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ABSTRACT 

Executive functioning abilities measured early in life are known to predict important 

outcomes later in life, including academic outcomes, physical health, and symptoms of 

psychopathology. Unfortunately, a growing literature identifies a consistent relationship between 

socioeconomic disadvantage in childhood and worse executive functioning performance, and the 

mechanisms underlying this troubling relationship are not well understood. This dissertation is 

comprised of three studies that address several complications muddying our understanding of 

executive functioning and its relationship with disadvantage, including (1) how we measure 

executive functioning, (2) how we can disentangle non-genetic from genetic effects of parenting 

on executive functioning, and (3) how multiple levels of context may become biologically 

embedded to affect executive functioning. In Study 1, we find encouraging evidence for a novel 

computational measure of task-general executive functioning, Efficiency of Evidence 

Accumulation (EEA), as a transdiagnostic risk factor associated with externalizing 

psychopathology in adolescents. In Study 2, we employ a genetically informed design, find little 

evidence of passive or evocative genotype-environment correlation, and instead finding that the 

relationship between harsh parenting and child executive functioning is due in part to non-shared 

environmental influences. In Study 3, we find that neighborhood poverty is associated with 

executive functioning performance via inferior frontal gyrus activation during a go/no-go task, 

over and above other contextual effects. However, we do not find evidence for nurturing, 

supportive parenting as a buffer, nor for harsh parenting as an activator of neighborhood risk. 



 

 xii 

The general discussion chapter of this dissertation highlights the implications of this research and 

important future directions. 
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CHAPTER I 

Introduction to the Dissertation 

 

Executive functioning describes a set of top-down processes that involve regulation of 

goal-directed behavior, including processes like inhibitory control, working memory, and 

cognitive flexibility (Diamond, 2013; Miyake et al., 2000). Executive functioning abilities 

measured early in life consistently predict important outcomes later in life, including academic 

outcomes like literacy, vocabulary, and math skills (Blair & Razza, 2007; McClelland et al., 

2007), learning (Marcovitch et al., 2008), and even physical health (Kubzansky et al., 2009; 

Mischel et al., 2011; Seeyave et al., 2009). In fact, a gradient of childhood self-control has been 

shown to predict physical health, substance dependence, finances, and criminal outcomes at age 

32 (Moffitt et al., 2011). Additionally, deficits in executive functioning have been linked to 

various forms of psychopathology (Bloemen et al., 2018; Wright et al., 2014), including 

attention-deficit/hyperactivity disorder (ADHD; Castellanos et al., 2006; Cherkasova et al., 

2013), antisocial behavior (Moffitt, 2018), substance abuse (Smith et al., 2014; Verdejo-Garcia 

et al., 2008), and depression (Gotlib & Joormann, 2010). Based on this constellation of evidence, 

understanding the origins of children’s executive functioning abilities and using this knowledge 

to support executive functioning development appears to be a clear target for clinical 

psychology.  

Unfortunately, childhood socioeconomic disadvantage has emerged as a major risk factor 

for reduced executive functioning performance. A growing literature identifies a consistent 
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relationship between socioeconomic disadvantage in childhood and lower executive functioning 

scores, both during childhood and adolescence (Hackman et al., 2014; Lawson et al., 2018; 

Raver et al., 2013; Rochette & Bernier, 2014; Shameem & Hamid, 2014), and continuing into 

adulthood (Evans et al., 2021; Last et al., 2018). Meta-analytic evidence indicates that the effect 

of socioeconomic disadvantage on executive functioning is small-to-medium in size, with the 

biggest effect sizes coming from studies with meaningful socioeconomic variability and multiple 

measures of executive functioning (Lawson et al., 2018). However, there is substantial 

heterogeneity in effect sizes between studies (Lawson et al., 2018), and there is not yet consensus 

regarding the mechanisms underlying the relationship between socioeconomic disadvantage and 

executive functioning. The present dissertation will take a deep dive into some of the 

complications muddying our understanding of executive functioning and how it is affected by 

socioeconomic disadvantage, including (1) how we measure executive functioning, (2) how we 

can disentangle non-genetic from genetic effects on executive functioning, and (3) how multiple 

levels of context may become biologically embedded to affect executive functioning. 

Measuring Executive Functioning: Improving Reliability and Predictive Power with 

Computational Modeling 

The executive functioning literature is complicated by a lack of consensus around the 

underlying structure of executive functioning (Karr et al., 2018). Studies of individual 

differences in executive functioning tend to assume that executive functioning is made up of 

several intercorrelated, but distinct, subcomponents (Sripada & Weigard, 2021). The most 

prominent theory of executive functioning, the unity-yet-diversity theory (Miyake et al., 2000), 

subdivides executive functioning into three separable functions: shifting between tasks or sets 

(“shifting”), updating and monitoring of representations in working memory (“updating”), and 
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deliberate inhibition of prepotent responses (“inhibition”). The general unity-yet-diversity 

framework is supported by years of factor analytic work (Friedman & Miyake, 2017; Miyake et 

al., 2000). Though the focus of clinical neuroscience research is often on the “diversity” of 

executive functioning, the “unity” of the theory reflects the fact that these three subcomponents, 

though separable, are correlated, addressing the paradox of a hypothesized domain-general 

executive functioning coupled with troublingly low intercorrelations between executive 

functioning tasks (Friedman & Miyake, 2017; Miyake et al., 2000). However, factor analyses 

often identify variations on the original three subcomponents, and no single subcomponent has 

been shown to consistently relate to any single form of psychopathology (Karr et al., 2018). In 

fact, a recent re-analysis of 46 eligible confirmatory factor analyses found that no one model 

consistently converged and met acceptability criteria in all samples, suggesting that many 

previously published models based upon the “unity-yet-diversity” framework executive 

functioning may have been underpowered and overfit (Karr et al., 2018). Rather than focusing on 

the diversity of executive functioning, it may be helpful to focus on unity via a measure of task-

general executive functioning. 

One way to index task-general executive functioning is to model task performance in a 

way that can be applied to any subcomponent executive functioning task, generating a common 

metric that measures a domain-general construct (Weigard & Sripada, 2021). Model-based 

approaches, like the drift diffusion model, can be applied to a variety of behavioral tasks and 

provide richer information about cognitive performance than traditional metrics by accounting 

for both accuracy and reaction time (Weigard, Brislin, et al., 2021; Wiecki et al., 2015). One 

model-based construct in particular, the “efficiency of evidence accumulation” (EEA), indexed 

by drift rate in the drift diffusion model, shows promise as a task-general individual difference 
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that contributes to cognitive impairments across various forms of psychopathology in adults 

(Weigard & Sripada, 2021). The drift diffusion model assumes that evidence driving a decision 

(i.e. a choice on a two-choice task) is accumulated continuously over time (Ratcliff & Rouder, 

1998). EEA describes the rate at which a person gathers relevant evidence among background 

noise in order to make an accurate choice (Weigard & Sripada, 2021). In other words, EEA 

indexes how efficiently an individual tends to “drift” toward a correct decision across various 

tasks and conditions. EEA exhibits good test-retest reliability (Lerche & Voss, 2017), and 

outperforms traditional metrics both in temporal stability and in prediction of psychopathology 

(Weigard, Clark, et al., 2021). In adults, reduced EEA is associated with schizophrenia, bipolar 

disorder, and ADHD, as well as a global severity of psychopathology (Sripada & Weigard, 

2021), and predicts substance use behaviors (Weigard, Brislin, et al., 2021). Given its improved 

reliability and relation to real-world measures of psychopathology, using a model-based measure 

of executive functioning, like EEA, may improve our ability to pinpoint the mechanisms 

underlying disadvantage-related executive functioning differences. However, though it shows 

great promise in adult samples, the reliability and validity of this measure have not yet been 

investigated in samples of children and adolescents.  

Intergenerational Transmission of Executive Functioning 

Beyond measurement, a key question is the etiology of executive functioning — where 

do individual differences in executive functioning come from? The executive functioning 

literature is complicated by the issue of disentangling non-genetic (i.e. parenting, neighborhood 

poverty) contributors from genetic contributors to individual differences in executive 

functioning. Executive functioning runs in families, such that parents with better executive 

functioning skills tend to have children with better executive functioning skills (Deater-Deckard, 
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2014). Non-genetic, environmental influences such as parenting have been implicated as 

potential mediators of the relationship between parent and child executive functioning (e.g. 

Distefano et al., 2018; Kao et al., 2018; Korucu et al., 2020). However, the heritability of a 

general executive functioning factor is thought to be quite high (Friedman & Miyake, 2017), 

with estimates as high as 99% (Friedman et al., 2008) or 100% (Engelhardt et al., 2015). Because 

parents pass 50% of their genes to their children, and parenting behaviors are known to be 

influenced by genotype (Elkins et al., 1997; McGuire, 2003; Narusyte et al., 2008), it could be 

argued that any apparent effect of context on executive functioning is driven by genotype-

environment correlation (rGE), or the correlation between the parents’ (and thus children’s) 

genetic tendencies and the environment they provide for their children (Deater-Deckard, 2014; 

Knopik et al., 2017; Manuck & McCaffery, 2014). Disentangling the role of genotype-

environment correlation in classical twin studies of executive functioning has proven challenging 

(Li & Roberts, 2017), and the majority of studies linking context to child executive functioning 

are not genetically informed, with a few notable exceptions (Bridgett et al., 2018; Cioffi et al., 

2020). Thus, it is necessary to extend beyond classical twin studies in order to better illuminate 

the role, or lack thereof, of non-genetic contributors to the family transmission of executive 

functioning. 

The Embedding of Context: The Role of the Neighborhood 

A final consideration is how contexts may be biologically embedded to contribute to 

individual differences in executive functioning. A growing literature points to neighborhood 

disadvantage as a particularly notable risk factor for executive functioning differences, over and 

above family-level socioeconomic variables. Neighborhood contexts confer additional risk 

beyond family-level factors because they increase exposure to additional adverse experiences 
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(e.g., neighborhood danger, under-resourced schools, toxicant exposure; Evans, 2004; Leventhal 

& Brooks-Gunn, 2000). These neighborhood-adversity-related stressors may generate “wear” on 

stress regulatory systems, with implications for the brain circuitry underlying executive 

functioning (Finegood et al., 2017; McEwen, 2004). As many of the earlier studies reporting 

disadvantage-related executive functioning differences only measured family-level variables like 

income or education (Lawson et al., 2018), the neighborhood context may represent an 

unmeasured but crucial third variable. 

Indeed, there is a growing literature that finds effects of neighborhood context on brain 

structure and function. Recent work from our group demonstrated that children raised in 

neighborhoods with higher levels of poverty show reduced behavioral and brain measures of 

executive functioning (Tomlinson et al., 2020). Notably, this relationship held even when 

controlling for family-level socioeconomic variables (i.e., family income, maternal education), 

indicating that where children live is particularly important for their executive functioning 

development. There is also evidence of effects of neighborhood disadvantage on other 

corticolimbic structures and processes: for example, neighborhood disadvantage is associated 

with greater amygdala reactivity to faces (Gard et al., 2021), reduced prefrontal activation to 

working memory load (Murtha et al., 2021), changes in amygdala-prefrontal connectivity 

(Ramphal et al., 2020), reduced cortical thickness (Hackman et al., 2021; Hunt et al., 2020; 

Taylor et al., 2020), altered trajectories of brain age (Rakesh, Cropley, et al., 2021), and worse 

performance on neurocognitive tasks (Hackman et al., 2021; Taylor et al., 2020; Webb et al., 

2021). Thus, considering the role of the neighborhood in children’s executive functioning 

development is of critical importance. 

The Embedding of Context: The Role of Parenting 
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A more proximal context likely to contribute to individual differences in children’s 

executive functioning skills is the parenting they receive. Indeed, there is substantial evidence 

that parenting matters for executive functioning development, such that nurturing, supportive 

behaviors promote executive functioning skills while harsh, controlling behaviors impede 

executive functioning skill development (Fay-Stammbach et al., 2014; Hughes & Devine, 2019; 

Li et al., 2019). Rather than falling along a continuum, positive and negative parenting behaviors 

appear to have separable influences on executive functioning, such that even when included in 

the same model supportive parenting behaviors have a specific positive effect while harsh 

parenting behaviors have a specific negative effect (Hughes & Devine, 2019). Thus, 

interventions either to promote positive parenting behaviors or to reduce negative parenting 

behaviors could be helpful to support executive functioning skills. 

However, parenting does not occur in a vacuum. It is unlikely that the neighborhood 

context and the parenting context operate independently from each other. Instead, the reality is 

likely closer to what was outlined in Bronfenbrenner’s ecological systems theory, in which 

individuals develop within multiple nested environmental contexts (Bronfenbrenner, 1977). The 

family environment, including the parenting children receive, is necessarily embedded within the 

neighborhood context (Bronfenbrenner, 1977; Hyde et al., 2020). Additionally, as outlined in 

Sameroff’s transactional model of development, these contexts necessarily influence each other 

and are simultaneously influencing and influenced by the developing child (Sameroff, 2009). 

The more proximal parenting context may act as a protective buffer against the more distal 

stressors associated with neighborhood disadvantage. Indeed, positive parenting behaviors were 

recently shown to moderate the relationship between neighborhood disadvantage and resting 

state functional connectivity in several networks (Rakesh, Seguin, et al., 2021). Thus, work is 
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needed that considers the neighborhood and parenting contexts through an ecological 

neuroscience lens, in which development is thought to occur within nested, transactional 

contexts (Hyde et al., 2020). 

Additional Considerations in the Literature 

Many studies of socioeconomic disadvantage effects on executive functioning have 

focused on childhood or early adolescence (Blair, 2016; Evans et al., 2021; Lawson et al., 2018). 

Similarly, many studies of parenting effects on executive functioning focus on infants and young 

children (i.e. age 6 months to 4 years, e.g. Bernier et al., 2012; Bernier et al., 2010; Blair et al., 

2014; Bridgett et al., 2018; Broomell et al., 2020; Cioffi et al., 2020; Distefano et al., 2018; 

Hammond et al., 2012; Helm et al., 2020; Hughes & Devine, 2019; Kao et al., 2018; Korucu et 

al., 2020; Zeytinoglu et al., 2017). This is indeed an important time period to study, as the 

prefrontal cortex and associated executive functioning skills are rapidly developing during this 

time (Kolb et al., 2012; Zelazo & Carlson, 2012). However, the prefrontal cortex has a prolonged 

developmental course, including an overproduction of neurons and their connections during early 

childhood, followed by pruning and myelination in later childhood and adolescence (Kolb et al., 

2012). Executive functioning development follows this trajectory, with rapid improvement in 

executive functioning skills during early childhood, followed by slow and steady improvement 

through adolescence (Diamond, 2013). Such a prolonged developmental course makes the 

prefrontal cortex susceptible to environmental input even into adolescence (Blakemore & 

Choudhury, 2006; Kolb et al., 2012). Additionally, externalizing disorders associated with 

executive functioning difficulties, such as ADHD and antisocial behavior, often emerge or 

become more impairing during the adolescent period (Cherkasova et al., 2013; Moffitt, 2018). 
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Thus, work that considers parenting influences on executive functioning in later childhood and 

adolescence may have particular clinical relevance. 

 

Specific Aims of this Dissertation 

The purpose of this dissertation was to address these three major complications to our 

understanding of executive functioning and its relation to socioeconomic disadvantage by (1) 

testing the viability of efficiency of evidence accumulation (EEA) as a task-general executive 

functioning metric in adolescents; (2) disentangling non-genetic from genetic influences in the 

intergenerational transmission of executive functioning; and (3) studying the interacting effects 

of neighborhood poverty and parenting on brain and behavioral measures of executive 

functioning. The three studies described in this dissertation all utilized data from a large sample 

of adolescents representative of families living in impoverished neighborhoods. Such a sampling 

approach is uncommon within the neuroscience (Falk et al., 2013) and behavioral genetics (Burt 

et al., 2021) literatures, but does appear to be necessary to adequately measure the effects of 

socioeconomic disadvantage (Lawson et al., 2018). 

The first study examined the utility of a model-based measurement of executive 

functioning in an adolescent sample. This study tested three hypotheses examining the reliability 

and validity of this model-based measure: first, that model-based executive functioning would be 

more reliable than traditional metrics via test-retest reliability; and second, that model-based 

executive functioning would predict concurrent and prospective parent- and child-reported 

symptoms of several forms of psychopathology, including ADHD and a global psychopathology 

score. Finally, we tested the hypothesis that EEA would correlate with inhibition-related brain 
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activation within inhibitory (i.e., inferior frontal gyrus) and error-monitoring (i.e., anterior 

cingulate cortex) brain regions.  

The second study examined the intergenerational transmission of executive functioning 

by disentangling non-genetic influences from genetic influences. This study first utilized twin 

modeling methods to decompose the variance in child executive functioning into genetic and 

non-genetic components and then quantify passive rGE (i.e., correlation between additive genetic 

influences and the family environment). We hypothesized that twins who received more positive 

parenting behaviors (e.g., nurturance, warmth, scaffolding) and less negative parenting behaviors 

(e.g., harshness, negative control) would demonstrate higher executive functioning scores, and 

that the association between parenting and executive functioning would not be driven entirely by 

genetic or family-level confounds. 

The third study examined the associations between neighborhood poverty, parenting, and 

EF-related brain activation. First, we replicated the results of Tomlinson et al. (2020) in a larger 

sample, asking whether neighborhood poverty predicted executive functioning performance via 

executive-functioning-related (EF-related) inferior frontal gyrus activation during a go/no-go 

task. Second, we investigated whether positive parenting, thoroughly assessed via child-report 

and parent-report, correlated with EF-related brain activation. Third, we examined whether 

positive parenting buffered the effects of neighborhood poverty on neural and behavioral 

measures of executive functioning. In line with emerging evidence in the field (Rakesh, Seguin, 

et al., 2021), we hypothesized that positive parenting would buffer the effect of neighborhood 

poverty on EF-related brain activation. 

Study 1: Measuring Task-General executive functioning in Children Using Efficiency of 

Evidence Accumulation 
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Aim 1. Examine whether EEA is more reliable than traditional executive functioning metrics 

via test-retest reliability. 

Aim 2. Examine the construct validity of EEA measurement via examining associations with 

concurrent and prospective parent- and child-reported symptoms of several forms of 

psychopathology. 

Aim 3. Examine the inhibition-related neural correlates of EEA within inhibitory (i.e. 

inferior frontal gyrus, IFG) and error-monitoring (i.e. anterior cingulate cortex, ACC) 

regions. 

Study 2: A Genetically Informed Approach to the Role of Parenting in the 

Intergenerational Transmission of Executive Functioning 

Aim 1. Test whether parent executive functioning has an indirect effect on child executive 

functioning via harsh or nurturing parenting using structural equation modeling. 

Aim 2. Use the nuclear twin family model to decompose the variance in child executive 

functioning into genetic and environmental components, quantifying passive rGE. 

Aim 3. Decompose the covariance between harsh parenting and child executive functioning. 

Study 3: Parenting as a Buffer Against the Effects of Neighborhood Poverty on Executive 

Functioning 

Aim 1. Examine whether neighborhood poverty predicts executive functioning performance 

via EF-related inferior frontal gyrus (IFG) activation during a go/no-go task. 

Aim 2. Investigate whether nurturing or harsh parenting, assessed via child-report and 

parent-report, correlates with EF-related brain activation. 

Aim 3. Investigate whether nurturing parenting buffers, or harsh parenting activates, the 

effects of neighborhood poverty on neural and behavioral measures of executive functioning. 
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CHAPTER II 

Measuring Task-General Executive Functioning in Children Using Efficiency of Evidence 

Accumulation 

 

Executive functioning in childhood is important for both child and adult outcomes, 

including literacy, vocabulary, math skills, and mental and physical health (Blair & Razza, 2007; 

Marcovitch et al., 2008; McClelland et al., 2007; Mischel et al., 2011; Moffitt et al., 2011). 

Executive functioning is thought to be a set of top-down processes that involve regulation of 

behavior when autopilot is not sufficient (Diamond, 2013), though there are many other terms 

often used to capture similar constructs (e.g. self-regulation, effortful control; Nigg, 2017). 

Deficits in executive functioning have long been linked to various forms of psychopathology 

(Bloemen et al., 2018; Gotlib & Joormann, 2010; Moffitt, 2018; Smith et al., 2014; Verdejo-

Garcia et al., 2008; Wright et al., 2014). Thus, understanding the factors that lead to individual 

differences in executive functioning is of interest to clinical psychology. 

Studies of individual differences in executive functioning tend to assume that executive 

functioning is made up of several intercorrelated, but distinct, subcomponents (Sripada & 

Weigard, 2021). Perhaps the most prominent theory of executive functioning, the “unity-yet-

diversity” theory (Miyake et al., 2000), subdivides executive functioning into “shifting”, 

“updating”, and “inhibition” functions. This framework is based on and supported by years of 

factor analytic work (Friedman & Miyake, 2017; Miyake et al., 2000). A proliferation of tasks 

have thus been designed to capture individual performance within subcomponents of executive 

functioning (e.g. the go/no-go task measures “inhibition”; Packwood et al., 2011). Such tasks, 
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designed to assess specific subcomponents of executive functioning, have been used extensively 

in clinical neuropsychology (Packwood et al., 2011) as well as in clinical neuroscience research 

(e.g. Hull et al., 2008; Lee et al., 2013; Metin et al., 2012; Smith et al., 2014; Wright et al., 

2014). However, this focus on subdivision, though pervasive, has not led to consensus regarding 

specific links between executive functioning and psychopathology. 

Indeed, there is a striking level of disagreement regarding the exact structure of the 

subcomponents of executive functioning (Lee et al., 2013; McKenna et al., 2017; Packwood et 

al., 2011) and there has been little success consistently relating any one subcomponent of 

executive functioning to one specific form of psychopathology (see Karr et al., 2018 for a 

systematic review). Additionally, metrics traditionally extracted from these subcomponent 

executive functioning tasks suffer from test-retest reliability issues and do not consistently relate 

to real-world outcomes such as mental health, physical health, or income (Eisenberg et al., 

2019). These issues with validity and reliability raise questions regarding the clinical utility of 

task performance on these subdivided executive functioning tasks: for example, though attention 

deficit/hyperactivity disorder (ADHD) is thought to be a disorder of executive dysfunction, there 

is substantial heterogeneity in profiles of executive functioning performance for children with 

ADHD when using traditional metrics on experimental and neuropsychological tasks (Boonstra 

et al., 2005; Lambek et al., 2010; Metin et al., 2012; Packwood et al., 2011). At the same time, 

the ongoing NIMH Research Domain Criteria (RDoC) project has emphasized the importance of 

identifying reliable cross-cutting metrics with clear biological bases (Cuthbert & Insel, 2013). To 

complement ongoing work into the underlying structure of executive functioning, it may be 

helpful to consider whether task-general, rather than subdivided, executive functioning metrics 

have potential as transdiagnostic correlates of psychopathology (Weigard & Sripada, 2021). 



 

 22 

Model-based measurement of EF 

Though less frequently used in clinical neuroscience, model-based approaches popular in 

computational psychology may be able to improve prediction of clinical outcomes by providing 

richer information about cognitive performance than traditional metrics (Weigard, Brislin, et al., 

2021; Wiecki et al., 2015). Indeed, traditional executive functioning metrics may oversimplify 

the complex neural processes underlying task performance. Any single dependent variable 

provides an incomplete picture of task performance, as these metrics (e.g., accuracy, reaction 

time) are being measured simultaneously (Huang-Pollock et al., 2017; Ratcliff, 2002). Instead, a 

model-based approach, like the drift diffusion model, can quantify task performance as a broader 

decision process, accounting for both speed and reaction time (Huang-Pollock et al., 2017; 

Ratcliff, 2002; Ratcliff et al., 2018). The drift diffusion model assumes that evidence driving a 

decision (i.e. a choice on a two-choice task) is accumulated continuously over time (Ratcliff & 

Rouder, 1998). This model has been successfully applied to the go/no-go (Ratcliff et al., 2018) 

and stop signal (Nigg et al., 2018) tasks commonly used in the clinical literature. Crucially, this 

model has biological plausibility: diffusion model parameters have been shown to relate to brain 

activity (Turner et al., 2017; Weigard et al., 2020) and the diffusion model reflects what is 

known about the spiking behavior of neurons (Killeen et al., 2013; Ratcliff & McKoon, 2008). 

Thus, though model-based approaches have not yet been widely adopted in clinical neuroscience, 

they show promise as a method for generating task-general executive functioning metrics.  

There is recent evidence that one model-based metric in particular, the “efficiency of 

evidence accumulation” (EEA), calculated from drift rate in the drift diffusion model, may 

represent a task-general individual difference that contributes to cognitive impairments across 

various forms of psychopathology in adults (Weigard & Sripada, 2021). EEA describes the rate 
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at which a person gathers relevant evidence among background noise in order to make an 

accurate choice (Weigard & Sripada, 2021). EEA exhibits good test-retest reliability (Lerche & 

Voss, 2017), and has recently been shown to outperform traditional metrics both in temporal 

stability and in prediction of psychopathology in adults (Weigard, Clark, et al., 2021). 

Additionally, recent work suggests clear clinical relevance for EEA, with evidence that reduced 

EEA in adults may be a transdiagnostic risk factor associated with schizophrenia, bipolar 

disorder, and ADHD, as well as a global severity of psychopathology (Sripada & Weigard, 

2021). EEA and related brain activation have also been shown to predict substance use behaviors 

in adults (Weigard, Brislin, et al., 2021). Thus, a growing constellation of evidence points to 

EEA as a promising task-general transdiagnostic correlate of psychopathology in adults. 

Less is known about the utility of the EEA paradigm in children. However, there is 

promising evidence that drift rate, an overlapping construct, is impaired in clinical samples of 

children with ADHD (Huang-Pollock et al., 2020; Karalunas et al., 2014; Weigard et al., 2018). 

Validation of the EEA paradigm in community samples of children is a crucial step toward 

understanding its role as a transdiagnostic process. In order to be considered a transdiagnostic 

process for psychopathology in children, EEA must meet some basic criteria: it should be 

reliable, and it should show concurrent and predictive validity (Cronbach & Meehl, 1955; 

Cuthbert & Insel, 2013; Smith, 2005). First, because EEA theoretically indexes a relatively 

stable individual difference, EEA should show stability over testing occasions, or good test-retest 

reliability (Cronbach & Meehl, 1955). Second, EEA should show construct validity, indexed via 

its relation to other constructs in predictable ways, both concurrently and prospectively 

(Cronbach & Meehl, 1955; Smith, 2005). Like in adults, this validity can be assessed via the 

relation between individual differences in EEA and concurrent and/or prospective symptoms of 
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psychopathology (Sripada & Weigard, 2021; Weigard, Brislin, et al., 2021). Finally, in the spirit 

of the integrative RDoC framework, the behavioral EEA metric should have a substantive link to 

underlying neural circuitry (Cuthbert & Insel, 2013), which could be demonstrated via a 

correlation with EF-related brain activation (Weigard et al., 2020). 

Present Study 

The present study examined the potential utility of EEA as a transdiagnostic risk factor 

for psychopathology in a large community sample of twins. We utilized go/no-go and stop signal 

data from the Michigan Twin Neurogenetics Study (MTwiNS), a unique longitudinal twin study 

(N=354 pairs) with oversampling for twins living in low-income neighborhoods. We calculated 

several traditional metrics from both tasks for comparison to a task-general EEA metric. First, 

we tested the hypothesis that EEA would demonstrate better test-retest reliability than traditional 

metrics. Second, we tested the hypothesis that EEA would show acceptable construct validity. 

We tested construct validity via concurrent and prospective correlations with parent- and child-

reported symptoms of several forms of psychopathology, including attention problems and a 

global psychopathology score. Finally, we tested the hypothesis that EEA would relate to brain 

circuitry, via its correlation with inhibition-related brain activation within inhibitory (i.e., inferior 

frontal gyrus, IFG) and error-monitoring (i.e., anterior cingulate cortex, ACC) regions. 

 

Methods 

Participants 

 The present study included data from the Michigan Twins Neurogenetics Study 

(MTwiNS), a longitudinal neuroimaging project within the large-scale Michigan State University 

Twin Registry (see Burt & Klump, 2019). The 354 families participating in MTwiNS were 
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originally identified through birth records. Families were recruited into two cohorts — a 

population-based cohort that represented families living within 120 miles of Michigan State 

University and an at-risk cohort recruited from the same area, but only including families living 

in U.S. Census tracts where at least 10.5% of families lived below the poverty line (the mean for 

the state of Michigan at the time; Burt & Klump, 2019).  MTwiNS participants were re-recruited 

from the original participant pool based upon criteria for the second, “at-risk” cohort. Thus, 

MTwiNS includes families from the “at-risk” cohort as well as those from the population-based 

cohort that would have qualified for the “at-risk” cohort. This re-recruitment strategy yielded a 

sample representative of families living in neighborhoods with above average levels of poverty, a 

unique sampling frame within both the behavioral genetics and neuroimaging literatures (Burt et 

al., 2021). 

The 637 twins (from 337 pairs, 300 complete, 128 monozygotic) included in the present 

study successfully completed at least one of two behavioral executive functioning tasks during 

their first MTwiNS visit. Of these 637 twins, 325 (from 174 pairs, 151 complete, 71 

monozygotic) participated in a second visit at least one year after their first visit. The twins were 

7 to 19 years old upon first visit (Mean=15.7, SD=2.2; 54.5% male; less than 2% of the present 

sample was 10 or younger) and 10 to 19 years old upon second visit (Mean=14.7, SD=2.1; 

54.5% male). The breakdown of twins’ parent-reported ethnicity reflected the surrounding area 

(80% White, 12% Black, 5% Other, 1% Latino/Latina, 1% Pacific Islander, 1% Native 

American, 1% Asian). Median reported family annual income for this sample was $70,000 to 

$79,999 and ranged from less than $4,999 to greater than $90,000. 11% of included children 

were from families reporting an annual income below the 2020 federal poverty line of $26,246 

per year and 53% below the living wage for a family of 4 in Michigan (with one parent working; 
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http://livingwage.mit.edu/states/26). Zygosity was established using physical similarity 

questionnaires (administered to the twins and/or their parents) that show accuracies of 95% or 

better (Bouchard et al., 1990; Iacono et al., 1999; Peeters et al., 1998). Discrepancies were 

resolved through review of zygosity items or by DNA markers. Parents provided informed 

consent and children provided assent in compliance with the policies of the Institutional Review 

Board of the University of Michigan. 

Procedure 

Twins and their primary caregivers took part in a day-long visit to the University of 

Michigan which included a mock scan as well as a one-hour blood-oxygen-level-dependent 

(BOLD) fMRI scan for each twin. Twins completed several tasks in the scanner, including a 

go/no-go task. Outside of the scanner, twins completed several additional computer tasks, 

including a stop signal task (SST), and a battery of child-report questionnaires. Primary 

caregivers completed a demographic interview with an examiner and a battery of self- and 

parent-report questionnaires. Return visits, which take place roughly a year after the first visit (M 

= 1.33 years, SD = 0.44 years, Range = 0.67 – 3.00), are ongoing and follow a nearly identical 

protocol. 

Measures 

Go/No-Go Task 

The go/no-go task used in this study was adapted from Casey et al. (1997), in which 

neural reactivity during inhibition is elicited via a “whack-a-mole” game (stimuli courtesy of 

Sarah Getz and the Sackler Institute for Developmental Psychobiology; task downloaded from 

http://fablab.yale.edu/page/assays-tools). In the present task, participants were instructed to press 

a button as quickly as possible in response to one stimulus (“go”, a mole) and avoid responding 
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to a less frequent non-target (“No-Go”, a vegetable). The target stimuli (moles) were modified 

with various “disguises” to make the task more interesting and difficult given the relatively slow 

speed of stimuli due to MRI scanning requirements. The task consisted of four runs, each with 

approximately 55 trials, for a total of 255 trials of which 55 were no-go (21.6% no-go). Each no-

go trial was preceded by 1-5 go trials. Each trial lasted 2300ms, including a maximum of 1800ms 

stimulus presentation, 400ms feedback, and 100 – 1000ms fixation to account for individual 

differences in reaction time. Participants practiced the task briefly in an MRI simulator before 

the MRI scan.  

In order to thoroughly compare EEA to traditional metrics, we extracted several 

frequently used metrics from the go/no-task. No-go Accuracy was calculated as the percent of 

“no-go” trials for which a participant correctly avoided responding. Go Accuracy was calculated 

as the percent of “go” trials for which a participant correctly responded. Mean Reaction Time 

was calculated as the average reaction time for “go” trials, excluding failed “go” trials (no 

response). Standard Deviation of Reaction Time was calculated as the standard deviation of 

reaction time for “go” trials, excluding failed “go” trials. Inhibitory efficiency (Tomlinson et al., 

2020) was calculated by dividing accuracy by mean reaction time. This measure was designed to 

account for the potential of two individuals to obtain the same accuracy score while one 

individual trades reaction time for accuracy. Participants with overall below-chance performance 

(<55%), below-chance performance on “go” trials (<55%), or with more than 5% of trials 

implausibly “fast guesses” (<150ms; Voss et al., 2013) were not considered to be meaningfully 

participating in the go/no-go task, and were therefore excluded from go/no-go analyses (N=13 

first visit, N=5 second visit), leaving N=589 individuals with viable go/no-go data at the first 

visit, and N=307 individuals with viable go/no-go data at the second visit.  
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Stop-Signal Task 

 The child-friendly stop-signal task used in this study was a 10 minute, 150 trial task 

adapted from Bissett & Logan (2012) as described previously (Begolli et al., 2018). Participants 

were presented with a fish for 850ms and told to push the “a” or “l” keys as quickly as possible 

based on the orientation of the fish, unless a visual stop-signal stimulus (Martin the Manta Ray) 

appeared on the screen, which occurred on 50 of the task trials (33%; “stop” trials). This stop-

signal was presented following a stop signal delay (SSD) that was determined through a standard 

“staircase tracking” algorithm (Logan, 1994) designed to lead to a roughly 50% probability of 

inhibition on “stop” trials for each participant. This algorithm began with a 250ms SSD and was 

thereafter increased or decreased by 50ms on each subsequent ”stop” trial based on whether the 

participant was able to successfully inhibit. Participants with overall below-chance performance 

(<55%), below-chance performance on “go” trials (<55%), a high non-response rate on “go” 

trials (>25%), or with more than 5% of trials implausibly “fast guesses” (<150ms; Voss et al., 

2013) were not considered to be meaningfully participating in the task and were therefore 

excluded from stop-signal analyses (N=59 first visit, N=63 second visit), leaving N=335 

individuals with viable stop-signal data at the first visit, and N=295 individuals at the second 

visit. A number of participants who did complete go/no-go did not have the opportunity to 

complete stop-signal upon first visit (N=254) as the stop-signal task was added to the protocol 

partway through data collection. These participants were still included in all possible analyses 

given viable go/no-go data (N=253). The same metrics that were extracted from the go/no-go 

task were extracted from the stop-signal task, to the extent possible due to differing task designs 

(i.e. No-Go Accuracy and Efficiency are not meaningful for this task due to the stair stepping 

procedure). Due to a programming error, two slightly different task versions were used; to 
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account for this difference, task version was regressed out of all metrics extracted from the stop-

signal task before continuing with analyses. 

Psychopathology 

 Symptoms of psychopathology were assessed via parent- (primary caregiver) and child-

report on the clinically-oriented subscales of the Child Behavior Checklist and Youth Self Report 

(CBCL and YSR; Achenbach & Rescorla, 2001). Subscales of interest included the total 

problems, externalizing problems, internalizing problems, attention problems, anxious/depressed 

problems, withdrawn/depressed problems, rule breaking, and aggressive behavior subscales. We 

used a combined informant approach, creating a composite of all available family informants 

(i.e. mother, father, child; Burt et al., 2006). Such an approach allows for a more complete 

assessment of symptoms than would the use of any single informant (Achenbach et al., 1987). Z-

scored raw symptom counts for each subscale were averaged across the available informants to 

create each composite. When only one informant report was available, that report was used for 

analyses. 

Functional neuroimaging 

Functional imaging data were acquired using one of two GE Discovery MR750 3T 

scanners located at the University of Michigan Functional MRI Laboratory. To leverage 

improvements in MRI data acquisition and to be consistent with the Adolescent Brain Cognitive 

Development (ABCD) Study (Casey et al., 2018), we altered our acquisition protocol after the 

first 140 MtwiNS families. For the first 140 MtwiNS families, one run of 284 volumes was 

collected for each participant using an 8-channel head coil. BOLD functional images were 

acquired using a gradient-echo reverse spiral sequence (repetition time = 2000ms, echo time = 

30ms, flip angle = 90°, FOV = 22cm). Images included 43 interleaved oblique slices of 3mm 
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thickness with 3.44x3.44mm2 in-plane resolution. High-resolution T1-weighted SPGR images 

(156 slices, slice thickness = 1mm, in plane resolution of 1x1mm2) were aligned with the AC-PC 

plane and used during normalization of the functional images. For the remaining MtwiNS 

participants (families 141-354), one run of 685 volumes was collected for each participant. 

BOLD functional images were acquired using a gradient-echo multiband sequence (repetition 

time = 800ms, echo time = 30ms, flip angle = 52°, FOV = 21.6 cm) with a 32-channel head coil, 

which covered 697 interleaved axial slices of 2.4 mm thickness. High-resolution T1-weighted 

SPGR images (208 slices, slice thickness = 1 mm) were aligned with the AC-PC plane and used 

during normalization of the functional images. Scan protocol was included as a nuisance 

regressor in fMRI analyses. 

Preprocessing for both acquisition sequences were identical unless otherwise specified. 

Functional data were preprocessed and analyzed using Statistical Parametric Mapping software 

version 12 (SPM12; Wellcome Centre for Human Neuroimaging). The first four volumes of each 

run were discarded to allow for stabilization of the MR signal. Raw k-space data were de-spiked 

before reconstruction to image space in reverse-spiral sequence acquisition. For gradient-echo 

sequence data with multiband acquisition, task-specific field maps were constructed from 

volumes of both anterior-to-posterior and posterior-to-anterior phase encoding; field maps were 

applied after image construction to reduce spatial distortions and minimize movement artifacts. 

Slice timing correction was performed using the median slice as the reference slice. Functional 

data were then spatially realigned to the 10th slice of the volume. These spatially realigned data 

were coregistered to a high-resolution T1-weighted image, segmented, and spatially normalized 

into standard stereotactic space to the Montreal Neurological Institute (MNI) template. For 

participants with unusable high-resolution T1-weighted structural images (N=4), we spatially 



 

 31 

realigned using the T1-weighted overlay image (first 140 families: 43 slices, slice 

thickness=3mm, in plane resolution of 0.85x0.85mm2; families 141-354: 60 slices, slice 

thickness = 2.4mm, in plane resolution of 0.9x0.9mm2). Finally, functional data were smoothed 

using a 6mm Gaussian kernel.  

After preprocessing, the Artifact detection Tools toolbox (ART; 

https://www.nitrc.org/projects/artifact_detect/) was used to detect translation or rotational motion 

outlier volumes that remained after earlier QA (>2mm movement or 3.5 rotation) and to scrub 

them from the dataset. Preprocessed images were also visually inspected for major artifacts. 

Coverage of the frontal lobe was checked using the WFU PickAtlas “frontal lobe” structural 

mask (Maldjian et al., 2003). A participant’s fMRI data were considered unusable if they 

contained obvious prefrontal artifacts, had less than 90% coverage of the frontal mask, or had 

more than 5% of scans identified as motion outliers. Preprocessing was conducted in 

containerized versions of SPM12, and the standard pipeline is accessible via Github 

(https://github.com/UMich-Mind-Lab/pipeline-task-standard). After quality checks, 549 

participants with behavioral data had usable fMRI data (Table II.1). 

 Functional data were modeled using the general linear model in SPM12. Three conditions 

were modeled: correct No-Go trials, in which a participant correctly withheld a response to a No-

Go stimulus; incorrect No-Go trials, in which a participant incorrectly responded to a No-Go 

stimulus; and Go trials, in which a participant saw a Go stimulus. Incorrect Go trials were not 

modeled due to the expected high hit rates for Go trials (median 100%). For each participant, the 

main contrast of interest was all No-Go (including both correct and incorrect) > Go.  

Analytic Plan 

Efficiency of Evidence Accumulation (EEA) 
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Drift Diffusion Model Analysis. Drift rate parameters from a drift diffusion model were 

calculated using Bayesian methods for each condition and task (i.e. no-go, go, stop-signal) using 

the Dynamic Models of Choice functions (Heathcote, 2019), an adaptation of the differential 

evolution Markov chain Monte Carlo model (Turner et al., 2013), in R version 4.1.0 (R Core 

Team, 2021). Trials with implausibly fast response rates (<150ms; Voss et al., 2013) were 

excluded from the drift diffusion model analysis. Drift rate was calculated separately for “go” 

and “no-go” trial types within the go/no-go task due to previous evidence that it may 

systematically differ across the two conditions (Huang-Pollock et al., 2017; Ratcliff et al., 2018).  

EEA Score. Individual participants’ EEA scores were calculated as latent factor scores 

from the three drift rate parameters (go, no-go, stop-signal) in Mplus version 8.6 (Muthén & 

Muthén, 1998-2017) via R (R Core Team, 2021), tidyverse (Wickham et al., 2019), and the 

MplusAutomation package (Hallquist & Wiley, 2018).  

Question 1: Is EEA more reliable than traditional metrics? 

 To assess the reliability of EEA, we assessed test-retest reliabilities of EEA and 

traditional metrics within our sample for those individuals who returned for a second visit and 

had usable data at that timepoint (N=309). We also assessed across-task reliability for those 

metrics available from both the go/no-go and stop signal tasks at the first visit. For both sets of 

analyses, we ran zero-order Pearson correlations to assess rank-order stability. Finally, in order 

to provide the best possible comparison to the EEA latent factor score, which combined 

performance from the go/no-go and stop-signal tasks, we repeated these analyses with “average” 

scores for each metric including data from both tasks when available. These “average” scores 

were created by averaging z-scored performance on a given metric from both tasks (i.e., 
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averaging z-scored go/no-go SDRT and z-scored stop-signal SDRT). When data from only one 

task was available, that z-score was used without averaging. 

Question 2: Is EEA concurrently or prospectively related to psychopathology?  

To assess whether EEA and traditional metrics related concurrently to psychopathology, 

we first ran zero-order Pearson correlations for all metrics with all psychopathology subscales at 

the first visit. To reduce the number of comparisons, we used the “average” task metrics 

described above when metrics were available for both tasks. We then used linear regression with 

maximum likelihood estimation within Mplus to repeat these analyses, controlling for age and 

sex, and accounting for relatedness within families using the “cluster” command. 

To assess whether EEA and traditional metrics related prospectively to psychopathology, 

we ran zero-order correlations for all metrics at the first visit with all psychopathology subscales 

at the second visit. We then used linear regression with maximum likelihood estimation within 

Mplus to repeat these analyses, controlling for age (at the second visit), sex, and time between 

visits, and accounting for relatedness within families using the “cluster” command. Finally, we 

re-ran these models with controls for previous levels of psychopathology to assess whether 

performance predicted change in symptoms of psychopathology between visits. 

Question 3: Is EEA related to brain activation? 

To assess the biological relevance of executive functioning task performance as measured 

by EEA and more traditional metrics, we used linear regression in SPM12 to investigate whether 

executive functioning performance as measured by these variables might covary with brain 

activation during the contrast of interest (all no-go > go). We used a stringent, whole-brain 

approach, with cluster thresholding determined for each model by 3dttest++ within AFNI (Cox, 

1996; Cox et al., 2017a, 2017b) based on an overall error rate (alpha) of 0.05 with a voxel-wise 
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threshold of p<0.001. To reduce the number of comparisons, we ran these regressions using the 

“average” task metrics including data from both tasks when possible. 

Results 

 The drift diffusion model fit the data well for all conditions (Figure II.1) and parameter 

recovery for the EEA parameter (drift rate, v) was excellent for all tasks and conditions (Figure 

II.2). The EEA factor score converged, and loadings for all three conditions (go, no-go, stop-

signal) were significant and within the acceptable range at both visits, though loadings for stop-

signal were lower than those for the go and no-go conditions of the go/no-go task (Figure II.3). 

Descriptive statistics for and correlations between all of the extracted metrics from each task are 

available in Tables II.2 and II.3. Correlations between all extracted metrics from both tasks are 

available in Table II.4, and correlations between EEA and “average” metrics are available in 

Table II.5. 

Question 1: Is EEA more reliable than traditional metrics? 

 EEA demonstrated comparable test-retest reliability to the traditional metrics (r=.52, 95% 

CI [.43,.59], p<0.001; Tables II.4 & II.5; Figure II.4). The metric with the highest test-retest 

reliability was Go/No-Go Efficiency (Accuracy / Reaction Time; r=.64, 95% CI [.57,.71], 

p<0.001) and with the lowest was Go Accuracy for either task (e.g., for Go/No-Go, r=.37, 95% 

CI [.26,.47], p<0.001; Table II.4). Findings were very similar when considering “average” 

metrics which included performance from both tasks when available (Table II.5). 

 EEA demonstrated better cross-task reliability than the other extracted metrics that were 

available for both tasks at the first visit (r=.28 and .30 for Go and No-Go with Stop-Signal, 

respectively; 95% CI [.17,.38] and [.19,.40]; p<0.001; Table II.6; Figure II.4). No other available 

metric demonstrated cross-task reliability significantly different from 0 at the first visit, meaning 
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that a participant who performed better than their peers per a given metric (i.e., reaction time) on 

one task did not reliably perform better than others per that same metric on the second task. 

Question 2: Is EEA concurrently or prospectively related to psychopathology?  

 Zero-order correlations for EEA and traditional metrics with concurrent psychopathology 

are reported in Table II.7. When accounting for age, sex, and relatedness within families, as 

expected worse EEA scores related to more concurrent externalizing problems (b=-.11; 95% CI 

[-.20,-.01]; p=0.03; Table II.8), more concurrent attention problems (b=-.21; 95% CI [-.30,-.11]; 

p<0.01; Table II.8), and more concurrent rule-breaking problems (b=-.17; 95% CI [-.27,-.07]; 

p<0.01; Table II.8), but no longer related to concurrent anxious/depressed problems (b=.06; 95% 

CI [-.04,.15]; p=0.22; Table II.8).  

 Zero-order correlations for EEA and traditional metrics with prospective outcome 

variables are reported in Table II.9. When accounting for age, sex, time between visits, and 

relatedness within families, worse EEA scores no longer related to prospective attention 

problems (b=-.12; 95% CI [-.26,.01]; p=0.07; Table II.10), but did relate to more prospective 

externalizing problems (b=-.12; 95% CI [-.22,.00]; p=0.04; Table II.10), less prospective 

internalizing problems (b=.12; 95% CI [.00,.23]; p=0.04; Table II.10), less prospective 

anxious/depressed problems (b=.17; 95% CI [.05,.29]; p=0.01; Table II.10), and more 

prospective rule breaking (b=-.16; 95% CI [-.26,-.04]; p=0.01; Table II.10). When adding an 

additional control for previous levels of psychopathology, no significant relationships remained, 

meaning that EEA did not predict change in psychopathology over time when accounting for the 

stability of psychopathology. 

Question 3: Is EEA related to brain activation? 
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 When accounting for age, sex, and scan protocol, better performance as measured by four 

of the extracted metrics (EEA, Reaction Time, Standard Deviation of Reaction Time, and 

Efficiency) related to increased inhibition-related (no-go > go) brain activation in the anterior 

cingulate cortex and the right superior temporal gyrus (Table II.11; significant activation for 

these metrics with overlap displayed in Figure II.6). Better go/no-go Efficiency was additionally 

related to increased inhibition-related activation in the bilateral inferior frontal gyrus and the left 

precuneus (Table II.8; Figure II.7). Though all four superior temporal gyrus clusters had similar 

peak voxels, their shapes varied: for example, the superior temporal gyrus cluster associated with 

faster Reaction Time notably extended to include the right angular gyrus, while the superior 

temporal gyrus cluster associated with EEA notably extended along the temporal lobe to include 

the medial temporal gyrus (Figure II.8). Details regarding all significant clusters are available in 

Table II.11. 

Discussion 

In the present study, we examined the utility of a novel computational executive 

functioning performance metric, Efficiency of Evidence Accumulation (EEA), as a 

transdiagnostic risk factor for psychopathology in a large community sample of twins. We 

calculated EEA scores for each participant from go/no-go and stop-signal task data via drift 

diffusion and latent factor modeling, and extracted additional, more traditional performance 

metrics from these tasks as well (No-Go Accuracy, Go Accuracy, Reaction Time, Efficiency 

(No-Go Accuracy/Reaction Time), Standard Deviation of Reaction Time). We found that EEA 

demonstrated similar test-retest reliability, and much better cross-task reliability, when compared 

to the more traditional metrics. Results from zero-order correlations and multilevel models 

accounting for relatedness within families revealed similar patterns of associations with 
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concurrent and prospective psychopathology for many of the executive functioning metrics. In 

particular, better scores tended to relate to more anxious/depressed problems, less attention 

problems, and less rule-breaking behaviors. EEA was the only metric to relate prospectively to 

externalizing psychopathology when accounting for age, sex, and relatedness within families. 

Notably, better EEA scores did not relate to fewer total problems as hypothesized, and no 

metrics predicted any future psychopathology when accounting for the stability of 

psychopathology over time. Finally, fMRI analyses revealed that executive functioning 

performance as measured by EEA and several traditional metrics (Efficiency, Reaction Time, 

Standard Deviation of Reaction Time) did relate to inhibition-related brain activation within a 

major error-monitoring hub, the anterior cingulate cortex, as well as within the superior temporal 

gyrus. Interestingly, the Efficiency metric extracted from the go/no-go task correlated with 

activity in these regions as well as a broader group of salience network structures, including the 

inferior frontal gyrus. In sum, these analyses suggest that EEA provides some advantages over 

traditional metrics, particularly in terms of cross-task reliability, and that EEA does demonstrate 

robust relationships to concurrent and prospective externalizing behaviors and related concurrent 

brain activation in an adolescent sample. 

We found that our EEA metric demonstrated reasonable test-retest reliability (r=.52) in 

an adolescent sample, comparable to other, more traditional metrics (ranging from r=0.37 for 

Go/No-Go Go Accuracy to r=0.64 for Go/No-Go Efficiency). This finding is in line with 

previous work which has found EEA and related drift diffusion model parameters to be quite 

reliable (Lerche & Voss, 2017; Schubert et al., 2016; Weigard, Clark, et al., 2021). The EEA 

test-retest reliability estimate for our sample may seem much lower than previous work (e.g. 

Lerche et al. 2017 found rs>0.70 for drift diffusion model parameters); however, this stability is 
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remarkable given the timespan between visits (>1 year) during adolescence, a developmental 

period when executive functioning has not yet stabilized (Kolb et al., 2012). The finding of 

similar test-retest reliability for EEA and traditional metrics, however, does not necessarily align 

with recent work demonstrating poor test-retest reliability for traditional behavioral executive 

functioning measures and suggesting computational methods as a solution (Eisenberg et al., 

2019; Karr et al., 2018; Weigard, Clark, et al., 2021). However, we did find that our EEA metric 

outperformed traditional metrics when comparing across tasks, demonstrating significant cross-

task reliability at the first visit (r=.=.28 and .30 for Go and No-Go with Stop-Signal, 

respectively), while the more traditional metrics that were available for both tasks (Go Accuracy, 

Reaction Time, SD Reaction Time) did not. Notably, the metric demonstrating the best test-retest 

reliability, Go/No-Go Efficiency, could not be calculated for the Stop Signal task used in the 

present study and thus its cross-task reliability could not be assessed. The significant cross-task 

reliability of the EEA metric aligns with its proposal as a task-general individual difference 

dimension (Lerche et al., 2020; Weigard, Clark, et al., 2021), extending this work to include 

adolescence. Future work could use a wider variety of tasks, especially tasks not traditionally 

designed to measure “inhibition”, to further establish task-generality of EEA in adolescence. 

However, if these findings hold, it would mean that scores from an EEA analysis of one EF task 

would generalize to other tasks – implying that using different tasks across studies or only using 

a single task in clinical practice could suffice to provide the same information on individual 

differences as a more extensive multi-tasks battery.  

Using multiple modeling approaches, we found relatively consistent relationships 

between executive functioning performance, as measured by both EEA as well as several 

traditional metrics, and concurrent and prospective symptoms of psychopathology. Though EEA 
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did not relate to total problems as hypothesized, better performance as indexed by EEA did relate 

to fewer concurrent and prospective externalizing problems and rule-breaking problems, and to 

fewer concurrent attention problems, even when accounting for age, sex, and relatedness within 

families. While all other metrics related to at least one of concurrent externalizing, attention 

problems, or rule-breaking problems in similar models (i.e., No-Go Accuracy, Efficiency, 

Standard Deviation of Reaction Time), EEA was the only metric to relate to broad externalizing 

problems over a year after task completion. These findings in adolescents reflect similar results 

in adults: for example, EEA and related brain activation have recently been shown to relate 

prospectively to substance use, another externalizing behavior, in young adults (Weigard, 

Brislin, et al., 2021), and reductions in EEA have been associated with Attention-

Deficit/Hyperactivity Disorder, among other diagnoses, in adults (Sripada & Weigard, 2021). 

Thus, as hypothesized elsewhere (Weigard & Sripada, 2021), computational modeling of task 

performance may provide a more complete picture of the underlying cognitive mechanisms than 

simpler summary metrics, allowing better prediction of real-world behaviors. It is important to 

note, however, that neither EEA nor traditional metrics predicted future psychopathology when 

controlling for the stability of psychopathology. In other words, performance as measured by any 

metric did not predict change in psychopathology over time. This result could be driven by a 

relatively high stability of symptoms of psychopathology over the course of one year. On the 

other hand, this could reflect limited predictive value of these metrics in general. Longitudinal 

work with more timepoints and a longer timespan could clarify this issue. 

Interestingly, better performance as measured by EEA and several other metrics (No-Go 

Accuracy, Go Accuracy, Reaction Time, Efficiency, and Standard Deviation of Reaction Time) 

related to more concurrent and prospective anxious/depressed problems at the zero-order level, 
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and with more prospective anxious/depressed problems even after accounting for age, sex, time 

between visits, and relatedness within families. This result ran counter to the hypothesized 

relationship between better EEA and fewer overall problems, but it is not without precedent in 

the literature. Another drift diffusion modeling study recently found associations between 

increased internalizing symptoms and greater boundary separation, a different diffusion model 

parameter indexing response caution (Fosco et al., 2022). It is possible that the EEA metric may 

tap into a neurocognitive mechanism that is problematic when underactive, leading to 

externalizing behaviors (i.e., rule-breaking), but also when overactive, leading to internalizing 

behaviors (i.e., anxiety, behavioral inhibition). On the other hand, these findings may simply 

reflect the long-held idea (e.g. Yerkes & Dodson, 1908) that anxiety, at normative levels, 

promotes better task performance. Future work could more closely inspect the relationship 

between EEA and anxiety across the spectrum of anxiety symptoms, ranging from normative to 

clinically impairing. 

Functional neuroimaging analyses revealed strikingly consistent clusters of activation in 

which better executive functioning performance as measured by EEA and several other metrics 

(Efficiency, Reaction Time, Standard Deviation of Reaction Time) correlated with increased 

inhibition-related brain activation. Performance as measured by all four metrics was associated 

with activation in the anterior cingulate cortex, as hypothesized, as well as the superior temporal 

gyrus. The anterior cingulate cortex is a major salience network hub (Seeley et al., 2007), 

important for error processing (Bush et al., 2000) and conflict monitoring (Botvinick et al., 

2004). This region has previously been implicated when employing computational models of the 

go/no-go task (Weigard et al., 2020). The superior temporal gyrus is associated with change 

detection (Opitz et al., 2002) and is frequently implicated in fMRI studies of response inhibition, 
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particularly regarding action cancellation (Zhang et al., 2017). Inhibition-related activation in the 

superior temporal gyrus has also been reported to correlate with informant-report trait 

impulsivity (Horn et al., 2003). Overall, it is clear that, within this adolescent sample, executive 

functioning task performance as indexed by EEA and several other metrics have robust and 

reasonable brain correlates. 

Notably, the Efficiency metric was associated with activation in several additional 

clusters, including the bilateral inferior frontal gyrus and the precuneus. This finding extends a 

previous, very similar, finding within a smaller version of this sample (Tomlinson et al., 2020). 

However, it is not clear why a simpler executive functioning metric would be associated with 

more widespread brain activation than the computational EEA measure. It is possible that the 

Efficiency metric indexes a broader “effort” or “salience” process, reflected by activation within 

several important salience network hubs (Seeley et al., 2007), while the EEA metric indexes a 

more specific, underlying neurocognitive process. On the other hand, more parsimonious 

computational modeling approaches have previously been found to generate more stable results 

even if some of the complexities of the underlying neural processes are lost (Lerche & Voss, 

2016, 2017). Though forgoing computational modeling to use the Efficiency metric, which 

simply combines two traditional summary metrics (No-Go Accuracy / Reaction Time), might be 

an extreme example of a parsimonious approach, the same principle may apply. Finally, while 

the EEA latent factor score reflected performance on two tasks, the Efficiency metric reflected 

performance specific to the Go/No-Go task, which is also the task performed in the scanner. 

Future work could investigate whether this more widespread Efficiency-related activation 

persists when Efficiency is calculated to include tasks performed outside of the scanner. 
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Given the ease with which Efficiency can be calculated (Accuracy / RT), it is worth 

considering whether Efficiency might be a reasonable stand-in for the more computationally 

intensive EEA score in some cases. In the present study, Efficiency and EEA were highly 

correlated (r=.82). Efficiency had the highest test-retest correlation of any metric extracted for 

the study (r=.64). Efficiency also had robust brain correlates within relevant brain regions in the 

salience network. On the other hand, EEA was a slightly better predictor of psychopathology: 

while both metrics correlated with attention problems, EEA showed stronger associations with 

overall externalizing problems and with rule-breaking problems. Additionally, EEA can be 

calculated from a stop-signal task, which is widely used in the executive functioning literature, 

while Efficiency as defined in the present study cannot. In studies considering only go/no-go 

data, it may be reasonable to use the simple Efficiency metric rather than calculating EEA. 

This study does have several limitations. For one, the associations between EEA and 

symptoms of psychopathology were not corrected for multiple comparisons, and would not 

survive such corrections. Additionally, the large, ongoing MTwiNS study was not designed 

specifically for testing the reliability and validity of various executive functioning metrics, and 

visits were scheduled a year apart in order to observe developmental change. Thus, future work 

could extend these results by assessing test-retest reliability of executive functioning metrics in 

adolescents with a much shorter time (~1 week) between visits. Along those lines, the go/no-go 

and stop signal tasks were each only about 10 minutes long in the present study due to time 

constraints, limiting our ability to assess split-task reliability. Future work could implement 

much longer tasks to allow for computational model fitting to portions of the task for within-task 

comparison. Additionally, the present study only incorporated one parameter from one type of 

computational model, the drift diffusion model. Though not within the scope of this study, 
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consideration of other parameters within the drift diffusion model, or of parameters from other 

models entirely, would be of interest to the field. For example, the drift diffusion model is one 

example of a “horse-race” computational model, in which there is a “race” between two 

processes (i.e. “go” and “stop”), the outcome of which is dependent on the relative time it takes 

to complete each process (Logan & Cowan, 1984; Verbruggen & Logan, 2009). Comparison to 

parameters from other models would be an interesting next step. Finally, the inclusion of 

additional tasks, especially tasks not designed to test response inhibition, could greatly broaden 

the scope of this work and potentially further differentiate computational methods like EEA from 

more traditional summary metrics. 

In summary, we found encouraging evidence for a novel computational measure of task-

general executive functioning, EEA, as a transdiagnostic risk factor associated with externalizing 

psychopathology. EEA demonstrated reasonable test-retest reliability, and it was the only 

performance metric in the present study that related to both concurrent and prospective 

externalizing psychopathology when accounting for age, sex, and relatedness within families. 

Functional neuroimaging analyses also revealed that EEA had robust brain correlates, relating to 

inhibition-related brain activation in two relevant regions, the anterior cingulate cortex and the 

right superior temporal gyrus. Notably, however, several other traditional summary metrics 

correlated with brain activation in strikingly similar locations and had similar test-retest 

reliablity. None of the metrics predicted change in psychopathology over time, highlighting an 

important limitation in this area germane to translation efforts for neuropsychology. Overall, 

these findings highlight that computational methods may provide some advantages over more 

traditional summary metrics of executive functioning performance in adolescents, while also 
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revealing that some traditional metrics (i.e. Efficiency, Standard Deviation of Reaction Time) 

may provide a reasonable alternative when computational modeling is not possible. 

(Cox, 1996; Cox et al., 2017a, 2017b; Cumming, 2014; Hallquist & Wiley, 2018; Muthén 

& Muthén, 1998-2017; R Core Team, 2021; Rorden & Brett, 2000; Stanley & Spence, 2018; 

Wellcome Centre for Human Neuroimaging; Yarkoni et al., 2011).  
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Table II.1 
  
Summary of data included in fMRI analyses 
  
 Number Lost Participants With Usable Data 
   
Participated in First Visit  708 (354 complete pairs) 
   
Sample with Any Go/No-Go fMRI Data 

• Incomplete MRI scan 
• Software malfunction 
• Declined MRI scan 
• Uncomfortable with scan 
• Dental (e.g. braces, retainer) 
• Metal in/on the body 
• Exceeded scanner size restrictions 
• Major medical/neurological disorder 

 
(16) 
(3) 
(27) 
(18) 
(17) 
(13) 
(5) 
(9) 

600 
 
 
 
 
 
 
 
 

Total Lost 108  
   
Final Sample with Usable fMRI Data 

• Frontal lobe coverage <90% 
• ART Outliers >5% 
• Task performance unacceptable for EEA 

score generation 
Total Lost 

 
(40) 
(7) 
(4) 
 
51 

549 
 
 
 
 
 

   
   

 
Note. Breakdown of available fMRI data based on lab standard fMRI quality checks.
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Table II.2  
  
Means, standard deviations, and correlations with confidence intervals of all metrics extracted from the Go/No-Go task 
  

Variable M SD 1 2 3 4 5 6 7 8 9 10 11 
              
1. Total Accuracy (1) 0.00 1.00                       
                            
2. Total Accuracy (2) -0.00 1.00 .41**                     
      [.31, .50]                     
                            
3. No-Go Accuracy (1) 0.00 1.00 .69** .23**                   
      [.65, .73] [.11, .33]                   
                            
4. No-Go Accuracy (2) 0.00 1.00 .39** .53** .48**                 
      [.28, .48] [.44, .61] [.38, .56]                 
                            
5. Go Accuracy (1) 0.00 1.00 .82** .37** .15** .15*               
      [.79, .84] [.27, .47] [.07, .23] [.03, .26]               
                            
6. Go Accuracy (2) 0.00 1.00 .30** .92** .04 .16** .37**             
      [.19, .40] [.90, .94] [-.07, .16] [.04, .27] [.26, .47]             
                            
7. Reaction Time (1) 0.00 1.00 -.18** -.19** .12** -.02 -.34** -.21**           
      [-.26, -.10] [-.30, -.07] [.04, .20] [-.14, .09] [-.41, -.27] [-.32, -.09]           
                            
8. Reaction Time (2) -0.00 1.00 -.22** -.28** -.08 .04 -.23** -.35** .60**         
      [-.33, -.10] [-.39, -.17] [-.20, .03] [-.07, .16] [-.33, -.11] [-.45, -.24] [.52, .67]         
                            
9. Efficiency (1) 0.00 1.00 .55** .28** .52** .30** .35** .19** -.77** -.56**       
      [.50, .61] [.17, .38] [.45, .57] [.19, .40] [.28, .42] [.07, .30] [-.80, -.73] [-.64, -.47]       
                            
10. Efficiency (2) -0.00 1.00 .37** .49** .30** .47** .26** .35** -.53** -.84** .64**     
      [.26, .46] [.39, .57] [.19, .41] [.37, .55] [.14, .36] [.24, .45] [-.61, -.44] [-.87, -.81] [.57, .71]     
                            
11. SD Reaction Time (1) 0.00 1.00 -.55** -.41** -.30** -.31** -.52** -.34** .72** .49** -.79** -.57**   
      [-.61, -.49] [-.50, -.31] [-.37, -.22] [-.41, -.20] [-.58, -.46] [-.44, -.23] [.68, .76] [.39, .57] [-.82, -.76] [-.64, -.48]   
                            
12. SD Reaction Time (2) -0.00 1.00 -.39** -.62** -.24** -.34** -.33** -.56** .41** .72** -.49** -.80** .52** 
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      [-.48, -.28] [-.68, -.54] [-.35, -.13] [-.44, -.23] [-.43, -.22] [-.64, -.48] [.31, .50] [.66, .77] [-.57, -.39] [-.84, -.75] [.42, .60] 
                            

 
Note. (1) and (2) indicate scores at Time 1 and Time 2, respectively. M and SD are used to represent mean and standard deviation, 
respectively. Values representing test-retest Pearson correlations are indicated in bold. Values in square brackets indicate the 95% 
confidence interval for each correlation. The confidence interval is a plausible range of population correlations that could have caused 
the sample correlation (Cumming, 2014). * indicates p < .05. ** indicates p < .01. Table generated with the apaTables package 
(Stanley & Spence, 2018). 
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Table II.3  
  
Means, standard deviations, and correlations with confidence intervals for all metrics extracted from Stop-Signal task 
  

Variable M SD 1 2 3 4 5 
        
1. Go Accuracy (1) -0.00 1.00           
                
2. Go Accuracy (2) -0.00 1.00 .37**         
      [.18, .53]         
                
3. Reaction Time (1) -0.00 1.00 .41** .23*       
      [.31, .49] [.04, .41]       
                
4. Reaction Time (2) 0.00 1.00 .15 .31** .56**     
      [-.05, .33] [.20, .42] [.41, .68]     
                
5. SD Reaction Time (1) 0.00 1.00 .03 -.04 .40** .18   
      [-.08, .13] [-.24, .15] [.30, .48] [-.01, .37]   
                
6. SD Reaction Time (2) 0.00 1.00 -.08 -.06 .09 .32** .38** 
      [-.27, .12] [-.19, .06] [-.10, .29] [.21, .43] [.20, .54] 
                

 
Note. (1) and (2) indicate scores from Time 1 and Time 2, respectively. M and SD are used to represent mean and standard deviation, 
respectively. Values representing test-retest Pearson correlations are indicated in bold. Values in square brackets indicate the 95% 
confidence interval for each correlation. The confidence interval is a plausible range of population correlations that could have caused 
the sample correlation (Cumming, 2014). * indicates p < .05. ** indicates p < .01. Table generated with the apaTables package 
(Stanley & Spence, 2018). 
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Table II.4  
  
Correlations between EEA and all extracted metrics for both the Go/No-Go and Stop-Signal tasks at both time points, with confidence 
intervals 
  

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

                    

1. EEA (1)                                       

                                        

2. EEA (2) .52**                                     

  [.43, .59]                                     

                                        
3. GNG 
Accuracy 
(1) 

.75** .43**                                   

  [.71, .78] [.33, .52]                                   

                                        
4. GNG 
Accuracy 
(2) 

.36** .73** .41**                                 

  [.25, .45] [.67, .78] [.31, .50]                                 

                                        
5. GNG 
Accuracy, 
No-Go (1) 

.67** .35** .69** .23**                               

  [.63, .72] [.24, .44] [.65, .73] [.11, .33]                               

                                        
6. GNG 
Accuracy, 
No-Go (2) 

.36** .65** .39** .53** .48**                             

  [.25, .46] [.57, .71] [.28, .48] [.44, .61] [.38, .56]                             

                                        
7. GNG 
Accuracy, 
Go (1) 

.49** .32** .82** .37** .15** .15*                           

  [.43, .55] [.21, .42] [.79, .84] [.27, .47] [.07, .23] [.03, .26]                           

                                        
8. GNG 
Accuracy, 
Go (2) 

.25** .55** .30** .92** .04 .16** .37**                         
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  [.14, .36] [.46, .63] [.19, .40] [.90, .94] [-.07, .16] [.04, .27] [.26, .47]                         

                                        
9. SST 
Accuracy, 
Go (1) 

.40** .19 .17** .13 .16** -.12 .10 .22*                       

  [.30, .48] [-.00, .37] [.06, .28] [-.08, .33] [.04, .27] [-.32, .09] [-.02, .21] [.01, .41]                       

                                        
10. SST 
Accuracy, 
Go (2) 

.35** .18** .32** .19** .28** .14* .20** .16* .37**                     

  [.24, .46] [.05, .29] [.20, .42] [.06, .31] [.17, .39] [.01, .26] [.08, .32] [.03, .28] [.18, .53]                     

                                        
11. GNG 
RT (1) -.46** -.32** -.18** -.19** .12** -.02 -.34** -.21** -.09 -.14*                   

  [-.52, -.40] [-.42, -
.22] 

[-.26, -
.10] 

[-.30, -
.07] [.04, .20] [-.14, .09] [-.41, -.27] [-.32, -.09] [-.20, .03] [-.26, -

.02]                   

                                        
12. GNG 
RT (2) -.41** -.54** -.22** -.28** -.08 .04 -.23** -.35** -.27* -.07 .60**                 

  [-.50, -.31] [-.62, -
.46] 

[-.33, -
.10] 

[-.39, -
.17] [-.20, .03] [-.07, .16] [-.33, -.11] [-.45, -.24] [-.46, -

.07] [-.20, .06] [.52, .67]                 

                                        
13. SST 
RT (1) .08 .00 .12* -.12 .12* -.00 .06 -.13 .41** .23* .04 .05               

  [-.03, .18] [-.19, .19] [.00, .23] [-.32, .10] [.00, .23] [-.21, .21] [-.06, .17] [-.33, .08] [.31, .49] [.04, .41] [-.07, .16] [-.17, .25]               

                                        
14. SST 
RT (2) .04 -.02 .12 .10 .10 .10 .09 .07 .15 .31** .08 .16* .56**             

  [-.08, .17] [-.14, .10] [-.00, .24] [-.03, .23] [-.03, .22] [-.04, .22] [-.03, .21] [-.06, .20] [-.05, .33] [.20, .42] [-.05, .20] [.03, .28] [.41, .68]             

                                        
15. GNG 
Efficiency 
(1) 

.82** .48** .55** .28** .52** .30** .35** .19** .18** .29** -.77** -.56** .04 -.03           

  [.79, .84] [.39, .57] [.50, .61] [.17, .38] [.45, .57] [.19, .40] [.28, .42] [.07, .30] [.07, .29] [.18, .40] [-.80, -
.73] 

[-.64, -
.47] [-.08, .15] [-.15, .10]           

                                        
16. GNG 
Efficiency 
(2) 

.54** .82** .37** .49** .30** .47** .26** .35** .16 .12 -.53** -.84** -.04 -.10 .64**         

  [.45, .62] [.77, .85] [.26, .46] [.39, .57] [.19, .41] [.37, .55] [.14, .36] [.24, .45] [-.06, .35] [-.01, .25] [-.61, -
.44] 

[-.87, -
.81] [-.25, .17] [-.23, .03] [.57, .71]         

                                        
17. GNG 
SDRT (1) -.81** -.52** -.55** -.41** -.30** -.31** -.52** -.34** -.25** -.27** .72** .49** -.10 -.02 -.79** -

.57**       

  [-.84, -.78] [-.60, -
.44] 

[-.61, -
.49] 

[-.50, -
.31] 

[-.37, -
.22] 

[-.41, -
.20] [-.58, -.46] [-.44, -.23] [-.36, -

.14] 
[-.38, -

.15] [.68, .76] [.39, .57] [-.21, .02] [-.14, .11] [-.82, -
.76] 

[-.64, -
.48]       
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18. GNG 
SDRT (2) -.48** -.88** -.39** -.62** -.24** -.34** -.33** -.56** -.28** -.08 .41** .72** -.03 .06 -.49** -

.80** .52**     

  [-.56, -.38] [-.90, -
.85] 

[-.48, -
.28] 

[-.68, -
.54] 

[-.35, -
.13] 

[-.44, -
.23] [-.43, -.22] [-.64, -.48] [-.46, -

.07] [-.21, .05] [.31, .50] [.66, .77] [-.24, .18] [-.07, .19] [-.57, -
.39] 

[-.84, -
.75] 

[.42, 
.60]     

                                        
19. SST 
SDRT (1) -.19** -.10 -.06 -.06 -.03 .06 -.06 -.11 .03 -.04 .06 .22* .40** .18 -.08 -.13 .08 .15   

  [-.29, -.08] [-.29, .09] [-.18, .06] [-.27, .15] [-.15, .08] [-.15, .27] [-.17, .06] [-.31, .10] [-.08, .13] [-.24, .15] [-.06, .18] [.01, .41] [.30, .48] [-.01, .37] [-.20, .03] [-.33, 
.08] 

[-.04, 
.19] 

[-.06, 
.35]   

                                        
20. SST 
SDRT (2) -.17** -.18** -.00 -.07 -.01 .03 .01 -.10 -.08 -.06 .15* .17* .09 .32** -.16* -.14* .14* .14* .38** 

  [-.28, -.04] [-.30, -
.06] [-.12, .12] [-.20, .06] [-.14, .11] [-.10, .16] [-.11, .14] [-.23, .03] [-.27, .12] [-.19, .06] [.03, .27] [.04, .29] [-.10, .29] [.21, .43] [-.28, -

.03] 
[-.26, -

.01] 
[.02, 
.26] 

[.01, 
.27] 

[.20, 
.54] 

                                        
 

Note. This table depicts correlations between all task metrics for both the go/no-go and stop-signal tasks at both timepoints. Time 1 is 
depicted with (1) and Time 2 is depicted with (2). Values which represent test-retest Pearson correlations are indicated in bold. Values 
in square brackets indicate the 95% confidence interval for each correlation. The confidence interval is a plausible range of population 
correlations that could have caused the sample correlation (Cumming, 2014). * indicates p < .05. ** indicates p < .01. Table generated 
with the apaTables package (Stanley & Spence, 2018). 
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Table II.5  
  
Means, standard deviations, and correlations with confidence intervals for EEA and “average” metrics 
  

Variable M SD 1 2 3 4 5 6 7 
          
1. EEA (1) 0.00 0.67               
                    
2. EEA (2) 0.00 0.61 .52**             
      [.43, .59]             
                    
3. Go Accuracy (1) -0.01 0.96 .52** .32**           
      [.46, .57] [.22, .42]           
                    
4. Go Accuracy (2) -0.01 0.86 .36** .48** .39**         
      [.26, .45] [.39, .56] [.29, .48]         
                    
5. Reaction Time (1) 0.04 0.91 -.38** -.30** -.19** -.21**       
      [-.45, -.31] [-.40, -.20] [-.27, -.12] [-.31, -.10]       
                    
6. Reaction Time (2) 0.02 0.83 -.26** -.39** -.11* -.10 .54**     
      [-.36, -.15] [-.48, -.29] [-.22, -.00] [-.21, .01] [.46, .61]     
                    
7. SD Reaction Time (1) 0.04 0.95 -.73** -.50** -.42** -.36** .65** .38**   
      [-.76, -.69] [-.58, -.41] [-.49, -.36] [-.45, -.26] [.60, .69] [.28, .47]   
                    
8. SD Reaction Time (2) 0.01 0.83 -.41** -.71** -.27** -.38** .37** .60** .46** 
      [-.50, -.31] [-.76, -.65] [-.37, -.16] [-.47, -.28] [.27, .46] [.52, .66] [.37, .54] 
                    

 
Note. This table depicts summary statistics for and correlations between the “average” task metrics, calculated as the mean of a 
participant’s performance on the metric from the go/no-go and stop-signal tasks when both were available. M and SD are used to 
represent mean and standard deviation, respectively. Values representing test-retest Pearson correlations are indicated in bold. Values 



 

 61 

in square brackets indicate the 95% confidence interval for each correlation. The confidence interval is a plausible range of population 
correlations that could have caused the sample correlation (Cumming, 2014). * indicates p < .05. ** indicates p < .01. Table generated 
with the apaTables package (Stanley & Spence, 2018). 
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Table II.6  
  
Correlations with confidence intervals for metrics available for both tasks at first visit 
  

Variable 1 2 3 4 5 6 7 8 
         
1. EEA (Go) 
                 

                  
2. EEA (No-Go) .61**               
  [.56, .66]               
                  
3. EEA (SST) .28** .30**             
  [.17, .38] [.19, .40]             
                  
4. Go Accuracy (GNG) .54** .36** .16**           
  [.48, .59] [.29, .43] [.05, .28]           
                  
5. Go Accuracy (SST) .21** .29** .71** .10         
  [.10, .32] [.18, .39] [.65, .76] [-.02, .21]         
                  
6. Reaction Time (GNG) -.50** -.33** -.17** -.34** -.09       
  [-.56, -.44] [-.40, -.26] [-.28, -.05] [-.41, -.27] [-.20, .03]       
                  
7. Reaction Time (SST) .12* .06 -.02 .06 .41** .04     
  [.01, .24] [-.06, .17] [-.13, .09] [-.06, .17] [.31, .49] [-.07, .16]     
                  
8. SD Reaction Time (GNG) -.88** -.59** -.32** -.52** -.25** .72** -.10   
  [-.90, -.86] [-.64, -.54] [-.42, -.21] [-.58, -.46] [-.36, -.14] [.68, .76] [-.21, .02]   
                  
9. SD Reaction Time (SST) -.07 -.07 -.57** -.06 .03 .06 .40** .08 
  [-.18, .05] [-.18, .05] [-.64, -.49] [-.17, .06] [-.08, .13] [-.06, .18] [.30, .48] [-.04, .19] 
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Note. M and SD are used to represent mean and standard deviation, respectively. Values representing cross-task Pearson correlations 
are indicated in bold. Values in square brackets indicate the 95% confidence interval for each correlation. The confidence interval is a 
plausible range of population correlations that could have caused the sample correlation (Cumming, 2014). * indicates p < .05. ** 
indicates p < .01. Table generated with the apaTables package (Stanley & Spence, 2018). 
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Table II.7 
  
Correlations with confidence intervals for concurrent symptoms of psychopathology and extracted metrics 
  

Variable EEA No-Go 
Accuracya 

Go 
Accuracy 

Reaction 
Time Efficiencya SDRT 

       
              
Total Problems -.00 -.04 -.01 -.08* .02 -.02 
  [-.08, .07] [-.12, .04] [-.09, .07] [-.16, -.01] [-.06, .10] [-.10, .06] 
              
Externalizing -.04 -.07 -.04 -.07 .01 .04 
  [-.12, .04] [-.15, .01] [-.12, .04] [-.14, .01] [-.07, .09] [-.04, .12] 
              
Internalizing .11** .09* .05 -.09* .11** -.11** 
  [.04, .19] [.01, .17] [-.03, .13] [-.17, -.01] [.03, .19] [-.19, -.04] 
              
Attention Problems -.14** -.16** -.10* -.03 -.11** .05 
  [-.21, -.06] [-.24, -.08] [-.17, -.02] [-.10, .05] [-.19, -.03] [-.02, .13] 
              
Anxious/Depressed 
Problems .15** .09* .08* -.13** .15** -.14** 

  [.08, .23] [.01, .17] [.00, .16] [-.21, -.06] [.07, .23] [-.22, -.06] 
              
Withdrawn/Depressed 
Problems .07 .05 .04 -.05 .07 -.08* 

  [-.00, .15] [-.03, .13] [-.04, .11] [-.13, .02] [-.01, .15] [-.16, -.00] 
              
Rule Breaking -.06 -.08 -.08* -.06 .03 .05 
  [-.14, .02] [-.16, .00] [-.16, -.00] [-.14, .02] [-.05, .11] [-.02, .13] 
              
Aggression -.02 -.05 -.01 -.06 -.00 .02 
  [-.10, .06] [-.13, .03] [-.08, .07] [-.14, .02] [-.08, .08] [-.06, .10] 
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Note. Values in square brackets indicate the 95% confidence interval for each correlation. The confidence interval is a plausible range 
of population correlations that could have caused the sample correlation (Cumming, 2014). * indicates p < .05. ** indicates p < .01. a 
indicates calculated only for Go/No-Go task. 
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Table II.8 
  
Standardized coefficients for multilevel models of extracted metrics predicting concurrent symptoms of psychopathology 
  

Variable EEA No-Go 
Accuracya 

Go 
Accuracy 

Reaction 
Time Efficiencya SDRT 

       
              
Total Problems -.09 -.11* -.03 -.05 -.06 .04 
  [-.18, .01] [-.20, .00] [-.10, .03] [-.12, .04] [-.16, .03] [-.03, .12] 
              
Externalizing -.11* -.11* -.06 -.02 -.07 .10** 
  [-.20, -.01] [-.21, .00] [-.13, .00] [-.14, .03] [-.17, .04] [.03, .16] 
              
Internalizing .02 -.01 .02 -.06 .05 -.04 
  [-.08, .11] [-.09, .08] [-.05, .09] [-.10, .05] [-.04, .14] [-.12, .03] 
              
Attention Problems -.21** -.19** -.11* .02 -.19** .10** 
  [-.30, -.11] [-.29, -.08] [-.20, -.03] [-.06, .10] [-.30, -.08] [.02, .18] 
              
Anxious/Depressed Problems .06 -.02 .05 -.10* .08 -.07 
  [-.04, .15] [-.12, .08] [-.02, .12] [-.17, -.02] [-.02, .17] [-.14, .00] 
              
Withdrawn/Depressed Problems -.02 -.02 .01 .00 -.01 -.01 
  [-.10, .07] [-.11, .07] [-.06, .08] [-.08, .09] [-.11, .08] [-.09, .06] 
              
Rule Breaking -.17** -.13* -.11** .03 -.10 .15** 
  [-.27, -.07] [-.23, -.03] [-.19, -.04] [-.03, .10] [-.21, .01] [.08, .21] 
              
Aggression -.05 -.08 -.01 -.06 -.03 .05 
  [-.14, .04] [-.17, .02] [-.09, .05] [-.12, .02] [-.13, .07] [-.02, .12] 
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Note. Values indicate the standardized estimate (b) for each metric predicting symptoms of psychopathology. Models controlled for 
age and sex, and clustered by family to account for relatedness. Values in square brackets indicate the 95% confidence interval for 
each standardized estimate. * indicates p < .05. ** indicates p < .01. a indicates calculated only for Go/No-Go task. 
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Table II.9 
  
Correlations with confidence intervals for prospective symptoms of psychopathology and extracted metrics 
  

Variable EEA No-Go 
Accuracya 

Go 
Accuracy 

Reaction 
Time Efficiencya SDRT 

       
              
Total Problems .01 -.00 -.02 -.05 .02 .00 
  [-.10, .11] [-.11, .11] [-.12, .09] [-.15, .06] [-.09, .13] [-.11, .11] 
              
Externalizing -.10 -.10 -.07 -.02 -.06 .09 
  [-.21, .00] [-.20, .01] [-.18, .04] [-.12, .09] [-.16, .05] [-.02, .20] 
              
Internalizing .16** .14* .06 -.09 .15** -.11* 
  [.05, .26] [.03, .24] [-.05, .17] [-.20, .02] [.04, .26] [-.22, -.00] 
              
Attention Problems -.12* -.12* -.08 .01 -.10 .09 
  [-.22, -.01] [-.23, -.01] [-.19, .03] [-.10, .12] [-.21, .01] [-.02, .20] 
              
Anxious/Depressed Problems .22** .17** .12* -.13* .21** -.17** 
  [.12, .32] [.06, .27] [.02, .23] [-.23, -.02] [.10, .31] [-.27, -.06] 
              
Withdrawn/Depressed Problems .07 .06 .01 -.05 .09 -.02 
  [-.04, .18] [-.05, .17] [-.10, .12] [-.15, .06] [-.02, .20] [-.13, .08] 
              
Rule Breaking -.07 -.08 -.07 -.06 .03 .06 
  [-.18, .04] [-.19, .03] [-.18, .04] [-.17, .05] [-.08, .14] [-.05, .17] 
              
Aggression -.11 -.09 -.06 .02 -.10 .10 
  [-.21, .00] [-.20, .02] [-.17, .05] [-.09, .12] [-.21, .01] [-.01, .20] 
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Note. Values in square brackets indicate the 95% confidence interval for each correlation. The confidence interval is a plausible range 
of population correlations that could have caused the sample correlation (Cumming, 2014). * indicates p < .05. ** indicates p < .01. a 
indicates calculated only for Go/No-Go task. 
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Table II.10 
  
Standardized coefficients for multilevel models of extracted metrics predicting prospective symptoms of psychopathology 
  

Variable EEA No-Go 
Accuracya 

Go 
Accuracy 

Reaction 
Time Efficiencya SDRT 

       
              
Total Problems -.01 -.04 .00 -.07 .03 .01 
  [-.12, .12] [-.20, .00] [-.10, .09] [-.18, .04] [-.10, .17] [-.10, .11] 
              
Externalizing -.12* -.11 -.07 -.03 -.06 .10 
  [-.22, .00] [-.21, .00] [-.18, .05] [-.15, .08] [-.18, .07] [-.02, .21] 
              
Internalizing .12* .06 .07 -.10* .14* -.10 
  [.00, .23] [-.09, .08] [-.01, .14] [-.20, -.01] [.02, .27] [-.19, .00] 
              
Attention Problems -.12 -.13 -.07 -.02 -.09 .09 
  [-.26, .01] [-.29, -.08] [-.17, .02] [-.15, .11] [-.23, .06] [-.04, .21] 
              
Anxious/Depressed Problems .17* .08 .13* -.12* .18** -.13* 
  [.05, .29] [-.12, .08] [.05, .19] [-.24, -.02] [.06, .31] [-.24, -.03] 
              
Withdrawn/Depressed Problems .06 .03 .01 -.06 .08 -.01 
  [-.07, .18] [-.11, .16] [-.09, .11] [-.16, .06] [-.05, .22] [-.12, .10] 
              
Rule Breaking -.16* -.13* -.09 .00 -.06 .14** 
  [-.26, -.04] [-.23, -.03] [-.22, .03] [-.12, .10] [-.18, .09] [.03, .24] 
              
Aggression -.07 -.08 -.04 -.05 -.05 .06 
  [-.18, .05] [-.20, .05] [-.15, .07] [-.15, .06] [-.17, .07] [-.06, .17] 
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Note. Values indicate the standardized estimate (b) for each metric predicting symptoms of psychopathology. Models controlled for 
age and sex, and clustered by family to account for relatedness. Values in square brackets indicate the 95% confidence interval for 
each standardized estimate. * indicates p < .05. ** indicates p < .01. a indicates calculated only for Go/No-Go task. 
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Table II.11 
  
Clusters in which better executive functioning performance correlates with increased inhibition-related activation 
  
Variable Structure Peak (X, Y, Z) T k (# voxels) 
     
EEA Anterior Cingulate Cortex (-2, 48, 2) 4.40  787  
 Superior Temporal Gyrus (54, -44, 14) 5.13 814 
     
No-Go Accuracya -    
     
Go Accuracy -    
     
Reaction Time Anterior Cingulate Cortex (-8, 40, 16) 4.23 494 
 Superior Temporal Gyrus (54, -44, 12) 3.96 691 
 *extending to Angular Gyrus    
     
Efficiencya Anterior Cingulate Cortex (-4, 28, 22) 4.81 1498 
 Superior Temporal Gyrus (54, -44, 12) 5.37 616 
 Inferior Frontal Gyrus (R) (38, 24, -14) 4.56 164 
 Inferior Frontal Gyrus (L) (-40, 18, -12) 4.39 157 
 Precuneus (-18, -62, 20) 4.24 348 
     
SD Reaction Time Anterior Cingulate Cortex (-6, 42, 14) 4.85 712 
 Superior Temporal Gyrus (56, -56, 10) 4.21 185 
     
     

 
Note. Brain regions in which better executive functioning task performance correlated with increased inhibition-related (no-go>go) 
activation in a sample of 549 twins. False positive rate is controlled across the whole brain using 3dttest++ for cluster-level correction 
(p < 0.001, alpha < 0.05, k > 164) a indicates metric was calculated only for Go/No-Go task, N = 540, k > 152. Structure labels for 
brain regions not originally hypothesized (e.g. STG) were determined via Neurosynth.org (Yarkoni et al., 2011) and SPM 
Neuromorphometrics. 
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Figure II.1 
 
Drift diffusion model fit for all task versions and conditions 
 
a) Go/No-Go 

 
b) Stop Signal (both task versions) 

 
 
Note. These graphs depict the model predicted data and the actual data for the go/no-go (a) and stop-signal (b) tasks. Model fit to the 
data was good for most conditions and tasks. The model had some difficulty predicting commission errors on no-go trials, but this was 
within expectations as “no-go” was the most rare trial type and commission errors were low overall (average no-go accuracy was 
89%).  
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Figure II.2 
 
Drift diffusion model drift rate (v) parameter recovery for all task versions and conditions 
 
a) Go/No-Go 

 
 
b) Stop-Signal (both task versions) 

 
 
Note. These graphs depict the drift rate (v) parameters recovered from simulated data (sim, x axis) and the actual data (rec) for the 
go/no-go (a) and stop-signal (b) tasks. Parameter recovery was excellent. 
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Figure II.3 

EEA Latent Factor Models at First and Second Visits, With Standardized Loadings 

 

Note. This figure depicts the two latent EEA models generated in Mplus (Muthén & Muthén, 

1999-2017) via R (R Core Team, 2021) and the MplusAutomation package (Hallquist & Wiley, 

2018). Models utilized maximum likelihood estimation with bootstrapping (1000), and factor 

scores were extracted for further analysis. 
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Figure II.4 

Test-retest and cross-task reliability for the EEA factor score and EEA metrics 

 

 

 
Note. This figure depicts test-retest (top) and across-task (bottom) Pearson correlations for EEA. 

Task correlations used the individual EEA scores for each condition (go, no-go, stop signal) 

rather than the latent factor score. 
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Figure II.5 

Zero-order correlations between EEA and symptoms of psychopathology for select subscales 

 

Note. This figure depicts zero-order correlations between task performance as measured by EEA and concurrent attention problems 

(left) and concurrent anxious/depressed problems (right) as reported by children and their parents.
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Figure II.6 

Unique and overlapping regions in which better EEA (red), Efficiency (green), SDRT (blue), and 

RT (yellow) correlated with increased inhibition-related brain activation 

 

Note. Slice location of this image is (-33, 40, 16). This image depicts substantial overlap in 

regions correlating with executive functioning performance as measured by EEA (red), 

Efficiency (green), Standard Deviation of reaction time (blue), and Reaction Time (bright 

yellow) particularly within the anterior cingulate cortex and superior temporal gyrus. Additive 

overlap between images is indicated with color blending; therefore, locations indicated in white 
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would represent areas with the most overlap. Neither no-go nor go accuracy scores correlated 

with inhibition-related activation. Image generated from activation maps cluster-thresholded with 

3dttest++ (Cox, 1996; Cox et al., 2017a, 2017b) in SPM (Wellcome Centre for Human 

Neuroimaging) and rendered via MRIcroGL (Rorden & Brett, 2000). 
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Figure II.7 

Additional clusters in which better Go/No-Go Efficiency correlated with increased inhibition-

related activation 

 

Note. Slice location of this image is (-40, 16, -12). This image depicts bilateral inferior frontal 

gyrus clusters that correlated with executive functioning performance as measured by Go/No-Go 

Efficiency (green). No other executive functioning metric correlated with activation within this 

region after correcting for multiple comparisons across the whole brain. Image generated from 
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activation maps cluster-thresholded with 3dttest++ (Cox, 1996; Cox et al., 2017a, 2017b) in SPM 

(Wellcome Centre for Human Neuroimaging) and rendered via MRIcroGL (Rorden & Brett, 

2000). 
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Figure II.8 

Variance in shape of the superior temporal gyrus clusters associated with better EEA, Efficiency, 

Reaction Time, and Standard Deviation of Reaction Time 

 

 

Note. This image depicts variance in superior temporal gyrus cluster extent despite similar peak 

voxels for the four executive functioning performance metrics (EEA, red; Efficiency, green; 

SDRT, blue; Reaction Time, yellow). Render location (56, -37, -2) with clip location (0.09, 67, 

0) in MRIcroGL (Rorden & Brett, 2000). 
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CHAPTER III 

The Role of Parenting in the Intergenerational Transmission of Executive Functioning: A 

Genetically Informed Approach 

 

Deficits in executive functioning, a set of top-down processes that involve regulation of 

goal-directed behavior, including processes like inhibitory control, working memory, and 

cognitive flexibility (Diamond, 2013), have long been linked to various forms of 

psychopathology (Bloemen et al., 2018; Wright et al., 2014), including attention-

deficit/hyperactivity disorder (Castellanos et al., 2006; Cherkasova et al., 2013), antisocial 

behavior (Moffitt, 2018), substance abuse (Smith et al., 2014; Verdejo-Garcia et al., 2008), and 

depression (Gotlib & Joormann, 2010). Executive functioning runs in families, such that parents 

with better executive functioning skills tend to have children with better executive functioning 

skills (Deater-Deckard, 2014; Jester et al., 2009). However, much observational work does not 

disentangle the genetic and non-genetic influences on individual differences in executive 

functioning (Cuevas, Deater-Deckard, Kim-Spoon, Wang, et al., 2014), and genetically informed 

work is needed to clarify the mechanisms that contribute to its intergenerational transmission. 

Parenting behaviors are one proposed mechanism underlying the intergenerational 

transmission of executive functioning. There is substantial evidence that parenting behaviors like 

nurturance and scaffolding promote better executive functioning development, whereas 

behaviors like harshness and negative control impede executive functioning development (Fay-

Stammbach et al., 2014; Hughes & Devine, 2019; Li et al., 2019). Parent executive functioning 

is thought to impact parenting (and the broader home environment), which in turn, impacts child 
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development (e.g. Distefano et al., 2018; Kao et al., 2018; Korucu et al., 2020). For example, a 

parent with better executive functioning skills may have a better ability to utilize more nurturing 

and less harsh parenting behaviors, promoting better executive functioning development in their 

child. However, with some notable exceptions (Bridgett et al., 2018; Cioffi et al., 2020), the 

majority of developmental studies linking parent executive functioning to child executive 

functioning via parenting behaviors are not genetically informed. 

A separate line of research implicates genetic influences as a primary contributor to the 

intergenerational transmission of executive functioning. Performance on executive functioning 

tasks is moderately heritable, though with evidence of moderate non-shared environmental 

influences (Gagne & Saudino, 2010; Li & Roberts, 2017; Vasilopoulos et al., 2012). The 

heritability of task-general executive functioning, as indexed via latent modeling, is thought to be 

much higher (Friedman & Miyake, 2017), with estimates as high as 99% (Friedman et al., 2008) 

or 100% (Engelhardt et al., 2015). The high heritability of latent executive functioning also 

appears to be consistent across development, from childhood into adulthood (Friedman & 

Miyake, 2017). 

Given these heritability estimates, it is entirely possible that observational studies linking 

parenting to executive functioning are actually capturing unmeasured genetic processes. That is, 

because parents and children share genes, the extent to which parenting mediates the relationship 

between parent and child executive functioning could be driven by genotype-environment 

correlation, or the correlation between the parents’ (and thus children’s) genetic tendencies and 

the environments the children encounter (Deater-Deckard, 2014; Knopik et al., 2017; Manuck & 

McCaffery, 2014). Two types of genotype-environment correlation are particularly important in 

this case: passive and evocative genotype-environment correlation (see Manuck & McCaffery, 
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2014 for a discussion). First, passive genotype-environment correlation emerges because the 

environment parents provide to their biological children is influenced by the parents’ own 

genotype, the latter which is passed onto their children genetically.  As such, the child’s genes 

are necessarily correlated with their environmental experiences.  For example, parents with 

worse executive functioning may pass on trait-relevant genes of risk for executive dysfunction 

and react more harshly to misbehavior on the part of their child as a consequence of their 

compromised executive functioning (Bridgett et al., 2017; Deater-Deckard et al., 2010). Put 

another way what appears to be an effect of parental reactivity on child executive dysfunction 

may in fact reflect genes common to parents and their children. Second, evocative genotype-

environment correlation captures the extent to which children elicit reactions from their 

environment that are consistent with their genetically-influenced tendencies. In this case, 

children with a genetic predisposition for lower executive functioning could exhibit behaviors 

that evoke harsher parenting. Put another way, parenting would be a consequence of child 

executive functioning, such that the genetic influences on executive functioning would correlate 

with those on parenting.  Consistent with this idea, previous adoption work has found evidence 

for an evocative genotype-environment correlation in which higher levels of child anger evokes 

harsher parenting from adoptive mothers (Bridgett et al., 2018). In sum, some non-genetically 

informed studies may implicate parenting as a causal mechanism when these associations are 

actually a function of passive or evocative genotype-environment correlation.  

Fortunately, there are an array of twin modeling approaches that can leverage the genetic 

relatedness of twins to elucidate the role(s) of genotype-environment correlation. First, the 

nuclear twin family model (Burt & Klump, 2012; Keller et al., 2010) leverages similarities 

across twins and their biological parents to determine the etiology of a given phenotype. This 
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model provides several advantages over the classical twin design, including the ability to divide 

shared environmental influences (C in the classical twin model) into those shared by siblings (S; 

“sibling-level shared environmental influences”) and those shared by twins and their parents (F; 

"family-level shared environmental influences"; Burt & Klump, 2012; Keller et al., 2010). 

Sibling-level shared environmental influences (S) include anything that makes siblings more 

similar to each other, but not to their parents, such as shared school environments, shared 

parenting experiences, and shared peers (Burt & Klump, 2012; Keller et al., 2010). Family-level 

shared environmental influences (F), on the other hand, include influences that make twins and 

their parents more similar to each other, such as shared cultural influences, family 

socioeconomic status, and broader societal norms (Burt & Klump, 2012; Keller et al., 2010). 

Additionally, this model can directly quantify passive genotype-environment correlation, 

calculated as the covariance between additive genetic (A) and family shared environmental 

effects (F; Burt & Klump, 2012; Keller et al., 2010).  

To examine evocative genotype-environment correlation, we can make use of a bivariate 

ACE model. This model decomposes the association between parenting and child executive 

functioning into genetic (A), shared environmental (C), and non-shared environmental (E) 

components, providing insight into the genetic and environmental origins of their association. 

Moreover, because genetic influences (A) on parenting in a child twin design necessarily index 

the extent to which twins’ genetic tendencies shape the parenting they receive (Klahr & Burt, 

2014), the presence of a genetic correlation would largely capture the role of evocative genotype-

environment correlation. Moreover, the bivariate modeling approach can test whether there are 

shared or non-shared environmental influences that overlap between parenting and child 

executive functioning, which would support the notion that some of the association between 
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parenting and child executive functioning is environmental in origin. Thus, between these two 

modeling approaches, both passive and evocative genotype-environment correlation can be 

directly measured. We are also able to clarify whether there are environmental mechanisms 

through which parenting impacts child executive function.  

In sum, these complementary modeling approaches can clarify the role that various forms 

of genotype-environment correlation play in the complex relationship between parent executive 

functioning, parenting, and child executive functioning.  In doing so, however, it would be 

important to attend to a few key issues: First, it is important to consider the reliability and 

validity of frequently used executive functioning measures (Eisenberg et al., 2019; Karr et al., 

2018). The metrics traditionally extracted from behavioral executive functioning tasks suffer 

from test-retest reliability issues, do not consistently relate to real-world outcomes such as 

mental health, physical health, or income, and do not load into a consistent factor structure 

(Eisenberg et al., 2019; Enkavi et al., 2019; Hedge et al., 2018; Karr et al., 2018; Rouder & Haaf, 

2019; Weigard et al., 2021). One emerging and promising alternative to traditional behavioral 

measures is to use computational cognitive models to capture the processes underlying 

performance across a variety of tasks that engage executive functioning skills (Weigard & 

Sripada, 2021). Evidence accumulation models (Brown & Heathcote, 2008; Evans & 

Wagenmakers, 2020; Ratcliff et al., 2016), which are widely used to model choice response time 

tasks (including many executive functioning measures) suggest that a single higher-order 

individual difference dimension drives performance across many tasks: the efficiency with which 

individuals can gather evidence for correct choices in the context of background noise (Lerche et 

al., 2020; Schmiedek et al., 2007; Weigard et al., 2021). “Efficiency of evidence accumulation”, 

as indexed by these computational models, exhibits good test-retest reliability (Lerche & Voss, 
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2017; Schubert et al., 2016) and outperforms traditional executive functioning metrics both in 

temporal stability and in prediction of individuals’ self-regulation (Weigard et al., 2021). In 

addition to using computational models of behavioral performance, behavioral measures can be 

complemented via the inclusion of survey measures. Though often weakly correlated with these 

behavioral measures of executive functioning (Dang et al., 2020), self-report, survey measures of 

executive functioning show stronger associations with real-world outcomes than do behavioral 

measures (Eisenberg et al., 2019).  Thus, to maximize relevance to real-world outcomes, the 

present study combines computational and self-report measures of child executive functioning. 

Second, much of the extant work focuses on infants and young children (e.g. Bernier et 

al., 2012; Bernier et al., 2010; Blair et al., 2014; Bridgett et al., 2018; Broomell et al., 2020; 

Cioffi et al., 2020; Distefano et al., 2018; Hammond et al., 2012; Helm et al., 2020; Hughes & 

Devine, 2019; Kao et al., 2018; Korucu et al., 2020; Zeytinoglu et al., 2017). Early childhood is 

indeed an important time period to study, as parenting influences may be especially important for 

young children (Gee, 2016; Shaw & Bell, 1993) and the prefrontal cortex and associated 

executive functioning skills are rapidly developing during this time (Kolb et al., 2012; Zelazo & 

Carlson, 2012). However, prefrontal cortex development continues through later childhood and 

adolescence (Kolb et al., 2012) and adolescence is a peak period for the onset of disorders 

associated with executive functioning difficulties (Cherkasova et al., 2013; Moffitt, 2018). Given 

evidence that parenting is related to executive functioning and related constructs during 

adolescence (Li et al., 2019), work is needed that considers the role of parenting on the 

intergenerational transmission of executive functioning in later childhood and adolescence as 

these skills are refined and begin to approach adult levels. 
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Thus, the present study examined the roles of shared genes and parenting in the 

intergenerational transmission of executive functioning in a large, socioeconomically diverse 

sample of children and adolescents. We utilized behavioral and informant-report measures of 

executive functioning for twins and their parents from the Michigan Twin Neurogenetics Study 

(MTwiNS), a unique longitudinal study of twins (N=708 in 354 pairs) that were oversampled for 

residence in low-income neighborhoods. For our first aim, we assessed whether harsh or 

nurturing parenting were phenotypically related to a computationally derived, task-general 

measure of executive functioning. We then tested whether parent executive functioning was 

associated with child executive functioning via parenting behaviors. We hypothesized that more 

nurturing, less harsh parenting would be associated with better child executive functioning.  

For our second aim, we assessed the etiology of executive functioning via the nuclear 

twin family model. Using the nuclear twin family model, we assessed the role of sibling-level 

and family-level influences on executive functioning and quantified the role of passive genotype-

environment correlation. We hypothesized that executive functioning would be moderately 

heritable, and that there would be evidence of passive genotype-environment correlation, 

reflecting that the genes underlying parent executive functioning relate to the general family 

environment, including the overall parenting environment.  

For our third aim, we employed a bivariate twin model to examine the etiology of the 

phenotypic association between parenting and executive functioning. Our hypotheses for this aim 

were informed by results of Bridgett et al. (2018), an adoption study which, by design, 

eliminated the impact of passive genotype-environment correlation. This study found evidence of 

evocative genotype-environment correlation (i.e., child anger evoked harsher parenting) and an 

environmental effect of parenting on child self-regulation after controlling for evocative 
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genotype-environment correlation. Thus, we hypothesized that there would be some 

environmental influence of parenting on child executive functioning, as well as evidence of 

evocative genotype-environment correlation. 

 

Methods 

Participants 

 The present study included data from families in the Michigan Twins Neurogenetics 

Study (MTwiNS), a project within the Michigan State University Twin Registry (MSUTR; Burt 

& Klump, 2019). The 354 families participating in MTwiNS were originally identified through 

birth records as part of the Twin Study of Behavioral and Emotional Development in Children 

(TBED-C; for details see Burt & Klump, 2019) and recruited into one of two cohorts — a 

population-based cohort that represented families living within 120 miles of Michigan State 

University and an at-risk cohort recruited from the same area, but that was restricted to families 

living in U.S. Census tracts where at least 10.5% of families lived below the poverty line (the 

mean for the state of Michigan at the time; Burt & Klump, 2019). MTwiNS participants were re-

recruited from the original participant pool based upon criteria for the second, “at-risk” cohort. 

Thus, MTwiNS includes families from the “at-risk” cohort as well as those from the population-

based cohort that would have qualified for the “at-risk” cohort. This re-recruitment strategy 

yielded a sample representative of families living in neighborhoods with above average levels of 

poverty, a unique sampling frame within both the behavioral genetics and neuroimaging 

literatures (Burt et al., 2021).  

The 708 twins (354 pairs, 167 monozygotic) included in the present study were 7 to 19 

years old (Mean=14.6, SD=2.2; 54.5% male; only 3.3% of the present sample was 10 or 
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younger). The breakdown of twins’ parent-reported ethnicity reflected the surrounding area (78% 

White/Caucasian, 13% African-American, 5% Other, 1% Latino/Latina, 1% Pacific Islander, 1% 

Native American, <1% Asian). Median reported family annual income for this sample was 

$70,000 to $79,999 and ranged from less than $4,999 to greater than $90,000. 9% of included 

families reported an annual income below the 2020 federal poverty line of $26,246 per year and 

33% reported annual income below the living wage for a family of 4 in Michigan 

(http://livingwage.mit.edu/states/26). Zygosity was established using physical similarity 

questionnaires administered to the twins and/or their parents (Bouchard et al., 1990; Iacono et al., 

1999; Peeters et al., 1998). Discrepancies were resolved through review of zygosity items or by 

DNA markers. Parents provided informed consent and children provided assent. 

Procedure 

Primary caregivers completed executive functioning self-report measures during their 

preliminary visit to Michigan State University as part of their participation in the TBED-C (twin 

ages ranged from 6-11 at the time; Mean= 8.05; SD=1.43).  All other measures were collected in 

a day-long return visit to the University of Michigan (twin ages at follow-up ranged from 7-19 as 

described above). Each twin completed a variety of behavioral tasks, some of which occurred 

during an MRI scan, including a go/no-go task (during imaging) and a stop-signal task (in the 

lab). Twins also completed a battery of child-report questionnaires. Primary caregivers 

completed a demographic interview with an examiner and a battery of self- and parent-report 

questionnaires.  

Measures 

Child Executive Functioning 
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Go/No-go Task. The child friendly go/no-go task used in this study was adapted from 

Casey et al. (1997) and assesses inhibition via a “whack-a-mole” game (stimuli courtesy of Sarah 

Getz and the Sackler Institute for Developmental Psychobiology; task downloaded from 

http://fablab.yale.edu/page/assays-tools). In the present task, participants were instructed to press 

a button as quickly as possible in response to one stimulus (“go”, a mole) and avoid responding 

to a less frequent non-target (“No-Go”, a vegetable). The target stimuli (moles) were modified 

with various “disguises” to make the task more interesting and difficult given the relatively slow 

speed of stimuli used to accommodate fMRI data acquisition. The task consisted of four runs, 

each with approximately 55 trials, for a total of 255 trials of which 55 were no-go (21.6% no-go). 

Each no-go trial was preceded by 1-5 go trials. Each trial lasted 2300ms, including a maximum 

of 1800ms stimulus presentation, 400ms feedback, and 100 – 1000ms fixation to account for 

individual differences in reaction time. Participants practiced the task briefly in an MRI 

simulator before the MRI scan. Participants with below-chance “go accuracy” (correct responses 

on <55% of “go” trials) were not considered to be meaningfully participating in the task (N=2), 

leaving N=589 individuals with viable go/no-go data.  

Stop-Signal Task. The child friendly stop-signal task used in this study was a 10 minute, 

150 trial task adapted from Bissett & Logan (2012) as described previously (Begolli et al., 2018). 

Participants were presented with a fish for 850ms and told to push the “a” or “l” keys as quickly 

as possible based on the orientation of the fish, unless a visual stop-signal stimulus (Martin the 

Manta Ray) appeared on the screen, which occurred on 50 of the task trials (33%; “stop” trials). 

This stop-signal was presented following a stop signal delay (SSD) that was determined through 

a standard “staircase tracking” algorithm (Logan, 1994) designed to lead to a roughly 50% 

probability of inhibition on “stop” trials for each participant. This algorithm began with a 250ms 
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SSD and was thereafter increased or decreased by 50ms on each subsequent ”stop” trial based on 

whether the participant was able to successfully inhibit. The stop-signal task was added to the 

protocol partway through data collection and was therefore only available for a subset of 

participants (N=332 individuals). 

Evidence Accumulation Model Analyses. Parameters of the linear ballistic accumulator 

(LBA) model were estimated in an individual-level Bayesian framework for the go/no-go task 

and “go” choice trials from the stop-signal task using the Dynamic Models of Choice functions 

(Heathcote, 2019), an adaptation of the differential evolution Markov chain Monte Carlo model 

(Turner et al., 2013), in R version 4.1.0 (R Core Team, 2021). Plots of model fit (Gelman et al., 

1996) and parameter recovery studies (Heathcote, Brown, et al., 2015) indicated good model fit 

to the data in each task and acceptable parameter recovery given the task designs. Following 

previous work (Heathcote, Suraev, et al., 2015; Weigard et al., 2020), efficiency of evidence 

accumulation (hereafter, “efficiency”) was estimated as the difference in accumulation rates 

between the evidence accumulator for the correct choice (vc) and that for the incorrect choice 

(ve) scaled by the between-trial variability in accumulation rates pooled across both choices (sv): 

(vc-ve)/sv. It was estimated separately for “go” and “no-go” trial types within the go/no-go task 

due to previous evidence that it may systematically differ across the two conditions (Huang-

Pollock et al., 2017; Ratcliff et al., 2018).  

Self-Report of Executive Functioning. Twins reported on their EF abilities via the 

attention, activation control, and inhibitory control subscales of the Early Adolescent 

Temperament Questionnaire (EATQ; Capaldi & Rothbart, 1992). These scales consist of 6, 5, 

and 5 items, respectively, and can be combined to make up an “effortful control” superscale, 

though for the purposes of this study each scale was used as a separate indicator (in a latent 
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factor) of executive functioning (Snyder et al., 2015). The attention scale measures the ability to 

focus and shift attention, the activation control scale measures the ability to begin and complete 

tasks, and the inhibitory control scale measures the ability to suppress unwanted behaviors 

(Snyder et al., 2015). Within our sample, internal consistencies for the attention and activation 

subscales were borderline to acceptable (a = 0.674 and 0.748) while internal consistency of the 

inhibitory control subscale was poor (a = 0.355). 

Executive Functioning Factor Score. Individual twins’ executive functioning scores 

were calculated as latent factor scores combining the three efficiency parameters (go, no-go, 

stop-signal) with the three self-report executive functioning scores (attention, activation control, 

inhibitory control) using maximum likelihood estimation with bootstrapping in Mplus version 

8.6 (Muthén & Muthén, 1998-2017) via R, tidyverse (Wickham et al., 2019), and the 

MplusAutomation package (Hallquist & Wiley, 2018). This modeling approach with full 

information estimation is robust to missing data, and executive functioning scores were therefore 

available for all participants (N=708 individuals). Correlations between all executive functioning 

measures are available in Table III.1. 

Parent Executive Functioning 

Multidimensional Personality Questionnaire. Parents reported on their own self-

control abilities via the self-control scale of the Multidimensional Personality Questionnaire, a 

24-item scale which measures planfulness versus impulsivity (MPQ; Tellegen & Waller, 2008). 

A higher score on this scale indicates better self-control. Within our sample, internal consistency 

for this scale was acceptable (a = 0.743 and 0.752 for mothers and fathers, respectively). 

Adult Self Report. Parents reported on their own attention problems via the attention 

problems scale of the Adult Self Report (Achenbach & Rescorla, 2001). This scale measures 
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attention problems (e.g., “I have trouble concentrating or paying attention for long”) and was 

reverse scored such that a higher score on this scale indicated less attention problems. Within our 

sample, internal consistency for this scale was acceptable (a = 0.818 and 0.809 for mothers and 

fathers, respectively). 

Parent Executive Functioning Composite. Control and attention scales were z-scored 

and then averaged for each parent to create an “average” reported executive functioning score. If 

parents had one measure but not the other (N=24 mothers and 15 fathers), the one remaining 

report was used. With this approach, almost all families (N=339 families) had parent executive 

functioning data. Correlations between all parent and child executive functioning measures are 

available in Table III.1. 

Parenting 

Parental Environment Questionnaire. The Parental Environment Questionnaire (PEQ; 

Elkins et al., 1997) was administered to assess nurturance and conflict in each parent-child dyad. 

The involvement or nurturance subscale (12 items) assesses communication, closeness, and 

support in the parent-child relationship (e.g., “I praise my child when he/she does something 

well”). The conflict subscale (12 items) assesses disagreement, tension, and anger in the parent-

child relationship (e.g., “I often criticize my child”). Mothers and fathers reported on their 

relationships with each twin, and each twin reported on their relationship with their parent(s). 

Within our sample, internal consistencies for the PEQ subscales were acceptable (for conflict, a 

= 0.901, 0.883, and 0.873 for twin, mother, and father report, respectively; for involvement, a = 

0.859, 0.794, and 0.858 for twin, mother, and father report, respectively). 

Alabama Parenting Questionnaire. The Alabama Parenting Questionnaire (APQ; 

Shelton et al., 1996) was administered to assess parenting in each parent-child dyad. The parental 
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involvement subscale (10 items) assesses closeness and communication in the parent-child 

relationship (e.g., “You have a friendly talk with your child”). The positive parenting subscale (6 

items) assesses positive reinforcement behaviors (e.g., “You praise your child if he/she behaves 

well”). The inconsistent discipline subscale (6 items) assesses unpredictability in parental 

discipline (e.g., “The punishment you give your child depends on your mood”). The corporal 

punishment subscale (3 items) assesses physical discipline (e.g., “You spank your child with 

your hand when he/she has done something wrong). Some participants received a shortened 

version of the corporal punishment subscale; these participants’ scores were prorated 

accordingly. Mothers and fathers reported on their relationships with each twin, and each twin 

reported on their relationship with their mother. Within our sample, internal consistencies for the 

APQ subscales were acceptable (for inconsistent discipline, a = 0.749, and 0.701 for mother and 

father report, respectively; for positive parenting, a = 0.785 and 0.801 for mother, and father 

report, respectively). Because some families received only one corporal punishment item, 

internal consistency was not computed for that scale. 

Parenting Composite. Consistent with prior work (e.g. Burt et al., 2003), we created a 

composite of all reporters for each subscale of the PEQ and APQ to assess the overall parenting 

environment for each child, averaging z-scored twin reports, mother reports, and father reports, 

and then averaging these three reporters together. Using this method, we created a “harsh 

parenting” composite including data from all available reporters on the PEQ conflict, APQ 

inconsistent discipline, and APQ corporal punishment subscales (Table III.2); we created a 

“nurturing parenting” composite from all available reporters on the PEQ involvement, APQ 

parental involvement, and APQ positive parenting subscales (Table III.3). When any of these 

reporters were missing (N=292 (harsh) and N=325 (nurturing) individuals were missing at least 1 
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informant-report, primarily father), we calculated the composite from the available reports. 

Using this method, all twins had composite parenting data (N=708 individuals). 

Analytic Plan 

Question 1: Is parenting one pathway through which executive functioning is transmitted 

intergenerationally? 

 First, we employed a regression approach to test whether harsh or nurturing parenting 

were associated with child executive functioning. We then tested whether parent executive 

functioning might have an indirect effect on child executive functioning via harsh or nurturing 

parenting using structural equation modeling in Mplus version 8.6 (Muthén & Muthén, 1998-

2017). We used a maximum likelihood estimator with bootstrapping (bootstrap = 1000). We 

tested for specific indirect effects of parent executive functioning on child executive functioning 

via harsh or nurturing parenting, clustering by family to account for relatedness of twins. In all 

models, we included child age and sex as controls. We also included twin race/ethnicity (white 

vs. nonwhite), a socially constructed category, to control for differences in exposure to systemic 

racism and related systematic differences by race and ethnicity in exposure to stress, trauma, and 

opportunity. 

Question 2: What is the etiology of executive functioning? 

Twin analyses leverage the difference in the proportion of genes shared between 

monozygotic twins (who share 100% of their segregating genes) and dizygotic twins (who share 

roughly 50% of their segregating genes) to make inferences about additive genetic (A), shared 

environmental (i.e. environmental factors that make twins similar to each other; C) and non-

shared environmental (i.e. factors that make twins different from each other, including 

measurement error; E) contributions to a given phenotype (Figure III.2b; see Plomin et al., 
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2012). In the classical twin model, these three estimates are calculated based on just two pieces 

of information: the covariance between monozygotic twins and the covariance between dizygotic 

twins (along with multiple assumptions; Burt & Klump, 2012; Plomin et al., 2012). To address 

this second question, we employed the nuclear twin family model, an extension of the classical 

twin model. The nuclear twin family model incorporates two additional pieces of information, 

the covariance between parents and the covariance between parents and children, allowing 

researchers to account for assortative mating and differentiate shared environmental influences 

from passive genotype-environment correlation (Figure III.2a; Burt & Klump, 2012). More 

specifically, the inclusion of parent data on the phenotype of interest allows for the 

differentiation of shared environmental influences (C) into those shared between siblings (S; 

“sibling-level shared environmental influences”) and those passed between parents and offspring 

(F; “family-level shared environmental influences). Within this model, passive genotype-

environment correlation (w; Figure III.2a) can be represented by the covariance between additive 

genetic factors (A) and familial environmental variance (F). Given that a major focus of our 

question is on family-level factors and passive genotype-environment correlation, we first ran a 

full nuclear twin family model including S and F (i.e. ASFE; Figure III.2a). All twin models 

were run in Mplus version 8.6 (Muthén & Muthén, 1998-2017) via R version 4.1.0 (R Core 

Team, 2021) and the mplusAutomation package (Hallquist & Wiley, 2018). 

Twin analyses included all twins with any relevant data (N=708 individuals, N=354 

pairs, N=167 monozygotic pairs). Data were prepared for twin analysis using tidyverse 

(Wickham et al., 2019) within R version 4.1.0 (R Core Team, 2021). To eliminate mean age or 

sex differences, we regressed out age and sex effects from all phenotypes of interest (i.e., 
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extracted the residuals from a regression with age and sex predicting the phenotype of interest); 

We used the standardized residual from this regression as our phenotype score (Mean=0, SD=1).  

Question 3: Does parenting have a unique environmental effect on executive functioning? Is 

there evidence of evocative genotype-environment correlation?  

 To further examine the relation between harsh parenting and child executive functioning, 

we fit classical bivariate ACE models to decompose the covariance between harsh parenting and 

child executive functioning. Like the nuclear twin family model, the classical twin model 

estimates additive genetic (A) and non-shared environmental (E) contributions to a given 

phenotype; however, as described above, this model estimates broad shared environmental 

influences (C) rather than differentiating sibling-level (S) or family-level (F) influences. The 

bivariate classical ACE model incorporates two phenotypes of interest into the same model, 

parsing the phenotypic covariance between them into that which is due to genetic (A), shared 

environmental (C), and non-shared environmental (E) factors (Figure III.2c); these covariances 

can then be standardized on their respective variances to produce genetic and environmental 

correlations. These correlations can then be used to make inferences about the source of the 

overlap between parenting and child executive functioning. For example, because twin modeling 

of parenting indexes the extent to which twins’ genetic tendencies influence the parenting they 

receive, genetic (A) overlap would indicate genetic confounds, and more specifically evocative 

genotype-environment correlation (Klahr & Burt, 2014). On the other hand, shared 

environmental overlap (C) would indicate either passive genotype-environment correlation or 

environmental mediation, while non-shared environmental overlap (E) would indicate 

environmental mediation of their relationship. 

Results 
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 Descriptive statistics are reported in Tables III.4 and III.5. Harsh and nurturing parenting 

were moderately negatively correlated (r=-.33) and both harsh and nurturing parenting correlated 

with child executive functioning (r=-.29 and .26, respectively; Table III.4). ICCs for executive 

functioning were .35 for MZ twins and .23 for DZ twins, while ICCs for harsh parenting were 

rMZ=.75 and rDZ=.64, and for nurturing parenting were rMZ=.81 and rDZ=.70 (see Table III.5 

for cross-trait cross-twin correlations). The executive functioning factor score fit was below 

traditionally accepted metrics for acceptable fit (Table III.6). Loadings were substantially higher 

for self-report measures than for efficiency measures. 

Harsh parenting is a phenotypic pathway linking parenting executive functioning to child 

executive functioning 

 In a path model that linked parent executive functioning to child executive functioning 

via both harsh and nurturing parenting (see Figure III.1), links between parent executive 

functioning and harsh parenting, and between harsh parenting and child executive functioning 

were both significant (Beta=-0.22, 95% CI [-0.32 -0.12]; Beta=-0.21, 95% CI [-0.30 -0.12]). 

Similarly, links between parent executive functioning and nurturing parenting, and between 

nurturing parenting and child executive functioning were both significant (Beta=0.10, 95% CI 

[0.02 0.18]; Beta=-0.16, 95% CI [0.08 0.24]). Moreover, there was an indirect effect of parent 

executive functioning on child executive functioning via parenting (total indirect Beta=0.062, 

95% CI [0.03, 0.10]), and significant specific indirect effects of both harsh (Beta=0.05, 95% CI 

[0.02, 0.07]) and nurturing (Beta=0.02, 95% CI [0.003 0.04]) parenting. There was also a small 

direct effect, such that a portion of the relationship between parent and child executive function 

was not mediated by parenting. This model clustered by family to account for relatedness of 
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twins, and included controls for child age, sex, and race. Simple linear regressions with each set 

of variables yielded consistent results (Tables III.7- III.9). 

Executive functioning shows substantial non-shared environmental effects with some 

evidence for sibling-level shared environmental effects 

We first ran a full ASFE nuclear twin family model, which differentiated shared 

environmental influences (C) into those shared among the family unit (F) and those shared by 

siblings (S; Figure III.2a). The full ASFE model estimated large non-shared environmental 

influences on child executive functioning (E=0.68, 95% CI [0.54, 0.81]; Table III.10). Sibling-

level shared environmental influences, by contrast, were small and were not significant (S=0.07, 

95% CI [0, 0.23]; Table III.10), as were the family-level (F) influences (F=0.00, 95% CI [0, 

0.05]; Table III.10). The model also estimated passive genotype-environment correlation, or the 

correlation between genetic (A) and family (F) influences, to be 0. This correlation of 0 indicates 

that any family-level influences are unlikely to be a function of the genetically influenced 

tendencies of the parents. A reduced ASE model, which set F to 0, fit the data better and also 

indicated low-to-moderate heritability (A=0.22, 95% CI [0.12, 0.33]; Table III.10) as well as a 

trend toward sibling-level shared environmental influences (S=0.09, 95% CI [0, 0.19]; Table 

III.10). The very low F estimate would suggest that any shared environmental influences on 

executive functioning are more likely to be those that make siblings more similar, rather than 

those that make children and their parents more similar. This absence of environmentally driven 

parent-child similarity precludes passive genotype-environment correlation effects on child 

executive functioning (as also seen in the above point estimate of zero for passive genotype-

environment correlation). 
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Because child and parent executive functioning were measured in different ways (factor 

score including both behavioral performance and self-report for youth vs. self-report alone for 

parents), we tested two supplemental models to confirm that the very low F estimate was not 

caused by measurement issues. In the first supplemental model, we ran the full ASFE model 

using twin self-report executive functioning alone as measured by the effortful control superscale 

of the EATQ, which combines the attention, activation control, inhibitory control scales used in 

the factor score for the primary model. In the second supplemental model, we ran the full ASFE 

model using twin behavioral executive functioning alone, as measured by an average of the three 

computational metrics available (go, no-go, stop signal). Both supplemental models also 

estimated F at 0 (Table III.11).  

In sum, this series of nuclear twin family models suggested substantial non-shared 

environmental influences on executive functioning (E=0.69), which include both measurement 

error and experiences that make family members more different from each other. There was also 

evidence for low-to-moderate genetic influences on executive functioning (A=0.22), and trend-

level evidence for small shared environmental influences, particularly those that are shared 

among siblings, but not the whole family unit (e.g., exposure to similar peers, similar parenting 

style, similar school environment). 

The effect of harsh parenting on child executive functioning is due, at least in part, to non-

shared environmental influences 

We employed bivariate ACE models (Figure III.2c) to examine the etiology of the 

association between both harsh and nurturing parenting and child executive functioning, finding 

some overlap between harsh parenting and child executive functioning on the non-shared 

environmental component (rE=-0.21, p=0.014; 29% of observed association explained by E 
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correlation; Table III.10). This finding indicates that at least part of the effect of harsh parenting 

on executive functioning was not due to genetic or family-level confounds, but to unique 

environmental influences. On the other hand, neither genetic nor non-shared environmental 

influences overlapped between nurturing parenting and executive functioning, though the 

proportion of overlap explained by the genetic component, while not significant, was estimated 

to be moderate (prA=0.31; Table III.10). Both harsh parenting and nurturing parenting had 

significant shared environmental overlap with executive functioning (rC; Table III.10). Though 

univariate models estimated very little C for child executive functioning, the bivariate model 

benefits from the MZ and DZ cross-trait cross-twin covariances for parenting and executive 

functioning (correlations in Table III.5), rather than univariate intraclass correlations.  For 

reference, univariate classical ACE estimates for harsh parenting, nurturing parenting, and child 

executive functioning are also included in Table III.10. Interestingly, harsh parenting did not 

have a significant genetic component (A=0.17, 95% CI [0, 0.41]; C=0.57, 95% CI [0.37, 0.72]; 

E=0.26, 95% CI [0.19, 0.33]; Table III.10), while nurturing parenting did have evidence of 

moderate genetic influences (A=0.26, 95% CI [0.07, 0.47]; C=0.56, 95% CI [0.37, 0.72]; 

E=0.18, 95% CI [0.13, 0.24]; Table III.10). On the other hand, both harsh and nurturing 

parenting had evidence of large shared environmental influences (C), which is often thought to 

reflect either family environmental influences or passive genotype-environment correlation in a 

child twin design (Neiderhiser et al., 2004). In the case of a relationship variable, as presented 

here, C might also index effects of parent personality, family socioeconomic status, or culture, on 

the parenting parents provide, as these effects would not vary between twins (Klahr & Burt, 

2014). 
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Discussion 

In the present study, we leveraged a genetically informed design to better understand the 

role of parenting in the intergenerational transmission of executive functioning. Using a latent 

factor capturing both self-report measures of child executive functioning and computational 

measures of cognitive processes underlying executive functioning, we found that parent 

executive functioning was related to child executive functioning via both harsh and nurturing 

parenting. Results from nuclear twin family models then revealed large non-shared 

environmental influences on executive functioning, with some evidence for genetic influences 

and no evidence of passive genotype-environment correlation. Finally, bivariate twin models 

indicated overlap in shared environmental influences between both nurturing and harsh parenting 

and child executive functioning, likely indicating environmental mediation given the 

aforementioned absence of passive genotype-environment correlation. These bivariate twin 

models also revealed overlap between non-shared environmental influences on harsh (but not 

nurturing) parenting and child executive functioning, but little evidence for evocative genotype-

environment correlation, suggesting that the effect of harsh parenting on executive functioning is 

not solely due to genetic confounds. In sum, these analyses suggest that executive functioning in 

parents is related to executive functioning in children via their parenting behavior, and that this 

association reflects at least in part an environmental effect of harsh parenting. 

We found that harsher parenting was associated with worse child executive functioning at 

the phenotypic level. This finding is in line with substantial evidence within the developmental 

literature that parenting matters for children’s executive functioning development, such that 

harsh, controlling behaviors are associated with worse child executive functioning (Cuevas, 

Deater-Deckard, Kim-Spoon, Watson, et al., 2014; Valcan et al., 2017). Additionally, we found 
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that more nurturance was associated with better child executive functioning, consistent with a 

growing body of literature that indexes nurturing, supportive parenting as a key promoter of 

executive functioning development (Cioffi et al., 2020; Deater-Deckard, 2014; Distefano et al., 

2018; Helm et al., 2020; Hughes & Devine, 2019; Towe-Goodman et al., 2014). We also found 

evidence that these parenting behaviors play a role in the intergenerational transmission of more 

nurturing parenting, and there was an indirect effect of parent executive functioning on child 

executive functioning via both harsh and nurturing parenting behaviors. This finding is 

consistent with other studies suggesting that parenting may be one mechanism linking parent 

executive functioning and child executive functioning (e.g. Korucu et al., 2020). Much of the 

extant work regarding parenting and executive functioning focuses on early childhood (see 

Valcan et al., 2017 for a meta-analysis).  Thus, our study extends these findings to adolescence 

(96.7% of the sample was age 11 – 17). Additionally, while previous work measured specific and 

highly relevant parenting behaviors like scaffolding or intrusiveness (Broomell et al., 2020; 

Distefano et al., 2018; Fay-Stammbach et al., 2014; Hammond et al., 2012; Hughes & Devine, 

2019; Valcan et al., 2017), our parenting composites indexed a much broader picture of the 

parent-child relationship, incorporating multiple reporters and multiple questionnaire measures, 

thus extending previous research to broad indexes of positive and negative parenting. This robust 

association between broad parenting and child executive functioning could imply that clinical 

strategies to generally decrease harshness and increase nurturance may support child executive 

functioning even without teaching more targeted parenting behaviors like scaffolding. 

Using twin modeling, we found evidence for large non-shared environmental influences 

on executive functioning. In contrast to other twin studies of executive functioning (Engelhardt 

et al., 2015; Friedman & Miyake, 2017; Friedman et al., 2008), we found the heritability of 
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executive functioning to be modest (A=0.29). A notable difference between the present study 

and previous work is the measure of executive functioning. While previous work used latent 

factors of performance across various executive functioning tasks to assess task-general 

executive functioning (Friedman & Miyake, 2017), the present study instead used computational 

modeling to index efficiency of evidence accumulation, a task-general cognitive mechanism 

thought to underlie performance on executive functioning tasks (Weigard & Sripada, 2021) and 

then combined these computational measures with self-report executive functioning data. The 

task-general efficiency measure is reliable (Lerche et al., 2020; Schubert et al., 2016; Weigard et 

al., 2021) and has recently shown consistent links with self-regulatory processes and promise as 

a transdiagnostic risk factor for psychopathology (Sripada & Weigard, 2021; Weigard & Sripada, 

2021). Thus, our inclusion of this computational measure of executive functioning may have 

contributed to different heritability estimates. On the other hand, supplemental models did find 

that there was evidence of large non-shared environmental (E) influences even when measuring 

executive functioning with behavioral or self-report measures alone. Future work could make use 

of latent modeling of the computational measures across more than two tasks. 

Additionally, the lower estimates of heritability in this study could be due to the sample 

itself. Because residence in low-income neighborhoods is a robust risk factor for externalizing 

behaviors, this sample was oversampled for families living in lower-income neighborhoods, a 

novel approach which captures greater levels of risk and subsequent externalizing than most 

other twin studies, which typically contain fewer families facing substantial adversity. Indeed, 

very few twin studies have been explicitly sampled for environmental risk (Burt et al., 2021). 

Because there is evidence that neighborhood disadvantage moderates the heritability of various 

phenotypes (e.g. Burt et al., 2016), it is possible that heritability is indeed lower within this 
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unique sampling frame, and higher in more advantaged neighborhoods, though genotype by 

environment interaction models would be necessary to test this hypothesis (and the current 

sample is under-powered to do so). 

When employing the nuclear twin family model to decompose shared environmental 

effects into those shared by the whole family and those common to siblings, we found no 

evidence for family-level influences on child executive functioning. These influences could 

include anything that makes siblings and parents more similar to each other, such as shared 

culture or the general home environment. Using this model, we also found no evidence of 

passive genotype-environment correlation, or the correlation between the parents’ genetic 

tendencies and the home environment they provide for their children. This finding is consistent 

with adoption work, which found an effect of parenting on executive functioning even when 

eliminating passive genotype-environment correlation (Bridgett et al., 2018). These findings add 

to a body of literature which implicates parenting practices as an important environmental driver 

of the development of child executive functioning (Cioffi et al., 2020; Cuevas, Deater-Deckard, 

Kim-Spoon, Watson, et al., 2014; Deater-Deckard, 2014; Distefano et al., 2018; Helm et al., 

2020; Hughes & Devine, 2019; Towe-Goodman et al., 2014; Valcan et al., 2017), providing 

evidence that the association between parenting practices and child executive functioning are not 

likely to be due entirely to shared genetics between parents and their children. 

To ensure the lack of family-level influences or passive genotype-environment 

correlation was not due to measurement differences between parents and children, we re-ran the 

nuclear twin family model separately for self-report of child executive functioning and for the 

behavioral measure of executive functioning. Even when using only self-report for both parents 

and children, we still found no evidence of family-level effects. Thus, it appears this finding is 
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not simply due to the inclusion of behavioral data for children and not for their parents. 

However, parents and children did not complete the exact same measures — parents self-

reported their attention problems via the Adult Self Report and their inhibitory control via the 

Multidimensional Personality Questionnaire, while children self-reported attention, inhibitory 

control, and activation control via the Early Adolescent Temperament Questionnaire. Thus, 

measurement differences even within the self-report data could still play a role in the very small 

F (family-level influences). estimate, as the use of these different measures might artificially 

inflate differences between children and their parents. These measurement differences could also 

lead to our SEM results providing an underestimate of the association between parent and child 

executive functioning because these different measures may tap slightly different underlying 

constructs. Future work could re-test these questions using identical measures for parents and 

children. 

Separate from measurement issues, it is important to note that executive functioning is 

still developing during middle childhood and adolescence (Kolb et al., 2012), and some 

differences between parents and children may also be due to the large difference in 

developmental stage between parents and their children. It would be interesting to examine 

whether the finding of very small family-level influences remains when twins reach adulthood. 

We also employed bivariate twin modeling to examine the etiology of the association 

between parenting and child executive functioning, finding little evidence for evocative 

genotype-environment correlation (i.e., overlap of genetic components (A) of parenting and child 

executive functioning) and that harsh parenting had some non-shared environmental overlap with 

child executive functioning (rE=-.21). Harsh parenting has previously been shown to have a 

unique environmental impact on other child outcomes, such as callous-unemotional traits 
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(Tomlinson et al., 2021; Waller et al., 2018). Our finding in the present study further underscores 

the importance of reducing harsh parenting as an intervention target to improve child executive 

functioning and prevent related psychopathology.  

We did find evidence of significant shared environmental (C) overlap between parenting 

and child executive functioning, which is difficult to interpret given very low C estimates for 

child executive functioning overall. Regardless, this finding reflects the fact that the association 

between executive functioning and parenting does not vary by zygosity or across co-twins, 

aligning with our finding of a main effect of parenting on child executive functioning. Notably, 

there were relatively strong correlations in parenting received between twins (for harsh parenting 

rMZ=.75 and rDZ=.64; for nurturing parenting rMZ=.81 and rDZ=.70). Reflecting these twin 

correlations, C estimates for both harsh and nurturing parenting were high (C=0.57 and 0.56, 

respectively in univariate ACE models; Table III.10). A child twin design indexes the extent to 

which influences on twins, not on parents, affect the parenting the twins receive (Klahr & Burt, 

2014). Thus, in this child twin analysis of parenting, the large C estimates could reflect family-

level environmental influences or passive genotype-environment correlation (Neiderhiser et al., 

2004), or other influences that do not vary between twins, such as effects of parent personality, 

or even parent executive functioning, on the parenting they provide (Klahr & Burt, 2014).” 

This study has several limitations. First, the current sample size is not sufficient for a 

GxE analysis. A GxE model could reveal that parenting affects the heritability of executive 

functioning, separate from any effects of genotype-environment correlation. For example, harsh 

parenting could moderate the heritability of executive functioning, “activating” genetic risk. 

Future work with larger sample sizes could address this question. Second, we designed our study 

to incorporate both self-report and computational measures of executive functioning in an effort 
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to use complimentary information about child executive functioning. Our factor score combining 

these metrics had relatively poor fit, and factor loadings for the computational measures were 

low. Based on these factor loadings, the extracted factor scores more closely reflected self-report. 

Thus, the factor contained less influence from our novel and promising computationally derived 

measures of executive functioning. These low loadings could reflect that the behavioral and self-

report executive functioning measures were not very correlated, as expected given the growing 

body of literature questioning the cohesiveness of the executive functioning construct (Dang et 

al., 2020; Eisenberg et al., 2019; Karr et al., 2018; Weigard & Sripada, 2021). Third, our sample 

size was modest for these complex analyses. Studies have shown that shared environmental 

estimates (e.g., C) require relatively high sample sizes for adequate power; thus, our study may 

have underestimated these effects (Burt et al., 2020). Our sample may have also been 

underpowered to detect significant A overlap between nurturing parenting and executive 

functioning in in the bivariate model despite a relatively large proportion of variance explained 

(prA=0.31, Table III.10). Finally, internal consistency of the inhibitory control subscale of the 

Early Adolescent Temperament Questionnaire was poor (a = 0.355), though our use of a factor 

score, which would only reflect shared variance with other constructs, may help to mitigate this 

issue. 

In summary, we used a genetically informed design with multiple quantitative models to 

dig deeper into the role of parenting in the intergenerational transmission of executive 

functioning in adolescence. Like many others, we found that harsh parenting was associated with 

worse child executive functioning, while nurturing parenting was associated with better child 

executive functioning. We found little evidence of passive or evocative genotype-environment 

correlation, and instead found that the relationship between harsh parenting and child executive 
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functioning is due, at least in part, to non-shared environmental influences. These findings 

highlight that parenting may be one environmental mechanism through which executive 

functioning is passed across generations. More broadly, this work highlights that targeting harsh 

parenting through interventions is critical to improving adolescent executive functioning and 

preventing related psychopathology, and it underscores the importance of genetically-informed 

designs when studying parenting influences on executive functioning.  
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Table III.1 
 
Means, standard deviations, and correlations with confidence intervals for all variables included in parent and child EF composites 
  

Variable M SD 1 2 3 4 5 6 7 8 9 
            
1. Mom MPS Ctrl 9.70 2.35                   
                        
2. Dad MPS Ctrl 9.35 2.28 -.02                 
      [-.10, .07]                 
                        
3. Mom ASR Attn 5.24 4.30 -.36** -.14**               
      [-.43, -.29] [-.23, -.06]               
                        
4. Dad ASR Attn 4.88 3.96 -.11** -.29** .24**             
      [-.20, -.03] [-.36, -.21] [.16, .32]             
                        
5. Twin EATQ Attn 3.46 0.65 .00 .06 -.14** -.18**           
      [-.07, .08] [-.02, .15] [-.22, -.07] [-.26, -.09]           
                        
6. Twin EATQ Act 
Ctrl 3.39 0.81 .05 .14** -.14** -.15** .56**         

      [-.03, .12] [.05, .22] [-.21, -.06] [-.24, -.07] [.50, .61]         
                        
7. Twin EATQ Inh 
Ctrl 3.84 0.58 .06 .04 -.09* -.04 .42** .31**       

      [-.02, .13] [-.04, .13] [-.16, -.01] [-.12, .04] [.36, .48] [.24, .38]       
                        
8. EEA (stop signal) 3.36 0.78 .11* .11 -.08 -.03 .13* .06 .12*     
      [.00, .22] [-.01, .23] [-.18, .03] [-.15, .09] [.03, .24] [-.05, .17] [.01, .23]     
                        
9. EEA (go) 2.63 0.53 -.00 .08 .02 -.04 .09* .01 .09* .13*   
      [-.08, .08] [-.01, .17] [-.06, .10] [-.13, .05] [.01, .17] [-.07, .09] [.01, .17] [.01, .24]   
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10. EEA (no-go) 3.49 0.71 -.01 .09* .01 -.07 .12** .05 .11** .07 .37** 
      [-.09, .07] [.00, .18] [-.07, .09] [-.16, .03] [.04, .20] [-.03, .13] [.03, .19] [-.04, .19] [.30, .44] 
                        

 
Note. M and SD are used to represent mean and standard deviation, respectively. Values in square brackets indicate the 95% 
confidence interval for each correlation. Table generated with apaTables package in R (Stanley & Spence, 2018). * indicates p < .05. 
** indicates p < .01. 
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Table III.2 
 
Means, standard deviations, and correlations with confidence intervals for subscales included in harsh parenting composite  
  

Variable M SD 1 2 3 4 5 6 7 8 
           
1. PC APQ Inc Disc 12.68 3.72                 
                      
2. PC APQ Corporal 2.42 0.87 .45**               
      [.39, .51]               
                      
3. AC APQ Inc Disc 12.52 3.58 .22** .15**             
      [.13, .30] [.06, .23]             
                      
4. AC APQ Corporal 2.32 0.90 .16** .24** .42**           
      [.07, .24] [.16, .32] [.35, .49]           
                      
5. Twin APQ Inc Disc 13.22 3.64 .29** .13** .26** .15**         
      [.22, .36] [.06, .21] [.18, .34] [.06, .23]         
                      
6. Twin APQ Corporal 7.60 3.18 .19** .20** .14** .23** .31**       
      [.11, .26] [.13, .27] [.06, .23] [.14, .31] [.24, .37]       
                      
7. Twin PEQ Conflict 20.97 6.70 .30** .23** .08 .15** .38** .46**     
      [.23, .37] [.15, .30] [-.01, .17] [.06, .24] [.31, .45] [.40, .52]     
                      
8. PC PEQ Conflict 20.31 5.98 .48** .49** .15** .23** .20** .22** .46**   
      [.41, .53] [.43, .55] [.06, .24] [.14, .31] [.13, .28] [.15, .30] [.40, .52]   
                      
9. AC PEQ Conflict 20.42 5.91 .29** .23** .48** .42** .19** .21** .28** .48** 
      [.22, .36] [.16, .31] [.41, .55] [.34, .49] [.11, .27] [.14, .29] [.21, .35] [.42, .54] 
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Note. M and SD are used to represent mean and standard deviation, respectively. Values in square brackets indicate the 95% 
confidence interval for each correlation. Table generated with apaTables package in R (Stanley & Spence, 2018). * indicates p < .05. 
** indicates p < .01. 
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Table III.3 
 
Means, standard deviations, and correlations with confidence intervals of all subscales included in nurturing parenting composite 
  

Variable M SD 1 2 3 4 5 6 7 8 9 
            
1. PC APQ Involve 39.68 5.04                   
                        
2. PC APQ Positive 24.91 3.38 .60**                 
      [.55, .65]                 
                        
3. AC APQ Involve 36.31 5.94 .22** .04               
      [.14, .30] [-.05, .13]               
                        
4. AC APQ Positive 23.70 3.68 .24** .22** .63**             
      [.15, .32] [.14, .30] [.57, .68]             
                        
5. Twin APQ Involve  
(on mom) 34.73 6.56 .39** .19** .17** .10*           

      [.33, .45] [.12, .26] [.08, .26] [.02, .19]           
                        
6. Twin APQ Involve 
(on dad) 30.06 8.42 .29** .09* .24** .10* .53**         

      [.22, .36] [.02, .17] [.15, .32] [.01, .19] [.47, .58]         
                        
7. Twin APQ Positive 21.27 4.33 .25** .30** .12** .19** .65** .41**       
      [.18, .32] [.23, .37] [.03, .21] [.11, .28] [.60, .69] [.34, .47]       
                        
8. PC PEQ Involve 43.36 4.00 .59** .45** .07 .18** .30** .22** .25**     
      [.54, .64] [.38, .51] [-.02, 

.17] [.09, .27] [.23, .37] [.15, .30] [.17, .32]     
                        
9. AC PEQ Involve 41.03 5.33 .21** .07 .68** .57** .09 .21** .06 .16**   
      [.12, .29] [-.02, .17] [.63, .73] [.51, .63] [-.00, .18] [.12, .30] [-.03, .15] [.07, .25]   
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10. Twin PEQ Involve 40.57 5.98 .23** .13** .19** .14** .59** .35** .53** .33** .17** 
      [.15, .30] [.05, .20] [.10, .28] [.05, .23] [.53, .64] [.27, .42] [.46, .58] [.26, .40] [.08, .26] 
                        

 
Note. M and SD are used to represent mean and standard deviation, respectively. Values in square brackets indicate the 95% 
confidence interval for each correlation. Table generated with apaTables package in R (Stanley & Spence, 2018). * indicates p < .05. 
** indicates p < .01.
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Table III.4 
  
Means, standard deviations, and correlations with confidence intervals 
  

Variable M SD 1 2 3 
      
1. Child 
Executive 
Functioning 

0.00 0.14       

            
2. Parent 
Executive 
Functioning 

0.00 0.68 .15**     

      [.08, .23]     
            
3. Harsh 
Parenting 
(Composite) 

0.01 0.62 -.29** -.21**   

      [-.35, -.22] [-.28, -.14]   
            
4. Nurturing 
Parenting 
(Composite) 

-0.02 0.63 .26** .12** -.33** 

      [.19, .33] [.04, .19] [-.39, -.26] 
            

 
Note. M and SD are used to represent mean and standard deviation, respectively. Values in 
square brackets indicate the 95% confidence interval for each correlation. Table generated with 
apaTables package in R (Stanley & Spence, 2018). * indicates p < .05. ** indicates p < .01. 
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Table III.5 
  
Cross-trait, cross-twin correlations with confidence intervals 
  

Variable 1 2 3 4 5 6 
       
1. Child Executive Functioning (T1)   .23** -.32** -.23** .25** .21** 
    [.13, .31] [-.40, -.23] [-.31, -.13] [.16, .34] [.11, .29] 
       
2. Child Executive Functioning (T2) .35**   -.23** -.32** .21** .25** 
  [.24, .45]   [-.31, -.13] [-.40, -.23] [.11, .29] [.16, .34] 
             
3. Harsh Parenting (T1) -.23** -.16**   .64** -.32** -.20** 
  [-.34, -.12] [-.27, -.04]   [.58, .69] [-.40, -.23] [-.29, -.10] 
             
4. Harsh Parenting (T2) -.16** -.23** .75**   -.20** -.32** 
  [-.27, -.04] [-.34, -.12] [.70, .80]   [-.29, -.10] [-.40, -.23] 
             
5. Nurturing Parenting (T1) .23** .21** -.36** -.31**   .70** 
  [.11, .34] [.10, .32] [-.45, -.25] [-.41, -.20]   [.65, .74] 
             
6. Nurturing Parenting (T2) .21** .23** -.31** -.36** .81**  
  [.10, .32] [.11, .34] [-.41, -.20] [-.45, -.25] [.77, .85]  
                 

 
Note. Values in square brackets indicate the 95% confidence interval for each correlation. Correlations for monozygotic twins are 
included below the diagonal and dizygotic twins above the diagonal. T1 and T2 indicate twin 1 and twin 2. Correlations were 
generated from a double-entered dataset to eliminate any twin ordering effects. Correlations which represent ICCs for child executive 
functioning, harsh parenting, and nurturing parenting are bolded for clarity. * indicates p < .05. ** indicates p < .01. 
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Table III.6 
 
Executive functioning factor score loadings and fit statistics 
 
Item Estimate (STDYX) p 
 
No-go Drift Rate 

 
0.15 

 
0.00 

Go Drift Rate 0.12 0.04 
Stop-Signal Drift Rate 0.16 0.01 
EATQ Inhibitory Control 0.49 0.00 
EATQ Attention 0.87 0.00 
EATQ Activation Control 0.64 0.00 
   
   

CFI = 0.83 
TLI = 0.72 
RMSEA = 0.12 
Chi-sq = 94.01 
df = 9 
Chi-sq p = 0.00 
SRMR = 0.08 
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Table III.7 
  
More nurturing, less harsh parenting predicts better child executive functioning 
  

Predictor b 
b 

95% CI 
[LL, UL] 

 
beta sr2  

sr2  
95% CI 

[LL, UL] 
Fit 

(Intercept) 0.06 [-0.01, 0.12] 0.00    
Harsh Parenting -0.05** [-0.07, -0.03] -0.23 .04 [.02, .07]  

Nurturing Parenting 0.04** [0.02, 0.05] 0.17 .03 [.00, .05]  
Child Age -0.00 [-0.01, 0.00] -0.06 .00 [-.00, .01]  

Child Gender (Female) -0.00 [-0.02, 0.02] -0.02 .00 [-.00, .00]  
Child Ethnicity (Nonwhite) -0.00 [-0.03, 0.02] -0.01 .00 [-.00, .00]  

      R2   = .116** 

      95% CI[.07,.16] 
 

 
Note. A significant b-weight indicates the semi-partial correlation is also significant. b represents unstandardized regression weights. 
sr2 represents the semi-partial correlation squared. LL and UL indicate the lower and upper limits of a confidence interval, 
respectively. Beta indicates standardized regression coefficients. Table generated with apaTables package in R (Stanley & Spence, 
2018). Beta coefficients generated with lm.beta package in R (Behrendt, 2014). 
* indicates p < .05. ** indicates p < .01. 
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Table III.8 
  
Better parent executive functioning predicts less harsh parenting 
  

Predictor b 
b 

95% CI 
[LL, UL] 

 
Beta sr2  

sr2  
95% CI 

[LL, UL] 
Fit 

(Intercept) -0.09 [-0.40, 0.23] 0.00    
Parent Executive Functioning -0.20** [-0.27, -0.13] -0.22 .05 [.02, .08]  

Child Age 0.01 [-0.02, 0.03] 0.02 .00 [-.00, .00]  
Child Gender (Female) -0.06 [-0.15, 0.04] -0.05 .00 [-.00, .01]  

Child Ethnicity (Nonwhite) 0.18** [0.06, 0.29] 0.12 .02 [-.00, .03]  
      R2   = .059** 
      95% CI[.03, .09] 
       

 
Note. A significant b-weight indicates the semi-partial correlation is also significant. b represents unstandardized regression weights. 
sr2 represents the semi-partial correlation squared. LL and UL indicate the lower and upper limits of a confidence interval, 
respectively. Beta indicates standardized regression coefficients. Table generated with apaTables package in R (Stanley & Spence, 
2018). Beta coefficients generated with lm.beta package in R (Behrendt, 2014). 
* indicates p < .05. ** indicates p < .01. 
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Table III.9 
  
Better parent executive functioning predicts more nurturing parenting 
  

Predictor b 
b 

95% CI 
[LL, UL] 

 
Beta sr2  

sr2  
95% CI 

[LL, UL] 
Fit 

(Intercept) 0.83** [0.51, 1.15] 0.00    
Parent Executive Functioning 0.09** [0.02, 0.16] 0.10 .01 [-.00, .02]  

Child Age -0.06** [-0.09, -0.04] -0.22 .05 [.02, .08]  
Child Gender (Female) 0.19** [0.10, 0.28] 0.15 .02 [.00, .04]  

Child Ethnicity (Nonwhite) -0.02 [-0.14, 0.10] -0.01 .00 [-.00, .00]  
      R2   = .076** 
      95% CI[.04, .11] 
       

 
Note. A significant b-weight indicates the semi-partial correlation is also significant. b represents unstandardized regression weights. 
sr2 represents the semi-partial correlation squared. LL and UL indicate the lower and upper limits of a confidence interval, 
respectively. Beta indicates standardized regression coefficients. Table generated with apaTables package in R (Stanley & Spence, 
2018). Beta coefficients generated with lm.beta package in R (Behrendt, 2014). 
* indicates p < .05. ** indicates p < .01. 
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Table III.10 
 
Model estimates and model fit statistics for univariate and bivariate models 
 
Nuclear Twin Family 
Models 

A S F E AIC BIC ssBIC RMSEA 

 
Executive Functioning 
ASFE 

 
0.26 
[0 0.53] 

 
0.07 
[0 0.23] 

 
0.00 
[0 0.05] 

 
0.68 *** 
[0.54 0.81] 

 
3449.97 

 
3473.19 

 
3454.15 
 

 
0.12 

 
Executive Functioning 
ASE 
 

 
0.22 ** 
[0.12 0.33] 

 
0.09  
[0 0.19] 

 
- 

 
0.69 *** 
[0.59 0.80] 

 
3447.33 

 
3466.67 
 

 
3450.81 
 

 
0.12 

Classical Twin Models A C   E AIC BIC ssBIC RMSEA 
 
Executive Functioning 
 
 

 
0.29  
[0 0.50] 

 
0.08  
[0 0.32] 

  
0.63 *** 
[0.49 0.79] 

 
1979.14 

 
1994.62 

 
1981.93 

 
0.00 

Harsh Parenting 
 
 

0.17 
[0 0.41] 

0.57 *** 
[0.37 0.72] 

 0.26 *** 
[0.19 0.33] 

1785.18 1800.66 1787.97 0.05 

Nurturing Parenting 
 
 

0.26 ** 
[0.07 0.47] 

0.56 *** 
[0.37 0.72] 

 0.18 *** 
[0.13 0.24] 

1725.03 1740.50 1727.81 0.02 

Bivariate Models Axy Cxy  Exy CFI TLI SRMR RMSEA 
 
Harsh Parenting / 
Executive Functioning 

 
0.00 
[0 0.32] 
 

 
0.08 
[0 0.19] 

 
 

 
0.03 
[0 0.09] 

 
0.99 

 
0.99 

 
0.07 

 
0.03 

 rA = 0.02 
prA = 0.01 
 

rC = 1 *** 
prC = 0.70 *** 

 rE = 0.21 ** 
prE = 0.29 **  

    

Nurturing Parenting /  0.02 0.05  0.00 1 1 0.05 0.00 
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Executive Functioning [0 0.32] 
 
rA = 0.27 
prA = 0.31 

[0 0.19] 
 
rC = 0.78 * 
prC = 0.65 * 

[0 0.09] 
 
rE = 0.03 
prE = 0.05  

         
         

 
Note. This table depicts estimates and model fit statistics for the univariate Nuclear Twin Family Model, which provides a 
decomposition of shared environmental contributions into those shared between parents and children (F) and those shared between 
siblings (S). The reduced ASE model fit better than the full ASFE model. Additionally, this table depicts estimates and model fit 
statistics for the univariate ACE models, which provide a decomposition of genetic and environmental contributions to variance in 
executive functioning, harsh parenting, and nurturing parenting (N=354 pairs, 167 monozygotic). Finally, this table depicts relevant 
estimates from the bivariate ACE model, which provides a decomposition of genetic and environmental contributions to the 
phenotypic correlation between harsh parenting and executive functioning. Included are the ACE estimates for the overlap between 
harsh parenting and executive functioning, as well as the genetic (rA) and environmental (rC, rE) correlations, and the proportions of 
shared variance attributable to each (prA, prC, prE). High C correlations are likely driven by low C estimates overall. For estimates,  * 
p <0.05, ** p<0.01, *** p<0.001 
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Table III.11 
 
Model estimates and model fit statistics for supplemental ASFE models 
         
Nuclear Twin Family 
Model 

A S F E AIC BIC ssBIC RMSEA 

 
Executive Functioning  
(self-report only) 
ASFE 

 
0.21 
[0 0.49] 

 
0.11 
[0 0.27] 

 
0.00 
[0 0.05] 

 
0.68 *** 
[0.54 0.82] 

 
3408.31 

 
3412.49 

 
3412.49 
 

 
0.12 

 
Executive Functioning 
(behavioral only) 
ASFE 
 

 
0.06 
[0 0.38] 

 
0.27 *** 
[0.08 0.38] 

 
0.00 
[0 0.04] 

 
0.66 *** 
[0.52 0.75] 

 
3241.11 

 
3264.27 

 
3245.24 
 

 
0.13 

         
 
Note. This table depicts estimates and model fit statistics for a supplemental Nuclear Twin Family Model using twin-report executive 
functioning data only (self-report only) and the behavioral executive functioning measure only (behavioral only) rather than the factor 
score which combined the two. The ASFE model provides a decomposition of shared environmental contributions (C in classical twin 
ACE model) into those shared between parents and children (F) and those shared between siblings (S). Note that, consistent with the 
results from the primary model using an executive functioning factor score, F is estimated at 0 regardless of the measurement strategy. 
For estimates,  * p <0.05, ** p<0.01, *** p<0.001 
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Figure III.1 
 
Parent executive functioning relates to child executive functioning via an effect on parenting 
 

 
 
Note. Structural equation modeling using maximum likelihood estimation with bootstrapping and clustering for family in Mplus 
revealed an indirect effect of parent executive functioning on child executive functioning via both harsh and nurturing parenting 
behaviors. This figure depicts standardized estimates and bootstrapped 95% confidence intervals (bootstrap = 1000). For estimates,  . 
p<0.1 * p <0.05, ** p<0.01, *** p<0.001



 

 137 

Figure III.2 
 
Path diagrams of the nuclear twin family model, the classical univariate twin model, and the bivariate twin model 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note. This figure depicts path diagrams of the three twin models employed by the present study. (a) The nuclear twin family model 
incorporates parent measures of a phenotype of interest to allow for estimation of additional parameters. For the purposes of this 
study, an ASFE model was estimated. A represents genetic influences, S represents sibling-level shared environmental influences, F 
represents family-level shared environmental influences, and E represents nonshared environmental influences. P represents the 
phenotype of interest, measured for the father (Fa), mother (Mo), and twins (T1, T2). This model also takes into account assortative 
mating (µ) and calculates passive rGE (w). Adapted from Burt & Klump (2012). (b) The classical univariate twin model estimates 
genetic (A), shared environmental (C) and nonshared environmental (E) contributions to a given phenotype. Adapted from Burt & 
Klump (2012). (c) The bivariate twin model decomposes phenotypic covariance into genetic (A), shared environmental (C), and 

a) b) 

c) 
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nonshared environmental components (E). P1 and P2 represent the two phenotypes of interest. For simplicity, the path model for only 
one twin is depicted here. Adapted from Carroll et al. (2021). 
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CHAPTER IV 

Parenting as a Buffer Against the Effects of Neighborhood Poverty on Executive 

Functioning 

 

Socioeconomic disadvantage during childhood predicts a myriad of negative outcomes, 

including lower earnings, poorer mental and physical health, and higher rates of criminal 

behavior (Cohen et al., 2008; Duncan et al., 2010). One critical pathway linking socioeconomic 

disadvantage to these poorer outcomes involves executive functioning (Evans et al., 2021; 

Shameem & Hamid, 2014; Umbach et al., 2017). Indeed, meta-analyses support a robust link 

between socioeconomic disadvantage and reduced executive functioning performance (Lawson 

et al., 2018), and, in turn a constellation of evidence links executive functioning abilities to 

important life outcomes (Blair & Razza, 2007; Kubzansky et al., 2009; McClelland et al., 2007; 

Mischel et al., 2011; Moffitt et al., 2011; Seeyave et al., 2009). The mechanisms through which 

socioeconomic disadvantage undermines executive functioning performance remain elusive, 

though multiple theories posit that socioeconomic disadvantage may become biologically 

embedded via stress response systems that regulate executive functioning (Blair et al., 2011; 

Evans et al., 2021; Finegood & Blair, 2017; Ursache et al., 2015). 

A growing literature points to neighborhood disadvantage as a particularly notable risk 

factor for executive functioning differences, over and above family-level socioeconomic 

variables. Neighborhood contexts confer additional risk beyond family-level factors because they 

increase exposure to additional adverse experiences (e.g., neighborhood danger, under-resourced 

schools, toxicant exposure; Evans, 2004; Leventhal & Brooks-Gunn, 2000). These 
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neighborhood-adversity-related stressors generate “wear” on stress regulatory systems, with 

implications for the brain circuitry underlying executive functioning (Finegood et al., 2017; 

McEwen, 2004). Indeed, there is a growing literature that finds effects of neighborhood context 

on brain structure and function. Recent work from our group demonstrated for the first time that 

children raised in neighborhoods with higher levels of poverty show reduced behavioral and 

brain measures of executive functioning (Tomlinson et al., 2020). Notably, this relationship held 

even when controlling for family-level socioeconomic variables (i.e., family income, maternal 

education), indicating that where children live is particularly important for their executive 

functioning development. There is also evidence of effects of neighborhood disadvantage on 

other corticolimbic structures and processes: for example, neighborhood disadvantage is 

associated with greater amygdala reactivity to faces (Gard et al., 2021), reduced prefrontal 

activation to working memory load (Murtha et al., 2021), changes in amygdala-prefrontal 

connectivity (Ramphal et al., 2020), reduced cortical thickness (Hackman et al., 2021; Hunt et 

al., 2020; Taylor et al., 2020), altered trajectories of brain age (Rakesh, Cropley, et al., 2021), 

and worse performance on neurocognitive tasks (Hackman et al., 2021; Taylor et al., 2020; 

Webb et al., 2021). Thus, considering the role of the neighborhood on EF-related brain 

development is of critical importance. 

Though neighborhood disadvantage is a robust risk factor for negative outcomes, many 

children in this context do not show negative outcomes broadly, nor worse executive functioning 

proximally. One potential buffer supporting children’s resilience to neighborhood stressors could 

the parenting they receive. In particular, nurturing, responsive parenting could act to buffer the 

effects of stress associated with living in a disadvantaged neighborhood. Indeed, there is 

substantial evidence that positive parenting helps children to acquire behavioral executive 



 

 141 

functioning skills (Carlson, 2009; Fay-Stammbach et al., 2014; Valcan et al., 2017). There is also 

some evidence that the relationship between positive parenting and behavioral executive 

functioning persists in the context of poverty. For example, in families with low socioeconomic 

status, higher quality maternal behavior at age 1 predicted better performance on executive 

functioning tasks at age 3 (Rochette & Bernier, 2014). Similarly, positive parenting has been 

shown to buffer temperament-associated risk for lower executive functioning skills in the context 

of poverty (Song et al., 2018). Additionally, there is emerging evidence for positive parenting as 

a buffer for disadvantage-related brain differences: positive parenting behaviors were recently 

shown to moderate the relationship between neighborhood disadvantage and resting state 

functional connectivity (Rakesh, Seguin, et al., 2021). Thus, work is needed that investigates the 

moderating role of nurturing, responsive parenting on the relationship between neighborhood 

disadvantage and EF-related brain activation. 

Present Study 

The present study examined the associations between neighborhood poverty, nurturing, 

supportive parenting, and EF-related brain activation in a large community sample of twins. We 

utilized go/no-go and stop signal data from the Michigan Twin Neurogenetics Study (MTwiNS), 

a unique longitudinal twin study (N=708) with oversampling for families living in low-income 

neighborhoods. First, we attempted to extend the results of Tomlinson et al. (2020) to a larger 

sample, testing whether neighborhood poverty is associated with executive functioning 

performance via EF-related inferior frontal gyrus (IFG) activation during a go/no-go task. 

Second, we investigated whether nurturing, supportive parenting, thoroughly assessed via child 

and parent report, correlated with EF-related brain activation. Because nurturing and harsh 

parenting are separable constructs (Power, 2013) we also examined effects of harsh parenting as 
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an exploratory analysis. Third, we examined whether nurturing, supportive parenting buffered, or 

harsh parenting exacerbated, the effect of neighborhood poverty on brain and behavioral 

measures of EF. In line with emerging evidence in the field (Rakesh, Seguin, et al., 2021), we 

hypothesized that nurturing, supportive parenting would buffer the effect of neighborhood 

poverty on EF-related brain activation. 

 

Methods 

Participants 

 The present study included data from the Michigan Twins Neurogenetics Study 

(MTwiNS), a longitudinal neuroimaging project within the large-scale Michigan State University 

Twin Registry (see Burt & Klump, 2019). The 354 families participating in MTwiNS were 

originally identified through birth records. Families were originally recruited into the TBED-C 

study in one of two cohorts — a population-based cohort that represented families living within 

120 miles of Michigan State University and an at-risk cohort recruited from the same area, but 

only including families living in U.S. Census tracts where at least 10.5% of families lived below 

the poverty line (the mean for the state of Michigan at the time; Burt & Klump, 2019).  MTwiNS 

participants were re-recruited from the original participant pool based upon criteria for the 

second, “at-risk” cohort. Thus, MTwiNS includes families from the “at-risk” cohort as well as 

those from the population-based cohort that would have qualified for the “at-risk” cohort. This 

re-recruitment strategy yielded a sample representative of families living in neighborhoods with 

above average levels of poverty, a unique sampling frame within both the behavioral genetics 

and neuroimaging literatures (Burt et al., 2021). 
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The 540 twins (from 306 pairs, 234 complete, 115 monozygotic) that were included in 

the present study completed at least part of the functional MRI scan at their MTwiNS visit, and 

therefore met basic MRI safety criteria (e.g. no unsafe metal in body; Table IV.1). The twins 

were 7 to 19 years old (Mean=14.7, SD=2.1; 55% male; 1.5% of the present sample was 10 or 

younger). The breakdown of twins’ parent-reported ethnicity reflected the surrounding area (81% 

White, 10% Black, 5% Other, 1% Latino, 1% Pacific Islander, 1% Native American, 1% Asian). 

Median reported family annual income for this sample was $80,000 to $89,999 and ranged from 

less than $4,999 to greater than $90,000. 9% of included families reported an annual income 

below the 2020 federal poverty line of $26,246 per year and 48% reported annual income below 

the living wage for a family of 4 in Michigan with one parent working 

(http://livingwage.mit.edu/states/26). Zygosity was established using physical similarity 

questionnaires administered to the twins and/or their parents (Bouchard et al., 1990; Iacono et al., 

1999; Peeters et al., 1998). Discrepancies were resolved through review of zygosity items or by 

DNA markers. Parents provided informed consent and children provided assent. 

Procedure 

Twins and their primary caregivers took part in a day-long visit to the University of 

Michigan. Each twin participated in a mock scan as well as a one-hour MRI scan. Twins 

completed several blood-oxygen-level-dependent (BOLD) fMRI tasks in the scanner, including 

the go/no-go task described below. Outside of the scanner, twins completed several additional 

computer tasks, including a stop signal task (SST), and a battery of child-report questionnaires. 

Primary caregivers completed a demographic interview with an examiner and a battery of self- 

and parent-report questionnaires. Return visits are ongoing and follow a nearly identical 

protocol. 
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Measures 

Socioeconomic Disadvantage 

 Neighborhood poverty. Neighborhood poverty was defined using geocoding of family 

addresses to assess the proportion of neighborhood residents living below the poverty line in 

each family’s census tract, (www.census.gov). Because MTwiNS study data collection has 

spanned several years, the available rolling five-year span ending closest to the participants’ date 

of visit was used for analysis (e.g. for a participant run in 2015 the 2011-2015 estimate was used, 

for a participant run in 2018 the 2014-2018 estimate was used). N=4 individuals with usable 

fMRI data declined to provide neighborhood information. 

Family income. Family income was defined via primary caregiver reported monthly 

household gross income, including outside additional sources such as government assistance or 

child support. Income-to-needs ratio was calculated by dividing each family’s reported income 

by the federal poverty level for their reported family size during the year of their visit (via 

https://aspe.hhs.gov/topics/poverty-economic-mobility/poverty-guidelines/prior-hhs-poverty-

guidelines-federal-register-references). N=9 individuals with usable fMRI data declined to 

provide family income information. 

Maternal education. Maternal education was defined via the primary caregiver’s highest 

completed level of education. Though most primary caregivers were mothers, a small percentage 

were fathers. In this case, the father’s highest completed level of education was used.  

Go/No-Go Task 

The go/no-go task used in this study was adapted from Casey et al. (1997), in which 

neural reactivity during inhibition is elicited via a “whack-a-mole” game (stimuli courtesy of 

Sarah Getz and the Sackler Institute for Developmental Psychobiology; task downloaded from 
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http://fablab.yale.edu/page/assays-tools). In the present task, participants were instructed to press 

a button as quickly as possible in response to one stimulus (“go”, a mole) and avoid responding 

to a less frequent non-target (“No-Go”, a vegetable). The target stimuli (moles) were modified 

with various “disguises” to make the task more interesting and difficult given the relatively slow 

speed of stimuli used to accommodate fMRI data acquisition. The task consisted of four runs, 

each with approximately 55 trials, for a total of 255 trials of which 55 were no-go (21.6%). Each 

no-go trial was preceded by 1-5 go trials. Each trial lasted 2300ms, including a maximum of 

1800ms stimulus presentation, 400ms feedback, and 100 – 1000ms fixation to account for 

individual differences in reaction time. Participants practiced the task briefly in an MRI 

simulator before the MRI scan.  

Participants with overall below-chance performance (<55%) or below-chance 

performance on “go” trials (<55%) were not considered to be meaningfully participating in the 

task and were therefore dropped from all analyses (N=13), leaving N=589 individuals and 

N=267 complete twin pairs with viable go/no-go data.  

Stop-Signal Task 

 The child-friendly stop-signal task used in this study was a 10 minute, 150 trial task 

adapted from Bissett & Logan (2012) as described previously (Begolli et al., 2018). Participants 

were presented with a fish for 850ms and told to push the “a” or “l” keys as quickly as possible 

based on the orientation of the fish, unless a visual stop-signal stimulus (Martin the Manta Ray) 

appeared on the screen, which occurred on 50 of the task trials (33%; “stop” trials). This stop-

signal was presented following a stop signal delay (SSD) that was determined through a standard 

“staircase tracking” algorithm (Logan, 1994) designed to lead to a roughly 50% probability of 

inhibition on “stop” trials for each participant. This algorithm began with a 250ms SSD and was 
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thereafter increased or decreased by 50ms on each subsequent ”stop” trial based on whether the 

participant was able to successfully inhibit. Participants with below-chance performance (<55%) 

on go trials were excluded from stop-signal analyses (N=59 wave 1, N=63 wave 2) and a number 

of participants did not complete the task at wave 1 as it was added to the protocol partway 

through data collection (N=229 individuals). These participants were still included in go/no-go 

analyses given viable go/no-go data (N=304 individuals). 

Parenting 

Parental Environment Questionnaire. The Parental Environment Questionnaire (PEQ; 

Elkins et al., 1997) was administered to assess nurturance and conflict in each parent-child dyad. 

The involvement or nurturance subscale (12 items) assesses communication, closeness, and 

support in the parent-child relationship (e.g., “I praise my child when he/she does something 

well”). The conflict subscale (12 items) assesses disagreement, tension, and anger in the parent-

child relationship (e.g., “I often criticize my child”). Mothers and fathers reported on their 

relationships with each twin, and each twin reported on their relationship with their parent(s). 

Within the MTwiNS sample, internal consistencies for the PEQ subscales were acceptable (for 

conflict, a = 0.901, 0.883, and 0.873 for twin, mother, and father report, respectively; for 

involvement, a = 0.859, 0.794, and 0.858 for twin, mother, and father report, respectively). 

Alabama Parenting Questionnaire. The Alabama Parenting Questionnaire (APQ; 

Shelton et al., 1996) was administered to assess parenting in each parent-child dyad. The parental 

involvement or nurturance subscale (10 items) assesses closeness and communication in the 

parent-child relationship (e.g. “You have a friendly talk with your child”). The positive parenting 

subscale (6 items) assesses positive reinforcement behaviors (e.g. “You praise your child if 

he/she behaves well”). The inconsistent discipline subscale (6 items) assesses unpredictability in 
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parental discipline (e.g. “The punishment you give your child depends on your mood”). The 

corporal punishment subscale (3 items) assesses physical discipline (e.g. “You spank your child 

with your hand when he/she has done something wrong). Some participants received a shortened 

version of the corporal punishment subscale; these participants’ scores were prorated 

accordingly. Mothers and fathers reported on their relationships with each twin, and each twin 

reported on their relationship with their mother. Within the MTwiNS sample, internal 

consistencies for the APQ subscales were acceptable (for inconsistent discipline, a = 0.749, and 

0.701 for mother and father report, respectively; for positive parenting, a = 0.785 and 0.801 for 

mother, and father report, respectively). Because some families received only one corporal 

punishment item, internal consistency was not computed for that scale. 

Parenting Composite. Consistent with prior work (e.g. Burt et al., 2003), we created a 

composite of all reporters for each subscale of the PEQ and APQ to assess the overall parenting 

environment for each child, averaging z-scored twin reports, mother reports, and father reports, 

and then averaging these three reporters together. Using this method, we created a “harsh 

parenting” composite including data from all available reporters on the PEQ conflict, APQ 

inconsistent discipline, and APQ corporal punishment subscales; we created a “nurturing 

parenting” composite from all available reporters on the PEQ involvement, APQ parental 

involvement, and APQ positive parenting subscales. When any of these reporters were missing 

(N=144 (harsh) and N=132 (nurturing) individuals were missing at least 1 informant-report, 

primarily father), we calculated the composite from the available reports. Using this method, all 

twins with fMRI data had composite parenting data (N=540 individuals). 

Functional neuroimaging 
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Functional imaging data were acquired using one of two GE Discovery MR750 3T 

scanners located at the University of Michigan Functional MRI Laboratory. To leverage 

improvements in MRI data acquisition and to be consistent with the Adolescent Brain Cognitive 

Development (ABCD) Study (Casey et al., 2018), we altered our acquisition protocol after the 

first 140 MTwiNS families. For the first 140 MTwiNS families, one run of 284 volumes was 

collected for each participant using an 8-channel head coil. BOLD functional images were 

acquired using a gradient-echo reverse spiral sequence (repetition time = 2000ms, echo time = 

30ms, flip angle = 90°, FOV = 22cm). Images included 43 interleaved oblique slices of 3mm 

thickness with 3.44x3.44mm2 in-plane resolution. High-resolution T1-weighted SPGR images 

(156 slices, slice thickness = 1mm, in plane resolution of 1x1mm2) were aligned with the AC-PC 

plane and used during normalization of the functional images. For the remaining MTwiNS 

participants (families 141-354), one run of 685 volumes was collected for each participant. 

BOLD functional images were acquired using a gradient-echo multiband sequence (repetition 

time = 800ms, echo time = 30ms, flip angle = 52°, FOV = 21.6 cm) with a 32-channel head coil, 

which covered 697 interleaved axial slices of 2.4 mm thickness. High-resolution T1-weighted 

SPGR images (208 slices, slice thickness = 1 mm) were aligned with the AC-PC plane and used 

during normalization of the functional images. Scan protocol was included as a nuisance 

regressor in fMRI analyses. 

Preprocessing for both acquisition sequences were identical unless otherwise specified. 

Functional data were preprocessed and analyzed using Statistical Parametric Mapping software 

version 12 (SPM12; Wellcome Centre for Human Neuroimaging). The first four volumes of each 

run were discarded to allow for stabilization of the MR signal. Raw k-space data were de-spiked 

before reconstruction to image space in reverse-spiral sequence acquisition. For gradient-echo 
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sequence data with multiband acquisition, task-specific field maps were constructed from 

volumes of both anterior-to-posterior and posterior-to-anterior phase encoding; field maps were 

applied after image construction to reduce spatial distortions and minimize movement artifacts. 

Slice timing correction was performed using the median slice as the reference slice. Functional 

data were then spatially realigned to the 10th slice of the volume. These spatially realigned data 

were coregistered to a high-resolution T1-weighted image, segmented, and spatially normalized 

into standard stereotactic space to the Montreal Neurological Institute (MNI) template. For 

participants with unusable high-resolution T1-weighted structural images (N=4), we spatially 

realigned using the T1-weighted overlay image (first 140 families: 43 slices, slice 

thickness=3mm, in plane resolution of 0.85x0.85mm2; families 141-354: 60 slices, slice 

thickness = 2.4mm, in plane resolution of 0.9x0.9mm2). Finally, functional data were smoothed 

using a 6mm Gaussian kernel.  

After preprocessing, the Artifact detection Tools toolbox (ART; 

https://www.nitrc.org/projects/artifact_detect/) was used to detect translation or rotational motion 

outlier volumes that remained after earlier QA (>2mm movement or 3.5 rotation) and to scrub 

them from the dataset. Preprocessed images were also visually inspected for major artifacts. 

Coverage of the frontal lobe was checked using the WFU PickAtlas “frontal lobe” structural 

mask (Maldjian et al., 2003). A participant’s fMRI data were considered unusable if they 

contained obvious prefrontal artifacts, had >5% of volumes labeled as artifacts, or had less than 

90% coverage of the frontal mask (Table IV.1). After these checks, N=553 participants had 

usable fMRI data. Preprocessing was conducted in containerized versions of SPM12, and the 

standard pipeline is accessible via Github (https://github.com/UMich-Mind-Lab/pipeline-task-

standard). 
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 Functional data were modeled using the general linear model in SPM12. Three conditions 

were modeled: correct No-Go trials, in which a participant correctly withheld a response to a No-

Go stimulus; incorrect No-Go trials, in which a participant incorrectly responded to a No-Go 

stimulus; and Go trials, in which a participant saw a Go stimulus. Incorrect Go trials were not 

modeled due to the expected high hit rates for Go trials (median 100%). For each participant, the 

main contrast of interest was all No-Go > Go.  

Analytic Plan 

Executive Functioning Performance 

We used a model-based measure of task-general executive functioning, “Efficiency of 

Evidence Accumulation”, as our executive functioning metric (Weigard & Sripada, 2021). Drift 

rate parameters from a drift diffusion model were calculated using Bayesian methods for each 

executive functioning task and condition (i.e. no-go, go, stop-signal) using the Dynamic Models 

of Choice functions (Heathcote, 2019), an adaptation of the differential evolution Markov chain 

Monte Carlo model (Turner et al., 2013), in R version 4.1.0 (R Core Team, 2021). Following 

previous work (Heathcote et al., 2015; Weigard et al., 2020), efficiency of evidence 

accumulation (hereafter, “EEA”) was estimated as the difference in accumulation rates between 

the evidence accumulator for the correct choice (vc) and that for the incorrect choice (ve) scaled 

by the between-trial variability in accumulation rates pooled across both choices (sv): (vc-ve)/sv.  

Drift rate was calculated separately for “go” and “no-go” trial types within the go/no-go task due 

to previous evidence that it may systematically differ across the two conditions (Huang-Pollock 

et al., 2017; Ratcliff et al., 2018). Individual participants’ EEA scores were calculated as latent 

factor scores from the three drift rate parameters (go, no-go, stop-signal) using maximum 
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likelihood estimation in Mplus version 8.6 (Muthén & Muthén, 1998-2017) via R, tidyverse 

(Wickham et al., 2019), and the MplusAutomation package (Hallquist & Wiley, 2018).  

Aim 1: Replication of Tomlinson et al. (2020) 

Using the same bilateral anatomically-defined IFG ROI from WFU PickAtlas (Maldjian 

et al., 2003) as in Tomlinson et al. (2020), we extracted IFG activation for a No-Go vs. Go F 

contrast (i.e., first eigenvariate in SPM12), controlling for scan protocol, for each participant for 

use in structural equation models (SEM) in Mplus version 8.6 (Muthén & Muthén, 1998-2017). 

Using Mplus, we first tested whether neighborhood poverty related to IFG activation over and 

above income-to-needs ratio and maternal education. We then re-tested the full SEM model from 

Tomlinson et al. (2020) to determine whether there was an indirect effect of neighborhood 

poverty on executive functioning performance via EF-related brain activation. 

Contextual variables were also collected during twins’ preliminary visit to Michigan 

State University upon recruitment to the TBED-C study (twin ages ranged from 6-11 at the time; 

Mean= 8.05; SD=1.43). As an exploratory analysis, we re-ran the full Tomlinson et al. (2020) 

model as a longitudinal model using contextual data (i.e. neighborhood poverty, income-to-needs 

ratio, maternal education) from this TBED-C childhood visit to predict brain and behavioral 

executive functioning. 

Aim 2: Neural Correlates of Warm and Harsh Parenting  

To identify brain regions associated with nurturing and harsh parenting behaviors, we ran 

two whole-brain regression models in SPM12, one with nurturing parenting and one with harsh 

parenting as a continuous regressor. Nuisance regressors were scan protocol, age, and sex. Due 

to the exploratory nature of this analysis, we employed a stringent, whole-brain approach, with 

cluster thresholding determined for each model by 3dttest++ within AFNI (Cox, 1996; Cox et al., 
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2017a, 2017b) based on an overall error rate (alpha) of 0.05 with a voxel-wise threshold of 

p<0.001.  

Aim 3: Parenting as a Moderator of Neighborhood Effects on Behavioral and Neural EF 

 To examine the role of parenting as a moderator of neighborhood effects, we ran a series 

of SEM models in MPlus using the IFG activation values extracted in Aim 1. First, we tested 

whether positive parenting buffered, or harsh parenting activated, neighborhood effects on 

behavioral executive functioning. Second, we tested whether positive parenting buffered, or 

harsh parenting activated, neighborhood effects on EF-related IFG activation. Third, we tested 

two full models in which nurturing and harsh parenting each moderated the path from 

neighborhood effects to IFG activation, which then predicted behavioral executive functioning. 

All models used Maximum Likelihood estimation (ML) and the CLUSTER command to account 

for nesting within families. Models controlled for all other SES-related variables, as well as age 

and sex. 

 Finally, as an exploratory analysis, we tested whether the interaction between positive 

parenting and neighborhood predicted activation in any brain regions. An interaction term 

(nurturing parenting * neighborhood poverty) was created and included as a continuous regressor 

in a whole-brain regression in SPM12. Additional regressors in this model were nurturing 

parenting, neighborhood poverty, scan protocol, age, and sex. We also ran an identical model for 

the interaction between harsh parenting and neighborhood poverty (harsh parenting * 

neighborhood poverty). We used a stringent, whole-brain approach for both models, with cluster 

thresholding determined for each model by 3dttest++ within AFNI (Cox, 1996; Cox et al., 

2017a, 2017b) based on an overall error rate (alpha) of 0.05 with a voxel-wise threshold of 

p<0.001. 



 

 153 

Results 

 Descriptive statistics and zero-order correlations for socioeconomic context variables, 

executive functioning, parenting composites, and extracted IFG activation are reported in Table 

IV.2. Contextual variables were all related to each other, with moderate correlations in the 

expected directions among neighborhood poverty, income-to-needs ratio, and maternal education 

(r’s=-.17 to .40). At the zero-order level, the nurturing and harsh parenting composites were 

moderately negatively correlated (r=-.35, 95% CI [-.43, -.28]) and were not related to any of the 

contextual variables (Table IV.2). Harsh parenting was modestly negatively correlated with the 

behavioral executive functioning measure (r=-.10, 95% CI [-.19, -.02] and with extracted IFG 

activation (r=-.09, 95% CI [-.17, -.00]). Extracted IFG activation was also modestly negatively 

correlated with neighborhood poverty (r=-.14, 95% CI [-.22, -.06]) and positively correlated with 

behavioral executive functioning (r=.13, 95% CI [.05, .22]). As reported previously in a smaller 

subset of this sample, the child-friendly Go/No-Go task yielded robust IFG and ACC activation, 

among other regions, for the primary No-Go vs. Go F contrast (Figure IV.1; Tomlinson et al., 

2020). 

Neighborhood poverty relates to behavioral executive functioning via brain activation 

 Structural equation models accounting for age and relatedness within families revealed 

that neighborhood poverty did relate to IFG activation over and above income-to-needs ratio and 

maternal education (b=-0.12, 95% CI [-.21, -.03]; Figure IV.2a). An expanded model including 

behavioral executive functioning performance revealed that more positive IFG activation did 

relate to better executive functioning performance (b=0.09, 95% CI [0.01, 0.17]; Figure IV.2b) 

Consistent with Tomlinson et al. 2020, the expanded model also revealed a small indirect effect 
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of neighborhood poverty on executive functioning performance via inhibition-related IFG 

activation (b=-0.012, 95% CI [-0.025, -0.001]; Figure IV.2b). 

 An exploratory structural equation model revealed similar patterns when considering 

longitudinal, middle childhood contextual variables. Neighborhood poverty in childhood 

predicted IFG activation in adolescence over and above income-to-needs ratio and maternal 

education (b=-0.15, 95% CI [-.24, -.05]), and more positive IFG activation did relate to better 

executive functioning performance (b=0.133, 95% CI [0.04, 0.23]). There was again a small 

indirect effect of neighborhood poverty on executive functioning performance via inhibition-

related IFG activation (b=-0.019, 95% CI [-0.04, -0.004]). 

Neither Nurturing nor Harsh Parenting Correlate with Inhibition-Related Brain 

Activation 

 Though harsh parenting negatively correlated with extracted IFG activation at the zero-

order level (r=-.09, 95% CI [-.17, -.00]; Table IV.2), neither the nurturing nor the harsh parenting 

composites correlated with brain activation in any region when controlling for age, sex, and scan 

protocol, and when correcting for multiple comparisons across the whole brain (i.e. no clusters 

passed threshold of punc<0.001, alpha<0.05, k=153). Even at more lenient thresholds (i.e. punc 

<0.005, alpha<0.05; and punc<0.01, alpha<0.1) no clusters passed thresholding. However, at very 

lenient thresholds (i.e. punc<0.01, no cluster thresholding) harsher parenting was associated with 

less activation in one moderately sized inferior frontal gyrus cluster (k=197), which is likely the 

driver of the zero-order correlation between harsh parenting and extracted IFG activation. This 

cluster was too modest to pass any rigorous whole-brain correction. 

Concurrent Parenting Does Not Moderate Neighborhood Effects on Executive Functioning 
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 Structural equation models revealed that neither nurturing nor harsh parenting moderated 

neighborhood effects on executive functioning performance (for nurturing x neighborhood, b=-

0.07, 95% CI [-0.21, 0.08]; for harsh x neighborhood, b=-0.15, 95% CI [-0.78, 0.48]; Figure 

IV.3a). Similarly, neither nurturing nor harsh parenting moderated neighborhood effects on 

extracted IFG activation (for nurturing x neighborhood, b=0.02, 95% CI [-0.09, 0.13]; for harsh 

x neighborhood, b=0.01, 95% CI [-0.09, 0.11]; Figure IV.3b). Full models in which nurturing 

and harsh parenting each moderated the path from neighborhood effects to extracted IFG 

activation, which then predicted behavioral executive functioning, yielded similar results. 

Scatterplots of the association between neighborhood poverty and brain and behavioral executive 

functioning at different levels of nurturing and harsh parenting are provided in Figure IV.4.  

 Exploratory functional neuroimaging analyses revealed that neither the interaction 

between neighborhood poverty and nurturing parenting nor the interaction between 

neighborhood poverty and harsh parenting correlated with brain activation after controlling for 

multiple comparisons across the whole brain (i.e. no clusters passed threshold of punc<0.001, 

alpha<0.05, k=153). 

Discussion 

Within a well-sampled cohort of adolescents with oversampling for families living in 

low-income neighborhoods, we extended the results of Tomlinson et al. (2020) to a much larger 

sample, again finding that neighborhood poverty was associated with executive functioning 

performance via inhibition-related inferior frontal gyrus (IFG) activation during a go/no-go task, 

over and above effects of income-to-needs ratio and maternal education. Moreover, we extended 

this previous finding further to show that neighborhood poverty during childhood also 

longitudinally predicted IFG activation and executive functioning during adolescence.  Contrary 
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to hypotheses, we found that our broad nurturing and harsh parenting composites, calculated 

from child, mother, and father report, did not correlate with EF-related brain activation when 

controlling for multiple comparisons across the whole brain. Similarly, we did not find that 

nurturing, supportive parenting buffered the effect of neighborhood poverty on brain and 

behavioral measures of executive functioning, nor that harsh parenting activated risk. These 

findings again highlight the role of the neighborhood context as an important predictor of EF-

related brain activation, but also indicate that the parenting environment in adolescence, at least 

as measured here, does not promote nor undermine resilience to these concurrent neighborhood 

effects.  

In line with a growing constellation of evidence implicating neighborhood disadvantage 

as an important predictor of neurocognitive performance (Hackman et al., 2021; Taylor et al., 

2020; Webb et al., 2021) and measures of corticolimbic brain structure and function (Gard et al., 

2021; Hackman et al., 2021; Hunt et al., 2020; Murtha et al., 2021; Rakesh, Cropley, et al., 2021; 

Ramphal et al., 2020; Taylor et al., 2020), we found that higher levels of neighborhood poverty 

were associated with reduced inhibition-related IFG activation during a go/no-go task, over and 

above effects of income-to-needs ratio or maternal education. We also found that more positive 

inhibition-related IFG activation was associated with better behavioral executive functioning 

performance, and that neighborhood poverty related to executive functioning performance via 

IFG activation, extending the results of Tomlinson et al. (2020) to a larger sample.  

Notably, there were several updates to the structural equation models used in the present 

study that led to slight differences from Tomlinson et al. (2020). For one, the present study 

measured behavioral executive functioning via a novel, computationally derived, task-general 

executive functioning measure, including performance on an additional task performed outside 
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the scanner, rather than a simple summary of go/no-go performance. This update broadens the 

scope of the model, implicating neighborhood poverty as a predictor of broader executive 

functioning rather than inhibition performance alone. Additionally, because data collection 

spanned several years, the present study transformed family income into an income-to-needs 

ratio reflecting each family’s size and the year of their visit. This updated method should much 

more accurately capture the extent to which each family’s income was meeting their family’s 

needs at the time given their individual circumstances. Even with these updates, structural 

equation models revealed a very similar pattern of results to Tomlinson et al. (2020) with more 

than double the sample size (N=527 vs. N=185). Notably, an exploratory longitudinal model 

utilizing contextual data from middle childhood also yielded similar results, indicating that 

neighborhood poverty in middle childhood relates longitudinally to brain and behavioral 

executive functioning in adolescence. 

Contrary to our hypotheses, we did not find any associations between the broad parenting 

environment and inhibition-related brain activation when controlling for multiple comparisons 

across the whole brain. This null result was surprising, given relatively robust and consistent 

findings that nurturing, supportive parenting behaviors promote better executive functioning 

development, while harsh, controlling parenting behaviors undermine executive functioning 

development (Fay-Stammbach et al., 2014; Hughes & Devine, 2019; Li et al., 2019). This result 

also runs in contrast to other parenting and brain work finding parenting effects on amygdala 

activation during emotional tasks (Gard et al., 2017; Romund et al., 2016) and on inhibition-

related activation during an activation control task (Dandash et al., 2021). However, there are 

several differences between the present study and previous work that may explain this 

discrepancy. For one, there are many different ways to measure parenting. For example, previous 
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work on parenting and executive functioning measured specific and highly relevant parenting 

behaviors like scaffolding or intrusiveness (Broomell et al., 2020; Distefano et al., 2018; Fay-

Stammbach et al., 2014; Hammond et al., 2012; Hughes & Devine, 2019; Valcan et al., 2017). 

On the other hand, Dandash et al. (2021) collected an observational measure of positive and 

aggressive parenting, finding in an exploratory analysis that more positive parenting was 

associated with less inhibition-related brain activation in relevant regions. The parenting 

composites used in the present study differed from both of these methods, instead indexing a 

broad informant-report picture of the nurturance and harshness of the parent-child relationship, 

incorporating multiple reporters and multiple questionnaire measures. It may be that our 

parenting measures were too broad to capture an association between more specific behaviors, 

like scaffolding, and brain activation. 

A second difference between this study and extant work regarding parenting and 

executive functioning is our focus on adolescence rather than early childhood (i.e. age 0-5; see 

Valcan et al., 2017 for a meta-analysis). Though adolescence is a time when symptoms of 

psychopathology related to deficits in executive functioning begin to emerge (Cherkasova et al., 

2013; Moffitt, 2018), early childhood represents a particularly interesting timepoint for both 

executive functioning development and for parenting effects. Executive functioning skills and 

related brain architecure are developing very rapidly during early childhood (Diamond, 2013; 

Kolb et al., 2012; Zelazo & Carlson, 2012), setting the stage for future pruning and refinement 

later in adolescence (Kolb et al., 2012). Early childhood is also a period when children spend 

much of their time in the home, often with parents, and thus parenting effects may be more 

apparent (Shaw & Bell, 1993). Future work could investigate the longitudinal role of parenting, 
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ideally measured in early childhood, on EF-related brain activation in childhood and 

adolescence. 

Also, in contrast to our hypotheses, we found that neither nurturing nor harsh parenting 

moderated neighborhood effects on brain or behavioral measures of executive functioning, and 

that there were no brain regions in which EF-related activation correlated with the interaction 

between either parenting composite and neighborhood poverty. These results are surprising given 

emerging evidence in the field that positive parenting buffers the effect of neighborhood 

disadvantage on resting state functional connectivity in EF-relevant regions (ventral attention 

network, visual network, default mode network; Rakesh, Seguin, et al., 2021). However, the 

present study design differed substantially from this previous work. For one, our parenting 

composites incorporated multiple measures of mother-, father-, and child-reported parenting, 

compared to a five-item, child-report measure of specific positive parenting behaviors used in 

Rakesh, Seguin et al., 2021. Relatedly, neither our nurturing nor our harsh parenting composites 

correlated with any contextual measure, including neighborhood poverty or income-to-needs 

ratio (Table IV.2, Figure IV.5). It is possible that our comprehensive, multi-informant 

composites are too broad to capture relevant parenting behaviors. It is also possible that the use 

of multiple informants constrains variation, such that reports from one reporter are negating 

those of another. Additionally, children in our sample were older on average than in Rakesh, 

Seguin et al., 2021 (M=14.7 vs. M=10.0 years). Finally, and most notably, we measured task-

related activation as our brain variable rather than resting state connectivity. It is possible the 

present results might differ if we were to consider connectivity between regions rather than task-

related activation within them. 
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Though this study extends the Tomlinson et al. (2020) findings to a larger sample, it does 

not move us closer to understanding why the more distal neighborhood context, and nor the more 

proximal context as measured by income-to-needs ratio and maternal education, relates to brain 

and behavioral measures of executive functioning. Future work could further extend the model 

presented here and in Tomlinson et al. (2020) by investigating what about the neighborhood may 

be associated with executive functioning and related brain activation. There are a multitude of 

variables that covary with neighborhood poverty, but not necessarily with family income or 

maternal education, that may contribute. For example, neighborhood disadvantage is associated 

with exposure to additional adverse experiences such as exposure to community violence, under-

resourced schools, lower home quality, poorer municipal services, and increased toxicant 

exposure (Evans, 2004; Leventhal & Brooks-Gunn, 2000). These stressors are thought to 

generate “wear” on stress regulatory systems, affecting brain development (Finegood et al., 

2017; McEwen, 2004), though it is not clear which stressors may be the “active ingredients”. 

Studies of emotion processing and related corticolimbic circuitry point to exposure to community 

violence as a key factor: exposure to community violence is associated with heightened 

amygdala reactivity to angry faces (White et al., 2019) and smaller hippocampal volumes (Saxbe 

et al., 2018) in youth. However, recent meta-analytic evidence points to early-life deprivation 

(e.g. food insecurity, neglect) as a stronger predictor of executive functioning performance than 

early-life threat (e.g. exposure to violence in or out of the home; Johnson et al., 2021). Future 

work could assess whether neighborhood-related stressors such as neighborhood deprivation or 

danger predict executive functioning performance or related brain activation. 

In summary, the present study extended the results of Tomlinson et al. (2020) to a larger 

sample, again finding that neighborhood poverty was associated with executive functioning 
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performance via IFG activation during a go/no-go task, over and above effects of income-to-

needs ratio and maternal education, both concurrently and longitudinally. Contrary to 

hypotheses, we did not find evidence for nurturing, supportive parenting as a buffer nor for harsh 

parenting as an activator of neighborhood risk. These findings again highlight that where 

children live is critical for executive functioning and related brain activity. However, the broad 

parenting environment in adolescence does not appear to promote nor undermine resilience to 

the effects of neighborhood poverty.  

(Cumming, 2014; Kassambara, 2020; Muthén & Muthén, 1998-2017; R Core Team, 

2021; Rorden & Brett, 2000; Wellcome Centre for Human Neuroimaging; Wickham et al., 2019) 
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Table IV.1 
  
Summary of data included in fMRI analyses 
  
 Number Lost Participants With Usable Data 
   
Participated in First Visit  708 (354 complete pairs) 
   
Sample with Any Go/No-Go fMRI Data 

• Incomplete MRI scan 
• Software malfunction 
• Declined MRI scan 
• Uncomfortable with scan 
• Dental (e.g. braces, retainer) 
• Metal in/on the body 
• Exceeded scanner size restrictions 
• Major medical/neurological disorder 

 
16 
3 
27 
18 
17 
13 
5 
9 

600 
 
 
 
 
 
 
 
 

Total Lost 108  
   
   
Sample with Usable fMRI Data 

• Frontal lobe coverage <90% 
• ART Outliers >5% 
• Behavioral data reflected poor attention to task 

 
(40) 
(7) 
(13) 

540 
 
 
 

Total Lost 60  
   

 
Note. Breakdown of available fMRI data based on lab standard fMRI quality checks. 
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Table IV.2  
  
Means, standard deviations, and correlations with confidence intervals 
  

Variable M SD 1 2 3 4 5 6 
         
1. Neighborhood Poverty 
 0.18 0.16             

                  
2. Income-to-Needs Ratio 2.29 0.94 -.30**           
      [-.37, -.22]           
                  
3. Maternal Education (Years) 15.02 2.05 -.17** .40**         
      [-.26, -.09] [.33, .47]         
                  
4. Executive Functioning 0.02 0.68 -.21** .18** .16**       
      [-.29, -.12] [.10, .26] [.08, .24]       
                  
5. Nurturing Parenting -0.02 0.63 .03 .05 -.01 -.08     
      [-.06, .11] [-.03, .14] [-.10, .07] [-.16, .01]     
                  
6. Harsh Parenting -0.01 0.58 .02 -.03 -.03 -.10* -.35**   
      [-.06, .11] [-.12, .05] [-.11, .06] [-.19, -.02] [-.43, -.28]   
                  
7. IFG Activation 1.12 1.49 -.14** .03 .03 .13** -.01 -.09* 
      [-.22, -.06] [-.05, .12] [-.05, .12] [.05, .22] [-.09, .08] [-.17, -.00] 
                  

 
Note. M and SD are used to represent mean and standard deviation, respectively. Values in square brackets indicate the 95% 
confidence interval for each correlation. The confidence interval is a plausible range of population correlations that could have caused 
the sample correlation (Cumming, 2014). * indicates p < .05. ** indicates p < .01. 
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Figure IV.1 
 
Brain activation associated with No-go Vs. Go F Contrast (N=540) 
 

 
 

Note. This image depicts brain activation associated with a No-go vs. Go F contrast after whole-brain, cluster-level thresholding 

(a=0.05, punc<0.001, k=153). Sagittal slice locations are indicated in white above each slice. Image generated in MRIcroGL (Rorden 

& Brett, 2000) using a thresholded activation map from SPM12 (Wellcome Centre for Human Neuroimaging).
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Figure IV.2 

Neighborhood poverty is associated with brain and behavioral executive functioning (N=527) 

a) 

 
b) 
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Note. This figure depicts structural equation models in which (a) the three socioeconomic context variables predict extracted inferior 

frontal gyrus activation, which (b) then predicts behavioral executive functioning. N=527. Neighborhood poverty predicts IFG 

activation even when accounting for income-to-needs ratio, maternal education, age, and relatedness within families. Standardized 

estimates are depicted in bold and 95% confidence intervals (bootstrap=1000) are depicted in brackets. Significant paths are indicated 

with solid lines and non-significant with dashed lines. In (b), direct paths from the context variables were also modeled, but they were 

not significant and are not pictured here for simplicity. 
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Figure IV.3 

Parenting does not moderate neighborhood effects on brain or behavioral executive functioning 

a) 

 
 
b) 

 
 

Note. This image depicts the structural equation models used to test whether parenting moderated 

neighborhood effects on brain or behavioral (EEA) measures of executive functioning (N=536). 

We used the cluster command in Mplus (Muthén & Muthén, 1998-2017) to account for 

relatedness within families. Standardized estimates are pictured in bold, with 95% confidence 
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intervals in brackets. We ran identical models for harsh parenting, yielding similar null results 

(for harsh x neighborhood on EEA , b=-0.15, 95% CI [-0.78, 0.48]; for harsh x neighborhood on 

IFG, b=0.01, 95% CI [-0.09, 0.11]).
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Figure IV.4 

Parenting does not moderate the association between neighborhood poverty and brain or behavioral executive functioning
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Note. This figure depicts scatterplots of the associations between neighborhood poverty and executive functioning performance (top) 

and between neighborhood poverty and extracted IFG activation (bottom) at the lowest, middle, and highest levels of nurturing and 

harsh parenting (N=180 per group). Contrary to hypotheses, there were no moderating effects of either nurturing or harsh parenting. 

Figures generated with the tidyverse and ggpubr packages in R (Kassambara, 2020; R Core Team, 2021; Wickham et al., 2019). 
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Figure IV.5 

Distributions of Income-to-Needs Ratio and Neighborhood Poverty within MTwiNS Sample 

 

 

Note. This figure depicts the distributions of income-to-needs ratio (left) and neighborhood poverty (right) in the MTwiNS sample. 

The mean neighborhood poverty level in the state of Michigan at the time of original recruitment was 10.5%, indicated here with a 

vertical line. 
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CHAPTER V 

General Discussion 

 

As discussed in the General Introduction (Chapter I), executive functioning abilities 

measured early in life are known to predict important outcomes later in life, including academic 

outcomes like literacy, vocabulary, and math skills (Blair & Razza, 2007; McClelland et al., 

2007), learning (Marcovitch et al., 2008), and even physical health (Kubzansky et al., 2009; 

Mischel et al., 2011; Seeyave et al., 2009). Deficits in executive functioning abilities have also 

been linked to various forms of psychopathology (Bloemen et al., 2018; Castellanos et al., 2006; 

ADHD; Cherkasova et al., 2013; Gotlib & Joormann, 2010; Moffitt, 2018; Smith et al., 2014; 

Verdejo-Garcia et al., 2008; Wright et al., 2014). Unfortunately, a growing literature identifies a 

consistent relationship between socioeconomic disadvantage in childhood and worse executive 

functioning performance (Evans et al., 2021; Hackman et al., 2014; Last et al., 2018; Lawson et 

al., 2018; Raver et al., 2013; Rochette & Bernier, 2014; Shameem & Hamid, 2014). The 

mechanisms underlying this troubling relationship between disadvantage and executive 

functioning are not well understood. Thus, the present dissertation addressed several 

complications muddying our understanding of executive functioning and its relationship with 

disadvantage, including (1) how we measure executive functioning, (2) how we can disentangle 

non-genetic from genetic effects of parenting on executive functioning, and (3) how multiple 

levels of context may become biologically embedded to affect executive functioning. 

Summary of Results 
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Study 1. In Study 1, we found encouraging evidence for a novel computational measure 

of task-general executive functioning, Efficiency of Evidence Accumulation (EEA), as a 

transdiagnostic risk factor associated with externalizing psychopathology in adolescents. EEA 

demonstrated reasonable test-retest reliability, and it was the only performance metric in Study 1 

that related to both concurrent and prospective externalizing psychopathology when accounting 

for age, sex, and relatedness within families. Functional neuroimaging analyses also revealed 

that EEA had robust brain correlates, relating to inhibition-related brain activation in two 

relevant regions, the anterior cingulate cortex and the right superior temporal gyrus. Notably, 

however, several other traditional summary metrics correlated with brain activation in similar 

regions. These findings highlight that computational methods may provide some advantages over 

more traditional summary metrics of executive functioning performance in adolescents, while 

also revealing that some traditional metrics (i.e., Efficiency, Standard Deviation of Reaction 

Time) may provide a reasonable alternative when computational modeling is not possible. 

Study 2. In Study 2, we employed a genetically informed design with multiple 

quantitative models to dig deeper into the role of parenting in the intergenerational transmission 

of executive functioning in adolescence. Like many others (see Valcan et al., 2017 for a meta-

analysis), we found that harsh parenting was associated with worse child executive functioning, 

while nurturing parenting was associated with better child executive functioning. We found little 

evidence of passive or evocative genotype-environment correlation, and instead found that the 

relationship between harsh parenting and child executive functioning is due, at least in part, to 

non-shared environmental influences. We also found substantial shared environmental overlap 

between parenting and executive functioning. This overlap could reflect family-level 

environmental influences, or it could reflect other influences that do not vary between twins, 
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such as effects of parent personality or parent executive functioning on the parenting they 

provide (Klahr & Burt, 2014). These findings highlight that parenting may be one environmental 

mechanism through which executive functioning is passed across generations. More broadly, this 

work highlights that targeting harsh parenting through interventions is critical to improving 

adolescent executive functioning and preventing related psychopathology, and underscores the 

importance of genetically-informed designs when studying parenting influences on executive 

functioning.  

Study 3. In Study 3, we found that neighborhood poverty was associated with executive 

functioning performance via inferior frontal gyrus activation during a go/no-go task, over and 

above effects of income-to-needs ratio and maternal education, extending the results of 

Tomlinson et al. (2020) to a larger sample. Contrary to hypotheses, we did not find evidence for 

nurturing, supportive parenting as a buffer, nor for harsh parenting as an activator of 

neighborhood risk. These findings again highlight that where children live is critical for 

executive functioning and related brain activity. However, the broad parenting environment in 

adolescence did not appear to promote nor undermine resilience to the effects of neighborhood 

poverty.  

Implications 

 Taken together, the results of the three studies provide an interesting picture regarding the 

complex relationships between parenting, neighborhood, and brain and behavioral measures of 

executive functioning. Study 1 establishes a novel computational metric, EEA, as a useful 

measure of task-general executive functioning in children, with robust brain correlates. Studies 2 

and 3 then investigate how executive functioning relates to parenting and the neighborhood, 

finding that parenting does relate to a broad measure of executive functioning, and that the 
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neighborhood context does relate to executive functioning via brain activation, but that parenting 

does not moderate neighborhood effects on executive functioning. 

` Studies 1 and 3 are particularly interesting in combination. Both studies consider EEA 

alone as an outcome measure, and both investigate relationships between EEA and brain 

activation. Notably, in Study 1 we employed an exploratory, whole-brain approach to identify 

brain regions in which activation related to EEA scores, finding robust correlates in the anterior 

cingulate cortex and the superior temporal gyrus, but not the inferior frontal gyrus at the whole-

brain level. On the other hand, in Study 3 we identified the inferior frontal gyrus as a region of 

interest a priori based on previous work which identified neighborhood poverty as a robust 

predictor of inferior frontal gyrus activation (Tomlinson et al., 2020). Contrary to the findings 

from the more stringent whole-brain approach in Study 1, we did find evidence in Study 3 that 

extracted activation in the inferior frontal gyrus correlated with EEA scores, and that 

neighborhood poverty predicted EEA scores via an effect on inferior frontal gyrus activation. 

Though these findings may seem contradictory, there are strong connections between the anterior 

cingulate cortex and the inferior frontal gyrus, and these two regions are widely considered to be 

major hubs of the salience network (Seeley et al., 2007). Thus, it is not surprising that the robust 

correlation seen in Study 1 between EEA and anterior cingulate cortex activation might be 

accompanied by a weaker, but present, correlation between EEA and inferior frontal gyrus 

activation. Taken together, the results of these two studies may reflect that neighborhood effects 

on task-general executive functioning are unlikely to be so simple as to be limited to effects on 

activation in one brain region. There may instead be a network-level effect, perhaps within the 

salience network. Future work could investigate the effects of neighborhood poverty on task-
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related connectivity within the salience network, investigating the possibility of an anterior 

cingulate cortex – inferior frontal gyrus decoupling. 

 Studies 2 and 3 are also interesting in combination. Study 2 implicated parenting, and 

particularly harsh parenting, as an important environmental pathway linking parent executive 

functioning to child executive functioning. On the other hand, in Study 3 we did not find effects 

of nurturing or harsh parenting on brain measures of executive functioning, and did not find 

evidence for nurturing or harsh parenting as moderators of neighborhood effects on executive 

functioning. Though these seemingly conflicting findings are surprising on the surface, 

differences in study design may explain the discrepancy. For example, though both studies 

employed the same methods for calculating the broad parenting composites, their executive 

functioning measures differed. In Study 2 we tested main effects of parenting on a broad picture 

of child executive functioning, incorporating both EEA and self-report measures, which may 

relate better to real-world outcomes (Eisenberg et al., 2019). On the other hand, in Study 3 we 

considered main effects of parenting on EF-related brain activation. Thus, though we know from 

Study 2 and from extant literature that parenting matters for child executive functioning (see 

Valcan et al., 2017 for a meta-analysis), this effect may not be mediated by concurrent parenting 

effects on brain activation during inhibitory control in adolescence, as reflected by the null brain 

activation findings in Study 3. Indeed, it is important to note that at the zero-order level, harsh 

parenting did correlate with behavioral EEA (Study 3, Table 2). It is important to note that in 

Study 3 we measured task-related brain activation during an inhibitory control task. This is only 

one brain measure of countless possibilities. There could be a parenting effect on task-related 

activation for a different task, or on connectivity between brain regions, or on brain structure. 

Additionally, we measured parenting and brain activation concurrently, in adolescence. It is 
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entirely possible that the parenting environment in early childhood, when the neural architecture 

underlying executive functioning is growing rapidly (Kolb et al., 2012), may have main effects 

on EF-related brain structure and functioning concurrently in early childhood or lasting into 

adolescence. Future work could consider longitudinal effects of early childhood parenting on the 

brain, perhaps considering effects on connectivity or on the integrity of brain structures 

important for executive functioning. 

 Finally, though these three studies attempt to disentangle some of the major roadblocks to 

our understanding of neighborhood effects on executive functioning, they do not address what 

about the neighborhood is affecting children in this way. As discussed in Study 3, there are many 

neighborhood-related stressors that covary with neighborhood poverty. For example, 

neighborhood disadvantage is associated with exposure to additional adverse experiences such as 

neighborhood danger, under-resourced schools, lower home quality, poorer municipal services, 

and increased toxicant exposure (Evans, 2004; Leventhal & Brooks-Gunn, 2000). Recent meta-

analytic evidence points to early-life deprivation (e.g. food insecurity, neglect) as a stronger 

predictor of executive functioning performance than early-life threat (e.g. exposure to violence in 

or out of the home; Johnson et al., 2021). Interestingly, emerging evidence also points to 

neighborhood deprivation as a stronger predictor of parenting behaviors than neighborhood 

danger (Burt et al., 2022). Taken together with the results from Study 2, in which harsh parenting 

affected child executive functioning separate from any genetic confounds, it seems possible that 

considering parenting as a moderator of neighborhood effects on executive functioning in Study 

3 was misguided. Instead, a constellation of factors related to neighborhood deprivation, 

including differences in parenting behaviors, may directly affect the development of executive 

functioning, especially during early childhood. Consistent with the family stress model (Conger 
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et al., 2010; Morrison Gutman et al., 2005), lack of access to critical resources in an 

impoverished neighborhood context may stress parents, affecting parenting quality and 

subsequently affecting their young child’s executive functioning development. Poorer preschool 

and grade school quality in these neighborhoods may further exacerbate these effects. Thus, 

future work may consider parenting as one mediator of the complex relationship between 

neighborhood stress and executive functioning. 

Future directions 

 The results of these three studies represent advances in our understanding of the complex 

relationships between parenting, neighborhood, and executive functioning. However, they also 

raise many additional questions, highlighting important avenues for future research. 

Considering age. The three studies comprising this dissertation all utilize data from the first visit 

of the MTwiNS study, with participants ranging in age from 7 to 19 years old (M=14.7). 

Studying this age group was incredibly informative for the purposes of this dissertation. For one, 

symptoms of externalizing psychopathology emerge during this time period (Cherkasova et al., 

2013; Moffitt, 2018), which allowed us to confirm that our computationally-derived EEA 

measure did in fact relate to externalizing symptoms. Additionally, adolescents are capable of 

reporting on their own executive functioning and the parenting environment, adding rich self-

report data to our executive functioning and parenting composites. However, the association 

between parenting and child executive functioning has been most widely studied in early 

childhood (see Valcan et al., 2017 for a meta-analysis), and for good reason. Early childhood is a 

time when children spend the most time with their parents (Shaw & Bell, 1993) and when 

executive functioning, and its underlying brain circuitry, are rapidly developing (Diamond, 2013; 

Kolb et al., 2012; Zelazo & Carlson, 2012). Thus, though the questions and models employed in 
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this dissertation add to our understanding of the complex relationships between neighborhood, 

parenting, and child executive functioning, much could be gained by exploring similar questions 

and methods in a younger sample. Future work could consider the associations between 

neighborhood poverty, parenting, and child executive functioning during early childhood. 

Additionally, future work could consider the effects of chronicity and timing of neighborhood 

poverty early in life on brain and behavioral measures of executive functioning in adolescence.  

Considering racism. “Race” is a social construct, and one that comes with implications 

regarding where families live. The historical practice of “redlining” in the United States limited 

the flow of resources into communities labeled as “hazardous”, limiting the housing and 

economic opportunities for families in those neighborhoods (Mitchell & Franco, 2018). This 

practice primarily affected neighborhoods in which minoritized families lived, and over 60% of 

those neighborhoods are still primarily inhabited by minoritized families today (Mitchell & 

Franco, 2018). Ongoing issues of structural racism further promote segregation and limit 

opportunities for minoritized families, with direct consequences for health (see Adkins-Jackson 

et al., 2022 for an overview). Thus, no research program investigating the effects of 

neighborhood poverty would be complete without considering the role of structural racism. 

Though the present dissertation does not address this issue, future work should consider how 

racism affects who is experiencing neighborhood poverty, and how racism might play a role in 

how families are affected by neighborhood poverty. Regarding the question of who is 

experiencing neighborhood poverty, socially-defined race is associated with neighborhood 

poverty, such that black and brown families are more likely to live in impoverished 

neighborhoods than white families (Mitchell & Franco, 2018; Osypuk & Acevedo-Garcia, 2010; 

Pastor, 2001). Future models might consider including socially defined race as a predictor of 
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neighborhood poverty to explicitly acknowledge and include this structural issue. Regarding how 

neighborhood poverty is experienced, it is likely that minoritized families have different 

experiences within their neighborhoods than their white neighbors. For example, a black family 

might be more likely to be directly affected by police brutality (Alang et al., 2017), or at the least 

to be more keenly aware of, and stressed by, over-policing in impoverished neighborhoods. 

Thus, future work regarding the mechanisms underlying the effects of neighborhood poverty 

should consider that some neighborhood-related stressors may disproportionately affect black 

and brown families. 

Expanding “task-general”. The present dissertation considered a novel method for calculating 

“task-general” executive functioning via computational modeling. The EEA metric employed in 

the three studies is intended to capture a biologically-relevant process that underlies performance 

on any forced-choice task (Weigard & Sripada, 2021). Such an approach provides an interesting 

contrast to extant work on executive functioning, which has largely focused on splitting up 

higher-order functions into their component parts, with limited success (Karr et al., 2018; Lee et 

al., 2013; McKenna et al., 2017; Packwood et al., 2011; Weigard & Sripada, 2021). However, for 

the present dissertation there were only two tasks available for modeling, and both tasks were 

designed to measure “inhibition”, one of several proposed subcomponents of executive 

functioning (Miyake et al., 2000). Future work should apply this modeling approach across a 

much wider selection of tasks to both improve the latent factor score and to expand the 

generalizability of findings.  

Conclusions 

 The associations between neighborhood poverty, parenting, and child executive 

functioning are complex and not well understood. The present dissertation employed a variety of 



 

 189 

methods and modeling approaches to shed some light on the way we measure task-general 

executive functioning, non-genetic versus genetic effects of parenting on executive functioning, 

and the biological embedding of context to affect executive functioning. We found that a novel 

computational method for measuring executive functioning was associated with concurrent and 

prospective symptoms of externalizing psychopathology, indicating promise for this 

biologically-relevant metric. We also found evidence of a unique, non-genetic effect of harsh 

parenting on executive functioning. On the other hand, we did not find evidence of a parenting 

effect on EF-related brain activation, or of parenting promoting nor undermining resilience to 

neighborhood poverty. Future work is needed that takes a similar multi-method approach in an 

early childhood sample, with additional consideration regarding what aspects of the 

neighborhood may contribute to parenting stress.  

 

  



 

 190 

REFERENCES 

Adkins-Jackson, P. B., Chantarat, T., Bailey, Z. D., & Ponce, N. A. (2022). Measuring Structural 
Racism: A Guide for Epidemiologists and Other Health Researchers. Am J Epidemiol, 
191(4), 539-547. https://doi.org/10.1093/aje/kwab239  

Alang, S., McAlpine, D., McCreedy, E., & Hardeman, R. (2017). Police Brutality and Black 
Health: Setting the Agenda for Public Health Scholars. Am J Public Health, 107(5), 662-
665. https://doi.org/10.2105/AJPH.2017.303691  

Blair, C., & Razza, R. P. (2007). Relating Effortful Control, Executive Function, and False 
Belief Understanding to Emerging Math and Literacy Ability in Kindergarten. Child Dev, 
78(2), 647-663. https://doi.org/10.1111/j.1467-8624.2007.01019.x  

Bloemen, A. J. P., Oldehinkel, A. J., Laceulle, O. M., Ormel, J., Rommelse, N. N. J., & Hartman, 
C. A. (2018). The Association between Executive Functioning and Psychopathology: 
General or Specific? Psychol Med, 48(11), 1787-1794. 
https://doi.org/10.1017/S0033291717003269  

Burt, S. A., Thaler, D., Shewark, E. A., Pearson, A. M., Anaya, C., Tomlinson, R. C., 
Neiderhiser, J. M., Klump, K. L., & Lonstein, J. S. (2022). Illuminating Associations 
between Parenting and Deleterious Neighborhood Characteristics Via an Exhaustive 
Modeling Approach. Journal of Marriage and Family, In press.  

Castellanos, F. X., Sonuga-Barke, E. J., Milham, M. P., & Tannock, R. (2006). Characterizing 
Cognition in Adhd: Beyond Executive Dysfunction. Trends Cogn Sci, 10(3), 117-123. 
https://doi.org/10.1016/j.tics.2006.01.011  

Cherkasova, M., Sulla, E. M., Dalena, K. L., Ponde, M. P., & Hechtman, L. (2013). 
Developmental Course of Attention Deficit Hyperactivity Disorder and Its Predictors. J 
Can Acad Child Adolesc Psychiatry, 22(1), 47-54. 
https://www.ncbi.nlm.nih.gov/pubmed/23390433  

Conger, R. D., Conger, K. J., & Martin, M. J. (2010). Socioeconomic Status, Family Processes, 
and Individual Development. J Marriage Fam, 72(3), 685-704. 
https://doi.org/10.1111/j.1741-3737.2010.00725.x  

Diamond, A. (2013). Executive Functions. Annu Rev Psychol, 64, 135-168. 
https://doi.org/10.1146/annurev-psych-113011-143750  

Eisenberg, I. W., Bissett, P. G., Zeynep Enkavi, A., Li, J., MacKinnon, D. P., Marsch, L. A., & 
Poldrack, R. A. (2019). Uncovering the Structure of Self-Regulation through Data-Driven 
Ontology Discovery. Nat Commun, 10(1), 2319. https://doi.org/10.1038/s41467-019-
10301-1  

Evans, G. W. (2004). The Environment of Childhood Poverty. Am Psychol, 59(2), 77-92. 
https://doi.org/10.1037/0003-066X.59.2.77  



 

 191 

Evans, G. W., Farah, M. J., & Hackman, D. A. (2021). Early Childhood Poverty and Adult 
Executive Functioning: Distinct, Mediating Pathways for Different Domains of Executive 
Functioning. Dev Sci, e13084. https://doi.org/10.1111/desc.13084  

Gotlib, I. H., & Joormann, J. (2010). Cognition and Depression: Current Status and Future 
Directions. Annu Rev Clin Psychol, 6, 285-312. 
https://doi.org/10.1146/annurev.clinpsy.121208.131305  

Hackman, D. A., Betancourt, L. M., Gallop, R., Romer, D., Brodsky, N. L., Hurt, H., & Farah, 
M. J. (2014). Mapping the Trajectory of Socioeconomic Disparity in Working Memory: 
Parental and Neighborhood Factors. Child Dev, 85(4), 1433-1445. 
https://doi.org/10.1111/cdev.12242  

Johnson, D., Policelli, J., Li, M., Dharamsi, A., Hu, Q., Sheridan, M. A., McLaughlin, K. A., & 
Wade, M. (2021). Associations of Early-Life Threat and Deprivation with Executive 
Functioning in Childhood and Adolescence: A Systematic Review and Meta-Analysis. 
JAMA Pediatr, 175(11), e212511. https://doi.org/10.1001/jamapediatrics.2021.2511  

Karr, J. E., Areshenkoff, C. N., Rast, P., Hofer, S. M., Iverson, G. L., & Garcia-Barrera, M. A. 
(2018). The Unity and Diversity of Executive Functions: A Systematic Review and Re-
Analysis of Latent Variable Studies. Psychol Bull, 144(11), 1147-1185. 
https://doi.org/10.1037/bul0000160  

Kolb, B., Mychasiuk, R., Muhammad, A., Li, Y., Frost, D. O., & Gibb, R. (2012). Experience 
and the Developing Prefrontal Cortex. Proc Natl Acad Sci U S A, 109 Suppl 2, 17186-
17193. https://doi.org/10.1073/pnas.1121251109  

Kubzansky, L. D., Martin, L. T., & Buka, S. L. (2009). Early Manifestations of Personality and 
Adult Health: A Life Course Perspective. Health Psychol, 28(3), 364-372. 
https://doi.org/10.1037/a0014428  

Last, B. S., Lawson, G. M., Breiner, K., Steinberg, L., & Farah, M. J. (2018). Childhood 
Socioeconomic Status and Executive Function in Childhood and Beyond. PLoS One, 
13(8), e0202964. https://doi.org/10.1371/journal.pone.0202964  

Lawson, G. M., Hook, C. J., & Farah, M. J. (2018). A Meta-Analysis of the Relationship 
between Socioeconomic Status and Executive Function Performance among Children. 
Dev Sci, 21(2). https://doi.org/10.1111/desc.12529  

Lee, K., Bull, R., & Ho, R. M. (2013). Developmental Changes in Executive Functioning. Child 
Dev, 84(6), 1933-1953. https://doi.org/10.1111/cdev.12096  

Leventhal, T., & Brooks-Gunn, J. (2000). The Neighborhoods They Live In: The Effects of 
Neighborhood Residence on Child and Adolescent Outcomes. Psychological Bulletin, 
126(2), 309-337. https://doi.org/10.1037/0033-2909.126.2.309  



 

 192 

Marcovitch, S., Jacques, S., Boseovski, J. J., & Zelazo, P. D. (2008). Self-Reflection and the 
Cognitive Control of Behavior: Implications for Learning. Mind, Brain, and Education, 
2(3), 136-141. https://doi.org/10.1111/j.1751-228X.2008.00044.x  

McClelland, M. M., Cameron, C. E., Connor, C. M., Farris, C. L., Jewkes, A. M., & Morrison, F. 
J. (2007). Links between Behavioral Regulation and Preschoolers' Literacy, Vocabulary, 
and Math Skills. Dev Psychol, 43(4), 947-959. https://doi.org/10.1037/0012-
1649.43.4.947  

McKenna, R., Rushe, T., & Woodcock, K. A. (2017). Informing the Structure of Executive 
Function in Children: A Meta-Analysis of Functional Neuroimaging Data. Front Hum 
Neurosci, 11, 154. https://doi.org/10.3389/fnhum.2017.00154  

Mischel, W., Ayduk, O., Berman, M. G., Casey, B. J., Gotlib, I. H., Jonides, J., Kross, E., 
Teslovich, T., Wilson, N. L., Zayas, V., & Shoda, Y. (2011). 'Willpower' over the Life 
Span: Decomposing Self-Regulation. Soc Cogn Affect Neurosci, 6(2), 252-256. 
https://doi.org/10.1093/scan/nsq081  

Mitchell, B., & Franco, J. (2018). Holc “Redlining” Maps: The Persistent Structure of 
Segregation and Economic Inequality. 
http://arks.princeton.edu/ark:/88435/dsp01dj52w776n 

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. 
(2000). The Unity and Diversity of Executive Functions and Their Contributions to 
Complex "Frontal Lobe" Tasks: A Latent Variable Analysis. Cogn Psychol, 41(1), 49-
100. https://doi.org/10.1006/cogp.1999.0734  

Moffitt, T. E. (2018). Male Antisocial Behaviour in Adolescence and Beyond. Nature Human 
Behaviour, 2(3), 177-186. https://doi.org/10.1038/s41562-018-0309-4  

Morrison Gutman, L., McLoyd, V. C., & Tokoyawa, T. (2005). Financial Strain, Neighborhood 
Stress, Parenting Behaviors, and Adolescent Adjustment in Urban African American 
Families. Journal of Research on Adolescence, 15(4), 425-449. 
https://doi.org/10.1111/j.1532-7795.2005.00106.x  

Osypuk, T. L., & Acevedo-Garcia, D. (2010). Beyond Individual Neighborhoods: A Geography 
of Opportunity Perspective for Understanding Racial/Ethnic Health Disparities. Health 
Place, 16(6), 1113-1123. https://doi.org/10.1016/j.healthplace.2010.07.002  

Packwood, S., Hodgetts, H. M., & Tremblay, S. (2011). A Multiperspective Approach to the 
Conceptualization of Executive Functions. J Clin Exp Neuropsychol, 33(4), 456-470. 
https://doi.org/10.1080/13803395.2010.533157  

Pastor, M. (2001). Geography and Opportunity. In America Becoming: Racial Trrends and Their 
Consequences (Vol. 1, pp. 435-468).  



 

 193 

Raver, C. C., Blair, C., & Willoughby, M. (2013). Poverty as a Predictor of 4-Year-Olds' 
Executive Function: New Perspectives on Models of Differential Susceptibility. Dev 
Psychol, 49(2), 292-304. https://doi.org/10.1037/a0028343  

Rochette, É., & Bernier, A. (2014). Parenting, Family Socioeconomic Status, and Child 
Executive Functioning: A Longitudinal Study. Merrill-Palmer Quarterly, 60(4). 
https://doi.org/10.13110/merrpalmquar1982.60.4.0431  

Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., 
& Greicius, M. D. (2007). Dissociable Intrinsic Connectivity Networks for Salience 
Processing and Executive Control. J Neurosci, 27(9), 2349-2356. 
https://doi.org/10.1523/JNEUROSCI.5587-06.2007  

Seeyave, D. M., Coleman, S., Appugliese, D., Corwyn, R. F., Bradley, R. H., Davidson, N. S., 
Kaciroti, N., & Lumeng, J. C. (2009). Ability to Delay Gratification at Age 4 Years and 
Risk of Overweight at Age 11 Years. Arch Pediatr Adolesc Med, 163(4), 303-308. 
https://doi.org/10.1001/archpediatrics.2009.12  

Shameem, F., & Hamid, S. (2014). Socioeconomic Status and Adolescent Aggression: The Role 
of Executive Functioning as a Mediator. Am J Psychol, 127(4), 419-430. 
https://doi.org/10.5406/amerjpsyc.127.4.0419  

Shaw, D. S., & Bell, R. Q. (1993). Developmental Theories of Parental Contributors to 
Antisocial Behavior. J Abnorm Child Psychol, 21(5), 493-518. 
https://doi.org/10.1007/BF00916316  

Smith, J. L., Mattick, R. P., Jamadar, S. D., & Iredale, J. M. (2014). Deficits in Behavioural 
Inhibition in Substance Abuse and Addiction: A Meta-Analysis. Drug Alcohol Depend, 
145, 1-33. https://doi.org/10.1016/j.drugalcdep.2014.08.009  

Tomlinson, R. C., Burt, S. A., Waller, R., Jonides, J., Miller, A. L., Gearhardt, A. N., Peltier, S. 
J., Klump, K. L., Lumeng, J. C., & Hyde, L. W. (2020). Neighborhood Poverty Predicts 
Altered Neural and Behavioral Response Inhibition. Neuroimage, 209, 116536. 
https://doi.org/10.1016/j.neuroimage.2020.116536  

Valcan, D. S., Davis, H., & Pino-Pasternak, D. (2017). Parental Behaviours Predicting Early 
Childhood Executive Functions: A Meta-Analysis. Educational Psychology Review, 
30(3), 607-649. https://doi.org/10.1007/s10648-017-9411-9  

Verdejo-Garcia, A., Lawrence, A. J., & Clark, L. (2008). Impulsivity as a Vulnerability Marker 
for Substance-Use Disorders: Review of Findings from High-Risk Research, Problem 
Gamblers and Genetic Association Studies. Neurosci Biobehav Rev, 32(4), 777-810. 
https://doi.org/10.1016/j.neubiorev.2007.11.003  

Weigard, A., & Sripada, C. (2021). Task-General Efficiency of Evidence Accumulation as a 
Computationally Defined Neurocognitive Trait: Implications for Clinical Neuroscience. 
Biological Psychiatry Global Open Science, 1(1), 5-15. 
https://doi.org/10.1016/j.bpsgos.2021.02.001  



 

 194 

Wright, L., Lipszyc, J., Dupuis, A., Thayapararajah, S. W., & Schachar, R. (2014). Response 
Inhibition and Psychopathology: A Meta-Analysis of Go/No-Go Task Performance. J 
Abnorm Psychol, 123(2), 429-439. https://doi.org/10.1037/a0036295  

Zelazo, P. D., & Carlson, S. M. (2012). Hot and Cool Executive Function in Childhood and 
Adolescence: Development and Plasticity. Child Development Perspectives, n/a-n/a. 
https://doi.org/10.1111/j.1750-8606.2012.00246.x  

 


