this, error norm of Womersley flow is defined

2
asly, = \/NL SN (Un“m — ﬁbzw) and evaluated for each grid resolution. For this un-

steady flow,L,,, is hovering around the mean value as shown in figufié{a). The tail of
the time history ofL, ,, was averaged over 4 time periods to obtain the time-averaggds
represented in the inset of figu2el 4a). In figure2.17b), the time-averaged. ,, decreases by
a factor of the square of the grid resolution{?), verifying the second order accuracy of the
present LB formulation.

Second, the validation study of the present IB-LB methodisggmed in comparison to the
experimental studyHavieret al., 2017). Figure2.18(a) illustrates the schematic diagram of a
row of 10 flexible flaps, mounted on the bottom channel walle Tho-dimensional computa-
tional domain i22h, x 3hg, and periodic boundary conditions are applied to the ledt raght
boundaries, while the no-slip boundary conditions are iadpio the upper and lower chan-
nel walls via the half-way bounce back boundary conditicerdd, 1994). The spacing between
flaps in the streamwise direction was se f&h,. The periodic, sinusoidal pressure gradient was
applied to drive the oscillating channel flodf/0x = A,s.cos (27 fosct). Aose and f,s. are the
amplitude and frequency of the pressure gradient, reyjedetiln this numerical experiments,
A,sc and f,s. are determined, corresponding to Reynolds numbétcof U,,,...(3ho) /v = 360
and Womersley number df/ o = hy(27/v)Y/? = 15, to reproduce the flow condition repre-
sented in the reference studyalvieret al., 2017). Figure2.18(b) displays the non-dimensional
vorticity fields influenced by the wall-mounted flexible flape two-dimensional simulations,
the flexible hairy filament is considered to be a flexible ptatélap. The interaction between
the fluid flow and the flexible flaps seems physically plausii@sed on a qualitative analysis.
Figure2.18(c) presents the comparison between the simulation and exeetal results for the
streamwise tip positions of F1-F5 (First left flap - fifth |8fp). In this figure, the numerical

simulation shows good agreement with experimental results
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Figure 2.16: &) Analytical solution of Womersley flow.b) The velocity profiles for each grid
resolution at the time instant of 7" = 1.0.

For the convergence study, numerical experiments arepeefibvarying the grid resolution
and parameters correspondingly. The cases used for thericairexperiments are tabulated in
Table2.3. As shown in figur@.19 the present IB-LB method for the simulation of the dynamics
of elastic, slender bodies during their interaction witlst@ady flows holds the second order

accuracy.

CFL (L./Axz x L,/Az) H/Axz ho/Ax T/At

0.1 330x 45 45 15 4524
0.075 440x 60 60 20 8042
0.06 550x 75 75 25 12566
0.05 660x 90 90 30 18096

0.0375 880x 120 120 40 32170

Table 2.3: Cases for the convergence study.
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Figure 2.17: & Time histories of the., ,, of Womersley flow for each grid resolutiohy ,, =

2
\/NL vaz <U“ - UL|alw) , iIs obtained at every time instant at a coarse grid over tte la

4 periods to obtain the time-averaged error nofm,,. (b) Verification of the second order
accuracy of the present LB formulation.
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Figure 2.18: & Schematic of computational domain and boundary conditfon validation.

A series of 10 flaps are mounted on a channel wall where anaiscy flow is generated with

a periodic pressure gradient) (An instantaneous snapshot of the non-dimensional spanwis
vorticity field, represented by the contour level rangiranir-3.5 to 3.5. €) non-dimensional tip
positions of flaps (F1-F5) in the-direction with respect to the time normalized by the penbd
the oscillatory flow. Solid line denotes the results frompghesent simulation, compared against
the experimental result&dvieret al., 2017), which is denoted by the circle-shape symbols.
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Figure 2.19: The time-averaged error norh,;, for the position of the flap tips at each grid

2
resolution. Herel, ; = N > < Yip _ lip Tef) . For this unsteady FSI simulatio s

ho ho
obtained at every time and compared%?(')@\ref to obtainL, ; at every same time instant, shared
by both a coarse grid resollution and the reference. The-éiveeaged error norni,, ; is then
computed by averaging, ; at the time instants. The reference case corresponds tats fi
grid resolution withC'F' L = 0.375.
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2.7.3 Turbulent Channel Flow

The accuracy of LB DNS code in turbulent flow with smooth, tip-g/alls was assessed by
comparing its results, both with and without grid embeddiogpseudo-spectral DNS in turbu-
lent channel flow. The pseudo-spectral DNS results are greeman earlier studyRastegari &
Akhavan 2018. The bulk Reynolds number éfe, = q/2v = 3600, wherey is the flow rate per
unit channel width. The corresponding friction Reynoldminer of Re,q ~ 221. The subscript
0 denotes the base channel flow with no-slip walls. Periodimbary conditions are imposed
in z andy direction. A channel sizé, x L, x L, = 5H x 2.5H x 2H is used in the numerical
experiments. The corresponding numbers of grid pointsggalon, andz directions in the flow
domain are 512, 256, and 223, respectively. LB DNS withoitt gmbedding was performed
using uniform grid spacings akz° ~ 2. LB DNS with grid embedding was performed with
grid refinement ratios off R = 2 and4, employed in the region between the channel walls and
the edge of the buffer layer (" ~ 30), resulting in grid spacings aixjfo ~ 1 andAx}FO ~ 0.5
atz*9 < 30 for GR = 2 and4, respectively, as shown in figuB2 Here, the superscript0
denotes the normalization with the wall-friction velogity,, and the kinematic viscosity of
fluid, v, for the turbulent channel flow with smooth, no-slip walls.

The LB code has been verified by comparing turbulent stesisti those given from pseudo-
spectral DNS data. Figur221(a) shows the time history of the skin-friction coefficiefte
time history ofC'; was averaged frorti/,/ H = 100 to 400, corresponding to the eddy turnover
time of approximately6.2 for the initial cut-off and18.6 for the time-averaging, respectively.
The resulting skin-friction coefficients af& = 0.007714, 0.007668, and0.007662 for non-grid
embedding(zR = 2, and4. The relative errors of the time averagégdto C/ ,; pseudo-spectral
DNS, |C}ps — Ct|/Cy ps, are1.0%, 0.4%, and0.3% for non-grid embedding7 R = 2, and4,
respectively. Figure.21(b) shows the mean velocity profile as a function.of The mean
velocity within the viscous sub-layet{ < 5) increases linearly with the wall normal location,

showing a good agreement with the law of the wall. In the lggfathe mean velocity profile

67



agrees well with the logarithmic law,

(U)" = %m 2"+ B, (2.75)

wherex is Karman constant(= 0.41) and B is the intercept of logarithmic law representation
of the mean velocity profiles in the channel flow with smoothstip walls (B = 5.5).

The mean velocity profiles from non-grid embeddingR = 2, and4 agree well with the
mean velocity profile from pseudo-spectral DNS as shown uréig.21(b). Figures2.21(c) and
(d) show the turbulence intensities as a function©f LB DNS data show a good agreement
with pseudo-spectral DNS data. Figte1(e) shows the mean Reynolds stress as a function
of z/H. The theoretical total shear stress is denoted by the diiedn figure2.21(e). The
total shear stress consists of two components: turbulezdrsstress« (ww) ") and laminar
shear stressi{.™ /dz"). The contribution of Reynolds stress to the total sheasstis negli-
gible adjacent to the wall, implying that the total sheaess¢rat:/H < 0.15 depends on the
contribution of laminar shear stress, and conversely, migpen that of turbulent shear stress
at0.15 < z/H < 1. Figure2.21(f) shows the mean root mean square (rms) of the pressure
fluctuation as a function of". LB DNS results show that the mean rms of the pressure fluc-
tuation becomes closer to pseudo-spectral data with iscrgayrid refinement ratio. Higher
order stats such as skewness and flatness from LB DNS was oeanjpethose from pseudo-
spectral DNS as shown in figur@21(a) and ). The skewness profiles agree well with those
of pseudo-spectral DNS, except for LB DNS results withoud-@gmbedding. Similarly, the
flatness profiles also agree well with those of pseudo-sgdaN S, except for LB DNS results
without grid-embedding. These results imply that LB DNSuiegs grid-embedding to obtain

accurate results near the wall region.

68



0.0

Dean’s correlation

(b)

%09 100 200" 300 400 I
i (d)
L T 1 ~..‘. T T T T
3 08"
]  06F
; \% : S
b vV 0.4r T=<uw>" S
5 021 \ ' 1=d<U>"/dz’
:7 0 Loy Trr—r——
Por 167 1 71 o0z o4 06 08
G T

Figure 2.20: &) Time history of the skin-friction coefficients. Turbulestats: b) Mean veloc-
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ation. Red line, non-grid embedding; green line, GR=2; hilue, GR=4; Black dashed line,
pseudo-spectral DNS data.
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(b)

Figure 2.21: §) Skewness andj flatness of the streamwise, spanwise, and wall normal veloc
ity fluctuations in turbulent channel flows. Line types as gufe2.20

Figure 2.22: Schematic diagram of a turbulent channel awéaises covered with blade riblets.
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2.7.4 Turbulent Flow over Blade Riblets

A grid resolution study was performed to verify the preseBiLB implementation in a
turbulent flow over blade riblets. The bulk Reynolds numiseRé, = ¢/2v = 3600, where
q is the flow rate per unit channel width. The correspondingtibh Reynolds number is
Re.o ~ 221. The subscript0), denotes the base channel flow with no-slip walls. Periodic
boundary conditions are imposed in the streamwise and gpardirections. The turbulent
channel flow was driven by the same flow rate, dynamically stdjg the mean pressure
gradient over time. The blade riblet surface is realized dysr of rigid hairy filaments
implanted at every grid cell center in the streamwise dioectvith an appropriate spanwise
spacing. Figur@.22shows a schematic diagram of a turbulent flow over bladetsbla this
numerical exercise, the spanwise spacing was se}otow 16, which is the optimal spanwise
spacing of the blade riblet8échertet al., 19973 Garcia-Mayoral & Jimenez22011). Two
sets of simulations were carried out using two distinct gadolutions: Grid 1GR = 2
with Az ~ 2, Az}’ ~ 1) and Grid 2 GR = 4 with Az}* ~ 2, Az}® ~ 0.5). The
fine grid resolution is set from the channel walll® = 0, to the edge of the buffer layer,
(2 + ho) Y = 30, for both Grid 1 and Grid 2. Each row of rigid hairs with? = 2 andGR = 4
have the thickness akz;cr—o and Az cp-4, respectively. FolGR = 4, the thickness of a
rib is twice smaller than that foF R = 2 (Azsgr_2 = 2Ax;cr—4) SiNce the cross-sectional
area of each filament occupies one Eulerian grid cell. Theeetwo rows of rigid hairs with
GR = 4 can be consecutively placed in the streamwise and spanwesgidns to reproduce
the same geometrical features of the blade riblets repies$dry G R = 2, as shown in figure

2.23

In this simulation setup, the turbulent statistics were pared for both grid resolutions. Fig-
ure2.24shows the comparison of the mean velocity profiles, meanm@atn-square of velocity

fluctuations, and shear stress distributions in the wallnab direction. The drag reductions of
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Figure 2.23: Schematic of the filament distribution &k = 2, denoted by O (Green), and
GR = 4, denoted by x (Blue), respectively, on the top viea). Top view of rigid hairs mounted
on the channel wall. The cross-sectional area, denoteddgneghaded area, of one hair with
GR = 2 can be reproduced ¥/ x 2 hairs withGR = 4, regarding the effective area of each
filament that occupies one Eulerian grid celb) One row of rigid hairs withZ7R = 2 can be
replicated by two rows of rigid hairs with R = 4. The solid grid lines denote the lattices with
Axyar=2, and the dashed grid lines denote the lattices With) ¢ p—4.

DR = 7.0% and DR = 6.6% were obtained folzR = 2 andGR = 4, respectively. The
difference of drag reductions betweétz = 2 andGR = 4 is close enough to be considered
as grid independent. Furthermore, the turbulent stadi$tem GR = 2 agree well with those

from GR = 4, supporting the grid independence.

2.7.5 Turbulent Flow over Flexible, Filamentous Surfaces

A numerical experiment was conducted within the framewdrk diffusive, direct-forcing
IB scheme coupled with LB method to determine whether therawvgd reciprocity of
interpolation-spreading operators yields acceptablerracy regarding basic kinematic con-
ditions such as the no-slip and non-penetration conditidsgiscussed in Sectich3.2.] the
oversimplified assumption, where Lagrangian forcings iancanstant along the IBRinelli
et al., 201Q Favieret al., 2014 Li et al., 2016 O’Connor & Revell 2019 is not valid for an
elastic, slender solid body that interacts with unsteadg;uniform flows. Additionally, it was

noted that the approach proposedlgng & Liu (2019, where the averaged correcting parame-
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Figure 2.24: §), (b)Mean velocity profiles, d), (d) turbulence intensities with respect 10
(First column) andz — z.¢¢)™ (Second column). €}, (f) Distribution of shear stresses with
respect to:* (First column) and:/ H (Second column). IB-LB DNS results of turbulent flow
over blade riblets are represented fgi’ ~ 8, ho/s = 1/2, hy/t ~ 0.06, with Grid 1,— —
(Gray), and Grid 2;---— (Black), respectively. For comparison, LB DNS result of tiese

turbulent channel flow with smooth, no-slip walls is represd with- - - - -
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Figure 2.25: Schematic diagram of a turbulent channel owdases covered with hairy sur-
faces.

ter is incorporated to the spreading operator, inheremhates the mathematical formulation of
the reciprocity. While the analytical proof of the incorress resulting from the oversimplified
assumption and its resulting linear matrix equation forns weesented in Sectich3.2.1

The schematic depicted in figube25illustrates a turbulent flow over surfaces covered with
flexible filaments that are uniformly distributed and erddte their initial, undeformed state.
Numerical experiments are conducted for the case of theditarmeight of,j® ~ 8, height-
to-spacing ratio of,/s = 1, dimensionless stretching coefficient 8 = 1, dimensionless
bending rigidity of K; = 2 x 1079, density ratio ofp, = 700. The slip-error is a measure
of the deviation from the unity in the ratio of the velocity lohgrangian markers to the fluid
velocity interpolated to the marker, i.&J)(s,¢)/I [u(X,t)]. A value of 1 forU(s,¢)/I [u(X,?)]
indicates strict satisfaction of the no-slip condition. ngzared to the previous IB-LB method
(Jiang & Liu, 2019, the present method exhibits significant improvement tucéng the slip-
error. As shown in Figur.26 the previous method results in huge slip errors up to000) in
percentage, which is unacceptable. In contrast, the presethod demonstrates a substantial
enhancement in imposing the no-slip condition along thelTkBe improved reciprocity ensures
better no-slip enforcement on the Lagrangian markers|tregin a maximum slip error of less
than~ 2%. The current level of the slip-error is marginal enough tosider the present IB-LB

method acceptable for the DNS of turbulent channel flow oaéwytsurfaces.
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Figure 2.26: Slip errors obtained from the present methabraference method, denoted by
the red-contoured and grey-contoured symbols, respégtivethe (@) streamwise, lf) span-
wise, and €) wall-normal directions. IB-LB DNS results of turbulent Woover hairy sur-
faces are represented fof’ ~ 8, ho/s = 1, K} = 1, Kj = 2 x 107%, p, = 700. The
slip errors at each Lagrangian marker were measured al@ngritire filaments implanted in
both channel walls over 100 realizations of the flow over tdyeturnover time ofx= 6.2.
U(s,t)/I[u(x,t)] (s,t) = (1,1, 1) indicates that the no-slip on the marker is strictly satisfie
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CHAPTER 3

Skin-friction DR with Hairy Surfaces

The carpet of flexible filaments creates a functional surthe¢ dynamically interacts with
turbulence and modifies its dynamics. Depending on the filup@rameters, these interaction
can lead to drag enhancement or drag reduction. This studgtigated the filament deflection
in response to turbulent flow and its effects on the modifocatf turbulence dynamics. The
resulting drag reduction was evaluated for various filanpanameters such as Cauchy number,
filament height, filament height-to-spacing ratio. In orttegain an understanding of the influ-
ence of hairy surfaces on turbulence dynamics, an analf/sisbulence statistics is conducted
for a channel with hairy surfaces, and compared to the statisf the base turbulent channel

flow.

3.1 Direct Numerical Simulation Study

3.1.1 Probhlem Statement

Simulations were performed in turbulent channel flows, amgito be periodic in the stream-
wise () and spanwiseyj directions, with periodicity lengths df, andL,, and a channel height
of 2H. Carpets of filaments of initial undisturbed filament heggbt 7, filament thicknesses
of d, and uniform filament spacings 8f = s, = s in the streamwise and spanwise directions

were implanted on both channel walls, as shown in Figuia).
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Figure 3.1: Schematic of the channel, coordinate systenhtta computational grid used in
the simulations. g), the channel configuration and coordinate system are epievhere a
uniform carpet of flexible filaments (with, = s,) is implanted on both channel walls, with
the filaments shown in their initial un-deformed statle) The computational grid used in the
simulations, with a grid-embedding ratio of 4:1.

Throughout all simulations, a constant flow rate was enfibicethe turbulent channel to
ensure that the bulk Reynolds number w&s = ¢/v = 7200, whereq = U,(2H) represents
the flow rate per unit spanwise width of the channel. This eatibulk Reynolds number
correspond to friction Reynolds numbersid,, = Hu.,/v ~ 221 in a turbulent channel flow
with smooth, no-slip walls, which serves as the baselinedonparison.

In order to increase the accuracy of our calculations, tiidysemployed grid embedding
(Lagravaet al., 2012 with a grid ratio of 4:1 in the region between the channellsvahd a
height of 29 ~ (30 + ) from the channel walls, as shown in figiBel(b). Here, the super-
script+0 indicates normalization with respect to the wall frictioelacity, «.,, and the kine-
matic viscosity, for the base turbulent channel flow. Theltesy grid spacings were\jfo ~ 0.5

in the regior < %% < (30 + 2°), andAF° ~ 2 in the region(30 + A%) < 210 < H+O,

3.1.2 Governing Dimensionless Parameters

The dynamics of filaments and their interactions with theaurding fluid flows are influ-

enced by several non-dimensional groups. These includddaheent’s geometrical parameters
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such as the initial height of the filament in wall units of thesb flow,h;; filament diameter,
d*Y; filament height-to-spacing ratiby /s; density ratio of the filament to the surrounding fluid,
pr = Ap/ (ApsAy) whereA, is the effective cross-sectional area, which is alreadgusised
in Section2.7; and the Cauchy number, defined as the ratio of the hydrodigrfances acting
on the filament to the restoring force. The Cauchy numberpsessed as Equatidhl (Luhar

& Nepf, 2016 Heet al., 2022,
_ pfuTOthg.

Ca K

(3.1)

where K, is the bending rigidity of the filaments, and, is the characteristic fluid velocity
acting on the filaments. The friction velocity,,, is used as the characteristic velocity since
the filaments are placed within the inner layer, where tratiém velocity is the more relevant
velocity scale.

In addition to the non-dimensional groups mentioned abibve helpful to define the time
scale ratio, given bny;{& which represents the ratio of the characteristic timeesoélthe
filaments,T};, to the time scale of the largest eddies in the base turbaleninel flow. This

time scale ratio can be expressed by the combination of thelf§anumber, the density ratio,

and the geometrical parameters of the filaments as,

Trayur,  ho AT
H H\/(C (o5) (i) (82

Here, the superscript0 denotes the normalization with the wall-friction velogity,, and

the kinematic viscosity of fluidy, for the base turbulent channel flow with smooth, no-slip
walls. Similarly, the superscript denotes the normalization with the wall-friction velogity,
and the kinematic viscosity of fluid;, for the turbulent channel flow with the presence of the
surface-textures. Note that the wall friction velocity vihe surface textures is obtained at the
actual channel wall in this study.

A parametric study was conducted in turbulent channel flawd$eynolds number die;, =
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7200 (Re,, =~ 221). The filament height ranges frohj® = 4 to 16, the filament thickness of
approximately/™® =~ 0.5, the filament height to spacing ratios ranges fiams = 1/4to0 2, the
density ratio ranges from. = 30 to 1000, and Cauchy numbers 6fa = 10, 20, 40, 60, and&0.
The simulations were performed in channels with dimensains,/H = 5 andL,/H = 2.5,
of which the adequacy of the domain size was confirmed in tbeigus study Rastegari &
Akhavan 2018. A summary of all simulations performed in this study isgaeted in Table
3.1

3.1.3 Calculation of DR

This study presents the drag reductions with hairy surfandscompare them with those over
a smooth wall. Using the definition @R = (1 — Cy/C},), the magnitude of drag reduction

can be obtained from
Cy

DR=1-—-
Cro

(3.3)

whereCyy = 7,0/ (3pU2) andCy = 7,/ (3pU}) are the skin-friction coefficients in the base
turbulent channel flow with smooth, no-slip walls and in thdtilent channel flow with the fil-
amentous surfaces, respectively, aidare the bulk velocity obtained by averaging the stream-
wise velocity over the entire channel at the same bulk Regwlmber.

The turbulent statistics were collected over a minimum»f 13 eddy turnover times in
the simulation. The simulation was run for a duration of astes eddy turnover times from the
initial condition to ensure a statistically steady statée Btreamwise mean pressure gradient
was then averaged over a minimuml@f— 13 eddy turnover times, excluding the initial 6 eddy
turnover times. Subsequently, the wall shear stress actibfrivelocity were calculated based
on the averaged pressure gradient. Using these quantigefsiction coefficient was computed

and compared to that of the base flow to determine DR.
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Case Symbol Line type p, Ca hf® st ho/s Tryuro/H 2t ; DR(%)
sm L. - - = - - - — —

D700Ca40h4s4 5] 700 40 4.19 419 1 0.125 273 1.6
D700Ca40h4s8 ° 700 40 4.19 8.37 1/2 0.031 172 2.0
D700Ca40h6s6 m —— 700 40 6.10 6.10 1 0.083 2.18 3.5
D700Ca40h6s12 e ——— 700 40 6.10 12.20 1/2 0.021 2.18 3.8
D700Cal0h8s8 m — 700 10 798 798 1 0.063 5.16 1.8
D700CallOh8s16 o ——— 700 10 7.98 15.97 1/2 0.016 464 29
D700Ca20h8s8 o —_— 700 20 798 798 1 0.063 414 31
D700Ca20h8s16 o —— 700 20 7.98 15.97 1/2 0.016 3.14 3.3
D700Ca40h8s4 ¢  _._._ 700 40 7.98 3.99 2 0.250 5.20 15
D700Ca40h8s8 o —0 700 40 798 798 1 0.063 3.11 5.3
D700Ca40h8s16 o —— 700 40 7.98 15.97 1/2 0.016 3.11 54
D700Ca40h8s32 a ———- 700 40 7.98 31.94 1/4 0.004 219 1.6
D700Ca60h8s8 m —— 700 60 798 798 1 0.063 2.65 3.5
D700Ca60h8s16 o —— 700 60 7.98 15.97 1/2 0.016 265 34
D700Ca80h8s8 700 80 7.98 7.98 1 0.063 2.67 2.3
D700Ca80h8s16 700 80 7.98 15.97 1/2 0.016 219 14
D700Ca40h10s10 O 700 40 9.83 9.83 1 0.0560 361 3.2
D700Ca40h10s20 o 700 40 9.83 19.66 1/2 0.013 358 44
D700Ca40h12s12 = —— 700 40 12.10 12.10 1 0.042 406 3.1
D700Ca40h12s24 = —— 700 40 12.10 24.20 1/2 0.010 4.05 3.7
D700Ca40h16s8 ¢ 700 40 16.07 8.03 2 0.125 8.54 -0.7
D700Ca40h16s16 m 700 40 16.07 16.07 1 0.031 495 3.2
D30Ca40h8s8 m 30 40 7.98 798 1 0.063 268 1.2
D30Ca40h8s16 o 30 40 7.98 15.97 1/2 0.016 269 0.9
D100Ca40h8s8 m 100 40 798 798 1 0.063 268 15
D100Ca40h8s16 @ 100 40 7.98 15.97 1/2 0.016 267 2.3
D300Ca40h8s8 300 40 798 798 1 0.063 3.16 2.1
D300Ca40h8s16 ¢ 300 40 7.98 15.97 1/2 0.016 3.15 3.0
D1000Ca40h8s8 ® 1000 40 798 7.98 1 0.063 3.14 35
D1000Ca40h8s16 e 1000 40 7.98 15.97 1/2 0.016 3.14 3.6

Table 3.1: Summary of the simulations performed in the prestidy.
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3.2 Filament Deflection in Response to Turbulent Flow

Figures3.2(a), (c), (e) show the instantaneous configurations of the filamentghsdensity
ratio of p, = 700, filament height ofa™ ~ 8, and the height-to-spacing ratio 6f/s =
1/2, at three Cauchy numbers 6fa = 10,40, and80. The density ratio ofp, = 700 was
chosen to mimic the density ratio between bird feather fibasair densityReddy & Yang
2007 Tesfayeet al., 2018, while the filament height o *° ~ 8 was selected based on earlier
experiments reporting the maximum drag reduction at thisrediiber height Takataet al.,
1996).

Figures3.2 (b), (d), (f) are the contour plots of the streamwise velocity fluctustion the
plane ofz = z.;, which represents the demarcation at which the fluid flowlgesat to the drag
force exerted by the filaments. The filaments display a mdtiahis locked into the motion of
turbulent structures, getting lifted up from the wall at tbeations of the low-speed streaks and
pushed down towards the wall at the locations of the higledstreaks.

Figure3.2(g)—(i) show the filament configurations projected ontoithez andy — z planes
at different Cauchy numbers ¢fa = 10,40,80. The flexible filaments primarily deflect in
the streamwise and wall-normal directions and exhibit treasnlined postures at the spanwise
plane in response to the mean flow. In contrast, the spanwitecton occurs in both positive
and negative directions. ASa increases, the extent of deflection at each direction besome
more significant in the streamwise and wall-normal direg@dibut lesser in the spanwise direc-
tion.

To better characterize the filament deflection in respongbddurbulent flow, this study
explored the probability density function (p.d.f) of theanedeflection, which is determined by
the location of the filament tip in relative to its locationuetdeformed (or initial) state. Figures
3.3 (a)—(c) show the p.d.f.s of filament deflections in they, andz directions, scaled by the
filament height for various filament height-to-spacingoatof 2y/s = 1/2,1,2 and Cauchy

numbers oiC'a = 10, 20,40 and80. As Cauchy number increases, the restoring force relative

81



(b)

SN\ S
SRR\ T

(@)

O3UU

120 140 160 180 200 220 240 260 280

y

Figure 3.2: Instantaneous filament configurations:andy plane view of streamwise velocity

f) Ca=80. Ther—y

&

=40,

d) Ca

16, (a, b) Ca=10, ¢,

~
~

700, h"0 ~ 8, s
plane view was obtained ajff corresponding each Ca. Superimposed filament configugation

atz-z plane andy-z plane (15 < z*™ < 300 and115 < y* < 300) for (g) Ca=10, f) Ca=40,

(i) Ca=80. The dashed lines ig)t(i) denote the location oa‘jff at the corresponding Ca.

fluctuation forp,

82



(@ (b)

102? T T T T T E E
;: 10°E
= b

10°

05— 558 1 Wt st . '

(Xtip_Xtip,O)/ h0 (Ytip_Ytip,O)/ hO
(d)

102? T T T T E
;: 10°E
< b

0y

10° 650406 08 1 = 004 06 08 1

(Xti p_Xti p,O)/ h0 (Zn p,O_;ip)/ h0
(9) (h) (i)
1022“‘l“‘l“‘l“‘l“‘§ 1025““l““l““|““§ 1022“ T T T T
10 1 10}
:5 10O :5 100
e 1 Cu0%

10 1 10%

'2:”‘|H‘|H A T . ) L HHE '3§H‘|H‘|H/‘|H‘|H‘:

10°5="02"04 06 08 1 ) ) 1 10670304 06 08 1

(Xti p_)<ti p,o)/ ho (Yti p_Yti p,O)/ ho (Zn p,O_Z[ip)/ ho

Figure 3.3: Effect of Cauchy number, density ratio, filamkaight and filament height to
spacing ratio on filament deflection, as measured by the. ptifilament tip location relative
to its location at the undeformed state)-(c) effect of Cauchy number and filament height to
spacing ratio, ap, = 700 andh" ~ 8, for Ca=10, 20, 40, 80 anth/s = 1/2,1,2; (d)-(f)
effect of density ratio, at Ca=40,;° ~ 8 andhy/s = 1, for p, = 30,100, 300, 700, 1000;
(0)-(i) effect of filament height, ab, = 700, Ca=40,ho/s = 1 for hi® =~ 4,6,8,10, 12, 16.
Line types as shown in Tabg1
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to the hydrodynamic force decreases, and thus the meamstisa and wall-normal deflections
increase. However, the mean spanwise deflection remainsmetimo with respect to zero.

Furthermore, the range of p.d.f.s also features the filahefifgction for each direction. The
ranges of p.d.f.s shown in the streamwise and wall-norntactions are smaller than p.d.f.s.
shown in the spanwise direction. This indicates that theabien of the flament deflections
generally more freely in the positive and negative direwithan in the streamwise and wall-
normal directions. As Cauchy number increases, the rangpgid.s in the streamwise and
wall-normal directions are shrinking, while the range d.p. in the spanwise direction be-
comes wider. This is because higher Cauchy number brings &% filament deflection due
to higher restoring force relative to hydrodynamic forced ahus filament tips interact with
higher velocity fluctuations as they are lifted away from¢hannel walls.

An additional characteristic of the mean deflection represiby the flexible filaments was
observed in terms ofy/s. As hy/s increases, the filamentous layer becomes denser, and the
motion of individual hairy filaments affects the motions @ighboring filaments, resulting in
a more pronounced mutual-sheltering effé&@a(gpach1992 Luharet al., 2008 Shao & Yang
2005. The mutual-sheltering reduces the transfer of momenturffbm the overlying flow
to the filaments, thus making them less deflective. As a rethdtpeaks of the p.d.f.s in both
the streamwise and wall-normal directions shift towardsilfen values with increasing/ s,
as shown in figure8.3 (a) and €). Moreover, another distinct feature of the spanwise mean
deflection is observed with increasihg/s. Figure3.3(b) shows that the p.d.f.s of the spanwise
mean deflection generally display one peak located at ar@ipe-Y;;,0)/ho = 0for hy = 1/2
and1, but this behavior breaks down &g/ s increases to 2, exhibiting multiple peaks located
far from (Y, — Yupo)/ho = 0. This is because as the filamentous layer becomes denser, the
flexible filaments move in the spanwise direction to circunvbieir neighbors, located next to
them in the streamwise direction.

Figures3.3 (d)—(f) illustrate the p.d.f.s of the mean filament deflection foedixXilament

height of h™® =~ 8, height-to-spacing ofi,/s = 1/2 and Cauchy number af'a = 40, at dif-
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ferent density ratios of, = 30, 100, 300, 700, 1000. The range of filament deflection becomes
wider with increasing density ratio in each direction. Thiecause a higher density ratio
brings about higher restoring force of the flexible filamexiative to the hydrodynamic force,
resulting in less deflection. With less deflection, the filattgs are located farther away from
the channel walls and thus more subject to the increasedviélioetity fluctuations. As a result,
the filament tips with higher density ratio move more actnaeid deflect over a wider range, as
compared to a lower density ratio.

Figure3.3(g)—(i) show the p.d.f.s ofX:i, — Xyip.0)/ ho for different heights ofi ™0 ~ 4 — 16,
with the fixed density ratio of, = 700, height-to-spacing of,/s = 1 and Cauchy number
of Ca = 40. In figures3.3(g) and §), the p.d.f.s of( X:, — Xipo)/ho @and (Y, — Yiipo)/ho
are statistically self-similar in terms of the filament Hegy Moreover, the self-similarity is
maintained in the wall-normal direction @, o — Z:;,) /ho < 0.6. This self-similarity suggests

that the filament deflection is primarily characterized by fikament height.
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3.3 Effects of Filament Parameters on DR

The effects of filament parameters on the drag reduction weaéuated. This study first
started the parametric study with the density ratippof= 700, mimicking the density ratio
of the chicken feather fiber to the air densiBe(ddy & Yang 2007 Tesfayeet al., 2018, and
the filament height o™ ~ 8, regarding the micro-fiber height that provided the maximum
drag reduction in the earlier experimeniakataet al., 1996, at various Cauchy numbers of
Ca = 10, 20, 40, 60, 80 and two filament spacings of° ~ 8 and16.

In figure 3.4(a), the maximum drag reduction @R ~ 5.4% occurs atC'a = 40. The drag
reduction decreases as Cauchy number deviates@ters 40. Specifically, atC'a < 40, the
filaments become stiffer and occupy a greater cross-sedtaoea of the channel due to the
increased restoring force. These stiff flaments block tieamflow, increasing the form drag.
Conversely, at’a > 40, the filaments become excessively flexible, and their prayito the
channel wall makes them incapable of disrupting the fluid #df@ctively. As a result, the flow
pattern resembles the base turbulent channel flow with dmnotslip walls, resulting in a drag
reduction converging t& R ~ 0.

The drag reduction can also be characterized by the ratitaciént height to spacing,/s.
Figure3.4(a) shows that a%, /s increases fot’a = 40, the drag reduction initially increases,
saturates at,/s = 1/2, and then decreases with further increasipgs. Filamentous surfaces
with hy /s = 1/4 are sparser and have marginal mutual-sheltering effBets{ach1992 Luhar
et al., 2008 Shao & Yang 2005. This makes them more susceptible to flow-induced forces,
causing them to be deflected towards the channel walls asdéBulting in a flow environment
similar to the base turbulent channel flow. In contrast, féatous surfaces with,/s = 2 are
denser and experience significant mutual-sheltering tsffedhich reduces the filament deflec-
tion towards the channel walls and leads to increased foayg.dFilaments distributed with
moderate sparseness,/s = 1/2 — 1, are more suitable for reducing skin-friction drag as the

filaments do not excessively deflect nor increase the form.dra
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Figure 3.4: Effect of Cauchy number, density ratio, filamleeight and filament spacing on
drag reductions:g) Effect of Cauchy number, at. = 700, hi° ~ 8 and16, hy/s = 1/2, 1 for
Ca=10, 20, 60, 80;n) effect of density ratio, at Ca=40," ~ 8, hy/s = 1/2, 1; (c) effect of
filament height, ap, = 700, Ca=20, 40, and,/s = 1/4,1/2,1,2. Symbol types as shown in
Table3.1
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In addition, the drag reduction was explored for various sitgnratios of p, =
30,100, 700, 1000, at fixed filament height o *° ~ 8, height-to-spacing ratio dfy/s = 1/2
and1, Cauchy number of'a = 40. Figure3.4(b) shows that the drag reduction increases with
increasing density ratio and reaches maximum drag redueati@a density ratio op, = 700,
then decreases with further increasing density ratio. Atiog to Sundin & Bagheri(2019),
hairy filaments with a lower density ratio have a lower timalsoof the motion so that the
hairy filaments move faster and quickly comply with the tuelmt structures, inducing the flux
of turbulent fluctuation into the channel walls and leadio@ tsignificant drag increase, while
hairy filaments with a higher density ratio have a larger tatae of the motion so that the hairy
filaments deform slowly and modulate the turbulent struetyproviding a minor drag increase.
The drag reduction saturates at a moderately high density iraspiring that a specific range of
the filament time scale can lead to a favorable conditiondace skin-friction drag reduction.

One particular interest of this study is to identify the keygmeter that governs the trends
of DR. The results presented in figurgsi(a) and @) show that neither Cauchy number nor
density ratio can solely determine tha? trends, nor can filament height and height-to-spacing
ratio in figure3.4(c). Therefore, DR trends cannot be determined by a singlemta. In an
effort to seek a determining parameter/of trend, this study attempts to derive a prominent
dimensionless parameter combining those individual patars. In this effort, the characteris-
tic time scale ratio/y;;u,o/ H, was derived, as explained in the previous section. Thiplgies
the prediction of DR trends. Figure8.5a) shows that the drag reductions fall on top of each
other except for excessively sparsg (s < 1/4) or dense filamentous surfacég (s = 2) and
the filamentous layer protruding above the demarcationehtfuraulic-smooth layeet > 6).

Based on this observation, one can suggest criteria thetrdete the DR trends with
Tryur0/H, including moderate sparseness of the filamentous surfacés: hy/s < 2) and the
filamentous layer determined below the demarcation of tlidwtic-smooth Iayeerff < 6).
The drag reductions obtained within this criteria show daqsle, as shown in figu@5b). The

highest drag reduction occurs at arolfgu,/H ~ 1.4—1.5. This finding suggests that when
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Ty, latches onto a time scaled — 1.5 times higher than the time scale of the largest eddies of
the base turbulent channel flow, the drag reduction saturé&ter lower time scale ratio§,;
cannot latch onto the time scale of the largest eddies aneladdatches onto the time scale of
eddies larger than the channel allows. For higher time scA}g latches onto the smaller scale

turbulent eddies, and the drag reduction becomes lesgieéfec
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3.4 Turbulence Statistics

This study aims to investigate the influence of hairy sudamethe modulation of turbulence
dynamics and the resulting drag reduction. To achieve this, study analyzes turbulence
statistics and compare them with those obtained from the tuaibulent channel flow with no-
slip, smooth channel walls. Due to the spatial variabilitymall structures, flows over hairy
surfaces do not always exhibit homogeneity in a certaingfaarallel to the wall. To overcome
this issue, this study adopted an ensemble averaging, wivglves averaging the wall-parallel
plane in regards to the periodic pattern of the wall surfg€kawa & Meng 1995 Coceal
et al., 2007 Mejia-Alvarez & Christenser?013 Toloui et al., 2019 Mangavelliet al., 2021,
Durbin, 2023. This technique isolates typical features of the flow fid¢idsn a relatively large
number of eventsGocealet al., 2007). The definition of the ensemble averaging for a fluid

quantityo(zx, y, ) is expressed by

NCI'L‘L 1Nenj_1

(b(xi?ij ) - Z Z H—u

en:c 6

y] +J](

Ny ), Z). (34)

Neny

whereN, andN, are the numbers of grid points in the streamwise and sparivisetions over
the entire channel, and.,,,, V.., are the numbers of ensemble patches in the streamwise and
spanwise directions over the entire channel, respectiwdlich are determined by the sparse-
ness of surface-textures. Therefore, the numbers of thlepgints at each ensemble patch are
obtained by dividing the number of grid points over the entinannel by the number of the en-
semble patchesy, /N.,, andN, /N.,, in the streamwise and spanwise directions, respectively.
The indiceg, j in the left hand side of the equati@¥range from0 to N, /N, — 1 and from
0to Ny/Neny — 1, respectively.

A distinct feature of wall-bounded turbulence is to exhdaherent structures that persist in
time and spaceK(ine et al., 1967 Robinson1997). Key observed coherent structures are self-

sustaining and are generally represented by hairpin-she@eex packets comprising quasi-
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streamwise vortices and corresponding low- and high-{streaar the wallsHamiltonet al.,
1995 Waleffe, 1997 Tomkins & Adrian 2003 Adrian, 2007 Graham & Floryan2021). The
structures grow from the wall to the outer regiathfuet al., 1999, determining the dynam-
ics of turbulence from the inner-layer and the outer regibménez 2018. The inner-scale
turbulence can be represented by mean turbulence statigtic a proper normalization with
inner-scale quantities, which are determined by the waltiém properties such as the kine-
matic viscosity and the friction velocity. Normalizing budence statistics by the inner-scale
guantities enables to illustrate a general picture of theutadion of the internal dynamics of
the wall-bounded turbulence.

In this chapter, an analysis of the wall-normal distribogaf mean streamwise velocity,
mean shear stress, mean turbulence intensity, and meamstige vorticity fluctuation, which
are normalized using the wall-friction properties, willfoeused. In addition, turbulence statis-

tics investigated in terms of various filament parametehsb&idiscussed.

3.4.1 Mean Streamwise Velocity Profile

The variation of the skin-friction resulting from the prase of surface texture is well known
to be explained by the shift of the mean velocity profile in lingarithmic region. According
to the classical theoryQlausey 1954 Hamag 1954), the shift in the log-law intercept with the
existence of surface textures from the log-law intercephefbase turbulent channel flow is
indicative of the momentum deficit or surplus resulting fritra surface textures. This shift can
be interpreted as a measure of the drag penalty or redueiative to a smooth wall, where a
downward shift indicates drag increase, and an upward islitates drag reductiorBéchert
et al., 1997q Spalart & McLean2011).

The log-law shift was investigated for various Cauchy nurappiament height, and height-
to-spacing ratios with a fixed density ratio @f = 700, as shown in figur&.6. Figure3.6 (a)

shows the wall-normal distribution of the mean streamwisl®city normalized by the wall-

92



T T T
y4

Figure 3.6: The wall-normal distribution of the mean strease velocity for @) various Ca
with ho/s = 1, hg = 8, p, = 700; (b) various Ca withhy/s = 1/2, hg = 8, p, = 700, and
varioushg/s = 1/4,1/2,1,2 with Ca= 40, hg = 8, p, = 700; (c) varioush, with Ca= 40,
ho/s =1, p, = 700. Line types as in Tabl8.1
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friction velocity for various Cauchy numbers with the filamiéheight of h;° ~ 8 and the
filament height-to-spacing ratio @f,/s = 1. As expected from the classical theory, the drag
reducing surfaces show the upward shift of the log-law o#pt, and the extent of the upward
shift follows the trends of DR. For various Cauchy numbehvif® ~ 8 andh,/s = 1, the
magnitude of DR increases with increasifig from 10, saturates af'a = 40, and decays with
further increasing Cauchy number, as pointed out in figude(a). Similarly, it is observed
that the extent of the upward shift of the log-law intercapthe mean streamwise velocity
profile increases with increasinga from 10, saturates at'a = 40, and decays with further
increasing Cauchy number, as shown in figaré(a). The trends of the upward shift of the
log-law intercept in consistent with the trends of DR uphimidvarious Cauchy numbers with
ho/s = 1/2 andhg® ~ 8, as shown in figure8.4 (a) and3.6 (b).

According to the drag reduction curve with respechi@s in figure 3.4 (a), the magnitude
of DR increases aB,/s increases fronl /4, reaches the maximum at/s = 1/2 — 1, and
subsequently decreases with further increaseés in. Figure3.6 (b) illustrates that the degree
of the upward shift of the log-law intercept also increaséh wcreasingh, /s from 1/4, satu-
rates atho/s = 1/2 — 1, and then decreases with further increases jts. The same feature of
the shift in the log-law intercept is maintained for varidilsment height. Figur&.6(c) shows
that the upward shift of the log-law intercept reaches a @eak® ~ 8 and becomes lower at
h*0 ~ 4 and8 with fixed hy/s = 1 andCa = 40. The magnitudes of DR is consistent with the
trend as shown in figurg.4 (c).

In contrast to the trends represented by the mean streamelsty profiles in the logarith-
mic region, the mean streamwise velocity profiles near thereaonger follow the trends of
DR. Rather, it is featured by the filament deflections. In #&fu6 (a), the mean streamwise ve-
locity profiles are distinguished by Cauchy numbersfag< 10. As Cauchy number increases,
the mean flow is less deterred due to an increase in filameettiefi led by the decrease in the
restoring force of the filaments. The remarkable filamened&tn results in a flow that resem-

bles the base turbulent channel flow. Therefore, with irrgaCauchy number, the velocity
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profile near the wall gradually converges to the velocityfipgof the base turbulent channel
flow, as shown in figur&.6 (a).

A similar feature is observed for decreasihg/s in figure 3.6 (b). As hy/s decreases,
the sparseness of the filaments increases, resulting imlessal-sheltering effectfRaupach
1992 Luharet al., 2008 Shao & Yang 2005. With decreasing mutual-sheltering effects, the
momentum flux from the overlying flow towards filamentous lalgecomes notable, leading
to an increase in the hydrodynamic force exerted on the fisnel hus, the filaments deflect
more toward the channel walls with decreasipgs. As the filament deflection becomes greater
with decreasingy /s, the filaments less obstruct the flow, and the flow ends up tsémiar to
the base turbulent channel flow. Therefore, the mean stresenw&locity profile near the wall
gradually converges to the mean streamwise velocity profite base turbulent channel flow
at the lower near-wall region with decreasilag's in figure 3.6 (b).

Although Cauchy number and the filament height-to-spaaitig effectively distinguish the
mean streamwise velocity profiles near the wall, the diffefégament heights do not seem to
distinguish the mean streamwise velocity profiles near tig as shown in figur&.6(c). This
is due to the self-similarity of the filament deflection innteyr of various filament heights with
fixed ho/s = 1, as pointed out in figur8.3. This indicates that the effects of the self-similarity
shown in the filament deflection on turbulence are limitechimithe lower near-wall region
(z < 10).

In light of the observed features of the mean streamwisecitglprofile in the inner-layer, its
trends show discernible features depending on whethefrans the near the wall to lower part
of the buffer-layer {* = 10) or from the upper part of the buffer layer to the logarithmegion.
The effect of the filament deflection on the modulation of treamstreamwise velocity profiles
is remarkable from the near the wall to the lower part of thiédodayer, but it is difficult to
find its relevance to the mean streamwise velocity profilenftbe upper part of the buffer-layer
to the logarithmic region. In addition, it was shown that #féects of hairy surfaces on the

modification of turbulence reaches above the buffer-lagkhough the filaments move near
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Figure 3.7: &) Mean velocity profiles andoj distribution of mean shear stresses in the wall-
normal direction for a turbulent channel flow over hairy aggs, with the ratio of solid density
to the fluid density of), = 700, h° ~ 8, h/s = 1, K = 1, Ca=l0. Line types as in Tabla.1

the wall. The upward shift of the log-law intercept deteresrDR trends, suggesting that the
modification of turbulence above buffer-layer is in char§®R rather than the modification of

the near-wall turbulence.

3.4.2 Distribution of Mean Shear Stress

To gain an understanding of the momentum transport in theepiee of the hairy surfaces, the
wall-normal distributions of shear stresses were expldfed steady, fully developed, turbulent
channel flow with smooth, no-slip channel walls, the stre@é®avireynolds-averaged momen-
tum equation is given by
=2 (@% i — UU)+8% <V8_U - Uv)+a% (”%—Z v - Uw)%fibx.

(3.5)
U,V,W andu/, v/, w' are the streamwise}, spanwisey), and wall-normal £) components of

Reynolds-averaged mean and fluctuating velocities, réispg and P indicates the Reynolds-

averaged mean pressure. Averaging over time and periotterpaf the filamentous surface
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in the streamwise and spanwise direction, and integratiriga wall-normal direction from the

channel center;, = H, to an arbitrary height; (z < H), gives

_ g<3_i> (1 - %) = V<(Z—(Z]> — (u'w’) — (UW) — %/j(ﬁl,x)dz. (3.6)

where( ) denotes averaging over the periodic pattern of the filamergarface. Then the shear

stress balance can be represented by

z
Ty + TR+ To + T = T (1 — —) , (3.7)

Tvzy<8a—g>, R = —(UW'), 70 = —(UW), Tt:——<—_>, (3.8)
wherer, is the viscous shear stresg, is the Reynolds shear stresg, is the convective shear
stress,r; is the total shear stress. In the presence of the filamerdsshbar stress balance
contains the drag exerted by the filaments;, which becomes effective at the wall-normal
locations less than the effective thickness of the filamestayer,z < z.;¢, where the mean
velocity gradient decreases, and the mean viscous shess stiops with decreasingas shown
in figure 3.7. This is because the momentum flux exerted on the fluid by meftse mean
shear rate is transferred to the filaments at z.;;. The shear stress balance portrays that
the sum of the streamwise shear stresss 7, + 7z + 7 + 744, at any giverr is balanced
by the force exerted by the pressure gradient above. It wesredd that the convective shear
stress {¢) was negligible for all cases studied. This is attributethuniform distribution of
hairy surfaces, which reduces the effectiveness of theemiwe shear stress that is typically
observed in anisotropic surface topologiEsfigan 2000 Heet al., 2022.

The wall-normal distributions of shear stress componergsevinvestigated for different
Cauchy numbers, filament height-to-spacing ratios, anchéta height with a fixed density

ratio of p, = 700. In figures3.8(a) — (c), the Reynolds shear stress reaches a peak at 30

and gradually decays as the wall-normal distance from tHedeareases from 30 in wall units,
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Figure 3.8: The wall-normal distribution of the mean shdaesses for &) various Ca with
ho/s =1, hg = 8, p, = 700; (b) various Ca withhy/s = 1/2, hy = 8, p, = 700, and various
ho/s = 1/4,1/2,1,2 with Ca= 40, hy ~ 8, p, = 700; (C) varioush, with Ca= 40, hy/s = 1,
pr = 700. Line types as in Tabld.1
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while the viscous shear stress recovers and reaches a nmxamnaroundz = z.;r. When
further decreasing from zjff, the viscous shear stress rapidly drops, and the conwibwti
filament drag becomes more signified since the momentum fatwtbuld have exerted on the
fluids by means of the mean shear rate is transferred to tinechilts.

The distribution of the shear stress below~ 10 appears to be influenced by the filament
parameters. As shown in figuB8(a), it is clearly shown that the magnitude of filament drag
is distinguishable by Cauchy number. As the Cauchy numhmeases, the resistance of the
filaments to the mean streamwise flow decreases, and thudaimefits are more deflective.
Therefore, increasing Cauchy number leads to a monotomiedse in the filament drag as
well as the mean streamwise velocity profile below= 10, as observed in figures6(a) and
3.8(a). The same feature also upholds for different Cauchy nusigh iy /s = 1/2, h$® ~ 8,
in figure 3.8 (b).

Figures3.8(b) and €) demonstrate different aspects of the shear stress distritregarding
the effects ofh/s andhg . In figure3.8 (b), ashy/s decreases, the filament drag is gradually
reduced below™ ~ 10. Here, the decrease /s with a fixed filament height explains the
increase in the filament spacing. As the filaments are lodatdaer away from each other, the
mutual-sheltering effect becomes marginal, leading toenmgdrodynamic force exerted on the
filament and thus more filament deflectidgvaupach1992 Luharet al., 2008 Shao & Yang
2005. The more deflective filaments give rise to the effectiveggheof the filamentous layer
(zes7) closer to the channel wall. For lowey;;, the mean flow is less obstructed. Therefore,
decreasing,/s leads to less filament drag.

Figure3.8(c) illustrates the impact of varying filament heights whileimaining a constant
height-to-spacing ratio df, /s = 1 on the distribution of shear stress. According to earliedgt
(Nepf, 2012 Sharma & Garcia-MayoraP02@,b), the fluid momentum flux from the overlying
flow to the filamentous layer is amplified due to the onset of/lkeHelmholtz like mixing-layer
instability near the interface between the overlying flow #ime filamentous layer. The active

momentum flux leads to a significant increaséfin,) nearz ~ z;;, and as a result the filament
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drag,7s;, represented by the integral of.) from z to H (Last term of the equatioB.6), also
increases significantly. However, aglecreases from,;, the increment of fie) decreases
due to lack of fluid momentum within the filamentous layeruiesg in marginal variation of
the filament drag with a flat profile. Correspondingly, fotdafilaments ., appears far from
the wall. This indicates thaty; starts increasing and is getting flat at high&ércompared to
lower filaments, as shown in figu®8 (c). Furthermore, as the filament height increases, the
magnitude ofry; decreases near the channel wall. This is due to the increasetdance to
the flow penetration from the overlying flow into the filameamédayer comprising taller hairy
filaments, which limit the active fluid momentum from reaahthe filament bed.

Based on the findings of this study, it is possible to desdhbalistribution of shear stresses
in the wall-normal direction by considering different filant parameters, including Cauchy
numbers, filament height-to-spacing ratios, and filameighte Furthermore, the distinct fea-
tures of this distribution can be observed depending on dnat appears below or above
z =~ 10. It is worth noting that, despite variations in shear st@s®ponents along the wall-
normal direction, the total shear stress remains balanmgéd@nforms to the theoretical line of

()" = (1—2z/H).

3.4.3 Mean Turbulence Intensities

Figure3.9shows the wall-normal distribution of the normaliz€d,. ., v/ ., w.. . for different
Cauchy numbers, filament height-to-spacing ratigs £), and filament height) with a fixed
density ratio ofp, = 700. In figure 3.9 (a), the turbulence intensities resulted from various
Cauchy numbers with, /s = 1 and filament height ~ 8 show a prominent feature in terms of
the intercomponent energy transfer. It is well establisthed the turbulent energy production
occurs primarily in the streamwise component, and it isstethuted into the spanwise and wall-
normal components by means of the pressure-strain coorl@ffennekes & Lumley1972,

Pope 2000. However, in the presence of the hairy surfaces, the tartad intensity appears to
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Figure 3.9: The wall-normal distribution of the mean tudnilintensities ford) various Ca
with hy/s = 1, hg = 8, p, = 700; (b) various Ca withhy/s = 1/2, hg = 8, p, = 700, and
varioushg/s = 1/4,1/2,1,2 with Ca= 40, hg = 8, p, = 700; (c) varioush, with Ca= 40,
ho/s =1, p, = 700. Line types as in Tabl8.1
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be concentrated in the streamwise component at 15 — 16, while the turbulence intensities
are reduced in the spanwise and wall-normal componentsh@agnsin figure3.9 (a). The
turbulent intensity piled up in the streamwise componentaiao be found in figure3.9(b) and
(c) for various Cauchy numbers with /s = 1/2 and filament height ~ 8 as well as various
filament heights witth, /s = 1 and filament height’a = 40. This implies that the existence of
hairy filaments disrupts the redistribution of turbulenergy from the streamwise component
to the other components. In fact, as will be shown later, tlesgure-strain correlation, which
is in charge of the inter-component energy transfer, isrdeddoy the hairy surfaces.

In contrast to the Cauchy number and filament height, the &tarheight-to-spacing ratio
reveals distinct features in terms«@df . peak. Figure3.9(b) shows the distribution of turbulent
intensities for each component for differént/s with fixed Ca = 40 andh™ ~ 8. The results
show a monotonic decrease in the magnitude of. peak as,/s decreases. Furthermore, the
z location whereu!, . . peak appears is gradually shifted towards:tecation corresponding to
the peak resulted from the base turbulent channel flok, As decreases. This is because the
sparse distribution of hairy filaments with decreasings becomes indistinguishable from the
base turbulent channel flow.

This observation implies that &g/ s increases, the coherent structures represented by quasi-
streamwise vortices are shifted away from the channel watlse wall-normal direction. Ear-
lier studies that investigated the mechanism of drag réatuetith riblet surfaces suggested that
the upward shift and reduced magnitude of the peak explamztrease in the contribution of
coherent structures to the momentum flux towards the wats)lting in less shear stress and
lower skin-friction drag Choi, 1989 Vukoslavcevicet al., 1992 Choi et al., 1993 EI-Samni
et al., 2007). However, in the case of the hairy surfaces, figuB€s(b) and3.4 (a) show that
the trend of upward shift of..,,, peak no longer follows the trend of drag reduction in terms
of ho/s, suggesting that the drag reduction mechanism for haifiases differs from that for

rigid riblet surfaces.
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3.4.4 Mean Streamwise Vorticity Fluctuations

In wall-bounded turbulence, the streamwise vorticity flatton appears due to the presence
of shear in the flow, which creates regions of velocity gratti¢hat can lead to vortex stretch-
ing and tilting (Tennekes & Lumley1972. This process generates streamwise vortices with
opposite signs, which are responsible for the generatidargé scale coherent structures in
wall-bounded turbulent flows. The presence of streamwisgcity fluctuations,w’, is a no-
table feature of wall-bounded turbulence, and their dyeanplay an important role in the
transport of momentum, energy, and mass in the flow. Depgrafirthe filament parameters,
the hairy filaments can modulate those features represégtéoe streamwise vorticity fluc-
tuations, leading to drag enhancement or drag reductiongaiio a deeper understanding of
turbulence modulation by hairy surfaces, the wall-normstritbution of the streamwise vortic-
ity fluctuation was explored for various Cauchy numbersnpféat height-to-spacing ratios, and
filament heights.

Figure3.10(a) shows the wall-normal distributions of the streamwisdieiay fluctuations
normalized by viscous wall units for various Cauchy numbeéth £,/s = 1 andhaLO ~ 8. The
plot shows two distinct peaks. The first peak appears witterviscous sublayer and the second
peak appears in the buffer layer. For the first peak, its wattnal location seems to depend on
the filament deflection. The location corresponding to the first peak is shifted upwarthwi
increasing Cauchy numbers. As Cauchy number increasesestaing force of the filaments
to the mean flow becomes more intense, lifting up the filamigst and thus the effective
thickness of the filamentous layet,, increases. As the effective height;; increases, the
fluctuating streamwise vorticity is discharged away frora tall. In contrast, the location
corresponding to the second peak seems similaf’toe= 10, 20, 40, 80, but the magnitudes of
the peak are discernible. The trends of the magnitudes aitend peak follow the DR trends,
as shown in figure8.10 (a) and 3.4 (a). This observation suggests that the extent of which

the streamwise vorticity fluctuation decreases in the Ibldfger corresponds to the level of DR
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achieved. The same features can also be found for varioush@awmbers witthy/s = 1/2
andhi® ~ 8 as well as for varioug ° with fixed hy/s = 1 andCa = 40 in figures3.10(b)
and €).

In contrast, the magnitude of the streamwise vorticity flatibns is discernible by, /s, as
shown in figure3.10(b). A monotonic decreases in the streamwise vorticity flubbmeappears
with increasinghy /s at 10 < 2™ < 30. This can also be expected by the trends of the turbulent
intensity. With increasindy,/s, a similar monotonic decrease in the magnitude of turbulent
intensities was observed in figure figuf9 (b). As expected, the decrease in the spanwise and
wall-normal velocity fluctuation components contributestte streamwise vorticity fluctuation

less than that obtained from the base turbulent channel flow.
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Figure 3.10: The wall-normal distribution of the streamawsrticity fluctuations forg) various
Cawithhg/s = 1, hg = 8, p, = 700; (b) various Ca withhy/s = 1/2, hy = 8, p, = 700, and
varioushg/s = 1/4,1/2,1,2 with Ca= 40, hg = 8, p, = 700; (c) varioush, with Ca= 40,
ho/s =1, p, = 700. Line types as in Tabl8.1

105



CHAPTER 4

Mechanism of Skin-friction DR with Hairy Surfaces

4.1 Modulation of Intercomponent Energy Transfer

In wall-bounded turbulent flows, the viscous force diremifuences the mean shear near the
wall, leading to the production of turbulent kinetic energye turbulent energy is mostly pro-
duced in the streamwise conponent and then distributedhetaross-streamwise components
(e.g. spanwise and wall-normal components) through iateponent energy transfer, which is
governed by the pressure-strain correlation. The pressa@ correlation plays an important
role on the spatial configurations of the coherent strust@@®ong & Hussaiyil995 Hwang &
Sung 2017 and the regeneration of the quasi-streamwise vorticesarself-sustaining near-
wall cycle Choet al., 2018, upholding the characteristics of near-wall turbulenktecan be
conjectured that an appropriate disturbance of the pressain correlation could be an ef-
fective pathway to suppress the quasi-streamwise vortiéesordingly, the suppression of
the quasi-streamwise vortices mitigates wall turbulemzkthus leads to the reduction in skin-
friction drag, as observed in the previous studiesaychenkoet al., 1993 Choiet al., 1994
Orlandi & Jimenez1994. Thus, the attenuation of the pressure-strain correlagerves to
limit the impact of quasi-streamwise vortices on the geti@naof skin-friction and thus lead
to its suppression. A growing body of evidence indicated tiaaious flow control techniques
achieved the skin-friction DR via effective suppressiorpodssure-strain correlatioiXy &

Huang 2004 Moosaie & Manhart2016 Fujimuraet al., 2017 Ma et al., 2022 Umair et al.,
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2022. Hence, suppressing the pressure-strain correlatiomeateemed as an effective path-
way to achieve the skin-friction DR.

In addition, the exploration of the intercomponent energgsfer and its modulation with the
presence of hairy filaments would offer valuable insightis the underlying mechanism of skin-
friction DR with hairy surfaces. In this study, the budgeisthe component of the Reynolds
stress tensoku;u’;), are computed. Each budget term is analyzed to assessiitsrioél on the
transport of the Reynolds stresses. Of particular inteésebie pressure-strain correlation term,
which is the focal point of analysis. To gain a better underding of how intercomponent
energy transfer is modulated, a comparison is made betvineepréssure-strain correlation in
the presence of hairy filaments and that in the base turbtlemt To facilitate this analysis,
the ‘nominal’ case of D700Ca40h8s8 (as described in Tald)as selected regarding the result
that the given DR falls into the uppermost range {631%). By focusing on this specific case
and comparing it to the base turbulent channel flow, the nadul of intercomponent energy

transfer can be clearly elucidated, without a need for tipdogation of all the individual cases.

4.1.1 Budgets of Reynolds Stress Tensor

The analysis in the budget terms of the Reynolds stressdsesna detailed examination of
their distinct contributions to gain/loss of the Reynolttesses. The transport equations for the
Reynolds stresses are derived through a systematic pragersging of the Navier-Stokes equa-
tions, followed by the derivation of equations specificatydressing the fluctuating stresses.
Subsequently, these derived equations are averaged eveetiodic pattern of the filamentous
surface and time to obtain the final form of the budget equatior the Reynolds stresses. This
methodical approach ensures a comprehensive undersasfdhre role of each budget term in

terms of the transport of the Reynolds stresses in turbéllams. For incompressible turbulent
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flow, the budget equation for the Reynolds stresses is wréte

D —— R R R R R
Bi; = Eu;u; = Pij + Dij + sz + Hij + Fzg (4.1)
In this equation, the terms on the right-hand side repretbentontributions from various

physical processes, which are defined as

Pl = o 42

Df= 228, @3)

T = — o, — o [T+ 0] + @)
e — (g—j; " 21;) (4.5)

Flf = = (Tt + T 4.

whered;; is Kronecker's delta in this budget equation. To be spedifie, shear production
term (Pff) accounts for the generation of the Reynolds stresses deeddoity gradients. The
viscous dissipation terml(fj.) represents the dissipation of energy within the turbufew
due to viscous effects. The transport teﬂ‘“gﬂ encompasses the turbulent transport, pressure
transport, and viscous transport components, which doldg contribute to the transport of
the Reynolds stresses. The pressure-strain correlairinn(téf’;:) characterizes the interaction
between the fluctuating pressure field and the fluctuatingcitgl gradients, in charge of the
redistribution of Reynolds stresses from the streamwidbeacross-streamwise components.
Finally, the transport by the hairy filamen@_’j) captures the transport of the Reynolds stresses
associated with the presence of filaments within the turiidlew.

Figures4.1 (a)—(d) show the wall-normal distribution of the budget terms foe Reynolds

normal and shear stresses. The budgets are normalized flyitheiscosity and the friction
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velocity of the base turbulent channel flow, for the quatitieecomparison to the base turbulent
channel flow. The production of turbulence only appearsastreamwise direction among the
Reynolds normal stresses due to the mean shear dominargtingxn the streamwise direc-
tion. In figure4.1 (a), it can be observed that there is a notable decrease in theitmde of
turbulence production within the near-wall region, whiskaiprominent signature of the reduc-
tion in skin-friction drag. Figured.1 (a)—(c) illustrate the reduction in all normal components
of (I11)*0. This indicates that the presence of the filaments impedeslitribution of the
streamwise Reynolds normal stress into its cross-strasen@omponents. Consequently, the
mechanism responsible for sustaining the cross-stream®eynolds normal stresses is also
diminished. Therefore, less effective distribution of theercomponent transfer weakens the
source that would have maintained the cross-streamwisadRés/ normal stresses. Accord-
ingly, this explains that turbulence intensities are pilgdin the streamwise component and
reduced in the cross-streamwise components as shown ie 8dur

Next, one can pose a question on why the modulation of tunicelés remarkable within
the near-wall region and less in the outer region. One pgidrisinswer is that at low friction
Reynolds number, the intercomponent energy transfer pityrtakes place in the near-wall
region where the energy-containing eddies are predomynexisting at low friction Reynolds
numbers Hwang 2013. Smitset al. (2011 noted that the main contribution to turbulence
production comes from the near-wall region at low Reynoldsiber Re, < 4200). Accord-
ingly, the friction Reynolds number set e, ~ 221 in this study is considered a relatively
low Reynolds number where the energy-containing eddiesvimg the quasi-streamwise vor-
tices, in charge of the skin-friction generation, are damity residing in the near-wall region
(Choiet al., 1993 1994 Orlandi & Jimenez1994 Hwang 2013 deGiovanettet al., 2016. In
figures4.1 (a)—(c), the modulation of I1%)*0 is predominantly observed within the near-wall
region. This observation suggests that the presence of filaiments hinders the intercompo-
nent energy transfer between energy-containing eddiesgdoypding the correlation between

pressure fluctuations and fluctuating velocity gradienthénear-wall region. Consequently,
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Figure 4.1: The wall-normal distribution of the Reynoldsess budgetsaj By, (b) Bss, (C)

B33, and By3 for a hairy surface corresponding to the case of D700Ca&)H8% comparison,

the same quantities are plotted for the base turbulent ehdlow. The red solid line{—)

and black dashed line (... denote the results from D700Ca40h8s8 and the base tutbulen
channel flow with no-slip, smooth walls, respectively.
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the weakened intercomponent energy transfer barely sgdtae cross-streamwise turbulence.
With the diminishing cross-streamwise turbulence, theuerite of quasi-streamwise vortices
decreases, and the skin-friction drag is reduced.

The transport of the Reynolds normal stresses by the haamdits,(F)™, becomes
significant atz < z.7¢ only in the streamwise direction but marginal in the spasvaisd wall-
normal directions, as shown in figurdsl (a)—(c). Figure4.1 (a) shows that(F})*° adds
the Reynolds stress into the fluid flow. Note that the mageitfdriscous dissipatior,Dy;) ",
abruptly increases in the region wheie) *° is dominant, indicating that the Reynolds stresses
transported by the hairy filaments are directly dissipatethb fluid viscosity at < z.s;.

In figure 4.1 (d), the Reynolds shear stress budgets, representdssasexhibit similar
characteristics to those demonstrated by the Reynoldsalastresses. The production of
Reynolds shear stress is suppressed within the near-wgadineconsistent with the suppres-
sion of Reynolds shear stress observed in the near-watinegiFigure3.8 (a). The pressure-
strain correlation, represented biyf,5) ™, is primarily balanced out by turbulence production,
(Py3)*9 above:™ ~ 8, and by the transport terni33) "9, belowz" = 8, respectively.

Within the vicinity of the interface between the overlyingvil and the filamentous layer,
specifically within the range dof.5 < 2+ < 5, the values of I1,3) ™ and(7}3) ™ obtained with
the presence of hairy filaments surpass those obtained laseturbulent channel flow. This
observation suggests that the presence of hairy filamehtsners turbulence in this specific
region, which might be attributed to the influence of sheatahility such as Kelvin-Helmholtz
instability. Shear instability typically emerges at théenface between the overlying flow and
the filamentous layerRaupachet al., 1996 Nepf, 2012. Near the interface, the momentum
flux, flowing from the overlying flow to the filamentous layerdavice versa, is accelerated by
the shear instability, enhancing turbulence.

However, the enhanced turbulence is localized near thdfastedue to the mitigating effect
of the wall in close proximity. The presence of the wall dihesuppresses shear instability,

as observed in previous studies involving short filamentaysrs Sharma & Garcia-Mayoral
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202@,b). Consequently, the increase {H,3)™ and (T15)™° is limited to the vicinity of the

interface and is reduced near the wall due to the influendeeofviall effect.
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4.2 Modulation of Interscale Energy Transfer

The Richardson-Kolmogorov energy cascade theldojrfiogoroy, 1941a,b) is universally ac-
knowledged as the well-established theoretical framewtr&idating the multi-scale dynamics
of turbulent energy transfer in incompressible, homogasgotropic turbulence. Accord-
ing to this theory, turbulent kinetic energy originatingrn the integral length scale undergoes
subsequent transport to smaller scales, ultimately beswjpdited by the fluid viscosity at the
dissipative scale. In the presence of walls, the viscousefodirectly impacts the mean shear
in the vicinity of the wall, inducing the production of turdlemt kinetic energy. As a result of
the turbulence production, energy-containing motiorg. (@oherent structures) manifest across
various length scales, and the turbulent kinetic energyaissferred across the eddies in differ-
ent scales, effectively demonstrating the interscaleggneansfer.

Finnigan(2000 highlighted that the presence of canopy elements (e.getagge elements
in terrestrial or aquatic environments) disrupts the epeascade process. When the mean
flow undergoes the drag exerted by the canopy, the kinetiggrad the mean flow is con-
verted into both heat and fine-scale turbulence within thkewstale of the canopy elements.
This phenomenon, in which large-scale energy circumvém®hergy cascade and is directly
transferred to secondary flows, is referred to as the ‘spleshortcut’ Brunetet al., 1994.
Consequently, instead of entering the inertial subrargentean kinetic energy is redeposited
into turbulent kinetic energy within the wake scales via émergy transport by canopy ele-
ments. The wake kinetic energy then generates the turbkilegtic energy at smaller scales.
The energy contained in the eddies of dissipative scaldssgated in the canopy layer, where
an abundant source of viscous dissipation from the intelnsardayer exist along the canopy
elements.

Considering the arguments from the earlier studies above,reasonable to hypothesize
that the presence of hairy filaments in turbulent channelg ex&ibit the characteristics akin

to the spectral shortcut, disrupting the energy cascadénarsdeducing turbulence. Moreover,
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the movements of drag-reducing hairy filaments are pripnaohcentrated within the viscous
sublayer, which is characterized by a significant amouniswious dissipation. This observation
provides valuable insights into the mechanism of skintifsit drag reduction, suggesting that
the large-scale energy transferred to small scales thrthaghairy filaments is dissipated by
fluid viscosity within the viscous sublayer. To comprehemelinterscale energy transfer in the
presence of hairy filaments, the wall-normal distributiéth@ budgets of mean kinetic energy
and turbulent kinetic energy were examined. In additiomctjal analysis was performed to
further investigate which scales are responsible for matthg the interscale energy transfer in

the presence of the hairy filaments.

4.2.1 Budgets of Mean and Turbulent Kinetic Energy (MKE and TKE)

The analysis of the budget terms of the mean kinetic energgEM KM = %Ui(]’i, and
turbulent kinetic energy (TKE)K” = Eulul, enables a detailed examination of their distinct
contributions to gain/loss of the kinetic energy that appéa the mean flow and turbulence.
The budget equations for MKE and TKE are derived through gegyatic process involving
ensemble averaging of the Navier-Stokes equations. Fompeessible turbulent flow, the

budget equation for MKE is written as

KM = %UZUZ- =pPM DM 4 TM L M (4.7)
where )
pPM = u;u; gg;l, (4.8)
DM — 93, gg (4.9)
™ = —%u; uiU; — %aiZPU + 21/81U Siiy (4.10)
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FM = —Fy,U;, (4.11)

whereS;; = 1 (0U;/9x; 4+ 0U;/0x;). The terms on the right-hand side represent the MKE
production ), viscous dissipation of MKEP*), MKE transport {") which encompasses
the transports by turbulence, mean pressure, fluid vigcasitl the MKE transport by the hairy
filaments ¢*). Similarly, the budget equation for TKE can be written as

D—
KT = g = PT+ DT+ 7T 4+ FT. (4.12)

The terms on the right-hand side represent the TKE produ¢fd) which has the same form
but opposite signf?” = —P™), viscous dissipation of TKEJ?), TKE transport {") which
encompasses the transports by turbulence, mean pressigrgjgtosity, and the TKE transport

by the hairy filaments{™”), which are expressed by

oU;
PT = i, T (4.13)
J
ou’
DT = ~2vsl; ==, (4.14)
J
19 18— j—
7T — —iﬁ—%ugug L= ;axip/ug + 21/8@ ujsy;, (4.15)
1——

wheres); = 1 (Ou}/dx; + Ou;/0x;). The pressure-strain correlation terms for both MKE and
TKE are eliminated due to the continuity; /0z; = 0, u}/dxz; = 0).

Figure4.2shows the wall-normal distribution of the MKE, TKE, and eetransport by the
hairy filaments. The budgets are normalized by the fluid \egga@nd the friction velocity of
the base turbulent channel flow, for the quantitative comsparwith the base turbulent channel
flow. As perTennekes & Lumley1972), vortex stretching occurs due to the conservation of

angular momentum. This stretching results in positive wadoke by the strain rate on the
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vortex, leading to the transfer of energy into smaller ssalehis transfer is evident from the
production of MKE in the MKE budget equation and the produtif TKE in the TKE budget
equation. These terms exhibit the same magnitude but aegn, indicating that turbulence
receives energy from the mean flow through the strain rafg@etieg an equivalent amount of
MKE. This characteristic of interscale energy transfessts even in the presence of the hairy
filaments. In figuregl.2 (a) and p), the production of MKE and TKE demonstrates the same
magnitude but opposite signs. In addition, the productioRKE decreases in the buffer layer
to the same extent as the depletion of MKE production. Thseolation suggests that the
positive work done by the strain rate is not disrupted by taeyhfilaments and is effectively
utilized for the energy transfer from the mean flow to turbeke

Figure4.2(a) shows that as the wall-normal distance decreases, thagiod term( )0
and the transport teri*)*% in MKE budget reach their peaks at around z.;;. Below
zer1, the transport of MKE by the hairy filaments, represented®y/) ™, acts as a sink, and its
magnitude becomes significant. As MKE is transported by #ugyliilaments, the decaying rate
of (D)0 becomes steeper in the region whé&Fd! )+ is substantial. This can be attributed to
the fact that the MKE, which would have been dissipated by fiscosity, is instead absorbed
by the hairy filaments and utilized to drive their motion. Iguie 4.2 (b), the transport of
TKE by the hairy filaments, denoted 487)*°, acts as a source and its magnitude becomes
substantial at < z.;;. It is worth noting that the magnitude of viscous dissipaticD”)*,
abruptly increases in the region whefE”) " is significant. This indicates that the energy
transported by the hairy filaments from the mean flow to tuehcé is directly dissipated by
fluid viscosity atz < z.sy.

In figure 4.2 (), it can be observed that the energy transport tek@s!) 0 and (F7)*0,
do not balance out locally with each other. However, whersim®ring the sum of these terms
along the wall-normal direction, it becomes evident thatrthontributions cancel out, resulting

in a net balance of zero. This implies that their respectiiects are observed in different
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regions. The sink peak(F")*" ) emerges just above the source pddk™) '’ ), as also
observed in a different wall-resolved LES studg et al. (2022). This indicates that the region
where the MKE is extracted by the filaments is located aboeeréigion where the energy
is redeposited into turbulence. It is also implied that tlaéyhfilaments extract large scale
energy from the overlying flow and transfer it to the turbalerof dissipative scales within
the filamentous layer. Subsequently, the redeposited gnemjissipated within the viscous
sublayer, as depicted in figude2 (b).

In theory, the balance of all budget terms in the MKE and TkKdasport equations should
be zero, as it is governed by the conservation of energy. Memven numerical simulations,
achieving a perfect balance might not be possible, and ttariel be a residual term resulting
from various factors, such as spatial and temporal digagdin schemes. In this study, the

observed residual term i9(10-4) — O(10~3) in wall units, which is considered acceptable

within the numerical accuracy.

4.2.2 One-dimensional Energy Spectra

The modulation of interscale energy transfer by the haignfénts can be examined through
the one-dimensional energy spectra and comparing there tetérence data obtained from the
base turbulent channel flow. The one-dimensional energytispeith respect to the streamwise

and spanwise wavenumbetfs @ndk,) can be defined as follows:

2

Eii(ky, z) = 7T< kg, Ky, z) (k‘x, ky, 2)), (4.17)
2 = ~ ok

Eii(k?ﬁz) = —<U; (kr7kyaz) U; (kxakyaz>>7 (418)
T

whereu/ (k,, k,, z) is the two-dimensional Fourier transformf(k., k,, z),
k:x, ky, z) / / (x,y,2)exp [—27‘(‘\/—1 (kyx + kyy)] dxdy. (4.19)
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Figure 4.3: One-dimensional energy spectra with respe@)idb) the streamwise wavenum-
ber, k., and €), (c) the spanwise wavenumbeés,. The spectra is present at the wall-normal
positions included ind), (c) the near-wall regionz" ~ 5) and @), (d) the lower part of the
log-layer ¢+ ~ 35). Line types: The present LB DNS simulation with? = 4, ...... the
previous LB DNS withGR = 4, — —, the pseudo-spectral DNS,. . The reference lines are
obtained from the appendix of an earlier stuBaétegari & Akhavaj2018.
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The transform is obtained using a real-to-complex FastiEpliransform (FFT) method~igo
& Johnson 1999, and the superscript denotes complex conjugation.

Before analyzing the one-dimensional energy spectra mdxdain the presence of the hairy
filaments, it is necessary to verify the computation methardtiie one-dimensional energy
spectra using DNS data from the base turbulence channel fiqyure 4.3 presents the one-
dimensional energy spectra of the base turbulent chanmeldbdained from the present LB
DNS withGR = 4, the previous LB DNS witliz R = 4 and the pseudo-spectral DNSxat~ 5
and:" = 35. The two latter cases are found in the appendix of an eatligly§Rastegari &
Akhavan 2018. The difference between the present LB DNS and the pre\iBuSNS is the
choice of the forcing function employed in the LB equationhi\®& the previous LB DNS study
utilized an outdated and less accurate forcing functianrasult was still reasonable enough
as a reference. Figure3 shows that the one-dimensional energy spectra of the bemddnt
channel flow obtained from the present study agree well wghréference data, indicating that
the computation method of the one-dimensional energy specterified.

Figure 4.4 illustrates the comparison of the one-dimensional enepgpetsa between the
nominal case (D700Ca40h8s8) and the base turbulent chidmnelith respect td:, andk, in
friction wall units. In figure4.4 (a) and €), within the near-wall region, the energy primarily
present in the integral length scale is depleted and becoraesprominent in small scales. The
depletion of energy is significant for all components fordhe-dimensional energy spectra with
respect to the streamwise wavenumber, while it is minimathHe streamwise component and
substantial only for the spanwise and wall-normal compts&n the one-dimensional energy
spectra with respect to the spanwise wavenumber. Thisateicdhat the modulation of the
intercomponent energy transfer is due to the modulatiomtarscale energy transfer in the
spanwise direction.

The energy transported by the hairy filaments tends to cdratertowards their wake scale,
bypassing the inertial subrange via spectral shorBuir{etet al., 1994 Finnigan 2000, re-

sulting in the appearance of the second peak at the wakeiadhle energy spectra. In figure
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4.4(a) and €), the second peak appears arodid~ 0.8 andk, ~ 0.8, which corresponds to
the spacing of the filaments. This indicates that the wakke stegpends on the spacing of the
hairy filaments. The wake scale energy is then further casgadwards smaller scale eddies
of the dissipative scale.

The one-dimensional energy spectra at the outer layerpresfigured.4(b) and @), show
different aspects compared to at the near-wall region. Heedimensional energy spectra at
z/H = 0.8 exhibit marginal difference between the cases with andawitithe presence of the
filaments, as shown in figure4 (b) and @). This similarity upholds the concept of the outer-
layer similarity, which is a characteristic commonly obset in rough surfacedHama 1954
Townsend1976. The hairy filaments, deemed as 'flexible’ roughness elésyérave a direct
impact on the flow within the near-wall region but less distng the outer region. It was well
known that the effects of rough surface generally extena@p-t5 roughness heights above the
roughness crests, depending on how dense these surfaq€&apachet al., 1991 Jimenez
2004). Above this height, the turbulence is undisturbed andverouter-layer similarity. This
is also confirmed with the hairy surfaces regarding the sirtyl of the one-dimensional energy
spectra, as shown in figurés4 (b) and ().

In order to gain a comprehensive understanding of energysfieg this study analyzed
the pre-multiplied one-dimensional energy spectra degdiat two-dimensional contours with
respect to the wavelengths and the wall-normal locatiorguiéis4.5 and 4.6 illustrate the
two-dimensional contours of the streamwise and spanwisedomensional energy spectra pre-
multiplied by the streamwise and spanwise wavenumbershisncontext,\, and A\, denote
the streamwise and spanwise wavelengths, respectivejurd4.5 (a) shows that the peak of
the pre-multiplied streamwise spectra appearsat \,") ~ (15,1000) for the base turbulent
channel flow. This location is often called ‘inner site’, whicorresponds to the characteristic
scale of elongated high- and low-speed stre&kis€ et al., 1967 Hutchins & Marusi¢2007).
The wall-normal location situated in the inner region cep@nds to a specific location where

the turbulence production is concentrated. The streamwaselength aligned with the inner
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Figure 4.4: One-dimensional energy spectra for a hairyasertorresponding to the case of
D700Ca40h8s8, plotted with respect &), (b) the streamwise wavenumbét,, and €), (c) the
spanwise wavenumbek,. The spectra is present at the wall-normal positions iredud @),

(c) the near-wall regionA" ~ 5) and @), (d) the outer-layer{/H =~ 0.8). For comparison,

the same quantities are plotted for the base turbulent ehdlow. The red solid line ()

and black dashed line (... ) denote the results from D700Ca40h8s8 and the base tutbulen
channel flow with no-slip, smooth walls, respectively.
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site corresponds to the location where the most energetnasire of the near-wall structures
appears. For the base turbulent channel flow, the peak opdrexsse one-dimensional energy
spectra pre-multiplied by the spanwise wavenumber apg@gars, A7) ~ (15,100) in figure
4.6(a). This viscous-scaled spanwise wavelength®fcorresponds to the spanwise spacing of
the near-wall streak(ine et al., 1967), indicating that the most prominent energetic signature
is determined by the spanwise gap of the near-wall streaks.

When hairy filaments are present, the peaks of the one-dior&aistreamwise spectra pre-
multiplied by the streamwise and spanwise wavenumbess,,, andk,E,,, are deviated
from the inner site in figured.5 (a) and 4.6 (a). The z location corresponding to the peak
shifts upward from that corresponding to the inner site,levhii and \;; corresponding to
the energetic signature exhibit minimal alterations fréma wavelengths corresponding to the
inner site. This observation suggests that the near-waittires undergo marginal shift in
the streamwise and spanwise directions but the structwtably shift towards highet. The
upward displacement of the near-wall structure is a charstic associated with the decreased
effectiveness of quasi-streamwise vortices and thus ttxedsed skin-friction draghoiet al.,
1993.

The contours show an expansion of the peak regiokfdr;, , andk;f E;, ,, but a contrac-
tion of the peak regions for the other components, as showvigures4.5and4.6. This can be
attributed to the modulation of the intercomponent energydfer by the hairy flaments. Due to
the modulation of the pressure-strain correlation by theyHgaments, the turbulence intensi-
ties is piled up in the streamwise component and reduceckiottier components, as discussed
in the Sectior.2. Moreover, in figured.5(a) and4.6 (), the contours of; E;/, , with respect
to (z*, A}) show a gradual decay, while the contourg:pf;, . with respect to£*, \;") show a
relatively marginal change within the near-wall regionisitan be iteratively attributed to the
modulation of intercomponent transfer, more prominerdlyfd in the spanwise direction.

It is worth noting that an additional peak becomes evident,atc 8 and\, ~ 8, as de-

picted in figuresd.5 and4.6. This observation suggests that a portion of the depletedggn
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is redirected towards the hairy filaments and subsequeapypsited within the wake scale re-
gion through the spectral shortcir(inetet al., 1994 Finnigan 2000, where the wake scale
corresponds to the filament spacings within the filamentayerl Furthermore, the energy
transported to the wake scale further cascades to sma#ér eddies within the filamentous
layer, as evident from the gradual decay with decreasingveheslength in the pre-multiplied
energy spectra displayed in figuré$ and4.6. The energy further transferred to the eddies
characterized by dissipative length scales is ultimatedgipated within the viscous sublayer
(=t <5).

In conclusion, the drag reduction with hairy surfaces caratbébuted to the modulation
of intercomponent and interscale energy transfer. Spatiifiche presence of hairy filaments
leads to a decrease in the pressure-strain correlatiomhvdaiuses an accumulation of turbu-
lence intensities in the streamwise component while reduthem in the cross-streamwise
components. Consequently, the energy that would have hetibdted from the streamwise
component to the spanwise and wall-normal components ieecteld to the wake scale turbu-
lence through the spectral shortcut, and that energy isteaiy dissipated within the viscous
sublayer. The resulting shear production and Reynolds stiesss associated with thé «’,
andu'w’ then diminish, leading to a decrease in the streamwisecigrfluctuation within the

near-wall region and thus a reduction of skin-friction drag
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Figure 4.5: Two-dimensional contours of the pre-multiglenergy spectra for a hairy surface
corresponding to the case of D700Ca40h8aBk( E., ./, (D) kzEyry, (C) ks (d) —ky By
with respect tq 2", \,). For comparison, the same quantities are plotted for the tabulent
channel flow. The red solid line___) and black dashed line (.. ..) denote the results from
D700Ca40h8s8 and the base turbulent channel flow with posstiooth walls, respectively.
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Figure 4.6: Two-dimensional contours of the pre-multiglenergy spectra for a hairy surface
corresponding to the case of D700Ca40h88Bk( L, ., (0) kyE\y v, (C) ky B, (d) —ky By
with respect tdz", \,). For comparison, the same quantities are plotted for the tbabulent
channel flow. The red solid line___) and black dashed line (. ...) denote the results from
D700Ca40h8s8 and the base turbulent channel flow with posstiooth walls, respectively.

126



CHAPTERS

Conclusions

5.1 Summary and Conclusions

Turbulent skin-friction drag reduction (DR) was investighby employing direct numerical
simulation (DNS) with an improved lattice Boltzmann, immsed boundary (LB-I1B) method.
The hairy filaments were uniformly distributed on both chelralls at bulk Reynolds number
of Re, = 7200, corresponding to a friction Reynolds numberftf, ~ 221. The trend of skin-
friction DR was not consistent with individual filament pareters, such as Cauchy numbers,
filament height-to-spacing ratio, flament height, densityo between the hairy filaments and
fluids; however, it showed a consistent trend in terms of bizeacteristic time scale ratio, which
was defined by the characteristic time scale of the hairy &lasito the characteristic time
scale of the largest eddies in the base turbulent channel fé¢ obtained in the parametric
study collapsed into a single curve when plotted as a funafahe characteristic time scale
ratio. The maximum drag reduction 6f4% was found for the characteristic time scale ratio
of 1.4 — 1.5. The resulting flow statistics at the upper near-wall redidh< z* < 30) were
consistent with the trends of DRs. The hairy filaments plagextucial role in modulating
intercomponent/interscale energy transfer, leading ¢osttin-friction DR. In the presence of
drag-reducing hairy surfaces, the energy that would hage bestributed from the streamwise
component to the spanwise and wall-normal components ghrthe intercomponent transfer

of turbulent energy was redirected to the filaments and p@nmed to eddies within the wake
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scale via the spectral shortcut. The wake scale turbulesriggriurther cascades to smaller

eddies of the dissipative scales and that energy was thsipalied within the viscous sublayer.

5.2 List of Achievements

* Enhanced numerical accuracy with improved reciprocity of interpolation-spreading
operations
Within the framework of diffusive-direct-forcing IB schema refined and rigorous ap-
proach has been proposed to improve the reciprocity of potation-spreading oper-
ations. This enhancement has led to significant advancenwemumerical accuracy,
stability, and robustness compared to previously propasedB schemes. Extensive
verification and validation studies were conducted, dernatisg that the present LB-1B
method maintained second-order accuracy and successfphgduced experimental re-
sults, particularly in the case of wall-mounted flexible §aubjected to oscillatory flow.
Notably, when applied to the simulation of turbulent chdrilosv over hairy filaments,
the present LB-IB method effectively mitigated slip-es@long the entire length of the
filaments, limiting them to less than 2 percent, in stark @sitto the slip-errors on the
order of O(1000) observed in previous LB-IB schemes. The significant redudti slip
errors represents a notable accomplishment and demasstingt advancements made in

ensuring more accurate and reliable simulations.

* |dentification of distinct features in DR curves:
Distinct features were observed in the DR curves for varfdasent parameters. When
plotting DR values against individual flament parameteishsas Cauchy numbers, fila-
ment height-to-spacing ratio, filament height, and densitip, no consistent trends were

identified. However, when plotting DR values against theatiristic time scale ratio of
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the hairy filaments to the time scale of the largest eddiemtéel ag7;u,/H ), DR val-
ues collapsed into a single curve. This finding suggestshieatharacteristic time scale
ratio serves as the governing parameter for DR. The maximRnadlue of approximately
5.3-5.4% was achieved at a characteristic time scale rafiga.,/H ~ 1.4—1.5. These
results could also provide valuable guidance for futureaesh directions, enabling re-
searchers to focus on investigating the influence of theacharistic time scale ratio and

further exploring its implications for DR applications.

Physical mechanism of DR

Revealing the underlying physical mechanism of DR with hairy surfaces

This study represented a significant achievement as it ssftdly elucidated the underly-
ing physical mechanism of DR with hairy surfaces. The memamwas revealed through
an investigation of the modulation of intercomponent anérstale energy transfer in the
presence of hairy surfaces. Specifically, the presence iof fimments was found to
induce a remarkable decrease in the pressure-strain atoorelresulting in an accumu-
lation of turbulence intensity in the streamwise comporvenile reducing them in the
cross-streamwise components. This alteration in turlelelstribution had profound ef-
fects on the energy dynamics of the flow. Notably, the endngywould conventionally
be distributed from the streamwise component to the spa&nansl wall-normal com-
ponents was redirected to the wake scale turbulence thrinegspectral shortcut. This
redirection of energy resulted in its eventual dissipatiathin the viscous sublayer. As a
consequence of this energy redistribution, the shear ptmiuand Reynolds shear stress
associated with the cross-streamwise componentsu(, andu/w’) were significantly
diminished. This decrease in shear production led to a tetabluction in streamwise
vorticity fluctuation within the near-wall region, consely resulting in a reduction of

skin-friction drag.

Different aspects from the mechanism of DR with rigid riblets
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The most popular surface treatment for reducing skinifnctrag is deemed as using
riblet surfaces to date. Riblets are small, streamwisenbted grooves or ridges aligned
with the flow direction on a surface. The key difference bemvihe drag reduction mech-
anisms of riblet surfaces and hairy surfaces lies in thelityabo directly transport turbu-
lent energy. The mechanism of DR with hairy surfaces is digéocomponent/interscale
energy transfer as revealed in this study. Hairy flamemtssjport energy from the mean
flow to turbulence and facilitate its dissipation within thiscous sublayer. The corre-
lation of the fluctuating interaction force with the fluctimgf fluid velocity, represented
by the budget term of turbulent kinetic energy transporthmy hhairy flaments, plays a
primary role in this process. This distinct mechanism mdiagy surfaces a unique and
promising approach for DR in comparison to traditionalettdurfaces. The magnitude
of the turbulent energy transport by rigid, stationaryetblis zero since the fluctuating
velocity is zero at the riblet surfaces. Rather the mechaEDR with riblet surfaces
is related to their ability to rectify turbulent flow in the @r@flow direction by limiting
cross-flow fluctuations. The net DR arises from the balanted®n the drag-reducing
effects of streamwise slip and the drag-enhancing effeicspanwise slip Bechert &
Bartenwerfer 1989 Luchini et al., 1991 Bechertet al., 19973. The resulting quasi-
streamwise vortices are lifted away from the wall, redudhngjr contact with the whole
wall surface and weakening their effects on skin-fricti@mgration at the walKixler &

Bhushan2013.

5.3 Suggestions for Future Research Directions

In this study, hairy surfaces with different governing paeters were applied to turbulent

channel flows, and they demonstrated successful skineini@R. The underlying mechanism

behind skin-friction DR has been elucidated. Building ugwse findings, this chapter explores

the potential applications of hairy surfaces in dynamycadteracting with turbulent flows and
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provides recommendations for future research directions.

* Investigating the dynamics of hairy surfaces and theiec# on skin-friction drag re-
duction at various Reynolds numbers can provide valualdgims into the Reynolds
number dependence of drag-reducing capabilities of hairfases. For example, com-
pliant surfaces have shown varying drag-reducing capegsilwith increasing Reynolds
number. Fukagataet al. (2008 showed that an optimized compliant surface provided
skin-friction drag reduction of approximately 8% at a fioct Reynolds number of 110,
but at higher friction Reynolds number of 180, the drag-oaaly capability diminishes,
and skin-friction increasefkpsti & Brandf 2017). As Reynolds number increases, the
wall compliance generates large-amplitude waves propagdbwnstream, leading to
an increase in skin-friction drag rather than its reductimaleed, the observed scenario,
where the drag-reducing capability diminishes with insieg Reynolds number for com-
pliant surfaces, might also be relevant to hairy surfacdeerdfore, it becomes impera-
tive to thoroughly investigate whether hairy surfacesiretheir effectiveness at higher
Reynolds numbers and their drag-reducing capability dépen Reynolds number. Such
investigations will provide critical insights into the pemance and suitability of hairy
surfaces in various flow environments and pave the way far pinactical implementation

in engineering applications.

» Furthermore, in real engineering applications such ag Bhlls, submarines, automo-
biles, and airplanes, the friction Reynolds numbers cageamp to the order aD(10*) to
O(10°). At these higher Reynolds numbers, the outer structures aareater influence
on skin-friction generation compared to the eddies regidinthe inner layer, suggest-
ing a promising pathway is to control the outer structutést¢hins & Marusi¢ 2007,
Smitset al., 2011, Hwang 2013 2015 Marusicet al., 2021). Therefore, it is conjectured
that hairy surfaces may exhibit different aspects of irt&les energy transfer modulation

compared to the present study where Reynolds number was loweh Re, ~ 221.
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Attenuating the characteristic time scale of the hairy féais to the time scale of the
outer structures would be a promising pathway to achievedan@R at high Reynolds

numbers.

A hairy surface can be designed with filaments of differezights, density ratios, and
Cauchy numbers. As the filaments implanted on the channé&d Wwale different param-
eter values, each filament has a particular characterisiee $cale different from neigh-
bors’ time scale. Then this surface would have multiple ab@ristic time scales rather
than single characteristic time scale, allowing for disingpa broader range of interscale
transfer of turbulent energy. Moreover, the surface togphould not be uniform but
uneven, gradient, or completely random so that the hairgnélats effectively interact
with various length scales of turbulence. The presenceadf snultiscale’ hairy surfaces
could simultaneously absorb and deplete turbulent energtamed from the dissipative
scale to the integral length scale, exhibiting distinctrgpalynamics compared to sur-
faces with a single scale of uniform hairy surfaces. Theaniagnitude of skin-friction
DR would be more comparable to that obtained from earlieesrpents (akataet al.,
1996 Itoh et al., 2006. Therefore, it is worthy to explore whether the directi@p+
resented by the multiscale hairy surfaces is towards radumi enhancing skin-friction

drag.

In this study, the probability density functions of the ffilant deflection in the stream-
wise, spanwise, and wall-normal directions showed theseiflarity feature for various

filament heights while keeping the filament-spacing ratemsity ratio, and Cauchy num-
bers fixed. This observation suggests the possibility ahfdating a mathematical model
of filament deflection. For example of the spanwise filamefiedgon, the spanwise fila-
ment deflection could be modelled by attenuating the coefftsiof a Gaussian function.
As such, developing a well-established filament deflectiaa@hwould greatly support

predicting the behavior of real canopy elements, such assteial and aquatic vegeta-
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tion, and their impacts on soil preservation and nutritt@msport between the overlying
flow and the inside the canopy, without requiring extensivenarical simulations and

experiments.

Another possible direction for future work is to investigéhe performance of hairy sur-
faces in more complex flow configurations, beyond the chafiowl considered in this
study. This could involve examining the behavior of hairyfaces in flows with curva-
ture and its effects on the flow separation control. For mstalet us assume we have a
bluff body subject to the free stream flow as shown in figufe Hairy surfaces reducing
skin-friction drag can result in less fluid momentum defigithe curved body where the
flow separation would have occurred. As the fluid momentuncidesi reduced, higher
fluid velocity delays the onset of the adverse pressure gmadnd pushes the separation
point further downstream, resulting in smaller separategion. As the separation region
decreases, the pressure difference between the front andfrthe solid body could be
reduced, bringing about the pressure drag reduction. Algploring the effects of dif-
ferent hairy surface configurations, such as varying filarherghts, spacing ratios, and
densities, could shed light on the optimal design parammétereduce skin-friction drag

as well as pressure drag.
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» Apart from achieving skin-friction DRs, hairy surfacesicerve other functions in engi-
neered applications. For example, they can be applied fwilasurfaces found in wind
turbine blades, aircraft wings, and urban/regional air titglyehicles (UAM/RAM) to
suppress separation regions and reduce aerodynamic moigély explore the capabili-
ties of hairy surfaces and their potential benefits in sugjireering applications, compre-
hensive studies should be conducted. These studies shatuddly focus on skin-friction
drag reduction but also simultaneously investigate otBpeets such as separation con-
trol, noise reduction, their interactions, etc. By undamsling the multifunctional nature
of hairy surfaces and their performance in diverse engingscenarios, the full potential
of these surfaces can be harnessed to optimize the efficipadprmance, and sustain-

ability of various engineered systems.

» The LB method does have limitations, particularly withaeds to the pressure calcula-
tion. In this method, the pressure is directly computedgisire equation of state, inde-
pendent of the velocity fields. Consequently, there mighhbtances where the pressure
field does not precisely correspond to the velocity field atgame time instant. Addi-
tionally, the LB method assumes an isothermal and incorsjiresflow, with the Mach
number ideally below 0.3. However, when the flow speed exxa@elMach number of
0.3, the standard LB method becomes inadequate and regugeable alternative to
address this limitation. Therefore, it is essential to aersthese limitations carefully
when applying the LB method to specific flow scenarios and pbceg alternative meth-
ods or modifications to overcome these constraints in higheed or compressible flow

regimes.

* The hairy filaments in this study were assumed to mimic malamabairs (e.g., seal furs)
or bird feather fibers. They were modeled as slender, elasims, neglecting transverse
shear deformation and rotational bending. To describe tbgom of these filaments,

the Euler-Bernoulli beam equation was employed, as it piesa simpler solution com-
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pared to the more complicated Timoshenko—Ehrenfest beaoryth The adequacy of
using the Euler-Bernoulli beam equation relies on satigfydertain assumptions made
during its derivation. First, the length-to-thicknessl@rgth-to-width) ratio of the beams
should be large. Typically, the Euler-Bernoulli beam edrats valid for beams with
length-to-thickness ratios greater than 10-ABI(aihemet al., 1997). In this study, the
length-to-thickness ratio of the hairy filaments rangedifi®to 32, with filament heights
of 4, 8, 10, 12, 16, and thickness of 0.5 in wall units, sairgjythe criteria except for the
shortest filament with a height of 4 in wall units. Another ionfant assumption is that the
beam deflection remains small enough, ensuring that the &eglveen the tangent to the
neutral axis and the original beam axis stays small. Howekerhairy filaments in this
study exhibited large deflections up to approximately 90%hefilament length. This in-
troduces challenges in identifying the governing loadad®ition relations, particularly
for large deflections, due to the inherent non-linearitessed by the beam’s geometry,
material, and the type and position of applied loading. &dding these complexities and
incorporating more accurate load-deformation relatioay ive necessary in future work
to further understand and improve the accuracy of the mdgiglrefining the model, a
more precise representation of the hairy filaments’ belmaaa be achieved, enhancing

the overall reliability of the simulation results.
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