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ABSTRACT

One notable feature of wall-bounded turbulent flows is high skin-friction drag. Reducing the

turbulent skin-friction drag on engineering surfaces suchas oil pipelines, aircrafts, or ships, can

lead to significant energy savings and reduction in carbon footprint. Hairy surfaces, inspired

by seal fur surfaces and bird feathers, have emerged as a promising approach for skin-friction

drag reduction. Despite their promise, no study has yet demonstrated the underlying mecha-

nism of skin-friction drag reduction with hairy surfaces. In this study, turbulent skin-friction

drag reduction with hairy surfaces and its physical mechanism were investigated by employing

direct numerical simulation (DNS) in turbulent channel flow, with hairy surfaces, uniformly

distributed on both channel walls. The simulations were conducted using a lattice Boltzmann,

immersed boundary (LB-IB) method.

An improved reciprocal interpolation-spreading operations is proposed in order to satisfy

the no-slip enforcement on the hairy filaments. The no-slip condition along the hairy filaments

was measured by employing the ratio of the velocity of a Lagrangian marker along a hairy

filament to the fluid velocity interpolated into that marker.If the ratio is the unity, the no-

slip condition is strictly satisfied; in other words, the slip error is indicated by the deviation

of this ratio from the unity. In comparison to the previous LB-IB methods that provided the

slip error up toO(1000)%, the present LB-IB method ensures better no-slip enforcement on

the hairy filaments with the slip error less than∼ 2%. Due to the improved reciprocity of

the interpolation-spreading operations, the present LB-IB method successfully accomplishes

xvi



better numerical accuracy, stability, and robustness compared to the previously suggested LB-

IB methods.

A parametric study was performed at a bulk Reynolds number of7200, corresponding to a

friction Reynolds number of approximately 221 in a base turbulent channel flow with smooth,

no-slip walls, for various filament parameters such as Cauchy number, filament height-to-

spacing ratio, filament height, density ratio between the hairy filament and fluid. When drag

reduction was plotted as functions of the individual filament parameters, it did not exhibit con-

sistent trends with respect to each of the filament parameters. However, when plotted against

the ratio of the characteristic time scale of the hairy filaments to the time scale of the largest ed-

dies in the base turbulent channel flow, the magnitudes of drag reduction collapsed into a single

curve. The maximum drag reduction of 5.4% was obtained at thecharacteristic time scale ratio

of 1.4− 1.5.

Another significant achievement of this study is to reveal the underlying mechanism behind

skin-friction drag reduction with hairy surfaces. The mechanism was investigated by examin-

ing the modulation of intercomponent/interscale energy transfer through budgets of Reynolds

stresses, mean/turbulent kinetic energy budgets, and one-dimensional energy spectra. The

mechanism can be attributed to the modulation of intercomponent and interscale energy trans-

fer. Specifically, the presence of hairy filaments leads to a decrease in the pressure-strain cor-

relation, which causes an accumulation of turbulence intensity in the streamwise component

while reducing it in the cross-streamwise components. Consequently, the energy that would

have been distributed from the streamwise component to the spanwise and wall-normal com-

ponents is transported to wake scale turbulence by hairy filaments, and the transported energy

is eventually dissipated within the viscous sublayer. Thisstudy is the first DNS research that

demonstrates skin-friction drag reduction with hairy surfaces and reveals its underlying physical

mechanism.
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CHAPTER 1

Introduction

1.1 Background

1.1.1 Wall-bounded Turbulence

Wall-bounded turbulence refers to the turbulent flow that occurs adjacent to solid surfaces,

such as walls or boundaries. A notable feature of wall-bounded turbulence is high frictional

drag, primarily generated due to the presence of strong meanshear originating from the no-

slip wall. As a result, the flow exhibits distinct structuresand patterns at different wall-normal

distances from the wall as illustrated in figure1.1. The dynamics of wall-bounded turbulence are

characterized by two regions in the wall-normal direction,according to the relative importance

of viscosity (Tennekes & Lumley, 1972): The inner layer and the outer layer. These two regions

are further divided into several layers, as depicted in figure 1.2. Very near the wall, the viscous

shear stress arising from the velocity gradient and fluid viscosity is important to the dynamics of

the flow. The variables are adequately scaled with the friction velocity,uτ ≡
√

τw/ρ, whereτw

is the wall shear stress,ρ is the fluid density and the kinematic fluid viscosity,ν. The viscous-

scaled variables are often indicated in wall units, which isdenoted by a superscript+.

The region corresponding to the wall-normal location within z+ . 5 is defined as the viscous

sublayer, where viscous shear stress predominates over turbulent shear stress. Within the vis-

cous sublayer, the mean velocity varies linearly with the wall-normal locationŪ+ = z+, which
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Figure 1.1: Robinson’s summary of coherent structures in wall-bounded turbulence (Robinson,
1991).

is often called ‘law of the wall’. The upper bar denotes time-averaging. Above the viscous

sublayer, the buffer layer extends further away from the wall within 5 . z+ . 30. Within the

buffer layer, both the Reynolds stresses and the viscous stresses are significant. The buffer layer

is characterized by an increase in turbulence intensity andthe emergence of coherent structures,

which arise as a consequence of the self-sustaining near-wall cycle (Jimenez & Moin, 1991;

Hamiltonet al., 1995; Waleffe, 1997; Jimenez & Pinelli, 1999). The viscous sublayer and the

buffer layer fall into the ‘near-wall region’, as depicted in figure1.2. A greater distance from

the wall falls into the outer layer, where the influence of viscosity becomes negligible. The

reference length scale is often assumed to be a value comparable to that of large scale turbu-

lent eddies. In the case of turbulent channel flows, the half channel height (H) serves as the

reference length. Asymptotic matching allows for the establishment of a logarithmic profile

connecting the inner later and the outer layer (Millikan, 1938),

Ū+ =
1

κ
ln

(

z+
)

+ C, (1.1)

whereκ ≈ 0.41 is the von Karman constant, andC ≈ 5.5 is the intercept of the logarithmic

layer (or log layer). Over the past, it was commonly believedthat the log layer begins at approx-

imatelyz+ ≈ 30 (Tennekes & Lumley, 1972) or z+ ≈ 50 (Pope, 2000). However, more recent
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studies have indicated that the extent of the log layer may depend weakly on the Reynolds num-

ber, with a suggested relationship ofz+ & z+3Re
−1/2
τ atReτ of the order ofO(104)− O(105)

(Marusicet al., 2013). Reτ denotes the friction Reynolds number,Reτ ≡ uτH/ν, which rep-

resents the ratio between the characteristic length scale of eddies in the outer layer and the

viscous length scale.Reτ ≡ uτH/ν is considered in fluid dynamics, particularly in the study

of turbulent flows over wall-bounded surfaces, because it isa dimensionless parameter that

characterizes the intensity of turbulence and its impact onskin friction drag. By using the fric-

tion Reynolds number, researchers can non-dimensionalizethe flow and compare different flow

conditions across various systems. It provides a universalmeasure that allows for meaningful

comparisons of flow behavior and drag reduction techniques.
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>
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Figure 1.2: Mean streamwise velocity profile showing the inner and outer layers. The black
solid line shows DNS data of the turbulent channel flow atReτ ≈ 5200 (Lee & Moser, 2015).

The understanding of near-wall turbulence is crucial when considering drag reduction strate-

gies. This region is characterized by a self-sustaining cycle driven by coherent structures,

namely streaks and quasi-streamwise vortices, as illustrated in figure1.3. Streaks are longi-

3



tudinal stripes with positive or negative streamwise velocity fluctuations. These fluctuations

show the alternating low-velocity and high-velocity streaks, periodically observed in the span-

wise direction. Experimental studies have indicated that the streamwise wavelength of streaks

is typically aroundλ+x ≈ 1000, while their spanwise wavelength is approximatelyλ+y ≈ 100

(Kim et al., 1971; Smith & Metzler, 1983). The self-sustaining process involves the interaction

between streaks and vortices, where vortices redistributethe mean shear, amplifying the streaks’

instability, which, in turn, generates new vortices, thus closing the cycle (Waleffe, 1997). The

longitudinal vortices drive the displacement of slow fluid away from the wall within the low-

velocity streaks, while fluid is pushed towards the wall, creating the high-velocity streaks. This

phenomenon leads to an overall increase in the averaged wallshear stress, resulting in an in-

crease in skin-friction (Orlandi & Jimenez, 1994).

Figure 1.3: Sketch of the near-wall cycle across the spanwise wall normal plane with quasi-
streamwise vortices and low- and high-velocity streaks.

1.1.2 Motivation for Skin-friction Drag Reduction (DR)

One notable feature of wall-bounded turbulent flows is a highskin-friction drag. Reducing

the turbulent skin-friction drag on engineering surfaces such as oil pipelines, airplanes or ships,
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DR methods Active/passive DR (%)

Non-surface treatment
Blow/suction Active . 25%
Spanwise wall-oscillation Active . 50%
Gas/bubble injection Active and/or passive. 80%
Polymer additives Passive . 80%

Surface treatment
Riblet surfaces Passive . 10%
Permeable substrates Passive . 20%
Superhydrophobic (SH) surfaces Passive . 75%
Compliant surfaces Passive . 8%
Hairy surfaces Passive . 50%

Table 1.1: DR methods with active/passive flow controls: Blowing/suction (Choi et al., 1994),
spanwise wall-oscillation (Gatti & Quadrio, 2016), gas/bubble injection (Ceccio, 2010), poly-
mer surfactant/additives (Toms, 1949), riblet surfaces (Bechertet al., 1997a), permeable sub-
strates (Rostiet al., 2018), SH surfaces (Parket al., 2014), compliant surfaces (Fukagataet al.,
2008), hairy surfaces (Takataet al., 1996).

can lead to significant energy savings and reduction in carbon footprint. For example,∼ 30%

reduction in turbulent skin-friction drag on ocean ships could result in an annual decrease in

fuel consumption of∼ 700 million barrels of oil (McKeonet al., 2013). A mere 1% reduction

in skin-friction drag could enable an Airbus A340 to conserve approximately 400 kiloliters of

jet fuel, amounting to a savings of approximately $300,000 per year (Kornilov, 2015). The

annual fuel cost for all commercial airlines in the United States is about $10 billion—an ex-

penditure that has remained relatively stagnant over the past decades (Hefner, 1988; Bushnell,

1998; Gad-el Hak, 2000). A significant amount of aviation fuel, up to 81% of Air Forceenergy

budgets is required to overcome the drag, and almost half of the total drag comes from the skin-

friction drag (Felderet al., 2017). In light of these examples, the skin-friction drag reduction is

indispensable to achieve energy savings and reduce the carbon footprint.

In recent years, two major approaches have emerged for mitigating turbulent skin-friction

drag: Active and passive flow control techniques. Both approaches have been applied to wall-
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bounded turbulent flows in order to disturb the near-wall turbulence and its dynamics and thus

reduce the skin-friction drag. Table1.1presents a comprehensive overview of various DR meth-

ods corresponding to both active and passive flow control techniques, along with their reported

maximum DR values. Active flow control techniques are mostlyrepresented in conjunction

with arrays of sensors and actuators that inject (extract) momentum to (from) the targeting

spots (Lin et al., 1955; Choiet al., 1994; Rathnasingham & Breuer, 2003; Diez & Dahm, 2004;

Benard & Moreau, 2014) or the spanwise oscillation of wall surfaces to alter the near-wall or

outer structures (Junget al., 1992; Leschziner, 2020; Riccoet al., 2021; Marusicet al., 2021).

Unlike active flow control, passive flow control does not relyon external energy sources, mak-

ing them more advantageous in terms of achieving higher net energy savings. In addition,

passive strategies do not require the use of additional arrays of sensors and actuators, simplify-

ing their implementation and reducing maintenance costs. Consequently, passive flow control

has emerged as promising approaches for reducing turbulentskin-friction drag to date. Passive

flow control is predominantly found in the form of surface treatments. In the following section,

further details regarding surface treatments proposed up to date will be discussed.

1.2 Surface Treatments for Skin-friction DR

1.2.1 Drag-reducing Surfaces Inspired by Nature

Surface treatments inspired by the surfaces of living creatures have been proposed to reduce

the turbulent skin-friction drag as a passive drag reduction strategy. Nature provides a rich

source of inspiration, from the mucus-coated riblet structure of shark skin (Bechert & Barten-

werfer, 1989; Bechertet al., 1997a; Garcia-Mayoral & Jimenez, 2011; Walsh, 1982; Walsh &

Lindemann, 1984), to the superhydrophobic (SH) structure of the lotus leaf (Tretheway & Mein-

hart, 2002; Parket al., 2014), feather structure of birds (Chenet al., 2013), seal fur surfaces (Itoh

et al., 2006). A prominent function of these surfaces is the skin-friction DR.

6



To date, much of the interest in most man-made surfaces has been focused on riblet sur-

faces over the past several decades. The initial designs of micro-textured surfaces drew in-

spiration from the rib-like protrusions observed on shark skins, specifically the dermal denti-

cles (Chernyshov & Zayets, 1970). In man-made implementations, the wall boundaries were

carpeted with arrays of longitudinal ribs that rectify the turbulent flow in the streamwise di-

rection by hampering the fluctuating cross-flow component. Numerous experimental (Bechert

& Bartenwerfer, 1989; Bechertet al., 1997a,b, 2020) and numerical studies (Luchini et al.,

1991; Choi et al., 1993; Garcia-Mayoral & Jimenez, 2011; Endrikatet al., 2021) have shown

a successful skin-friction drag reduction with a systematic optimization of geometrical features

of riblets. The skin-friction DR obtained in laboratory-scale experiments was achieved up to

10% for blade riblets with spanwise rib-spacing of∼ 16 wall unit, riblet height of∼ 8 wall

unit, thickness-to-spanwise spacing of0.5, and DRs were more modest, of5 − 7%, in full-size

applications (Bechertet al., 1997a; Spalart & McLean, 2011).

Recently, anisotropic permeable substrates have been proposed in the pursuit of further im-

provement in skin-friction DR. Rather than employing isotropic permeable surfaces that re-

sulted in drag increase (Rostiet al., 2015; Kuwata & Suga, 2016), the integration of anisotropic

permeable surfaces on the wall provides skin-friction DR that far exceeds the maximum limit

obtained from riblets, which is approximately10%. By modulating the directionality and per-

meability, it becomes possible to address the limitations observed with riblets. As the size of

the riblet surface increases, additional detrimental effects emerge, causing the breakdown of

drag reduction performance and eventually enhancing skin-friction drag. This degradation was

attributed to the spanwise fluctuation induced toward the surface indentation and the resulting

onset of wall-normal transpiration. The degradation appears prominently when the sqaure root

of groove area exceeds 11 in wall unit (Garcia-Mayoral & Jimenez, 2011). On the other hand,

streamwise-preferential substrates where the flow is rectified into the wall-parallel direction, but

hampered in wall-normal direction provided substantial improvements in drag reduction can

be achieved (Rosti et al., 2018; Gomez-de Segura & Garcia-Mayoral, 2019), suggesting that
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the suppression of wall-normal fluctuation was the promising pathway to achieve higher DRs.

These studies have shown that the streamwise-preferentialsubstrates provided the skin-friction

DR up to20− 25% atReτ ≈ 180.

Another category of surface treatments that has garnered significant attention is superhy-

drophobic (SH) surfaces. These surfaces draw inspiration from the water-repellent structure

observed on lotus leaves, butterfly wings, water striders, desert beetles, spider webs (Gorb,

2009). A few of these surfaces possess a rough exterior covered with a water-repellent wax, en-

abling water to effortlessly slide off the surface (Ma & Hill , 2014). By mimicking the structure

of natural surfaces, this class of micro-textured surfacesis made of a combination of surface

micro-textures and liquid-repelling coatings. In micro-channels with arrays of SH longitudinal

micro grooves implemented on both channel walls, experiments have shown DR up to 50%

with the spanwise gap spacing between0.7 − 4.8 in wall unit and the spacing-width ratio of 1

(Danielloet al., 2009). Later, DRs of up to 75% have been reported in turbulent boundary layer

flows with arrays of SH longitudinal micro grooves of spanwise gap spacing between 0.8 and

1.6 and the spacing-to-width ratio between 1 and 19 (Parket al., 2014).

The skin of dolphins offers an intriguing alternative surface-texture for skin-friction DR

(Kramer, 1960, 1962). This unique surface, known as a ‘compliant surface,’ is passively recon-

figuring its surface morphology in response to the surrounding fluid flows. Several theoretical

and experimental studies (Gad-el-Hak, 2000 and referencestherein) postulated that compli-

ant surfaces suppressed laminar-turbulent transition effectively and thus mitigate the effects of

skin-friction drag. Earlier DNS study (Fukagataet al., 2008) demonstrated that an anisotropic

compliant wall with optimized parameter sets successfullyprovided the skin-friction DR up to

8% in a turbulent channel flow atReτ ≈ 110.
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1.2.2 Limitations of the Existing Drag-reducing Surfaces

Despite the remarkable results from the drag-reducing surface textures discussed earlier such

as riblet surfaces, anisotropic permeable substrates, andSH surfaces, their geometrical features

are generally fixed in ‘physical unit’. In other words, thesesurfaces have specific surface topol-

ogy, which is optimized at a particular friction Reynolds number. However, in real engineering

applications involving air, ground, and underwater vehicles, their speed and direction continue

to change over time, leading to dynamic variations in the friction Reynolds number and the

streamwise direction over the surfaces. Therefore, the surface textures unalterably designed for

one friction Reynolds number may perform poorly at a different friction Reynolds number due

to the change of the characteristic surface size in wall units.

A growing body of evidence has indicated the drawbacks of these surfaces. With increasing

Reynolds number, the riblet surface, characterized by a fixed size in physical units, experiences

an increase in its size in wall units. This growth eventuallyleads to a substantial intrusion of

the fluctuating cross-flow component into the surface indentations. Consequently, there is an

amplification of the wall-normal momentum flux between the overlying flow and the surface

indentations, resulting in an increase in skin-friction (Garcia-Mayoral & Jimenez, 2011). Sim-

ilarly, the drag-reducing performance represented by the anisotropic permeable substrates was

also degraded as the friction Reynolds number increased (Gomez-de Segura & Garcia-Mayoral,

2019). For SH surface, its implementation as a practical method for reducing turbulent skin-

friction drag is still limited due to the challenges posed byhigh shear rates and high pres-

sure fluctuations at higher Reynolds numbers. As Reynolds number increases, the gas pockets

trapped in the surface indentations of SH surfaces tend to deplete and get replaced by the work-

ing fluid, negating their drag-reducing capabilities. (Zhenget al., 2009; Checcoet al., 2014;

Samahaet al., 2012).

Moreover, several investigations have raised concerns regarding the use of compliant sur-

faces for skin-friction DR. Although an earlier study suggested that compliant surfaces could
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achieve skin-friction DR of up to 8% at a friction Reynolds number of approximately 110 (Fuk-

agataet al., 2008), recent studies have shown that at higher Reynolds numbers, the presence of

wall compliance resulted in the generation of large-amplitude waves propagating downstream

(Kim & Choi, 2014; Rosti & Brandt, 2017; Xia et al., 2019; Rosti & Brandt, 2020). These

waves enhanced the fluid motions and ultimately resulted in an increase in skin-friction rather

than its reduction.

Given the limitations posed by the existing drag-reducing surfaces, it is still necessary to

explore alternative surface-textures that can address these limitations and provide effective re-

duction of skin-friction drag. This entails exploring surfaces that adapt to diverse flow condi-

tions by dynamically adjusting their configuration, while also ensuring consistent and reliable

skin-friction DR.

1.3 Hairy Surfaces as an Alternative Drag-reducing Surface

1.3.1 Hairy Surfaces Existing as Dynamic Functional Surfaces in Nature

Slender and flexible outgrowths or protrusions are called ‘hairs’. This description is general,

valid to any similar structure regardless of its biologicalorigin (Gorb, 2009). Hairy surfaces,

characterized by an assembly of these hair-like structures, are widespread in nature and serve

multitude functions. At the microscale, hairy surfaces enable water-repellent capabilities, al-

lowing spiders and aquatic insects such as water striders tomove on water surfaces and protect

their respiratory organs from unwanted water entry (Gorb, 2009; and references therein). In the

context of respiratory tract, cilia and flagella, which are contractile hair-like structures, facilitate

fluid transport in the mucus layer, thereby preventing the onset of chronic respiratory diseases

in human beings (Han & Peskin, 2018; Loiseauet al., 2020). At the macroscale, underwater

creatures (e.g. fish, seals) and flying insects utilized their filamentous hairs to sense the velocity

field as well as the pressure distribution along the body (Tao & Yo, 2012). Poroelastic surfaces
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found in owl’s wing feathers effectively weaken the generation of aerodynamic noise (Jaworski

& Peake, 2013; Clark & Jaworski, 2020). Experimental and numerical studies showed that

hairy surfaces coated along cylinders and airfoils effectively suppressed the separation region

behind the objects and thus reduced the pressure drag (Favieret al., 2009; Brücker & Weidner,

2014; Hasegawa & Sakaue, 2021; Hasegawaet al., 2022).

Another primary function of hairy surfaces is the skin-friction DR, which is particularly sig-

nificant in future engineering applications. This can be observed in the fur of aquatic mammals,

such as seals (Itoh et al., 2006). The researchers reported that when real seal fur textureswere

attached to turbulent channel walls, they exhibited a better adaptability compared to riblet sur-

faces. This adaptability allowed the seal fur textures to provide a greater skin-friction DR across

a wider range of Reynolds numbers. Given the significance of hairy surfaces in skin-friction

DR, they can be considered as a promising candidate for alternative drag-reducing surfaces.

The subsequent sections will delve into a more detailed exploration of the topic, focusing on

the role of hairy surfaces in reducing skin-friction drag.

1.3.2 Experimental Studies of Skin-friction DR with Hairy Surfaces

To the knowledge of the author, very few experimental studies could be found in the literature

exploring the skin-friction drag reduction using hairy surfaces.Takataet al. (1996) investigated

turbulent skin-friction drag reduction in pipe flow using a carpet of microfibers implanted on the

inside walls of the pipe. The maximum drag reductions of up toapproximately50% were re-

ported with micro-fibers of height6−8 wall units, implanted with no preferred orientation.Itoh

et al. (2006) reported drag reductions of up to12% using a seal fur surface in turbulent channel

flow atReτ ≈ 150. They observed that the hairs are distributed in streamwise-preferential con-

figuration, with various hair heights ranging from 2 to 18 in wall units.Brücker(2011) carried

out experiments in an oil channel, employing a carpet of elastomeric micro-pillars, comprised

of sparsely implanted filaments with height of30 wall units, streamwise and spanwise spacings
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of 15 and30 in wall units, respectively. He observed a reduced meandering and stabilization

of the near-wall streaks, arguing that this was the signature of the skin-friction drag reduction,

although DR remained to be reported. Regarding the results from these experimental studies, a

common feature represented by drag-reducing hairy surfaces is that their heights do not exceed

the order ofO(10) in wall units and their spacings are comparable to their heights. Although

these experiments showed that hairy surfaces provided a promise for the skin-friction DR, its

underlying mechanism remains to be revealed.

1.3.3 Computational Studies of Turbulent Flows over Hairy Surfaces

Numerical investigations of turbulent flow over hairy surfaces to date have primarily focused

on canopy flows, which are encountered in terrestrial and aquatic vegetation (Tschisgaleet al.,

2021; He et al., 2022; Monti et al., 2023) as illustrated in figure1.4 (a). Previous simulations

commonly treated the canopy element as a continuous medium and relied on predefined drag co-

efficients for the prediction of canopy drag. However, this approach is inadequate when dealing

with deformable canopies interacting with turbulent flows.Deformable canopies continuously

change their postures and shapes, necessitating dynamic adjustments of the drag coefficients.

Consequently, there is a need for an explicit solution that accurately resolves the drag forces

acting on deformable canopies.

The immersed boundary (IB) method provides a viable approach for addressing this chal-

lenge. The IB method explicitly solves the interaction forces between the solid structures and

the fluid by employing interpolation and spreading operations (Peskin, 1972; Romaet al., 1999;

Li et al., 2016). By utilizing the IB method, the drag forces exerted on the filaments can be

directly obtained without relying on any assumptions on filament drag. Thus, this approach al-

lows for a more accurate representation of the drag experienced by the deformable filaments in

the canopy. Furthermore, employing the IB method enables capturing the detailed correlation

between the drag force exerted by the hairy filaments and the fluctuating fluid velocity. This
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correlation provides valuable insights into the transportof turbulent energy associated with the

motion of the hairy filaments. Hence, by resolving the interaction forces with IB method, it can

be better understood how turbulent kinetic energy is transported and distributed by the hairy

filaments throughout the fluid flow.

Recent DNS studies within the IB framework (Monti et al., 2020; Sharma & Garcia-Mayoral,

2020a,b) provided valuable insights into the interaction between turbulence and filamentous

canopies, however, their applications were limited to roughness elements that increase the drag,

and much of interests was focused on the mixing layer instabilities appeared in the interface

between ‘rigid’ canopies and their overlying flows. In fact,the rigid canopies acts as a rough-

ness, increasing the drag. To gain more insights into the interaction between realistic canopy

elements and turbulent flows, recent numerical studies havebeen conducted to study turbu-

lent flows over ‘flexible’ canopies. Wall-resolved large-eddy simulations (LES) carried out by

(Tschisgaleet al., 2021) investigated the characteristics of coherent structuresthat appear in the

mixing layer and their impacts on the large-scale collective motion of flexible canopy elements,

commonly referred to as honami/monami.Heet al. (2022) conducted spectral analysis of turbu-

lent kinetic energy budgets to further comprehend the underlying mechanism of the interaction

between flexible canopy elements and turbulent flow. They observed that the canopy motions

are predominantly observed at the monami scale associated with the coherent structures in the

mixing layer and the wake scale associated with the intervalbetween adjacent canopy elements.

Furthermore, a different DNS study (Monti et al., 2023) revealed that this canopy motion was a

fully-passive behavior in response to the surrounding turbulent flows. Although these numerical

studies have provided valuable insights into the interaction between hairy filaments and turbu-

lent flows, none of them showed any skin-friction DR. It can beconjectured that the parameter

sets given in these computational studies are not beneficialfor skin-friction DR. Specifically, the

canopy height set in these studies were the order ofO(100)−O(1000) in wall units. This range

differs significantly from the heights of drag-reducing hairy surfaces observed in the aforemen-

tioned experiments where the height of drag-reducing hairysurfaces did not exceed the order
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(a) (b)

Figure 1.4: Flow structures existing above the hairy surfaces (or canopy). (a) Isosurfaces
of pressure fluctuation at a value ofp′/(0.5ρfU2

b ) = −0.4 in a turbulent open-channel flow
(Tschisgaleet al., 2021). (b) Isosurfaces of the streamwise velocity fluctuations at a value of
u′+ = ±3 in a turbulent channel flow confined by two-parallel, no-slipwalls (Sundin & Bagheri,
2019).

of O(10) in wall units.

In a separate DNS study conducted bySundin & Bagheri(2019), the effects of elastic hairy

surfaces on turbulent channel flows and their dynamic response to turbulence were investigated

at Reτ ≈ 180 as illustrated in figure1.4 (b). In their DNS study, the density ratio ranged

from 1 to 800, and the height and diameter of the hairs were fixed to approximately 20 and

2 in wall units, respectively. The hairs were distributed atone side of the channel walls with

the uniform-spacing of approximately 8–16 in wall units. Sets of these parameters were deter-

mined corresponding to the range of the characteristic timescale of the hairy filaments. The

targeted ratio of the characteristic time scale of the hairyfilaments to the characteristic time

scale of near-wall turbulence varied from 0.21 to 1.5, and accordingly the density ratio and

flexibility were adjusted. It is noteworthy that the hairy filaments were relatively stiff, resulting

in limited deflection with mean values ranging from 0.48 to 1.28 in wall units. This limited

deflection caused the hairy filaments to protrude into the upper near-wall region, and they act

as roughness elements and ultimately increase the skin-friction drag. This implies that the sig-

nificance of flexibility in conjunction with height and spacing is indicative of its pivotal role in
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the performance of hairy surfaces on skin-friction DR. To this end, a comprehensive parametric

investigation is warranted to identify an optimal combination of governing filament parame-

ters, encompassing filament height, spacing, density ratio, and flexibility, the latter typically

quantified by the bending rigidity of the hairy filaments.

1.3.4 Plausible Hypotheses Regarding Skin-friction DR with Hairy Sur-

faces

As can be seen in the literature, none of the numerical simulation studies have been able to

reproduce skin-friction DR using hairy surfaces to date, despite the existence of experimen-

tal evidence. In the context of skin-friction DR, it can be expected that increasing the height

and bending stiffness of the hairy filaments as well as matching their time scale to that of the

near-wall turbulence may not be a suitable approach in regards to the failure of achieving skin-

friction present in the previous simulation studies (Sundin & Bagheri, 2019; Tschisgaleet al.,

2021; Heet al., 2022; Monti et al., 2023). Instead, a more promising pathway could involve the

use of highly flexible filaments, where the characteristic time scale of these filaments is matched

to other relevant time scales. Moreover, the underlying mechanism behind the skin-friction DR

with hairy surfaces remains to be clarified. One plausible hypothesis for the mechanism of skin-

friction drag reduction is that the presence of hairy filaments disrupts the transfer of turbulent

energy, which is essential for sustaining turbulence. The hairy filaments could absorb and redi-

rect the energy that would contribute to the sustenance of turbulence, ultimately mitigating the

effects of turbulence and thus reducing skin-friction drag. To gain better description of these

hypotheses, it would be worthy to analyze the intercomponent/interscale energy transfer and its

modulation by the presence of hairy filaments.
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1.4 Objectives of the Dissertation

Turbulent skin-friction DR was investigated by direct numerical simulation (DNS) in turbu-

lent channel flow with hairy surfaces, where the one-dimensional hairy filaments are uniformly

distributed on both channel walls. A lattice Boltzmann, immersed boundary (LB-IB) method

was employed in this study. A direct forcing IB scheme, supported by reciprocal interpolation-

spreading of operators, was adopted. The dynamics of the filaments was tracked by solving the

dynamic Euler-Bernoulli beam equation. In comparison to the previous studies where the hairy

filaments were modeled with two-dimensional plate (Tschisgaleet al., 2021; He et al., 2022)

or three-dimensional cylindrical bodies (Sundin & Bagheri, 2019), the hairy filaments were

modeled as one-dimensional flexible filament in similar to the other studiesMonti et al. (2019,

2023). Simulations were performed in turbulent channel flows at abulk Reynolds number of

Reb ≈ 7200, corresponding to a friction Reynolds number ofReτ ≈ 221 in a base turbulent

channel flow with smooth, no-slip walls. The primary objective of the present study is to re-

produce a positive turbulent skin-friction DR with hairy surfaces and elucidate its underlying

mechanism. To achieve this objective, several sub-objectives are set as below:

• To develop a precise and robust numerical method for simulating fluid-structure interac-

tion within LB-IB framework.

• To verify and validate the proposed numerical method and confirm its superiority over the

previously suggested LB-IB methods.

• To conduct a parametric study to investigate the effects offilament parameters, such as fil-

ament height, spacings, density ratio between the hairy filaments and fluids, and bending

rigidity, on the behavior of hairy filaments and the resulting flow statistics.

• To explore skin-friction DRs in terms of the filament parameters and identify a governing

parameter that exhibits a consistent trend of DR.
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• To analyze the budget terms of Reynolds stress components to examine the modulation

of intercomponent energy transfer in the presence of hairy filaments.

• To investigate the role of the hairy filaments in terms of theinterscale energy transfer by

analyzing the budget terms of mean kinetic energy and turbulent kinetic energy.

• To gain insights into the overall modulation of interscaleenergy transfer resulting from

the presence of hairy filaments by analyzing one-dimensional spectra of turbulent kinetic

energy and Reynolds shear stress.

By addressing these objectives, this study aims to advance the understanding of turbulent skin-

friction DR with hairy surfaces and provide valuable insights into its physical mechanisms.

1.5 Organization of the Dissertation

The dissertation is organized as follows. Chapter II provides an overview of the LB method

and IB method, as well as their coupling schemes. Subsequently, a precise and rigorous LB-IB

method will be proposed and compared to previously suggested LB-IB methods in terms of

numerical accuracy, robustness, and stability. The verification and validation of the proposed

LB-IB method will be presented. In Chapter III, the characteristics of filament deflections, re-

sulting skin-friction drag reductions, and flow statisticsobtained from the parametric study will

be discussed. Chapter IV focuses on investigating the underlying mechanism of skin-friction

drag reduction with hairy surfaces, specifically analyzingthe modulation of intercomponent

and interscale energy transfer. Chapter V provides summaryand conclusions of this study and

suggests the future research directions.
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CHAPTER 2

Numerical Methodology

Turbulent skin-friction drag reduction with flexible filamentous surfaces is investigated by

direct numerical simulation (DNS) using an immersed boundary-lattice Boltzmann (IB-LB)

method. In this method, the dynamics of the fluid flow is described by employing LB method

with standard D3Q19, single relaxation time, Guo’s forcingfunction, Bhatnagar-Gross-Krook

lattice models (Krügeret al., 2017). The dynamics of elastic, slender hairy filaments can be de-

scribed by solving the dynamic Euler-Bernoulli beam equation, which balances out the inertia,

tension, bending, interaction, and repulsive forces exerted on the hairy filaments (Favieret al.,

2014). A direct-forcing IB method combined with the diffusive-interface scheme is adopted

to simulate the fluid-flexible structure interaction. The reciprocal interpolation-spreading op-

erations, suggested in the previous study (Pinelli et al., 2010), is improved to achieve better

numerical accuracy, instability, and robustness. Throughout all simulations, the mean pressure

gradient is dynamically adjusted to keep the bulk Reynolds number constant during the course

of the simulations. A mathematical formulation of maintaining the constant flow rate (or con-

stant bulk Reynolds number) is obtained from a control volume analysis over the entire channel

with/without the presence of the hairy filaments. Grid embedding is employed to improve the

accuracy of the computations from the channel wall up to about 30 wall units above the channel

wall for the ’base’ turbulent channel flow with smooth, no-slip walls and the filament tips at

undeformed (or initial) state for the turbulent channel flowwith hairy surfaces, respectively. A

two dimensional domain decomposition is applied in parallelization of the IB-LB simulations.
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The numerical methods utilized in the present study have been verified and validated through

a series of numerical experiments. All of the details in the numerical methods and solution

procedures will be discussed in the following sections.

2.1 Fluid Solver

2.1.1 Lattice Boltzmann (LB) Method

LB method is a numerical simulation technique derived from kinetic theory. This method

relies on a mesoscopic description of the fluid to compute itsmascroscopic behavior. It has

gained popularity for simulating incompressible, viscousfluid flows due to its advantages over

Navier-Stokes (NS) solver in terms of numerical simplicityand parallelization. Compared to NS

solvers, LB method is solving an inherently explicit, linear equation, obviating the numerical

difficulties resulting from the nonlinear convective term.In addition, the pressure is calculated

in a simpler way, using the equation of state,p = ρc2/3, wherec is the lattice speed, andρ

is the fluid density. This reduces the burden of calculating the pressure gradient, which typi-

cally requires intensive computational costs as well as complicated solution procedures for NS

solvers. Moreover, LB method reduces the challenge of parallelization due to local nature of

its computational stencil. Regarding these advantages, LBmethod has been the subject of rapid

developments in the recent years.

In the numerical simulation of fluid flows, LB method is typically adopted employing single-

relaxation-time lattice Boltzmann equation (SRT-LBE). SRT-LBE was initially developed as an

improvement over the lattice gas automata in a discrete lattice and time (Frischet al., 1986;

Chenet al., 1992). It was shown later that SRT-LBE can be derived from the continuous Boltz-

mann equation with an appropriate collision model in discrete phase space and time (He & Luo,

1997a). For its basic formulation, LB method tracks the evolutionof sets of particle distribu-

tion function (or discrete velocity distribution function), fi(x, t), which represents the density
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of particles with discrete particle velocityci = (cix, ciy, ciz) at a lattice positionx and timet.

Sets of the discrete particle velocityci can be denoted in a DdQi model , whered is the number

of spatial dimensions andi is the number of discrete velocity vectors in a lattice. In a three-

dimensional simulation of fluid flow, three lattice models are commonly leveraged: D3Q15,

D3Q19, and D3Q27. Among these lattice models, D3Q15 model has smaller memory footprint

and less computationally demanding procedures, but it usesfewer number of discrete veloc-

ity vectors, resulting in less accurate numerical results.On the other hand, D3Q27 provides

more accurate results with an increased number of discrete velocity vectors, but requires inten-

sive memory usage. To balance numerical accuracy and memoryusage, D3Q19 lattice model

has been widely adopted as a reasonable choice. Figure2.1 shows the lattice arrangements of

D3Q19 model. Set of weight factors,wi and discrete velocity vectors are tabulated for D3Q19

lattice model as can be seen in Table2.1.

Figure 2.1: Lattice arrangements of D3Q19 model

The LB equation can be obtained by discretizing the Boltzmann equation in lattice velocity

space, physical space, and time, which is given as

fi(x + ci,∆t)− fi(x,∆t) = Ωcol,i. (2.1)
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i wi ci
0 1/3 (0,0,0)

1 —6 1/18 (1,0,0), (0,0,1), (-1,0,0), (0,0,-1), (0,-1,0), (0,1,0)

7 —18 1/36 (1,0,1), (-1,0,1), (-1,0,-1), (1,0,-1), (1,-1,0), (1,1,0), (-1,1,0),
(-1,-1,0), (0,-1,1), (0,1,1), (0,1,-1), (0,-1,-1)

Table 2.1: Set of weight factors,wi, and discrete lattice velocity vectors,ci, of D3Q19.

The particle collisions are modeled by a collision operator, Ωcol,i, to describe the redistribution

of particles at each site. Bhatnagar-Gross-Krook (BGK) collision operator was introduced to

replicate the macroscopic behavior of fluids (Bhatnagaret al., 1954):

Ωcol,i =
∆t

τ
(f eq

i − fi). (2.2)

whereτ is the relaxation time towards the local equilibrium. The relaxation time is obtained in

relation with the kinematic viscosity of fluids,ν:

τ

∆t
=

3ν∆t

∆x2
+ 0.5. (2.3)

The equilibrium distribution function,f eq
i , is a function of local macroscopic quantities, and

can be derived from Taylor series (He & Luo, 1997a,b) or Hermite polynomial expansion (Shan

& He, 1998; Shanet al., 2006) of the Maxwell-Boltzmann distribution,

f eq
i (x, t) = wiρ

(

1 +
ci· u
c2s

+
(ci· u)2

2c4s
− u· u

2c2s

)

, (2.4)

whereu is the fluid velocity vector,u(x, t) = [u(x, t), v(x, t), w(x, t)], ρ is the fluid density,

ρ = ρ(x, t), andcs is the speed of sound. With the BGK collision model, the discrete Boltzmann
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equation (Equation2.1) can be reformulated as the SRT-LBE,

fi(x + ci∆t, t+∆t)− fi(x, t) =
∆t

τ
(f eq

i (x, t)− fi(x, t)) . (2.5)

The external forces exerted on the fluids (e.g. mean pressuregradient, interaction force ex-

erted by an immersed solid body) are incorporated into LB equation via an appropriate forcing

function. In the presence of the forcing function, SRT-LBE can be rewritten as:

fi(x + ci∆t, t +∆t)− fi(x, t) =
∆t

τ
(f eq

i (x, t)− fi(x, t)) + ∆tGi. (2.6)

Attaining precise predictions of fluid flows depends on the forcing function,Gi, because

the mesoscopic description of the forcing function must be appropriately addressed to ensure

an exact reproduction of macroscopic fluid behavior. Although several forcing functions have

been proposed from a number of previous studies (He et al., 1997; Martys et al., 1998; Luo,

1998, 2000; Buick & Greated, 2000), Chapman-Enskog multiscale analysis demonstrated that

the proposed forcing functions failed to reproduce the exact form of the macroscopic equations

such as the continuity equation and NS equation (Guo et al., 2002). Later, it was shown that

Guo’s proposed forcing function ensured the exact macroscopic equations and also held the

second order accuracy (Guoet al., 2002; Kang & Hassan, 2011). Due to its better accuracy and

robustness, Guo’s forcing function has been widely adoptedto incorporate the external forces

into LB equation, expressed as

Gi =

(

1− ∆t

2τ

)

wi

(

ci − u
c2s

+
(ci · u)ci

c4s

)

· fext, (2.7)

wherefext is the net external force (per unit volume). For a channel flowwith smooth, no-

slip walls, the pressure force accounting for the pressure gradient imposed in a channel flow is
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included in the external force, givingfext = fp. In the presence of the surface-textured walls,

the interaction force is added, givingfext = fp + fIB.

The solution procedure of LB equation includes two main sub-steps: Collision and

streaming steps. More than one particle that arrive at the same point from different directions

collide with each other. Particles under the collision process exchange their momentum, then

change their velocities according to the collision rule. After the collision, particles propagate

and stream into neighboring sites. Their mathematical descriptions are shown as

Collision step (relaxation)

f ∗
i (x, t) = fi(x, t) +

∆t

τ
(f eq

i (x, t)− fi(x, t)) + ∆tGi. (2.8)

Streaming step (propagation)

fi(x + ci∆t, t+∆t) = f ∗
i (x, t). (2.9)

After the collision and streaming steps, the macroscopic fluid density and velocity are calcu-

lated by taking the leading moments of the distribution functions,

Macroscopic variables

ρ(x, t) =
∑

i

fi(x, t), (2.10)

ρ(x, t)unoF (x, t) =
∑

i

cifi(x, t), (2.11)

u(x, t) = unoF (x, t) +
∆t

2ρ(x, t)
fext(x, t). (2.12)
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whereunoF is the fluid velocity with no external forces. In the presenceof the pressure force,

fp, as well as the net external force,fIB, the net external force is expressed byfext = fp + fIB.

With these components, the equation2.12can be rewritten in terms of the interaction force,

fext(x, t) =
[

fp(x, t) + fIB(x, t)
]

=
2

∆t

(

ρ(x, t)u(x, t)− ρ(x, t)unoF (x, t)
)

. (2.13)
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2.1.2 Physical Constraints of Fluid Flow

Table2.2presents the basic predefined parameters utilized in LB simulations. The simulation

parameters are normalized by the grid spacing,∆x, the time step,∆t, and the discrete

lattice speed,c = ∆x/∆t, as often expressed in ‘LB units’. In the solution procedureof

LB equation for a channel flow, the bulk Reynolds numberReb, the half channel height

(H/∆x), and CFL number, which is equivalent to the centerline velocity of the channel,

CFL = Uc/c = Uc∆t/∆x are specified. Then, the calculation of other LB simulation

parameters is followed such as the bulk velocity (Ub/c), kinematic viscosity (ν∆t/∆x2),

relaxation time (τ/∆t).

Parameters Physical domain Parameters in LB units
Bulk Reynolds number Reb Reb = UbH/ν = (Ub∆t/∆x)(H/∆x)/(ν∆t/∆x

2)
CFL number CFL CFL = Uc/c = Uc∆t/∆x

Half channel height H H/∆x

Kinematic viscosity ν ν∆t/∆x2

Relaxation time τ τ/∆t

Table 2.2: Basic parameters of LB simulations.

For example of a laminar channel flow, the first procedure is toset Reynolds number, channel

height, and CFL number. The bulk velocity is determined analytically from the correlation

between the bulk velocity and the centerline velocityUc =
3
2
Ub. Once these parameters in LB

units are set, the other variables are subsequently calculated in the procedure shown below:

(1) Set Reb,H/∆x, CFL

(2) Obtain bulk velocity Ub

Reb =
UbH

ν
=

(Ub/c)(H/∆x)

(ν∆t/∆x2)
(2.14)
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Ub

c
=

2Uc

3c
=

2

3
(CFL) (2.15)

(3) Determin kinematic viscosity and relaxation time

ν∆t/∆x2 =
(Ub/c)(H/∆x)

Reb
=

2(CFL)(H/∆x)

3Reb
(2.16)

τ/∆t =
3∆tν

∆x2
+ 0.5 =

3(Ub/c)(H/∆x)

Reb
+ 0.5 (2.17)

However, in contrast to laminar flow, the correlation between Uc andUb cannot be obtained

through analytical procedure for turbulent channel flow. Instead, Dean’s correlation (Dean,

1978) can be used to correlateUc with Ub. OnceUb is determined, the remaining parameters

can be subsequently calculated. Furthermore, the parameterization depends on which physical

constraint is applied, whether it is a constant pressure gradient (CPG) and a constant flow rate

(CFR). The parameterization details for turbulent channelflow under CPG and CFR conditions

are further elaborated in the following sections.

2.1.2.1 Constant Pressure Gradient (CPG)

(1) Set Reb,H/∆x, CFL

(2) Approximate friction Reynolds number Reτ

Cf = 0.073(2Reb)
−1/4 (2.18)

Cf =
τw

0.5ρU2
b

=
ρu2τ

0.5ρU2
b

=
2u2τ
U2
b

=
2Re2τ
Re2b

(2.19)

Reτ = 0.1751Re
7/8
b (2.20)
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(3) Determine kinematic viscosity and relaxation time

ν∆t

∆x2
=
uτH

Reτ

∆t

∆x2
=

(uτ/c)(H/∆x)

Reτ
= 0.110(H/∆x)(CFL)Re−1.1296

τ (2.21)

τ

∆t
=

3ν∆t

∆x2
+ 0.5 =

3(uτ/c)(H/∆x)

Reτ
+ 0.5 = 0.330(H/∆x)(CFL)Re−1.1296

τ + 0.5 (2.22)

For CPG formulation, the bulk velocity changes in time. The mean bulk velocity is averaged

over the sufficient time interval, then the skin-friction coefficient is obtained byCf = 2H(dp/dx)
ρU2

b,avg

.

2.1.2.2 Constant Flow Rate (CFR)

(1) Set Reb,H/∆x, CFL

(2) Approximate bulk velocity Ub

Uc

c
= 1.28

Ub

c
(2Reb)

−0.0116 (2.23)

which is used to compute the target bulk velocity

Ub,tar

c
=
uc/c

1.28
(2Reb)

0.0116 (2.24)

Ub,tar

c
=
Uc/c

1.28
(2Reb)

0.0116 =
CFL

1.28
(2Reb)

0.0116 (2.25)

(3) Determine kinematic viscosity and relaxation time

ν∆t

∆x2
=
UbH

Reb

∆t

∆x2
=

(Ub/c)(H/∆x)

Reb
=

H/∆(CFL)

1.2697Re0.9884b

(2.26)

τ

∆t
=

3ν∆t

∆x2
+ 0.5 =

3(Ub/c)(H/∆x)

Reb
+ 0.5 =

3(H/∆x)(CFL)

1.2697Re0.9884b

+ 0.5 (2.27)

For CFR formulation, the pressure gradient changes in time.The mean pressure gradient is

averaged over the sufficient time interval, then the skin-friction coefficient is obtained byCf =
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2H(dp/dx)avg
ρU2

b,tar

.

2.1.3 Grid-embedding Technique

Grid-embedding technique has been employed to improve the numerical accuracy near the

walls, maintaining the computational cost at a reasonable level. In this proposed study, the

multi-domain method is adopted due to the benefits from better management of CPU perfor-

mances and higher memory savingsLagravaet al. (2012). The coarser grids are replaced by

conformal patches of fine grids near wall region as shown in figure 2.2. The flow quantities

such as fluid density, velocity, and kinematic viscosity arecontinuous across the grids by keep-

ing the lattice speed constant on both grids,c = ∆xc/∆tc = ∆xf/∆tf . The subscriptsc and

f indicate the coarse and fine grids, respectively. The coarsegrid quantities can be scaled to

find grid quantities via the grid-embedding ratio,GR = ∆xc/∆xf = ∆tc/∆tf . For the coarse

grid, LB equation is advanced from timet to the timet + ∆t. For the fine grid, LB equation

is advanced from timet +∆t/GR, t + 2∆t/GR, ..., t + ∆t. On transition between the coarse

and fine grids, the fluid density, velocity and non-equilibrium distribution functions are trans-

ferred. The find grid is extended to the second layer of the coarse grid, whereas the coarse grid

is extended toGR + 1 layer of the fine grid, as shown in figure2.2(b). Data is directly copied

from coarse to fine grids at the corresponding site, while data should be interpolated in order to

complete the missing information at the fine grids which are not existing at the corresponding

site. For temporal interpolation, the second order Hermiteinterpolation is adopted between the

timest − ∆t andt + ∆t. For spatial interpolation, the second order bi-cubic interpolation is

used. The distribution functions on both grids are reconstructed at the grid interfaces,

fi,f (x, t) = f eq
i (x, t) +

ωc

(GR)ωf

fneq
i,c (x, t), (2.28)

fi,c(x, t) = f eq
i (x, t) +

(GR)ωf

ωc
fneq
i,f (x, t), (2.29)
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(a) (b)

Figure 2.2: (a) Schematic of the computational grid iny − z plane, and (b) the grid transitions
at the grid interface with grid-embedding ratio ofGR = 2.

whereω is the relaxation frequency which corresponds to the inverse of relaxation time,ω =

∆t/τ . Note that rescalingf eq
i (x, t) is not necessary since it only depends on fluid density

and velocity, which are continuous across the grids. On the other hand, the non-equilibrium

part is proportional to the gradient of the velocity, therefore it is necessary to rescale it when

transferring it between grids with different resolutionLagravaet al. (2012). This rescaling

between the grids enables a continuous transition of the fluid quantities at the grid interfaces.

29



2.2 Solid Solver

2.2.1 Governing Equation of Motion of Deformable/slender Filaments

This section outlines the numerical method employed to solve the governing equation of mo-

tion of the hairy filament. As mimicking the mammalian hairs (e.g. seal furs) or bird feather

fibers, transverse shear deformation and rotational bending are negligible. Thus, it can be

assumed that the motion of the filaments is described by the dynamic Euler-Bernoulli beam

equation resulting from the Euler-Bernoulli beam theory rather than the Timoshenko–Ehrenfest

beam theory. The equation of motion is derived through the principle of least action, regarding

the variational derivative of the action integral of the Lagrangian,L (Goldsteinet al., 2002).

The resulting equation is then non-dimensionalized to ensure consistency in the bending rigid-

ity and tension coefficient of the filaments during the parametric study. The dimensionless beam

equation is solved with a second-order central difference scheme in both space and time.

The governing equation of motion of the hairy filament can be simply derived by finding a

stationary point of the action integral ofL with respect to time.L is defined by the difference

of kinetic energy of a dynamical system from its potential energy. Regarding a hairy filament

as a dynamical system,L can be written as

L =

∫

Γ

∆ρ

2
U2ds−

∫

Γ

[

Kb

(

d2X
ds2

)2

+
T

2

(

dX
ds

)2
]

ds−
∫

Γ

FIBSXds+
∫

Γ

FcXds, (2.30)

where∆ρ ≡ (ρs − ρfA0) is the linear density difference between the filaments and the sur-

rounding fluid, whereρs denotes the linear density of the filament,ρf denotes the density of the

fluid, andA0 is the effective cross-sectional area of the filament in its initial, undeformed state.

U(s, t) = dX(s, t)/dt is the velocity of the Lagrangian marker. The terms present in the right-

hand side represent the kinetic energy, the elastic potential energy, the works done by the forces

from the fluid-structure interaction, filament-filament andfilament-wall collisions. According

to the principle of least action, the motion of the dynamicalsystem from time0 to t is such that
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the action integral has a stationary value for the actual path of the motion, and the variation of

the action integral is zero (Goldsteinet al., 2002):

A =

∫ t

0

[

∫

Γ

∆ρ

2
U2ds−

∫

Γ

[

Kb

(

d2X
ds2

)2

+
T

2

(

dX
ds

)2
]

ds−
∫

Γ

FIBSXds+
∫

Γ

FcXds

]

dt,

(2.31)

δvarA = 0. (2.32)

Then, the resulting equation becomes the governing equation of motion of the filament,

∆ρ
∂2X
∂t2

=
∂

∂s

(

T
∂X
∂s

)

− ∂2

∂s2

(

Kb
∂2X
∂s2

)

− FIBS + Fc. (2.33)

Here, the position vector of the Lagrangian markers on the filament is denoted by

X(s, t) = [X(s, t), Y (s, t), Z(s, t)]. The tension force along the filament axis is denoted

by T (s, t), and the bending rigidity is denoted byKb. In this study, small elongation of the

filaments, less than1%, was allowed by setting the dimensionless stretching coefficient to

Ks/(∆ρU
2
b h

2
0) = 1, whereUb is the bulk velocity in the channel, andh0 is the height of the

filament at its initial, undeformed state. The interaction force per unit length exerted on the

filament by the surrounding fluid is denoted byFIBS(s, t). The repulsive force,Fc, from the

filament-to-filament or filament-to-wall collision is introduced to prevent the filaments from

crossing each other or crossing the channel walls while deforming.

The filaments are modeled with a free end at their tips and a clamped end at their roots. The

boundary conditions at the free end are (Huanget al., 2007)

T (stip, t) = 0,
∂2X(stip, t)

∂s2
= 0,

∂3X(stip, t)

∂s3
= 0, (2.34)
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and the boundary conditions at the clamped end are (Huanget al., 2007)

X(0, t) = X(0, 0),
∂X(0, t)

∂s
= (0, 0,±1). (2.35)

In equation2.35, the positive (negative) signs are for the filaments mountedat the lower (upper)

channel walls, respectively.

2.2.2 Dimensionless Governing Equation of Motion of De-

formable/slender Filaments

A dimensionless form of the equation2.33 can be obtained by multiplying byh0/ (∆ρU2
b ),

whereh0 is the filament length in undeformed state:

∂2X∗

∂t∗2
=

∂

∂s∗

(

T ∗∂X∗

∂s∗

)

− ∂2

∂s∗2

(

K∗
b

∂2X∗

∂s∗2

)

− F∗
IBS + F∗

c . (2.36)

s∗ is the dimensionless arc length (s/h0); X∗ is the dimensionless position of theI-th marker

of a filament (X/h0); t∗ the dimensionless time (tUb,tar/h0); T ∗ is the dimensionless tension

force (T ∗ ≡ K∗|∂X
∂s
| − 1). The reference quantities used for the non-dimensionalization of

stretching coefficient, bending rigidity, and Lagrangian forcing areKs,ref = ∆ρU2
b,tar and

Kb,ref = ∆ρU2
b,tarh

2
0, andFref =

∆ρU2
b,tar

h0
, respectively. In this proposed study, dimensionless

form is used to keep consistency in dealing with the stretching coefficient and bending rigidity.

Moreover, the dimensionless forms allows for comparing thedifferent sizes of systems in a

consistent manner.

This study adopted a short-range repulsive force model proposed byGlowinskiet al. (1999).

In this model, the repulsive force has a non-zero value once the I-th Lagrangian marker of

a filament is closed to the markers of the other neighboring filaments or to the channel walls

within a distance ofdcf or dcw, respectively. The resulting net force on the marker is given by
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F∗
c,I = Ff∗

c,I + Fw∗
c,I , where

Ff∗
c,I =















∑

J 6=I K
∗
c (X

∗
I − X∗

J)
(

d∗IJ − d∗cf
)2
,

(

d∗IJ ≤ d∗cf
)

0, (otherwise)

(2.37)

Fw∗
c,I =















±K∗
c (Z

∗
I − z∗0) (d

∗
I0 − d∗cw)

2 , (d∗I0 ≤ d∗cw)

0, (otherwise)

(2.38)

whereX∗
I is the position of theI-th marker of a filament normalized byh0; X∗

J is the position of

theJ-th marker of its neighboring filaments, normalized byh0. Ff∗
c,I is the dimensionless repul-

sive force exerted on theI-th Lagrangian marker of a filament by theJ-th Lagrangian marker of

its neighboring filaments; their dimensionless gap distance is denoted byd∗IJ = |XI − XJ |/h0;

Fw∗
c,I is the dimensionless repulsive force exerted on theI-th Lagrangian marker of the filament

by the channel wall; the dimensionless wall-normal distance between the marker and the

channel wall is denoted byd∗I0 = |ZI − z0|/h0; K∗
c is the dimensionless stiffness parameter,

which is set to1, appropriate enough to prevent the collisions between filament-filament as well

as between filament-channel walls. In this study, marginal variation in the simulation results

was observed onceK∗
c is greater than 1. The repulsive force between Lagrangian markers and

channel walls was limited to the wall-normal direction in this study, as shown in equation2.38.

In this study,dr∗cf was set to3∆∗ to prevent overlapping the interpolation/spreading ranges of

two or more filaments;dr∗cw was set to1.5∆∗ to avoid overlapping the interpolation/spreading

ranges of the filaments with the channel wall, where∆∗ is the dimensionless Eulerian grid size

(∆/h0). The positive (negative) sign in equation2.38denotes the filament-wall collisions at

the lower (upper) channel wall. The total repulsive force acting on theI-th Lagrangian marker

of a filament turns out to beF∗
c = Ff∗

c + Fw∗
c .

A staggered grid is used in Lagrangian coordinate system, ascan be seen in figure2.3.
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Figure 2.3: Schematic diagram of staggered grid along a filament. Tension force is defined on
si+1/2. Solid position and velocity are defined onsi.

Tension force is defined on the interfaces and the other Lagrangian variables are defined on the

nodes.

X∗n+1
i − 2X∗n

i + X∗n−1
i

∆t2
= F∗n

t,i + F∗n
b,i − F∗n

IBS,i + F∗n
c,i (2.39)

X∗n+1
i = 2X∗n

i − X∗n−1
i +∆t2

(

F∗n
t,i + F∗n

b,i − F∗n
IBS,i + F∗n

c,i

)

(2.40)

whereF∗n
t,i andF∗n

b,i indicate the dimensionless tension and bending forces, respectively, which

are described by

F∗n
t,i =

T ∗n
i+1/2

X∗n
i+1

−X∗n
i

∆s∗
− T ∗n

i−1/2

X∗n
i −X∗n

i−1

∆s∗

∆s∗

=
K∗

s

(

X∗n
i+1

−X∗n
i

∆s∗
− 1

)

X∗n
i+1

−X∗n
i

∆s∗
−K∗

s

(

X∗n
i −X∗n

i−1

∆s∗
− 1

)

X∗n
i −X∗n

i−1

∆s∗

∆s∗
,

(2.41)

F∗n
b,i = −

X∗n
i+2

−2X∗n
i+1

+X∗n
i

∆s∗2
− 2

X∗n
i+1

−2X∗n
i +X∗n

i−1

∆s∗2
+

X∗n
i −2X∗n

i−1
+X∗n

i−2

∆s∗2

∆s∗2

= −X∗n
i+2 − 4X∗n

i+1 + 6X∗n
i − 4X∗n

i−1 + X∗n
i−2

∆s∗4
.

(2.42)

The position of Lagrangian markers,X∗n+1
i , is updated from equation2.40and then the filament

velocity is updated in turn using the second order backward difference scheme,

U∗n+1
i =

3X∗n+1
i − 4X∗n

i + X∗n−1
i

2∆t
. (2.43)
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2.3 Fluid-hairy Structure Interaction

2.3.1 Immersed Boundary (IB) Method

Fluid-structure interaction (FSI) is a ubiquitous phenomenon that is widely observed in various

engineering applications, spanning from aerospace (Airfoil and engine blade designs), biomed-

ical (Heart valves, beating cilia, and drug particle transport) to civil (Flow over urban areas,

bridges, and skyscrapers), ocean (Riser, offshore platform), and energy engineering (Wind tur-

bines, marine hydrokinetic devices, nuclear fuel rods). Numerous numerical studies have been

conducted to comprehend FSI. The immersed boundary (IB) method has gained popularity for

FSI simulations. The IB method was first proposed by Peskin in1972 (Peskin, 1972) to simulate

flow patterns around heart valves. Later, a number of its variants have been proposed to con-

duct a variety of FSI simulations and improve the numerical accuracy, stability, and robustness.

FSI simulation with IB methods has provided intuitive solutions to the problem and suggested

promising measures to accomplish a desired system featuresin several engineering applications,

such as separation control with flaps mounted on airfoils andhairy coatings on cylinders (Shan

et al., 2000; Favieret al., 2009; Fanget al., 2019; Maoet al., 2022), turbulent skin-friction drag

reduction with ribbed-surfaces (Garcia-Mayoral & Jimenez, 2011), convective heat transfer or

mixing enhancement with flexible flaps in a heat sink channel (Parket al., 2016; Lee et al.,

2017, 2018; Chenet al., 2020), energy harvesting with an inverted piezoelectric flag (Ryuet al.,

2015; Shoele & Mittal, 2016).

The key feature of IB method is to separate the solution procedures of the fluid flow and the

motion of a solid body by describing the fluid flow in an Eulerian coordinate and the motion

of the solid body in a Lagrangian coordinate, respectively.The fluid and solid motions are

coupled via the interaction forces, which are incorporatedto each governing equation to satisfy

the fundamental physical principles, Newton’s third law. This method can bypass the need for

a tedious re-meshing process for moving geometries at each time step, which is a laborious and
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computationally expensive process commonly required the body-fitted methods (e.g. arbitrary

Lagrangian-Eulerian approach).

The IB framework is often characterized by two categories: Interface schemes and forcing

schemes, which have emerged to improve the accuracy, stability, and robustness of FSI solvers.

The interface schemes can be subdivided into sharp-interface and diffusive-interface schemes,

while the forcing schemes can be subdivided into feedback-forcing and direct-forcing schemes.

Further details on the interface and forcing schemes are presented in the following sections.

2.3.1.1 Interface Schemes: Sharp- and Diffusive-interface Schemes

In IB simulations, the locations of Lagrangian nodes (or markers) do not generally match with

the locations of Eulerian nodes, requiring an appropriate interface scheme in order to satisfy the

basic kinematic rules such as the no-slip, non-penetrationalong the IB. This interface scheme

can be categorized to two types: Sharp-interface scheme anddiffusive-interface scheme. Figure

2.4 show the schematic diagrams of the sharp- and diffusive-interface schemes. The sharp-

interface scheme is generally used to impose the fluid quantities on the forcing points near the

surface of solid body whose cross-sectional area or volume are not negligible but large enough

to have a few grid points inside the solid body and distinguish them from the fluid nodes. The

interaction force on the IB is computed by using informationon the fluid quantities that are

discontinuously distributed across this boundary, which is why this scheme is often called ‘dis-

crete’ forcing scheme (Mittal & Iccarino, 2005). In contrast, the diffusive-interface scheme

imposes the fluid quantities on the IB by interpolating fluid quantities from the neighboring

fluid nodes to the IB. With an appropriate smooth function (e.g. smoothed delta function), the

interaction force on the IB is computed by interpolating thefluid quantities that are distributed

continuously across the boundary, which is why it is often called a continuous forcing scheme

(Mittal & Iccarino, 2005). More details in the smoothed function for the interpolation of Eu-

lerian quantities and the spreading of Lagrangian quantities will be discussed at the end of this
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section.

In the sharp-interface scheme, the interface between the fluid and the immersed structure

is modeled as a sharp boundary (Mohd-Yusof, 1997; Fedlunet al., 2000). Forcing points are

placed on the Eulerian nodes closest to the interface, and fluid quantities at the forcing node

are determined using an appropriate interpolation scheme in order to satisfy the basic kine-

matic conditions (e.g. no-slip and non-penetration) alongthe IB. While this method resulted

in acceptable accuracy and stability for stationary, rigidsolid bodies, it is vulnerable to numer-

ical instability in the case of moving boundary problems. This is due to spurious oscillations

resulting from temporal and spatial discontinuities at Eulerian nodes within the solid region

during the previous time step, which become exposed to the fluid region at the subsequent time

step. To address this issue, various remedies have been proposed such as ghost-cell, cut-cell,

iterative/non-iterative strong fluid-structure couplingschemes (Luo et al., 2008; Mittal et al.,

2008; Seo & Mittal, 2011; Yanget al., 2008; Yang & Stern, 2015). Although these approaches

improved the numerical stability, it is still doubtful thatthe sharp-interface is applicable for

elastic, slender, dynamically deforming solid bodies, because assigning grid points inside the

solid body and distinguishing them from fluid nodes are challenging for such bodies.

In the diffusive-interface scheme, the fluid velocity is interpolated from the surrounding Eu-

lerian grids into Lagrangian markers along the IB, employing a smoothing technique of the

interpolation procedure (e.g. employing a discrete smoothdelta function). The interaction

force is dependent on the difference between the interpolated fluid velocity and the Lagrangian

marker’s velocity, and the calculated interaction force isdistributed into the adjacent Eulerian

nodes via the same smoothing technique. This scheme has the advantage of mitigating numer-

ical oscillations, making it more accurate and stable for moving boundaries in comparison to

sharp-interface scheme (Uhlmann, 2005). With this advantage, the diffusive-interface is widely

adopted for FSI problems, especially elastic, slender, dynamically deforming solid bodies. This

suggests that the diffusive-interface scheme more sounds valid for the present study where the

dynamics of hairy filaments and their effects on the modulation of turbulent channel flows are
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(a) (b)

Figure 2.4: Schematic diagrams of (a) sharp-interface and (b) diffusive-interface schemes. (a)
An example of velocity reconstruction method (Fedlunet al., 2000) for a rigid, cylindrical solid
body. Ū denotes the imposed velocity obtained from a linear approximation. (b) An example
of an elastic, slender body with the support of theith Lagrangian marker in regards to 3-point
discrete delta function (Romaet al., 1999). The support denoted by the red-dashed box indicates
the interpolation/spreading stencil. The gray shaded areadenotes the diffusivity of the interface.
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Figure 2.5: Distributions of one-dimensional continuous functions based on 2-point (Solid),
3-point (Dashed), 4-point-piecewise (Dashed-dot), 4-point-cosine (Dashed-dot-dot) smoothed
delta functions.
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investigated, as compared to the sharp-interface scheme.

In the framework of two-way coupling FSI simulation with thediffusive-interface scheme,

the interpolation and force spreading are generally conducted by using a discrete smoothed delta

function. In this scheme, the interpolation is conducted with a discrete smoothed delta func-

tion as present in figure2.5. Its concept was first proposed by Peskin in 1972 for the smooth

interpolation of the fluid velocity and the force spreading.Since then, several variants have

been proposed, including 2-point discrete delta function,which corresponds to the bilinear in-

terpolation in two dimensions and tri-linear interpolation in three dimension; 3-point discrete

delta function (Romaet al., 1999); 4-point cosine-type discrete delta function (Peskin, 1977); 4-

point piecewise discrete delta function (Peskin, 2002); 6-point discrete delta function (Stockie,

1997). A choice of the discrete smooth delta function must be madeproperly since it affects

the smoothness of the boundary and localization of interpolation/spreading. If the support size

increases, the interpolation/spreading stencil become larger, thus the boundary becomes more

diffusive, disabling to localize the interpolation/spreading operations and satisfy the no-slip con-

dition accurately. Conversely, if the support size decreases, the interpolation/spreading stencil

becomes too sharp, increasing the numerical instability. To achieve a balance between inter-

face smoothness and numerical accuracy and stability, 3-point discrete smoothed delta function

could be deemed a suitable compromise.

2.3.1.2 Forcing Schemes: Feedback- and Direct-forcing Schemes

The feedback-forcing IB method was pioneered by Peskin in 1972 for the simulation of blood

flow in an elastic heart valve.Goldsteinet al. (1993) developed the feedback-forcing scheme

for numerical simulations of flow around a stationary rigid body. Later, the penalty IB method

based on the feedback-forcing scheme were proposed to improve the numerical accuracy and

stability (Kim & Peskin, 2007; Huanget al., 2007; Huang & Sung, 2010), introducing the

massless as well as massive boundaries that were linked together via virtual spring and damper.
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In the feedback-forcing scheme, the interaction force exerted by fluid on solid was computed

by Hook’s law or proper feedback loops (Goldsteinet al., 1993; Saiki & Biringen, 1996; Huang

et al., 2007; Tianet al., 2011), where the IB-related force is a function of the differencebetween

the fluid velocity interpolated to a Lagrangian marker and the solid velocity at the marker. Then

the computed force is distributed into the surrounding Eulerian grids. Although the feedback-

forcing is simple and straightforward, the numerical accuracy and stability highly depend on

the preconditioned virtual spring and damper constants (Shin et al., 2008; Parket al., 2016).

Seeking a proper range of these constants requiresa priori numerical experiments; however

the range varies significantly depending on the flow conditions, geometries, time step, grid

resolutions. Therefore, its less robustness leaves a suspicion that the feedback-forcing scheme

is acceptable for numerical simulations requiring a systematic parametric study.

In contrast, the direct-forcing scheme obviates the arbitrariness resulting from the empirical

constants. This scheme directly imposes the boundary conditions on the IB. This direct-forcing

IB method was pioneered byMohd-Yusof(1997); Fedlunet al. (2000) with a sharp-interface

scheme. Later,Uhlmann (2005) combined the direct-forcing IB scheme with a diffusive-

interface scheme. He showed that numerical instability resulting from the spurious oscillation

was well suppressed along the IB, and thus numerical accuracy was improved. Although the

direct-forcing scheme combined with a diffusive-interface showed a promise, it is still question-

able whether it provides an acceptable basic kinematic rules, such as no-slip and non-penetration

conditions along the IB. The no-slip along the IB is not oftenstrictly fulfilled, because the force

cannot be fully reconstructed after the interpolation and spreading operations (Gsell & Favier,

2021). This problem becomes more substantial for turbulent flowswhere the failure of the re-

construction provides a false velocity fluctuation field more significantly. Thus, a remedy is

required to improve the basic kinematic condition in the framework of direct-forcing combined

with diffusive-interface scheme, which will be discussed in the following sections.
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2.3.2 LB-IB Method within the Framework of Diffusive-direc t Forcing IB

Scheme

2.3.2.1 Limitations of Previous Methods

The direct-forcing IB method, in combination with a diffusive-interface scheme, is commonly

used for simulating the interaction between an elastic, slender body and a surrounding fluid

flow in two-way coupled FSI simulations. This is because of its robustness and explicit imple-

mentation. However, the explicit nature of this procedure can give rise to slip-errors and flow

penetration, which are contradictory to fundamental kinematic principles such as the no-slip

and non-penetration conditions.

Several implicit methods have been proposed to overcome this problem. (Luo et al., 2007;

Kang & Hassan, 2011; Kempe & Fröhlich, 2012) proposed the multi-direct-forcing IB method

for IB-NS and IB-LB simulations. In this approach, the direct-forcing is proceeded multiple

times at sub-iteration steps until the slip-error reduces within a predefined criterion.Wu &

Shu(2009) proposed IB-LB method based on the implicit velocity correction method. In this

method, the interaction force imposed on the IB is set as unknown rather than pre-calculated

and it is determined after the no-slip along the IB is enforced implicitly. Although these im-

plicit forcing schemes suppressed the slip-error and flow penetration, it becomes much more

computationally expensive when the number of immersed solid bodies increases. The implicit

implementation should be taken into account for each Lagrangian marker along a number of im-

mersed bodies at each time step. Furthermore, it relied on a solution procedure of linear matrix

equation that brings about an additional implementation effort. Therefore, it is evident that an

explicit formulation is still desired to maintain the computational costs and the implementation

efforts within reasonable limits while making an effort to fulfill the no-slip and non-penetration

conditions.

An explicit approach to fulfill the fundamental kinematic rules can be achieved by ensuring

the reciprocity of interpolation-spreading operations.Pinelli et al. (2010) introduced a correct-
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ing parameter involved in the spreading operator to ensure the reciprocity. The main idea is

that a Lagrangian quantity should be reproduced after consecutive procedures of spreading and

interpolation,

Ψ(s, t) = I

[

S [Ψ(s, t)]

]

, (2.44)

whereI[ ] andS[ ] denote the interpolation and spreading operators, respectively, also repre-

sented by

Ψ(s, t) = I [ψ(x, t)] =
∫

Ω

ψ(x, t)δ(X − x)dx, (2.45)

ψ(x, t) = S [Ψ(s, t)] =

∫

Γ

Ψ(s, t)δ(X − x)ε(s, t)ds, (2.46)

whereε is the correcting parameter,Ψ(s, t) is a Lagrangian quantity,ψ(s, t) is an Eulerian

quantity,dx is equivalent to the infinitesimal volume∆V = ∆x∆y∆z in three-dimensional

Eulerian domain,Ω, andΓ is the Lagrangian domain. The local coordinate along the filament

axis is denoted bys. I [ ] is the interpolation operator of an Eulerian quantity,S [ ] is the spread-

ing operator of a Lagrangian quantity.

In this manner, Lagrangian forcing,FIB(s, t), exerted on solid by fluid, and momentum forc-

ing, fIB(x, t), exerted on fluid by solid should also satisfy the reciprocity to maintain the forcings

conserved during the interpolation/spreading operations. Then the Lagrangian quantity can be

replaced byFIB(s, t) in equation2.44, and its discrete form can be expressed by

FIB,q(sJ , t) =
∑

K

αJ,Kε(sK , t)FIB,q(sK , t), (2.47)

αJ,K =
∑

xl,m,n∈ΩJ

∆sKδ(XJ − xl,m,n)δ(XK − xl,m,n)∆x, (2.48)

where the subscriptq = {1, 2, 3} denotes thex, y, and z directions,ΩJ is the interpola-

tion/spreading window ofJ-th marker of a filament,xl,m,n is the location of Eulerian grids

within ΩJ as shown in figure2.6. In this study,δ(X − x) is 3-point smoothed delta function,
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Figure 2.6: A schematic diagram of the compact supports forJ-th andK-th Lagrangian mark-
ers. Their positions are denoted byXJ and XK , respectively. The corresponding compact
supports are denoted by red and blue shaded areas,ΩJ andΩK , respectively. The support size
corresponds to the size of the interpolation/spreading stencil of 3-point smoothed delta function
(Romaet al., 1999).

comprising the product of 1D delta functions at each direction (Romaet al., 1999),

δ(X − x) =
1

∆x∆y∆z
φ

( |X − x|
∆x

)

φ

( |Y − y|
∆y

)

φ

( |Z − z|
∆z

)

(2.49)

with

φ (r) =































1
3

(

1 +
√
−3r2 + 1

)

, (0 < r < 0.5)

1
6

(

5− 3|r| −
√

−3(1− |r|)2 + 1
)

, (0.5 < r < 1.5)

0, otherwise

(2.50)

wherer is the gap distance between a Lagrangian marker and its adjacent Eulerian grids, nor-

malized by the size of the local Eulerian grid.

It is noteworthy that the correcting parameter maintains the dimensional equality during

the spreading operation. The dimension of the correcting parameter is the same as either the

dimension of the square of the grid resolution (ε ∼ ∆2) for one-dimensional solid body in

three-dimensional flow or the dimension of the grid resolution for two-dimensional solid body

in three-dimensional flow and one-dimensional solid body intwo-dimensional flow (ε ∼ ∆).

This is why it is often referred to as ‘hydrodynamic area’ forthe former or ‘hydrodynamic
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thickness’ for the latter (Pinelli et al., 2010; Favieret al., 2014; Li et al., 2016; Jiang & Liu,

2019).

Accurate evaluation of the correcting parameter is responsible for ensuring the reciprocity

of interpolation-spreading operations and thus the no-slip and non-penetration conditions along

the IB. For examples of rigid cylinders or rigid slender plates with their pre-described velocity,

Pinelli et al. (2010) assumed that the forcings distributed along the IB remain constant, leading

to Fq(sJ , t) = Fq(sK , t). In this assumption, the equation2.47can be reduced to

1 =
∑

k

αJ,Kε(sK , t), (2.51)

and its a matrix equation form is expressed by

A

























ε(s0, t)

ε(s1, t)

...

ε(sNF
, t)

























=

























1

1

...

1

























. (2.52)

where the coefficients of the matrixA are denoted byαJ,K in the equation2.48, ands0, ..., sNF

denote the Lagrangian markers along the IB. This matrix equation can be solved to obtain

ε(s, t), which can be subsequently incorporated into the spreadingoperator whilst maintaining

the dimensional equality during the force spreading. With this approach,Pinelli et al. (2010)

showed reasonable numerical accuracy with an improvement of no-slip along the IB and the

range of applicability of the proposed methodology for stationary and moving rigid solid bodies.

Although this approach showed a promise to fulfill the no-slip on IB, few drawbacks were found

in this study.

First, a slender filament located with a certain position in relative to the surrounding Eulerian

grids can result in a set of coefficients of A matrix that leadsto a zigzag distribution ofε(s, t)

44



Figure 2.7: An example of a rigid, slender filament positioned at Eulerian grids in thex andy
directions and at the halfway of Eulerian grids in thez direction, respectively. The filament is
uniformly discretized with 5 Lagrangian markers.

along the IB. Assume that a slender rigid filament is located as shown in figure2.7. In this

example, the Lagrangian markers are located at the Euleriangrid points in thex andy directions,

but located at the center of grid cell in thez direction. To evaluate the first coefficient,α0,0, ofA,

a set of Eulerian grid points involved in the interpolation/spreading support of the0-th marker

can be found as denoted by circular symbols in figure2.8(a). Each circular symbol denoted in

figure 2.8(a) indicates the Eulerian grid points included in the supportof the 0-th Lagrangian

marker, which is denoted by the blue-colored, square-shaped symbol. The resulting coefficient,

α0,0, can then be obtained from

α0,0 =
∑

xl,m,n∈Ω0

∆s0δ(X0 − xl,m,n)δ(X0 − xl,m,n)∆x
3
=

∆s0
∆x3

β0,0 (2.53)

β0,0 =
∑

xl,m,n∈Ω0

δ(X0 − xl,m,n)δ(X0 − xl,m,n)

=
∑

xl,m,n∈Ω0

φ

(

xl,m,n −X0

∆x

)

φ

(

yl,m,n − Y0
∆y

)

φ

(

zl,m,n − Z0

∆y

)

φ

(

xl,m,n −X0

∆x

)

φ

(

yl,m,n − Y0
∆y

)

φ

(

zl,m,n − Z0

∆z

)

.

(2.54)

Then the breakdowns ofβ0,0 can be expressed in terms of 4 green-, 4 red-, 8 yellow-, 2 skyblue-
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colored circular symbols denoted in figure2.8(a) and obtained regarding non-zero outcomes,

β0,0 = 4φ(1)φ(0)φ(0.5)φ(1)φ(0)φ(0.5) + 4φ(0)φ(1)φ(0.5)φ(0)φ(1)φ(0.5)

+ 8φ(1)φ(1)φ(0.5)φ(1)φ(1)φ(0.5) + 2φ(0)φ(0)φ(0.5)φ(0)φ(0)φ(0.5)

= 4

(

1

6

)(

2

3

)(

1

2

)(

1

6

)(

2

3

)(

1

2

)

+ 4

(
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3

)(

1

6

)(

1

2

)(

2

3

)(

1

6

)(

1

2

)

+ 8

(

1

6

)(
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6

)(

1

2

)(

1

6

)(

1

6

)(

1

2

)

+ 2

(

2

3

)(

2

3

)(

1

2

)(

2

3

)(

2

3

)(

1

2

)

= 0.125.

(2.55)

Thenα0,0 = 0.125∆s0/∆x
3 is obtained from the equations2.53and2.55.

Similarly,α0,1 can also be obtained as followed,

α0,1 =
∑

xl,m,n∈Ω0

∆s0δ(X0 − xl,m,n)δ(X1 − xl,m,n)∆x
3
=

∆s1
∆x3

β0,1 (2.56)

β0,1 =
∑

xl,m,n∈Ω0

δ(X0 − xl,m,n)δ(X1 − xl,m,n)

=
∑

xl,m,n∈Ω0

φ

(

xl,m,n −X0

∆x

)

φ

(

yl,m,n − Y0
∆y

)

φ

(

zl,m,n − Z0

∆y

)

φ

(

xl,m,n −X1

∆x

)

φ

(

yl,m,n − Y1
∆y

)

φ

(

zl,m,n − Z1

∆z

)

.

(2.57)

The breakdowns ofβ0,1 can be expressed in terms of 2 green-, 2 red-, 4 yellow-, 1 skyblue-

colored circular symbols denoted in figure2.8(b), and obtained regarding non-zero outcomes,

β0,0 = 2φ(1)φ(0)φ(0.5)φ(1)φ(0)φ(0.5) + 2φ(0)φ(1)φ(0.5)φ(0)φ(1)φ(0.5)

+ 4φ(1)φ(1)φ(0.5)φ(1)φ(1)φ(0.5) + 1φ(0)φ(0)φ(0.5)φ(0)φ(0)φ(0.5)

= 2
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(
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)
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(
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= 0.0625.

(2.58)
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Thenα0,1 = 0.0625∆s0/∆x
3 is obtained from the equations2.56and2.58.

In similar fashion, the other coefficients,αJ,K , can be calculated and filled inA. In this

example, the indices vary from0 to 4, J = 0, ..., 4 andK = 0, ..., 4. The resulting linear matrix

equation (Equation2.52) becomes

























0.125 0.0625 0 0 0
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0 0 0 0.0625 0.125
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1

1
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1

























(2.59)

This matrix equation can be solved forε(s, t) by using an appropriate linear solver (e.g. LU

decomposition).ε(s, t) obtained from the equation above ends up having a zigzag distribution

as shown in figure2.9. This zigzag distribution ofε is incorporated into the spreading operator,

leading to the force distribution which is no longer continuous along the IB and eventually

exacerbating the numerical stability.

As a remedy, a modification was made to the spreading operatorby proposing a uniform

distribution of the correcting parameter along the IB basedon the averaging their local values

over the IB (Jiang & Liu, 2019). This involved calculatinḡε(t) as the sum ofε(s, t) for s0 to

sNf
, divided by(Nf + 1), giving ε̄(t) =

∑sNf
s0 ε(s, t)/ (Nf + 1). The resultinḡε(t) was then

used in place of the local correcting parameterε(s, t) in the spreading operator (Equation2.46).

However, this strategy does not provide the accurate no-slip condition along the IB, but result

in huge slip-errors as it violates the mathematical formulation of reciprocity, as will be shown

in Section2.7.5.

Second, the assumption made in the previous study (Pinelli et al., 2010), that the interac-

tion force distributed along the IB is constant,Fq(sJ , t) = Fq(sK , t), is no longer valid when

dealing with an elastic, slender body interacting with non-uniform flows. To illustrate this
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(a) (b)

Figure 2.8: (a) Blue-colored, square-shaped symbol denotes the0-th Lagrangian marker.
Circle-shaped symbols denote the Eulerian grid points included in both supports of the0-th
marker and the same0-th marker. The resultingα0,0 is obtained by summing up the outcome
of the continuous functions,

∑

xl,m,n∈Ω0
δ(X0 − xl,m,n)δ(X0 − xl,m,n). (b) Blue-colored, square-

shaped symbol and skyblue-colored, square-shaped symbol denote the0-th and1st Lagrangian
markers, respectively. Circle-shaped symbols denote the Eulerian grid points included in both
supports of the0-th marker and the1st marker. The resultingα0,1 is obtained by summing up
the outcome of the continuous functions,

∑

xl,m,n∈Ω0
δ(X0 − xl,m,n)δ(X1 − xl,m,n).

i

ε i

0 1 2 3 4
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Figure 2.9: The distribution ofε, resulted from the previous approach (Pinelli et al., 2010), for
the example of the rigid, slender filament, discretized with5 Lagrangian markers.
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point, consider two different geometries: The flow over a rigid cylindrical solid body and the

flow over an elastic, slender solid body, as shown in Figure2.10. While the assumption may

be acceptable for a rigid solid body, which can be assumed to be a lumped body sharing the

same velocity and forcings across the Lagrangian markers, this is no longer valid for an elas-

tic, slender body. The velocities interpolated into individual Lagrangian markers are different,

resulting in different magnitudes and directions of the interaction forces at each Lagrangian

marker,Fq(sJ , t) 6= Fq(sK , t). Therefore, it is prohibitive to maintain the oversimplified as-

sumption, although the assumption continues to be used in their successors (Favieret al., 2014;

Li et al., 2016; Jiang & Liu, 2019; O’Connor & Revell, 2019).

Although the previous efforts to meet the no-slip conditionalong the IB have mitigated the

slip-error and flow penetration within a tolerable limit, these attempts still need to be extended

to satisfy the no-slip more rigorously, especially for elastic, slender bodies interacting with

highly fluctuating, non-uniform flows. This is important forthe present study because the field

of turbulent channel flow over the flexible filamentous surfaces is quite sensitive to the slip-

error near the channel walls. Thus, the simulation results would be no longer reliable without

a rigorous formulation. Furthermore, there is yet to be a theoretical analysis explaining the

failure of reciprocal interpolation-spreading operations for elastic, slender IB, and suggesting

its remedy within the framework of diffusive direct-forcing IB scheme.

2.3.2.2 A New LB-IB Method with Improved Reciprocity of Interpolation-spreading Op-

erations

This study proposes a precise interpolation-spreading procedure that rigorously satisfies the

reciprocity of the interpolation-spreading operations for elastic, slender IB and significantly

reduces the slip-error. The proposed approach involves combining the correcting parameter with

Lagrangian forcing at the same Lagrangian node, expressed as FIBS(s, t) = ε(s, t)FIB(s, t).
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(a) (b)

Figure 2.10: (a) Schematic diagram of the equally distributed Lagrangian forcing along the IB
for example of a rigid, cylindrical solid body in a uniform flow. The uniformity of the La-
grangian forcing was resulted from the assumption,FIB(sJ , t) = FIB(sK , t). (b) Schematic
diagram of the non-equally distributed Lagrangian forcingalong the IB for example of an elas-
tic, slender solid body in non-uniform flows. The Lagrangianforcings varies along the IB,
which is more realistic and rigorous.

This allows for rewriting the equation2.47as

FIB,q(sJ , t) =
∑

K

αJ,Kε(sK , t)FIB,q(sK , t) =
∑

K

αJ,KFIBS,q(sK , t). (2.60)

The reformulated equation explains that the interaction force per unit volume is converted

to the interaction force per unit length for the one-dimensional filament immersed in three-

dimensional fluid flow through the straightforward correction. The discrete equation above can

be expressed by a matrix form,

A

























FIBS,q(s0, t)

FIBS,q(s1, t)

...

FIBS,q(sNF
, t)

























=

























FIB,q(s0, t)

FIB,q(s1, t)

...

FIB,q(sNF
, t)

























. (2.61)

Note that this matrix equation is distinct from the matrix equation derived from the previous

study (Equation2.52). The difference results from excluding the oversimplifiedassumption
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that the interaction force is uniform along the IB. The reformulated matrix equation can be

solved forFIBS(s, t), which can be subsequently incorporated to the spreading operator with a

revised form,

f IB(x, t) = S [FIB(s, t)] =

∫

Γ

FIBS(s, t)δ(X − x)ds. (2.62)

Unlike the previous methods (Pinelli et al., 2010; Favieret al., 2014; Li et al., 2016; Jiang &

Liu, 2019), this approach avoids numerical instability resulting from the zigzag distribution of

ε(s, t) and the oversimplified assumption used for the rigid solid body. This is accomplished

by solving the linear equation2.62, derived rigorously from the reciprocity of interpolation-

spreading operations.

2.3.2.3 IB-LB Coupling

The IB-LB coupling scheme centers around the computation ofinteraction forcings and their

allocation into the governing equations of solid and fluid. In this study, the direct-forcing IB

scheme (Li et al., 2016) is utilized to compute the Lagrangian forcing, where the fluid velocity is

directly imposed on the Lagrangian marker through interpolation. In this approach, the velocity-

forcing relation described in equation2.13 can be expressed at the Lagrangian markers via

interpolation procedures over the Eulerian variables, giving

I
[

f p(t) + f IB(x, t)
]

= Fp(t) + FIB(s, t) =
2

∆t

[

I [ρ(x, t)]U(s, t)− I
[

ρ(x, t)unoF (x, t)
]

]

,

(2.63)

whereU(s, t) is the velocity of a Lagrangian marker on the IB. Once the Lagrangian forcing

is computed, it is distributed into the surrounding Eulerian grids via the spreading operator to

update the momentum forcing field. Then the momentum forcingis consecutively incorporated

into the LB equation via Guo’s forcing (Equations2.6and2.7, respectively).
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Figure 2.11: Schematic diagram of a turbulent channel

2.4 Maintaining a Constant Bulk Reynolds Number

2.4.1 Control Volume Analysis without IB Force

LB simulations of the pressure-driven channel flow can be carried out maintaining either con-

stant pressure gradient (CPG) or constant flow rate (CFR). Inthis study, CFR formulation is

adopted due to its advantages over CPG, which will be presented in Section2.7. The mean

pressure gradient is dynamically adjusted to keep bulk Reynolds numberReb constant for all

simulations and compare drag reductions at the sameReb. Figure2.11shows a schematic dia-

gram of a channel flow with periodicity in the streamwise (x)and spanwise (y) directions. No-

slip boundary conditions are applied at the channel walls using half-way bounce back boundary

conditionLadd(1994). The integral form of the momentum equation reads

FR(x, t) =
∂

∂t

∫

CV

ρ(x, t)u(x, t) dV, (2.64)

whereFR denotes the resultant force, and the sum of momentum fluxes atcontrol surfaces,
∫

CS
ρ(x, t)u(x, t){u(x, t) ·dA}, is zero due to the periodicity. A force equivalent to the resultant

force should be applied to the flow in order to maintain a constant bulk Reynolds number. This

force becomes equivalent to the pressure force accounting for the mean pressure gradient. Then
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the magnitude of the force should satisfy

∫ t+∆t

t

FR(x, t) dt =
∫

CV

ρ(x, t)u(x, t) dV |t+∆t −
∫

CV

ρ(x, t)u(x, t) dV |t. (2.65)

The first term in the right-hand side can be interpreted as thedesired flow rate, which is repre-

sented by
∫

CV

ρ(x, t)u(x, t) dV |t+∆t = (ρUb,tar)LxLy(2H), (2.66)

whereUb,tar is the target bulk mean velocity that satisfies a constantReb. Lx andLy denote the

channel lengths in the periodic streamwise and spanwise directions, respectively, and2H is the

full channel height. The mean pressure gradient is imposed only in the streamwise direction.

Equation2.65then can be rewritten in terms of the force per unit volume:

∫ t+∆t

t

fp(t) dt = ρUb,tar −
∫

ρ(x, t)u(x, t) dV
∫

dV
, (2.67)

Using the second order explicit Adams-Bashforth integration, the left hand side of equation

2.67can further be expanded to give

3∆t

2
fp(t)−

∆t

2
fp(t−∆t) = ρUb,tar −

∫

ρ(x, t)u(x, t) dV
∫

dV
. (2.68)

Then the integrand in the right-hand side of the equation2.68can be reformed regarding the

equation2.11,

3∆t

2
fp(t)−

∆t

2
fp(t−∆t) = ρUb,tar −

∫

ρ(x, t)unoF (x, t) + ∆t
2

fp(x, t) dV
∫

dV
. (2.69)
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Without introducing external forces other than the pressure forcefext(x, t) = fp(t), the equation

above becomes

fp(t) =
1

2∆t

[

ρUb,tar −
∫

ρ(x, t)unoF (x, t) dV
∫

dV

]

+
1

4
fp(t−∆t). (2.70)

fp(t) is directly computed from equation2.70and then incorporated to equation2.12to update

the fluid velocity field. Once the fluid variables are computed, the equilibrium distribution

function is calculated from equation2.4.
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2.4.2 Control Volume Analysis in the Presence of IB Force

In the presence of an IB force, the form of the equation2.70should be reformed. The equation

2.69derived from the control volume analysis can be rewritten as

3∆t

2
fp(t)−

∆t

2
fp(t−∆t) = ρUb,tar

−
∫

ρ(x, t)unoF (x, t) + ∆t
2

fp(t) +
∆t
2

fIB(x, t) dV
∫

dV
,

(2.71)

3∆t

2
fp(t)−

∆t

2
fp(t−∆t) =

1

∆t

[

ρUb,tar −
∫

ρ(x, t)unoF (x, t) dV
∫

dV

]

− 1

2

∫

fp(x, t) + fIB(x, t) dV
∫

dV

=
1

∆t

[

ρUb,tar −
∫

ρ(x, t)unoF (x, t) dV
∫

dV

]

− 1

2

∫

fp(x, t) + fIB(x, t) dV
′

∫

dV

− 1

2

∫

f p(x, t) d(V − V ′)
∫

dV
,

(2.72)

whereV is the entire volume of the channel,V ′ is the volume subject to the spreading operation

of IB-forcing. Reorganizing the equation above in terms off p(x, t),

fp(t)
[

3

2
+

1

2

(

1−
∫

dV ′

∫

dV

)]

=
1

2
fp(t−∆t)

+
1

∆t

[

ρUb,tar −
∫

ρ(x, t)unoF (x, t) dV
∫

dV

]

− 1

2

∫

V ′
S [Fp(t) + FIB(s, t)] dV

′

∫

dV
.

(2.73)

The last term of the right-hand side can be achieved by directly taking into account the spreading

operation over the outcome obtained from the equation2.63. Once the pressure force is obtained

from the equation2.73, the Lagrangian forcingFIB(s, t) is obtained by subtracting the pressure

force from the outcome of the equation2.63, FIB(s, t) = [Fp(t) + FIB(s, t)]− Fp(t), then the

calculation of the momentum forcing can be followed as,f IB(x, t) = S [FIB(s, t)] (x, t).
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2.5 Overview of the Present IB-LB Coupling Algorithm

The details on the time advancing procedures for the presentIB-LB coupling algorithm are

shown in Algorithm1 and figure2.12.

Algorithm 1 IB-LB coupling algorithm

Require: fi(x, 0), X(s, 0), X(s,−1), FIB(s, 0), fIB(x, 0), andfp(0) are given.
1: Calculate the fluid density,ρ(x, 0), and velocity,u(x, 0) with equations2.10and2.12.
2: Calculate the equilibrium distribution function,f eq

i (x, 0), and forcing function,Gi(x, 0)
with equations2.4and2.7.

3: Calculate the fluid density,ρ(x, 1), and velocity,unoF (x, 1), with equations2.10and2.11
once the distribution function,fi(x, 1), is updated from collision and streaming steps (Equa-
tions2.8and2.9).

4: Compute the tension force,Ft(s, 0), from the equation2.41. Compute the bending force,
Fb(s, 0), from the equation2.42. Compute the repulsive force,Fb(s, 0), from the equations
2.37and2.38. Prepare the interaction force,FIBS(s, 0), obtained at the previous time step
of step 8.

5: Advance the dynamic Euler-Bernoulli beam equation by taking the 2nd order central differ-
ence methods in space and time. Obtain the position of Lagrangian markers,X(s, 1), and
velocity of Lagrangian markers,U(s, 1) with equations2.40and2.43.

6: Consider the lumped forces,[Fp(1) + FIB(s, 1)]. Individual terms cannot be obtained at
this stage. Obtain[Fp(1) + FIB(s, 1)] from the equation2.63.

7: Obtain the pressure force from the equation2.73.
8: Obtain the Lagrangian forcing,FIB(s, 1), by subtracting the pressure force, obtained from

step 7, from the lumped forces, obtained fromstep 6. FIB(s, 1) = [Fp(1) + FIB(s, 1)] −
Fp(1)

9: Update the fluid velocity,u(x, 1) with equation2.12and go to Step 1 for the next time-step.

56



Figure 2.12: Main algorithm of the present IB-LB solution procedure

2.6 Domain Decomposition and Parallelization

A computational domain of turbulent channel flow is partitioned with a two dimensional (x−y)

domain decomposition strategy as shown in figure2.13. To perform the simulations, each sub-

domains was assigned to a separate processor of a parallel computer. In this domain decompo-

sition, the collision step is not affected due to its local nature of computational stencils. For the

streaming step, however, the distribution functions leaving a sub-domain should be transferred

to the neighboring sub-domain during a data transfer step using an appropriate MPI (Mes-

sage passing interface) routines. In this study, non-blocking communication is adopted for data

transfer between sub-domains in order to maximize the parallel performance by overlapping

the communications with the computations. The parallel performance of the code was tested

in a turbulent channel flow, corresponding to the geometry ofthe planned studies, both with

grid embedding and without it. The numerical simulations were performed in channel of size

5H × 2.5H × 2H in the streamwise, spanwise, and wall-normal directions, respectively, at a
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(a) (b)

Figure 2.13: (a) The global computational domain of turbulent channel flow partitioned with
x− y domain decomposition. (b) Each chunk of sub-domain is assigned to a separate processor
of a parallel computer.

bulk Reynolds number ofReb = 3600 corresponding toReτ = uτH/ν ≈ 221. The simulations

without grid embedding were performed with resolutions of512×256×223, in the streamwise,

spanwise and wall-normal directions, respectively, corresponding to a uniform grid spacing of

∆x+0 ≈ 2 wall units in all three directions. ForGR = 2, a grid spacing of∆x+0
c ≈ 2 wall units

on the coarse grid, and∆x+0
f ≈ 1 wall units on the fine grid were used. ForGR = 4, a grid

spacing of∆x+0
c ≈ 2 wall units on the coarse grid, and∆x+0

f ≈ 0.5 wall units on the fine grid

were used.

Figure2.14show the results of the tests for the parallel performance ofLB code on Stam-

pede2 of Texas Advanced Computing Center (TACC). The CPU time spent per each time step of

the simulation drops linearly with the number of processorsfor non-grid embedding,GR = 2,

andGR = 4, as shown in figure2.14 (a). In addition, the mean computational cost of the

codes, described by CPU time per grid point per time step of the computations, remained nearly

constant for LB method and LB-IB methods, regardless of the number of processors, for tests

in turbulent channel flow with smooth walls and turbulent channel flow with hairy surfaces,

respectively, as seen in figure2.14(b). In figure2.14(c) shows that the parallel efficiency is

preserved up to the use of 2048 processors.
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Figure 2.14: Parallel performance on Stampede2 of Texas Advanced Computing Center for LB
DNS and LB DNS coupled with IB method: (a) Wall-clock time per an iteration, (b) Wall-clock
time per grid points per an iteration, and (c) speed-up as a function of the number of processors.
◦(Red), LB DNS without grid-embedding, smooth channel wall,resolution512× 256× 221;
✷(Green), LB DNS with grid embedding,GR = 2, smooth channel wall, resolution1024 ×
512× 28 (nw)/ 512× 256× 197 (core)/1024× 512× 28 (nw);▽ (Blue) , LB DNS with grid
embeddingGR = 4, smooth channel wall, resolution2048× 1024× 56 (nw)/ 512× 256× 197
(core)/2048× 1024× 56 (nw);✷+ (Brown), IB-LB DNS with grid embeddingGR = 2, flexible
hairy surfacess+0

x ≈ 8, s+0
y ≈ 8, h+0 ≈ 8,Ks = 1,Kb = 5× 10−5, resolution1024× 512× 36

(nw)/512×256×197 (core)/1024×512×36 (nw);✷× (Brown), IB-LB DNS with grid embedding
GR = 2, flexible hairy surfacess+0

x ≈ 4, s+0
y ≈ 4, h+0 ≈ 8,Ks = 1,Kb = 5×10−5, resolution

1024× 512× 36 (nw)/ 512× 256× 197 (core)/1024× 512× 36 (nw); ✷
+ (Purple), IB-LB DNS

with grid embeddingGR = 4, flexible hairy surfacess+0
x ≈ 8, s+0

y ≈ 8, h+0 ≈ 8, Ks = 1,
Kb = 5× 10−5, resolution2048× 1024× 72 (nw)/ 512× 256× 197 (core)/2048× 1024× 72
(nw); ✷

× (Purple), IB-LB DNS with grid embeddingGR = 4, flexible hairy surfacess+0
x ≈ 4,

s+0
y ≈ 4, h+0 ≈ 8,Ks = 1,Kb = 5×10−5, resolution2048×1024×72 (nw)/ 512×256×197

(core)/2048× 1024× 72 (nw).
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2.7 Verification and Validation

A number of numerical experiments have been performed to verify and validate the present

IB-LB methods. These tests include verification of second-order accuracy of the LB and LB-IB

codes in laminar flow, grid independence studies in turbulent channel flow with smooth no-slip

walls and comparisons to pseudo-spectral results, and gridindependence studies in turbulent

channel flow with rigid, blade riblets and comparisons to available experimental data. The slip-

errors are evaluated for a turbulent channel flow with hairy surfaces in terms of the present

and previous IB-LB methods. Details on the verification/validation studies can be found in the

following subsections.

2.7.1 Laminar Channel Flow

LB formulations based on the constant flow rate (CFR) and the constant pressure gradient

(CPG) have been tested in Poiseulle channel flows. The body force that drives the laminar

channel flow is the pressure gradient, which is adjusted during the course of simulation to keep

the flow rate constant for CFR formulation, whereas the body force is fixed during the course

of simulation for CPG formulation. The streamwise velocityprofile with respect to the wall

normal direction is compared to the analytical solution. The convergence test is performed to

verify the present LB formulations and examine the order of accuracy for both CFR and CPG

formulations.

Figure2.15shows the normalized streamwise velocity profile with respect to the wall normal

directionz (2D simulation) and the relativeL2 norm which is defined as (Mei et al., 2000),

L2 =

√

∑Nz

k=1(ual(zk)− u(zk))2∆x
∑Nz

k=1(ual(zk))
2∆x

, (2.74)

as a function of the wall normal grid pointsNz = 10, 20, 40, and80 for CPG and CFR formu-
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Figure 2.15: (a) The streamwise velocity normalized the centerline velocity, uc, with respect to
the wall normal direction,z, normalized by the channel height (H). (b) The relativeL2 error
norm as a function of grid points along the wall normal direction Nz. The black solid line,
square, circle, triangle, diamond symbols indicate the analytical solution,Nz = 10, 20, 40, and
80, respectively.

lations.ual is the analytical solution of the velocity profile in a Poiseulle channel flow. Using

the Chapman-Enskog expansion, the resulting LB scheme provides the second order accuracy

(Krüger et al., 2017). The second order accuracy of the proposed scheme is verified through

the convergence test as shown in Figure2.15(b). For CFR formulation, the magnitudes of the

relativeL2 error norm are about 2.3 times smaller than those for the constant pressure gradient

formulation. This suggests that CFR formulation is more reasonable for all numerical simula-

tions in this study.

2.7.2 Womersley Flow with and without Flexible Flaps

The present study aims to validate the numerical methods against the experimental results ob-

tained fromFavieret al. (2017). First, the convergence test is performed to verify if the present

LB formulation reproduces the analytical solution and satisfies the second order accuracy with-

out the presence of the hairy filaments. Figures2.16and2.17show the simulation results of

Womersley flow with Womersley number of Reynolds number ofRe = Umax(3h0)/ν = 360

and Wo = h0(2π/ν)
1/2 = 15. The analytical solution (Chandrasekaranet al., 2005),
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ualw, is represented in figure2.16(a). Figure2.16(b) shows that the velocity profile is con-

verged to the analytical solution with increasing number ofgrids at the specific time instant,

t/T = 1.0. To quantify the numerical error, theL2 error norm of Womersley flow is defined

asL2,w =

√

1
Nz

∑Nz

i

(

u
Umax

− u
Umax

|alw
)2

and evaluated for each grid resolution. For this un-

steady flow,L2,w is hovering around the mean value as shown in figure2.17(a). The tail of

the time history ofL2,w was averaged over 4 time periods to obtain the time-averagedL2,w as

represented in the inset of figure2.17(a). In figure2.17(b), the time-averagedL2,w decreases by

a factor of the square of the grid resolution (∆x2), verifying the second order accuracy of the

present LB formulation.

Second, the validation study of the present IB-LB method is performed in comparison to the

experimental study (Favieret al., 2017). Figure2.18(a) illustrates the schematic diagram of a

row of 10 flexible flaps, mounted on the bottom channel wall. The two-dimensional computa-

tional domain is22h0 × 3h0, and periodic boundary conditions are applied to the left and right

boundaries, while the no-slip boundary conditions are applied to the upper and lower chan-

nel walls via the half-way bounce back boundary condition (Ladd, 1994). The spacing between

flaps in the streamwise direction was set to0.5h0. The periodic, sinusoidal pressure gradient was

applied to drive the oscillating channel flow,∂p̄/∂x = Aosccos (2πfosct). Aosc andfosc are the

amplitude and frequency of the pressure gradient, respectively. In this numerical experiments,

Aosc andfosc are determined, corresponding to Reynolds number ofRe = Umax(3h0)/ν = 360

and Womersley number ofWo = h0(2π/ν)
1/2 = 15, to reproduce the flow condition repre-

sented in the reference study (Favieret al., 2017). Figure2.18(b) displays the non-dimensional

vorticity fields influenced by the wall-mounted flexible flaps. In two-dimensional simulations,

the flexible hairy filament is considered to be a flexible plateor flap. The interaction between

the fluid flow and the flexible flaps seems physically plausiblebased on a qualitative analysis.

Figure2.18(c) presents the comparison between the simulation and experimental results for the

streamwise tip positions of F1-F5 (First left flap - fifth leftflap). In this figure, the numerical

simulation shows good agreement with experimental results.
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Figure 2.16: (a) Analytical solution of Womersley flow. (b) The velocity profiles for each grid
resolution at the time instant oft/T = 1.0.

For the convergence study, numerical experiments are performed varying the grid resolution

and parameters correspondingly. The cases used for the numerical experiments are tabulated in

Table2.3. As shown in figure2.19, the present IB-LB method for the simulation of the dynamics

of elastic, slender bodies during their interaction with unsteady flows holds the second order

accuracy.

CFL (Lx/∆x× Lz/∆z) H/∆x h0/∆x T/∆t

0.1 330× 45 45 15 4524

0.075 440× 60 60 20 8042

0.06 550× 75 75 25 12566

0.05 660× 90 90 30 18096

0.0375 880× 120 120 40 32170

Table 2.3: Cases for the convergence study.
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Figure 2.17: (a) Time histories of theL2,w of Womersley flow for each grid resolution,L2,w =
√

1
Nz

∑Nz

i

(

u
Umax

− u
Umax

|alw
)2

, is obtained at every time instant at a coarse grid over the last

4 periods to obtain the time-averaged error norm,L̄2,w. (b) Verification of the second order
accuracy of the present LB formulation.
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Figure 2.18: (a) Schematic of computational domain and boundary conditions for validation.
A series of 10 flaps are mounted on a channel wall where an oscillatory flow is generated with
a periodic pressure gradient. (b) An instantaneous snapshot of the non-dimensional spanwise
vorticity field, represented by the contour level ranging from -3.5 to 3.5. (c) non-dimensional tip
positions of flaps (F1-F5) in thex-direction with respect to the time normalized by the periodof
the oscillatory flow. Solid line denotes the results from thepresent simulation, compared against
the experimental results (Favieret al., 2017), which is denoted by the circle-shape symbols.
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Figure 2.19: The time-averaged error norm,L̄2,f , for the position of the flap tips at each grid

resolution. Here,L2,f =

√

1
Nf

∑Nf

i

(

xtip

h0
− xtip

h0
|ref

)2

. For this unsteady FSI simulation,xtip

h0
is

obtained at every time and compared toxtip

h0
|ref to obtainL2,f at every same time instant, shared

by both a coarse grid resollution and the reference. The time-averaged error norm,̄L2,f is then
computed by averagingL2,f at the time instants. The reference case corresponds to the finest
grid resolution withCFL = 0.375.
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2.7.3 Turbulent Channel Flow

The accuracy of LB DNS code in turbulent flow with smooth, no-slip walls was assessed by

comparing its results, both with and without grid embedding, to pseudo-spectral DNS in turbu-

lent channel flow. The pseudo-spectral DNS results are givenfrom an earlier study (Rastegari &

Akhavan, 2018). The bulk Reynolds number ofReb = q/2ν = 3600, whereq is the flow rate per

unit channel width. The corresponding friction Reynolds number ofReτ0 ≈ 221. The subscript

0 denotes the base channel flow with no-slip walls. Periodic boundary conditions are imposed

in x andy direction. A channel sizeLx×Ly ×Lz = 5H× 2.5H× 2H is used in the numerical

experiments. The corresponding numbers of grid points along x, y, andz directions in the flow

domain are 512, 256, and 223, respectively. LB DNS without grid embedding was performed

using uniform grid spacings of∆x+0 ≈ 2. LB DNS with grid embedding was performed with

grid refinement ratios ofGR = 2 and4, employed in the region between the channel walls and

the edge of the buffer layer (z+0 ≈ 30), resulting in grid spacings of∆x+0
f ≈ 1 and∆x+0

f ≈ 0.5

at z+0 . 30 for GR = 2 and4, respectively, as shown in figure2.2. Here, the superscript+0

denotes the normalization with the wall-friction velocity, uτ0, and the kinematic viscosity of

fluid, ν, for the turbulent channel flow with smooth, no-slip walls.

The LB code has been verified by comparing turbulent statistics to those given from pseudo-

spectral DNS data. Figure2.21(a) shows the time history of the skin-friction coefficient.The

time history ofCf was averaged fromtUb/H = 100 to 400, corresponding to the eddy turnover

time of approximately6.2 for the initial cut-off and18.6 for the time-averaging, respectively.

The resulting skin-friction coefficients areCf = 0.007714, 0.007668, and0.007662 for non-grid

embedding,GR = 2, and4. The relative errors of the time averagedCf toCf,ps pseudo-spectral

DNS, |Cf,ps − Cf |/Cf,ps, are1.0%, 0.4%, and0.3% for non-grid embedding,GR = 2, and4,

respectively. Figure2.21(b) shows the mean velocity profile as a function ofz+. The mean

velocity within the viscous sub-layer (z+ ≤ 5) increases linearly with the wall normal location,

showing a good agreement with the law of the wall. In the log layer, the mean velocity profile

67



agrees well with the logarithmic law,

〈

Ū
〉+

=
1

κ
ln z+ +B, (2.75)

whereκ is Karman constant (κ = 0.41) andB is the intercept of logarithmic law representation

of the mean velocity profiles in the channel flow with smooth, no-slip walls (B = 5.5).

The mean velocity profiles from non-grid embedding,GR = 2, and4 agree well with the

mean velocity profile from pseudo-spectral DNS as shown in figure2.21(b). Figures2.21(c) and

(d) show the turbulence intensities as a function ofz+. LB DNS data show a good agreement

with pseudo-spectral DNS data. Figure2.21(e) shows the mean Reynolds stress as a function

of z/H. The theoretical total shear stress is denoted by the dottedline in figure2.21(e). The

total shear stress consists of two components: turbulent shear stress (−〈uw〉+) and laminar

shear stress (du+/dz+). The contribution of Reynolds stress to the total shear stress is negli-

gible adjacent to the wall, implying that the total shear stress atz/H < 0.15 depends on the

contribution of laminar shear stress, and conversely, depends on that of turbulent shear stress

at 0.15 < z/H < 1. Figure2.21(f) shows the mean root mean square (rms) of the pressure

fluctuation as a function ofz+. LB DNS results show that the mean rms of the pressure fluc-

tuation becomes closer to pseudo-spectral data with increasing grid refinement ratio. Higher

order stats such as skewness and flatness from LB DNS was compared to those from pseudo-

spectral DNS as shown in figures2.21(a) and (b). The skewness profiles agree well with those

of pseudo-spectral DNS, except for LB DNS results without grid-embedding. Similarly, the

flatness profiles also agree well with those of pseudo-spectral DNS, except for LB DNS results

without grid-embedding. These results imply that LB DNS requires grid-embedding to obtain

accurate results near the wall region.
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Figure 2.20: (a) Time history of the skin-friction coefficients. Turbulentstats: (b) Mean veloc-
ity, (c) mean rms of velocity fluctuations, (d) Reynolds shear stress, (e) mean pressure fluctu-
ation. Red line, non-grid embedding; green line, GR=2; blueline, GR=4; Black dashed line,
pseudo-spectral DNS data.
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Figure 2.21: (a) Skewness and (b) flatness of the streamwise, spanwise, and wall normal veloc-
ity fluctuations in turbulent channel flows. Line types as in figure2.20.

Figure 2.22: Schematic diagram of a turbulent channel over surfaces covered with blade riblets.
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2.7.4 Turbulent Flow over Blade Riblets

A grid resolution study was performed to verify the present IB-LB implementation in a

turbulent flow over blade riblets. The bulk Reynolds number isReb = q/2ν = 3600, where

q is the flow rate per unit channel width. The corresponding friction Reynolds number is

Reτ0 ≈ 221. The subscript,0, denotes the base channel flow with no-slip walls. Periodic

boundary conditions are imposed in the streamwise and spanwise directions. The turbulent

channel flow was driven by the same flow rate, dynamically adjusting the mean pressure

gradient over time. The blade riblet surface is realized by rows of rigid hairy filaments

implanted at every grid cell center in the streamwise direction with an appropriate spanwise

spacing. Figure2.22shows a schematic diagram of a turbulent flow over blade riblets. In this

numerical exercise, the spanwise spacing was set tos+0
y ≈ 16, which is the optimal spanwise

spacing of the blade riblets (Bechertet al., 1997a; Garcia-Mayoral & Jimenez, 2011). Two

sets of simulations were carried out using two distinct gridresolutions: Grid 1 (GR = 2

with ∆x+0
c ≈ 2, ∆x+0

f ≈ 1) and Grid 2 (GR = 4 with ∆x+0
c ≈ 2, ∆x+0

f ≈ 0.5). The

fine grid resolution is set from the channel wall,z+0 = 0, to the edge of the buffer layer,

(z+h0)
+0 ≈ 30, for both Grid 1 and Grid 2. Each row of rigid hairs withGR = 2 andGR = 4

have the thickness of∆xf,GR=2 and∆xf,GR=4, respectively. ForGR = 4, the thickness of a

rib is twice smaller than that forGR = 2 (∆xf,GR=2 = 2∆xf,GR=4) since the cross-sectional

area of each filament occupies one Eulerian grid cell. Therefore, two rows of rigid hairs with

GR = 4 can be consecutively placed in the streamwise and spanwise directions to reproduce

the same geometrical features of the blade riblets represented byGR = 2, as shown in figure

2.23.

In this simulation setup, the turbulent statistics were compared for both grid resolutions. Fig-

ure2.24shows the comparison of the mean velocity profiles, mean root-mean-square of velocity

fluctuations, and shear stress distributions in the wall-normal direction. The drag reductions of
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(a) (b)

Figure 2.23: Schematic of the filament distribution forGR = 2, denoted by O (Green), and
GR = 4, denoted by x (Blue), respectively, on the top view. (a) Top view of rigid hairs mounted
on the channel wall. The cross-sectional area, denoted by green-shaded area, of one hair with
GR = 2 can be reproduced by2 × 2 hairs withGR = 4, regarding the effective area of each
filament that occupies one Eulerian grid cell. (b) One row of rigid hairs withGR = 2 can be
replicated by two rows of rigid hairs withGR = 4. The solid grid lines denote the lattices with
∆xf,GR=2, and the dashed grid lines denote the lattices with∆xf,GR=4.

DR = 7.0% andDR = 6.6% were obtained forGR = 2 andGR = 4, respectively. The

difference of drag reductions betweenGR = 2 andGR = 4 is close enough to be considered

as grid independent. Furthermore, the turbulent statistics fromGR = 2 agree well with those

fromGR = 4, supporting the grid independence.

2.7.5 Turbulent Flow over Flexible, Filamentous Surfaces

A numerical experiment was conducted within the framework of a diffusive, direct-forcing

IB scheme coupled with LB method to determine whether the improved reciprocity of

interpolation-spreading operators yields acceptable accuracy regarding basic kinematic con-

ditions such as the no-slip and non-penetration conditions. As discussed in Section2.3.2.1, the

oversimplified assumption, where Lagrangian forcings remain constant along the IB, (Pinelli

et al., 2010; Favieret al., 2014; Li et al., 2016; O’Connor & Revell, 2019) is not valid for an

elastic, slender solid body that interacts with unsteady, non-uniform flows. Additionally, it was

noted that the approach proposed byJiang & Liu(2019), where the averaged correcting parame-
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Figure 2.24: (a), (b)Mean velocity profiles, (c), (d) turbulence intensities with respect toz+

(First column) and(z − zeff )
+ (Second column). (e), (f) Distribution of shear stresses with

respect toz+ (First column) andz/H (Second column). IB-LB DNS results of turbulent flow
over blade riblets are represented forh+0

0 ≈ 8, h0/s = 1/2, h0/t ≈ 0.06, with Grid 1, – –
(Gray), and Grid 2,– ·· – (Black), respectively. For comparison, LB DNS result of thebase
turbulent channel flow with smooth, no-slip walls is represented with· · · · · (Black).
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Figure 2.25: Schematic diagram of a turbulent channel over surfaces covered with hairy sur-
faces.

ter is incorporated to the spreading operator, inherently violates the mathematical formulation of

the reciprocity. While the analytical proof of the incorrectness resulting from the oversimplified

assumption and its resulting linear matrix equation form was presented in Section2.3.2.1.

The schematic depicted in figure2.25illustrates a turbulent flow over surfaces covered with

flexible filaments that are uniformly distributed and erected in their initial, undeformed state.

Numerical experiments are conducted for the case of the filament height ofh+0
0 ≈ 8, height-

to-spacing ratio ofh0/s = 1, dimensionless stretching coefficient ofK∗
s = 1, dimensionless

bending rigidity ofK∗
b = 2 × 10−6, density ratio ofρr = 700. The slip-error is a measure

of the deviation from the unity in the ratio of the velocity ofLagrangian markers to the fluid

velocity interpolated to the marker, i.e.,U(s, t)/I [u(x, t)]. A value of 1 forU(s, t)/I [u(x, t)]

indicates strict satisfaction of the no-slip condition. Compared to the previous IB-LB method

(Jiang & Liu, 2019), the present method exhibits significant improvement in reducing the slip-

error. As shown in Figure2.26, the previous method results in huge slip errors up toO(1000) in

percentage, which is unacceptable. In contrast, the present method demonstrates a substantial

enhancement in imposing the no-slip condition along the IB.The improved reciprocity ensures

better no-slip enforcement on the Lagrangian markers, resulting in a maximum slip error of less

than∼ 2%. The current level of the slip-error is marginal enough to consider the present IB-LB

method acceptable for the DNS of turbulent channel flow over hairy surfaces.
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(a) (b)

(c)

Figure 2.26: Slip errors obtained from the present method and reference method, denoted by
the red-contoured and grey-contoured symbols, respectively, in the (a) streamwise, (b) span-
wise, and (c) wall-normal directions. IB-LB DNS results of turbulent flow over hairy sur-
faces are represented forh+0

0 ≈ 8, h0/s = 1, K∗
s = 1, K∗

b = 2 × 10−6, ρr = 700. The
slip errors at each Lagrangian marker were measured along the entire filaments implanted in
both channel walls over 100 realizations of the flow over the eddy turnover time of≈ 6.2.
U(s, t)/I [u(x, t)] (s, t) = (1, 1, 1) indicates that the no-slip on the marker is strictly satisfied.
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CHAPTER 3

Skin-friction DR with Hairy Surfaces

The carpet of flexible filaments creates a functional surfacethat dynamically interacts with

turbulence and modifies its dynamics. Depending on the filament parameters, these interaction

can lead to drag enhancement or drag reduction. This study investigated the filament deflection

in response to turbulent flow and its effects on the modification of turbulence dynamics. The

resulting drag reduction was evaluated for various filamentparameters such as Cauchy number,

filament height, filament height-to-spacing ratio. In orderto gain an understanding of the influ-

ence of hairy surfaces on turbulence dynamics, an analysis of turbulence statistics is conducted

for a channel with hairy surfaces, and compared to the statistics of the base turbulent channel

flow.

3.1 Direct Numerical Simulation Study

3.1.1 Problem Statement

Simulations were performed in turbulent channel flows, assumed to be periodic in the stream-

wise (x) and spanwise (y) directions, with periodicity lengths ofLx andLy, and a channel height

of 2H. Carpets of filaments of initial undisturbed filament heights of h0, filament thicknesses

of d, and uniform filament spacings ofsx = sy = s in the streamwise and spanwise directions

were implanted on both channel walls, as shown in Figure3.1(a).
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(a) (b)

Figure 3.1: Schematic of the channel, coordinate system, and the computational grid used in
the simulations. (a), the channel configuration and coordinate system are depicted, where a
uniform carpet of flexible filaments (withsx = sy) is implanted on both channel walls, with
the filaments shown in their initial un-deformed state. (b) The computational grid used in the
simulations, with a grid-embedding ratio of 4:1.

Throughout all simulations, a constant flow rate was enforced in the turbulent channel to

ensure that the bulk Reynolds number wasReb ≡ q/ν = 7200, whereq ≡ Ub(2H) represents

the flow rate per unit spanwise width of the channel. This value of bulk Reynolds number

correspond to friction Reynolds numbers ofReτ0 ≡ Huτ0/ν ≈ 221 in a turbulent channel flow

with smooth, no-slip walls, which serves as the baseline forcomparison.

In order to increase the accuracy of our calculations, this study employed grid embedding

(Lagravaet al., 2012) with a grid ratio of 4:1 in the region between the channel walls and a

height ofz+0 ≈ (30 + h+0
0 ) from the channel walls, as shown in figure3.1(b). Here, the super-

script+0 indicates normalization with respect to the wall friction velocity, uτ0, and the kine-

matic viscosity, for the base turbulent channel flow. The resulting grid spacings were∆+0
f ≈ 0.5

in the region0 ≤ z+0 . (30 + h+0
0 ), and∆+0

c ≈ 2 in the region(30 + h+0
0 ) . z+0 ≤ H+0.

3.1.2 Governing Dimensionless Parameters

The dynamics of filaments and their interactions with the surrounding fluid flows are influ-

enced by several non-dimensional groups. These include thefilament’s geometrical parameters
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such as the initial height of the filament in wall units of the base flow,h+0
0 ; filament diameter,

d+0; filament height-to-spacing ratio,h0/s; density ratio of the filament to the surrounding fluid,

ρr = ∆ρ/ (∆ρfA0) whereA0 is the effective cross-sectional area, which is already discussed

in Section2.7; and the Cauchy number, defined as the ratio of the hydrodynamic forces acting

on the filament to the restoring force. The Cauchy number is expressed as Equation3.1(Luhar

& Nepf, 2016; He et al., 2022),

Ca =
ρfuτ0

2dh30
Kb

. (3.1)

whereKb is the bending rigidity of the filaments, anduτ0 is the characteristic fluid velocity

acting on the filaments. The friction velocity,uτ0 , is used as the characteristic velocity since

the filaments are placed within the inner layer, where the friction velocity is the more relevant

velocity scale.

In addition to the non-dimensional groups mentioned above,it is helpful to define the time

scale ratio, given byTfiluτ0

H
, which represents the ratio of the characteristic time scale of the

filaments,Tfil, to the time scale of the largest eddies in the base turbulentchannel flow. This

time scale ratio can be expressed by the combination of the Cauchy number, the density ratio,

and the geometrical parameters of the filaments as,

Tfil uτ0
H

=
h0
H

√

(Ca)

(

∆ρ

ρfA0

)(

d

h0

)

. (3.2)

Here, the superscript+0 denotes the normalization with the wall-friction velocity, uτ0, and

the kinematic viscosity of fluid,ν, for the base turbulent channel flow with smooth, no-slip

walls. Similarly, the superscript+ denotes the normalization with the wall-friction velocity, uτ ,

and the kinematic viscosity of fluid,ν, for the turbulent channel flow with the presence of the

surface-textures. Note that the wall friction velocity with the surface textures is obtained at the

actual channel wall in this study.

A parametric study was conducted in turbulent channel flows at a Reynolds number ofReb =
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7200 (Reτ0 ≈ 221). The filament height ranges fromh+0
0 = 4 to 16, the filament thickness of

approximatelyd+0 ≈ 0.5, the filament height to spacing ratios ranges fromh0/s = 1/4 to 2, the

density ratio ranges fromρr = 30 to 1000, and Cauchy numbers ofCa = 10, 20, 40, 60, and80.

The simulations were performed in channels with dimensionsof Lx/H = 5 andLy/H = 2.5,

of which the adequacy of the domain size was confirmed in the previous study (Rastegari &

Akhavan, 2018). A summary of all simulations performed in this study is presented in Table

3.1.

3.1.3 Calculation of DR

This study presents the drag reductions with hairy surfacesand compare them with those over

a smooth wall. Using the definition ofDR = (1− Cf/Cf0), the magnitude of drag reduction

can be obtained from

DR ≡ 1− Cf

Cf0

(3.3)

whereCf0 ≡ τw0/
(

1
2
ρU2

b

)

andCf ≡ τw/
(

1
2
ρU2

b

)

are the skin-friction coefficients in the base

turbulent channel flow with smooth, no-slip walls and in the turbulent channel flow with the fil-

amentous surfaces, respectively, andUb are the bulk velocity obtained by averaging the stream-

wise velocity over the entire channel at the same bulk Reynolds number.

The turbulent statistics were collected over a minimum of12 − 13 eddy turnover times in

the simulation. The simulation was run for a duration of at least 6 eddy turnover times from the

initial condition to ensure a statistically steady state. The streamwise mean pressure gradient

was then averaged over a minimum of12− 13 eddy turnover times, excluding the initial 6 eddy

turnover times. Subsequently, the wall shear stress and friction velocity were calculated based

on the averaged pressure gradient. Using these quantities,the friction coefficient was computed

and compared to that of the base flow to determine DR.
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Case Symbol Line type ρr Ca h+0
0 s+0 h0/s Tfiluτ0/H z+eff DR(%)

SM – – – – – – – – –
D700Ca40h4s4 700 40 4.19 4.19 1 0.125 2.73 1.6
D700Ca40h4s8 700 40 4.19 8.37 1/2 0.031 1.72 2.0
D700Ca40h6s6 700 40 6.10 6.10 1 0.083 2.18 3.5
D700Ca40h6s12 700 40 6.10 12.20 1/2 0.021 2.18 3.8
D700Ca10h8s8 700 10 7.98 7.98 1 0.063 5.16 1.8
D700Ca10h8s16 700 10 7.98 15.97 1/2 0.016 4.64 2.9
D700Ca20h8s8 700 20 7.98 7.98 1 0.063 4.14 3.1
D700Ca20h8s16 700 20 7.98 15.97 1/2 0.016 3.14 3.3
D700Ca40h8s4 700 40 7.98 3.99 2 0.250 5.20 1.5
D700Ca40h8s8 700 40 7.98 7.98 1 0.063 3.11 5.3
D700Ca40h8s16 700 40 7.98 15.97 1/2 0.016 3.11 5.4
D700Ca40h8s32 700 40 7.98 31.94 1/4 0.004 2.19 1.6
D700Ca60h8s8 700 60 7.98 7.98 1 0.063 2.65 3.5
D700Ca60h8s16 700 60 7.98 15.97 1/2 0.016 2.65 3.4
D700Ca80h8s8 700 80 7.98 7.98 1 0.063 2.67 2.3
D700Ca80h8s16 700 80 7.98 15.97 1/2 0.016 2.19 1.4
D700Ca40h10s10 700 40 9.83 9.83 1 0.050 3.61 3.2
D700Ca40h10s20 700 40 9.83 19.66 1/2 0.013 3.58 4.4
D700Ca40h12s12 700 40 12.10 12.10 1 0.042 4.06 3.1
D700Ca40h12s24 700 40 12.10 24.20 1/2 0.010 4.05 3.7
D700Ca40h16s8 700 40 16.07 8.03 2 0.125 8.54 -0.7
D700Ca40h16s16 700 40 16.07 16.07 1 0.031 4.95 3.2
D30Ca40h8s8 / 30 40 7.98 7.98 1 0.063 2.68 1.2
D30Ca40h8s16 / 30 40 7.98 15.97 1/2 0.016 2.69 0.9
D100Ca40h8s8 | 100 40 7.98 7.98 1 0.063 2.68 1.5
D100Ca40h8s16 | 100 40 7.98 15.97 1/2 0.016 2.67 2.3
D300Ca40h8s8 + 300 40 7.98 7.98 1 0.063 3.16 2.1
D300Ca40h8s16 + 300 40 7.98 15.97 1/2 0.016 3.15 3.0
D1000Ca40h8s8 × 1000 40 7.98 7.98 1 0.063 3.14 3.5
D1000Ca40h8s16 × 1000 40 7.98 15.97 1/2 0.016 3.14 3.6

Table 3.1: Summary of the simulations performed in the present study.
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3.2 Filament Deflection in Response to Turbulent Flow

Figures3.2(a), (c), (e) show the instantaneous configurations of the filaments, forthe density

ratio of ρr = 700, filament height ofh+0 ≈ 8, and the height-to-spacing ratio ofh0/s =

1/2, at three Cauchy numbers ofCa = 10, 40, and80. The density ratio ofρr = 700 was

chosen to mimic the density ratio between bird feather fibersand air density (Reddy & Yang,

2007; Tesfayeet al., 2018), while the filament height ofh+0 ≈ 8 was selected based on earlier

experiments reporting the maximum drag reduction at this micro-fiber height (Takataet al.,

1996).

Figures3.2 (b), (d), (f) are the contour plots of the streamwise velocity fluctuations on the

plane ofz = zeff , which represents the demarcation at which the fluid flow is subject to the drag

force exerted by the filaments. The filaments display a motionthat is locked into the motion of

turbulent structures, getting lifted up from the wall at thelocations of the low-speed streaks and

pushed down towards the wall at the locations of the high-speed streaks.

Figure3.2(g)–(i) show the filament configurations projected onto thex− z andy− z planes

at different Cauchy numbers ofCa = 10, 40, 80. The flexible filaments primarily deflect in

the streamwise and wall-normal directions and exhibit the streamlined postures at the spanwise

plane in response to the mean flow. In contrast, the spanwise deflection occurs in both positive

and negative directions. AsCa increases, the extent of deflection at each direction becomes

more significant in the streamwise and wall-normal directions but lesser in the spanwise direc-

tion.

To better characterize the filament deflection in response tothe turbulent flow, this study

explored the probability density function (p.d.f) of the mean deflection, which is determined by

the location of the filament tip in relative to its location atundeformed (or initial) state. Figures

3.3 (a)–(c) show the p.d.f.s of filament deflections in thex, y, andz directions, scaled by the

filament height for various filament height-to-spacing ratios of h0/s = 1/2, 1, 2 and Cauchy

numbers ofCa = 10, 20, 40 and80. As Cauchy number increases, the restoring force relative
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Figure 3.2: Instantaneous filament configurations andx− y plane view of streamwise velocity
fluctuation forρr = 700, h+0 ≈ 8, s+0 ≈ 16, (a, b) Ca=10, (c, d) Ca=40, (e, f) Ca=80. Thex−y
plane view was obtained atz+eff corresponding each Ca. Superimposed filament configurations
atx-z plane andy-z plane (115 . x+ . 300 and115 . y+ . 300) for (g) Ca=10, (h) Ca=40,
(i) Ca=80. The dashed lines in (g)–(i) denote the location ofz+eff at the corresponding Ca.
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Figure 3.3: Effect of Cauchy number, density ratio, filamentheight and filament height to
spacing ratio on filament deflection, as measured by the p.d.f. of filament tip location relative
to its location at the undeformed state: (a)-(c) effect of Cauchy number and filament height to
spacing ratio, atρr = 700 andh+0

0 ≈ 8, for Ca=10, 20, 40, 80 andh0/s = 1/2, 1, 2; (d)-(f)
effect of density ratio, at Ca=40,h+0

0 ≈ 8 andh0/s = 1, for ρr = 30, 100, 300, 700, 1000;
(g)-(i) effect of filament height, atρr = 700, Ca=40,h0/s = 1 for h+0

0 ≈ 4, 6, 8, 10, 12, 16.
Line types as shown in Table3.1.
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to the hydrodynamic force decreases, and thus the mean streamwise and wall-normal deflections

increase. However, the mean spanwise deflection remains symmetric with respect to zero.

Furthermore, the range of p.d.f.s also features the filamentdeflection for each direction. The

ranges of p.d.f.s shown in the streamwise and wall-normal directions are smaller than p.d.f.s.

shown in the spanwise direction. This indicates that the behavior of the filament deflections

generally more freely in the positive and negative directions than in the streamwise and wall-

normal directions. As Cauchy number increases, the ranges of p.d.f.s in the streamwise and

wall-normal directions are shrinking, while the range of p.d.f. in the spanwise direction be-

comes wider. This is because higher Cauchy number brings about less filament deflection due

to higher restoring force relative to hydrodynamic force, and thus filament tips interact with

higher velocity fluctuations as they are lifted away from thechannel walls.

An additional characteristic of the mean deflection represented by the flexible filaments was

observed in terms ofh0/s. As h0/s increases, the filamentous layer becomes denser, and the

motion of individual hairy filaments affects the motions of neighboring filaments, resulting in

a more pronounced mutual-sheltering effect (Raupach, 1992; Luharet al., 2008; Shao & Yang,

2005). The mutual-sheltering reduces the transfer of momentum flux from the overlying flow

to the filaments, thus making them less deflective. As a result, the peaks of the p.d.f.s in both

the streamwise and wall-normal directions shift towards smaller values with increasingh0/s,

as shown in figure3.3 (a) and (c). Moreover, another distinct feature of the spanwise mean

deflection is observed with increasingh0/s. Figure3.3(b) shows that the p.d.f.s of the spanwise

mean deflection generally display one peak located at around(Ytip−Ytip,0)/h0 = 0 for h0 = 1/2

and1, but this behavior breaks down ash0/s increases to 2, exhibiting multiple peaks located

far from (Ytip − Ytip,0)/h0 = 0. This is because as the filamentous layer becomes denser, the

flexible filaments move in the spanwise direction to circumvent their neighbors, located next to

them in the streamwise direction.

Figures3.3 (d)–(f) illustrate the p.d.f.s of the mean filament deflection for fixed filament

height ofh+0 ≈ 8, height-to-spacing ofh0/s = 1/2 and Cauchy number ofCa = 40, at dif-
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ferent density ratios ofρr = 30, 100, 300, 700, 1000. The range of filament deflection becomes

wider with increasing density ratio in each direction. Thisis because a higher density ratio

brings about higher restoring force of the flexible filament relative to the hydrodynamic force,

resulting in less deflection. With less deflection, the filament tips are located farther away from

the channel walls and thus more subject to the increased fluidvelocity fluctuations. As a result,

the filament tips with higher density ratio move more actively and deflect over a wider range, as

compared to a lower density ratio.

Figure3.3(g)–(i) show the p.d.f.s of(Xtip−Xtip,0)/h0 for different heights ofh+0 ≈ 4−16,

with the fixed density ratio ofρr = 700, height-to-spacing ofh0/s = 1 and Cauchy number

of Ca = 40. In figures3.3(g) and (h), the p.d.f.s of(Xtip − Xtip,0)/h0 and(Ytip − Ytip,0)/h0

are statistically self-similar in terms of the filament heights. Moreover, the self-similarity is

maintained in the wall-normal direction at(Ztip,0−Ztip)/h0 . 0.6. This self-similarity suggests

that the filament deflection is primarily characterized by the filament height.
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3.3 Effects of Filament Parameters on DR

The effects of filament parameters on the drag reduction wereevaluated. This study first

started the parametric study with the density ratio ofρr = 700, mimicking the density ratio

of the chicken feather fiber to the air density (Reddy & Yang, 2007; Tesfayeet al., 2018), and

the filament height ofh+0 ≈ 8, regarding the micro-fiber height that provided the maximum

drag reduction in the earlier experiments (Takataet al., 1996), at various Cauchy numbers of

Ca = 10, 20, 40, 60, 80 and two filament spacings ofs+0 ≈ 8 and16.

In figure3.4(a), the maximum drag reduction ofDR ≈ 5.4% occurs atCa = 40. The drag

reduction decreases as Cauchy number deviates fromCa = 40. Specifically, atCa < 40, the

filaments become stiffer and occupy a greater cross-sectional area of the channel due to the

increased restoring force. These stiff filaments block the mean flow, increasing the form drag.

Conversely, atCa > 40, the filaments become excessively flexible, and their proximity to the

channel wall makes them incapable of disrupting the fluid floweffectively. As a result, the flow

pattern resembles the base turbulent channel flow with smooth, no-slip walls, resulting in a drag

reduction converging toDR ≈ 0.

The drag reduction can also be characterized by the ratio of filament height to spacing,h0/s.

Figure3.4(a) shows that ash0/s increases forCa = 40, the drag reduction initially increases,

saturates ath0/s = 1/2, and then decreases with further increasingh0/s. Filamentous surfaces

with h0/s = 1/4 are sparser and have marginal mutual-sheltering effects (Raupach, 1992; Luhar

et al., 2008; Shao & Yang, 2005). This makes them more susceptible to flow-induced forces,

causing them to be deflected towards the channel walls and thus resulting in a flow environment

similar to the base turbulent channel flow. In contrast, filamentous surfaces withh0/s = 2 are

denser and experience significant mutual-sheltering effects, which reduces the filament deflec-

tion towards the channel walls and leads to increased form drag. Filaments distributed with

moderate sparseness,h0/s = 1/2 − 1, are more suitable for reducing skin-friction drag as the

filaments do not excessively deflect nor increase the form drag.
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Figure 3.4: Effect of Cauchy number, density ratio, filamentheight and filament spacing on
drag reductions: (a) Effect of Cauchy number, atρr = 700, h+0

0 ≈ 8 and16, h0/s = 1/2, 1 for
Ca=10, 20, 60, 80; (b) effect of density ratio, at Ca=40,h+0

0 ≈ 8, h0/s = 1/2, 1; (c) effect of
filament height, atρr = 700, Ca=20, 40, andh0/s = 1/4, 1/2, 1, 2. Symbol types as shown in
Table3.1.
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In addition, the drag reduction was explored for various density ratios of ρr =

30, 100, 700, 1000, at fixed filament height ofh+0 ≈ 8, height-to-spacing ratio ofh0/s = 1/2

and1, Cauchy number ofCa = 40. Figure3.4(b) shows that the drag reduction increases with

increasing density ratio and reaches maximum drag reduction at a density ratio ofρr = 700,

then decreases with further increasing density ratio. According to Sundin & Bagheri(2019),

hairy filaments with a lower density ratio have a lower time scale of the motion so that the

hairy filaments move faster and quickly comply with the turbulent structures, inducing the flux

of turbulent fluctuation into the channel walls and leading to a significant drag increase, while

hairy filaments with a higher density ratio have a larger timescale of the motion so that the hairy

filaments deform slowly and modulate the turbulent structures, providing a minor drag increase.

The drag reduction saturates at a moderately high density ratio, inspiring that a specific range of

the filament time scale can lead to a favorable condition to reduce skin-friction drag reduction.

One particular interest of this study is to identify the key parameter that governs the trends

of DR. The results presented in figures3.4(a) and (b) show that neither Cauchy number nor

density ratio can solely determine theDR trends, nor can filament height and height-to-spacing

ratio in figure3.4(c). Therefore, DR trends cannot be determined by a single parameter. In an

effort to seek a determining parameter ofDR trend, this study attempts to derive a prominent

dimensionless parameter combining those individual parameters. In this effort, the characteris-

tic time scale ratio,Tfiluτ0/H, was derived, as explained in the previous section. This simplifies

the prediction ofDR trends. Figure3.5(a) shows that the drag reductions fall on top of each

other except for excessively sparse (h0/s . 1/4) or dense filamentous surfaces (h0/s & 2) and

the filamentous layer protruding above the demarcation of the hydraulic-smooth layer (z+ > 6).

Based on this observation, one can suggest criteria that determine theDR trends with

Tfiluτ0/H, including moderate sparseness of the filamentous surfaces(1/4 < h0/s < 2) and the

filamentous layer determined below the demarcation of the hydraulic-smooth layer (z+eff < 6).

The drag reductions obtained within this criteria show a collapse, as shown in figure3.5(b). The

highest drag reduction occurs at aroundTfiluτ0/H ≈ 1.4−1.5. This finding suggests that when
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Tfil latches onto a time scale1.4− 1.5 times higher than the time scale of the largest eddies of

the base turbulent channel flow, the drag reduction saturates. For lower time scale ratios,Tfil

cannot latch onto the time scale of the largest eddies and instead latches onto the time scale of

eddies larger than the channel allows. For higher time scales,Tfil latches onto the smaller scale

turbulent eddies, and the drag reduction becomes less effective.
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3.4 Turbulence Statistics

This study aims to investigate the influence of hairy surfaces on the modulation of turbulence

dynamics and the resulting drag reduction. To achieve this,this study analyzes turbulence

statistics and compare them with those obtained from the base turbulent channel flow with no-

slip, smooth channel walls. Due to the spatial variability of wall structures, flows over hairy

surfaces do not always exhibit homogeneity in a certain plane parallel to the wall. To overcome

this issue, this study adopted an ensemble averaging, whichinvolves averaging the wall-parallel

plane in regards to the periodic pattern of the wall surfaces(Oikawa & Meng, 1995; Coceal

et al., 2007; Mejia-Alvarez & Christensen, 2013; Toloui et al., 2019; Mangavelliet al., 2021;

Durbin, 2023). This technique isolates typical features of the flow fieldsfrom a relatively large

number of events (Cocealet al., 2007). The definition of the ensemble averaging for a fluid

quantityφ(x, y, z) is expressed by

φ(xi, yj, z) =
1

NenxNeny

Nenx−1
∑

ii

Nenj−1
∑

jj

φ(xi+ii( Nx
Nenx

), yj+jj
(

Ny

Neny

), z). (3.4)

whereNx andNy are the numbers of grid points in the streamwise and spanwisedirections over

the entire channel, andNenx, Neny are the numbers of ensemble patches in the streamwise and

spanwise directions over the entire channel, respectively, which are determined by the sparse-

ness of surface-textures. Therefore, the numbers of the grid points at each ensemble patch are

obtained by dividing the number of grid points over the entire channel by the number of the en-

semble patches,Nx/Nenx andNy/Neny in the streamwise and spanwise directions, respectively.

The indicesi, j in the left hand side of the equation3.4range from0 toNx/Nenx − 1 and from

0 toNy/Neny − 1, respectively.

A distinct feature of wall-bounded turbulence is to exhibitcoherent structures that persist in

time and space (Kline et al., 1967; Robinson, 1991). Key observed coherent structures are self-

sustaining and are generally represented by hairpin-shaped vortex packets comprising quasi-

91



streamwise vortices and corresponding low- and high-streaks near the walls (Hamilton et al.,

1995; Waleffe, 1997; Tomkins & Adrian, 2003; Adrian, 2007; Graham & Floryan, 2021). The

structures grow from the wall to the outer region (Zhouet al., 1999), determining the dynam-

ics of turbulence from the inner-layer and the outer region (Jimenez, 2018). The inner-scale

turbulence can be represented by mean turbulence statistics with a proper normalization with

inner-scale quantities, which are determined by the wall friction properties such as the kine-

matic viscosity and the friction velocity. Normalizing turbulence statistics by the inner-scale

quantities enables to illustrate a general picture of the modulation of the internal dynamics of

the wall-bounded turbulence.

In this chapter, an analysis of the wall-normal distributions of mean streamwise velocity,

mean shear stress, mean turbulence intensity, and mean streamwise vorticity fluctuation, which

are normalized using the wall-friction properties, will befocused. In addition, turbulence statis-

tics investigated in terms of various filament parameters will be discussed.

3.4.1 Mean Streamwise Velocity Profile

The variation of the skin-friction resulting from the presence of surface texture is well known

to be explained by the shift of the mean velocity profile in thelogarithmic region. According

to the classical theory (Clauser, 1954; Hama, 1954), the shift in the log-law intercept with the

existence of surface textures from the log-law intercept ofthe base turbulent channel flow is

indicative of the momentum deficit or surplus resulting fromthe surface textures. This shift can

be interpreted as a measure of the drag penalty or reduction relative to a smooth wall, where a

downward shift indicates drag increase, and an upward shiftindicates drag reduction (Bechert

et al., 1997a; Spalart & McLean, 2011).

The log-law shift was investigated for various Cauchy numbers, filament height, and height-

to-spacing ratios with a fixed density ratio ofρr = 700, as shown in figure3.6. Figure3.6 (a)

shows the wall-normal distribution of the mean streamwise velocity normalized by the wall-
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Figure 3.6: The wall-normal distribution of the mean streamwise velocity for (a) various Ca
with h0/s = 1, h0 ≈ 8, ρr = 700; (b) various Ca withh0/s = 1/2, h0 ≈ 8, ρr = 700, and
varioush0/s = 1/4, 1/2, 1, 2 with Ca= 40, h0 ≈ 8, ρr = 700; (c) varioush0 with Ca= 40,
h0/s = 1, ρr = 700. Line types as in Table3.1.
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friction velocity for various Cauchy numbers with the filament height ofh+0
0 ≈ 8 and the

filament height-to-spacing ratio ofh0/s = 1. As expected from the classical theory, the drag

reducing surfaces show the upward shift of the log-law intercept, and the extent of the upward

shift follows the trends of DR. For various Cauchy number with h+0
0 ≈ 8 andh0/s = 1, the

magnitude of DR increases with increasingCa from 10, saturates atCa = 40, and decays with

further increasing Cauchy number, as pointed out in figure3.4 (a). Similarly, it is observed

that the extent of the upward shift of the log-law intercept in the mean streamwise velocity

profile increases with increasingCa from 10, saturates atCa = 40, and decays with further

increasing Cauchy number, as shown in figure3.6 (a). The trends of the upward shift of the

log-law intercept in consistent with the trends of DR upholdfor various Cauchy numbers with

h0/s = 1/2 andh+0
0 ≈ 8, as shown in figures3.4(a) and3.6(b).

According to the drag reduction curve with respect toh0/s in figure3.4 (a), the magnitude

of DR increases ash0/s increases from1/4, reaches the maximum ath0/s = 1/2 − 1, and

subsequently decreases with further increases inh0/s. Figure3.6 (b) illustrates that the degree

of the upward shift of the log-law intercept also increases with increasingh0/s from 1/4, satu-

rates ath0/s = 1/2− 1, and then decreases with further increases inh0/s. The same feature of

the shift in the log-law intercept is maintained for variousfilament height. Figure3.6(c) shows

that the upward shift of the log-law intercept reaches a peakat h+0 ≈ 8 and becomes lower at

h+0 ≈ 4 and8 with fixedh0/s = 1 andCa = 40. The magnitudes of DR is consistent with the

trend as shown in figure3.4(c).

In contrast to the trends represented by the mean streamwisevelocity profiles in the logarith-

mic region, the mean streamwise velocity profiles near the wall no longer follow the trends of

DR. Rather, it is featured by the filament deflections. In figure3.6(a), the mean streamwise ve-

locity profiles are distinguished by Cauchy numbers atz+ . 10. As Cauchy number increases,

the mean flow is less deterred due to an increase in filament deflection led by the decrease in the

restoring force of the filaments. The remarkable filament deflection results in a flow that resem-

bles the base turbulent channel flow. Therefore, with increasing Cauchy number, the velocity
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profile near the wall gradually converges to the velocity profile of the base turbulent channel

flow, as shown in figure3.6(a).

A similar feature is observed for decreasingh0/s in figure 3.6 (b). As h0/s decreases,

the sparseness of the filaments increases, resulting in lessmutual-sheltering effects (Raupach,

1992; Luharet al., 2008; Shao & Yang, 2005). With decreasing mutual-sheltering effects, the

momentum flux from the overlying flow towards filamentous layer becomes notable, leading

to an increase in the hydrodynamic force exerted on the filaments. Thus, the filaments deflect

more toward the channel walls with decreasingh0/s. As the filament deflection becomes greater

with decreasingh0/s, the filaments less obstruct the flow, and the flow ends up beingsimilar to

the base turbulent channel flow. Therefore, the mean streamwise velocity profile near the wall

gradually converges to the mean streamwise velocity profileof the base turbulent channel flow

at the lower near-wall region with decreasingh0/s in figure3.6(b).

Although Cauchy number and the filament height-to-spacing ratio effectively distinguish the

mean streamwise velocity profiles near the wall, the different filament heights do not seem to

distinguish the mean streamwise velocity profiles near the wall, as shown in figure3.6(c). This

is due to the self-similarity of the filament deflection in terms of various filament heights with

fixedh0/s = 1, as pointed out in figure3.3. This indicates that the effects of the self-similarity

shown in the filament deflection on turbulence are limited within the lower near-wall region

(z . 10).

In light of the observed features of the mean streamwise velocity profile in the inner-layer, its

trends show discernible features depending on whether it isfrom the near the wall to lower part

of the buffer-layer (z+ ≈ 10) or from the upper part of the buffer layer to the logarithmicregion.

The effect of the filament deflection on the modulation of the mean streamwise velocity profiles

is remarkable from the near the wall to the lower part of the buffer-layer, but it is difficult to

find its relevance to the mean streamwise velocity profile from the upper part of the buffer-layer

to the logarithmic region. In addition, it was shown that theeffects of hairy surfaces on the

modification of turbulence reaches above the buffer-layer,although the filaments move near
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Figure 3.7: (a) Mean velocity profiles and (b) distribution of mean shear stresses in the wall-
normal direction for a turbulent channel flow over hairy surfaces, with the ratio of solid density
to the fluid density ofρr = 700, h+0 ≈ 8, h/s = 1,K∗

s = 1, Ca=40. Line types as in Table3.1.

the wall. The upward shift of the log-law intercept determines DR trends, suggesting that the

modification of turbulence above buffer-layer is in charge of DR rather than the modification of

the near-wall turbulence.

3.4.2 Distribution of Mean Shear Stress

To gain an understanding of the momentum transport in the presence of the hairy surfaces, the

wall-normal distributions of shear stresses were explored. For steady, fully developed, turbulent

channel flow with smooth, no-slip channel walls, the streamwise Reynolds-averaged momen-

tum equation is given by

1

ρ

dP̄

∂x
=

∂

∂x

(

ν
∂Ū

∂x
− u′u′ − Ū Ū

)

+
∂

∂y

(

ν
∂Ū

∂y
− u′v′ − Ū V̄

)

+
∂

∂z

(

ν
∂Ū

∂z
− u′w′ − ŪW̄

)

+
1

ρ
f̄ibx.

(3.5)

Ū , V̄ , W̄ andu′, v′,w′ are the streamwise (x), spanwise (y), and wall-normal (z) components of

Reynolds-averaged mean and fluctuating velocities, respectively, andP̄ indicates the Reynolds-

averaged mean pressure. Averaging over time and periodic pattern of the filamentous surface
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in the streamwise and spanwise direction, and integrating in the wall-normal direction from the

channel center,z = H, to an arbitrary height,z (z < H), gives

− H

ρ

〈

dp̄

dx

〉

(

1− z

H

)

= ν

〈

∂Ū

∂z

〉

− 〈u′w′〉 − 〈ŪW̄ 〉 − 1

ρ

∫ H

z

〈f̄ibx〉dz. (3.6)

where〈 〉 denotes averaging over the periodic pattern of the filamentous surface. Then the shear

stress balance can be represented by

τv + τR + τC + τfil = τt

(

1− z

H

)

, (3.7)

τv = ν

〈

∂Ū

∂z

〉

, τR = −〈u′w′〉, τC = −〈ŪW̄ 〉, τt = −H
ρ

〈

dp̄

dx

〉

, (3.8)

whereτv is the viscous shear stress,τR is the Reynolds shear stress,τC is the convective shear

stress,τt is the total shear stress. In the presence of the filaments, the shear stress balance

contains the drag exerted by the filaments,τfil, which becomes effective at the wall-normal

locations less than the effective thickness of the filamentous layer,z < zeff , where the mean

velocity gradient decreases, and the mean viscous shear stress drops with decreasingz, as shown

in figure 3.7. This is because the momentum flux exerted on the fluid by meansof the mean

shear rate is transferred to the filaments atz < zeff . The shear stress balance portrays that

the sum of the streamwise shear stress,τt = τv + τR + τC + τfil, at any givenz is balanced

by the force exerted by the pressure gradient above. It was observed that the convective shear

stress (τC) was negligible for all cases studied. This is attributed tothe uniform distribution of

hairy surfaces, which reduces the effectiveness of the convective shear stress that is typically

observed in anisotropic surface topologies (Finnigan, 2000; He et al., 2022).

The wall-normal distributions of shear stress components were investigated for different

Cauchy numbers, filament height-to-spacing ratios, and filament height with a fixed density

ratio of ρr = 700. In figures3.8 (a) – (c), the Reynolds shear stress reaches a peak atz+ ≈ 30

and gradually decays as the wall-normal distance from the wall decreases from 30 in wall units,
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Figure 3.8: The wall-normal distribution of the mean shear stresses for (a) various Ca with
h0/s = 1, h0 ≈ 8, ρr = 700; (b) various Ca withh0/s = 1/2, h0 ≈ 8, ρr = 700, and various
h0/s = 1/4, 1/2, 1, 2 with Ca= 40, h0 ≈ 8, ρr = 700; (c) varioush0 with Ca= 40, h0/s = 1,
ρr = 700. Line types as in Table3.1.
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while the viscous shear stress recovers and reaches a maximum at aroundz = zeff . When

further decreasingz from z+eff , the viscous shear stress rapidly drops, and the contribution of

filament drag becomes more signified since the momentum flux that would have exerted on the

fluids by means of the mean shear rate is transferred to the filaments.

The distribution of the shear stress belowz+ ≈ 10 appears to be influenced by the filament

parameters. As shown in figure3.8(a), it is clearly shown that the magnitude of filament drag

is distinguishable by Cauchy number. As the Cauchy number increases, the resistance of the

filaments to the mean streamwise flow decreases, and thus the filaments are more deflective.

Therefore, increasing Cauchy number leads to a monotonic decrease in the filament drag as

well as the mean streamwise velocity profile belowz+ ≈ 10, as observed in figures3.6(a) and

3.8(a). The same feature also upholds for different Cauchy numbers withh0/s = 1/2, h+0
0 ≈ 8,

in figure3.8(b).

Figures3.8(b) and (c) demonstrate different aspects of the shear stress distribution regarding

the effects ofh0/s andh+0 . In figure3.8 (b), ash0/s decreases, the filament drag is gradually

reduced belowz+ ≈ 10. Here, the decrease inh0/s with a fixed filament height explains the

increase in the filament spacing. As the filaments are locatedfarther away from each other, the

mutual-sheltering effect becomes marginal, leading to more hydrodynamic force exerted on the

filament and thus more filament deflection (Raupach, 1992; Luharet al., 2008; Shao & Yang,

2005). The more deflective filaments give rise to the effective height of the filamentous layer

(zeff ) closer to the channel wall. For lowerzeff , the mean flow is less obstructed. Therefore,

decreasingh0/s leads to less filament drag.

Figure3.8(c) illustrates the impact of varying filament heights while maintaining a constant

height-to-spacing ratio ofh0/s = 1 on the distribution of shear stress. According to earlier study

(Nepf, 2012; Sharma & Garcia-Mayoral, 2020a,b), the fluid momentum flux from the overlying

flow to the filamentous layer is amplified due to the onset of Kelvin-Helmholtz like mixing-layer

instability near the interface between the overlying flow and the filamentous layer. The active

momentum flux leads to a significant increase in〈f̄ibx〉 nearz ≈ zeff , and as a result the filament
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drag,τfil, represented by the integral of〈f̄ibx〉 from z toH (Last term of the equation3.6), also

increases significantly. However, asz decreases fromzeff , the increment of〈f̄ibx〉 decreases

due to lack of fluid momentum within the filamentous layer, resulting in marginal variation of

the filament drag with a flat profile. Correspondingly, for taller filaments,zeff appears far from

the wall. This indicates thatτfil starts increasing and is getting flat at higherz+ compared to

lower filaments, as shown in figure3.8 (c). Furthermore, as the filament height increases, the

magnitude ofτfil decreases near the channel wall. This is due to the increasedresistance to

the flow penetration from the overlying flow into the filamentous layer comprising taller hairy

filaments, which limit the active fluid momentum from reaching the filament bed.

Based on the findings of this study, it is possible to describethe distribution of shear stresses

in the wall-normal direction by considering different filament parameters, including Cauchy

numbers, filament height-to-spacing ratios, and filament height. Furthermore, the distinct fea-

tures of this distribution can be observed depending on whether it appears below or above

z ≈ 10. It is worth noting that, despite variations in shear stresscomponents along the wall-

normal direction, the total shear stress remains balanced and conforms to the theoretical line of

〈τt〉+ = (1− z/H).

3.4.3 Mean Turbulence Intensities

Figure3.9shows the wall-normal distribution of the normalizedu′rms, v
′
rms, w

′
rms for different

Cauchy numbers, filament height-to-spacing ratios (h0/s), and filament height (h) with a fixed

density ratio ofρr = 700. In figure 3.9 (a), the turbulence intensities resulted from various

Cauchy numbers withh0/s = 1 and filament heighth ≈ 8 show a prominent feature in terms of

the intercomponent energy transfer. It is well establishedthat the turbulent energy production

occurs primarily in the streamwise component, and it is redistributed into the spanwise and wall-

normal components by means of the pressure-strain correlation (Tennekes & Lumley, 1972;

Pope, 2000). However, in the presence of the hairy surfaces, the turbulence intensity appears to
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Figure 3.9: The wall-normal distribution of the mean turbulent intensities for (a) various Ca
with h0/s = 1, h0 ≈ 8, ρr = 700; (b) various Ca withh0/s = 1/2, h0 ≈ 8, ρr = 700, and
varioush0/s = 1/4, 1/2, 1, 2 with Ca= 40, h0 ≈ 8, ρr = 700; (c) varioush0 with Ca= 40,
h0/s = 1, ρr = 700. Line types as in Table3.1.
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be concentrated in the streamwise component atz+ ≈ 15− 16, while the turbulence intensities

are reduced in the spanwise and wall-normal components, as shown in figure3.9 (a). The

turbulent intensity piled up in the streamwise component can also be found in figures3.9(b) and

(c) for various Cauchy numbers withh0/s = 1/2 and filament heighth ≈ 8 as well as various

filament heights withh0/s = 1 and filament heightCa = 40. This implies that the existence of

hairy filaments disrupts the redistribution of turbulent energy from the streamwise component

to the other components. In fact, as will be shown later, the pressure-strain correlation, which

is in charge of the inter-component energy transfer, is deterred by the hairy surfaces.

In contrast to the Cauchy number and filament height, the filament height-to-spacing ratio

reveals distinct features in terms ofu′rms peak. Figure3.9(b) shows the distribution of turbulent

intensities for each component for differenth0/s with fixedCa = 40 andh+0 ≈ 8. The results

show a monotonic decrease in the magnitude ofu′rms peak ash0/s decreases. Furthermore, the

z location whereu′rms peak appears is gradually shifted towards thez location corresponding to

the peak resulted from the base turbulent channel flow, ash0/s decreases. This is because the

sparse distribution of hairy filaments with decreasingh0/s becomes indistinguishable from the

base turbulent channel flow.

This observation implies that ash0/s increases, the coherent structures represented by quasi-

streamwise vortices are shifted away from the channel wallsin the wall-normal direction. Ear-

lier studies that investigated the mechanism of drag reduction with riblet surfaces suggested that

the upward shift and reduced magnitude of the peak explaineda decrease in the contribution of

coherent structures to the momentum flux towards the walls, resulting in less shear stress and

lower skin-friction drag (Choi, 1989; Vukoslavcevicet al., 1992; Choi et al., 1993; El-Samni

et al., 2007). However, in the case of the hairy surfaces, figures3.9 (b) and3.4 (a) show that

the trend of upward shift ofurms peak no longer follows the trend of drag reduction in terms

of h0/s, suggesting that the drag reduction mechanism for hairy surfaces differs from that for

rigid riblet surfaces.
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3.4.4 Mean Streamwise Vorticity Fluctuations

In wall-bounded turbulence, the streamwise vorticity fluctuation appears due to the presence

of shear in the flow, which creates regions of velocity gradients that can lead to vortex stretch-

ing and tilting (Tennekes & Lumley, 1972). This process generates streamwise vortices with

opposite signs, which are responsible for the generation oflarge scale coherent structures in

wall-bounded turbulent flows. The presence of streamwise vorticity fluctuations,ω′
x, is a no-

table feature of wall-bounded turbulence, and their dynamics play an important role in the

transport of momentum, energy, and mass in the flow. Depending on the filament parameters,

the hairy filaments can modulate those features representedby the streamwise vorticity fluc-

tuations, leading to drag enhancement or drag reduction. Togain a deeper understanding of

turbulence modulation by hairy surfaces, the wall-normal distribution of the streamwise vortic-

ity fluctuation was explored for various Cauchy numbers, filament height-to-spacing ratios, and

filament heights.

Figure3.10(a) shows the wall-normal distributions of the streamwise vorticity fluctuations

normalized by viscous wall units for various Cauchy numberswith h0/s = 1 andh+0
0 ≈ 8. The

plot shows two distinct peaks. The first peak appears within the viscous sublayer and the second

peak appears in the buffer layer. For the first peak, its wall-normal location seems to depend on

the filament deflection. Thez location corresponding to the first peak is shifted upward with

increasing Cauchy numbers. As Cauchy number increases, therestoring force of the filaments

to the mean flow becomes more intense, lifting up the filament tips, and thus the effective

thickness of the filamentous layer,zeff , increases. As the effective heightzeff increases, the

fluctuating streamwise vorticity is discharged away from the wall. In contrast, thez location

corresponding to the second peak seems similar forCa = 10, 20, 40, 80, but the magnitudes of

the peak are discernible. The trends of the magnitudes of thesecond peak follow the DR trends,

as shown in figures3.10 (a) and3.4 (a). This observation suggests that the extent of which

the streamwise vorticity fluctuation decreases in the buffer layer corresponds to the level of DR
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achieved. The same features can also be found for various Cauchy numbers withh0/s = 1/2

andh+0
0 ≈ 8 as well as for varioush+0

0 with fixed h0/s = 1 andCa = 40 in figures3.10(b)

and (c).

In contrast, the magnitude of the streamwise vorticity fluctuations is discernible byh0/s, as

shown in figure3.10(b). A monotonic decreases in the streamwise vorticity fluctuation appears

with increasingh0/s at10 . z+ . 30. This can also be expected by the trends of the turbulent

intensity. With increasingh0/s, a similar monotonic decrease in the magnitude of turbulent

intensities was observed in figure figures3.9(b). As expected, the decrease in the spanwise and

wall-normal velocity fluctuation components contributes to the streamwise vorticity fluctuation

less than that obtained from the base turbulent channel flow.
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Figure 3.10: The wall-normal distribution of the streamwise vorticity fluctuations for (a) various
Ca withh0/s = 1, h0 ≈ 8, ρr = 700; (b) various Ca withh0/s = 1/2, h0 ≈ 8, ρr = 700, and
varioush0/s = 1/4, 1/2, 1, 2 with Ca= 40, h0 ≈ 8, ρr = 700; (c) varioush0 with Ca= 40,
h0/s = 1, ρr = 700. Line types as in Table3.1.
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CHAPTER 4

Mechanism of Skin-friction DR with Hairy Surfaces

4.1 Modulation of Intercomponent Energy Transfer

In wall-bounded turbulent flows, the viscous force directlyinfluences the mean shear near the

wall, leading to the production of turbulent kinetic energy. The turbulent energy is mostly pro-

duced in the streamwise conponent and then distributed intothe cross-streamwise components

(e.g. spanwise and wall-normal components) through intercomponent energy transfer, which is

governed by the pressure-strain correlation. The pressure-strain correlation plays an important

role on the spatial configurations of the coherent structures (Jeong & Hussain, 1995; Hwang &

Sung, 2017) and the regeneration of the quasi-streamwise vortices in the self-sustaining near-

wall cycle (Cho et al., 2018), upholding the characteristics of near-wall turbulence.It can be

conjectured that an appropriate disturbance of the pressure-strain correlation could be an ef-

fective pathway to suppress the quasi-streamwise vortices. Accordingly, the suppression of

the quasi-streamwise vortices mitigates wall turbulence and thus leads to the reduction in skin-

friction drag, as observed in the previous studies (Kravchenkoet al., 1993; Choi et al., 1994;

Orlandi & Jimenez, 1994). Thus, the attenuation of the pressure-strain correlation serves to

limit the impact of quasi-streamwise vortices on the generation of skin-friction and thus lead

to its suppression. A growing body of evidence indicated that various flow control techniques

achieved the skin-friction DR via effective suppression ofpressure-strain correlation (Xu &

Huang, 2004; Moosaie & Manhart, 2016; Fujimuraet al., 2017; Ma et al., 2022; Umair et al.,
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2022). Hence, suppressing the pressure-strain correlation canbe deemed as an effective path-

way to achieve the skin-friction DR.

In addition, the exploration of the intercomponent energy transfer and its modulation with the

presence of hairy filaments would offer valuable insights into the underlying mechanism of skin-

friction DR with hairy surfaces. In this study, the budgets for the component of the Reynolds

stress tensor,〈u′iu′j〉, are computed. Each budget term is analyzed to assess its influence on the

transport of the Reynolds stresses. Of particular interestis the pressure-strain correlation term,

which is the focal point of analysis. To gain a better understanding of how intercomponent

energy transfer is modulated, a comparison is made between the pressure-strain correlation in

the presence of hairy filaments and that in the base turbulentflow. To facilitate this analysis,

the ‘nominal’ case of D700Ca40h8s8 (as described in Table3.1) is selected regarding the result

that the given DR falls into the uppermost range (5.3−5.4%). By focusing on this specific case

and comparing it to the base turbulent channel flow, the modulation of intercomponent energy

transfer can be clearly elucidated, without a need for the exploration of all the individual cases.

4.1.1 Budgets of Reynolds Stress Tensor

The analysis in the budget terms of the Reynolds stresses enables a detailed examination of

their distinct contributions to gain/loss of the Reynolds stresses. The transport equations for the

Reynolds stresses are derived through a systematic processaveraging of the Navier-Stokes equa-

tions, followed by the derivation of equations specificallyaddressing the fluctuating stresses.

Subsequently, these derived equations are averaged over the periodic pattern of the filamentous

surface and time to obtain the final form of the budget equations for the Reynolds stresses. This

methodical approach ensures a comprehensive understanding of the role of each budget term in

terms of the transport of the Reynolds stresses in turbulentflows. For incompressible turbulent
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flow, the budget equation for the Reynolds stresses is written as

Bij =
D

Dt
u′iu

′
j = PR

ij +DR
ij + TR

ij +ΠR
ij + FR

ij . (4.1)

In this equation, the terms on the right-hand side representthe contributions from various

physical processes, which are defined as

PR
ij = −u′iu′k

∂Ūj

∂xk
− u′ju

′
k

∂Ūi

∂xk
, (4.2)

DR
ij = −2ν

∂u′i
∂xk

∂u′j
∂xk

, (4.3)
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ij = − ∂

∂xk
u′iu

′
ju

′
k −

1

ρ

∂

∂xk

[

p′u′iδjk + p′u′jδik
]

+ ν
∂2

∂x2k
u′iu

′
j, (4.4)

ΠR
ij = p′

(

∂u′i
∂xj

+
∂u′j
∂xi

)

, (4.5)

FR
ij =

1

ρ

(

f ′
ib,iu

′
j + f ′

ib,ju
′
i

)

. (4.6)

whereδij is Kronecker’s delta in this budget equation. To be specific,the shear production

term (PR
ij ) accounts for the generation of the Reynolds stresses due tovelocity gradients. The

viscous dissipation term (DR
ij) represents the dissipation of energy within the turbulentflow

due to viscous effects. The transport term (TR
ij ) encompasses the turbulent transport, pressure

transport, and viscous transport components, which collectively contribute to the transport of

the Reynolds stresses. The pressure-strain correlation term (ΠR
ij) characterizes the interaction

between the fluctuating pressure field and the fluctuating velocity gradients, in charge of the

redistribution of Reynolds stresses from the streamwise tothe cross-streamwise components.

Finally, the transport by the hairy filaments (FR
ij ) captures the transport of the Reynolds stresses

associated with the presence of filaments within the turbulent flow.

Figures4.1 (a)–(d) show the wall-normal distribution of the budget terms for the Reynolds

normal and shear stresses. The budgets are normalized by thefluid viscosity and the friction
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velocity of the base turbulent channel flow, for the quantitative comparison to the base turbulent

channel flow. The production of turbulence only appears in the streamwise direction among the

Reynolds normal stresses due to the mean shear dominantly existing in the streamwise direc-

tion. In figure4.1 (a), it can be observed that there is a notable decrease in the magnitude of

turbulence production within the near-wall region, which is a prominent signature of the reduc-

tion in skin-friction drag. Figures4.1 (a)–(c) illustrate the reduction in all normal components

of 〈ΠR
ii〉+0. This indicates that the presence of the filaments impedes the distribution of the

streamwise Reynolds normal stress into its cross-straemwise components. Consequently, the

mechanism responsible for sustaining the cross-streamwise Reynolds normal stresses is also

diminished. Therefore, less effective distribution of theintercomponent transfer weakens the

source that would have maintained the cross-streamwise Reynolds normal stresses. Accord-

ingly, this explains that turbulence intensities are piledup in the streamwise component and

reduced in the cross-streamwise components as shown in figure3.9.

Next, one can pose a question on why the modulation of turbulence is remarkable within

the near-wall region and less in the outer region. One plausible answer is that at low friction

Reynolds number, the intercomponent energy transfer primarily takes place in the near-wall

region where the energy-containing eddies are predominantly existing at low friction Reynolds

numbers (Hwang, 2013). Smits et al. (2011) noted that the main contribution to turbulence

production comes from the near-wall region at low Reynolds number (Reτ . 4200). Accord-

ingly, the friction Reynolds number set toReτ ≈ 221 in this study is considered a relatively

low Reynolds number where the energy-containing eddies involving the quasi-streamwise vor-

tices, in charge of the skin-friction generation, are dominantly residing in the near-wall region

(Choiet al., 1993, 1994; Orlandi & Jimenez, 1994; Hwang, 2013; deGiovanettiet al., 2016). In

figures4.1 (a)–(c), the modulation of〈ΠR
ii〉+0 is predominantly observed within the near-wall

region. This observation suggests that the presence of hairy filaments hinders the intercompo-

nent energy transfer between energy-containing eddies by disrupting the correlation between

pressure fluctuations and fluctuating velocity gradients inthe near-wall region. Consequently,
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Figure 4.1: The wall-normal distribution of the Reynolds stress budgets, (a) B11, (b) B22, (c)
B33, andB13 for a hairy surface corresponding to the case of D700Ca40h8s8. For comparison,
the same quantities are plotted for the base turbulent channel flow. The red solid line ( )
and black dashed line ( ) denote the results from D700Ca40h8s8 and the base turbulent
channel flow with no-slip, smooth walls, respectively.
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the weakened intercomponent energy transfer barely sustains the cross-streamwise turbulence.

With the diminishing cross-streamwise turbulence, the influence of quasi-streamwise vortices

decreases, and the skin-friction drag is reduced.

The transport of the Reynolds normal stresses by the hairy filaments,〈FR
ii 〉+0, becomes

significant atz . zeff only in the streamwise direction but marginal in the spanwise and wall-

normal directions, as shown in figures4.1 (a)–(c). Figure4.1 (a) shows that〈FR
11〉+0 adds

the Reynolds stress into the fluid flow. Note that the magnitude of viscous dissipation,〈D11〉+0,

abruptly increases in the region where〈FR
11〉+0 is dominant, indicating that the Reynolds stresses

transported by the hairy filaments are directly dissipated by the fluid viscosity atz . zeff .

In figure 4.1 (d), the Reynolds shear stress budgets, represented asB13, exhibit similar

characteristics to those demonstrated by the Reynolds normal stresses. The production of

Reynolds shear stress is suppressed within the near-wall region, consistent with the suppres-

sion of Reynolds shear stress observed in the near-wall region in Figure3.8 (a). The pressure-

strain correlation, represented by〈Π13〉+0, is primarily balanced out by turbulence production,

〈P13〉+0, abovez+ ≈ 8, and by the transport term,〈T13〉+0, belowz+ ≈ 8, respectively.

Within the vicinity of the interface between the overlying flow and the filamentous layer,

specifically within the range of1.5 . z+ . 5, the values of〈Π13〉+0 and〈T13〉+0 obtained with

the presence of hairy filaments surpass those obtained in thebase turbulent channel flow. This

observation suggests that the presence of hairy filaments enhances turbulence in this specific

region, which might be attributed to the influence of shear instability such as Kelvin-Helmholtz

instability. Shear instability typically emerges at the interface between the overlying flow and

the filamentous layer (Raupachet al., 1996; Nepf, 2012). Near the interface, the momentum

flux, flowing from the overlying flow to the filamentous layer and vice versa, is accelerated by

the shear instability, enhancing turbulence.

However, the enhanced turbulence is localized near the interface due to the mitigating effect

of the wall in close proximity. The presence of the wall directly suppresses shear instability,

as observed in previous studies involving short filamentouslayers (Sharma & Garcia-Mayoral,
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2020a,b). Consequently, the increase in〈Π13〉+0 and〈T13〉+0 is limited to the vicinity of the

interface and is reduced near the wall due to the influence of the wall effect.
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4.2 Modulation of Interscale Energy Transfer

The Richardson-Kolmogorov energy cascade theory (Kolmogorov, 1941a,b) is universally ac-

knowledged as the well-established theoretical frameworkelucidating the multi-scale dynamics

of turbulent energy transfer in incompressible, homogeneous, isotropic turbulence. Accord-

ing to this theory, turbulent kinetic energy originating from the integral length scale undergoes

subsequent transport to smaller scales, ultimately being dissipated by the fluid viscosity at the

dissipative scale. In the presence of walls, the viscous forces directly impacts the mean shear

in the vicinity of the wall, inducing the production of turbulent kinetic energy. As a result of

the turbulence production, energy-containing motions (e.g. coherent structures) manifest across

various length scales, and the turbulent kinetic energy is transferred across the eddies in differ-

ent scales, effectively demonstrating the interscale energy transfer.

Finnigan(2000) highlighted that the presence of canopy elements (e.g. vegetative elements

in terrestrial or aquatic environments) disrupts the energy cascade process. When the mean

flow undergoes the drag exerted by the canopy, the kinetic energy of the mean flow is con-

verted into both heat and fine-scale turbulence within the wake scale of the canopy elements.

This phenomenon, in which large-scale energy circumvents the energy cascade and is directly

transferred to secondary flows, is referred to as the ‘spectral shortcut’ (Brunet et al., 1994).

Consequently, instead of entering the inertial subrange, the mean kinetic energy is redeposited

into turbulent kinetic energy within the wake scales via theenergy transport by canopy ele-

ments. The wake kinetic energy then generates the turbulentkinetic energy at smaller scales.

The energy contained in the eddies of dissipative scales is dissipated in the canopy layer, where

an abundant source of viscous dissipation from the intense shear layer exist along the canopy

elements.

Considering the arguments from the earlier studies above, it is reasonable to hypothesize

that the presence of hairy filaments in turbulent channels may exhibit the characteristics akin

to the spectral shortcut, disrupting the energy cascade andthus reducing turbulence. Moreover,

113



the movements of drag-reducing hairy filaments are primarily concentrated within the viscous

sublayer, which is characterized by a significant amount of viscous dissipation. This observation

provides valuable insights into the mechanism of skin-friction drag reduction, suggesting that

the large-scale energy transferred to small scales throughthe hairy filaments is dissipated by

fluid viscosity within the viscous sublayer. To comprehend the interscale energy transfer in the

presence of hairy filaments, the wall-normal distribution of the budgets of mean kinetic energy

and turbulent kinetic energy were examined. In addition, spectral analysis was performed to

further investigate which scales are responsible for modulating the interscale energy transfer in

the presence of the hairy filaments.

4.2.1 Budgets of Mean and Turbulent Kinetic Energy (MKE and TKE)

The analysis of the budget terms of the mean kinetic energy (MKE), KM = D
Dt
ŪiŪi, and

turbulent kinetic energy (TKE),KT = D
Dt
u′iu

′
i, enables a detailed examination of their distinct

contributions to gain/loss of the kinetic energy that appears in the mean flow and turbulence.

The budget equations for MKE and TKE are derived through a systematic process involving

ensemble averaging of the Navier-Stokes equations. For incompressible turbulent flow, the

budget equation for MKE is written as

KM =
D

Dt
ŪiŪi = PM +DM + TM + FM . (4.7)

where

PM = u′iu
′
j

∂Ūi

∂xj
, (4.8)

DM = −2νS̄ij
∂Ūi

∂xj
, (4.9)

TM = − ∂

∂xj
u′iu

′
jŪi −

1

ρ

∂

∂xi
P̄ Ūi + 2ν

∂

∂xi
ŪjS̄ij, (4.10)
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Figure 4.2: The wall-normal distribution of (a) MKE budgets, (b) TKE budgets, and (c) the
transports of MKE and TKE by the hairy filaments and their sum for the case of D700Ca40h8s8.
For comparison, the same quantities are plotted for the baseturbulent channel flow. The red
solid line ( ) and black dashed line ( ) denote the results from D700Ca40h8s8 and
the base turbulent channel flow with no-slip, smooth walls, respectively.
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FM =
1

ρ
F̄ib,iŪi, (4.11)

whereS̄ij = 1
2

(

∂Ūi/∂xj + ∂Ūj/∂xi
)

. The terms on the right-hand side represent the MKE

production (PM ), viscous dissipation of MKE (DM ), MKE transport (TM ) which encompasses

the transports by turbulence, mean pressure, fluid viscosity, and the MKE transport by the hairy

filaments (FM ). Similarly, the budget equation for TKE can be written as

KT =
D

Dt
u′iu

′
i = P T +DT + T T + F T . (4.12)

The terms on the right-hand side represent the TKE production (P T ) which has the same form

but opposite sign (P T = −PM ), viscous dissipation of TKE (DT ), TKE transport (T T ) which

encompasses the transports by turbulence, mean pressure, fluid viscosity, and the TKE transport

by the hairy filaments (F T ), which are expressed by

P T = −u′iu′j
∂Ūi

∂xj
, (4.13)

DT = −2νs′ij
∂u′i
∂xj

, (4.14)

T T = −1

2

∂

∂xj
u′iu

′
iu

′
j −

1

ρ

∂

∂xi
p′u′i + 2ν

∂

∂xi
u′js

′
ij , (4.15)

F T =
1

ρ
f ′
ib,iu

′
i, (4.16)

wheres′ij =
1
2

(

∂u′i/∂xj + ∂u′j/∂xi
)

. The pressure-strain correlation terms for both MKE and

TKE are eliminated due to the continuity
(

Ūi/∂xi = 0, u′i/∂xi = 0
)

.

Figure4.2shows the wall-normal distribution of the MKE, TKE, and energy transport by the

hairy filaments. The budgets are normalized by the fluid viscosity and the friction velocity of

the base turbulent channel flow, for the quantitative comparison with the base turbulent channel

flow. As perTennekes & Lumley(1972), vortex stretching occurs due to the conservation of

angular momentum. This stretching results in positive workdone by the strain rate on the
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vortex, leading to the transfer of energy into smaller scales. This transfer is evident from the

production of MKE in the MKE budget equation and the production of TKE in the TKE budget

equation. These terms exhibit the same magnitude but opposite sign, indicating that turbulence

receives energy from the mean flow through the strain rate, depleting an equivalent amount of

MKE. This characteristic of interscale energy transfer persists even in the presence of the hairy

filaments. In figures4.2 (a) and (b), the production of MKE and TKE demonstrates the same

magnitude but opposite signs. In addition, the production of TKE decreases in the buffer layer

to the same extent as the depletion of MKE production. This observation suggests that the

positive work done by the strain rate is not disrupted by the hairy filaments and is effectively

utilized for the energy transfer from the mean flow to turbulence.

Figure4.2(a) shows that as the wall-normal distance decreases, the production term〈PM〉+0

and the transport term〈TM〉+0 in MKE budget reach their peaks at aroundz ≈ zeff . Below

zeff , the transport of MKE by the hairy filaments, represented by〈FM〉+0, acts as a sink, and its

magnitude becomes significant. As MKE is transported by the hairy filaments, the decaying rate

of 〈DM〉+0 becomes steeper in the region where〈FM〉+0 is substantial. This can be attributed to

the fact that the MKE, which would have been dissipated by fluid viscosity, is instead absorbed

by the hairy filaments and utilized to drive their motion. In figure 4.2 (b), the transport of

TKE by the hairy filaments, denoted as〈F T 〉+0, acts as a source and its magnitude becomes

substantial atz . zeff . It is worth noting that the magnitude of viscous dissipation, 〈DT 〉+0,

abruptly increases in the region where〈F T 〉+0 is significant. This indicates that the energy

transported by the hairy filaments from the mean flow to turbulence is directly dissipated by

fluid viscosity atz . zeff .

In figure 4.2 (c), it can be observed that the energy transport terms,〈FM〉+0 and〈F T 〉+0,

do not balance out locally with each other. However, when considering the sum of these terms

along the wall-normal direction, it becomes evident that their contributions cancel out, resulting

in a net balance of zero. This implies that their respective effects are observed in different
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regions. The sink peak
(

〈FM〉+0
peak

)

emerges just above the source peak
(

〈F T 〉+0
peak

)

, as also

observed in a different wall-resolved LES studyHe et al. (2022). This indicates that the region

where the MKE is extracted by the filaments is located above the region where the energy

is redeposited into turbulence. It is also implied that the hairy filaments extract large scale

energy from the overlying flow and transfer it to the turbulence of dissipative scales within

the filamentous layer. Subsequently, the redeposited energy is dissipated within the viscous

sublayer, as depicted in figure4.2(b).

In theory, the balance of all budget terms in the MKE and TKE transport equations should

be zero, as it is governed by the conservation of energy. However, in numerical simulations,

achieving a perfect balance might not be possible, and therecould be a residual term resulting

from various factors, such as spatial and temporal discretization schemes. In this study, the

observed residual term isO(10−4) − O(10−3) in wall units, which is considered acceptable

within the numerical accuracy.

4.2.2 One-dimensional Energy Spectra

The modulation of interscale energy transfer by the hairy filaments can be examined through

the one-dimensional energy spectra and comparing them to the reference data obtained from the

base turbulent channel flow. The one-dimensional energy spectra with respect to the streamwise

and spanwise wavenumbers (kx andky) can be defined as follows:

Eii(kx, z) =
2

π
〈ũ′i (kx, ky, z) ũ′i

∗∗
(kx, ky, z)〉, (4.17)

Eii(ky, z) =
2

π
〈ũ′i (kx, ky, z) ũ′i

∗∗
(kx, ky, z)〉, (4.18)

whereũ′i (kx, ky, z) is the two-dimensional Fourier transform ofu′i (kx, ky, z),

ũ′i (kx, ky, z) =

∫ ∞

−∞

∫ ∞

−∞

u′i (x, y, z) exp
[

−2π
√
−1 (kxx+ kyy)

]

dxdy. (4.19)
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Figure 4.3: One-dimensional energy spectra with respect to(a), (b) the streamwise wavenum-
ber, kx, and (c), (c) the spanwise wavenumber,ky. The spectra is present at the wall-normal
positions included in (a), (c) the near-wall region (z+ ≈ 5) and (b), (d) the lower part of the
log-layer (z+ ≈ 35). Line types: The present LB DNS simulation withGR = 4, the
previous LB DNS withGR = 4, – –, the pseudo-spectral DNS, The reference lines are
obtained from the appendix of an earlier study (Rastegari & Akhavan, 2018).

119



The transform is obtained using a real-to-complex Fast Fourier Transform (FFT) method (Frigo

& Johnson, 1998), and the superscript∗∗ denotes complex conjugation.

Before analyzing the one-dimensional energy spectra obtained in the presence of the hairy

filaments, it is necessary to verify the computation method for the one-dimensional energy

spectra using DNS data from the base turbulence channel flow.Figure4.3 presents the one-

dimensional energy spectra of the base turbulent channel flow obtained from the present LB

DNS withGR = 4, the previous LB DNS withGR = 4 and the pseudo-spectral DNS atz+ ≈ 5

andz+ ≈ 35. The two latter cases are found in the appendix of an earlier study (Rastegari &

Akhavan, 2018). The difference between the present LB DNS and the previousLB DNS is the

choice of the forcing function employed in the LB equation. While the previous LB DNS study

utilized an outdated and less accurate forcing function, its result was still reasonable enough

as a reference. Figure4.3 shows that the one-dimensional energy spectra of the base turbulent

channel flow obtained from the present study agree well with the reference data, indicating that

the computation method of the one-dimensional energy spectra is verified.

Figure 4.4 illustrates the comparison of the one-dimensional energy spectra between the

nominal case (D700Ca40h8s8) and the base turbulent channelflow with respect tokx andky in

friction wall units. In figure4.4 (a) and (c), within the near-wall region, the energy primarily

present in the integral length scale is depleted and becomesmore prominent in small scales. The

depletion of energy is significant for all components for theone-dimensional energy spectra with

respect to the streamwise wavenumber, while it is minimal for the streamwise component and

substantial only for the spanwise and wall-normal components for the one-dimensional energy

spectra with respect to the spanwise wavenumber. This indicates that the modulation of the

intercomponent energy transfer is due to the modulation of interscale energy transfer in the

spanwise direction.

The energy transported by the hairy filaments tends to concentrate towards their wake scale,

bypassing the inertial subrange via spectral shortcut (Brunetet al., 1994; Finnigan, 2000), re-

sulting in the appearance of the second peak at the wake scalein the energy spectra. In figure
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4.4(a) and (c), the second peak appears aroundk+x ≈ 0.8 andk+y ≈ 0.8, which corresponds to

the spacing of the filaments. This indicates that the wake scale depends on the spacing of the

hairy filaments. The wake scale energy is then further cascading towards smaller scale eddies

of the dissipative scale.

The one-dimensional energy spectra at the outer layer, present in figure4.4(b) and (d), show

different aspects compared to at the near-wall region. The one-dimensional energy spectra at

z/H ≈ 0.8 exhibit marginal difference between the cases with and without the presence of the

filaments, as shown in figure4.4 (b) and (d). This similarity upholds the concept of the outer-

layer similarity, which is a characteristic commonly observed in rough surfaces (Hama, 1954;

Townsend, 1976). The hairy filaments, deemed as ’flexible’ roughness elements, have a direct

impact on the flow within the near-wall region but less disturbing the outer region. It was well

known that the effects of rough surface generally extend up to2−5 roughness heights above the

roughness crests, depending on how dense these surfaces are(Raupachet al., 1991; Jimenez,

2004). Above this height, the turbulence is undisturbed and recovers outer-layer similarity. This

is also confirmed with the hairy surfaces regarding the similarity of the one-dimensional energy

spectra, as shown in figures4.4(b) and (d).

In order to gain a comprehensive understanding of energy transfer, this study analyzed

the pre-multiplied one-dimensional energy spectra depicted in two-dimensional contours with

respect to the wavelengths and the wall-normal location. Figures4.5 and 4.6 illustrate the

two-dimensional contours of the streamwise and spanwise one-dimensional energy spectra pre-

multiplied by the streamwise and spanwise wavenumbers. In this context,λx andλy denote

the streamwise and spanwise wavelengths, respectively. Figure4.5 (a) shows that the peak of

the pre-multiplied streamwise spectra appears at(z+, λ+x ) ≈ (15, 1000) for the base turbulent

channel flow. This location is often called ‘inner site’, which corresponds to the characteristic

scale of elongated high- and low-speed streaks (Kline et al., 1967; Hutchins & Marusic, 2007).

The wall-normal location situated in the inner region corresponds to a specific location where

the turbulence production is concentrated. The streamwisewavelength aligned with the inner
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Figure 4.4: One-dimensional energy spectra for a hairy surface corresponding to the case of
D700Ca40h8s8, plotted with respect to (a), (b) the streamwise wavenumber,kx, and (c), (c) the
spanwise wavenumber,ky. The spectra is present at the wall-normal positions included in (a),
(c) the near-wall region (z+ ≈ 5) and (b), (d) the outer-layer (z/H ≈ 0.8). For comparison,
the same quantities are plotted for the base turbulent channel flow. The red solid line ( )
and black dashed line ( ) denote the results from D700Ca40h8s8 and the base turbulent
channel flow with no-slip, smooth walls, respectively.
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site corresponds to the location where the most energetic signature of the near-wall structures

appears. For the base turbulent channel flow, the peak of the spanwise one-dimensional energy

spectra pre-multiplied by the spanwise wavenumber appearsat (z+, λ+y ) ≈ (15, 100) in figure

4.6(a). This viscous-scaled spanwise wavelength of100 corresponds to the spanwise spacing of

the near-wall streaks (Kline et al., 1967), indicating that the most prominent energetic signature

is determined by the spanwise gap of the near-wall streaks.

When hairy filaments are present, the peaks of the one-dimensional streamwise spectra pre-

multiplied by the streamwise and spanwise wavenumbers,kxEu′u′ andkyEu′u′, are deviated

from the inner site in figures4.5 (a) and4.6 (a). The z location corresponding to the peak

shifts upward from that corresponding to the inner site, while λ+x andλ+y corresponding to

the energetic signature exhibit minimal alterations from the wavelengths corresponding to the

inner site. This observation suggests that the near-wall structures undergo marginal shift in

the streamwise and spanwise directions but the structures notably shift towards higherz. The

upward displacement of the near-wall structure is a characteristic associated with the decreased

effectiveness of quasi-streamwise vortices and thus the decreased skin-friction drag (Choiet al.,

1993).

The contours show an expansion of the peak region fork+x E
+
u′u′ andk+y E

+
u′u′, but a contrac-

tion of the peak regions for the other components, as shown infigures4.5and4.6. This can be

attributed to the modulation of the intercomponent energy transfer by the hairy filaments. Due to

the modulation of the pressure-strain correlation by the hairy filaments, the turbulence intensi-

ties is piled up in the streamwise component and reduced in the other components, as discussed

in the Section4.2. Moreover, in figures4.5(a) and4.6(a), the contours ofk+x E
+
u′u′ with respect

to (z+, λ+x ) show a gradual decay, while the contours ofk+y E
+
u′u′ with respect to (z+, λ+y ) show a

relatively marginal change within the near-wall region. This can be iteratively attributed to the

modulation of intercomponent transfer, more prominently found in the spanwise direction.

It is worth noting that an additional peak becomes evident atλx ≈ 8 andλy ≈ 8, as de-

picted in figures4.5 and4.6. This observation suggests that a portion of the depleted energy
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is redirected towards the hairy filaments and subsequently deposited within the wake scale re-

gion through the spectral shortcut (Brunetet al., 1994; Finnigan, 2000), where the wake scale

corresponds to the filament spacings within the filamentous layer. Furthermore, the energy

transported to the wake scale further cascades to smaller scale eddies within the filamentous

layer, as evident from the gradual decay with decreasing thewavelength in the pre-multiplied

energy spectra displayed in figures4.5 and4.6. The energy further transferred to the eddies

characterized by dissipative length scales is ultimately dissipated within the viscous sublayer

(z+ . 5).

In conclusion, the drag reduction with hairy surfaces can beattributed to the modulation

of intercomponent and interscale energy transfer. Specifically, the presence of hairy filaments

leads to a decrease in the pressure-strain correlation, which causes an accumulation of turbu-

lence intensities in the streamwise component while reducing them in the cross-streamwise

components. Consequently, the energy that would have been distributed from the streamwise

component to the spanwise and wall-normal components is redirected to the wake scale turbu-

lence through the spectral shortcut, and that energy is eventually dissipated within the viscous

sublayer. The resulting shear production and Reynolds shear stress associated with thev′, w′,

andu′w′ then diminish, leading to a decrease in the streamwise vorticity fluctuation within the

near-wall region and thus a reduction of skin-friction drag.
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Figure 4.5: Two-dimensional contours of the pre-multiplied energy spectra for a hairy surface
corresponding to the case of D700Ca40h8s8: (a) kxEu′u′ , (b) kxEv′v′ , (c) kxEw′w′, (d) −kxEu′w′

with respect to(z+, λx). For comparison, the same quantities are plotted for the base turbulent
channel flow. The red solid line ( ) and black dashed line ( ) denote the results from
D700Ca40h8s8 and the base turbulent channel flow with no-slip, smooth walls, respectively.
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Figure 4.6: Two-dimensional contours of the pre-multiplied energy spectra for a hairy surface
corresponding to the case of D700Ca40h8s8: (a) kyEu′u′ , (b) kyEv′v′ , (c) kyEw′w′, (d) −kyEu′w′

with respect to(z+, λy). For comparison, the same quantities are plotted for the base turbulent
channel flow. The red solid line ( ) and black dashed line ( ) denote the results from
D700Ca40h8s8 and the base turbulent channel flow with no-slip, smooth walls, respectively.
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CHAPTER 5

Conclusions

5.1 Summary and Conclusions

Turbulent skin-friction drag reduction (DR) was investigated by employing direct numerical

simulation (DNS) with an improved lattice Boltzmann, immersed boundary (LB-IB) method.

The hairy filaments were uniformly distributed on both channel walls at bulk Reynolds number

of Reb = 7200, corresponding to a friction Reynolds number ofReτ ≈ 221. The trend of skin-

friction DR was not consistent with individual filament parameters, such as Cauchy numbers,

filament height-to-spacing ratio, filament height, densityratio between the hairy filaments and

fluids; however, it showed a consistent trend in terms of the characteristic time scale ratio, which

was defined by the characteristic time scale of the hairy filaments to the characteristic time

scale of the largest eddies in the base turbulent channel flow. DRs obtained in the parametric

study collapsed into a single curve when plotted as a function of the characteristic time scale

ratio. The maximum drag reduction of5.4% was found for the characteristic time scale ratio

of 1.4 − 1.5. The resulting flow statistics at the upper near-wall region(10 . z+ . 30) were

consistent with the trends of DRs. The hairy filaments playeda crucial role in modulating

intercomponent/interscale energy transfer, leading to the skin-friction DR. In the presence of

drag-reducing hairy surfaces, the energy that would have been distributed from the streamwise

component to the spanwise and wall-normal components through the intercomponent transfer

of turbulent energy was redirected to the filaments and transported to eddies within the wake
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scale via the spectral shortcut. The wake scale turbulent energy further cascades to smaller

eddies of the dissipative scales and that energy was then dissipated within the viscous sublayer.

5.2 List of Achievements

• Enhanced numerical accuracy with improved reciprocity of interpolation-spreading

operations:

Within the framework of diffusive-direct-forcing IB scheme, a refined and rigorous ap-

proach has been proposed to improve the reciprocity of interpolation-spreading oper-

ations. This enhancement has led to significant advancements in numerical accuracy,

stability, and robustness compared to previously proposedLB-IB schemes. Extensive

verification and validation studies were conducted, demonstrating that the present LB-IB

method maintained second-order accuracy and successfullyreproduced experimental re-

sults, particularly in the case of wall-mounted flexible flaps subjected to oscillatory flow.

Notably, when applied to the simulation of turbulent channel flow over hairy filaments,

the present LB-IB method effectively mitigated slip-errors along the entire length of the

filaments, limiting them to less than 2 percent, in stark contrast to the slip-errors on the

order ofO(1000) observed in previous LB-IB schemes. The significant reduction in slip

errors represents a notable accomplishment and demonstrates the advancements made in

ensuring more accurate and reliable simulations.

• Identification of distinct features in DR curves:

Distinct features were observed in the DR curves for variousfilament parameters. When

plotting DR values against individual filament parameters such as Cauchy numbers, fila-

ment height-to-spacing ratio, filament height, and densityratio, no consistent trends were

identified. However, when plotting DR values against the characteristic time scale ratio of
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the hairy filaments to the time scale of the largest eddies, denoted as(Tfiluτ/H), DR val-

ues collapsed into a single curve. This finding suggests thatthe characteristic time scale

ratio serves as the governing parameter for DR. The maximum DR value of approximately

5.3-5.4% was achieved at a characteristic time scale ratio of Tfiluτ/H ≈ 1.4−1.5. These

results could also provide valuable guidance for future research directions, enabling re-

searchers to focus on investigating the influence of the characteristic time scale ratio and

further exploring its implications for DR applications.

• Physical mechanism of DR:

Revealing the underlying physical mechanism of DR with hairy surfaces

This study represented a significant achievement as it successfully elucidated the underly-

ing physical mechanism of DR with hairy surfaces. The mechanism was revealed through

an investigation of the modulation of intercomponent and interscale energy transfer in the

presence of hairy surfaces. Specifically, the presence of hairy filaments was found to

induce a remarkable decrease in the pressure-strain correlation, resulting in an accumu-

lation of turbulence intensity in the streamwise componentwhile reducing them in the

cross-streamwise components. This alteration in turbulence distribution had profound ef-

fects on the energy dynamics of the flow. Notably, the energy that would conventionally

be distributed from the streamwise component to the spanwise and wall-normal com-

ponents was redirected to the wake scale turbulence throughthe spectral shortcut. This

redirection of energy resulted in its eventual dissipationwithin the viscous sublayer. As a

consequence of this energy redistribution, the shear production and Reynolds shear stress

associated with the cross-streamwise components (v′, w′, andu′w′) were significantly

diminished. This decrease in shear production led to a notable reduction in streamwise

vorticity fluctuation within the near-wall region, consequently resulting in a reduction of

skin-friction drag.

Different aspects from the mechanism of DR with rigid riblets
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The most popular surface treatment for reducing skin-friction drag is deemed as using

riblet surfaces to date. Riblets are small, streamwise-oriented grooves or ridges aligned

with the flow direction on a surface. The key difference between the drag reduction mech-

anisms of riblet surfaces and hairy surfaces lies in their ability to directly transport turbu-

lent energy. The mechanism of DR with hairy surfaces is due tointercomponent/interscale

energy transfer as revealed in this study. Hairy filaments transport energy from the mean

flow to turbulence and facilitate its dissipation within theviscous sublayer. The corre-

lation of the fluctuating interaction force with the fluctuating fluid velocity, represented

by the budget term of turbulent kinetic energy transport by the hairy filaments, plays a

primary role in this process. This distinct mechanism makeshairy surfaces a unique and

promising approach for DR in comparison to traditional riblet surfaces. The magnitude

of the turbulent energy transport by rigid, stationary riblets is zero since the fluctuating

velocity is zero at the riblet surfaces. Rather the mechanism of DR with riblet surfaces

is related to their ability to rectify turbulent flow in the mean-flow direction by limiting

cross-flow fluctuations. The net DR arises from the balance between the drag-reducing

effects of streamwise slip and the drag-enhancing effects of spanwise slip (Bechert &

Bartenwerfer, 1989; Luchini et al., 1991; Bechertet al., 1997a). The resulting quasi-

streamwise vortices are lifted away from the wall, reducingtheir contact with the whole

wall surface and weakening their effects on skin-friction generation at the wall (Bixler &

Bhushan, 2013).

5.3 Suggestions for Future Research Directions

In this study, hairy surfaces with different governing parameters were applied to turbulent

channel flows, and they demonstrated successful skin-friction DR. The underlying mechanism

behind skin-friction DR has been elucidated. Building uponthese findings, this chapter explores

the potential applications of hairy surfaces in dynamically interacting with turbulent flows and
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provides recommendations for future research directions.

• Investigating the dynamics of hairy surfaces and their effects on skin-friction drag re-

duction at various Reynolds numbers can provide valuable insights into the Reynolds

number dependence of drag-reducing capabilities of hairy surfaces. For example, com-

pliant surfaces have shown varying drag-reducing capabilities with increasing Reynolds

number. Fukagataet al. (2008) showed that an optimized compliant surface provided

skin-friction drag reduction of approximately 8% at a friction Reynolds number of 110,

but at higher friction Reynolds number of 180, the drag-reducing capability diminishes,

and skin-friction increases (Rosti & Brandt, 2017). As Reynolds number increases, the

wall compliance generates large-amplitude waves propagating downstream, leading to

an increase in skin-friction drag rather than its reduction. Indeed, the observed scenario,

where the drag-reducing capability diminishes with increasing Reynolds number for com-

pliant surfaces, might also be relevant to hairy surfaces. Therefore, it becomes impera-

tive to thoroughly investigate whether hairy surfaces retain their effectiveness at higher

Reynolds numbers and their drag-reducing capability depends on Reynolds number. Such

investigations will provide critical insights into the performance and suitability of hairy

surfaces in various flow environments and pave the way for their practical implementation

in engineering applications.

• Furthermore, in real engineering applications such as ship hulls, submarines, automo-

biles, and airplanes, the friction Reynolds numbers can range up to the order ofO(104) to

O(105). At these higher Reynolds numbers, the outer structures have a greater influence

on skin-friction generation compared to the eddies residing in the inner layer, suggest-

ing a promising pathway is to control the outer structures (Hutchins & Marusic, 2007;

Smitset al., 2011; Hwang, 2013, 2015; Marusicet al., 2021). Therefore, it is conjectured

that hairy surfaces may exhibit different aspects of interscale energy transfer modulation

compared to the present study where Reynolds number was muchlower, Reτ ≈ 221.
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Attenuating the characteristic time scale of the hairy filaments to the time scale of the

outer structures would be a promising pathway to achieve higher DR at high Reynolds

numbers.

• A hairy surface can be designed with filaments of different heights, density ratios, and

Cauchy numbers. As the filaments implanted on the channel walls have different param-

eter values, each filament has a particular characteristic time scale different from neigh-

bors’ time scale. Then this surface would have multiple characteristic time scales rather

than single characteristic time scale, allowing for disrupting a broader range of interscale

transfer of turbulent energy. Moreover, the surface topology would not be uniform but

uneven, gradient, or completely random so that the hairy filaments effectively interact

with various length scales of turbulence. The presence of such ‘multiscale’ hairy surfaces

could simultaneously absorb and deplete turbulent energy contained from the dissipative

scale to the integral length scale, exhibiting distinct energy dynamics compared to sur-

faces with a single scale of uniform hairy surfaces. Then, the magnitude of skin-friction

DR would be more comparable to that obtained from earlier experiments (Takataet al.,

1996; Itoh et al., 2006). Therefore, it is worthy to explore whether the direction rep-

resented by the multiscale hairy surfaces is towards reducing or enhancing skin-friction

drag.

• In this study, the probability density functions of the filament deflection in the stream-

wise, spanwise, and wall-normal directions showed the self-similarity feature for various

filament heights while keeping the filament-spacing ratio, density ratio, and Cauchy num-

bers fixed. This observation suggests the possibility of formulating a mathematical model

of filament deflection. For example of the spanwise filament deflection, the spanwise fila-

ment deflection could be modelled by attenuating the coefficients of a Gaussian function.

As such, developing a well-established filament deflection model would greatly support

predicting the behavior of real canopy elements, such as terrestrial and aquatic vegeta-
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Figure 5.1: Schematics of an external flow over bluff body (a) without hairy surfaces and (b)
with hairy surfaces.

tion, and their impacts on soil preservation and nutrition transport between the overlying

flow and the inside the canopy, without requiring extensive numerical simulations and

experiments.

• Another possible direction for future work is to investigate the performance of hairy sur-

faces in more complex flow configurations, beyond the channelflow considered in this

study. This could involve examining the behavior of hairy surfaces in flows with curva-

ture and its effects on the flow separation control. For instance, let us assume we have a

bluff body subject to the free stream flow as shown in figure5.1. Hairy surfaces reducing

skin-friction drag can result in less fluid momentum deficit in the curved body where the

flow separation would have occurred. As the fluid momentum deficit is reduced, higher

fluid velocity delays the onset of the adverse pressure gradient and pushes the separation

point further downstream, resulting in smaller separationregion. As the separation region

decreases, the pressure difference between the front and rear of the solid body could be

reduced, bringing about the pressure drag reduction. Also,exploring the effects of dif-

ferent hairy surface configurations, such as varying filament heights, spacing ratios, and

densities, could shed light on the optimal design parameters to reduce skin-friction drag

as well as pressure drag.
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• Apart from achieving skin-friction DRs, hairy surfaces can serve other functions in engi-

neered applications. For example, they can be applied to airfoil surfaces found in wind

turbine blades, aircraft wings, and urban/regional air mobility vehicles (UAM/RAM) to

suppress separation regions and reduce aerodynamic noise.To fully explore the capabili-

ties of hairy surfaces and their potential benefits in such engineering applications, compre-

hensive studies should be conducted. These studies should not only focus on skin-friction

drag reduction but also simultaneously investigate other aspects such as separation con-

trol, noise reduction, their interactions, etc. By understanding the multifunctional nature

of hairy surfaces and their performance in diverse engineering scenarios, the full potential

of these surfaces can be harnessed to optimize the efficiency, performance, and sustain-

ability of various engineered systems.

• The LB method does have limitations, particularly with regards to the pressure calcula-

tion. In this method, the pressure is directly computed using the equation of state, inde-

pendent of the velocity fields. Consequently, there might beinstances where the pressure

field does not precisely correspond to the velocity field at the same time instant. Addi-

tionally, the LB method assumes an isothermal and incompressible flow, with the Mach

number ideally below 0.3. However, when the flow speed exceeds a Mach number of

0.3, the standard LB method becomes inadequate and requiresa suitable alternative to

address this limitation. Therefore, it is essential to consider these limitations carefully

when applying the LB method to specific flow scenarios and to explore alternative meth-

ods or modifications to overcome these constraints in higher-speed or compressible flow

regimes.

• The hairy filaments in this study were assumed to mimic mammalian hairs (e.g., seal furs)

or bird feather fibers. They were modeled as slender, elasticbeams, neglecting transverse

shear deformation and rotational bending. To describe the motion of these filaments,

the Euler-Bernoulli beam equation was employed, as it provides a simpler solution com-
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pared to the more complicated Timoshenko–Ehrenfest beam theory. The adequacy of

using the Euler-Bernoulli beam equation relies on satisfying certain assumptions made

during its derivation. First, the length-to-thickness (orlength-to-width) ratio of the beams

should be large. Typically, the Euler-Bernoulli beam equation is valid for beams with

length-to-thickness ratios greater than 10–15 (Aldraihemet al., 1997). In this study, the

length-to-thickness ratio of the hairy filaments ranged from 8 to 32, with filament heights

of 4, 8, 10, 12, 16, and thickness of 0.5 in wall units, satisfying the criteria except for the

shortest filament with a height of 4 in wall units. Another important assumption is that the

beam deflection remains small enough, ensuring that the angle between the tangent to the

neutral axis and the original beam axis stays small. However, the hairy filaments in this

study exhibited large deflections up to approximately 90% ofthe filament length. This in-

troduces challenges in identifying the governing load-deformation relations, particularly

for large deflections, due to the inherent non-linearities caused by the beam’s geometry,

material, and the type and position of applied loading. Addressing these complexities and

incorporating more accurate load-deformation relations may be necessary in future work

to further understand and improve the accuracy of the model.By refining the model, a

more precise representation of the hairy filaments’ behavior can be achieved, enhancing

the overall reliability of the simulation results.
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BRÜCKER, C. & WEIDNER, C. 2014 Influence of self-adaptive hairy flaps on the stall delay of
an airfoil in ramp-up motion.J. Fluids Struct. 47, 31–40.

BRUNET, Y., FINNIGAN , J. J. & RAUPACH, M. R. 1994 A wind tunnel study of air flow in
waving wheat: Single-point velocity statistics.Boundary-Layer Meteorol. 70, 95–132.

136



BUICK , J. M. & GREATED, C. A. 2000 Gravity in a lattice Boltzmann model.Phys. Rev. E 61,
5307.

BUSHNELL, D. M. 1998 Frontiers of the ’responsible imaginable’ in (civilian) aeronautics.The
1998 AIAA Dryden Lecture pp. 1–20.

CECCIO, S. L. 2010 Friction Drag Reduction of External Flows with Bubble and Gas Injection.
Annu. Rev. Fluid Mech. 42, 183–203.

CHANDRASEKARAN, V., CAIN , A., NISHIDA , T., CATTAFESTA, L. N. & SHEPLAK, M.
2005 Dynamic calibration technique for thermal shear-stress sensors with mean flow.Exp
Fluids 39, 56–65.

CHECCO, A., OCKO, B. M., RAHMAN , A., BLACK , C. T., TASINKEVYCH , M., GIA -
COMELLO, A. & D IETRICH, S. 2014 Collapse and reversibility of the superhydrophobic
state on nanotextured surfaces.Phys. Rev. Lett. 112(21), 216101.

CHEN, S. Y., WANG, Z., SHAN , X. W. & DOOLEN, G. D. 1992 Lattice Boltzmann computa-
tional fluid dynamics in three dimensions.J. Stat. Phys. 68, 379–400.

CHEN, Y., YANG, J., LIU , Y. & SUNG, H.J. 2020 Heat transfer enhancement in a poiseuille
channel flow by using multiple wall-mounted flexible flags.Int. J. Heat Mass Transf. 163,
120447.

CHEN, Z., JIANG , C. & NEPF, H. 2013 low adjustment at the leading edge of a submerged
aquatic canopy.Water Resour. Res. 49, 5537–5551.

CHERNYSHOV, O. & ZAYETS, V. 1970 Some peculiarities of the structure of the skin of sharks,
Hydrodynamic Problems of Bionics.Hydrodynamic Problems of Bionics (in Russian) 4, 77–
83.

CHO, M., HWANG, Y. & CHOI, H. 2018 Scale interactions and spectral energy transfer in
turbulent channel flow.J. Fluid Mech. 854, 474–504.

CHOI, H., MOIN, P. & KIM , J. 1993 Direct numerical simulation of turbulent flow over riblets.
J. Fluid Mech. 255, 503–509.

CHOI, H., MOIN, P. & KIM , J. 1994 Active turbulence control for drag reduction in wall-
bounded flows.J. Fluid Mech. 262, 75–110.

CHOI, K. S. 1989 Near-wall structure of turbulent boundary layerwith riblets.J. Fluid Mech.
208, 417–458.

CLARK , C. J. & JAWORSKI, J. W. 2020 Introduction to the symposium: Bio-inspirationof
quiet flight of owls and other flying animals: Recent advancesand unanswered questions.
Integr. Comp. Biol. 60(5), 1025–1035.

CLAUSER, F. H. 1954 Turbulent boundary layers in adverse pressure gradients.J. Aeronaut.
Sci. 21, 91–108.

137



COCEAL, O., DOBRE, A., THOMAS, T. G. & BELCHER, S. E. 2007 Structure of turbulent
flow over regular arrays of cubical roughness.J. Fluid Mech. 589, 375–409.

DANIELLO , R. J., WATERHOUSE, N. E. & ROTHSTEIN, J. P. 2009 Drag reduction in turbulent
flows over superhydrophobic surfaces.Phys. Fluids 21(8), 085103.

DEAN, R. B. 1978 Reynolds number dependence of skin friction and other bulk flow variables
in two-dimensional rectangular duct flow.Trans. ASME I: J. Fluids Engng. 100, 215.

DEGIOVANETTI , M., HWANG, Y. & CHOI, H. 2016 Skin-friction generation by attached ed-
dies in turbulent channel flow.J. Fluid Mech. 808, 511–538.

DIEZ, F. J. & DAHM , W. J. A. 2004 Design and fabrication of unsteady electrokinetic microac-
tuator arrays for turbulent boundary layer control.J. Micromech. Microeng. 14, 1307–1320.

DURBIN, P. A. 2023 Reflections on roughness modelling in turbulent flow. J. Turbul. 24, 1–11.

EL-SAMNI , O. A., CHUN, H. H. & YOON, H. S. 2007 Drag reduction of turbulent flow over
thin rectangular riblets.Intl J. Engng Sci. 45, 436–454.

ENDRIKAT, S., MODESTI, D., MACDONALD , M., GARCIA-MAYORAL , R., HUTCHINS, N.
& CHUNG, D. 2021 Direct Numerical Simulations of Turbulent Flow Over Various Riblet
Shapes in Minimal-span channels.Flow Turbul. Combust. 107, 1–29.

FANG, Z., GONG, C., REVELL , A., CHEN, G. & HARWOOD, A. 2019 Passive separation
control of a NACA0012 airfoil via a flexible flap.Phys. Fluids 31, 101904.

FAVIER, J., DAUPTAIN , A., BASSO, D. & BOTTARO, A. 2009 Passive separation control using
a self-adaptive hairy coating.J. Fluid Mech. 627, 451–483.

FAVIER, J., LI , C., KAMPS, L., REVELL , A., O’CONNOR, J. & BRÜCKER, C. 2017 The
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