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PREFACE
When asked what superpower I would like, I consistently answered teleportation or time control. I
had always seen myself as an inventor, but I realized this wasn’t the most stable of jobs, so at the
start of high school I shifted towards engineering. This led me to my first physics course.

I had always loved the puzzle-solving of mathematics and the practical application and discovery
of science, but it was first in physics where I really saw and appreciated the union of those two.
What really hooked me was the realization that you could predict the future trajectory of a ball
using the kinematic equations. From my first physics course and on, I feasted on the topic, hungry
to discover as much about the universe as possible at its most fundamental level.

After reading Michio Kaku’s Physics of the Impossible, I saw that teleportation and time travel
were permissible in Einstein’s equations (albeit with exotic matter), so I set my focus on the study
of gravity. Initially, I took interest in black holes with my undergraduate advisor Dr. David Neilsen.
This led to a summer research position at Los Alamos, where I studied primordial black holes in
cosmological simulations with my advisor Dr. Joe Smidt. I was amazed that the gravitational theory
of cosmology underpinned the entire universe! I saw that Dr. August Evrard was a first-generation
computational cosmologist, so I applied to University of Michigan and was accepted. I sat in on a
cosmology class of his on one of my first days there, and on that day, he offered a research position.

At first, my task was to look at scaling relations between galaxy clusters’ dark matter content
and photon emission. As I set out to select the population of red, quiescent galaxies (as compared
to blue, star-forming galaxies), I quickly encountered a niche which (in my opinion) needed to be
filled: there was no published, redshift-evolving model of both red and blue populations (besides
hard cut characterizations, which had several downsides, of chief concern to me that they ignore
several photometric bands and uncertainties in measurement). So “see a need, fill a need”, and I
started working on a Gaussian mixture model of the two populations, which would eventually lead
to my Red Dragon algorithm.

Funding was sparse for this effort though, so I often worked as a graduate student instructor
(GSI) or was covered by other grants. Over the summers of 2021 and 2022, I got to moonlight as
a learning analytics researcher, studying grade gains due to study on the online service Problem
Roulette. The service was initially designed to serve physics problems from past exams to students
in order to help them study. This research directly connected to my drive to be a good teacher, as I
could now give quantitative suggestions to students regarding study habits.
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This dissertation therefore has two main aspects: the cosmology-inspired astrophysics of galaxy
clusters as well as the learning analytics work on quantifying study gains. While seemingly disjoint,
I happily found that several tools and perspectives in physics were applicable in the world of learning
analytics. I look forward to continually improving myself as a professor, be it in teaching or research.
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ABSTRACT

This dissertation delves into two domains. The first domain is cosmology and astrophysics,
investigating galaxy occupation of dark matter halos as well as characterization of the star-forming
and quiescent galaxy populations in photometric color space. The second domain covered is physics
education research, investigating student grade gains due to practice study.

Chapter 2 measures how galaxies occupy the dark matter halos of the Buzzard synthetic galaxy
catalog, finding several divergences from observations. In characterizing halo richness as a function
of mass, we find a significantly shallow slope and a decreasing scatter with increasing mass. We
then characterize the fraction of red sequence (RS) galaxies in halos, investigating its dependence on
richness, mass, redshift, and radius. Surprisingly, we find that red fraction follows an inverted mass
dependence—of decreasing with increased halo mass; this leads to high-mass halos lacking RS
galaxies. We also find that—again, contrary to expectations—red fraction increases with redshift.
We also investigate radial density profiles, and find a surprising deficit of galaxies near one-tenth
the virial radius.

Chapter 3 formally introduces the Red Dragon algorithm, detailing its selection of galaxies in
Buzzard. Red Dragon is a multivariate error-corrected Gaussian Mixture Model (GMM). This
results in smooth characterizations of both RS as well as blue cloud (BC) galaxies across time,
thereby avoiding discontinuities inherent in swapping RS selection colors. We find a quiescent
(low specific star formation rate) selection accuracy of over ninety percent, indicating a successful
characterization of the two populations.

Chapter 4 uses Red Dragon to characterize the RS and BC in the COSMOS2015 dataset. This
deep field allows for high-precision redshift estimates, which give strong measures of population
characteristics (out to 𝑧 ∼ 1.5). We again find high selection accuracy (≳ 90%) of the quiescent
population. With this characterization, we measure temporal evolution of median galactic specific
star formation rate as well as galactic age.

Chapter 5 then turns to the domain of physics education research. We first condition final course
grade on mean ACT/SAT math score 𝑇 , subtracting out the expected grade, in order to account for
incoming math proclivity. Using data from the online study service Problem Roulette (PR), we
measure grade gains due to practice study, finding that maximum gains were roughly .77± .12 grade
points, moving from no study to studying 1000 PR questions over the term (roughly ten per day).
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These gains persisted at any fixed math score. After modeling expected grade using 𝑇 and study
volume, we then investigate divergences from this expectation for various demographic groups.
We find that students whose parents did not earn a college degree earned .27 ± .04 grade points
below expectations (6.1𝜎 significant) and find that underrepresented minority students earned
.14 ± .04 grade points below expectations (3.6𝜎 significant). All divergences from expectations
subceeded maximal grade gains of study. Residual scatter remains comparable to maximal study
gains, implying that the model is far from deterministic: individual variation trumps mean trends.
Our findings can help motivate student study habits and help teachers identify which students may
especially need such encouragement.

xv



CHAPTER 1

Introduction

This dissertation includes two overarching topics: cosmology & astrophysics research (introduced
in §1.1; featured in Chapters 2, 3, & 4) and physics education research (introduced in §1.2;
featured in Chapter 5). With the first topic, I investigate the clustering and coloring of star-forming
and quiescent galaxies; with the second topic, I quantify learning gains due to practice study in
introductory physics classes. These two topics align with my passion for research and teaching, as
I explore novel astrophysics and implement learning analytics to nurture students’ knowledge and
passion for the same celestial phenomena.

A full review of cosmology is not necessary for interpreting most of the results in this thesis, so
we abstain from a full review. In brief, we have found that the universe recently (astronomically
speaking; roughly four billion years ago) stopped decelerating and began accelerating its expansion
[Frieman et al., 2008]. As will be discussed shortly in §1.1, we find that the universe is well explained
by general relativity (Einstein’s model of gravity), where the universe is chiefly composed of some
unknown substance dubbed “dark energy” (denoted Λ) which causes the accelerated expansion of
the universe, followed by “cold dark matter” (CDM). Only about 5% of the observed matter-energy
of our universe is composed of the normal baryonic matter we interact with daily, and a very small
remaining fraction of the universe’s matter-energy is composed of radiation (light). The leading
model of our universe is hence known as the ΛCDM model of general relativity [Costanzi et al.,
2019, Aghanim et al., 2020, Huterer, 2023].

1.1 Galaxy Cluster Cosmology

The large-scale structure of the universe bears remarkable resemblance to the human brain [Vazza
and Feletti, 2020]. For both structures, ∼ 75% of the mass-energy distribution is made of a passive
material (dark energy; water) while the remaining ∼ 25% makes up the physical structures (matter;
cells), which organize their geometry similarly. Both structures resemble webs, with dense nodes
(dark matter halos; soma) connected by thinner tendrils (dark matter filaments; axon–dendrite
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connections). Dark Matter (DM) halos serve as nests for galaxy formation, with the largest DM
halos yielding the largest galaxies [Springel et al., 2005]. Though galaxies are occasionally found
in the low-density voids between clusters (still having been born within a DM halo), they are
more likely found along DM walls or filaments and are most often found in the cores of DM
halos [Shandarin and Zeldovich, 1989], forming a cluster of co-orbiting galaxies (like the nuclei of
neurons).

The most massive galaxy clusters form in regions which had larger local densities than average at
the universe’s beginning [Kaiser, 1984, Springel et al., 2005]. Gravity attracts local objects, pulling
dark matter, dust, and galaxies all into walls, then filaments, then halos. These halos serve as
nests for galaxy formation, growth, and hierarchical merging. This makes galaxy clusters the most
massive gravitationally bound systems in the universe, as both the birth place of massive galaxies
and the end destination for gravitational collapse. This “cosmic web” has been characterized both
on our actual sky as well as in simulations [Springel et al., 2005, see Figure 1.2].

1.1.1 Simulating galaxies

Two main types of methods simulate galaxies in the cosmic web: physical models and empirical
models (see Fig 1.1, reproduced from Wechsler and Tinker [2018]). The core tradeoff between the
two is of depth versus breadth: how well resolved and detailed are your galaxies versus how large
of a simulation volume can you run?

Analytical models (also called “physical models”), such as the hydrodynamics code Arepo
[Springel, 2010, Nelson et al., 2018], simulate an entire universe from scratch, start to end.
This includes not only gravitational attraction and expansion of the universe as are included in
DM-only codes, but additionally include effects of baryons. In order to make realistic galaxies,
many baryonic elements must be accounted for, including modeling gas, stars (and therefore their
evolution, creation of metals, and feedback from supernovae explosions), black holes (and their
feedback into the environment), galactic winds, and magnetohydrodynamics [Weinberger et al.,
2017, Pillepich et al., 2018]. After feeding in these models of astrophysical phenomena, they let
the simulation loose on some initial conditions, creating a universe true to those laws and models.
Differences between such simulations and reality thus reflect either our lack of understanding of
physical laws & processes, or a lack of computational resources. For example, to run cosmological-
scale hydrodynamic simulations in a reasonable amount of time—say, in less than a year—we must
not only forego modeling the fusion & gravitation & magnetohydrodynamics of individual stars,
but we must treat stars in aggregate, with e.g. one million stars as a single simulation particle. Such
“star particles” must therefore be modeled as a whole, giving net effects of the aggregate.

On the other extreme are empirical models, such as galaxy pasting methods like AddGals
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Figure 1.1: Description of the various models of populating DM halos with galaxies, reproduced
from Wechsler and Tinker [2018], Figure 1. Original caption: “Modeling approaches to the
galaxy–halo connection. Top panel shows the dark matter distribution in a 90 × 90 × 30 Mpc/ℎ
slice of a cosmological simulation (left) compared with the galaxy distribution using an abundance
matching model (right), tuned to match galaxy clustering properties of an observed sample. The
grid highlights the key assumptions of various models for the galaxy–halo connection. The models
are listed on a continuum from left to right ranging from more physical and predictive (making
more assumptions from direct simulation or physical prescriptions) to more empirical (more flexible
parameterizations, constrained directly from data).”
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[Busha and Wechsler, 2008, Wechsler et al., 2021], which e.g. take a DM-only simulation (≳ 100
times cheaper and faster to run than a hydro sim) and assign galaxies to dark matter ‘particles’ in
such a way that matches observations. In contrast to analytical models, which set initial conditions
and evolution according to understood or assumed principles and observations, empirical models
have the opposite approach, of constructing the end result such that it matches reality closely.

Both types of simulated universes have their own unique use in analysis: while the former is
considered more ‘physical’ (offering predictive power based on assumed physical prescriptions), the
latter costs far less. For example, while state of the art high-resolution hydrodynamics simulations
are just now reaching sizes of a 300 Mpc cube (see TNG-Cluster, to be released in 2023), dark
matter only simulations (which can have baryons pasted onto dark matter halos to empirically match
observations) have already reached high-resolution boxes one thousand times larger [e.g. the Uchuu
simulated universe has a width of 3 Gpc; see Ishiyama et al., 2021]! This puts empirical models
far closer to cosmological scales than analytic models. Because we lack a perfect understanding of
the universe, both analytical and empirical models diverge somewhat from reality; yet both models
match reality remarkably well [as illustrated in Figure 1.2, reproduced from Springel et al., 2006],
to the point that their spatial distribution of galaxies is visually indistinguishable from reality.

1.1.2 Constraining cosmological parameters with galaxy clusters

Galaxy cluster cosmologists particularly interest themselves in the mass of galaxy clusters as well
as their distribution in space. The comoving number density of halos 𝑑𝑁 in a given redshift shell
𝑑𝑧 and mass bin 𝑑 ln𝑀 is

𝑑2𝑁

𝑑 ln𝑀𝑑𝑧
=

Ω

4𝜋

(
𝑑𝑉

𝑑𝑧

) (
𝑑𝑛(𝑀, 𝑧)
𝑑 ln𝑀

)
, (1.1)

with Ω/4𝜋 as the fraction of sky observed; the volume element 𝑑𝑉/𝑑𝑧 and the halo mass function
𝑑𝑛(𝑀, 𝑧)/𝑑 ln𝑀 both depend on cosmology [Cooray and Sheth, 2002]. Thus, by measuring the
left hand side of the equation by counting and estimating mass of galaxy clusters, one can thereby
obtain constraints on cosmology. The volume element

𝑑𝑉/𝑑𝑧 = 4𝜋𝑟 (𝑧)2 𝑐

𝐻 (𝑧) (1.2)

directly depends on the universe’s cosmology, vis. through the redshift-evolving Hubble parameter
𝐻 (𝑧), which measures the expansion of space, and metric distance 𝑟 (𝑧). While the mass function
connects less straightforwardly to cosmology, analytic and emulated cosmological connections
exist [Press and Schechter, 1974, Murray et al., 2013]. In brief, it is directly proportional to the
fraction of the universe’s energy composed of matter Ω𝑚 and dependent on the variance of matter
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Figure 1.2: A comparison of simulations to observations, with warm colors (lower and right
plots) from the Millennium simulation and cool colors (upper and left plots) from the actual sky.
Reproduced from Springel et al. [2006], Figure 1. Original caption: “The small slice at the top
shows the CfA2 ‘Great Wall,’ with the Coma cluster at the centre. Drawn to the same scale
is a small section of the SDSS, in which an even larger ‘Sloan Great Wall’ has been identified.
This is one of the largest observed structures in the Universe, containing over 10,000 galaxies and
stretching over more than 1.37 billion light years. The cone on the left shows one-half of the
2dFGRS, which determined distances to more than 220,000 galaxies in the southern sky out to a
depth of 2 billion light years. The SDSS has a similar depth but a larger solid angle and currently
includes over 650,000 observed redshifts in the northern sky. At the bottom and on the right, mock
galaxy surveys constructed using semi-analytic techniques to simulate the formation and evolution
of galaxies within the evolving dark matter distribution of the ‘Millennium’ simulation are shown,
selected with matching survey geometries and magnitude limits.”
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density 𝜎8.1 Therefore, if we knew the mass and redshift of every DM halo perfectly, we could put
tight limits on cosmological parameters, including the Hubble constant 𝐻0, Ωm, and 𝜎8. However,
no direct method of measuring a 3D profile of cluster mass exists. Even gravitational lensing
only measures a 2D projection, which suffers from line-of-sight interlopers and only has high
signal-to-noise for nearby, high-mass clusters.

To circumvent the inaccessibility of gravitational lensing, we devise mass proxies: quantities
more readily measured than mass itself which relate closely back to total cluster mass. One such
proxy in the optical wavelength regime is richness _, a count of luminous red galaxies (LRGs)
within a cluster. Preferentially found towards the hearts of large clusters, LRGs are often in virial
equilibrium (roughly speaking, in stable orbits, not expanding or collapsing as a whole; relaxed,
close to hydrostatic equilibrium); this implies that analyses of LRGs likely relate closer to virial
mass of a cluster than analyses including blue (often actively accreting) galaxies. We thus expect
a count of LRGs to scale closer to cluster mass than counts of unvirialized galaxies, still actively
falling into the cluster. For example, if a galaxy cluster with 20 LRGs weighs 𝑀 = 1014 𝑀⊙, then
one might expect a galaxy cluster with 200 LRGs to weigh roughly 𝑀 = 1015 𝑀⊙ (following an
order of ten increase for both _ and 𝑀). Mass proxies thus allow inclusion of clusters without
directly measured masses into cosmological analyses.

The expansion of space stretches out light and makes it lose energy as it travels through space, so
nearly all galaxies we see are somewhat reddened by this effect. Once this redshifting is accounted
for (shifting the spectrum to its original rest frame), we observe two distinct populations: red
galaxies and blue galaxies. But how does one delineate between the two groups, and what drives
their bimodality?

1.1.3 Rosy Galaxies

Galaxies come in two main flavors: red and blue (as observed in their rest-frames). This distinction
between populations is primarily driven by their star formation rates (SFRs): how rapidly they are
forming stars (if at all). As the net observed spectrum from a galaxy will tend to be dominated
by its brightest members (a supernova can momentarily outshine their entire host galaxy, though
they’re more often closer to a tenth or hundredth as luminous), we can focus our attention on the
most massive stars in a galaxy.

Massive stars burn hot, bright, blue, and quickly. The Wein displacement law of blackbody radi-
ation states that hotter objects shine bluer, since peak radiation wavelength is inversely proportional
to absolute temperature. As more massive stars tend to burn hotter and brighter than lower-mass
stars, this means that they shine bright blue, then redden as they exhaust fuel, cool down, and

1More technically, 𝜎8 is the amplitude of the linear power spectrum on a scale of 8 Mpc/ℎ, but it’s sufficient to this
dissertation to describe it as simply the clumpiness of space.
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eventually die. Therefore, actively star-forming galaxies tend towards a blue hue. However, the
more massive a star, the shorter it lives, as it burns more rapidly through its available fuel. The
expected lifespan of a typical (“main sequence”) star is 𝜏MS ∝ 𝑀−2.5 [Hansen et al., 2012], such that
if a star is ten times more massive than our sun, it is expected to only live roughly 1/300th as long
as our sun (roughly 30 million years, as cf. our Sun’s expected lifespan of 10 billion years). This
means that if new stars are being formed, the brightest will be blue stars, though they will burn out
relatively quickly. If galaxies cease star formation, then no new bright blue stars color the galaxy
blue. Without new blue stars to bluen the galaxy, the stars age, cool down, and redden, thereby
reddening the entire galaxy as a whole. Galaxies that have stopped forming new stars will therefore
redden with age. Regardless of cause, a galaxy is considered quenched if it ceases star formation
(i.e. reduces its rate by several orders of magnitude). A cessation of star formation occurs when
gas cannot cool, condense, & collapse to form new stars, or if the gas is stripped away altogether.

Ram pressure stripping [Steinhauser et al., 2016, Steyrleithner et al., 2020, Kolcu et al., 2022,
Vulcani et al., 2022] occurs when a galaxy ploughs through a gas-dense region of space, such as
when a spiral galaxy passes through a massive galaxy cluster, near its central region. Pressure from
the intergalactic medium—the hot gas between galaxies in clusters—strips away gas from the spiral
galaxy, leaving it considerably less gas-rich. What gas remains is heated and disrupted, quenching
star-forming regions in the galaxy, vastly diminishing the galaxy’s capacity to form new stars. The
pressure of ramming into a hot, dense cloud of gas can also cause a shock in the gas, triggering
feedback processes which further disrupt star formation.

The two main feedback processes of interest include supernova explosions (dominant in low-
mass galaxies) and supermassive black hole jets (dominant in high-mass galaxies); both can heat up
and expel gas from a galaxy [Naab and Ostriker, 2017, Li et al., 2018]. Shocks from ram-pressure
stripping can create new stars, but it can also cause stars to explode, triggering supernovae. These
explosions both heat up the surrounding gas and additionally drive the gas away from the host
galaxy, both of which suppress star formation [Ceverino and Klypin, 2009, Hopkins et al., 2020].
Ram-pressure-induced shocks can also initiate activity from the supermassive black hole (SMBH),
as they compress gas near the galaxy’s core; this then powers the black hole’s jets, which—similar
to supernovae—both heat and expel gas from a galaxy [Ishibashi and Fabian, 2012]. This effect
is particularly pronounced in high-mass galaxies, as SMBH mass is proportional to galaxy stellar
mass [Magorrian et al., 1998, Ferrarese and Merritt, 2000]. Both of these feedback processes play
a crucial role in ceasing star formation in galaxies, and also occur in galaxies not experiencing
ram-pressure stripping.

Each of these factors [and others; see Mamon and Silk, 2012, for a review] lead to a cessation of
star-formation in galaxies. These various pathways cause several notable differences between the
spectra of star-forming versus quiescent galaxies.
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Figure 1.3: Summary cartoon of main astrophysical effects determining galaxy colors. Stars provide
the vast majority of optical light. Portrayed here for five temperatures as the five downward-facing
curves under the IMF, hotter stars stars emit brighter and bluer light whereas cooler stars emit
dimmer and redder light. Because extremely hot and bright stars are both shorter-lived (lifespan
𝜏MS ∝ 𝑀−2.5) and less abundant, their relative contribution may be less than more abundant, redder
stars. The net contribution of all stars of all temperatures produces the overall shape of the emission
spectrum; this depends on both the stellar initial mass function (IMF) as well as the galaxy’s star
formation history (SFH). As stars age, they produce metals and cool down, reddening from both
processes. This makes galactic spectra tend to redden with both age and metallicity, particularly so
at the shortest wavelengths. The two effects are degenerate; galaxies with identical 𝜏𝑍3/2 (where
metallicity 𝑍 is the fraction of an object’s mass which comes from elements heavier than helium)
have virtually identical optical colors [Worthey, 1994].
Primary sources of absorption include dust reddening and line absorption. Dust presence causes
Rayleigh scattering, the preferential scattering of short-wavelength light (intensity 𝐼 ∝ _−4). Such
scattering reddens the overall spectrum, which can be clearest observed in the post-break spectrum
slope, at wavelengths longer 4kÅ. Various metals lead to a cornucopia of absorption lines,
convening around and especially below 4kÅ, resulting in a blanket of absorption. In contrast to
the more dispersed and gradual effects of age or metallicity, hydrogen line absorption asymptotes
sharply towards 3645 Å from above (with shorter wavelengths both fully ionizing hydrogen atoms
and imparting a surplus kinetic energy kick). This convergence of the Balmer series results in
a sudden drop in emissions—sharper than that of line blanketing. Thus the IMF & SFH, age,
dustiness, and metallicity of galaxies all play a role in determining their overall spectrum.
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Figure 1.3 illustrates main causes of spectral differences between galaxies in the optical and
infrared range of wavelengths. Besides dark matter, galaxies are chiefly composed of stars, gas,
and dust: by mass, our own Milky Way galaxy is roughly 95% DM, 4% stars, and 1% gas
[Rodriguez Wimberly et al., 2022]. The Balmer break is caused by the ionization of electrons from
the second energy level of hydrogen atoms; any wavelengths shorter than the Balmer wavelength
of _B ∼ 3645 Å have sufficient energy to completely ionize a hydrogen atom with an electron in
the second energy level (or higher). As stars cool down, their hydrogen content moves from an
ionized state (infinith energy level) down towards the second energy level, allowing the Balmer
break to manifest, resulting in a strong dip in the spectra of these older, cooler stars. Between
there and roughly 4000 Å, similar absorption is caused by a synchronicity of metallic2 ionized
absorption lines (as stars make more metals with age, the frequency and strength of these lines
increases with galactic age). As mentioned, these effects run with age, which tends to decrease
a given star’s temperature and increase its metallicity. Dustiness also plays a role, with Rayleigh
scattering causing an overall reddening of galactic spectra, depressing shorter wavelengths.

All of the above factors conspire to cause a significant difference in measured intensity around
3800 Å (ranging from the Balmer break at 3645 Å to the 4000 Å break) between galaxies which
have largely ceased forming stars and actively star-forming populations. One can measure 𝐷4000,
the relative intensity on either side of this break in the spectrum,3 and get a very good estimate as
to whether or not this galaxy is actively forming stars. While measuring precise spectroscopy for
a large sample of galaxies is prohibitively expensive, the measurement can be made over averaged
swaths of the spectrum, requiring only two measurements bookending either side of the break,
rather than the precise measurements required for a full spectrum.

1.1.4 Photometry

Rather than measure the full spectrum of a galaxy, one can measure averaged portions of a
spectrum using bandpasses. Photometric bandpasses act roughly like box functions, integrating
the energy of a measured spectrum across the filter’s width. (However: it’s important to note
that measured light diverges significantly from a perfect box function of the observed spectrum.
Most significantly, ground-based telescopes suffer from atmospheric absorption; our air absorbs the
majority of wavelengths shorter than ultraviolet and absorbs many patches in the infrared range.)
Astronomers then convert the integrated flux into what’s known as a photometric “magnitude”,

2When astronomers speak of ‘metals’, they refer to elements heavier than Helium, rather than the chemical definition.
3Particularly, it is the ratio of the average spectral intensity in 4050–4250 Å over the average spectral intensity in

3750–3950 Å; see Bruzual A. [1983].
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proportional to the negative log flux of the galaxy.4 The 𝑥-band magnitude is calculated as:

𝑚𝑥 ≡ −5 log100(𝐹𝑥/𝐹𝑥,0), (1.3)

where 𝐹𝑥,0 is some reference point like the flux of Vega or a fixed flux density (as with the AB
system of photometry DES uses for its 𝑢, 𝑔, 𝑟, 𝑖, 𝑧, and 𝑌 bands). With an array of bandpasses
spanning wavelengths of interest, one can then get a far cheaper pseudo-spectrum for an object
(and, indeed, using stellar population synthesis modeling, one can probabilistically impute an entire
spectrum from a set of photometric measurements). This can measure the relative spectral intensity
on either side of the 4kÅ break, i.e. 𝐷4000.

An ideal photometric measurement of 𝐷4000 would use the difference of two magnitudes from
thin bands on either side of the feature of interest, with one near the Balmer wavelength and the
other just above 4000 Å. (This isn’t strictly required; it turns out that many neighboring bands
register significant spectral differences between star-forming and quiescent galaxies—at least in
their distribution, if not in their mean value.) Because observed wavelengths become longer with
redshift, with observed wavelength following

_observed = _rest (1 + 𝑧) (1.4)

(where 𝑧 is redshift and _rest is the emitted wavelength, as observed in the object’s rest frame), the
choice of which two bands optimally measure 𝐷4000 changes across redshift. As the incoming light
is increasingly redshifted, longer-wavelength bandpasses are required to capture the 4kÅ break.

To compare the ratio of fluxes with magnitudes, as when measuring 𝐷4000, one must subtract
the two magnitudes. For two bandpasses, e.g. DECam 𝑔 and 𝑟-bands,

𝑚𝑔 − 𝑚𝑟 = −2.5 log10

(
𝐹𝑔

𝐹𝑔,0

)
+ 2.5 log10

(
𝐹𝑟

𝐹𝑟,0

)
= −2.5 log10

(
𝐹𝑔

𝐹𝑟

)
(1.5)

(the flux baselines cancel out, as DES uses the AB magnitude system, as mentioned earlier, with
baselines having a fixed flux density as reference). This difference in magnitudes, written as “𝑔−𝑟”
for simplicity, is then proportional to the log of the relative fluxes of each band. It is known as
a photometric “color”, since colors, as humans perceive them, are relative intensities of various
lights;5 although an object may give off many wavelengths of light, we tend to name them by their

4This sadistic system was created to roughly match the ancient system of Hipparchus from the second century BC;
eventually, in 1856 AD Norman Pogson codified this standard, of five magnitudes corresponding to a factor of 100
change in brightness.

5Exceptions to this include over-saturation, which causes colors to appear white, as well as other distortions due
to the nature of the human eye, such as red and green appearing yellow, or the sky appearing blue rather than a more
violet hue.
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Figure 1.4: Examples of color–magnitude diagrams of galaxies. Color on vertical and magnitude on
horizontal for each. Note that magnitudes of the right plot are absolute (i.e. dimming due to distance
is accounted for, such that it measures intrinsic luminosity, rather than apparent) and are plotted in
reverse order to those of the left plot. Left: Galaxies observed when viewing the core of galaxy
cluster Abell 2390 with the Hubble Space Telescope [Gladders et al., 1998]. Asterisks indicate
elliptical (generally quiescent) galaxies; diamonds indicate other morphologies. Reproduced from
Gladders and Yee [2000]. Right: Galaxies from low-𝑧 SDSS wide field observations; contours
show number count density, corrected for selection effects. Colored population fits calculated by
Baldry et al. [2004]. Reproduced from Mamon and Silk [2012, Fig. 3].

dominant wavelength.

1.1.5 Galaxy distribution in photometric space

When galaxy clusters were first viewed in color–magnitude photometric space (i.e. plotting spectral
slope versus spectral intensity), astronomers were quite surprised to discover a narrow band of
quiescent galaxies tightly clustering around the same line [Bower et al., 1992]. Figure 1.4 depicts
the galaxy distribution in color–magnitude space for both the galaxy cluster Abell 2390 (left) as
well as for the wide-field galaxy survey SDSS (right). Galaxies in this red and tightly clustered
color region were called Red Sequence (RS) galaxies, whereas galaxies in the blue and relatively
loosely grouped region were called Blue Cloud (BC) galaxies. When the photometric color spans
the 4000 Å break (such as rest-frame 𝑢 − 𝑟 color, shown above), quiescent galaxies cluster together
tightly at redder colors, whereas star-forming galaxies have a wider dispersion centered around
bluer colors [Strateva et al., 2001, Bell et al., 2004].

At a fixed stellar mass (or magnitude), these distributions are well-modeled by a dual Gaussian
mixture model (GMM), the combination of two normal distributions (see §1.1.6). Astronomers
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call the dip between RS and BC the Green Valley (GV). Because star formation rates are skew-
lognormal, rather than bimodal, there is some disputation as to whether the GV represents a
significantly distinct class of galaxies [Schawinski et al., 2014, Eales et al., 2017, Feldmann, 2017,
Eales et al., 2018, Leja et al., 2022]. Regardless of classification, the GV tends to include galaxies
actively transitioning from BC to RS [Schawinski et al., 2007, Schawinski, 2012].

As seen in the left panel of Figure 1.4, the RS is particularly strong in galaxy clusters, so much
so that the RS could be used to identify clusters on the sky! Gladders and Yee [2000] proposed
an algorithm for galaxy cluster detection which used the narrowness of the RS to find galaxy
overdensities on the sky. Cluster RS members are all typically significantly redder than not only
BC members, but also all galaxies at lower redshifts. This means that when trying to select galaxy
cluster members in a field of view, removing all galaxies bluer than the cluster’s RS virtually
eliminates foreground contamination (galaxies between us and the cluster).

Koester et al. [2007] introduced MaxBCG, which, rather than using a simple color cut to find
RS members, uses a redshift-evolving, error-cognizant, two-color model of the RS. It models
𝑔 − 𝑟 and 𝑟 − 𝑖 colors as Gaussian functions, with their means evolving with redshift and their
widths constant. The two Gaussians are multiplied together to calculate likelihoods, enforcing null
correlations between colors. In the following years, as data grew increasingly precise and abundant,
additional photometric bands could then be taken into account and scatter of each color could be
allowed to evolve, rather than remain constant.

The redMaPPer (RM) algorithm modeled a redshift-evolving multivariate (multi-color, account-
ing for correlations) Gaussian fit to bright members of the RS [Rykoff et al., 2014]. This model
used each of the DES main photometric bands (𝑔𝑟𝑖𝑧, yielding primary colors 𝑔 − 𝑟, 𝑟 − 𝑖, and
𝑖 − 𝑧) to measure a redshift-evolving mean color; the mean color evolved linearly with magnitude
(which slope is visible in both panels of Figure 1.4) with a redshift-evolving slope in each color.
While scatters were measured and allowed to evolve with redshift, inter-color correlations were
frozen to 𝜌 = 90%, rather than being fit [Rykoff, 2021].6 The fit focused exclusively on bright
RS cluster members, as BC galaxies are less often as bright and have worse redshift estimates.
The resulting characterization of RS mean color as a function of redshift and magnitude improved
previous efforts in using the RS to estimate a galaxy’s redshift from photometry.

Because the RS is constantly evolving in multi-color space, if photometry for a RS galaxy is
known, its redshift can be estimated with fairly good precision. The redMaGiC algorithm [Rozo
et al., 2016] does just this, using the RM fit to the RS to estimate redshifts for LRGs (bright RS
members). This resulted in a median difference of redMaGiC-estimated photometric redshifts
𝑧photo (“photo-𝑧”) from known spectroscopic redshifts 𝑧spec (“spec-𝑧”) of 𝑧spec − 𝑧photo = .005 and

6This increased stability of the code, as compared to allowing correlations to freely evolve, and aligned fit results
better with simulated and spectroscopic data. It tended to reduce outliers and also computed richness.
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a scatter of 𝜎𝑧/(1 + 𝑧) = .017, with only 1.4% of galaxies as 5𝜎 outliers. Combining the photo-𝑧
estimates of all cluster members gives an accurate and precise estimate of a galaxy cluster’s redshift,
as compared to estimating cosmological redshift (i.e. distance) from lone galaxies. Alternatively,
this relation between RS mean color and redshift can be turned on its head and used to identify
clusters. If you assume all galaxies are RS members and estimate photo-𝑧 values for each, then
certain regions of the sky will have galaxies which are not only clustered on the (2D) sky, but also
clustered in redshift space as well. For example, if on a small patch of the sky—subtending ≲ .1◦

(the moon subtends just over half a degree; this is roughly the size of a small pea held at arms’
length), you find 200 galaxies with very similar photo-𝑧 estimates, you can have good confidence
that you’ve found a galaxy cluster.

A significant downside of the RM algorithm is its ignorance of the BC. Projection effects—
where clusters lie along the same line of sight—significantly limit the power of galaxy cluster
cosmology in constraining cosmological parameters [Allen et al., 2011]. Identifying whether an
observed cluster is truly one or two halos is difficult; one can easily misinterpret two halos as a
single cluster, or misinterpret a single halo as two clusters. This corrupts analyses, weakening their
potential to constrain cosmological parameters. Background subtraction—removing all galaxies
not belonging to a cluster—is also challenging, but having a model of the BC would allow for more
informed cluster memberships; photo-𝑧 estimates for the BC would often be less precise than for the
RS, but they would vastly help in determining cluster membership. (For example, a galaxy which
looks like a RS member at some redshift could potentially be a BC member at a higher redshift, or
what looks like a background cluster could actually be actual BC members of a foreground cluster.)
In order to model both RS as well as BC, we use Gaussian mixture models (GMMs), modeling the
two populations as separate Gaussian distributions.

1.1.6 GMM modeling of galaxy populations

A Gaussian distribution (also known as a “normal distribution” or “bell curve”) is characterized by
its mean ` and variance 𝜎2:

N(𝑥; `, 𝜎2) = 1
√

2𝜋𝜎
exp

[
−1

2

(𝑥 − `
𝜎

)2
]
. (1.6)
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For a multidimensional distribution, one must not only consider the variance 𝜎2, but additionally
the correlation 𝜌 between dimensions. This is symmetrically encoded in the covariance matrix:

Σ =


𝜎1

2 𝜌1,2𝜎1𝜎2 . . .

𝜌2,1𝜎2𝜎1 𝜎2
2 . . .

...
...

. . .

 (1.7)

Combining this with the vector of mean colors ®̀ gives a multidimensional Gaussian distribution:

N(®𝑥; ®̀, Σ) = 1√︁
(2𝜋)𝑁 |Σ |

exp
[
−1

2
(®𝑥 − ®̀)TΣ−1(®𝑥 − ®̀)

]
, (1.8)

where 𝑁 is the dimensionality of the system (equal to the length of the vector `) and the vertical
bars about Σ indicate its determinant. Uncertainties in measurements can be encoded in a noise
covariance matrixΔ (see equation (3.4)), which is added to Σ such that Σ → (Σ+Δ) in each instance
above. Because colors far from the 4kÅ break often still exhibit significant differences in mean or
scatter of RS and BC, these added colors can greatly aid in identifying whether a galaxy belongs
to the RS or BC. This gives a multi-color model more power than using a single photometric color
alone (e.g. as a measurement of 𝐷4000), as had been common in selecting quiescent galaxies.

As the dual photometric populations of RS and BC diverge from unimodality, mixtures of
Gaussians may then be used. In particular, we can write the likelihood of a given vector of galaxy
colors ®𝑥 given a parameter set 𝜽 = { 𝑓𝑅, ®̀RS, ΣRS, ®̀BC, ΣBC}:

L(®𝑥
�� 𝜽) = 𝑓𝑅N(®𝑥; ®̀RS, ΣRS) + (1 − 𝑓𝑅) N (®𝑥; ®̀BC, ΣBC) (1.9)

where red fraction 𝑓𝑅 then gives the relative abundance of each population. By optimizing likelihood
L, we can thus find a best fit to the populations. Note that the model is readily expanded to include
additional components; this may be necessary if the populations are not fit well by a two-component
model or if the RS population is extremely weak (e.g. 𝑓𝑅 << 10%).

When characterizing galaxy populations in photometric color space, the parameter set 𝜽 evolves
significantly with several factors. If redshift or stellar mass are not accounted for, the color
distribution of galaxies may distort from a bimodal distribution.

Each element of 𝜽 depends strongly on redshift. As a galaxy’s incoming light is increasingly
redshifted, the 4kÅ break drifts from being observed in one photometric band to another. This
causes a spike in photometric color about this transition redshift as well as shifts in other parameters
[Nishizawa et al., 2018, DeRose et al., 2019]. To a lesser extent, we observe a trend of reddening
with increased age of the universe known as the Butcher–Oemler effect [Butcher and Oemler,
1978], as the fraction of quenched galaxies increases monotonically from cosmic dawn (at redshift
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𝑧 ∼ 2) to the present (𝑧 ∼ 0).
The parameter set 𝜽 is also known to depend on stellar mass [Baldry et al., 2004, Balogh et al.,

2004]. Not only are galaxies more likely red at high stellar mass, but the redness of that mean color
also increases, for both RS and BC (see Figure 1.4). Scatter of the RS decreases with increased
stellar mass whereas BC scatter has a non-monotonic dependence on stellar mass.

The red fraction 𝑓𝑅 is also known to drift significantly with environment [Balogh et al., 2004].
High-density environments like galaxy clusters tend to have far higher red fractions than low-density
environments like voids, or even filaments. It remains unclear whether mean colors of RS and BC
significantly drift with local density, or whether the small drifts in mean colors observed are due to
differences in stellar mass (since stellar mass correlates with environmental density).

Because all parameters of 𝜽 drift with galactic stellar mass and strongly depend on redshift, we
thus desire a model of the galaxy populations which can account for these dependencies. This is
the backbone of the Red Dragon algorithm, described in Chapters 3 & 4.

In a sidestep from my core cosmology and astrophysics research, Chapter 5 discusses my foray
into the world of learning analytics, investigating grade gains due to practice study in introductory
physics classes.

1.2 Learning Analytics

As mentioned in the preface, I researched student learning of physics in the summers of 2021 and
2022, investigating grade gains due to practice study. The field of learning analytics (LA) uses
data to gain insights into education; when focused on a particular discipline, it is referred to as
Discipline-Based Education Research (DBER); in the context of physics education, it takes the
appellation of Physics Education Research (PER) [Fraser et al., 2014, Henderson et al., 2017]. For
my particular project in PER, I mined data from a service called Problem Roulette (see §1.2.2);
this data draw and subsequent analysis falls under the realm of Educational Data Mining (EDM),
using data mining and machine learning to discover patterns in student learning and performance
[Romero and Ventura, 2010].

The nascent field of learning analytics, at the intersection of education and data science, holds
immense power in shaping the future of education. Analysis of raw data yields insights into trends,
allowing educators to implement evidence-based interventions to improve academic outcomes. In
particular, we quantified the extent to which practice study improves student grade outcomes.
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1.2.1 How did you get that A?

What, exactly, causes students to do well in courses? This question has been posed by students,
teachers, and educational researchers alike. Student success is often seen as a mixture of incoming
skills and knowledge along with effort put towards learning (e.g. study volume), but no consensus
among researchers exists as to the absolute hierarchy of factors causing awarded grades. Short
of performing human experimentation, most analyses perform only post-hoc analyses on outgoing
data, focusing on correlations. Many factors correlate with academic outcomes.

A meta-analysis by Richardson et al. [2012] showed that, after academic self-efficacy (essentially
asking students: “Do you expect to do well?”), measures of intelligence correlated highly with grade
outcomes, followed by grade goal and personality traits. No demographic nor other psycho-social
contextual factors were significantly correlated, after accounting for the former factors. In the
sections that follow, we discuss the effect of effort, intelligence, personality, and demography on
grade outcomes.

1.2.1.1 Intelligence

If a student is a faster or more efficient thinker—if they tend to learn from examples quicker
than the average student—then practice study will impact their grade differently. Though the exact
definition of intelligence is somewhat disputed, psychometric researchers elide this issue by focusing
on objective, quantitatively defined indicators. Best known in popular science is the intelligence
quotient (IQ) test (originating in 1905 by Alfred Binet and Théodore Simon) [Williams, 1915],
which provides a quantitative number relating to mental capacity. Among modern psychometric
researchers, “the 𝑔 factor” is primarily used as a measure of general mental ability [Jensen, 1998].
The accuracy wherewith an individual is able to perform certain tasks correlates with ability to
perform other certain tasks. Increased strength of correlation (with other tests, and therefore with
𝑔) means the test is a better measure of a global factor which underlies each process. Tests such
as vocabulary comprehension, mathematics, spatial visualization, and pattern completion have
particularly high correlations (IQ tests correlate ∼ 77% with 𝑔), indicating that they better measure
𝑔 than tests like musical ability (which has a relatively low correlation, meaning that it is a poor
predictor of 𝑔).

Psychometric measures like 𝑔 have strong correlates with various outcomes. Of particular
relevance to this discussion, they bear strong, positive correlation to favorable academic outcomes
[even on accounting for differences in education, occupation, and socio-economic background; see
Jensen, 1980, 1998, Herrnstein and Murray, 1994, Soares et al., 2015, Singh et al., 2022]. Because
𝑔 also correlates with several social and economic indicators [Jensen, 1980, 1998], we expect to
see significant second-hand correlations between these socio-economic factors and grades.
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Tests such as the ACT and SAT are effectively psychometric tests, taking proxy estimates of
intelligence [roughly 85% correlated with 𝑔; see Frey and Detterman, 2004, Koenig et al., 2008,
Coyle and Pillow, 2008]; the better individuals can digest, retain, infer, and apply information, the
higher they tend to score. These tests largely measure innate ability, as increased study or tutoring
have marginal effects on score at best [ACT scores shift by an insignificant 0.6% ± 2.6% while
SAT scores shift by 1.75% ± 0.25%; see Briggs, 2001, 2009].7 The tests show no cumulative
measurement biases between genders and races (vis.: while men, women, whites, blacks, and
hispanics each tended to do slightly better and worse on different individual test questions, in
aggregate the test has no bias) [Drasgow, 1987, Jensen, 1980, Brown et al., 1999]. The format of
the ACT and SAT tests also matches that of many college courses (especially mathematics-based
courses), where students answer high-stakes multiple-choice questions in a timed setting. Despite
their shortcomings, the ACT and SAT remain widely available pre-college predictors of academic
performance and retain significant predictive power in estimating college GPA [Noble and Sawyer,
2002, Coyle and Pillow, 2008, Koester et al., 2016, Rodrı́guez-Hernández et al., 2020].

However, measures of cognitive ability alone are insufficient to fully explain student grades.
For example, many successful graduates score low on the ACT & SAT tests, yet still succeed
regardless. Quantitative measures of personality additionally have significant yet perpendicular
(i.e. not explained by intelligence) power in explaining student grade outcomes.

1.2.1.2 Personality

Köseoglu [2016] measured several significant correlations between grade outcomes and the Big Five
personality traits [Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism;
discovered by the same factor analysis that discovered 𝑔 factor; see Roccas et al., 2002, Ridgell and
Lounsbury, 2004, Higgins et al., 2007]. The most significant correlation was in conscientiousness
(40% correlated with GPA, explaining 17% of the variance); Agreeableness and Openness are also
found to correlate with academic performance to a lesser extent [see also Poropat, 2009].

As women tend to score higher in each of the Big Five personality traits on average, these
correlates could explain a portion of why the average male student earns lower grades than the

7Briggs [2009] addresses the question of why > $4M annually is spent on test prep; several factors contribute.
First, scores tend to increase on retesting, so without a comparison group, companies can boast correct yet deceitful
messages of significant improvement of their patrons; companies that sell test prep materials have little incentive to
provide rigorous statistics when misleading yet factual claims can lure in cash. Second, marginal improvements of
score (e.g. 20 points on the SAT-Math, a∼ 3% increase) are still perceived by both students and a minority of admission
counsellors (even among selective colleges) as increasing likelihood of admission, despite the College Board explicitly
warning against such interpretation. This perception increases with score, so students who already scored highly on
the tests may feel more pressure to earn a (marginally) better score, regardless of actual realized benefit. With test
preparation materials available freely online, and now that a large majority of common app colleges require neither
test, hopefully less resources (both monetary cost as well as opportunity cost) will be wasted in such endeavors.
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average female student [Aluja and Blanch, 2004, Al-Shawwa et al., 2014, Charles-Ogan, 2015,
Alzahrani et al., 2018, Unwalla, 2020]. However, neuroticism has been shown to correlate with
test anxiety over and above the effects of gender [Kaplan et al., 2015]. Because women on average
score higher in neuroticism than men, this could explain why women on average perform worse
in a stressful testing environment than men, despite on average performing better on lower-stress
assignments.

Conscientiousness correlates highly with methodical study [Aluja and Blanch, 2004, Komarraju
et al., 2011]. A notable and strong correlate (∼ 75%) with conscientiousness is “grit”, a measure of
perseverance of effort (and incidentally, consistency of interest) towards long-term goals [Duckworth
et al., 2007, Duckworth and Quinn, 2009, Duckworth et al., 2011, Credé et al., 2017]. Grit is largely
perpendicular to intelligence, having an entirely separable and significant effect on students’ grades
[Borghans et al., 2016]. In particular, higher levels of grit explain higher levels of deliberate
practice and self-regulation of study, which explain improved academic outcomes [Christopoulou
et al., 2018, Zentner et al., 2018].

1.2.1.3 Study habits

Time and effort spent studying correlates highly with academic performance [Zimmerman and
Kitsantas, 2005, Stinebrickner and Stinebrickner, 2008, Metcalfe et al., 2011, Lindo et al., 2012,
Grodner and Rupp, 2013, Guidry, 2017, Pope et al., 2018, Spitzer, 2022]. For example, Stine-
brickner and Stinebrickner [2008] shows that an additional hour of study per day yielded a gain
equivalent to a five-point increase in ACT score. Richardson et al. [2012] found that self-regulatory
learning strategies like time/study management and effort regulation were correlated with academic
success. However, not all forms of study are equally beneficial.

Of particular relevance to our study of student grade gains from practice study are results of
a meta-analysis by Dunlosky et al. [2013]. They showed that study methods such as summa-
rizing, highlighting, and rereading were far less effective than methods such as practice testing
(“self-testing or taking practice tests over to-be-learned material”) and distributed practice (“im-
plementing a schedule of practice that spreads out study activities over time”). Both of these
effective study methods benefited learners of different ages and abilities, boosting scores across
a variety of situations. A more recent study showed again that spaced out quizzing on material
predicted GPA superior to time spent reading the same material [Hartwig and Malain, 2022]. This
supports use of regular practice quizzing, such as will be discussed in §1.2.2.
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1.2.1.4 Demographics

A particularly contentious topic in grade causality is the differences of grade between various
demographic groups. For example, in two introductory physics courses (140 and 240) at the
University of Michigan, the average grade of males is .15± .02 points higher than the average grade
of females—a 7𝜎 significant difference! More strikingly, international students on average score
.74±.05 points higher than underrepresented minority students—a 14𝜎 significant difference! What
causes these grade inequalities between demographic groups? Why doesn’t every demographic
group have a statistically identical grade distribution? Are gender, race, or other demographic
indicators causal factors, or merely incidental?

These questions may be answered in part through analyses, but experimentation such as twin
studies would really be needed to determine absolute causality; instead, we must relegate ourselves
to investigate which factors best explain grades—if nationality is a better predictor of grades than
intelligence, personality, and study combined, then something is seriously wrong. However, such
analyses are fraught with confounding factors such as the selection effect of admissions, only
admitting particular populations of students. To account for such selection effects, one must
normalize such findings against secondary indicators (such as looking not only at grade alone, but
course grade relative to other courses, or at a fixed high school GPA).

Each of the previous sections have correlates with various demographic distinctions. Measures of
cognitive ability differ significantly by socio-economic status on average. Measures of personality
and of study habits differ significantly between the sexes and between cultures on average [Costa
et al., 2001, McCrae et al., 2005, Chapman et al., 2007, Schmitt et al., 2008, Weisberg et al., 2011,
Hsin and Xie, 2014, Weaverdyck et al., 2020]. Because each of these factors bear predictive power
on learning outcomes, it is unsurprising that we see differences in grade outcomes between these
demographic categories. However, studies which account for each of intelligence, personality, and
study habits can then measure deviations beyond expectations from the former three factors for
various demographic sub-groups, determining whether significant residuals remain.

1.2.2 Problem Roulette

To quantify grade gains due to study, we use data from an online study service hosted at University
of Michigan known as Problem Roulette (PR) [Evrard et al., 2015]. In short, after selecting a
particular course and topic, PR serves individual problems from past exams to students, allowing
them access to a powerful study tool. The service is optional and free to all students. In its original
form, in 2011, it pulled questions from a Google server; it has since been streamlined, with many
teacher analytics available, such as fraction of students answering a particular question correctly.
Since 2017, PR has served over six million problems to over thirty thousand students for over
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a dozen courses (the exact number of courses fluctuates year to year). Local instructors supply
multiple-choice questions from past exams to the service, which reads them in and presents them
to future students.

Using data from this service (and connecting to student grades), we can forge valuable insights
into student learning. From PR (through the UM Center for Academic Innovation), we have data
such as how many problem-answering sessions a student engaged in, what time of day (or of the
week, or of the year) the session was initiated, how long the session lasted; how many questions
the student attempted per session, whether they skipped the question or answered it correctly or
re-tried the problem; whether the students used exam mode, topical mode, or timed mode; and
which courses the students interacted with, allowing cross-course comparison of study behaviors.
This allows for creation of secondary fields like the clusteredness or consistency of study sessions
(as measured e.g. by entropy or standard deviation of start times).

From the UM Learning Analytics Data Architecture (LARC) database [Lonn and Koester,
2019], we can then connect these measures of student study volume to scholastic and demographic
indicators. We focus on course grade (as tied to the course studied for) and GPAO (cumulative
GPA, omitting the course in question) as outcomes. We pull ACT and SAT math sub-scores
as measures of mathematical ability. We additionally retrieve various demographic indicators,
including parental education, nationality, ethnicity, high school zip code (from which we pull data
about population and median income), and other fields (discussed in §5.2.4). These all then provide
us with a measure of academic outcomes, proxy measures of cognitive ability, and demographic
distinctions.

Combining information from PR and LARC, we now have a dataset ripe for analysis. We focus
our analysis on two main questions. First: How much does study benefit students? Second: Are
any demographic groups struggling to succeed, all else equal? Though we lack direct information
on student personalities, we are well-poised to make precise measurements and provide quantitative
answers to these questions. Rather than perform simple correlations or linear regressions, we turn
to a local linear regression tool, capable of detecting non-linearities in trends (which we find many).

1.2.3 KLLR

Life is largely non-linear. On small enough scales, a single value may suffice, but as scope widens,
linear trends appear, followed by quadratic, and so forth (in accordance with Taylor series). This
is a fundamental issue with only looking at correlations or doing linear fits: as your domain of
investigation widens (as you obtain more data), trends often move beyond linear. A standard linear
regression (or correlation, or other scalar summary statistic) may fail to identify significant details
in the data [see the Datasaurus Dozen for a beautiful example of how summary statistics miss out
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on important trends; explained in Matejka and Fitzmaurice, 2017]. We therefore often make use of
a non-linear modeling tool to discern trends with more precision and clarity than traditional scalar
or linear analyses.

Kernel-Localized Linear Regression (KLLR) measures a local intercept, slope, and scatter (and
optionally skew & kurtosis) continuously along any trend [Farahi et al., 2018, Farahi et al., 2022].
KLLR measures these values with a Gaussian-weighted kernel, giving more consideration in the
localized linear regression to nearby points when calculating a local slope. This single-parameter
fit then only depends on the kernel width. See the KLLR GitHub page for a good illustration of
varying kernel width. In short, if kernel width is too large, trends are distorted or lost; if kernel
width is too small, slopes (and other fit values) become quite noisy. While some knowledge of
the system at hand is useful for setting kernel width, results are often quite robust to kernel width
variation. By starting at a large kernel width and gradually narrowing, one can then gradually
reveal nonlinearities in trends.

This tool is used in each content chapter of this dissertation. Among other purposes, KLLR
models galaxy occupation in DM halos, fits evolving GMM parameters, and measures student gains
of study. In each case, KLLR reveals trends which otherwise would be undetectable or warped
using simpler methods (or alternatively, would require the use of unwieldy high-order polynomial
fits). This allows for more precise characterization of these trends, entering the era of precision
cosmology (and nurturing the growth of physics education research).

1.3 Publication Status of Chapters

The following chapters of this dissertation have all either been published already or will soon be
sent for publication.

• Chapter 2 was published February 2021 in the DES Document Database, #15737

• Chapter 3 was published October 2022 in Monthly Notices of the Royal Astronomical Society
(MNRAS) Volume 516, Issue 1

• Chapter 4 will be submitted to MNRAS

• Chapter 5 was published June 2023 in Physical Review Physics Education Research (PRPER)
Volume 19, Issue 1
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CHAPTER 2

Buzzard Halo Report

Chapter Summary

In order to use galaxy clusters to constrain cosmological parameters, analyses require tight priors
on confounding effects such as projection, selection, and miscentering. The Buzzard Flock (a
set of synthetic sky catalogs) supports the Dark Energy Survey by providing a means to model
and quantify these and other effects. Buzzard uses the AddGals algorithm to map galaxies onto
a base DM-only simulation, matching the observed luminosity function and luminosity-limited
two-point correlation functions by design, but the method is largely decoupled from dark matter
halo information. In this report, the resultant halo occupation distribution (HOD) of Buzzard 2.0.0
halos is critically examined, with a particular focus on the fraction of red galaxies (targeted by the
redMaPPer cluster finder). A new six-color RS finder, called Red Dragon, is developed and its
results compared with existing RS definitions.

Buzzard halo HODs show distortions as compared to existing observations and simulation
expectations. Key divergences are: i) the RS in high-mass halos is underpopulated, with mean red
fractions below 60% in halos with masses above 1014.5 M⊙; ii) the mass dependence of the mean
red fraction is inverted, with low mass halos having slightly higher red fractions than high mass
halos, and; iii) in high mass halos the radial galaxy number density profile deviates significantly
from NFW expectations, with a deficit of galaxies around one-tenth of the virial radius.

2.1 Introduction

2.1.1 Richness–mass scaling relation

Counting the number of galaxy clusters of a given richness at different redshifts, one can infer
cosmological parameters. Equation 2.1 gives the number of halos in log mass bin `𝑎, redshift bin
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𝑧𝑖, and solid angle Ω on the sky.
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The volume element 𝑑𝑉/𝑑𝑧 = 4𝜋𝑟2(𝑧)/𝐻 (𝑧) depends solely on cosmology, since comoving dis-
tance 𝑟 (𝑧) is a function of the Hubble parameter 𝐻 (𝑧). Analytic and emulated models connect the
mass function too back to cosmology. Thus integrating the RHS only allows certain combinations
of cosmological parameters to yield certain halo number counts (the LHS). Therefore accurate halo
counts constrain cosmological parameters.

Though the volume element (first integral) is well constrained by SNe and BAO measurements,
determining the true mass of a halo (to which mass bin `𝑎 it belongs; second integral) takes
considerable effort. Besides lensing measurements, which give highly accurate masses for large
nearby clusters, we only have proxies for mass, such as galaxy count, temperature, or luminosity.
We need a kernel, then, to connect an observed signal, such as richness _, to the underlying halo
mass.

𝑁𝑖 𝑗 =
Ω

4𝜋

∫ 𝑧𝑖+1

𝑧𝑖

𝑑𝑧

∫ _ 𝑗+1

_ 𝑗

𝑑_

∫ ∞

−∞
𝑑`

(
𝑑𝑉

𝑑𝑧

) (
𝑑𝑛

𝑑`

)
Pr(_ |`, 𝑧) (2.2)

The mass-conditioned richness kernel Pr(_ |`, 𝑧), commonly known as the richness–mass scaling
relation, gives the probabilistic count of bright red galaxies (i.e. richness _ ≡ ∑

𝑃red) in a halo of
a given mass and redshift.

Though the halo model approximates well the observed dark matter distribution, the LHS
number counts 𝑁𝑖 𝑗 are sometimes ambiguous. Even with perfect information about 3D distribution
of galaxies, no perfect distinction exists between calling an extended system two nearby halos or
calling it a single, peanut-shaped halo. In observations, projection complicates things even more:
two halos may lie in the same line of sight and be mistaken for a single cluster. For more potential
issues with the cluster–halo connection, see Allen et al. [2011]. Effects of systematic issues
like these can be estimated via simulation to account for their impact in cosmological parameter
estimation.
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2.1.2 Richness in the HOD

The largest uncertainty in equation 2.2 comes from the kernel Pr(_ |`, 𝑧), connecting the halo mass
function 𝑑𝑛/𝑑` to observables like _. What we need then is a link between observables (such
as galaxy count) and intrinsic qualities (such as mass), known as the halo occupation distribution
(HOD). Broadly speaking, the HOD determines how galaxies behave within halos (of various
masses), entailing three main concepts:

1. _–𝑀 scaling, i.e. Pr(_ |`, 𝑧) or its inverse Pr(` |_, 𝑧);

2. radial distribution of galaxies in the halo; and

3. expected velocity distribution of galaxies in the halo.

To complete the halo model, we must also consider how halos relate to each other—how they cluster
in position and velocity space (observed as clustering in angle and redshift).

Optical richness _ is a probabilistic count of red galaxies above some brightness threshold (here
0.2 𝐿∗) in a galaxy cluster. These red galaxies generally correspond to the more central, relaxed
parts of a halo, closest to hydrostatic equilibrium. Thus, richness relates to virial mass of a halo
better than a raw galaxy count, which would include more infalling galaxies, not in equilibrium.

There are several upsides to using galaxy cluster richness. First, Optical light is relatively cheap,
since it can be collected with simple mirrors or lenses based on the ground (as compared to X-rays,
which must be observed without Earth’s atmosphere, as orbiting telescopes). Second, new surveys
from the Euclid and James Webb telescopes will detect many new clusters, allowing for much
more complete views of galaxy richness. Third, getting an accurate HOD can inform astrophysics
as well, by putting constraints on quenching, galaxy formation, galaxy evolution, &c. Fourth, the
more data the better. As detailed in Evrard et al. [2014], one can use all observables at once (e.g.
signals from weak lensing, SZ, optical, X-ray) to best estimate actual cluster masses. Therefore,
it’s in our interest to get the best possible priors on the _–𝑀 relation.

DES uses the cluster detection algorithm redMaPPer [RM; Rykoff et al., 2014], which uses the
RS to locate cluster centers and assign membership probabilities to nearby galaxies. See Euclid
Collaboration [2019] for a comparison of other detection algorithms, as well as some details on
some of the issues inherent in cluster detection—as mentioned in section 2.1.1, many confounding
effects (such as projection, percolation, & miscentering) weaken the constraining power of richness
[Allen et al., 2011]. Using simulations, one can model these effects and account for them as best
as possible.

We expect the HOD of simulations to match observations (such as that of Simet et al. [2018],
shown as the cyan band in Figure 2.1), but simulations can vary widely from reality, especially
when user-defined baryon pasting (adding galaxies onto a dark matter only simulation) occurs
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Figure 2.1: Buzzard HOD. Shown for all 4590 𝑧 | [.1, .33) halos with _ > 10, showing variation in
mass with richness. Following notation of equation C.1, the black linmix fit yields normalization
𝛼 = 13.03 ± 0.02, slope 𝛽 = 1.13 ± 0.01, spread 𝜎 = 0.153 ± 0.002. The dashed line shows a
KLLR continuous fit for the data, revealing a lower slope and normalization at higher richness.
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Cosmology Ωm = .286 𝐻0 = 70 (km/s)/Mpc
(ΛCDM) Ωb = 0.046 𝑛𝑠 = 0.96

𝜎8 = 0.82 𝑁eff = 3.046
Conventions Δvir, 𝑟vir, 𝑀vir ` ≡ log10 𝑀vir
Vetting Ωsky � 5000□ ` ≥ 13.75

𝑚𝑖 < 𝑚∗(𝑧) + 1.75 𝑧 | (.1, .7)

Table 2.1: Buzzard cosmology and conventions used. This table gives information about Buzzard
Flock cosmology (ΛCDM) as well as the conventions and vetting bounds used in this analysis. The
luminosity vetting was completed in i-band, using the characteristic magnitude of the luminosity
function: 𝑚𝑖 < 𝑚∗(𝑧) + 1.75, where 𝑚∗(𝑧) is approximated in equation 9 of Rykoff et al. [2014],
valid in the above redshift range.

rather than solving full magnetohydrodynamic equations. Nevertheless, simulations match reality
well enough to put useful constraints on priors such as the richness–mass scaling relation.

2.1.3 The Buzzard Flock v2.0.0

A suite of cosmological-sized simulated galaxy surveys known as the Buzzard Flock provide
simulation support for analyzing DES data [DeRose et al., 2019]. The AddGals algorithm [Busha
and Wechsler, 2008] pastes galaxies onto a dark-matter only simulation, weighted by local DM
densities, matching the observed luminosity function and luminosity-dependent two-point function.

AddGals uses the luminosity function 𝜙(𝑀𝑟 , 𝑧) to assign galaxies of a certain r-band magnitude
𝑀𝑟 to DM densities in a given DMO sim. This density is chosen such that it matches the luminosity-
dependent two-point function: 𝑃(𝑅𝛿 |𝑀𝑟 , 𝑧), which is modeled as a log-normal distribution for
central galaxies + a normal distribution for field galaxies (calibrated by Millennium). (BCGs had
to be inserted manually in order to match observations, using 𝑃(𝑀𝑟,cen |𝑀vir, 𝑧), the distribution
of central galaxy magnitude for a given halo.) Thus, by construction, AddGals matches the
luminosity function and luminosity-dependent 2-pt function.

After passively evolving these magnitudes with redshift, AddGals assigns galaxies with SEDs
pulled from SDSS, matching between ADDGALS and SDSS via local galaxy overdensity. Thus,
the magnitude bands inherent in the Buzzard flock follow reality closely, statistically speaking.

Since AddGals is ignorant of halos (besides 𝑀𝑟,cen), several effects manifest, differing from
observations of high-mass halos, including a shallower mass–richness slope, distorted radial pro-
files, and significantly lower red fractions than observed. Figure 12 of DeRose et al. [2019] shows
the depressed richness in Buzzard clusters as compared to observations, lower by a factor of ≲ 1.6
for all measured masses.

As Table 2.1 details, this paper analyzes only halos of mass 𝑀 > 1013.75 M⊙ in redshift range
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𝑧 | [.1, .7), using only galaxies with luminosity 𝐿 > 0.2 𝐿∗ in i-band (calculated following Rykoff
et al. [2014]).

2.2 Methods

2.2.1 Modeling the Red Sequence

Galaxies largely fit into two color regions: 1) the lower wavelength RS with primarily older ‘red
and dead’ elliptical galaxies and 2) the higher wavelength BC with primarily younger star-forming
spiral galaxies. Intermediate galaxies are classified as GV. This isn’t a binary (nor ternary)
selection—since the RS and BC overlap [see e.g. Hao et al., 2009], one instead can ascribe to each
galaxy a probability 𝑃red of belonging to the RS. Cluster richness is then defined as _ ≡ ∑

𝑃red.
Many studies use a binary, boolean selection for 𝑃red, with a hard line drawn in either color–

magnitude (CM) or color–color (CC) space to distinguish the RS from the BC [see e.g. Whitaker
et al., 2012, Carretero et al., 2015, Adhikari et al., 2020]. Seen in these two different spaces at
different redshifts and in different color bands, the RS & BC become more or less distinct. In
color space, these two populations appear as Gaussian mixtures, with a tight, densely populated RS
component, and a broad BC component.

2.2.1.1 GMM+: tilted Gaussian Mixture in CM space

Since the redness of RS galaxies increases with luminosity (see 2.2, right panel), a fair fit to the
RS and BC is a tilted two-Gaussian mixture in CM space. Whereas past studies [e.g. Hao et al.,
2009] first performed the mixture in color space and then accounted for the RS tilt, I designed a
likelihood model that took both into account at once: a Gaussian mixture model (GMM) plus a tilt
(thus dubbed GMM+). While this model works well for 𝑧 | [.1, .6], as I investigated color-magnitude
spaces more, I grew unsettled with GMM+ mischaracterization rates (e.g. when viewed in CC
space), the discontinuous nature due to shifting color bands, and the non-Gaussianity of galaxy
color distribution, especially at higher redshifts.

Neither CM nor CC space present perfect cuts between RS and BC, as shown qualitatively in
Figure 2.2. A hard cut in CC space (e.g. a −45◦ line cutting between the two peaks) couldn’t
account for the narrowing of the RS with decreasing magnitude, leading to either characterizing
bright blue galaxies as part of the RS or a deficit of RS galaxies, with faint red galaxies characterized
as BC. A hard cut in CM space doesn’t account for the wide spread of the BC beyond the RS lower
boundary, with several members even extending to ‘redder than red’ regions. Additionally, most
models for RS characterization have sharp transitions to new color bands at certain redshifts (as
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Figure 2.2: Qualitative example of how a simple hard cut in either CC or CM space mischaracterizes
galaxies. This fitting used a two-Gaussian mixture model sliced by i-band magnitude to give a
continual two-component model across all colors (see equation 2.3) and magnitude. Autumn colors
show RS galaxies; winter colors BC galaxies.
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Figure 2.3: Red Dragon operating on the redMaGiC-selected red sequence galaxies. Taken from the
redMaGiC Y3A2 High Dens sample. Left: 𝑔 − 𝑟 color of RS galaxies versus redMaGiC-estimated
redshift 𝑧redM, colored by RD’s estimate of 𝑃red (note the near-binary selection, i.e. there are very
few grey points here). Note the increased scatter at 𝑧 ∼ .4, where the 4kÅ break leaves 𝑚𝑔 band,
requiring comparison with bands ≥ 𝑚𝑖 or redder to capture this feature. Were this plotted with 𝑔− 𝑖
on the vertical axis, there would be significantly less scatter for 𝑧 | [.4, .7]. Right: Total richness
_ ≡ ∑

𝑃red (measured by RD) of redMaGiC-selected RS galaxies, compared to the total number of
RS galaxies identified by redMaGiC in a given redshift bin (if RD were identical to redMaGiC, this
fraction would be 100%—that all redMaGiC RS galaxies were equally characterized as red by RD).
Redshift bins are estimated by redMaGiC 𝑧redM and through spectroscopy 𝑧spec (with Δ𝑧 = .025).
Both binning methods show that Red Dragon estimates that 95% of the galaxies considered red
by redMaGiC to be true RS members, suggesting that it’s more selective about which galaxies to
consider red (though still in a similar neighborhood of characterization).

galaxy features such as the 4 kÅ break1 evolve with redshift, transitioning to different color bands),
causing discontinuities in red fraction. To mitigate these issues, one must go beyond CC and CM
space.

2.2.1.2 Red Dragon: three-Gaussian mixture in full color space

To circumvent the above mentioned issues, the Red Dragon algorithm interpolates a series of
GMMs across redshift bins, following RS, GV,2 & BC components. This fitting used the full DES
color space, derived from its 𝑔𝑟𝑖𝑧 filters:

®𝑐 = {𝑔 − 𝑟, 𝑔 − 𝑖, 𝑔 − 𝑧, 𝑟 − 𝑖, 𝑟 − 𝑧, 𝑖 − 𝑧}, (2.3)

1A coincidence of metallic spectral lines around 4 kÅ (implying an older stellar population) along with the Balmer
break around 3646 Å (implying Hydrogen ionization) work together to create the most striking feature in galaxy
spectra: the 4 kÅ break. This increased opacity below 4 kÅ separates RS galaxies photometrically from BC galaxies
[see Dunlop, 2012].

2To quote the MICE collaboration: “For our purposes, it is indifferent whether this green sequence corresponds to
a physically distinct type of galaxies or just to the inadequacy of the Gaussian distribution to represent the red and blue
populations.” [Carretero et al., 2015]
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making it a fit in six color (C6) space. By interpolating between redshift bins, a continuously
evolving definition of RS (along with GV and BC) assigns membership probabilities 𝑃red, 𝑃green,
𝑃blue to galaxies. Thus, richness here is defined as _ =

∑
𝑃red(𝑧, ®𝑐).

Running on the redMaGiC-selected red sequence galaxies (the redMaGiC Y3A2 High Density
sample), RD gives them in total ∼ 95% red characterization (see Figure 2.3), implying that RD is
more selective than RM, but in a similar neighborhood of characterization.

See figure 2.4 for comparisons between the GMM+ and RD classifications of galaxies. RD is
slightly less rich, namely that _RD ∼ 98%_GMM+ for ` ≳ 14. For ` ≳ 14.2, the richness–mass
relation is significantly tighter for RD than for GMM+, indicating its greater constraining power. It
has the additional upside of a continuous definition of red fraction across redshift, unmarred by a
transition in bands. This gives a more logical definition of the RS, allowing it to be better compared
across a wider spread of redshifts.

The continuous definition across redshifts and the tighter correlation to halo mass with larger
halos makes Red Dragon an optimum red sequence selector for this work.

2.2.2 KLLR: Kernel localized linear regression

KLLR [Farahi et al., 2018, Anbajagane et al., 2020] uses a Gaussian kernel to weight points, allowing
a continuous definition of mean relations (e.g. Figure 2.8), along with local slope, intercept, and
scatter for this analysis.

Using the same Gaussian kernel, one can get a pseudo-count of datapoints used at any plotted
spot by summing the weights. This pseudocount �̃� then can be used to calculate a continuous
(pseudo) error of the mean 𝜎/�̃�1/2, as used in the plots to follow. Once the pseudocount falls
below one, KLLR is either interpolating between sparse data or extrapolating. Since scatter can’t
be calculated for 𝑁 < 2, wherever �̃� < 2 residual data should be shown as points or treated in
aggregate, as a single, wider bin.

2.3 Results

Since these are results for halos in the Buzzard Flock (existing in 3D position space: {𝑞𝑥 , 𝑞𝑦, 𝑞𝑧}),
they don’t have a bijective comparison to clusters observed on the sky (marked in sky coordinates
+ redshift space: {𝛼, 𝛿} ⊕ {𝑧}). So take these comparisons with a grain of salt.

Note: These results are for Buzzard version 2.0.0, but the results are nearly identical to the previous
iteration (version 1.9.8).
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Figure 2.4: Comparison plots between GMM+ and Red Dragon. These are shown as blue and
orange lines respectively. Upper Left: Scatter in decimal log richness ℓ at fixed mass shown for
RD relative to GMM+, with bootstrap error bars. This implies that for high mass halos (` ≳ 14.2),
Red Dragon’s characterization of the red sequence serves as a better mass proxy than the GMM+
model. Upper Right: Evolution of the red fraction with richness, including scatter. The upward
trend becomes even more apparent at high masses, contradicting Butcher–Oemler Hypothesis for
the Buzzard Flock. This showcases the continuous definition of red fraction, as compared to the
common mixture model approach. Lower Left: Red fraction as a function of mass, showing
intrinsic scatter as well as bootstrap errors on the mean. Besides for the few most massive halos
(` ≳ 15.3), red fraction decreases with increased halo mass, contrary to expectations from e.g.
Yang et al. [2008] figure 5, where 𝑓𝑅 (`) monotonically increases. Lower Right: Red fraction as
a function of relative halo-centric distance 𝑥 ≡ 𝑟/𝑟vir, including scatter. Note that at 𝑟 ∼ 𝑟vir both
methods unexpectedly dip.
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Weighted mean Offset (𝑧 = 0.4) Slope (𝑑/𝑑Z)
𝛼 2.2110 ± 0.0062 2.206 ± 0.013 −0.02 ± 0.11
𝛽 1.0155 ± 0.0055 1.0108 ± 0.0071 0.299 ± 0.066
𝜎2 0.01963 ± 0.00019 0.02009 ± 0.00065 0.0102 ± 0.0054

Table 2.2: HOD temporal evolution parameters, corresponding to Figure 2.5. Weighted mean found
by summing across redshift with Gaussian errors. Parameterized using Z ≡ log [(1 + 𝑧)/(1 + 0.4)].

2.3.1 Mass–richness relation

The kernel connecting mass and richness (see eqn 2.2) serves as a linchpin in optical cluster
cosmology. This probability 𝑃(_ |𝑀) or its inverse 𝑃(𝑀 |_) are often fit with power laws of form:

⟨log10 _ |`⟩ = 𝛼 + 𝛽 log10(𝑀/𝑀𝑝) ± 𝜎 (2.4)

(using pivot mass 𝑀𝑝 = 1015.5 M⊙ to uncorrelate offset 𝛼 from evolution of slope 𝛽). Temporal
evolution of each parameter generally scales with some power of scale factor 𝑎 ≡ 1/(1 + 𝑧) or
dimensionless Hubble parameter 𝐸 (𝑧) ≡ 𝐻 (𝑧)/𝐻0 (relative to some pivot). Parameters here use
Z ≡ ln 1+𝑧

1+𝑧𝑝 , with 𝑧𝑝 = 0.4 as pivot redshift.
Figure 2.5 shows the HOD’s redshift evolution, looking at halos with ` ≥ 14.2. This uses a linear

regression (in log log space) run by linmix [Kelly, 2007]. Though 𝛼 and 𝜎 show no strong evidence
of redshift evolution, 𝛽 increases significantly with redshift (see Table 2.2 for full evolution). Thus
we have log richness normalization 𝛼 = 2.211±0.006, slope 𝛽 = (1.016±0.006) − (0.30±0.07) Z ,
and intrinsic scatter 𝜎 = 0.1403 ± 0.0007.

More generally, one can measure how slope and scatter vary with mass, rather than fitting them
as constant (as in equation 2.4). Figure 2.6 shows a KLLR fitting of Buzzard halos compared
to observations from Bleem et al. [2020]. Since the count of halos decreases dramatically with
increased mass,3 the linmix fit is influenced more by lower-richness halos; hence changing the
lower bound on which masses are modeled (as with Figure 2.5, where ` ≥ 14.2)) can change
the slope significantly. This makes KLLR analysis particularly useful, since modelling the HOD
continuously disjoints slope measurements from the lower mass bound.

Of note here in Figure 2.6, at low richness, the sharp edges of Red Dragon emerges: most
galaxies are given relatively binary classifications as either RS / GV / BC members, with relatively
few galaxies classified in-between. This shows up as the horizontal striations in the low-richness
regime.

We see here significant deviation in Buzzard’s mean richness across all mass scales, i.e. Buzzard
halos not only have too few red galaxies, as notes in DeRose et al. [2019, see Figure 12], but they

3E.g.: there are ∼ 100 times more ` = 13.75 halos than ` = 14.75 halos.
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Figure 2.5: Redshift evolution of mass–richness relation. Shown for halos mass ` ≥ 14.2, as
parameterized by equation 2.4. Constants given in Table 2.2. Fit lines show mean and scatter in
the mean as measured by linmix, fit in log(1 + 𝑧) space. The offset and scatter show insignificant
evolution with redshift, whereas the slope clearly increases with redshift.
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Figure 2.6: HOD for Buzzard, spanning the full range defined in Table 2.1. The yellow fit shows
the spread of expectations across redshifts from Bleem et al. [2020]. The red and blue fit show
mean and scatter for richness and total galaxy count respectively. Red points indicate richness of
individual halos.
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Figure 2.7: KLLR continuous fits in several redshift bins. Color scheme identical to Figure 2.6.
Errors in slope and scatter from bootstrap resampling. Dotted lines in the scatter indicate expected
Poisson scatter at mean richness or galaxy count: ⟨_⟩−1/2 and ⟨𝑁gal⟩−1/2 respectively.

also contain too few galaxies in general. Even were every galaxy red in the Buzzard flock, richness
values would pale in comparison to observed richnesses.

Though the slope and scatter in Figure 2.6 appear visually similar to expectations from Bleem
et al. [2020], a more detailed analysis in thinner redshift bins shows off some of the peculiarities of
the Buzzard catalogue.

Whereas observations fail to support significant running of slope with mass, Figure 2.7 indicates
otherwise. Buzzard shows a significant increase in mass–richness slope up to 𝑀 ∼ 7 × 1014 M⊙.
Beyond that mass, slope behaves differently with redshift: high-mass halos have higher mass–
richness slopes at high redshifts than at lower redshifts. DeRose et al. [2019] and Costanzi et al.
[2019] find increased scatter in richness with increased mass for simulated and observed clusters,
yet in Buzzard halos, we see a significant decrease in richness scatter 𝜎ln_ |𝑀 with mass up to the
same mass of 𝑀 ∼ 7 × 1014 M⊙ (somewhat decreasing as Poisson scatter), after which the scatter
levels out.
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Figure 2.8: Red fraction as a function of richness (solid lines; error of mean and scatter shown as
transparent regions), as compared to Hansen et al. [2009] (dashed lines; lower limits). Buzzard’s
red fraction is significantly low across all richnesses, as compared to observations. (Right-side
points indicate residual data too sparse for KLLR analysis.)

2.3.2 Red fraction

Since interloping galaxies are more likely blue field galaxies, projection effects usually lower red
fraction. Thus, observed 𝑓𝑅 serve as lower limits for halo expectations (see Figures 2.8 and 2.11).

2.3.2.1 Relation to halo size

Figure 2.8 plots the same data ranges as Hansen et al. [2009], Figure 11. Including scatter, their
data never fall below 𝑓𝑅 = .67 (and 𝑓𝑅 > .73 for low redshift), yet Buzzard’s mean 𝑓𝑅 almost
always falls below that mark, when 𝑓𝑅 ought to consistently be above the dashed lines.

Figure 2.9 shows the decreasing trend of red fraction with halo mass, that (to the contrary of
observations and simulations—see Donnari et al. [2020]) larger halos in the Buzzard Flock have
lower red fractions.
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Figure 2.10: Red fraction as a function of redshift, binned by mass. Transparencies show bootstrap
error of the mean. The dashed line indicates the break between simulations composing Buzzard,
where the larger simulation has poorer resolution.

2.3.2.2 Relation to redshift

The Butcher–Oemler effect [Butcher and Oemler, 1978] suggests that the cores of galaxy clusters
redden with time ( 𝑓𝑅 decreases with 𝑧). Though weak, this trend has been observationally confirmed
[Nishizawa et al., 2018] and confirmed via simulations [Donnari et al., 2020].

This is expected, in part due to stellar evolution, and in part due to interactions within halos.
Stellar evolution will turn stars off the main sequence and onto the red giant branch with time,
making the net color redder over time. Violent relaxation and other interactions between galaxies
will tend to make galaxies more elliptical and redder. Thus, as redshift increases, red fraction in
clusters is expected to decrease.

Figure 2.10 (and similarly Figure 2.9) reveals the opposite: red fraction increases with redshift
in the Buzzard Flock, especially in the most massive halos. This runs contrary to observations and
expectations.
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Figure 2.11: Red fraction as a function of cluster-centric radius, measured in similar redshift
range and richness bins. Autumn-colored transparent regions indicate error of the mean. Green
transparent regions indicate range of means and scatters from Figure 12 of Hansen et al. [2009]
while the green dashed line shows the expected mean global 𝑓𝑅 ibid. Black line indicates mean
across all richness bins, falling about 15% bluer than observations.

2.3.2.3 Relation to radius

The cores of galaxy clusters are known to be redder than their outskirts [Hansen et al., 2009,
Nishizawa et al., 2018].

Figure 2.11 shows measured 𝑓𝑅 (𝑟/𝑟vir) across several richness bins, matching Hansen et al.
[2009]. Most of these fall far below not only the observed mean (darker green) but also the
observed scatter (lighter green), indicating a severe deficit of red galaxies. Again we see the
opposite trend of red fraction with richness, in that the richest clusters have significantly lower red
fractions than the poorer clusters (at least around 𝑟 = 𝑟vir).

Both Figures 2.11 and 2.12 show an unexpectedly sharp decrease in red fraction around
𝑟 | (.4, 1) 𝑟vir, especially in the more rich / massive clusters.
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Figure 2.12: Red fraction as a function of cluster-centric radius, measured in mass bins, with error
of the mean transparent. Note the dip in 𝑓𝑅 near virial radius, increasing with mass.
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2.3.3 Radial profiles

Galaxies follow an NFW distribution in clusters [Lin et al., 2004, Hansen et al., 2005, Lin et al.,
2017, Nishizawa et al., 2018].

In radial bins relative to each virial radius (𝑥 ≡ 𝑟/𝑟vir), I measured galactic number count and
richness (_ ≡ ∑

𝑃red) for each galaxy cluster. This dataset allows for radial number density profiles
(for all galaxies, or only for red galaxies), as well as profiles of red fraction ( 𝑓𝑅 ≡ 𝑁gal/_).

For each galaxy cluster, I found an expected number of galaxies to be found in each radial bin

𝑁exp,𝑖 = �̄�(𝑧) 𝑟vir
3 (𝑥𝑖+1

3 − 𝑥𝑖3) (2.5)

in order to calculate the overdensity

𝛿 = 𝑁𝑖/𝑁exp,𝑖 − 1 (2.6)

(where �̄�(𝑧) is the mean galaxy density; see Figure A.1). Figure 2.13 shows this overdensity as
compared to the expected overdensity from an NFW profile 𝛿NFW, giving relative overdensities.

I compare the overdensity of galaxies (as compared to their universal mean density at a given
redshift) to the overdensity of dark matter, as compared to the mean density of dark matter. Thus
we have

𝛿NFW ≡ 𝜌NFW
𝜌𝑚

=
1

Ω𝑚 (𝑧)
Δ𝑐

3𝐴
1

𝑥(𝑐−1 + 𝑥)2 =
Δ𝑣

3𝐴
1

𝑥(𝑐−1 + 𝑥)2 (2.7)

as a baseline overdensity, with concentration-dependent prefactor 𝐴 ≡
[
ln(1 + 𝑐) − 𝑐

1+𝑐
]
; virial

overdensity relative to critical density Δ𝑐 ≡ 18𝜋2 + 82𝑥 − 39𝑥2 (where 𝑥 ≡ Ω𝑚 (𝑧) − 1 here), along
with virial overdensity relative to mean matter density Δ𝑣 ≡ Δ𝑐/Ω𝑚 (𝑧), following the conventions
of Hu and Kravtsov [2003]. Concentration is calculated by COLOSSUS [Diemer, 2018], using the
𝑐(𝑧, 𝑀vir) relation from Bhattacharya et al. [2013]. In practice, the different masses and redshifts
make a difference in 𝛿NFW of less than a factor of four across all halos.

In this relative space of 𝛿/𝛿NFW, I found the mean and scatter in mass and richness bins, then
brought them back into overdensity space using the expected 𝛿NFW from the mean mass and redshift
of a given subsample. (This corrects for some drift in mass and redshift, decreasing scatter in the
final relation.) This is the overdensity plotted in Figure 2.13, along with the relative space below.

All masses had a significant underdensity (as compared to NFW) near 𝑟 = 1
10𝑟vir (most papers

don’t go below this radius). As mass increases, the central overdensity increases from about 100
times below NFW at ` ∼ 13.75 to about 100 times above at the highest masses. The combination
of these two effects is that at low masses, the profile would be neatly fit by an NFW curve, but at
high masses, there’s a significant elbow near 𝑟 = 1

10𝑟vir, interior to which the higher masses uptick
dramatically.
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Figure 2.13: Buzzard radial profiles. Above: Radial profile of galactic number count overdensities
(as compared to mean galactic number density). Plotted transparencies show expected Poisson
error shown for NFW profiles and error of the mean for each mass bin. The lifting tail at the right
(caused by the two-halo term) matches observations [Hansen et al., 2005, Diemer and Kravtsov,
2014, Nishizawa et al., 2018]. Below: Same as above, relative to expected 𝛿NFW, as calculated
from the mean (𝑧, `) of a given bin.

42



2.4 Chapter Conclusions

In addition to introducing the Red Dragon algorithm for RS selection, this paper gives a detailed
analysis of halos in the Buzzard Flock v2.0.0 synthetic galaxy catalog. Several anomalies stood
out:

1. In addition to low richness normalization, the HOD exhibited a significantly shallow slope at
low masses as well as a high-end slope which increased with mass. Additionally, the HOD’s
scatter significantly fell with increasing mass. (See Figure 2.7.)

2. Contrary to observations, red fraction decreased with respect to halo size (see Fig-
ures 2.8 & 2.9) and age (see Figure 2.10).

3. Red fraction exhibits a dip in radial distribution near the virial radius, with an intensity scaling
with halo size (see Figures 2.11 & 2.12).

4. Radial density profiles exhibit a significant deficit at a tenth virial radius as compared to
NFW expectations. Halos also exhibit a mass-scaling increase in core density, varying over
nearly four orders of magnitude in overdensity.

As the aphorism goes, all models are wrong, but some are useful. Though these deviations
from observations are significant, statistically speaking, they don’t make the catalogue unusable.
However, these deviations ought to be kept in mind as the catalogs are used going forwards.

Moving forward, we will create reddened versions of the Buzzard catalogs, with 𝑓𝑅 (`, 𝑧, 𝑟/𝑟vir)
better matching observations (as well as a lifted HOD, with fewer high-mass + low-richness
systems). These rozen catalogs (dubbed Rose Garden) will provide better statistics for halos,
and will additionally allow investigation into the effect of red galaxy content (in halos) on cluster
selection and scaling relations.

Future synthetic galaxy catalogs ought to check not only cluster composition (as measured from
a projected lightcone), but also the three-space halo composition, as detailed in this work. This will
make galaxy catalogs more useful for both large-scale cosmology, but also small-scale cosmology
(as well as cluster astrophysics).
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CHAPTER 3

Red Dragon: A Redshift-Evolving Gaussian Mixture
Model for Galaxies

Chapter Summary

Precision-era optical cluster cosmology calls for a precise definition of the red sequence (RS),
consistent across redshift. To this end, we present the Red Dragon algorithm: an error-corrected
multivariate Gaussian mixture model (GMM). Simultaneous use of multiple colors and smooth
evolution of GMM parameters result in a continuous RS and blue cloud (BC) characterization
across redshift, avoiding the discontinuities of red fraction inherent in swapping RS selection
colors. Based on a mid-redshift spectroscopic sample of SDSS galaxies, a RS defined by Red
Dragon selects quiescent galaxies (low specific star formation rate) with a balanced accuracy of
over 90%. This approach to galaxy population assignment gives more natural separations between
RS and BC galaxies than hard cuts in color–magnitude or color–color spaces. The Red Dragon
algorithm is publicly available at bitbucket.org/wkblack/red-dragon-gamma.

3.1 Introduction

Galaxies cluster not only in physical space, but in color space as well [Strateva et al., 2001, Bell
et al., 2004]. The advent of CCD technology revealed a strong dichotomy in galaxy colors: a
tightly-packed red sequence (RS; predominantly quiescent, passively evolving ellipticals) and a
broader blue cloud (BC; predominantly active, star-forming spiral galaxies) [Bower et al., 1992,
Schawinski et al., 2014]. Galaxies that fall between the RS and BC populate the ‘green valley’
(GV).

Observations of distant protoclusters are now unveiling some of the earliest examples of RS
galaxies. MAGAZ3NE J095924+022537 [McConachie et al., 2022], a spectroscopically confirmed
protocluster at 𝑧 = 3.37, contains a UVJ-quiescent ultramassive galaxy and the majority of its 38
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protocluster members also appear to be quiescent.
Astrophysically, the RS serves as an imperfect proxy for selecting galaxies with low specific

star formation rate (sSFR). The distribution of sSFR is skew-lognormal, with a peak of blue active
star-forming galaxies at sSFR ∼ 10−10 yr−1 at low redshift (the galactic main sequence) and a tail
towards lower sSFR [Wetzel et al., 2012, Eales et al., 2018, Leja et al., 2022]. This form suggests
that the sSFR frequency distribution could be modeled as a dual Gaussian mixture. Photometric
colors converge at lower sSFRs, such that galaxies with sSFR ≲ 10−11.3 yr−1 share approximately
the same red color [Eales et al., 2017]. This decreased scatter strengthens the duality between RS
and BC, producing a dual Gaussian in photometric color space [see e.g. Baldry et al., 2004, Hao
et al., 2009, Krywult and Pollo, 2018]: a narrow component for the low-sSFR RS and a bluer and
broader component for the high-sSFR BC.

Galaxy clusters are natural nests for red galaxies. Due to the Gaussian random nature of ΛCDM
initial conditions, peaks in density on different scales are coupled, so the earliest galaxies to form
preferentially reside in regions that are destined to host clusters of galaxies in the late universe
[Springel et al., 2005]. Clusters at redshifts 𝑧 ≲ 1 thus naturally contain an older galaxy population
than that of the low-density field. Stellar populations older than roughly 1 Gyr become almost
uniformly red [Conroy and Gunn, 2010], so cluster galaxies on average tend to be redder than
those in the field. Gas cooling times increase as protocluster temperatures rise, which reduces
cold-phase gas, and supermassive black holes inject turbulent entropy [Voit, 2005, Croton et al.,
2006]. These and other plasma processes combine to rapidly shut down star formation in massive
galaxies [Donahue and Voit, 2022]. Other dynamical processes that can shut down star formation,
or quench, a galaxy are more commonly found in proto-cluster environments, including major
mergers between galaxies, rapid flyby encounters, and ram-pressure stripping [Moore et al., 1996,
Boselli et al., 2022].

The strong red sequence in clusters greatly aids in galaxy cluster selection. Identification of
clusters by their RS was first proposed by Gladders and Yee [2000], using the narrow width of
the RS to estimate cluster membership with far greater accuracy than that of BC members. The
maxBCG algorithm [Koester et al., 2007] further improved cluster selection, using a hard ±2𝜎RS

cut in photometric color to select clusters. The algorithm defines richness 𝑁200 as the count of
red galaxies within an estimated virial radius 𝑅200. This count of virialized galaxies within the
cluster serves as a halo mass proxy [Rozo et al., 2009a]. Rozo et al. [2009b] developed an improved
richness estimate _—the sum of RS background-corrected membership probabilities within a given
cluster—which also employed a different cluster radius and a Gaussian color filter.

More recent algorithms and surveys have extended the RS’s use for cluster cosmology. To
further improve the red/blue galaxy distinction, Hao et al. [2009] developed a single-color error-
corrected Gaussian Mixture Model (ECGMM) in color-magnitude space. As compared to a typical
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GMM, their ECGMM accounted for photometric errors contributing to the scatter. As a rule
of thumb, while the photometric error remains smaller or of similar order of magnitude as the
intrinsic scatter, one can still accurately and precisely tease out the intrinsic scatter from a noisy
distribution. Around this time, the first results from the SpARCS survey [The Spitzer Adaptation
of the Red-sequence Cluster Survey; Wilson et al., 2009, Muzzin et al., 2009] produced hundreds
of 𝑧 > 1 cluster candidates using a selection method similar to that of Gladders and Yee [2000].
To analyze DES photometry, Rykoff et al. [2014] refined the redMaPPer algorithm, which selects
RS galaxies using an error-corrected multi-color × magnitude space Gaussian fitting of the RS.
This algorithm iteratively selects the RS, measuring a slope of its color as a function of 𝑧 band,
giving a redshift-continuous, multi-color update to richness. Building on similar methodology,
Rozo et al. [2016] introduced the redMaGiC algorithm to select luminous red galaxies, estimating
galactic redshifts with high accuracy. These methods serve as a basis for DES cluster finding
in cosmological analyses [Rykoff et al., 2016, Abbott et al., 2020], with the richness indicator _
serving as a mass proxy.

Other groups have also modeled the RS as a function of redshift and magnitude for multiple
colors. Klein et al. [2018, 2019] created a methodology similar to redMaPPer, though with
additionally allowing for evolution in scatter with magnitude. Another cluster finder, CAMIRA,
uses stellar population synthesis (SPS) models to estimate RS mean color at a given redshift and
magnitude, accounting for the RS color-magnitude (CM) slope via a mass–metallicity relation
[Oguri, 2014]. They then calibrate their color model by measuring a fine tuning off of that SPS
model. Both of these methods lack color-correlation terms and only characterize the RS—ignoring
the BC. Multi-color selection of the RS is crucial to a continuous definition of the population across
wide redshift ranges.

Quenching a galaxy induces a feature in its spectrum known as “the 4000Å break”: a sharp drop
in spectral intensity at short wavelengths, reflecting the absence of young blue massive stars. To
measure the break strength (𝐷4000) well a given redshift, one needs measurements from bands on
either side of the break’s wavelength at that redshift. As the 𝐷4000 location shifts to redder bands
with increasing redshift, redder colors are necessary for identifying more distant RS galaxies.

If a RS selector uses only one color at a time, with discrete swaps between colors at transition
redshifts, these hard transitions can result in an O(10%) discontinuity in red fraction, 𝑓𝑅 (𝑧) [up
to ∼ 16%; see e.g. Nishizawa et al., 2018]. This jolt in red fraction would echo in single-color
richness estimates _col: Two identical clusters on either side of a redshift transition could then have
significantly different _col values, introducing non-trivial systematic errors in halo mass–richness
scaling relations. Evolving a multi-color Gaussian mixture across redshift smoothly defines the
RS, obviating the discontinuities caused by color swapping.

To better model RS and BC, we present Red Dragon: a multivariate Gaussian mixture model,
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Table 3.1: Characteristics of the datasets used in this analysis. The galaxy pasting algorithm
ADDGALS created Buzzard’s synthetic galaxy catalog, assigning SDSS-like galaxies to underlying
N-body lightcone outputs of dark matter structure [Wechsler et al., 2021].

Dataset Type Redshift sSFR 𝑁gal
SDSS/low-𝑧 Observation 0.1 ± 0.005 Yes 44 452
SDSS/mid-𝑧 Observation (.3, .5) Yes 90 609

Buzzard (DES) Synthetic [0.05, 0.84] No 91 004 552

Table 3.2: Approximate redshift range over which each photometric band contains the 4kÅ rest
wavelength, for SDSS [Doi et al., 2010] and DES [Abbott et al., 2018] filters.

band 𝑧break,SDSS 𝑧break,DES
g [0.0, 0.36) [0.0, 0.38)
r [0.36, 0.71) [0.38, 0.78)
i [0.71, 1.06) [0.78, 1.13)
z [1.06, 1.37) [1.13, 1.50)
Y N/A [1.38, 1.55)

smoothly evolving population characterization across redshift. Using multicolor information, Red
Dragon gives continuous and consistent population definitions (and therefore red fractions) across
redshift, characterizing well the underlying photometric distribution of galaxies.

We begin in Section 3.2 by introducing the datasets used in this analysis. Section 3.3 then details
our algorithm. Then we demonstrate results of its application to real and synthetic galaxy catalogs
in Section 3.4, and discuss several considerations for applying this algorithm in Section 3.5. We
summarize main takeaways from the paper in Section 3.6.

3.2 Data

We analyze galaxies from the two sources listed in Table 3.1: local observed galaxies from SDSS [at
low and mid redshifts; Szalay et al., 2002] as well as a wide-redshift sample from the Buzzard Flock
synthetic galaxy catalog, designed to support science analysis of the multi-band photometric Dark
Energy Survey (DES) [DeRose et al., 2019, 2021, Wechsler et al., 2021]. In all galaxy samples,
we consider only galaxies with 𝐿𝑖 (𝑧) > 0.2 𝐿∗,𝑖 (𝑧), using the 𝑖-band characteristic luminosity as a
function of redshift 𝐿∗,𝑖 (𝑧) as defined in Rykoff et al. [2014]. Note that neither SDSS sample is
complete to this limit; while the low-𝑧 sample is nearly complete (only ≲ 0.5 mag short), the mid-𝑧
sample is strongly biased towards bright red galaxies. These samples offer complementary tests of
Red Dragon’s ability to identify the RS.
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Figure 3.1: SDSS low-redshift galaxy sample (𝑧 = 0.1±0.005) shown in the space of two “primary”
colors. The 𝑔−𝑟 color measures the strength of the 4000 Å break (𝐷4000), sensitive to current SFR.
The 𝑟 − 𝑖 color measures the post-break spectrum slope, an indicator of dust content (degenerate
with age and metallicity). Points are colored by log(sSFR/yr−1) (see legend), with values below
roughly -11 corresponding to the quenched population.

3.2.1 SDSS

SDSS galaxies were selected from the spectroscopic sample in order to obtain precise redshift
estimates and information on quenched status. We choose two complementary samples: a nearby,
narrow redshift sample with wide magnitude coverage and a more distant, bright galaxy sample
spanning the first 𝐷4000 filter transition. The thin slice at 𝑧 = 0.1 ± 0.005 reduces the effect of
redshift drift on population colors, and lies far from the 𝑔 → 𝑟 transition of the 4000 Å break’s
observed wavelength. The wider range of mid-redshift galaxies, 𝑧 | (0.3, 0.5), spans the 𝑔 → 𝑟

transition, allowing evaluation of RS selection continuity. The two datasets contain similarly-sized
galaxy populations: roughly 45,000 and 90,000 galaxies respectively.

For the low-redshift 𝑧 = 0.1 ± .005 sample1, redshift errors were typically ≲ 10−4. We
limit summed photometric error to be below 0.3 mag to exclude galaxies with poor photometry.
Figure 3.1 displays the low-𝑧 galaxy sample in 𝑔 − 𝑟 vs 𝑟 − 𝑖 space, colored by sSFR. One can
readily distinguish the two populations, corresponding to star-forming and quiescent galaxies. This

1SDSS/low-𝑧 sample extracted from SDSS SkyServer with this SQL script.
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sample contains about 45% red fraction.
The other SDSS galaxy sample2, spanning redshifts 0.3 to 0.5, has typical redshift error ≲ 10−3.

Spectroscopic selection requirements produce a much higher red fraction of ∼ 90% in this sample,
but our focus on redshift continuity is insensitive to this enhanced RS selection.

Specific star formation rates for each SDSS sample were calculated using methods from Conroy
et al. [2009] and are employed as a truth label to test against Red Dragon’s selection of quenched
galaxies. These values are based on SED fits to 𝑢𝑔𝑟𝑖𝑧 photometry. Their model assumes a smooth,
parametric star formation history for their estimates. Because it does not include spectral lines or
indices, nor any NUV or NIR photometry, there is significant systematic uncertainty in the derived
sSFR values.

3.2.2 Buzzard

We also investigate the Buzzard synthetic galaxy catalog. Buzzard is a statistical replica of a deep-
wide galaxy survey built from galaxy color distributions measured as a function of local cosmic
overdensity [Hogg et al., 2004]. It is empirically tuned, mimicking the DES photometric pipeline,
with similar photometry, number counts, and photometric uncertainties out to high redshift. We use
its two highest-resolution sections, extending our redshift range out to 𝑧 = 0.84 with a magnitude-
complete sample. This selection uses distance-based (cosmological) redshift. This then crosses
both the 𝑔 → 𝑟 and 𝑟 → 𝑖 transitions of Table 3.2, testing Red Dragon’s ability to continuously
characterize populations across multiple transitions. Magnitude errors are assigned to each galaxy
at a level consistent with DES photometric errors, and photometric redshifts derived from these
noisy value.

To create the Buzzard galaxy catalog, the ADDGALS algorithm [Busha and Wechsler, 2008,
Wechsler et al., 2021] populates lightcone outputs of N-body simulations with galaxies. The
empirical method introduces galaxy bias using a local dark matter density measure. Colors are
tuned to SDSS and other observed galaxy samples; ADDGALS trains empirically at low redshifts,
then extrapolates to higher redshifts using a spectral energy distribution template approach [for
more details, see Wechsler et al., 2021]. While the method reproduces well the magnitude counts
and two-point clustering statistics of individual galaxies [DeRose et al., 2021], massive clusters are
somewhat underpopulated as compared to observations, and behaviors of the Buzzard universe at
higher redshifts are less rooted in observation than those at 𝑧 < 1.

The Buzzard Flock has been central to validating DES galaxy clustering analysis [DeRose
et al., 2022], providing important quality assurance for precise cosmological constraints from 3x2
clustering signals [Abbott et al., 2020, Amon et al., 2022, Secco et al., 2022, Abbott et al., 2022].

2SDSS/mid-𝑧 sample extracted from SDSS SkyServer with this SQL script.
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The synthetic catalog is not an exact replica of the DES sky, of course, but it provides a useful
testbed for our method. We intend to report on application of Red Dragon to DES-Y3 photometry
in a companion paper (Black et al., in prep.).

3.3 Methods: Algorithm Construction

Red Dragon is a novel method for calculating red sequence membership probabilities. In its most
general construction, a Red Dragon RS selector uses a Gaussian mixture in multi-color space to
select populations of galaxies (RS, BC, and optionally additional components). In this section,
we outline the algorithm (§3.3.1), introduce the core likelihood function for Red Dragon (§3.3.2),
detail interpolation of GMM parameters across redshift (§3.3.3), and define membership probability
assignment (§3.3.4).

3.3.1 Algorithm Overview

There are two broad stages to the Red Dragon algorithm, illustrated in Figure 3.2. In the first stage,
galaxy colors are modeled within discrete redshift shells, yielding mixture component information
at these redshifts3 and finds GMM parameterizations for each slice (steps 1–4). In the second stage,
the algorithm matches components across redshift bins and interpolates mixture model parameters
(steps 4–7). The end result is a continuous and consistent definition of galaxy populations across
redshift.

3.3.1.1 First stage: redshift-discrete fits.

Red Dragon reads in photometry and redshift information supplied by the user. Using input redshift
estimates 𝑧±𝛿𝑧 (Gaussian uncertainties), Red Dragon randomly samples (with replacement) galaxies
within each user-defined redshift bin. From input magnitudes ®𝑚 and magnitude errors ®𝛿𝑚, Red
Dragon calculates primary color vector ®𝑐 and its corresponding noise covariance matrix Δ (detailed
below). This set of input variables is then sent to a GMM to find fit parameters ®\𝛼 for each
component 𝛼 in each redshift bin. Section 3.3.2 offer details of the likelihood model parameters
and fitting process.

At this point, the components across redshift are unordered, meaning the 𝛼 = 0 component in
redshift bin 1 may not correspond to the 𝛼 = 0 component in redshift bin 2. This set of Gaussian
parameterizations must be linked across redshift to form continuous representations of each mixture
component.

3Though we describe fits as functions of redshift here, any secondary variable may be used (given a thin enough
redshift extent for the data), such as stellar mass or a single photometric band.
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Figure 3.2: Work flow for Red Dragon algorithm. In steps 1–4, GMMs fit input data, yielding
parameterizations { ®\𝛼}𝑖 at each redshift slice 𝑖 for each component 𝛼. Steps 4–7 match components
across redshift from the disarranged collection { ®\𝛼} and then interpolate, yielding continuous
parameterization of GMM components ®\𝛼 (𝑧) and thereby membership probabilities 𝑃mem,𝛼. The
grey arrow (8) indicates that a trained dragon may be used to initialize components for a new one.
By default, the algorithm fits sparsely with an sklearn GMM (1–7), then uses that rough fit to
inform initial conditions for a pyGMMis GMM (8), which gives a final, error-cognizant fitting.
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Table 3.3: Variables of the likelihood model, equations (3.6) and (3.7). Left column shows
GMM model parameters \𝛼 characterizing component 𝛼 (one of 𝐾); right column shows input
photometry data for galaxy 𝑗 (one of 𝑁gal). Galaxy color and noise covariance are calculated from
input magnitudes and magnitude errors (see text for details).

\𝛼 model parameters 𝑥 𝑗 galaxy data
𝑤𝛼 weight (where

∑
𝛼 𝑤𝛼 = 1) ®𝑐 𝑗 color

®̀𝛼 mean color ®𝛿 𝑗 errors on galaxy colors
Σ𝛼 intrinsic covariance Δ 𝑗 noise covariance

3.3.1.2 Second stage: redshift-continuous fits.

Using the calculated set of Gaussian mixtures, the algorithm now matches similar Gaussian compo-
nents across redshift bins. While distinguishing continuous components across redshift is relatively
straightforward for two-component models (𝐾 = 2), matching for even three components (𝐾 = 3)
can be challenging. (Does the wide, redder portion of the BC connect to the narrower but similar
in color component in the adjacent redshift bin, or does it connect to the component with similar
scatter despite its bluer mean color?) Despite these challenges, the matching process can be largely
automated by using relative location and extent information in color space, with quality assurance
checks done by the user. As detailed in Section 3.3.3, the interpolated components present the user
with a trained dragon, smoothly characterizing each of the populations across redshift.

3.3.2 Likelihood model

Red Dragon employs a multi-dimensional Gaussian mixture model with parameters listed in the
left column of Table 3.3. The right column lists the input galaxy photometric information.

A Gaussian mixture of 𝐾 components in a single color 𝑐 has a set of parameters \ that constitute
the model. For each component 𝛼, this parameter set includes the component weight 𝑤𝛼, mean
color `𝛼, and the intrinsic population scatter 𝜎𝛼. The weights are normalized such that

∑
𝛼 𝑤𝛼 = 1.

For a set of 𝑁gal galaxies with input colors {𝑐 𝑗 } and color errors {𝛿 𝑗 } for each galaxy 𝑗 , the model
parameters maximize the likelihood

L(\
��𝑥) = 𝑁gal∏

𝑗=1


𝐾∑︁
𝛼=1

𝑤𝛼√︃
2𝜋(𝜎𝛼2 + 𝛿 𝑗 2)

exp

[
−1

2
(𝑐 𝑗 − `𝛼)2

𝜎𝛼
2 + 𝛿 𝑗 2

] . (3.1)

This type of error-corrected Gaussian mixture model (ECGMM) was introduced by Hao et al.
[2009] with SDSS 𝑔 − 𝑟 as the color classifier.

Expanding this model into an 𝑁-dimensional color space requires that we employ for each
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component 𝛼 an intrinsic color covariance matrix Σ𝛼. The errors then must be handled as a noise
covariance matrix Δ 𝑗 for each galaxy.

Consider the DES four-band optical 𝑔𝑟𝑖𝑧 photometry used in Buzzard, with input magnitudes
®𝑚 = [𝑚𝑔, 𝑚𝑟 , 𝑚𝑖, 𝑚𝑧]. We define a vector of primary colors based on neighboring photometric
bands:

®𝑐 = [𝑔 − 𝑟, 𝑟 − 𝑖, 𝑖 − 𝑧] . (3.2)

Colors are derived from magnitudes by the matrix operation ®𝑐 = 𝐴 ®𝑚, where the transform matrix
is

𝐴 =


1 −1 0 0
0 1 −1 0
0 0 1 −1

 . (3.3)

We assume that the photometric errors of each galaxy are determined independently in each band,
and so take them to be uncorrelated.4 The magnitude error covariance matrix 𝑀 𝑗 for each galaxy
is then diagonal. Transformed to the space of primary colors, the noise covariance of galaxy 𝑗 is
then

Δ 𝑗 = 𝐴 𝑀 𝑗 𝐴
⊤ =


𝛿𝑔

2 + 𝛿𝑟2 −𝛿𝑟2 0
−𝛿𝑟2 𝛿𝑟

2 + 𝛿𝑖2 −𝛿𝑖2

0 −𝛿𝑖2 𝛿𝑖
2 + 𝛿𝑧2

 𝑗 (3.4)

where each 𝛿𝑥 above refers to the photometric error of band 𝑥. Note that for this matrix to be
non-singular, the selection of colors must be linearly independent (e.g. one cannot use each of
𝑔−𝑟, 𝑟−𝑖, and 𝑔−𝑖 in an error-inclusive model). For symmetry, simplicity, and to avoid singularity,
we employ the set of primary colors.

The derivation of Δ 𝑗 is similar for SDSS photometry (which includes 𝑢 band). The primary
color vector for 𝑢𝑔𝑟𝑖𝑧 is then

®𝑐 = [𝑢 − 𝑔, 𝑔 − 𝑟, 𝑟 − 𝑖, 𝑖 − 𝑧] (3.5)

and the corresponding Δ 𝑗 matrices come from a straightforward extension of the above matrices.
Let 𝑥 𝑗 include the primary colors ®𝑐 𝑗 as well as the noise covariance matrix Δ 𝑗 for each galaxy

(Table 3.3). The likelihood of the error-cognizant 𝑁-dimensional Gaussian mixture is then the sum
over galaxies and components

L(\
��𝑥) = 𝑁gal∏

𝑗=1

𝐾∑︁
𝛼=1

L𝛼 (\𝛼
��𝑥 𝑗 ) (3.6)

4In hindsight, this turns out to be a bad assumption for drift-scan surveys such as SDSS, where atmospheric noise
correlates highly between neighboring bands, potentially causing strong off-diagonal terms in 𝑀 𝑗 .
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where the specific component likelihood for galaxy 𝑗 is

L𝛼 (\𝛼
��𝑥 𝑗 ) = 𝑤𝛼√︁

(2𝜋)𝑁
��Σ𝛼 + Δ 𝑗

��
× exp

[
−1

2
( ®𝑐 𝑗 − ®̀𝛼)T(Σ𝛼 + Δ 𝑗 )−1( ®𝑐 𝑗 − ®̀𝛼)

]
.

(3.7)

At individual redshift slices, we use the error-inclusive Gaussian Mixture package pyGMMis
[Melchior and Goulding, 2018] to find best-fit parameters \𝛼 for each component 𝛼. Without
a reasonable input for a first guess at parameters, pyGMMis sometimes struggles to properly
characterize populations. To provide a rough first guess, we first sparsely fit the data using
sklearn’s error ignorant GaussianMixture package [Pedregosa et al., 2011]. This extremely quick
fit gives a rough initial guess to the fit parameters, yielding better results than running pyGMMis
blind.

3.3.3 Fit interpolation

Red Dragon interpolates best-fit parameters across redshift bins, continuously defining populations.
Fitting is linear by default (with flat endpoint extrapolation), but other methods such as smoothed
spline interpolation [SciPy: Virtanen et al., 2020] or kernel-localized linear regression [KLLR:
Farahi et al., 2022] are available to give smoother fits. After fitting weights, the normalization∑
𝛼 𝑤𝛼 (𝑧) = 1 is re-enforced. To interpolate the covariance matrix, log variances are interpolated

first, followed by interpolating the correlations (enforcing correlation magnitude |𝜌 | ≤ 1), which
together then provide a better fit than fitting the covariance matrix values directly (which could
result in unphysical negative variances or correlations larger than unit magnitude).

3.3.4 Galaxy Classification

These redshift-continuous fits can then be used to classify galaxies based on its membership
likelihood for each component. The probability that galaxy 𝑗 is a member of GMM component 𝛼
is

𝑃𝛼 (𝑥 𝑗 ) =
L𝛼 (\𝛼

��𝑥 𝑗 )∑
𝛽 L𝛽 (\𝛽

��𝑥 𝑗 ) . (3.8)

For example, a two-component model would then have red sequence membership probability
𝑃RS = LRS/(LRS + LBC). Classification can be based on the maximum value among components
or some chosen threshold. We show in Section 3.5.2 that maximum RS membership probabilities
are strongly peaked near 1 when 𝐾 = 2 or 3, declining slightly with 𝐾 = 4.
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Figure 3.3: Red sequence membership probabilities 𝑃red, calculated by Red Dragon for SDSS/low-𝑧
galaxies shown in Figure 3.1, here using 𝑔 − 𝑟 as the 𝑥-axis color. Ellipses show in this projected
primary color plane the two Red Dragon components, RS (red) and BC (blue), with a relative offset
of mean colors and differing covariance structures.

3.4 Results

Here we show results of running Red Dragon on SDSS and Buzzard datasets. Our SDSS analysis
highlights the accuracy of selecting the quenched population and RS continuity across the first
𝐷4000 filter transition. The Buzzard analysis focuses on fit parameter evolution across a wider
range of redshift, derived from a much larger galaxy sample.

3.4.1 Sloan analysis

Fits to SDSS datasets used two-component Red Dragon models, analyzing the four primary colors
derived from SDSS 𝑢𝑔𝑟𝑖𝑧 photometry in equation (3.5).

Figure 3.3 shows galaxy classification for the low-𝑧 data. Ellipses indicate the mean colors and
covariance of the RS and BC components (red and blue, respectively) in the projected space of
𝑔 − 𝑟 × 𝑟 − 𝑖. The location and extent of the RS overlaps well with the low-sSFR region displayed
in Figure 3.1.

The following sections quantify this level of agreement for both the low-𝑧 (§3.4.1.1) and mid-𝑧
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(§3.4.1.3) SDSS samples.

3.4.1.1 Balanced Accuracy

To quantify Red Dragon’s success in identifying the quenched population, we use the binary
classification measure of balanced accuracy. Balanced accuracy (bACC) averages sensitivity and
specificity, weighing equally the true positive rate TPR≡TP/(TP+FN) and the true negative rate
TNR≡TN/(TN+FP). As the prediction, we use RS membership probability 𝑃RS > 0.5. As the truth
label, we define the quenched population as galaxies with sufficiently low sSFR values, setting a
threshold as a function of redshift

log10 (sSFR · yr) < −11 + 𝑧 (3.9)

[adapted from Moustakas et al., 2013]. The bACC gives us a straightforward metric for scoring
various methods of selecting the RS.

Because the distribution of sSFR values is skew-lognormal rather than truly bimodal (as photo-
metric colors, 𝐷4000, the Sérsic index [Krywult and Pollo, 2018], H𝛼 equivalent width, and the log
radial slope of circular velocity [Kalinova et al., 2022] all are between RS and BC), a hard cut in
sSFR is not a robust method for splitting between RS and BC. That is, sliding the threshold sepa-
rating quenched and star-forming galaxies can yield significant differences in measured accuracies.
Appendix D.1 shows that the magnitude of such shifts is generally small, typically a few percent at
most, but more importantly, it shows that the values are somewhat consistent relative to each other.
Therefore, all bACC values should be taken as relative to one another, rather than as absolute.

3.4.1.2 Selection quality of the quenched population

Here we use balanced accuracy to compare quenched population selection of Red Dragon to
previous approaches that employ hard cuts. Our CM and CC selections use the following methods.
‘Typical’ CM selection follows Hao et al. [2009]. After fitting the red sequence population with a
Gaussian mixture in color space, we fit a line to the red sequence population (in the CM space of
𝑔 − 𝑟 vs 𝑚𝑖), find its scatter, then select all galaxies within 2𝜎 of the mean relation. ‘Typical’ CC
selection follows Adhikari et al. [2020]. After finding population means via Gaussian mixtures, we
draw a line between maxima (in the CC space of 𝑔 − 𝑟 vs 𝑟 − 𝑖), then plot a perpendicular line at
the minimum likelihood point between the two components (i.e. where a galaxy is equally likely
to belong to either component). These two methods give benchmark comparisons for standard
efficiency of selection in CM and CC spaces for comparison to Red Dragon selection.

Figure 3.4 compares bACC values of these hard cut methods to Red Dragon using either two or
three components. Even optimized CM selection typically incurs ≳ 10% error (i.e. ∼ 10% of the
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Figure 3.4: Balanced accuracy in selecting the quenched population of SDSS/low-𝑧 galaxies. “CM”
and “CC” methods draw hard cuts through color-magnitude and color-color spaces respectively,
whereas the “RD 2𝐾” and “RD 3𝐾” methods use Gaussian mixtures of two and three components,
respectively. Error bars are generated from Poisson error estimates on each of the classification
components.
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Figure 3.5: Balanced accuracy in selecting the quenched population of bright SDSS galaxies: Red
Dragon (RD; black) performs similarly or superior to hard cuts in single colors. Bootstrap ±1𝜎
error shown with transparencies; these increase with redshift chiefly due to decreasing number
counts (rather than from increased intrinsic scatter). Values localized by Gaussian kernel (width
𝜎𝑧 = .02).

RS and BC are contaminated by star-forming or quenched galaxies respectively) while optimized
CC selection typically incurs ≳ 6% error, showing that two colors (CC space) work significantly
better than one (CM space).

Gaussian mixtures (without any optimization from sSFR truth) generally perform on par with
optimized CM and CC fits. While Figure 3.4 shows that if sSFR values are known, one could
define hard cut CC selections of the RS which would have accuracies similar or superior to a GM
selection of the RS. However, when sSFR values are unknown, GMs select the quenched population
significantly better.

3.4.1.3 Redshift continuity of quenched galaxy selection

Figure 3.5 compares balanced accuracy in selecting the quenched population between Red Dragon
and two (redshift-evolving) choices of single-color cuts for defining the RS. As the 4000 Å break
passes from 𝑔 band to 𝑟 band near 𝑧 = 0.36, the ability of 𝑔 − 𝑟 to select the quenched population
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wanes while that of 𝑟 − 𝑖 waxes, as expected. If using single-color selection, 𝑧 = 0.38 would be the
best redshift to transition from selecting the RS with 𝑔 − 𝑟 to selecting with 𝑟 − 𝑖, if your goal is to
select the quenched population with greatest fidelity.

In comparison to these single-color selection methods, Red Dragon performs similarly to best-
case single-band selection (within 3𝜎), and is vastly superior (> 6𝜎) in accuracy across 𝑧 = 0.38,
the optimized transition redshift. We note here that the high-redshift side of the plot has significantly
lower number counts, and lacks statistical power compared to the low-redshift side.

Red Dragon preserves accuracy in selecting the RS across redshift transitions while maintaining
a continuous red fraction (by algorithm construction). This then evades the discontinuities inherent
in swapping bands, continuously selecting RS galaxies with high fidelity.

3.4.2 Buzzard Flock analysis

Extending our analysis to a wider redshift range, we turn to the synthetic galaxy catalogs of the
Buzzard Flock, using the three primary colors of equation (3.2). In this section, we detail fit
\𝛼 (𝑧) interpolation across redshift for a minimal two-component model. This includes for each
component 𝛼: weight 𝑤𝛼 (§3.4.2.1), means ®̀𝛼 (§3.4.2.2), scatters ®𝜎𝛼 (§3.4.2.3), and correlation
coefficients ↔

𝜌𝛼 (§3.4.2.4).
The galaxy sample is magnitude-limited using the redshift-evolving cut of 0.2 𝐿∗,𝑖 (𝑧) from

Rykoff et al. [2014] within the redshift range 0.05 < 𝑧 < 0.84. The galaxies are divided into
narrow cosmological redshift bins of width 0.025, resulting in counts per redshift bin of 60k to
7.6M galaxies. Red Dragon is run on 100 bootstrapped samples of 106 galaxies (undersampling
at high redshifts for the sake of speed, efficiency, and easing computational burden); the resulting
median parameters \ (𝑧𝑖) and ±2𝜎 quantile range for each bin are shown in the figures below. The
discrete redshift parameters are then interpolated using KLLR with a Guassian kernel of width
𝜎𝑧 = 0.02, shown as lines in the following parameter evolution plots.

With a sample size of 94M galaxies (see Table 3.1) we are able to extract precise estimates
of all model parameters. The small statistical errors must be considered in context of Buzzard’s
algorithm to produce a synthetic DES catalog. Different galaxy catalog construction methods, such
as MICE [Carretero et al., 2015] or cosmoDC2, populated by the GalSampler algorithm of Hearin
et al. [2020], may have systematically different behaviors, especially at high redshifts.

For the mean and scatter of the RS component, we compare at low redshifts to the SDSS results
of Hao et al. [2009] and across a wider redshift range to analysis of the DES-Y3 catalogue made
available by E. Rykoff (2022, private comm.). These methods both give error-corrected Gaussian
fitting to the RS, similar to Red Dragon’s methods. However, as both fit only the RS, no information
on red fraction nor any fits of the BC are available for comparison.
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Figure 3.6: Component weight for RS (red) and BC (blue) as a function of redshift for the Buzzard
flock. Points show parameter fits from individual redshift bins with ±2𝜎 bootstrap quantiles shown
as error bars. Fit line interpolation smoothed with KLLR (Gaussian kernel width 𝜎𝑧 = 0.02) with
uncertainty in fit shown as transparencies about the line (generally smaller than the line width).
Vertical grey lines indicate transition redshifts of the 4kÅ break from Table 3.2.
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3.4.2.1 Component Weights

Figure 3.6 shows that the RS weight consistently decreases with redshift, ranging from roughly
50% at redshift 𝑧 = 0 down to 20% at the highest redshift of 0.84. Since the red fraction is
luminosity dependent (as discussed in Appendix E), one should remember that the weight reported
here represents a weighted average of all galaxies above 0.2 𝐿∗(𝑧), which will be dominated by
magnitudes near the cutoff. Choosing a brighter magnitude cutoff would uniformly raise the RS
weights whereas a dimmer cutoff would lower them.

A variety of deep observations of the real universe indicate that star formation rates per unit
baryon mass were much higher in the past [Madau et al., 1996, Connolly et al., 1997, Madau and
Dickinson, 2014]. Astrophysically speaking, while the Butcher-Oemler effect of reddening over
time [Butcher and Oemler, 1978] applies primarily to galaxy clusters, the entire population of
galaxies ages and tends to redden as a whole. Red Dragon applied to Buzzard extracts behavior
consistent with this general trend.

3.4.2.2 Mean Colors

Figure 3.7 shows the redshift evolution of the mean colors of the two components. The three panels
each show measured BC and RS means in different colors. Comparisons to observations of mean
RS color are shown in grey. Hao et al. [2009] fit only to 𝑔 − 𝑟 at low redshift, and the agreement
with Buzzard is good, but both Buzzard and DES-Y3 mean 𝑔 − 𝑟 colors are slightly bluer than the
low-redshift SDSS values. Comparing to the Rykoff et al. [2014] method, Buzzard only deviates
by .01 mag on average.

Note that each color has different vertical scaling: ⟨𝑔 − 𝑟⟩ spans the largest range while ⟨𝑖 − 𝑧⟩
spans the smallest range, exaggerating its features. Since the DES-Y3 analysis includes magnitude
dependent-colors, shading illustrates the magnitude gradient by showing mean colors at 𝐿∗ (upper
bound) and at 0.2 𝐿∗ (lower bound). The latter is the limiting luminosity of our Buzzard galaxy
analysis. The color gradient is largest in 𝑔 − 𝑟 at redshifts beyond the first 𝐷4000 transition, and
Buzzard galaxies tend to be slightly redder in this regime.

At redshifts 𝑧 < 0.7 the mean 𝑟 − 𝑖 color of the RS in Buzzard tracks well the mean value found
for DES-Y3 RS galaxies. At the highest redshifts, where 𝐷4000 transitions into the 𝑖-band, the mean
𝑖 − 𝑧 color of RS Buzzard galaxies tracks that of DES.

At transition redshifts (see Table 3.2), the slope of mean colors (with respect to redshift) changes
rapidly, necessitating narrow redshift analysis bins and careful fitting. Mean colors for both RS &
BC follow a general shape of rising as the 4000 Å break enters the color’s minuend, then plateauing
or falling as the break enters the color’s subtrahend, as expected.
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Figure 3.7: Buzzard mean colors. Points show mean colors for each GMM component (RS & BC)
for Buzzard galaxies. Coloring and interpolation as in Figure 3.6. RS mean measurements from
Hao et al. [2009] (SDSS, 𝑔 − 𝑟 only) and E. Rykoff (2022, private comm.) (DES Y3, all colors)
are shown for comparison. To illustrate dependence on magnitude, we present mean color ranges
from 0.2 𝐿∗ (the magnitude limit of Buzzard; lower edge of transparencies) up to 𝐿∗ (upper edge
of transparencies) for DES-Y3. Besides 𝑔 − 𝑟 at 𝑧 ≳ 0.4, the RS slope strength is less than 0.04
(shift in color per magnitude), so the spread is generally minimal (see also Appendix E.1 for a
comparison of slope strength to scatter).
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3.4.2.3 Color Scatter

The top row of Figure 3.8 shows the redshift evolution of the intrinsic scatter in each color for both
GMM components. Observational estimates are shown in grey (absent magnitude dependence).
Green shaded regions give ±1𝜎 and ±2𝜎 ranges of the statistical error on individual galaxy colors
for the 0.2𝐿∗ selected sample. At high redshifts, errors are somewhat larger in 𝑔 − 𝑟 than in the
other colors.

In accordance with expectations, at redshifts where the color’s minuend contains the 4000 Å

break, the RS has significantly lower scatter than the BC, by a factor of ∼ 3, indicating a more
uniform stellar population. Compared to observed RS scatter, Buzzard colors are generally slightly
broader. The running of the RS mean color with magnitude implies that a magnitude-ignorant
fitting of the population scatter should find larger values than a magnitude-cognizant model, so Red
Dragon’s measurement of generally wider scatters is expected.

Since Hao et al. [2009] and Rykoff et al. [2014] only fit the RS, a Red Dragon fitting of the RS,
which also accounts for and fits the BC, is not guaranteed to identify an identical parameterization
of the RS. Encouragingly, there is good agreement in the RS 𝑟 − 𝑖 scatter over most of the redshift
range shown. The RS intrinsic scatter in 𝑖−𝑧 becomes small relative to statistical color uncertainties
at 𝑧 > 0.4, clouding comparison of Buzzard and DES-Y3 behavior in that regime. The BC intrinsic
scatter is larger than the median statistical color error at nearly all redshifts shown.

3.4.2.4 Color Correlations

The bottom row of Figure 3.8 shows intrinsic correlations between colors inferred from the covari-
ance matrix, giving 𝜌(𝑔 − 𝑟, 𝑟 − 𝑖), 𝜌(𝑔 − 𝑟, 𝑖 − 𝑧), and 𝜌(𝑟 − 𝑖, 𝑖 − 𝑧) from left to right.

At higher redshifts, typical photometric uncertainties on colors begin to dominate population
scatters for the RS (see the green transparencies in the upper panel of Figure 3.8). Above 𝑧 ∼ 0.5
instead of measuring intrinsic correlation of each population, Red Dragon is primarily measuring the
correlations between photometric errors. For this reason there is limited astrophysical information
available to be gleaned from the correlations at these error-dominated redshifts.

Though SPS modelling suggests that intrinsic color correlations of the RS are expected to be
≳ 90% (E. Rykoff 2021, private comm.), the GMM fitting of Buzzard’s RS consistently has lower
correlations between colors—even at low redshifts, where photometric uncertainties are diminutive
compared to the intrinsic scatter. In contrast to the RS, the BC has an intrinsic scatter which
exceeds typical photometric uncertainties at nearly all redshifts, so these correlations correspond
to intrinsic population correlations rather than correlations between photometric uncertainties. We
find relatively high correlations between BC colors across all redshifts, typically ≳ 75%.

The fits of Figures 3.6–3.8 show Red Dragon mapping out the RS and BC to high redshift

63



0.25 0.50 0.75
Redshift

10 2

10 1

Sc
at

te
r

g r

R14
H09

0.25 0.50 0.75
Redshift

r i

0.25 0.50 0.75
Redshift

i z

0.25 0.50 0.75
Redshift

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n

(g r, r i)

0.25 0.50 0.75
Redshift

(g r, i z)

0.25 0.50 0.75
Redshift

(r i, i z)

Figure 3.8: Decomposition of the covariance matrix for Red Dragon run on Buzzard, showing
intrinsic color scatter (upper panel) and correlations between colors (lower panel). Green trans-
parencies give one and two-sigma quantile distributions of photometric color errors in Buzzard.
Coloring of components and interpolation as detailed in Figure 3.6; comparison to observations as
in Figure 3.7, though width now indicates uncertainty rather than magnitude spread (R14 has no
uncertainty estimate).
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(spanning across multiple transition redshifts), continuously parameterizing important aspects of
each population. As future studies create more complete samples of galaxies to higher redshifts,
Red Dragon will be able to detail population characteristics smoothly across even wider redshift
ranges.

3.5 Discussion: Algorithm Considerations

In this section, we consider various options for the Red Dragon algorithm. We first discuss choice of
color vector, such as the optimal number of colors to include, measured by the accuracy gains from
added bands (§3.5.1). We then consider changing the number of Gaussian components (§3.5.2)
and quantify its effect on RS selection (§3.5.3). Finally, we discuss whether Gaussian features must
be allowed to run with magnitude to accurately select the quiescent population (§3.5.4).

3.5.1 Accuracy gains from added colors

Here we detail gains in accuracy from adding more colors to the mixture. In short, we find that
using all colors at once selects the quenched population with similar accuracy as an optimized
two-color selection. That is, using the best combination of any two possible photometric colors
didn’t perform significantly better than a simple selection using all primary colors at once.

Using SDSS/low-𝑧 as an example, we measure gains in quenched selection accuracy with
increased dimensionality of color space. We find the highest accuracy of two-component Gaussian
mixtures using all possible single-color, double-color, and triple-color combinations (including the
band-jumping secondary colors, like 𝑢 − 𝑖, in addition to the primary colors). Those optimized
maxima are then compared to default Red Dragon selection (using the primary color vector of
equation (3.5) alone, with no optimization).

We find that the gain from optimal single color selection to optimal dual color selection is
substantial (+5.8% in bACC, > 12𝜎 significant), but that gains are minimal beyond two colors
(≲ ±1%, < 5𝜎), with statistically similar selection accuracy as the primary color vector. While
these particular findings apply only at a fixed redshift, the primary color vector serves well as
a baseline for selecting the quenched population in a continuous manner across a wide range of
redshifts.

3.5.2 Three or More Gaussian Components

Though historically galaxy classification has been binary, galaxies transitioning from RS to BC
are sometimes classified as members of the green valley (GV), adding a third category. From an
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Table 3.4: Distribution of maximum membership probabilities, i.e. {max(𝑃mem)}, in the
SDSS/low-𝑧 sample for various component counts 𝐾 . The first two rows show what fraction
of galaxies have high and low maximum membership probabilities, corresponding to galaxies that
are poorly-classified and well-classified respectively. Mean and median values for each distribution
are also given.

𝐾 2 3 4
> .977 70.7% 67.6% 18.8%
< .841 9.85% 11.3% 34.8%

mean 0.954 0.947 0.855
median 0.994 0.991 0.922

agnostic view of the color space data, components beyond two can simply be seen as an attempt
to better model inherent non-Gaussianities in the populations [see e.g. Carretero et al., 2015].
From an astrophysics view, galaxies quenched by different mechanisms have distinct population
characteristics [Peng et al., 2010, Davies et al., 2021, Dacunha et al., 2022]. High-mass galaxies have
different trends for mean and scatter of colors than those of low-mass galaxies (which are primarily
merger- or environment-quenched, rather than mass-quenched) [Baldry et al., 2004]. Modeling
these populations with distinct Gaussians may better represent the underlying populations. For any
of the above reasons, one may desire to model components beyond two.

In a BIC analysis of the SDSS/low-𝑧 sample, we found that though Figure 3.1 shows clear
bimodality visually, and indeed, using two components gives a fair fit to the photometric color data,
using three components fits the distribution of galaxies in photometric color space significantly
better, with the third component modeling the outlier scatter around the core RS+BC population.
We leave detailed analysis of sub-populations for future papers, but in short, using more than three
components gave no significant improvement in fit.

As component count increases beyond 𝐾 = 3, galaxy membership classification becomes less
distinct. To illustrate this, we find for each galaxy the maximum membership probability max(𝑃mem)
across all GMM components. Table 3.4 shows summary statistics of the {max(𝑃mem)} distributions
for the cases of 𝐾 = 2 to 𝐾 = 4 applied to the low redshift SDSS data. For 𝐾 = 2, the classification
ability of Red Dragon is strong; the large majority of galaxies (≳ 70%) have extremely high
maximum membership probabilities, {max(𝑃mem)} > .977. For the 𝐾 = 3 case, the classification
is only slightly degraded, with the fraction of uncertain classification ({max(𝑃mem)} < .841) rising
to 11.3%, from 9.9% for 𝐾 = 2. Adding a fourth component substantially increases this cohort, to
34.8% of all galaxies.

Viewed another way, the mean value of membership probability approximately dropped from
95% with two components down to 85% with four components. This suggests, as did our BIC
analysis, that while two and three components characterize the underlying distributions well,
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Figure 3.9: RS characteristics for different component counts, 𝐾 . Left: Red fraction changes
significantly with the addition of more components below 𝑧 = 0.3, whereas weights are more
consistent at higher redshifts. Middle: Mean RS 𝑔 − 𝑟 color is extremely consistent across 𝐾 ,
especially for 𝑧 ≲ 0.6, varying by ≲ 0.05 mag on adding a component. Right: Scatter in the 𝑔 − 𝑟
color of the RS.

adding a fourth component may be doing more harm than good in this sample. Adding the fourth
component created more overlap, increasing ambiguity of selection. For simplicity of discussion
and comparison, we chiefly employed the minimal two-component model in our analyses.

3.5.3 RS robustness to component count

Here we investigate consistency in Red Dragon’s characterization of the RS in models with more
than two components. On adding additional components to a Gaussian mixture model, one generally
expects (1) a reduction in weight of each component, (2) a reduction in scatter, and (3) a shift of the
means as the new component displaces the old. Figure 3.9 compares red fraction, RS mean 𝑔 − 𝑟
color, and RS 𝑔−𝑟 scatter for varying component counts𝐾 = {2, 3, 4} as a function of redshift in the
Buzzard catalog. We find that while the RS has a highly consistent mean and scatter, independent of
component count, the RS weight is diminished at low redshifts as additional components subdivide
part of the two-component RS. At 𝑧 ≳ 0.3 weights are consistent to ≲ 5%. Mean color changed
on average by ≲ 0.01 mag on adding a new component. Scatter reduced on average by < 5% with
each added component, and correlations (not shown) varied by less than 12% on average.

At a single redshift slice centered on 𝑧 = 0.2, Figure 3.10 shows galaxy classification by Red
Dragon into components in the 𝑔 − 𝑟 and 𝑟 − 𝑖 plane for cases of two, three and four-component
mixtures. Classification colors are assigned by maximum likelihood rather than absolute probability
(as was done in Figure 3.3), resulting in sharp boundaries between groups. Adding a third
component to Buzzard at this redshift captures GV galaxies in the region between the RS and BC.
Adding a fourth component captures the reddest (upper right region) portion of BC galaxies (12%).

Figure 3.11 illustrates how the mean colors of the 𝐾 = 3 model behave across redshift (similar
to Figure 3.7). The middle component (green line) transitions from being more similar to the RS at
low redshift to being more similar to the BC at high redshifts. Given the Buzzard galaxies colors
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Figure 3.10: Effects of increasing component count on a Buzzard slice. Red Dragon population
components for Buzzard galaxies in the thin redshift slice 𝑧 = 0.200±0.005 for different component
counts. Left: 𝐾 = 2 ( 𝑓𝑅 ∼ 45%), Middle: 𝐾 = 3 ( 𝑓𝑅 ∼ 33%, green component ∼ 23%), Right:
𝐾 = 4 ( 𝑓𝑅 ∼ 38%, brown component ∼ 12%, green and blue component ∼ 25% and ∼ 24%
respectively).
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Figure 3.11: Mean color values for all three components of a 𝐾 = 3 fitting of Buzzard photometry.
The red and blue lines consistently track the redder and bluer parts of the galaxy population, whereas
the green component moves from matching the bluer population at high redshifts but matching the
redder population at lower redshifts.
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are assigned purely statistically, it is doubtful that this transition reflects astrophysical evolution of
galaxies from BC to RS over time. This change in characterization reflects the evolving structure
in color space, with the RS being more non-Gaussian than the BC at low redshifts, and vice-versa
at high redshifts. Therefore, the third component then does not consistently trace a transitioning
population, and should not be identified as a GV across all redshifts. This result calls for care in
labeling the RS if using three or more components, since the quiescent population may be shared
among components.

As discussed earlier (see §3.5.2), the optimal count of Gaussian components to use in modeling
depends on the dataset; increased signal-to-noise may reveal non-Gaussianities in color space that
invite more complex models. For SDSS and DES Buzzard catalogs, the basic two-component
model characterizes the galaxy population fairly well. Adding extra components needs to be done
with care if the sample spans a wide range of redshifts.

3.5.4 Running with magnitude

Gaussian mixture parameters (population weight, mean color, and scatter for RS and BC) are known
to depend on magnitude at a fixed redshift. Nearly 100% of the brightest galaxies are red, while
very few of the faintest galaxies are red [Baldry et al., 2004], so component weight will vary with
magnitude. The mean color of the RS in clusters is known to run significantly, albeit weakly, with
magnitude [Kodama and Arimoto, 1996, Gladders et al., 1998, Repp and Ebeling, 2018], with the
slope modeled explicitly in the RS fitting of e.g. Hao et al. [2009] and Rykoff et al. [2014]. The
scatter of the RS and BC also runs non-linearly with magnitude [Baldry et al., 2004, Balogh et al.,
2004], though this is less often modeled. Therefore, a magnitude-ignorant fitting of the populations
will have all parameters somewhat dependent on the limiting magnitude of the sample. The brighter
the sample, the higher the 𝑓𝑅, the redder the mean RS color, and the smaller the RS scatter. Though
parameters do significantly evolve with magnitude, how significantly does magnitude ignorance
affect selection of the RS?

Using thin redshift slices of Buzzard, we quantify differences in RS selection between magnitude-
cognizant and magnitude-ignorant models. Appendix E details results of this analysis. In short,
while magnitude running of GMM parameters is indeed statistically significant, their running had
a relatively minimal impact on selection for this 0.2 𝐿∗ sample in Buzzard. For thin redshift slices,
selection of red sequence galaxies (where 𝑃RS > .5) was 95% identical between the standard
redshift-running and the niche magnitude-running versions of Red Dragon. Since this difference
in selection is relatively small, we leave magnitude running out of the current version of Red
Dragon in favor for prioritizing smooth redshift evolution. For those who wish to explicitly account
for magnitude running or other secondary parameters, several workarounds exist, as detailed in
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Appendix E.2.

3.5.5 Possible future extensions

Red Dragon is introduced in the context of binary classification of galaxies based on their multi-band
optical colors. As shown above, this simple classification has value in separating those galaxies that
are actively forming stars from those that are quenched. A much wider range of phenomenology,
particularly signatures of active galactic nuclei and local intergalactic gas environment, can be
addressed by expanding the wavelength coverage into far-infrared and radio, or to higher energy
emission in UV / X-ray / 𝛾-ray emission.

Gaussian mixtures that couple optical colors to wider wavelength bands could, for example,
separate galaxies hosting X-ray or radio-loud quasars, or identify galaxy members of protocluster
regions with hot intergalactic plasma. Ratios of X-ray to optical emission have long been known
to separate spiral and elliptical galaxies [Fabbiano, 1989], and spectral energy density models of
AGN samples [e.g., Symeonidis et al., 2022] support an expectation of multiple components in a
widened optical-IR space.

Source confusion will become important when attempting to combine observations with differ-
ing angular resolution and signal-to-noise, but methods such as TRACTOR [Lang et al., 2016] have
been used to associate sources across a wide range of photon energy in the Deep Drilling Fields
to be explored by the Rubin Observatory’s Legacy Survey of Space and Time [LSST, Lacy et al.,
2021].

A continuous RS definition across redshift will be critical as LSST scans deeper in the optical
and space-based galaxy surveys, particularly Euclid5 [Laureijs et al., 2011] and the Nancy Grace
Roman Space Telescope6 [formerly WFIRST, Spergel et al., 2015] provide infrared observations of
galaxies at redshifts above one.

Quiescent galaxies have already been detected beyond a redshift of two [Kriek et al., 2008,
Williams et al., 2009, Gobat et al., 2011, Golden-Marx et al., 2021], with a quenched protocluster
population established at 𝑧 ∼ 3.5 [McConachie et al., 2022]. Forecasts for 5𝜎 cluster detections
with Euclid anticipate a catalog of 200,000 systems, roughly one-quarter of which will lie at 𝑧 > 1
[Sartoris et al., 2016]. Redshift-continuous definitions of the red sequence will support improved
definitions of galaxy richness, an important mass proxy for optical-IR cluster cosmology.

5Planned launch date: Q1 2023; its Y, J, H filters span 900 to 2000 nm.
6Planned launch date: by May 2027; its six filters span 480 to 2300 nm.
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3.6 Chapter Conclusions

We present Red Dragon, a novel method for galaxy population characterization, which evolves
Gaussian mixture models in the space of broad-band optical colors across redshift. With the red
sequence of quiescent galaxies as a target population in both observed and simulated galaxy samples,
we demonstrate the method’s ability to identify the quenched population with similar accuracy to
previous approaches, though now with smooth continuity across redshift and characterization of
the BC (and optionally additional components).

Jumping from using one color alone to another as a RS selector (e.g the transition from 𝑔 − 𝑟
to 𝑟 − 𝑖 near 𝑧 = 0.4) gives an inherent discontinuity in red fraction 𝑓𝑅 (𝑧) or in the accuracy of
selecting the quenched population. Since Red Dragon interpolates Gaussian mixture parameters
across redshifts in multi-color space, the resulting characterization of galaxy photometry yields
a continuous red sequence definition, thereby providing a more continuous measure of galaxy
richness in massive halos.

Red Dragon also offers a new way to explore RS, GV, and BC photometric behavior through
its explicit fits to population weight, mean color, scatter, and correlation between colors. This
fitting allows investigations into the photometric sub-populations of galaxies, such as fraction
of transitioning galaxies as a function of redshift, or the evolution of mean color and scatter of
blue cloud galaxies. By enabling estimates of the intrinsic covariance of colors in each mixture
component, the Red Dragon algorithm also offers potential insights into the evolution of galaxy
properties such as dust, stellar age, and metallicity. Potential extensions to broader wavelength
coverage could support classification of galaxies containing active galactic nuclei in a variety of
astrophysical states.
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CHAPTER 4

Cosmic Dragons: Color Evolution of Galaxies in the
COSMOS Field

Chapter Summary

Using the photometric population characterization method Red Dragon, we characterize the Red
Sequence (RS) and Blue Cloud (BC) of DES galaxies in the COSMOS field. Red Dragon measures
the distribution of photometric colors using a redshift-evolving Gaussian Mixture Model (GMM),
smoothly parameterizing the two populations with mean colors, intrinsic scatters, and inter-color
correlations. This resulting fit of RS and BC yields RS membership probabilities 𝑃RS for each
galaxy. Even using only DES main bands 𝑔𝑟𝑖𝑧, this selects the quiescent population (defined here as
galaxies with lg sSFR · yr < −11) with ≳ 90% accuracy out to 𝑧 = 2; adding extended photometry
from VIRCAM improves this accuracy to ∼ 95% out to 𝑧 = 3. We measure redshift evolution of
both sSFR and galactic age, finding that the BC is consistently more star-forming (by ∼ 1 dex) and
younger (by ∼ 1 Gyr) than the RS. This characterization of both RS and BC as functions of redshift
and stellar mass improve our understanding of both populations and open the door to more precise
galaxy characterization in the future.

4.1 Introduction

Galaxies come in two main flavors: a “blue cloud” (BC) of actively star-forming galaxies and a
“red sequence” (RS) of passively evolving (“red and dead”) galaxies which have largely ceased star
formation [Strateva et al., 2001, Bell et al., 2004]. Between these two populations lies the so-called
“green valley” (GV). The BC typically is made of young, spiral galaxies which are often found in
low-density environments. In contrast, RS galaxies are typically massive, old, bright ellipticals,
often found in high-density environments—especially the interiors of galaxy clusters.

If cold gas is unable to condense into new stars, the galaxy ceases star formation, and is
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considered quenched. Various quenching mechanisms dominate at different galactic mass ranges
and at different redshifts [see e.g. Figure 15 of Peng et al., 2010], either heating up gas so it is
unable to condense, or blowing out gas, so there is none to collapse. The review by Somerville
and Davé [2015] states that though the exact physics behind the quenching of satellite galaxies
is unknown, several processes play crucial roles. For galaxies of decimal log stellar mass `★ ≡
log10 𝑀/𝑀⊙ ≳ 10.5, feedback from central supermassive black holes blows gas out of the galaxy,
preventing formation of new stars. Especially at earlier times (𝑧 > .5), merging events play crucial
roles in galaxy quenching—disrupting, heating, and ejecting gas from galaxies. In addition to
initiating merging, gravity continually pulls galaxies towards denser regions. Denser environments
quench galaxies more. As a galaxy barrels through the hot gas of a galaxy cluster, the resulting ram
pressure strips away gas. Furthermore, close interactions between galaxies (or between a galaxy
and a massive cluster) cause tidal stripping, pulling off outer layers of cold gas from the galaxy.
Both processes prevent further star formation. Each of these quenching mechanisms align to place
galaxy clusters as hotbeds for the creation of quiescent galaxies (galaxies which have largely ceased
star formation). As clusters are the endpoint of large-scale gravitational collapse, they also serve
as the terminal location of such galaxies. Therefore, as compared to other locations of the cosmic
web, galaxy clusters tend to have quite high red fraction ( 𝑓RS; fraction of galaxies belonging to RS).

Though no absolute boundary exists between RS and BC, various means exist to classify galaxies
in a strongly bimodal fashion. The most striking difference in the spectra of RS and BC galaxies in
the optical regime (roughly 3100–11,000 Å) is “the 4000 Å break.” In particular, 𝐷4000 measures
the relative spectral intensities on either side of the 4kÅ break [Balogh et al., 1999]: this estimates
well a galaxy’s current star formation rate. The break is caused by both a coincidence of several
metallic ionized absorption lines and the Balmer break, near _B = 3645 Å [Hathi et al., 2008, Kim
et al., 2018]. These all work to suppress stellar spectra at shorter wavelengths—especially so for
stars in RS galaxies—leading to a clear dichotomy in 𝐷4000 between RS and BC.

Far from the 4kÅ break, other features further distinguish RS from BC. At very short wave-
lengths, RS and BC show significant differences in X-ray luminosity 𝐿𝑋 [Fabbiano, 1989]. In
intermediate wavelengths, differences such as dust content and metallicity further distinguish the
spectra of RS from BC [Blanton and Moustakas, 2009]. At longer wavelengths, RS and BC are
distinguished in the far infrared [Symeonidis et al., 2022]. Differences such as these invite models
to use more than 𝐷4000 alone to distinguish between RS and BC.

Because measuring spectroscopy becomes prohibitively expensive and time-consuming as
galaxy count increases, surveys turn to photometry—measuring (negative log) net flux across
a wide band of wavelengths. In this paper, we use photometry from both DECam (𝑢𝑔𝑟𝑖𝑧, spanning
_ ∼ 3100 to 10, 000 Å) and VIRCAM (𝐽𝐻𝐾s, spanning _ ∼ 11, 700 to 23, 000 Å). See Table F.1
for more information on these bandpasses.
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In addition to RS appearing generally brighter than the BC, the two populations distinguish
themselves on investigating photometric “colors” (subtracted magnitudes). Because photometric
bands measure log flux, subtracting two photometric bands yields the log of the relative flux in
either portion of the spectrum. For example, with the color 𝑟 − 𝑖, we have

𝑟 − 𝑖 = −2.5 log10
𝐹𝑟

𝐹𝑟,0
+ 2.5 log10

𝐹𝑖

𝐹𝑖,0
= 2.5 log10

𝐹𝑖

𝐹𝑟
(4.1)

(since zero points in the AB magnitude system used by DES are equal, 𝐹𝑟,0 = 𝐹𝑖,0 here). Using
such photometric colors about the 4kÅ break (and in many colors beyond it), RS galaxies tend
appear redder and tighter-clustered than BC galaxies (hence their names of “red sequence” and
“blue cloud” respectively). At low redshifts, colors such as 𝑢 − 𝑟 or 𝑔 − 𝑟 span the 4kÅ break
(essentially measuring log 𝐷4000), showing significant differences in distribution. However, the
photometric color which best measures 𝐷4000 changes over redshift, so no single color suffices for
all galaxies.

The observed bimodality of RS and BC in photometric colors (at fixed galactic stellar mass and
redshift) arises for two main reasons. First, specific star formation rates (sSFR; star formation rate
per galactic stellar mass) follow a skew-lognormal distribution, with its peak at high star formation
(lg sSFR · yr ∼ −10 near 𝑧 = 0) for the galactic main sequence (BC galaxies) and a long tail towards
lower star formation for the RS [Wetzel et al., 2012, Eales et al., 2018, Leja et al., 2022]. Second, at
low sSFR values (lg sSFR · yr ≲ −11.3), the scatter in color at fixed sSFR decreases significantly,
such that low-sSFR galaxies all tend towards the same location in color space [Eales et al., 2017].
These two effects then conspire to result in a dual Gaussian distribution of galaxies in photometric
color space [Strateva et al., 2001, Bell et al., 2004, Baldry et al., 2004, Williams et al., 2009, Hao
et al., 2009, Krywult and Pollo, 2018]. We therefore can use Gaussian mixtures to characterize
these populations in multi-color space.

Gaussian mixture models (GMMs) characterize each component 𝛼 with a component weight
𝑤𝛼, mean colors ®̀𝛼, and color covariance Σ𝛼 (including scatters 𝜎 and correlations 𝜌).
For a two-component model of the RS and BC, this then entails the total parameter set
{ 𝑓RS, `RS, `BC, ΣRS, ΣBC}, where red fraction 𝑓RS ≡ 𝑤RS/(𝑤RS + 𝑤BC). Each of these param-
eters have been shown to evolve over redshift and stellar mass for both RS and BC populations
[Baldry et al., 2004, Balogh et al., 2004]. As mentioned previously, red fraction additionally
depends on local overdensity (with e.g. clusters containing a higher fraction of red galaxies than
filaments and the voids between clusters), but dependence of the other parameters on local density
have yet to be significantly measured separately from stellar mass (high-mass galaxies are born and
bred in denser environments, so the two factors correlate).

In this paper, we characterize GMM fit parameters for galaxies in the COSMOS field using
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the Red Dragon algorithm. In §4.2, we summarize the algorithm of Red Dragon and discuss
expected dependence of variables with stellar mass and redshift. In §4.3, we detail the galactic
data used in this analysis, including its mass completion, redshift limits, and color selection. In
§4.4, we display in brief the stellar mass and redshift dependence of fit parameters (§4.4.1), then
use that parameterization to select RS & BC galaxies and characterize physical properties of both
populations (§4.4.2). In §4.5, we discuss quiescent population selection accuracy as well as detail
the resulting distributions of sSFR and galactic age. We conclude with a summary of our core
findings in §4.6.

4.2 Red Dragon Algorithm

To parameterize the RS and BC, we use the galaxy population modeling tool Red Dragon [RD,
Black and Evrard, 2022]. Red Dragon uses redshift-evolving Gaussian mixtures in photometric
multi-color space to characterize both RS and BC (as well as optionally additional components).
In this section, we give a brief overview of the algorithm and results of previous characterization
on galaxies from the Sloan Digital Sky Survey (SDSS) and galaxies from Buzzard, a synthetic
catalogue [see DeRose et al., 2019, 2021, Wechsler et al., 2021].

As previously mentioned, in sufficiently small mass and redshift bins, the distribution of
optically-selected galaxies have bimodal behavior in photometric color space, well-characterized
by two Gaussian components; the exact fit parameterization (e.g. red fraction, value of mean BC
color, scatter of RS) may depend on redshift, stellar mass, and local density. Red Dragon charac-
terizes galaxies under variable conditions, such as at different redshifts, then smoothly interpolates
fit parameters across that variable, resulting in a continuous parameterization of galaxies.

4.2.1 Algorithm overview

Red Dragon uses an evolving error-corrected Gaussian Mixture Model (GMM) in multi-color space
to characterize the RS and BC galaxy populations. In particular, for a given component (e.g. RS
or BC) 𝛼, the specific component likelihood of the parameterization \𝛼 for a galaxy 𝑥 𝑗 is

L𝛼 (\𝛼
��𝑥 𝑗 ) = 𝑤𝛼√︁

(2𝜋)𝑁
��Σ𝛼 + Δ 𝑗

��
× exp

[
−1

2
( ®𝑐 𝑗 − ®̀𝛼)T(Σ𝛼 + Δ 𝑗 )−1( ®𝑐 𝑗 − ®̀𝛼)

]
,

(4.2)

where the parameter set \𝛼 is composed of component

• weight 𝑤𝛼 (with constraint
∑
𝑤𝛼 = 1),
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• mean color vector ®̀𝛼, and

• color covariance matrix Σ𝛼;

each galaxy 𝑥 𝑗 has inputs of its

• measured photometric colors ®𝑐 𝑗 and

• noise covariance matrix Δ 𝑗 (which encodes color uncertainties).

The parameterizations {\𝛼} for each of the 𝐾 components can then be optimized by finding the
maximum likelihood parameterization for all 𝑁gal galaxies with data {𝑥 𝑗 }:

L({\𝛼}
��{𝑥 𝑗 }) = 𝑁gal∏

𝑗

𝐾∑︁
𝛼=1

L𝛼 (\𝛼
��𝑥 𝑗 ). (4.3)

By doing bootstrap resampling of the input galaxy population {𝑥 𝑗 }, one can then obtain uncertainties
on all fit parameters.

The Red Dragon algorithm measures these parameterizations across redshift (or, given a suffi-
ciently thin redshift bin, across some other variable, like stellar mass) and smoothly interpolates,
yielding a continuous characterization of RS, BC, and optionally additional components. With fit
characterization in hand, one can then predict for a galaxy 𝑥 𝑗 at redshift 𝑧 𝑗 to which component it
more likely belongs. The probability of it belonging to component 𝛼 is

𝑃𝛼 (𝑥 𝑗 ) =
L𝛼 (\𝛼

��𝑥 𝑗 )∑
𝛽 L𝛽 (\𝛽

��𝑥 𝑗 ) . (4.4)

For the standard two-component model of galaxy populations, RS and BC, this then yields 𝑃RS =

LRS/(LRS + LBC) as the probability of the galaxy belongs to the RS.
Code for Red Dragon is freely available on BitBucket.1

4.2.2 Expected parameter dependence

Previous GMM fitting of RS and BC have shown dependence of red fraction, mean color, and color
scatter on redshift, galactic stellar mass (or magnitude, largely a proxy of stellar mass), and local
density [in the case of red fraction; see Balogh et al., 2004].

Of particular note for this paper is the significant reddening at higher masses. Baldry et al.
[2004] quantified for a rest-frame sample of low-𝑧 galaxies the evolution of red fraction, mean 𝑢− 𝑟
color, and color scatter as a function of 𝑀𝑟 magnitude (a proxy of galactic stellar mass). They

1bitbucket.org/wkblack/red-dragon-gamma
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fit color and scatter as linear functions with a hyperbolic tangent transitioning the fit from one
intercept to another (resulting in a slanted sigmoid function).

Colors redden with increased log stellar mass `★ ≡ lg𝑀★/𝑀⊙. In particular, they found that
the RS mean color undergoes a shift around `★ = 10.3 (BC mean colors undergo a similar shift
at `★ = 10.4), from following a bluer trend to a redder with increased stellar mass. This implies
that linear extrapolation from high-masses (`★ > 11) down towards lower masses (`★ < 10) will
predict significantly redder galaxies than observed. Color scatters tend to increase with stellar
mass, but only monotonically so for the RS. Near `★ = 10.0, BC scatter increases momentarily,
then continues its decreasing trend with increasing stellar mass. However, these measurements
only included a single color, though more are available from core DES 𝑔𝑟𝑖𝑧 photometry.

Using data from DES Y3, redMaPPer [RM; Rykoff et al., 2014] characterized bright members
(𝐿 > 0.2 𝐿∗,𝑧 (𝑧), corresponding to 𝑚𝑧 − 𝑚∗,𝑧 (𝑧) < 1.75, where 𝐿∗,𝑧 (𝑧) and 𝑚∗,𝑧 (𝑧) are the
characteristic 𝑧-band luminosity and magnitude for a galaxy at a given redshift 𝑧) of the RS in a
multi-color × magnitude space, evolving a Gaussian parameterization of the RS across redshift.
RM fit mean RS colors to drift linearly with magnitude (such that higher stellar masses were redder),
allowing the slope to evolve with redshift. As these galaxies were generally far heavier than the
sigmoid transitions mentioned above, such linear modeling fits the high-mass characterizations of
Baldry et al. [2004]. As the fit only considers the RS (the BC is dimmer and has less accurate redshift
estimates than the RS), it lacks red fraction and BC outputs. In regions where color uncertainties
exceeded intrinsic scatter (which was nearly always, since it trained on a photometric dataset), RM-
measured inter-color correlations reflected correlations between uncertainties rather than reflecting
intrinsic correlation between colors (within only the RS population). For these reasons, in future
comparisons to this fit, we will only show the RS mean color and scatter measured by this model.

While RM lacks BC characterization, a sufficiently clean sample, with accurate redshift estimates
for the BC, could potentially use a GMM to model both populations across redshift. Such a model
could potentially give more informed cluster memberships, photo-𝑧 values, and reveal astrophysics
of the BC.

4.2.3 Fit Results from B22

Previous RD fitting of RS and BC done by Black and Evrard [2022, hereafter B22] used bright
(𝐿 > 0.2 𝐿∗,𝑖 (𝑧), where 𝐿∗,𝑖 (𝑧) is the 𝑖-band characteristic magnitude at a given redshift 𝑧) galaxies
from SDSS and a DES-like synthetic galaxy catalog [Buzzard; DeRose et al., 2019, 2021, Wechsler
et al., 2021] with primary colors ®𝑐DES = [𝑔 − 𝑟, 𝑟 − 𝑖, 𝑖 − 𝑧]. The SDSS sample focused on
low redshifts 𝑧 = .1 ± .005 and intermediate redshifts 𝑧 | (.3, .5); in contrast, the Buzzard sample
extended from redshift 𝑧 = .05 out to 𝑧 = .84, focusing on the redshift evolution of parameters.
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Several key results follow.
With the low-𝑧 SDSS sample, Red Dragon selected the quiescent population, defined as

lg sSFR · yr < −11 + 𝑧, with ∼ 92% accuracy. Increasing the threshold to lg sSFR · yr < −10.7 de-
creased selection accuracy to ∼ 89% while decreasing the threshold to < −11.3 increased selection
accuracy to ∼ 94%. A three-component fit was found to best explain the data; the third component,
beyond RS and BC, had lower weight (𝑤 < 10%), higher scatter (roughly twice that of the BC),
and had low (small positive or consistent with null) inter-color correlations (often the lowest). This
could indicate that the third component merely captured ‘noise’, i.e. galaxies that didn’t fit well in
either component. In the mid-𝑧 SDSS sample, we found that RD selects the quiescent population
similar to or superior to single-color selection and at transition redshifts (redshifts where the 4kÅ
break redshifts from one photometric band into its neighbor), RD performed > 6𝜎 superior to
either color alone.

In Buzzard, we found that 𝑓RS decreased near linearly with redshift. Mean colors generally
agreed with redMaPPer fits (RM; E. Rykoff 2022, private communication), though at 𝑧 ≳ .7 colors
were somewhat redder. Scatters agreed roughly, though RD tended to have larger scatters than RM,
especially at 𝑧 ≲ .25.

RD made the first measurement of inter-color correlations: correlations between photometric
colors within the RS population and also in the BC population. In both SDSS as well as Buzzard,
Red Dragon measured inter-color correlations of 𝜌RS < 𝜌BC < 95% typically. In Buzzard, these
correlations generally decreased with redshift. It was expected from SPS modeling that color
correlations for both RS and BC should be 𝜌 ≳ 90% [Rykoff et al., 2014], but results showed
a different story, with correlations even dipping negative at times. Very roughly, for their bright
sample of synthetic galaxies out to 𝑧 = .84, B22 found 𝜌BC ∼ .95 − .2𝑧 and 𝜌RS ∼ .8 − .5𝑧.
Deviating from a smooth trend, B22 found a significant dip in correlation of 𝜌(𝑔 − 𝑟, 𝑖 − 𝑧) and
𝜌(𝑟 − 𝑖, 𝑖 − 𝑧) near 𝑧 = .38, where the 4kÅ break is leaving 𝑔 band and entering 𝑟 band. These
results show considerably lower RS inter-color correlations than expected, along with interesting
features near 4kÅ redshift transitions (vertical grey lines of Figure 4.1).

4.3 Data

In this paper, we use galaxies from one of the DES deep fields known as the COSMOS patch.
In addition to photometry, this sample includes estimated stellar masses, star formation rates, and
ages. In this section, we detail the COSMOS dataset and the particular selection of galaxies we
utilize in this paper.
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4.3.1 The COSMOS2015 Catalog

Our data come from a region of the sky known as the COSMOS (Cosmic Evolution Survey) field
[Yoshiaki et al., 2005, Scoville et al., 2007], covering a solid angle of the sky about 16 times
larger than the moon, found in the constellation Sextants. This region has few local stars nor gas
clouds from the Milky Way intervening to obstruct imaging of other galaxies. It is centered at
approximately J2000 (RA,Dec.) = (150.1166, 2.2058).

The COSMOS field has received much attention across the spectrum, with observations ranging
from short-wavelength X-rays all the way to long-wavelength radio waves [Schinnerer et al., 2004,
Hasinger et al., 2007]. We use the COSMOS2015 catalog: observations from the COSMOS DES
(Dark Energy Survey) Deep Field [Laigle et al., 2016, 2018, Hartley et al., 2022]. This makes use
of data from both the Dark Energy Camera [DECam; Flaugher et al., 2015], which supplies bands
𝑢𝑔𝑟𝑖𝑧, as well as data from the VISTA InfraRed CAMera [VIRCAM; Dalton et al., 2006, Emerson
et al., 2006], which supplies bands 𝐽𝐻𝐾s [as part of the UltraVISTA survey; see McCracken et al.,
2012, Caputi et al., 2015].

Figure 4.1 displays these bands, showing both their observing wavelengths at 𝑧 = 0 as well what
galactic spectral features would be picked up by each band at higher redshifts. Central wavelengths
and widths for each band are given in Table F.1, along with the redshifts at which the 4kÅ break
enters and exits each band. Because it is the most prominent optical feature of galaxies, the points
at which the 4kÅ break exits each band (vertical lines in the figure) give approximate redshifts at
and just after which to expect significant changes in band flux.

Redshifts in this dataset are photometric, estimated by the code LePhare [PHotometric Analysis
for Redshift Estimations; Arnouts et al., 2002, Ilbert et al., 2006], using a suite of Bruzual and
Charlot [2003] spectrum templates as in Ilbert et al. [2013] to model expected redshifts with high
precision (median redshift uncertainty 𝜎𝑧/(1 + 𝑧) = .036 in our mass range). This SED fitting of
photometry as a byproduct includes estimations of stellar mass, specific star formation rates, and
galactic ages.

4.3.2 Stellar mass completion

Ilbert et al. [2013, Table 2], gives the minimum masses at which the RS & BC are complete for
several redshift bins. As the BC minimum masses lie below those of the RS, we use the former.
The minimum mass at a given redshift is well fit by

1
1 + 𝑧max

= .39 − .19 (`★,complete − 9.4). (4.5)

This gives us the maximum redshift to which we can extend the sample while remaining mass-
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Figure 4.1: Redshift drift of several galactic spectral features, compared to photometric bands from
DECam and VIRCAM. In red is the 4kÅ break, the strongest feature in the RS and BC. Vertical
grey lines indicate redshifts at which the break exits each band. Green curves display Hydrogen
spectral lines, while grey dashed curves show Fe ii (2635 Å) and [O i] (6310 Å) emission lines
(discussed in §4.5.2).
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Figure 4.2: Galaxy count per redshift and mass bin. For each decadal stellar mass bin used in
this analysis, count of galaxies presented per each Δ𝑧 = 0.05 bin (width used here for RD fitting).
The legend includes galaxy count of each sub-sample used for core results. Open circles indicate
bins with insufficient count of quiescent galaxies, which were not displayed in the main results that
follow.

complete at a given threshold. A lower stellar mass completion requirement therefore limits us to
lower redshifts whereas a high stellar mass completion limit extends the sample to higher redshifts.

Low-mass galaxies are more abundant than high-mass galaxies, yet a lower mass threshold
decreases the redshift range; these two factors compete to yield a peak number of galaxies when
using a mass completion limit of `★,complete ∼ 9.14, extending out to 𝑧 = 0.56, with a total galaxy
count of 𝑁 ∼ 54, 000. For our analysis, we use three stellar mass decades in that neighborhood,
spanning `★| [8, 11). The minimum masses of each bin `★ = {8, 9, 10} require maximum redshifts
of 𝑧max = {.55, 1.15, 2.65} respectively to ensure mass completion.

Figure 4.2 shows the resulting number counts as a function of redshift for each of these three
mass decades. Counts rise as more volume is enclosed, then gradually falls with redshift. As
expected for mass-complete samples, we see significantly more low-mass galaxies than high-mass
galaxies at a fixed redshift.
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Figure 4.3: Distribution of galaxy photometric color 𝑟 − 𝑖 over redshift from the COSMOS2015
dataset. Colored by the physical properties of specific star formation rate (left) and stellar mass
(right). As in Figure 4.1, vertical grey lines indicate redshifts at which the 4kÅ break leaves each
photometric band. Mass-complete down to `★ = 9 and therefore redshift-limited to 𝑧 < 1.14.
Compare to Red Dragon selection of the Red Sequence in Figure 4.9.

4.3.3 Redshift limits

In order to ensure trustworthiness of fitted data, we further limit our focus to only those redshift
bins in which reside a sufficient population of galaxies, excluding any bin with < 100 galaxies.

In order to ensure we constrain the quiescent population of galaxies, we further demand that
there be a sufficient quantity of low sSFR galaxies in each redshift bin. We use the simple definition
from Ilbert et al. [2013] of

lg sSFR · yr < −11 (4.6)

as a definition of quiescent galaxies. We exclude redshift bins with significantly (allowing for ±3𝜎
Poisson uncertainty) less than 100 quiescent galaxies (as defined by equation (4.6)), ensuring a
sufficient population exists within each bin.

These requirements limit the redshift extent of each mass bin from that shown in Figure 4.2
down to 𝑧 | [.05, .45), 𝑧 | [.1, .75), and 𝑧 | [.2, 1.6) for the mass bins in increasing order (solid points
on the figure).

4.3.4 Color selection

Myles et al. [2021] analyzed DES Y3 data for weak lensing analyses and enumerated several
important limits to enforce in order to exclude unphysical results. Relevant to our analysis, they
restrict their color ranges to exclude unphysical colors (“assumed to be caused by catastrophic
flux measurement failures”). Mirroring their selection, we restrict each color of our primary color
vector

®𝑐 = [𝑔 − 𝑟, 𝑟 − 𝑖, 𝑖 − 𝑧] (4.7)
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and of our extended primary color vector

®𝑐 = [𝑢 − 𝑔, 𝑔 − 𝑟, 𝑟 − 𝑖, 𝑖 − 𝑧, 𝑧 − 𝐽, 𝐽 − 𝐻, 𝐻 − 𝐾𝑆] (4.8)

to be within the range [−1.5, 4.0]. These bounds turn out to be quite generous, as we find scatter
off of mean colors (®𝑐 ± 5®𝜎) lies entirely in the range (−.75, 3.0) across all redshifts considered.
Roughly 1% of galaxies in our main sample are removed by this cut.

Figure 4.3 displays 𝑟 − 𝑖 color across redshift for a mass-complete sample of galaxies, as colored
by the physical properties of specific star formation rate (sSFR) and log stellar mass (`★). Note
that, especially at high redshift, some low-mass and star-forming galaxies are redder in 𝑟 − 𝑖 than
the core RS, indicating significant scatter in observed color at fixed physical properties.

4.4 Results

Here we display and discuss several results of running Red Dragon (RD) on DES deep-field data
from the COSMOS patch. In §4.4.1 we give RD fit parameterization for the main DES bands 𝑔𝑟𝑖𝑧,
including component weights 𝑤, mean colors `, scatters𝜎, and correlations 𝜌 between photometric
colors for both RS and BC galaxy populations. In §4.4.2 we use the RD fit to characterize RS
membership probabilities 𝑃RS, then use those probabilities to measure median sSFR and galactic
age for each population.

4.4.1 Red Dragon fit parameterization

In this section, we describe the results of fitting RS & BC galaxy populations from the COSMOS
field with Red Dragon. Only fits using the DES main bands 𝑔𝑟𝑖𝑧 are shown here for simplicity
of visualization and discussion, with a focus on 𝑟 − 𝑖; see fits to other mean colors, scatters, and
correlations in Appendix G. In order to show dependence of fit parameterization with stellar mass,
we simultaneously visualize these fits for each of the three aforementioned decadal stellar mass
bins (see Figure 4.2).

4.4.1.1 Component weights

Figure 4.4 shows the fraction of red galaxies 𝑓RS as a function of redshift for each of the three
decadal mass bins. For the lower two mass bins, we see clear decreasing trends, as expected due
to the continual evolution of BC galaxies towards RS galaxies. Though in the highest-mass bin we
find a net negative slope (𝑑𝑓RS/𝑑𝑧 = −.09 ± .03), the population exhibits less consistent redshift
evolution compared to the lower-mass bins.
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Figure 4.4: RD-measured redshift evolution of component weights for RS, i.e. red fraction 𝑓RS.
Shown for each of the three decadal stellar mass bins used in this analysis; coloring gets lighter and
lines get sparser with decreasing mass. KLLR kernel widths are 𝜎𝑧 = .05 in redshift.
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The fraction of red galaxies in a given sample depends heavily on how you select your galaxies.
The probability of a galaxy being red increases as you move nearer to cluster centers (denser
environments), at higher stellar masses, and at lower redshifts (i.e. later times, as BC galaxies
continuously evolve towards RS galaxies) [Butcher and Oemler, 1978, Madau et al., 1996, Connolly
et al., 1997, Baldry et al., 2004, Balogh et al., 2004, Peng et al., 2010, Madau and Dickinson, 2014].
While we focus this analysis on the latter two effects for our patch of the sky considered, proximity
to clusters indirectly effects 𝑓RS, due to cosmic variance.

Because the COSMOS patch is a relatively small patch on the sky, it is highly subject to matter
density fluctuations on the length scale subtended. Figure 4.3 visually depicts this, with individual
clusters identifiable at low redshifts (𝑧 ≲ .45) as vertical lines in the color–redshift plots (indicating
galaxies within the same galaxy cluster, lying at near-identical redshifts). At 𝑧 < .2, the square
root of the COSMOS field’s small area on the sky is over 100 times smaller than the scale of
homogeneity [∼ 100 Mpc/ℎ/(1 + 𝑧); see Avila et al., 2022]. Due to the increased variability in
large-scale structure in smaller volumes as well as increased uncertainty due to low-count Poisson
uncertainty, we see increases in red fraction variability at the lowest redshifts (𝑧 ≲ .25). Because
voids take up more of the universe’s volume than walls, filaments, and nodes, we’re more likely to
find field galaxies than cluster galaxies in small volumes. This effect is especially pronounced for
luminous red galaxies, as they are far more likely found at large nodes than dim or blue galaxies. As
field galaxies are more likely blue than red, this is likely to depress the red fraction at low redshifts.
(Contrariwise, if a cluster does happen to be found in the small volume, especially at low redshifts,
red fraction would be boosted tremendously, especially for high-mass galaxies.)

The slight peak of 𝑓RS in the high-mass sample near 𝑧 = .8 is driven by a sudden dearth of BC
galaxies at 𝑧 = .775 and a sudden surplus of RS galaxies at 𝑧 = .825; the significance of the peak
is low compared to its neighbors, but > 5𝜎 significantly larger than 𝑧 ∼ .3 values of red fraction.
This divergence from Butcher-Oemler expectations is likely driven by cosmic variance, which is
particularly strong at high masses. At 𝑧 ∼ .8, the COSMOS patch has only reached a diameter
of ∼ 30 Mpc, less than half the scale of homogeneity (∼ 79 Mpc at that redshift), implying that
the survey is still highly susceptible to fluctuations due to cosmic variance (especially so at high
masses). Therefore, the peak in 𝑓RS for the high mass sample around 𝑧 = .8 should not be taken as
an indication of a universal increase at that time.

4.4.1.2 Mean colors

If we assume perfectly neighboring and square photometric bands, and assume a galaxy’s spectrum
is a step function at the 4000 Å break, then the resulting photometric color (as a function of 𝑧) is
a single triangle wave: rising from zero as the break moves into the shorter-wavelength band then
falling back towards zero as the break moves through the longer-wavelength band. Despite the
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Figure 4.5: RD-measured mean component 𝑟 − 𝑖 color for each decadal mass bin (mass-complete
out to the redshifts shown). RS shown in tints of red; BC shown in tints of blue; coloring grows
lighter with decreasing mass. The dotted green line is a fit from the redMaPPer algorithm to the
RS; as colors are magnitude-dependent, we show for the mean and scatter of magnitudes in our
highest-mass sample the estimated fit. As in Figure 4.1, vertical lines indicate 4kÅ exit redshifts
for 𝑔𝑟𝑖𝑧 bands. See Figures G.1 & G.2 for ⟨𝑔 − 𝑟⟩ and ⟨𝑖 − 𝑧⟩ characterizations.

extreme simplicity of this model, it roughly explains the location of the observed major peak for
each color.

Figure 4.5 shows measured mean 𝑟 − 𝑖 color evolution for each of the three mass bins for both
RS and BC. We see the expected rising behavior starting at 𝑧 ∼ .4 (near where the 4kÅ break
enters 𝑟 band), the peak at 𝑧 ∼ .8 (near where the break exits 𝑟 band and enters 𝑖 band), and falling
behavior afterward. Imperfections and asymmetries in filters and other features in galactic spectra
make mean measured color diverge from the simple triangle wave model; see §4.5.2 for a more
detailed analysis of features observed in measured mean colors. Both RS and BC are known to
redden nonlinearly with increasing galactic stellar mass [though for `★ > 10.3 a linear model may
suffice; see Baldry et al., 2004, Balogh et al., 2004]; our results agree with this finding, as measured
mean colors at a given redshift consistently redden with mass.

As mentioned previously, we compare RS mean color and scatter to measurements made by
redMaPPer (RM; fits made available by E. Rykoff 2022, private comm.). Mean colors drift
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Figure 4.6: RD-measured intrinsic color scatter in 𝑟 − 𝑖; lines as in Figure 4.5. (RM scatters do
not run with stellar mass, hence only the single curve.) See Figures G.3 & G.4 for 𝜎𝑔−𝑟 and 𝜎𝑖−𝑧
characterizations.

linearly with 𝑧-band magnitude 𝑚𝑧, so to compare with our mass-binned sub-samples, we use
the characteristic magnitude 𝑚∗,𝑧 (𝑧) of Rykoff et al. [2014] to measure mean and scatter of 𝑚𝑧 −
𝑚∗,𝑧 (𝑧) = 1.26 ± .88 in the highest mass bin, which is used to plot expectations. We note that even
in this highest mass bin, 27% of galaxies are fainter than the RM minimum luminosity threshold
(of 𝑚𝑧 −𝑚∗,𝑧 (𝑧) = 1.75), so we focus our RM comparison exclusively on the highest-mass bin. We
find reasonably good agreement, though with some divergence at higher redshifts.

Fits for ⟨𝑔 − 𝑟⟩ and ⟨𝑖 − 𝑧⟩ are included in Appendix G. We see several relatively consistent
features across each color, albeit offset in redshift (due to the differing rest frame band wavelength
ranges), discussed in §4.5.2. Each of the color plots roughly agree with fits from B22 (up to its
terminal redshift of 𝑧 = .84), each diverging by ≲ .1 mag. While ⟨𝑖 − 𝑧⟩RS matches the RM fit well,
⟨𝑔 − 𝑟⟩RS differs significantly beyond 𝑧 ∼ .75, as the RM fit diverges towards bluer colors.

4.4.1.3 Color scatters

Figure 4.6 details the RD fitting of 𝑟 − 𝑖 scatter as it evolves with redshift for each stellar mass bin,
for both RS and BC components. The most massive stellar mass bin performs similar to the RM fit,
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consistent within a factor of ≲ 2 for `★| [10, 11) galaxies. In contrast, the lower-mass bins showed
considerably larger scatter than high-mass galaxies, by a factor of ≳ 2, as expected from Baldry
et al. [2004].

Scatters for 𝑔− 𝑟 and 𝑖 − 𝑧 are shown in Appendix G. Across the board, RS color scatters tend to
increase with redshift. BC scatters tend to increase until the color’s transition redshift, after which
it is roughly constant. This implies that at wavelengths shorter than the 4kÅ break, BC spectra
have constant scatter, indicating uniformity of the BC across these regions. For the RS, scatters
almost always reduced with increasing `★, but BC scatters exhibited non-monotonic behavior with
`★. Baldry et al. [2004] measured non-monotonic behavior within ∼ .23 dex of `★ ∼ 9.95; our
results broadly agree.

For each color of the high-mass galaxy sample, the RS scatter begins to exceed BC scatter near
the redshift where the 4kÅ break exits a color’s subtrahend. Here, for 𝑟 − 𝑖, this is at 𝑧 ∼ 1.2,
where the 4kÅ break exits 𝑖-band. In contrast, for the lightest galaxies, we found consistently
that 𝜎RS ≳ 𝜎BC for their full redshift extent. This could be caused by the plurality of quenching
mechanisms present at low galactic mass; while high-mass galaxies (`★ ≳ 10.5) are essentially
all quenched by AGN, lower-mass galaxies are quenched by a variety of mechanisms, such as
supernovae, stellar winds, or reionization [Wechsler and Tinker, 2018]. The increased variety in
quenching mechanisms could be the driving reason behind increased RS scatter towards lower
masses. The narrowness of the RS was first observed for bright galaxies; as most all galaxies even
in the highest mass bin were below .4 𝐿∗, it should be relatively unsurprising that our findings in
lower mass bins run contrary to the high-mass expectations [especially considering the expectations
of increased RS scatter at lower stellar masses; see Baldry et al., 2004, Fig. 5].

4.4.1.4 Color correlations

Positive intrinsic inter-color correlations here imply that if one color is redder than average (i.e.
the longer-wavelength band captures more net flux), then the other color considered will also be
redder than average. Perfect correlation would come from a pure power-law spectrum, implying
no significant divergences between color behaviors. Negative correlations imply that if one color
is redder, the other color will be bluer. If the correlation is between overlapping colors, such as
𝜌(𝑔 − 𝑟, 𝑟 − 𝑖), where the two colors share the middle band 𝑟, then negative correlations could be
caused by variable peaks in the spectrum within the shared band. If a narrow variable feature (e.g.
oxygen emission line) existed in 𝑟 for an otherwise power-law spectrum, then for 𝜌(𝑔 − 𝑟, 𝑟 − 𝑖) as
the feature is redshifted through 𝑔-band the correlation would drop to null; once the feature enters
𝑟-band, the correlation would drop to −1; as it then enters and passes through 𝑖-band, it would
symmetrically return towards high correlations.

Figure 4.7 shows redshift evolution of intrinsic inter-color correlations between the overlapping
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Figure 4.7: RD-measured inter-color correlation between 𝑟 − 𝑖 and 𝑖− 𝑧 photometric colors; RS and
BC lines for each mass bin as in Figure 4.5. Across all color combinations, BC color correlations
𝜌BC on average are roughly 10% larger than RS color correlations 𝜌RS (∼ 25% larger for high-mass
galaxies). See Figures G.5 & G.6 for 𝜌(𝑔 − 𝑟, 𝑟 − 𝑖) & 𝜌(𝑔 − 𝑟, 𝑖 − 𝑧) characterizations.
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colors 𝑟 − 𝑖 and 𝑖 − 𝑧 for each mass bin and for each component as they evolve across redshift.
Figures G.5 & G.6 show correlations between the other two color combinations.

Broadly speaking, correlations tend to decrease over redshift (𝑑𝜌/𝑑𝑧 ∼ −.16) and increase with
stellar mass (𝑑𝜌/𝑑`★ ∼ +.12). We find that the RS inter-color correlations 𝜌RS tend to be less
than or similar to those of the BC 𝜌BC. This is most apparent for the high-mass sample, with
BC correlations significantly larger than the RS; in contrast, the RS correlations of the low-mass
sample are occasionally larger than that of the high-mass sample. Very roughly, we find inter-color
correlation for the RS 𝜌RS ∼ 60%; in contrast, we find 𝜌BC ∼ 75%, still lower than expectations
from SPS modeling.

Comparing to Figure 4.1, we see that the wavelength region of 𝑟 to 𝑧 in the redshift range of
𝑧 | [.776, 1.35] is quite tumultuous, with the 4kÅ break and other narrow features passing through
𝑖-band, the shared band of this color correlation. Variation in the strengths of the Balmer series
and 4kÅ break (e.g. caused by differences in metallicities or temperature) may explain the lower
correlation in the RS seen in this redshift region.

As mentioned earlier, a dip in correlation of overlapping colors could be caused by a narrow
feature with variable intensity. The dip in correlation at 𝑧 = .38 could thus be caused by a
strongly varying emission line near the central wavelength of 𝑖-band at that redshift, namely
_c/(1+ 𝑧) = 7835 Å/(1+ .38) ∼ 4100 Å, which incidentally matches the H-𝛿 line. Strong variation
in H-𝛿 strength could thus cause such a feature.

Due to the skew-normal distribution of lg sSFR · yr, the star-forming population has relatively
tightly-knit spectral features compared to the quiescent population (which approach null star for-
mation). This could in part drive the stronger correlations between BC colors as compared to RS
colors. Furthermore, there are various quenching pathways from the BC to the RS, be it by aging or
feedback or merging. These various paths to the RS from the BC could imprint themselves differ-
ently on various RS spectra, leading to increased variability (and therefore decreased correlation)
in RS colors as compared to BC colors.

4.4.2 Red Dragon fit results

With the photometric fits to the galaxy populations in hand, we can calculate component member-
ship likelihoods for each galaxy. In particular, we focus on the RS membership probability 𝑃RS (see
eqn. (4.4)), using 𝑃RS ≥ .5 to distinguish RS from BC galaxies. Such binary classification allows
us to measure redshift evolution of sSFR values and galactic age for each population, characterizing
typical quiescent galaxies as well as tracing the star-forming main sequence.
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Figure 4.8: Histogram of 𝑃RS values for the highest-mass dragon. Bin width of .01 highlights at
𝑃RS < .01 and 𝑃RS > .99 the order of magnitude increase, indicating high certainty of characteri-
zation for the lion’s share of galaxies.
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Figure 4.9: Galaxy (𝑟 − 𝑖) (𝑧) colored by 𝑃RS; as panels of Figure 4.3 but with points colored by
RS membership probability 𝑃RS. Galaxies with max(L) less than the 10th percentile are marked
in green, indicating galaxies which were favored by neither RS nor BC as strong members.

4.4.2.1 Galaxy selection and characterization

Using the RD modeling of COSMOS patch galaxies of §4.4.1, we now ascribe to each galaxy a red
sequence membership probability 𝑃RS (see equation (4.4)). Figure 4.8 shows for the highest mass
bin that these values are strongly bimodal: roughly 90% of galaxies across our three mass bins have
probabilities 𝑃 ≡ max(𝑃RS, 𝑃BC) greater than 0.75 and roughly 75% of galaxies have probabilities
𝑃 > 0.90, so this distribution lends itself naturally towards binary selection of the RS and BC. As
maximum likelihood values Lmax ≡ max(LRS,LBC) decrease, galaxies are more likely ascribed
middling values of 𝑃RS.

Figure 4.9 shows the characterization of 𝑃RS for galaxies in the space of 𝑟 − 𝑖 across redshift,
visually showing the bimodality of probabilities. This selection, visually compared to Figure 4.3,
shows that the RD-defined RS here largely isolates the quiescent population.

Shown as green points on this figure are galaxies which didn’t fit well to either population. In
particular, galaxies with the lowest 10% of L values were neither likely candidates for RS nor BC.
Such galaxies tend towards higher redshifts and had photometric color uncertainties typically ≳ 2.7
times larger than higher-likelihood galaxies. Intrinsic scatter of this low-L sample far exceeds that
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Figure 4.10: Median sSFR values (with bootstrap uncertainty) for RS and BC for each of the three
mass-binned samples as they evolve over time. Only redshift bins with 𝑁galaxies ≥ 100 are shown.

of the RS or BC, indicating that these galaxies tend to be outliers in color space.

4.4.2.2 Evolution of star formation rates

Using binary selection of the RS and BC from 𝑃RS, we can now find sSFR values for RS and BC
as functions of redshift.

Figure 4.10 shows median sSFR values for each population with bootstrap uncertainties, showing
a clear trend of increasing with redshift and decreasing with stellar mass. Each mass bin shows a
clear distinction between quiescent and star-forming galaxies, with roughly a factor of 10 to 100
between the two populations (where higher masses tend towards a larger separation in sSFR values).
Star formation rates increase with redshift, indicating more active populations in the past, towards
cosmic noon (at 𝑧 ∼ 2).

The uptick in median sSFR in the high-mass population at high redshifts / early times could
relate to the lack of quiescent galaxies at high redshifts. While this could be an actual feature
(perhaps related to cosmic noon), this is similar to what would be expected due to a lack of
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quiescent galaxies, that the RS approaches a noise term which looks more similar to the BC. In the
last five redshift bins displayed in Figure 4.10, quiescent galaxies (using the definition of eqn. (4.6),
thus differing from RD characterization) make up only ∼ 10% of the population (decaying sharply
with redshift beyond that point). At such a low red fraction, it becomes increasingly difficult for
GMMs to detect the RS, favoring fitting noise terms or sub-dividing the BC instead. Until we have
additional high-quality data to draw from at high redshifts, forming a sizeable RS population, it
will be difficult to discern.

The star-forming main sequence (SFMS) is roughly fit by

lg(sSFR · yr)BC = −10 + (.2 Gyr−1) 𝑡 (4.9)

(where 𝑡 is lookback time). The time slope of this relation is in rough agreement with findings
from Speagle et al. [2014], who found the time slope ranged in [.098, .176] Gyr−1 over our mass
range. A slightly more precise quiescent definition than equation (4.6) could use 1 dex below this
fit as a dividing line between RS and BC, allowing for time evolution of the quiescent population.
However, as discussed in Leja et al. [2022, see §7.2 therein], enforcing a hard cut selection of the
RS and BC using a threshold in sSFR has considerable downsides: as sSFR is skew-lognormal
(rather than bimodal, as are galactic colors), a slight shift in threshold can lead to a significant
shift in population characterization. This favors using photometry to characterize population sSFR
values, rather than the converse, of using sSFR values to characterize RS & BC populations.

4.4.2.3 Evolution of galactic age

Similar to the previous section, we can map out median estimated galactic age for each population
(typical length of time since the galaxy’s formation). This is shown in Figure 4.11, mirroring
the style of Figure 4.10. Individual galaxy ages lack uncertainty estimates here, so these findings
should be interpreted with discretion. We find that RD-selected RS galaxies in each mass bin are
consistently older than BC galaxies, by O(1 Gyr); this is the expected quenching timescale [Bell
et al., 2004, Blanton, 2006].

If all galaxies in a certain stellar mass bin were born at the same time and didn’t grow or merge
enough to leave the mass bin, nor move from BC to RS, then we would expect a slope of negative
one on the plot for each population, indicated by the diagonal grey lines. Though not universal,
slopes tend to be slightly shallower than the assumption of a single creation epoch and unchanging
population membership. This indicates that the populations are being joined by younger galaxies
(more recently formed) or that older galaxies are leaving the mass bin. (In contrast, steeper slopes
indicate the reverse, that the mass bin is either joined by older galaxies or that younger galaxies are
leaving the mass bin.)
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Figure 4.11: Median galactic age, formatted as Figure 4.10. Diagonal grey lines indicate equal-
epoch growth.
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Focusing on the high-mass sample (dark points), RS and BC show distinct trends, even out to
high redshift. This is somewhat in contrast to the high-mass high-redshift regime of Figure 4.10,
where the RS seems to move towards the BC in what could be a degradation towards noise or a
sub-division of the BC. The significant distinction of ages in Figure 4.11 indicates that Red Dragon
is still selecting significantly different populations in such circumstances.

4.5 Discussion

In this section, we discuss the accuracy wherewith RD selects the quiescent population (§4.5.1),
the interpretation of mean color characterizations (§4.5.2), and the choice of using two components
vs more to characterize galaxy populations (§4.5.3).

4.5.1 Accuracy in selecting the quiescent population

Rather than use RD selection of the RS as a ‘truth’ to characterize median sSFR values, we can
use sSFR values as a ‘truth’ wherewith to select the RS, and measure RD selection accuracy of this
quiescent population.

Ilbert et al. [2013] used lg sSFR · yr < −11 as a truth label for the RS and measured selection
accuracy as a function of redshift. Using balanced accuracy (bACC; the average of specificity and
sensitivity) to measure this, their two-color hard-cut selection of the RS results in a bACC which is
consistent with linearly decaying over redshift, moving from ∼ 95% accuracy at redshift zero down
such that at 𝑧 = 2.5 their accuracy was ∼ 65% (where random selection results in a bACC of 50%).

For comparison, we allow dragons to fit populations out to high redshift, beyond the point of
losing a large population of lg(sSFR · yr) < −11 galaxies. To increase RS size, we fit all `★ > 9
galaxies here, rather than limit ourselves to a single mass decade. To account for the significant
evolution of GMM parameters with stellar mass for the BC in this sample, we perform a three-
component fit. Though these fits may degrade somewhat towards higher redshifts (as discussed in
§4.4.2.2), we will show that the fits retain utility nonetheless.

Figure 4.12 compares balanced accuracies of selecting quiescent (equation (4.6)) galaxies as
measured by the two-color selection of Ilbert et al. [2013] (black errorbar points; no uncertainties
in bACC available) as compared to the Red Dragon algorithm, for both DES main photometry 𝑔𝑟𝑖𝑧
(blue points) and extended photometry 𝑢𝑔𝑟𝑖𝑧 + 𝐽𝐻𝐾s (orange points) models of the RS. In contrast
to the linearly decaying RS selection accuracy of Ilbert et al. [2013], we find consistently high
accuracies of RS selection using Red Dragon. Across the board, we find bACC ∼ 95% for the two
dragons, with the extended-photometry dragon outperforming the 𝑔𝑟𝑖𝑧 dragon significantly at the
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Figure 4.12: Balanced accuracy in selecting quiescent galaxies (see equation (4.6)). Shown for
𝐾 = 3 dragons with standard DES bands (𝑔𝑟𝑖𝑧; blue) and extended photometry (𝑢𝑔𝑟𝑖𝑧 + 𝐽𝐻𝐾s;
orange), trained on and evaluating `★ > 9 galaxies. Ilbert et al. [2013] selection show in black (no
uncertainties available). Note that uncertainties in sSFR are not well measured and are not taken
into account in this analysis.
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highest redshifts. Though the highest redshift bin has very few2 quiescent galaxies, and therefore
has wider uncertainty in bACC, using RD in the intermediate redshift bins spanning 𝑧 | (0.7, 2.0)
yields significant gains in accuracy. Particularly at 𝑧 ∼ 1.6, we see a gain in accuracy of ∼ 25%,
indicating far superior selection of the quiescent population. We therefore see clear superiority in
GMM selection of the RS as compared to using hard cuts in color–color space, especially at higher
redshifts.

As cautioned in Leja et al. [2022, see §7.2 therein], due to the skew-lognormal distribution
of sSFR, hard cut selection of the RS vs BC in sSFR space has considerable dependence on the
particular threshold used. For example, wiggling the truth threshold by .3 dex (a factor of two)
results in a ∼ 5% change in bACC values. Rather than focus on a “quiescent accuracy” of RS
selection, we find more utility in using the RS to measure quiescence of its constituent members,
as was performed in §4.4.2.2.

4.5.2 Interpretation of mean color parameterization

Photometric colors are proportional to the logarithm of the ratio of integrated fluxes in each band
of the color (see equation (4.1)). If photometric filters were infinitesimally narrow box functions,
then a photometric color would measure a log spectrum slope at the wavelength between the bands.
A measurement of a given color at redshift 𝑧 would then correspond to a rest wavelength feature at
_rest = _tr/(1 + 𝑧), where _tr is the transition wavelength between bands—the point where a signal
begins being picked up more by the next-longest wavelength neighboring filter (see transition
wavelengths in Appendix F). For our photometry, each filter has substantial width, asymmetries
(both within and between filters), and irregular edges. Photometric colors therefore measure a
smoothed version of the spectrum slope, somewhat deformed due to various filter divergences
from ideal, identical box functions. This means that (approximate) spectral slopes measured by
different photometric colors may be somewhat offset from each other, despite measuring the same
rest wavelength range (even if the spectrum is unchanging over time). This makes comparison of
vertical offsets between different colors generally less profitable than comparing relative shapes
between colors or same-color differences between mass bins.

Figure 4.13 shows measured mean colors transformed from their measured domain of redshift
(as shown in Figures 4.5, G.1, & G.2) to an imputed rest-frame wavelength _rest. The most notable
feature for both RS & BC is the major peak, aligning near wavelength _ ∼ 3900 Å (corresponding
to the major RS and BC peaks seen in Figure 4.5 above, at 𝑧 ∼ .9 for 𝑟 − 𝑖). In addition, a significant
second peak emerges for BC galaxies near _ = 6300 Å (the small BC bump seen at 𝑧 ∼ .13 ibid.).

2Using equation (4.6), only 58 of 35,216 galaxies are quiescent (roughly 1 in 600 galaxies). However, using 1 dex
below equation (4.9) as a quiescent definition, the count drastically increases, to 12,422 (roughly 35% of galaxies).
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Figure 4.13: Measured mean colors as a function imputed rest-frame wavelength. Lighter colors
indicate lower mass bins, as in Figure 4.5, while solid / dashed / dotted lines indicate Green solid
lines show hydrogen spectral series lines, with most belonging to the Balmer series (beginning with
H𝛼 at 6550 Å). Grey dashed lines show Fe ii (2635 Å) and [O i] (6310 Å) emission lines. Note
that at a fixed imputed rest wavelength, each color is measured at a different redshift, with 𝑔 − 𝑟 at
the lowest redshift and 𝑖 − 𝑧 at the highest. Redshift at which each color measurement was made
increases to the left (towards shorter rest wavelengths).

Several tertiary features are also present, with unresolved peaks at wavelengths such as 2500 Å and
others.

The primary peak, near 3900 Å for both RS and BC, corresponds to the 4kÅ break. This
relates directly to the Balmer series termination wavelength (at _ ≥ _B � 3647 Å) as well as
several coincidences of metallic lines. The secondary peak could correspond to the H-𝛼 line (at
_ � 6550 Å) of the hydrogen spectral series, but [O i] at 6310 Å also aligns. Tertiary peaks hint
at other features such as iron (e.g. Fe ii at 2635 Å), oxygen, and helium emission lines, but it is
beyond the scope of this current paper to detail these peaks.

While some differences between colors may be due to filter inhomogeneities, it may be that the
differences are driven by redshift evolution. For example, around 3250 Å in the RS plot, not only
are different bands and masses offset vertically (which could easily be caused by asymmetries in
filter widths), but the curves show distinct shapes, with the ⟨𝑔 − 𝑟⟩ curves redder than other colors
(which, at the same imputed rest wavelength, are at higher redshift). This could imply a significant
reddening of spectra (steepening of spectral slope) about 3250 Å over cosmic time.

A more careful analysis, correcting for filter irregularities, could better impute the rest-frame
spectrum. This could decipher which features are truly detected as well as which differences
between colors are redshift-dependent or merely filter-dependent. We leave such detailed analysis
for future papers.
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4.5.3 Optimal component count

Red Dragon allows for fitting of not only RS and BC, but additionally of any number of Gaussian
mixture model components. Hypothetically, one could model either “green valley” galaxies or a
noisy background (e.g. from galaxies with bad photo-𝑧 estimates), or even further components,
dividing RS or BC into sub-populations in order to catch non-Gaussianities.

B22 quantified optimal component count using the Bayesian Information Criterion (BIC). BIC
measures relative information loss of different models (run on the same data); it increases with
the number of model parameters and decreases with increased maximum model likelihood. BIC
thus increases with model complexity and decreases with improved fit, so models with lower BIC
better minimize information loss. Log relative likelihoods lnL = (BIC𝑎 − BIC𝑏)/2 of model 𝑏
minimizing information loss as compared to model 𝑎 tend to have values in the hundreds, leading
to probabilities of model superiority tending strongly towards zero and one (i.e. 𝜖 and 1 − 𝜖 , with
𝜖 ≲ 10−20). However, bootstrap uncertainties tend to overshadow ΔBIC such that comparison of
significance of a non-zero difference in BIC tends to be more useful than the measure of L itself. In
the spirit of BIC—minimizing both model complexity as well as information loss—we only prefer
a more complicated model if it significantly diminishes information loss.

For both 𝑔𝑟𝑖𝑧 and 𝑢𝑔𝑟𝑖𝑧 + 𝐽𝐻𝐾s photometries, we find no significant differences in BIC for our
three mass-binned dragons on moving from a two component model (𝐾 = 2) to more components
(𝐾 ≥ 3).3 The lack of significant preference for a higher-component model implies that the simpler,
two-component model should be preferred. While these results hold for our mass resolution of
Δ`★ = 1 and our redshift resolution of Δ𝑧 = .05, a GMM run on too wide a `★ or 𝑧 range will fail to
model populations well (as is discussed in Appendix H). In such circumstances, a third component
may be significantly favored for inclusion.

4.6 Conclusions

We present Red Dragon fitting of the RS and BC populations in the COSMOS2015 dataset. We
consider three decadal mass bins which span stellar masses ` | [8, 11). The mass-complete sample
focuses on redshift bins with a significant population of quiescent galaxies. Our model measures
mean colors, color scatters, and the covariance between bands for each galactic population.

With these populations characterized, we measure median specific star formation rates and
galactic ages (Figures 4.10 & 4.11), finding that the RD-selected RS is consistently more quiescent
(by ≳ 1 dex) and older (by ≳ 1 Gyr) than the BC across all redshift within each mass bin. The

3The strongest preference for a 𝐾 = 3 model came from the highest mass bin, using the extended photometry,
around 𝑧 = .75, but this preference was only ∼ 2𝜎 significant, consistently < 3𝜎. At high and low redshifts, the
simpler model was preferred.
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tendency towards a shallow slope of galactic age over time indicates the populations considered
here in each mass bin are continually joined by younger galaxies over time (and/or left by higher
mass galaxies). Though using a hard cut in sSFR as a truth label for the RS has complications (as
discussed in §4.5.1), we find high selection accuracy, especially at higher redshifts, as compared to
typical two-color selection of the quiescent population.

Despite being only a rough first pass, our imputation of rest-frame spectral slopes (see §4.5.2)
revealed significant spectral differences between RS and BC on average; in addition to the 4kÅ
break, we find a notable feature near 6300 Å in the BC. Future analyses could use more detailed
methods to align slopes between bands, accounting for differences between bandpass transmissions.
Accounting for these asymmetries and deformities in bandpass shape (as compared to flawless
box functions) would allow for more accurate spectrum reconstruction, leading to an improved
characterization of populations.

In our models we find no significant evidence for using a ≥ three-component model over a two-
component model of galaxy populations (see §4.5.3). However, in the low-𝑧 SDSS dataset used
in B22, we found significant evidence towards using three components instead of only two. The
third component consistently had lower weight (𝑤 < 10%), higher scatter (roughly twice that of
the BC), and usually had the lowest (small positive or consistent with null) inter-color correlations.
This indicates that the third component merely captures ‘noise’, i.e. galaxies that didn’t fit well in
either component (like the green points of Figure 4.9). Whether such galaxies are excluded due to
low likelihoods or chosen as a third component of the mixture model, the two core populations of
RS and BC remain dominant, with insufficient non-Gaussianities to warrant their sub-division in
our samples.

Finally, we turn to the future of the Red Dragon algorithm. In its current state, it is designed
to run GMM parameters 𝜽 with a single variable smoothly—in this paper, we run with redshift.
Any other fields must be binned—in this paper, the three mass decades. An improved version of
the algorithm could allow 𝜽 to evolve with 𝑁 fields (e.g. redshift, stellar mass, and local density).
Such a multidimensional parameterization of the RS and BC would yield insights e.g. into whether
evolution of RS & BC mean colors with local density observed by Balogh et al. [2004] are purely
due to the correlation of stellar mass with local density (i.e. mean colors are invariant to local
density) or whether RS mean colors do indeed depend on local density. This could also give a
global red fraction function 𝑓RS(𝑧, `★, 𝛿), measuring mean red fraction as a function of redshift,
stellar mass, and local density.

As JWST and other telescopes increasingly yield quality high-redshift data of the quiescent
population, Red Dragon will yield increasingly precise characterization of galaxy populations,
leading to improved understanding of our universe.
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CHAPTER 5

Practice Makes Better:
Quantifying Grade Gains of Practice Study

Chapter Summary

Problem Roulette (PR), an online study service at the University of Michigan, offers points-free
formative practice to students preparing for examinations in introductory STEM courses. Using
four years of PR data involving millions of problem attempts by thousands of students, we quantify
benefits of increased practice study volume in introductory physics. After conditioning mean final
grade on standardized (ACT/SAT) math test score, we analyze deviations based on student study
volume. We find a strong effect; mean course grade rises quadratically with the logarithm of the
total number of PR questions encountered over the term (𝑁Q,tot), with an overall gain of 0.77±0.12
grade points between 1 < 𝑁Q,tot < 1000. The gains are persistent across the range of math test
score represented in our sample. While 𝑁Q,tot surely correlates with other study habits, the benefits
of increased study in general still hold. A model for final grade using test score and study volume
largely accounts for demographic stratification, including by sex, parental education level, number
of parents at home, nationality / underrepresented minority status, and regional income level,
with two significant exceptions: students whose parents did not earn a college degree, who earn
−0.27 ± 0.04 grade points (6.1𝜎) below expectations and underrepresented minority students at
−0.14 ± 0.04 points (3.6𝜎). Residual scatter in final grade remains comparable to the maximal
study gains, implying that the model is far from deterministic: individual variation trumps mean
trends. Our findings can help motivate students to study more and help teachers to identify which
types of students may especially need such encouragement.

105



5.1 Introduction

Physics is a notoriously difficult subject in the eyes of many undergraduates [Wong et al., 2022].
Introductory physics courses are typically among the most-failed courses on college campuses.
According to student evaluations of teaching at our university1 the workload of the first-semester
physics course is perceived as considerably heavier than the workload of introductory courses in
general chemistry or statistics. In a study of past examination problems for these three subjects
[Weaverdyck et al., 2020], we found that introductory physics questions are both more complex
(take a longer time to solve on average) and harder (have a lower average correct response rate)
than questions in chemistry and statistics. Asked by students how to succeed in physics, instructors
often recommend practicing more problems, among other strategies. We seek here to measure how
such practice study affects final grade.

Benefits of practice study are well-documented, though some forms of study benefit students
more than others. In 2013, Dunlosky et al. [2013] performed a meta-analysis on hundreds of
studies on learning, measuring the utility of various study methods. Of the ten main study methods
considered, they found that practice testing (“self-testing or taking practice tests over to-be-learned
material”) and distributed practice (“implementing a schedule of practice that spreads out study
activities over time”) were of the highest utility. Both methods benefited learners of different ages
and abilities and were shown to boost students’ performance across many different kinds of tasks
and contexts. (In contrast, study methods such as summarizing, highlighting, and rereading were
less effective.) A more recent meta-analysis [Yang et al., 2021] of several hundred studies finds
significant gains from testing (a term they use to include quizzing), measuring boosts in student
attainment that benefit all kinds of students in similar manner. Such findings help motivate use of
a study tool at the University of Michigan known as Problem Roulette [Evrard et al., 2015].

Problem Roulette (PR) is an optional, points-free study service at the University of Michigan
(UM) that provides students open access to a large library of locally-authored, topically-organized
problems in multiple subject areas. Most of the content consists of multiple-choice questions
used in past examinations in introductory science, technology, engineering, and mathematics
(STEM) courses. “Roulette” refers to both its random selection of questions (an example is
shown in Figure 5.1) as well as its reflection of high-risk assessments. Students can optionally
activate settings which simulate timed tests, mirroring the difficulty and stress of actual exams; see
Appendix I for more details on study modes and instructor options. PR’s equality of accessibility
to UM students sidesteps paywalls of online repositories and bypasses access limits to large banks
of past exams held by exclusive student groups such as fraternities, sororities, and honor societies.

Our group previously examined study behaviors and grade benefits of practice based on PR

1Made available to campus members by the Atlas service, http:atlas.ai.umich.edu.

106

https://problemroulette.ai.umich.edu/about
http:atlas.ai.umich.edu


Figure 5.1: Example Problem Roulette question, as viewed on a mobile device for PHYSICS 140.
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usage data from 2013 to 2017 in three subject areas. Weaverdyck et al. [2020] measured study
gains using a median split of high vs low study, finding in the high study group a moderate benefit of
∼ 0.15 grade points in chemistry and statistics and a weaker benefit in physics. They also found that
female students worked ∼ 25% more problems on average than male students in all three subjects;
they additionally received a slightly higher grade benefit than male students from higher volumes
of PR practice.

To quantify these study benefits they used a measure called “grade anomaly”, comparing each
student’s grade points earned (GPE) in a particular course relative to their end-of-term cumulative
GPA computed from all other classes (termed GPAO) [Huberth et al., 2015, Koester et al., 2016].
“Grade anomaly” is then simply GPE − GPAO. While measures such as GPAO are commonly
used to control for student performance, “grade anomaly” masks a large portion of grade benefit
from practice study due to its correlation with study habits (see §5.3.3), so subtracting off GPAO
from GPE subsumes a significant portion of otherwise measureable study gains. It is therefore not
optimal for our current study, which seeks to quantify gains of study.

In this paper, after modeling GPE as a function of standardized math exam score (concordant
ACT and SAT math subscores), we quantify the extent to which deviations from the mean trend
correspond to increased PR study volume. We then consider five student demographic characteris-
tics: sex, parental education level, single parent status, nationality and underrepresented minority
(URM) status, and high school zip code median income (a proxy for estimating family income).
Grade differences within each of these subgroups have been noted; linear regression and studies of
linear correlations have shown that these differences in grades are ameliorated to varying degrees
on accounting for test scores, personality, study habits, and other factors [Walpole, 2003, Aluja and
Blanch, 2004, Pascarella et al., 2004, Delaney et al., 2011, Richardson et al., 2012, McLanahan
et al., 2013, Matz et al., 2017, Simmons and Heckler, 2020] In contrast, in this paper we use
the non-linear tool KLLR to investigate to what extent differences between these demographic
sub-groups are explained or exacerbated by accounting for test scores and study volume.

We describe our methods and data in §5.2 before presenting our key findings in §5.3. That section
begins with grade gains from practice conditioned on ACT/SAT math score (§5.3.1) followed by
an exploration of demographic differences (§5.3.2) and a comparison to grade gains conditioned
on GPAO (§5.3.3). We offer reflection in §5.4 and conclude with succinct recommendations for
teachers and students in §5.5.

5.2 Methods

In this section, we describe the flexible population modeling method known as kernel-localized
linear regression (KLLR), introduce the data and scope of our study, demographic groupings, and
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introduce the math test score measure (𝑇) used to model mean GPE as a base condition.

5.2.1 Measuring trends with KLLR

While any differentiable function is linear at small enough scales, life tends to be non-linear. As
one considers increasingly wider domains, behavior of any variable moves from a simple mean to
a linear trend to a quadratic one and so forth (as is the nature of Taylor series). Our data in student
math scores and study habits cover wide enough ranges that simple averages and even linear fits
become statistically disfavored.

Furthermore, there are reasons to expect significant non-linearity in the trends we consider in
this paper. One might expect grade points earned (GPE) as a function of math test score to have a
sigmoid relation (if test scores ranged high enough), as there’s a definite floor and ceiling to GPE
(and a practical floor of grades given or accepted, as only some grades are passing). One might
expect complex behavior in the space of grade benefit versus study volume in a given term, showing
steady increases until a student begins to overstudy (eventually even foregoing sleeping and eating
to increase study volume), followed by a decrease in performance. These expected non-linearities
motivated us to use a statistical method beyond simple averages, linear trends, or even polynomial
fitting—a method capable of measuring local, non-linear trends in a relatively agnostic fashion.

To examine mean relationships of grades and grade benefits as smooth functions of secondary
variables, we employ Kernel-Localized Linear Regression (KLLR) [Farahi et al., 2018, 2022],
a method that determines parameters of a locally linear fit (mean, slope, and variance) within a
sliding Gaussian window. This approach to population modeling, originally developed in the 1970s
[Cleveland, 1979, Cleveland and Loader, 1996, Takezawa, 2005], allows for more detailed analysis
than polynomial fitting as it does not enforce a particular global behavior.

A single parameter is required for the method, the width of the Gaussian filter. As the Gaussian
window slides across the domain, KLLR produces continuous and smooth fits to data. The kernel
widths are chosen to be roughly a fifth of their range,

𝜎KLLR =
1
5
(𝑞99% − 𝑞1%) (5.1)

where 𝑞𝑛% is the 𝑛th quantile of the logged data. For our data, this kernel size minimizes noise
in the fit while maximizing allowed internal variation, lying on the threshold of non-monotonic
behavior.
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5.2.2 Courses investigated

Problem Roulette currently supports sixteen courses with over ten thousand unique questions
available in aggregate. Our primary focus here is on the introductory, calculus-based physics
sequence for scientists and engineers: PHYSICS 140 (General Physics I: Mechanics) and its
continuation, PHYSICS 240 (General Physics II: Electricity and Magnetism). These courses are
primarily (∼ 80%) taken by engineering students. 2

While our focus is on study in physics, in this section only we offer some context by including
basic PR usage and mean grade behavior in three other PR-supported STEM courses: General
Chemistry: Macroscopic Investigations and Reaction Principles (CHEM 130), Elementary Pro-
gramming Concepts (EECS 183), and Introduction to Statistics and Data Analysis (STATS 250).

Table 5.1: PR usage statistics, shown for selected PR-supported courses over a seven-semester
period (Winter 2018 to Winter 2021). We focus on PHYSICS 140 and 240 here but include three
other courses for context. Statistics reflect the ∼ 93% of students with ACT or SAT scores available.

Course 𝑁Q,course3 𝑁students4 𝑓use5
∑
𝑁Q,tot6

∑
𝑁sess7

PHYSICS 140 854 3856 82.5% 348208 27471
PHYSICS 240 931 2772 60.8% 131868 10312
CHEM 130 685 5786 90.0% 1036986 59358
EECS 183 953 3803 71.3% 246239 13371
STATS 250 526 9435 74.9% 614700 38242

3. Number of unique questions available.
4. Number of students enrolled during the study period.
5. Fraction of students encountering at least one question on PR.
6. Total number of questions completed per term by all students.
7. Total number of sessions completed per term by all students.

Table 5.1 shows PR usage statistics for the seven-semester study period beginning Winter 2018
and ending Winter 2021 (inclusive). Spring and Summer terms during this period are also included,
but these have much smaller enrollments than the traditional Fall/Winter terms. The student count
includes only those with either an ACT or SAT scores recorded, representing ∼ 93% of the full
student enrollment.

Because it is an optional service that is not employed for summative course assessments, not all
students use PR. The usage fractions are generally high, with values ranging from 60% in PHYSICS
240 to 90% in CHEM 130. Note that the student numbers are unique only within each class; many
students enroll in several of these courses over the course of their careers. The intensity of study is
highest in CHEM 130, with an average of 200 questions attempted per term by PR-using students.

2UM also offers a similar sequence designed for life sciences students as well as an honors sequence for physics
majors. The former sequence was rebuilt during the study period and so is not yet supported by PR. The latter sequence
has a much smaller enrollment which limits its statistical power.
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By this metric, study volume in PHYSICS courses is considerably lower, with a mean value of 110
and 78 questions per term in 140 and 240, respectively. Median study volumes for physics courses
were also smaller by more than a factor of two compared to CHEM 130.

The study was determined to be exempt from ongoing review by our Institutional Review Board
(HUM00158291).

5.2.3 Study volume indicators

We use several indicators of study volume in this paper, each calculated on a per term basis and
summarized in Table 5.2. The primary measure we use is the total number of unique questions
encountered per session, summed over all sessions on Problem Roulette. This measure, 𝑁Q,tot,
is given for each student individually over the full academic term. As shown in Figure 5.2,
the distribution of 𝑁Q,tot is close to log-normal (as are the distributions of 𝑁sess and 𝑁Q,mean).
For the combined sample of PR users in both physics courses, the log-mean value of 𝑁Q,tot

is exp ⟨ln 𝑁Q,tot⟩ ≃ 37.5, with a factor of 4.3 standard deviation. This value includes skipped
questions, which represent roughly 20% of the total of all questions encountered.

Table 5.2: Quantiles of study volume indicators, shown for PHYSICS classes described in the text.
Values are the 50% (median), 75%, and 95% quantiles of each quantity for a sample of students
with non-zero PR study (see Table 5.1 for usage fractions) and available ACT/SAT math scores
(93% of total enrollment).

Indicator PHYSICS 140 PHYSICS 240
50% 75% 95% 50% 75% 95%

𝑁Q,tot 50 103 389 25 36 296
𝑁sess 5 9 28 3 4 21
𝑁Q,mean 9.5 12.4 26 8.3 10 24

We also examine two additional measures of practice: i) the number of PR sessions, 𝑁sess, where
a new session is triggered when a student logs on and responds to at least one question, either for
the first time or after a period of inactivity since responding to the last question; and ii) the mean
number of questions encountered per session, 𝑁Q,mean.

Over the study period, different approaches to midterm and final examinations were taken by
instructors. In some terms three evening exams, spaced by roughly one month, were held, each
with typically 20 questions. In other terms, biweekly 10-question “quizzes” were held. In some
semesters these were held during class meetings while in others (particularly during the COVID-19
shutdown period) they were held in the evening. Final examinations were cumulative and typically
consisted of 25 questions. All questions were multiple-choice (typically five possible responses),
authored by the instructors for each exam. While some degree of similarity between exam questions
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Figure 5.2: Histogram of total unique questions encountered per session, 𝑁Q,tot, for Physics 140
and 240 combined. Red arrow indicates the number of students who didn’t use PR.

and PR questions is likely, direct re-use of PR questions is strongly disfavored by the departmental
culture of testing students with new questions.8 All examinations were proctored and timed, and
across the study period student scores on these assessments contributed half or slightly more to
their final letter grade. Overall weighted student scores map to letter grades in a manner defined at
the beginning of the semester; there is no “curve” in the traditional sense of using ranked ordering
to define grade boundaries.

With that context, the 𝑁sess values in Table 5.2 reflect the fact that PR-engaged students typically
use the service once per examination, but with quite a large spread. Combining both courses, we
find log-mean number of sessions exp ⟨ln 𝑁sess⟩ ≃ 4.4, with nearly a factor of three dispersion.
Five percent of students had 25 or more sessions over the term, a frequency of roughly two sessions
per week. Sessions typically average about 30 minutes in duration, during which students attempt
roughly eight problems. Again, the dispersion is large (factor ∼ 3), and five percent of students
average 25 problems per session.

Our analysis using PR-based statistics is an incomplete proxy for total study effort by students.
Students do use other methods of study, including doing homework problems from their online
textbook service, using tutors, or by going to on-campus sites such as the Physics Help Room
and Science Learning Center. While inherently only a partial picture of student study effort, the
volume of PR activity is substantial enough to offer useful insight, as we show below (see Fig. 5.4).

8Further evidence against PR practice as “teaching to the test” comes from exam scores, which average ∼ 65% with
a dispersion of 15%.
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Table 5.3: Demographic categories and sub-groups considered in this analysis.

Category Sub-group Description
Sex Male/Female Sex as catalogued in LARC
Parental education ≤HS/A,B/M,D Highest degree earned: high school degree or less;

associate’s or bachelor’s; master’s or doctorate
Parents at home Both/Single Whether the student comes from a single-parent household
N/URM9 URM/NUR/ITL ITL if student is international; else URM=underrepresented

minority, NUR=non-URM
Income bin 1st/2nd/3rd/4th Median income of high school ZIP in near-quartile groups,

divided by values of ${50, 75, 100}k

Table 5.4: Fraction of course participants in each demographic subgroup for each physics course.

Course Male/Female ≤HS / A,B / M,D Single/Both URM/NUR/ITL 1st / 2nd / 3rd / 4th

140 64%/36% 10%/29%/60% 15%/85% 15%/80%/5% 22%/31%/18%/22%
240 74%/26% 9%/27%/62% 13%/87% 12%/83%/5% 22%/32%/19%/21%

Furthermore, because these study indicators correlate with study habits in general, they may even
be seen as proxies for studying of any kind, pointing towards effects beyond PR activity alone.

5.2.4 Demographic groups

We examine several demographic distinctions, delineated in Table 5.3. Table 5.4 gives the fractions
for each group among the ACT/SAT student populations in the two physics courses of interest.

The University of Michigan’s definition of underrepresented racial/ethnic minority (URM) is tied
to nationality and requires some exposition. As defined in the Learning Analytics Data Architecture
[LARC Lonn and Koester, 2019] Data Dictionary, students are considered international (ITL) if
they are neither U.S. citizens nor U.S. permanent residents. The international student population is
roughly two-thirds Asian, with the plurality of students from China (46%) and another 5% from the
Republic of Korea. The rest of international students come to UM from over 100 countries, each
individually accounting for < 4% of the remainder. Of the remaining domestic student population,
students are considered underrepresented if they self-identify as i) Black or African American, ii)
Hispanic, iii) Native American, or iv) Native Hawaiian or Other Pacific Islander. Otherwise, they
are considered non-underrepresented minorities (NUR). In the terms considered here, the URM
population was chiefly composed of Hispanic students (42%), students identifying as more than
one ethnicity or race (30%), and Black students (27%).
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5.2.5 ACT/SAT math score as a control condition

The standard deviation of grades achieved in these courses is large, roughly 0.8 on the standard 4.0
scale.10 A particular student’s grade is influenced by a host of factors; we do not seek to (nor could
we) capture all these factors simultaneously. Instead, we opt to employ a proxy for mathematical
proclivity using a student’s score on the ACT or SAT mathematics test. Recent work [Simmons and
Heckler, 2020] on a large sample of introductory physics students identifies ACT math score as a
strong predictor of final grade. Of the 7417 students enrolled in this introductory physics sequence
during the study period, only 498 have neither ACT nor SAT scores recorded, meaning that 93%
of the total student sample have pre-college math test scores available.

In our analysis, we map ACT to SAT test scores using a 2018 concordance table from Compass
Prep [Compass Education Group, 2018]. Though fractions of students with SAT and ACT scores
is similar, between PHYSICS 140 and 240, 3% more students have SAT than ACT scores. We thus
minimize imputation by converting scores from ACT to SAT. (Imputing in the opposite direction
has negligible effects on results.) In cases where both scores were present, their average was taken.
In cases where the same test was submitted multiple times, the highest score was used. Noting that
the SAT minimum component score is 200 and maximum 800, we map SAT math scores to the
unit interval by defining

𝑇𝑖 =
SAT𝑖 − 200
800 − 200

, (5.2)

where SAT𝑖 is the actual, imputed, or averaged SAT math score for the 𝑖th student.
The distribution of 𝑇 leans heavily toward high values in our datasets, especially so in the

physics courses. The two physics courses considered in our study have similar distributions of 𝑇 ,
with medians near 0.92, 10% & 90% quantile values near 0.80 & 1.0, respectively, and ∼ 0.44
as their minimum value. A recent study on grade inflation [Evrard et al., 2021] at our university
shows regular growth in ACT and SAT scores; rescaling SAT and ACT scores into the unit interval
to match 𝑇 , we see annual gains of 0.006 in scores for both tests. While this increase reflects a
heightened selectivity of the institution, it is an order of magnitude smaller than the scatter in 𝑇
and therefore has relatively little effect over our study period.

While differences in mean scores have been noted for several demographic sub-groups histori-
cally as well as in our sample (see Figure 5.5), we find that intrinsic scatter within each sub-group
far exceeds the distance between group mean scores. There is no definitive consensus among
researchers as to the cause of these differences in mean scores,[Jensen, 1980, Drasgow, 1987,
Herrnstein and Murray, 1994, Jensen, 1998, Brown et al., 1999, Frey and Detterman, 2004, Koenig

10Our university uses a standard A–E/F letter grade scale that maps to a numerical point scale of 4.0 (A) to 0 (E/F);
B=3.0, C=2.0, D=1.0. UM also supports ± gradations that count for 0.3 grade point deviations, so e.g. a B+ is 3.3
grade points and a B- is 2.7 grade points.
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et al., 2008, Coyle and Pillow, 2008, Dorans, 2010, Soares et al., 2015, Geiser, 2020] particularly
whether this is a bias in measurement (i.e., whether two individuals with equal capacity but different
demographic membership have significantly different scores) or a purely relational bias (i.e., the
tests properly measure capacity, but differences in mean group scores are caused by some secondary
variable). A commensurate summary of the conflicting interpretations of demographic differences
in scores is beyond the scope of this paper. Because of the significant predictive power of ACT and
SAT tests in estimating college grades, we find utility in using the measure 𝑇 as a baseline, and
relegate investigation of its interpretation to future research.

5.2.6 Modelling mean GPE versus test scores

In this section, we describe how we condition grades on math test scores. To condition one variable
on another is an attempt to remove its effects, in order to discern further trends. Here we subtract
out mean grade points earned (GPE) at a given math test score 𝑇 in order to mitigate the strongly
confounding factor of differences in math skills on expected grade. For example, if two students
of vastly differing math skills both don’t study, they are unlikely to earn identical grades. By
conditioning on 𝑇 , we subtract out the mean expected grade, allowing us then to measure how
divergence from those expectations corresponds with study habits.

We use KLLR to fit mean grade `GPE as a function of 𝑇 , allowing us to detect any potential
non-linearities in trends. Using all student 𝑇 values, equation (5.1) yields 𝜎KLLR = 0.09, which
value we use for all course KLLR fits, shown in Figure 5.3. Though all five courses considered here
are STEM courses, we find stark differences in the mean relationships between physics (concave
up) versus non-physics courses (concave down). While students with higher math scores tend to
score higher in all their courses, even students with above-average math scores of 𝑇 = 0.75 tend to
score lower grades in physics relative to the other STEM courses considered here.

For each course, we find that mean grade point earned as a function of 𝑇 is well-fit for the
majority of students by a quadratic:

`GPE(𝑇) = 𝑎0 + 𝑎1(𝑇 − 𝑇0) + 𝑎2(𝑇 − 𝑇0)2 (5.3)

(using pivot 𝑇0 = 0.9, the physics median 𝑇 value). Parameter fits for each course are listed in
Table 5.5.

We note that when we measured fit parameters using only those students who did not use PR for
study, we found good consistency in slopes and curvatures (hinting that study trends don’t correlate
strongly with 𝑇 ; see lower panel of Figure 5.5 and Figure 5.7), but intercepts 𝑎0 were lower by
0.10 ± 0.04 grade points. This is not surprising when one considers that, overall, those who didn’t
study on PR in PHYSICS 140 had lower grades by 0.14 ± 0.04 points and in PHYSICS 240 by
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Figure 5.3: KLLR fits to mean grade points earned (GPE) as a function of normalized ACT/SAT
math score (𝑇), shown for multiple STEM courses (see legend). Shaded regions show ±3𝜎
uncertainties on the fit. The left-side 𝑇 limits displayed are set by a limit of ten students.

0.10 ± 0.03 points. This vertical shift is precisely what this study seeks to quantify; by subtracting
out `GPE(𝑇), one can then measure these divergences from expectations. These significant shifts
hint already at the benefits of study.

For the two physics courses, we found no significant differences in slope nor curvature for any
demographic distinction. Though we found several significant differences in vertical shift between
sub-groups, as explained above, these shifts do not detract from our analysis, as they are precisely
what we set out to investigate by subtracting out a `GPE(𝑇) baseline. See §5.3.2 for more details.

As is visually apparent from Figure 5.3, student grades in physics follow a different form
compared to the other subject areas represented there. Compared to the non-physics courses, the
two physics courses have intercepts at 𝑇0 = 0.9 lower by ∼ 0.7 grade points, the local slopes are
nearly twice as large, and they have positive curvatures (𝑎2 ∼ +7) whereas the other courses display
negative curvatures (𝑎2 ∼ −3). In essence, even students with the strong math abilities encounter a
larger grade penalty in physics compared to these other subjects.
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Table 5.5: Fit parameters of mean grade versus 𝑇 . Fitted with quadratic functions `GPE(𝑇)
(equation (5.3)) for each course, giving the mean trend of GPE (course grade points earned) as a
function of 𝑇 (concordant ACT / SAT math subscores), determined using all students with ACT or
SAT scores recorded. Given for each class individually as well as the merged set of PHYSICS 140
+ 240.

Course 𝑎0 𝑎1 𝑎2
PHYSICS 140 2.82 ± 0.02 4.3 ± 0.2 +5.3 ± 1.2
PHYSICS 240 2.82 ± 0.02 5.0 ± 0.2 +8.9 ± 1.7
MERGED 2.82 ± 0.01 4.6 ± 0.1 +6.7 ± 1.0
CHEM 130 3.53 ± 0.01 2.6 ± 0.1 −3.8 ± 0.5
EECS 183 3.63 ± 0.01 2.3 ± 0.2 −1.8 ± 0.7
STATS 250 3.39 ± 0.01 2.8 ± 0.1 −3.4 ± 0.5

5.3 Results

Due to their similar structure, we analyze the combined sample of PHYSICS 140 and 240 student
behavior here, beginning with deviations from mean expected GPE at a given math test score 𝑇 as a
function of study volume. Because of the wide dynamic range and log-normal distribution of study
volume (Figure 5.2), we employ log10(𝑁Q,tot) as the independent variable. The use of a logarithmic
measure of study enables a natural interpretation in terms of multiplicative factors of student effort.
We then investigate differences in study volume and GPE among demographic sub-groups. The
section concludes with remarks on using GPAO instead of 𝑇 as a baseline condition for grade
prediction.

5.3.1 Evidence of grade gains from practice study

With the fit to mean GPE as a function of math test score 𝑇 in hand (see Figure 5.3), we are now
poised to address the question: “For a given student, how do PR study habits relate to their final
course grade?” We focus on the shift in grade earned by a given student from expectations at a
given 𝑇 :

ΔGPE,𝑖 ≡ GPE𝑖 − `GPE(𝑇𝑖). (5.4)

We look to measure how these mean shifts in student grade depend on some measure of study
volume 𝑋 , meaning we seek ⟨ΔGPE⟩(𝑋).

Using KLLR, we measure mean final grade point deviation, equation (5.4), as a function of
our primary study volume indicator, 𝑋 = log10(𝑁Q,tot). KLLR kernel width, as calculated from
equation (5.1) is 𝜎KLLR = 0.56 (a factor of 3.6 spread). We find a significant increase in mean
grade points earned shown in the top panel of Figure 5.4. The mean behavior monotonically grows
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Figure 5.4: Grade gains as a function of practice effort, shown for the combined sample of
PHYSICS 140 and 240 students. Study volume is measured by the logarithm of the total number of
PR questions encountered over the term, 𝑁Q,tot. Vertical lines indicate quartile values of 𝑁Q,tot for
students who use PR; half practice between 14 and 108 problems, with a median of 40. Statistics
are computed with KLLR using a kernel width of 0.56 in log10 𝑁Q,tot (a factor of 3.6) and shaded
regions are 1𝜎 uncertainties from bootstrap resampling. Upper panel: Mean shift in grade points
earned, ⟨ΔGPE⟩, relative to that expected from pre-college math score, equation (5.4). Middle:
Local slope of ⟨ΔGPE⟩. Lower: Significance level of a non-zero slope. Note that students who
didn’t engage with PR are not included in this analysis.

from a value of −0.2 (a grade point penalty relative to the 𝑇-determined expectation) to +0.6 (a
relative grade point benefit) as the total number of questions attempted over the term increases
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from one to over one thousand. The middle panel shows the local slope of the grade gain, which
increases nearly linearly in log(𝑁Q,tot), and the lower panel shows the significance of that slope
being non-zero.

The top panel shows the basic result that students who study more tend, on average, to do better
in the course. The novelty of this unsurprising finding lies in both the precise quantification of
mean grade gain as a function of term-aggregated study volume and its large overall amplitude.
These findings provide evidence-based answers to questions such as “How much should I study to
get a half grade point boost in my final grade?” (on average: approximately 660 questions over the
term) or “If I study one question each school day, how much better am I likely do in the course than
without study?” (on average: roughly 0.24 grade points improvement). These outcomes hold true
on average; as discussed below, significant residual scatter in grade remains, reflecting a range of
extraneous factors that influence student learning of physics.

The KLLR characterization of study gains are largely in agreement with a simple quadratic
trend, as seen in the near-linearity of the slope (middle panel). Fitting the trend in Figure 5.4
around the median value of 𝑁Q,tot = 40 we find mean behavior

⟨ΔGPE⟩ = (0.00 ± 0.01) + (0.22 ± 0.02) a + (0.08 ± 0.02) a2, (5.5)

where a ≡ log10
(
𝑁Q,tot/40

)
. Grade gains from practice are thus quadratic in the log of number

of questions attempted. While doubling study from one question a day to two a day will benefit a
student, doubling from two a day to four will, on average, yield even more incremental benefit to
their final grade.

The lower panel of Figure 5.4 shows that the slope is > 3𝜎 significantly positive for 𝑁Q,tot ≥ 4.
The slope is roughly 0.1 at this point, but four problems over the course of a full term is a very
minimal amount of practice, and grade earned at this level is indeed lower than the 𝑇-conditioned
mean by 0.2 grade points. Gains in the top panel become more evident above ten questions, and
the slope continues to grow, reaching 0.3 at 𝑁Q,tot ≃ 300. This study volume represents roughly
25 questions per week, or five questions per school day. The positive slope in grade gain continues
up to the limit of our study volume data. In our sample, 34 students, or 0.5% of the population,
attempted over 1000 questions within a semester, a volume that slightly oversamples the number of
questions available and that corresponds to a rate of roughly 15 questions per school day.

Table 5.6 quantifies for each study volume indicator (𝑁Q,tot, 𝑁sess, and 𝑁Q,mean) the overall
grade gain, max(ΔGPE), defined as the maximum difference in KLLR mean values across the study
volume domain. Uncertainties in the difference are propagated from the respective KLLR bootstrap
errors on the minimum and maximum values. The table also quantifies the fractional reduction
in variance ΔVar from the initial scatter in GPE 𝜎0 to the scatter after accounting for `GPE(𝑇)
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Table 5.6: Maximum study gains, max(ΔGPE), between high and low PR study volume (see text)
for each study measure along with the fractional reduction in grade variance after accounting for
both 𝑇 and study volume. The latter is calculated as ΔVar0→𝑖 ≡ (𝜎𝑖2 − 𝜎0

2)/𝜎0
2, where 𝜎0 is

the scatter in GPE originally and 𝜎𝑖 is the scatter in grade point after removing trends in `GPE(𝑇)
(𝑖 = 1) and both that as well as ⟨ΔGPE⟩(𝑋) for study measure 𝑋 (𝑖 = 2), e.g. 𝑋 = log10 𝑁Q,tot.

Indicator max(ΔGPE) ΔVar0→1 ΔVar0→2
𝑁Q,tot +0.77 ± 0.12 −0.16 ± 0.03 −0.19 ± 0.03
𝑁sess +0.61 ± 0.19 −0.16 ± 0.03 −0.18 ± 0.03
𝑁Q,mean +0.72 ± 0.11 −0.16 ± 0.03 −0.19 ± 0.03

(ΔVar0→1) and after additionally accounting for ⟨ΔGPE⟩(𝑋) in study measure 𝑋 (ΔVar0→2). The
reduction in variance from the middle to end stage is then ΔVar1→2.

For each study indicator, students with high study volume tend to do significantly (> 3𝜎) better
than those with low study volume. Across the three study indicators, we see similar gains (within
1𝜎 of each other) between two-thirds and three-fourths of a full grade point. This result is consistent
with moving from a B- to a B+ or from a B+ to an A. These results are also robust with varying
kernel size: doubling or halving kernel width yields statistically identical results. Furthermore, the
results are robust with varying student math ability. Dividing the student sample into terciles by
𝑇 , we find similar overall grade gains: 0.60 ± 0.21, 0.73 ± 0.19, and 0.75 ± 0.12 for the lowest,
intermediate, and highest 𝑇 terciles, respectively, averaged across study indicators. All students
benefit similarly from increased study volume.

Across each study indicator, we see similar reductions of variance, with ∼ 20% of the scatter
in student grades explained by the joint `GPE(𝑇) and ⟨ΔGPE⟩(𝑋) trends. The trend of mean
grades running with 𝑇 accounts for the majority of this reduction, causing on its own a 16% ± 3%
reduction. The range of `GPE(𝑇) is roughly 1.2 grade points, so the running of ⟨ΔGPE⟩(𝑋) with
maximal running of roughly half the range has less capacity to reduce variance. Because the
distribution of 𝑁Q,tot clusters strongly towards lower values, further limiting its ability to reduce
variance. However, on sampling evenly in log 𝑁Q,tot, we find a significant variance reduction of
ΔVar1→2 = (9± 3)%, with study explaining roughly 10% of the remaining scatter, after accounting
for `GPE(𝑇) expectations. This suggests that our initial inability to measure significant reduction
of variance on accounting for study trends is tied to the clustering of 𝑁Q,tot at relatively modest
values.

Below, we incorporate both math test score and study volume as fit here into a model of
student grade and investigate divergences from model expectations for several demographic sub-
populations.
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5.3.2 Demographic differences
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Figure 5.5: Mean GPE, 𝑁Q,tot, and 𝑇 for the various demographic subpopulations indicated in the
legend, with error bars showing standard deviation of the mean. KLLR fits of GPE and 𝑁Q,tot
as functions of 𝑇 for the full student population, shown in blue with ±1, 2 and 3𝜎 uncertainties,
demonstrate starkly different trends. For the student population as a whole, grades strongly correlate
with 𝑇 while study volume does not.

On average, differing educational experiences exist across socioeconomic status, sex, race,
ethnicity, home environment, and other factors [Pascarella et al., 2004, Delaney et al., 2011,
McLanahan et al., 2013, Stroub and Richards, 2013, Owens et al., 2016]. As detailed in §5.2.4, we
consider several of these demographic indicators (see Tables 5.3 & 5.4) to the extent and precision
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available to us; most indicators are self-reported. We investigate the degree to which demographic
groups are stratified in the space of 𝑇 , GPE, and 𝑁Q,tot, then quantify how each sub-group’s mean
grade deviates from expectations.

As mentioned in §5.2.6, we first investigated whether `GPE(𝑇) had any significant differences
in form between demographic sub-groups. While there were significant differences in vertical
intercept between sub-groups, there were no significant differences in slope nor curvature in the
quadratic fitting of the courses. Compared to the global parameterization of Table 5.5, sub-
population fits for curvature were consistent to < 2𝜎 and slopes were consistent to < 3𝜎. In
contrast, there were several significant differences in offset 𝑎0 for three groups, with the ≤HS
group falling ∼ 0.3 points below expectations while URM students and students of single-parent
households both fell ∼ 0.1 points below expectations. Once more, we emphasize that these shifts
are precisely what this study seeks to quantify, asking what correlates with vertical shifts from
mean expected grade at a given 𝑇 . Now that we have shown that the fitting of `GPE(𝑇) is robust
to demographic sub-group, we turn our attention to how demographic sub-group deviation from
expectations relate to study volume.

Figure 5.5 illustrates the relationship between mean measures for demographic groups, shown
as points, and the overall trend for all students, shown as the line (with shaded regions indicating
±3𝜎 uncertainty on the KLLR fit). For this analysis, we measure mean 𝑁Q,tot values for all students
for whom we have 𝑇 scores, including those for whom 𝑁Q,tot = 0. Note that the mean value,
⟨𝑁Q,tot⟩ ≃ 72, differs from the median log value of 40 shown in Fig. 5.4 because the distribution
of 𝑁Q,tot is close to log-normal and has substantial width. This level of effort corresponds to
attempting roughly five questions per week during the term.

GPE differs starkly from 𝑁Q,tot in its trend with 𝑇 . Mean grade earned (top panel) correlates
strongly with math test score (0.38 ± 0.01), rising by half a grade point over just a 0.1 increase in
𝑇 . In stark contrast, the volume of study by students (lower panel) is effectively flat (insignificantly
correlated: 0.02 ± 0.01); low 𝑇 students study very nearly as much as their high 𝑇 counterparts.
We return to this issue when considering GPAO as an alternate to 𝑇 below.

Mean values of math test score 𝑇 for demographic groups cover the 0.1 domain shown, with
students whose parents have the lowest education level (≤HS) and underrepresented minority
(URM) students possessing the lowest scores and international students (ITL) the highest. These
groups deviate somewhat from the overall trend in grade, with ITL students lying above and URM
& ≤HS below the population mean. Note that, because of the positive curvature in mean grade
with 𝑇 , mean values of sub-populations will tend to lie somewhat above the trend line.

While students across the spectrum of math test scores put in similar level of practice effort, some
differences between demographic groups are apparent in the lower panel of Figure 5.5. Though
deviations are generally less significant than in the upper panel, URM & ≤HS populations tend to
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rest below the trend whereas females, high income groups, and international students rest somewhat
above.

Does Math Score and Study Volume Explain Demographic Grade Shifts?

The trends in the bottom panel of Figure 5.5 suggest an explanation for demographic grade devi-
ations; vis. that the demographic shifts in study volume often have similar sign to those of ΔGPE.
However, these shifts sometimes misalign; for example, the highest income group tends to study
more than average yet achieves only average grades. To address the degree to which study explains
demographic deviations from mean trends, we employ a model that combines the expected mean
grade conditioned on 𝑇 combined with the grade shift as a function of study volume using the full
student population (KLLR fits of Figures 5.3 & 5.4, largely equivalent to the parameterized fits of
equations (5.3) & (5.5)).
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Figure 5.6: Mean GPE deviations of demographic groups from the overall trend, based on com-
bining math score 𝑇 and study volume 𝑁Q,tot for the full student population. The shaded region
around the null line shows ±3𝜎 uncertainties of the predictions based on combining 𝑇 and 𝑁Q,tot.
The error bar for each demographic group is the ±1𝜎 error in that group’s mean GPE deviation
from the mean model prediction.

Figure 5.6 shows the mean deviation from these expectations for each demographic sub-
population. The zero line and associated median±3𝜎 uncertainties (median combined uncertainties
of the KLLR fits to `GPE(𝑇) and ⟨ΔGPE⟩(log10 𝑁Q,tot) for a median student) represent the expected
value based on our model of the full student population. Most demographic sub-populations have
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mean deviations consistent with the model’s expectations, but significant outliers are seen toward
lower math scores. Students whose parents had a high school degree or less lie significantly below
expectations, at −0.27 ± 0.04 grade points, as do URM students, at −0.14 ± 0.04 grade points.
In addition, students from households with only a single parent present as well as students from
high schools in the lowest income regions display a smaller, less significant deficit of −0.09 ± 0.04
grade points. Though the third income bin is slightly above expectations (+0.08± 0.03), the fourth
income bin is slightly below. All other sub-populations were < 2𝜎 deviant from expectations.

5.3.3 Comparison to GPAO

In this section, we investigate results when using GPAO as a baseline for comparison, rather than
𝑇 . First, we explain some limitations of GPAO (with more issues outlined in Appendix J), Second,
for PHYSICS 140 and 240 we show the `GPE(GPAO) plot analogous to Figure 5.3. Third, we show
for the two courses combined a gains of study table, analogous to Table 5.6.

5.3.3.1 GPAO correlation with study

A core issue with using GPAO as a baseline for comparison (as is done, for example, with the
“grade anomaly” GPE − GPAO of Weaverdyck et al. [2020]) is its correlation with study habits.
Averaged over log or non-logged versions of all three study volume indicators used in this study
(a total of six possible metrics), correlations between study and GPAO are statistically significant,
0.132 ± 0.013, whereas correlations between study and 𝑇 are insignificant, only 0.013 ± 0.013.
Regardless of study metric, GPAO consistently shows stronger and more significant correlations
to study than 𝑇 does. Because we seek to measure how study volume influences final grade, this
coupling makes GPAO relatively untenable compared to 𝑇 for this purpose.

Figure 5.7 shows the interplay between PR study volume, GPAO, and composite test score 𝑇 for
PHYSICS 140 and 240 combined. KLLR fits to study volume as a function of GPAO show clear
rising behavior for each individual 𝑇 bin, while the means (displayed as points with error bars)
show no significant trend in study behavior with 𝑇 . The striation of trend lines shows that among
students with the same GPAO, those with lower 𝑇 scores tended to study more on PR. In contrast to
the lack of correlation between 𝑇 and study, at fixed GPAO there is a significant trend of decreasing
PR study volume for students with higher math scores, 𝑇 .

Though students with high 𝑇 scores tend to have higher grades and though students who studied
more tended to have higher grades, there was no significant correlation between𝑇 and study volume.
This seeming inconsistency is resolved in the anticorrelation between study volume and 𝑇 at fixed
GPAO. If we take PR study volume as a proxy for typical student study habits, then this could
perhaps be interpreted to reveal that students with higher 𝑇 scores tended to not need to study as
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Figure 5.7: Study volume as a function of GPAO, shown for students in bins of 𝑇 as indicated by
the legend. Mean values are KLLR-derived using a kernel width 0.40 and 1𝜎 uncertainties are
shown as shaded regions. Population means for each 𝑇 group are shown as points with ±1𝜎 error
bars. Significant study trends with GPAO exist within each math score range.

much to receive the same high grades as students with lower 𝑇 scores.
Because study volume correlates to GPAO, its use would at least partially undermine our attempt

to measure the benefits of study. Due to its correlation, any study gain measured using GPAO as
baseline instead of 𝑇 as baseline would show reduced study gains at fixed GPAO. We proceed now
to quantify this reduction in measured gains.

5.3.3.2 Fitting GPE as a function of GPAO

We begin by fitting student grades earned in each physics class as a function of their end-of-term
grade point average in all other courses (GPAO). As in §5.2.6, we use a KLLR fitting to discern the
general trend from a relatively agnostic viewpoint.

Figure 5.8 shows the KLLR fits of mean GPE as a function of GPAO for both physics courses
individually. As with `GPE(𝑇), we see significant positive curvature. The bulk of the population
has GPE < GPAO (diagonal line), meaning that these physics courses tend to be the lower grades
on their transcripts, especially so for students with low GPAO already. For example, a student with
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Figure 5.8: GPE vs GPAO: as Figure 5.3, but fitting mean GPE for the two physics courses as a
function of GPAO rather than 𝑇 . Grey line indicates equality, where a student’s grade earned in
physics would equal their average grades earned from other courses. The GPAO distribution was
similar between courses, with means around 3.4, standard deviation of ±0.5, and GPAO ≳ 2.45 for
95% of students.

otherwise straight As (GPAO = 4.0) would likely get an A- while a student with otherwise straight
Bs (GPAO = 3.0) would likely get a C+.

5.3.3.3 Deviations from GPAO mean due to study volume

After calculating a deviation from expected grade at a given GPAO, Δ = GPE − `GPE(GPAO), we
investigate whether a trend exists in this deviation as a function of PR study volume, using KLLR
fitting, analogous to that done in Figure 5.4. We present gains of study in Table 5.7, analogous to
Table 5.6. Those with highest study volume tended to do better than expected by 0.28± 0.07 grade
points (averaging over the three study indicators) as compared to those with low study volume.

This is less than half the grade gain measured in Table 5.6, where 𝑇 was used as a baseline for
comparison. The stark difference in grade gains measured suggests that the significant correlation
between GPAO and study volume (see §5.3.3.1) has subsumed a large portion of the grade gains
measured. That is, because GPAO reflects in part an individual’s study volume, subtracting it out
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Table 5.7: Using GPAO as a baseline to measure grade gains: as Table 5.6, but measuring gains
and variance reduction with GPAO as a baseline for grade expectations (rather than 𝑇). Variance
decreases ΔVar1→2 are all insignificant.

Indicator max(ΔGPE) ΔVar0→1 ΔVar0→2
𝑁Q,tot +0.302 ± 0.080 −0.467 ± 0.010 −0.469 ± 0.009
𝑁sess +0.207 ± 0.059 −0.467 ± 0.010 −0.468 ± 0.010
𝑁Q,mean +0.335 ± 0.053 −0.467 ± 0.010 −0.471 ± 0.009

in the initial baseline grade estimate `GPE(GPAO) removes a significant fraction of the measurable
grade gains due to study. Despite GPAO predicting grades better than 𝑇 (reducing variance by 47%
rather than only 19%), GPAO has less utility in quantifying the grade benefits of study, washing
out over half of the measurable grade benefit.

5.4 Discussion

Our findings help demonstrate to educators and learners the benefits of practice study in intro-
ductory physics courses. While this general finding is neither original nor surprising, its precise
quantification is novel, and the overall magnitude in grade gain for students classified by pre-college
math ability is large.

The low-stakes formative assessment of PR matches well to the summative midterm and final
examinations of the two physics courses considered here. After all, these PR courses consist of
nearly 1000 problems used on past examinations in each course. Given the median response time
per problem of roughly 90 seconds [Weaverdyck et al., 2020], we do not think that memorization per
se plays an important role. As mentioned earlier, exams consist of entirely novel questions (though
certainly with some structural and topical overlap), so literal repetition of PR questions is quite
unlikely. Rather than memorization, other factors such as the similarity of problem construction
and structure, the mix of quantitative and qualitative questions, and particular “tricky” problem
styles involving multiple physics concepts are likely to be similar between old and new exams.

Our findings with respect to demographic characteristics motivate more study of how better to
support physics learning for first-generation (our ≤HS category) and underrepresented minority
students (our URM category). Students from single-parent and low-income households also earn
lower grades than expected (Fig. 5.5). These categories overlap, inviting future work to understand
how students with multiple of these identities perform [Saw et al., 2018].

Our comparison to GPAO study trends reveals far more grade benefit measured when condition-
ing on 𝑇 than on GPAO. Because GPAO significantly correlates with study volume (while 𝑇 does
not), subtracting out a GPAO baseline from grades subtracts out the effects of study behaviors to
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some extent. While GPAO may be the most accurate predictor of GPE, it is a flawed baseline for the
purposes of our analysis (see also Appendix J) as it washes away the majority the the study benefit
trend measured in §5.3.1. We thus find utility in using 𝑇 as a baseline for student comparison,
rather than GPAO.

The utility of 𝑇 could in part be due to its significant correlation with general mental ability
𝑔 [Frey and Detterman, 2004, Koenig et al., 2008, Coyle and Pillow, 2008, Sackett et al., 2008].
As 𝑔 is largely intrinsic (polygenic, yet ≳ 50% heritable and ≳ 90% consistent with age; see
Jensen [1998], Neisser et al. [1996], Bouchard [2013], Panizzon et al. [2014]) to each student, it is
largely orthogonal to a student’s external, personal choice of study habits (dependent more so on
personality than on 𝑇 ; see §5.3.3.1). In contrast, GPAO represents a mix of both internal ability
and external choice, and thus subsumes a portion of the study signal we attempt to measure in this
study.

Another potential reason for the strong utility of 𝑇 could lie in the similarity of assessment
styles. Both standardized tests and the assessment methods used in many large introductory STEM
courses take the form of high-stakes multiple-choice questions in a timed setting.

Regardless of interpretation, this difference in grade gains (measured with GPAO vs. 𝑇 baselines)
warrants further investigation and discussion. As more colleges move to “test-optional” admissions
in the future, we may in the process be limiting the potential of future investigations to quantify
student learning gains.

5.5 Chapter Conclusions

Using a large sample of practice study from the Problem Roulette service, we find that student final
grades scale quadratically with the logarithm of the term-aggregated number of questions encoun-
tered, with an overall gain of nearly 0.8 grade points. By comparison, the largest demographic
deviation we find is ≲ 0.3 grade points, so with roughly a question per day on average, this deficit
can be overcome purely through study.

We summarize our findings in the following advice to students and teachers. Our advice to
students is:

Do a problem for every time you brush your teeth. Attempting at least one or two
problems each school day of the term will likely lift your grade by one-quarter point.
Quadratic gains with log study implies that while doubling study volume from one to
two questions per day benefits you, doubling again from two to four questions per day
benefits your grade even more!

Our advice to teachers is:
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Encouraging students to do at least one problem a day puts them above the median study
habit; on average, this will land them above their expected grade. Study can benefit
students by up to three-quarters of a letter grade. Differences between demographic
groups, after accounting for 𝑇 and study, were ≲ 0.3 grade points; first-generation
students were the most significant outlier.

This study only scratches the surface of PR data available. Besides only working with physics
courses, our model was relatively simple, treating 𝑇 and GPE separately and using other demo-
graphic, academic, and study-related variables only tangentially. A more sophisticated model such
as multi-level modeling or simultaneous fitting of many variables at once (such as with the machine
learning tool SHAP—SHapley Additive exPlanations, see Lundberg and Lee [2017]) could help
disentangle which factors are more or less causal (though it could not determine absolute causality).
Future analyses should also treat nationality, ethnicity, and race more carefully, rather than using
the broad categories of nationality and binary URM status. We also would like to investigate the
effects of study session length—early results suggest that working for more than about 50 minutes
tends to yield minimal gains. Finally, we wish to compare findings between all courses, observing
which trends persist cross-subject.

We should never lose sight that the purpose of this work is to help individual students. Teachers
and students alike can benefit from understanding how 𝑇 and study affect their grades. Teaching is
a handshake, requiring earnest participation of both parties for best results. (We can’t fall into the
trap of subscribing to either a student deficit model or a teacher deficit model alone; both parties
need to improve their habits and grow as individuals.) As students improve their scholastic habits
and teachers improve course structure and learn how to best reach struggling individuals, we can
grow together and improve the education system.
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CHAPTER 6

Conclusions

A PhD is like a delta function of knowledge. If general education is a wide Gaussian, then a
bachelor’s degree in physics was like adding a narrower-width Gaussian on top. As I specialized
from physics to cosmology to galaxy clusters to galaxy populations to modeling photometry of
those populations to doing so with GMMs, the width of the metaphorical Gaussian of knowledge
continued to narrow, approaching an infinitely narrow delta function. I believe it’s correct to say
that I’m the world expert in my sub-(sub-sub-etc.)field: using GMMs to select the RS and BC via
photometry; I don’t know of anyone on Earth who has spent more time thinking about it than I have.
I have discovered many things regarding that practice, like good ways to account for uncertainty
(by using error-corrected GMMs), how much GMM fit parameters depend on redshift or stellar
mass, the importance of including bootstrap uncertainties when calculating BIC, and so forth.

I have also contributed to the field of learning analytics by publishing our study on PR, which
1) precisely quantified grade gains with incremental practice study volume and 2) showed the
residual differences in student grades by demographic subgroup after accounting for 𝑇 and study.
Grade quantification showed both the power and limit of time spent on PR: students with high
study volume scored three-quarters of a letter grade higher than those without study logged on PR.
This both shows the significant benefits of study, but also can serve as a precaution against telling
a C-student “just study more”, as study on average gains students less than a letter grade. The
demographic residual grades provide useful information regarding who needs extra help. Though
on average there were no significant differences between men and women, there were significantly
lower grades on average from first-generation students and (less significant but still notably) average
lower grades in: underrepresented minority students, students with only one parent at home, and
in students from low-income areas. More so than any other category, first-generation students need
extra assistance, as at a given math proclivity and study volume, they still tend to earn lower grades
than students whose parents attended college. More research is needed to investigate what precisely
causes these differences, so we instructors can best aid struggling students.

I now shift focus towards the future, suggesting a course for research in these fields.
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6.1 Future research using Red Dragon

RD is a hammer poised to hit some nails. In addition to doing more thorough analyses of deep
fields, several other projects are ripe for analysis.

6.1.1 Delving deeper into space

The results of Chapter 4 focused on DES main bands (𝑔𝑟𝑖𝑧) at lower redshifts (using mass-complete
samples), leaving much work to be done with this sample.

First and foremost, the extended photometry of 𝑢 band and the VIRCAM bands 𝐽𝐻𝐾s were
only used in passing; features in these bands ought to be investigated. For example, the extended
photometry would provide better constraints on rest-frame spectra (see Figure 4.13), allowing for
a wider view of average RS and BC spectral features. These would help sort out whether observed
features were purely due to deformities or asymmetries in filters or whether the features are redshift-
dependent or whether features are stellar-mass dependent. This will nurture a more complete view
of the two populations.

Secondly, with RS & BC parameterizations in hand, we can measure fits to luminosity function
𝜙 evolution over time for both RS and BC. In particular, we can fit the faint-end slope 𝛼 and
characteristic magnitude 𝑀∗ over redshift (along with normalization 𝜙∗, though those are more
sample-dependent). A fit to these parameters can then yield an analytic expression for red fraction
𝑓𝑅 as a function of redshift and magnitude for the entire sample. (However, this would be somewhat
limited in the COSMOS dataset, especially at high masses, due to the effects of cosmic variance.)

Thirdly, while the lion’s share of Chapter 4 focused on low-redshift results, I look forward
to characterizing higher redshifts. Red Dragon fits two galaxy populations smoothly out to high
redshifts (𝑧 ∼ 4), though, as discussed earlier, this may be somewhat contaminated by a noise
term, as the size of the quiescent population becomes negligible towards higher redshifts. A good
first step towards a higher-redshift characterization would be to update from the COSMOS2015
dataset to the COSMOS2020 dataset, and add in supernovae fields from DES (which, similar to the
COSMOS field, have superior photometry to the DES wide field survey). With increased numerical
support at higher redshifts—vis. an increased population of quiescent galaxies—Red Dragon will
be better able to characterize the RS out to high redshifts, expanding its capacity to quantify GMM
parameters.

6.1.2 Color dependence on stellar mass & local density

Nearly two decades ago, Baldry et al. [2004] and Balogh et al. [2004] measured dependence of
RS and BC parameterization (red fraction, mean colors, and scatters) on magnitude (a proxy of
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stellar mass) and local overdensity (measured by projected local densities Σ5, computed using the
distance to the fifth-nearest neighbor). Photometry was K-corrected to 𝑧 = 0. It’s about time for
a modern update, including not only more colors than one, but also inter-color correlations and
redshift evolution.

How do fit parameters 𝜽RS and 𝜽BC depend on galactic stellar mass `★, local density 𝛿, redshift
𝑧, and perhaps other1 parameters? If nothing else, a measurement of red fraction as it depends on
stellar mass, redshift, and environment would be wonderful to have, as such measurements only
exist for certain sub-samples of galaxies; a universal fit could provide stellar insights into galaxy
evolution!

Similarly, it would be wonderful if we could investigate Baldry’s dual linear splice fits [Baldry
et al., 2004], confirming or updating the fitting functions, especially for extreme stellar masses or
high redshifts. If a universal fit exists for mean colors and scatters (along with red fraction and
correlations), those fits could be hardcoded into a RS/BC fitting code. Such a characterization of
galaxy populations would allow for more detailed fits, ultimately more capable of identifying the
RS and BC or predicting galactic redshift. This would provide fits for new colors and provide fits
for covariances for the first time as functions of stellar mass.

We could then dive into more astrophysical phenomena. High-metallicity galaxies will tend
towards a particular direction in (multi-)color space; how, precisely, would this and other properties
(e.g. age, dustiness) respond? Where do they lie in color space, relative to mean RS/BC values?
This could then perhaps be reversed, e.g. with principle components analysis (PCA), such that
astrophysical properties could be estimated from the galaxy’s position in color space. Such analysis
may not only improve RS/BC characterization, but could also tease out novel components, be they
starburst galaxies, mid-quenching galaxies, or other galactic populations.

6.1.3 Using RD to find clusters and select cluster members

The Red Dragon algorithm could also be used to find clusters and select cluster members. In
short, it would act much like the redMaPPer cluster finder algorithm, though now fitting for
BC as well as RS. Adding in an entirely new population of galaxies could vastly improve both
cluster identification (especially at 𝑧 ≳ 1, where due to the Butcher–Oemler effect, the fraction
of quiescent galaxies diminishes towards vanishingly small values) and reduce contamination for
cluster members, ultimately providing more reliable mass proxies.

Rather than remain agnostic as to RS/BC membership as with WaZP [Aguena et al., 2021], RD
would purposefully employ both, using characterizations of both populations to estimate a galaxy’s
redshift. So long as the mean colors never overlap in multi-dimensional color space, this would

1For example, geometry—proximity to filaments or clusters—may have different effects from local density; cluster
velocity dispersion or cluster mass may also play a distinct role.
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have flawless accuracy if all galaxies were in the center of the RS or BC color distributions at all
redshifts. While galaxies certainly scatter off of mean colors at every redshift, the populations
are often distinct enough from each other and across redshift that, given a galaxy’s position in
multi-color space, we not only can estimate a galaxy’s RS/BC membership status but we can also
estimate its approximate redshift.

In a field of view, given a trained dragon, we can then estimate redshift for all galaxies by
measuring membership likelihoods across all redshifts (rather than at the estimated redshift, as
is used when creating a dragon initially) and finding the maximum (while using its spread as an
uncertainty). This will then yield two redshift estimates: one assuming it is a RS member and
another assuming it is a BC member—the preferred redshift would then be that with the higher
likelihood. This then gives us a redshift estimate 𝑧RD for each galaxy in some field of view, along
with uncertainties 𝜎𝑧 and RS/BC membership estimation 𝑃red. This assumes that the galaxy is
at the center of the RS/BC distribution, so it may be somewhat biased for galaxies with extreme
dustiness, age, or metallicity (which drive displacement from mean colors). However, even with
nonzero scatters in RS and BC, reasonably good photo-𝑧 values can be estimated.

We can then, for some spectroscopic sample, compare accuracies of a RD-defined redshift
𝑧RD to its spectroscopic redshift 𝑧spec, determining how RD photo-𝑧 estimates compare to other
photo-𝑧 estimators. Preliminary results show that RD photo-𝑧 errors 𝑒𝑧 ≡ (𝑧RD − 𝑧spec)/(1 + 𝑧spec)
yield mean values of ⟨𝑒𝑧⟩ = .005, signifying precise characterization, consistent with accuracies
of WaZP. Using the interquartile range method of Schmidt et al. [2020, roughly equivalent to the
scatter of 𝑒𝑧, excluding outliers], we find 𝜎IQR = .03 for RD-estimated redshifts, as compared to
the O(.02) values scored by the dozen photo-𝑧 algorithms considered (albeit for a different dataset;
more testing is needed to rigorously quantify RD photo-𝑧 capabilities). We can then calculate 𝑧RD

for all galaxies in a wider field of view.
Next, using some viewing window of the sky (hard cut or Gaussian-weighted, dynamic with

redshift), we find a sky map of stacked redshift estimates, downweighted by their uncertainties.
This could be done by adding log likelihood distributions L𝛼 (𝑧) (for each component 𝛼 of RS/BC),
resulting in a summed likelihood for galaxies being at any queried redshift at each point on the
sky. This then would give a sky map of likely redshifts; points with high likelihood would then
likely correspond to galaxy cluster locations. If there are 200 galaxies in a small region which
all share a common redshift estimate, then there is likely a galaxy cluster at that location. Again,
like redMaPPer, this finds clusters, but with the added information of the BC aiding an otherwise
RS-exclusive method.

Once a likely cluster has been identified, its members can be found by running RD at that redshift
on all galaxies in the field of view. If galaxies are likely members of the RS or BC at that redshift,
then they are likely cluster members; otherwise if their membership likelihoods at that redshift are
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low for both, they are likely foreground or background galaxies. Resulting contamination could be
compared to other photo-𝑧 methods on a subset of spec-𝑧 identified clusters.

A good first step towards quantifying the results of this methodology would be to test it on
simulations. The CosmoDC2 synthetic sky catalogue [Korytov et al., 2019] contains not only
photometry, SFR, `★ values (along with other galactic information, like central black hole mass),
but also truth labels about host halos, central galaxy status, and RS membership. This could thus
quantitatively score how well a Red Dragon cluster finder predicts cluster memberships for each
galaxy. This could potentially improve cluster classification, improving optical mass proxies and
thereby cosmological and astrophysical analyses of galaxy clusters.

6.2 Future research with Problem Roulette

Our modeling of student grades was conditioned on only math proclivity𝑇 and study volume 𝑁Q,tot,
but far more sophisticated methods are available. While causality can only truly be teased out with
experimentation (which is questionable to implement on an active student population), machine
learning techniques like SHAP [SHapley Additive exPlanations, defined in Lundberg and Lee,
2017] can tease out relative (though not absolute) causal impact of various variables, determining
which factors best predict final grade.

Preliminary investigation using SHAP for relative importance of demographic indicators shows
that population of the student’s HS zip code was an even better predictor of grade than parental
education, and it was also a better predictor than all of {income, sex, N/URM status, and single
parent status} combined (see definitions of Table 5.3). This surprising result could potentially relate
to differences in resources available to school districts in rural, suburban, and urban areas. Results
such as these can help educators focus on the populations in most need of assistance, helping each
student improve learning outcomes.

There are also several cross-demographic trends we would like to investigate. For example,
a few preliminary results yield surprising trends: international students tended to actually score
lower grades with increasing parental education; the fourth income quartile (> $100k) consistently
did worse than the third income quartile; international students performed superior than average
except for the sub-group which were additionally from single-parent households. These trends and
more are waiting to be investigated, to parse out causality and identify which student populations
struggle most, and why.

Though not currently implemented in PR, discrimination index could be added to aid question
curation [Ermie, 2016]. Discrimination index 𝑑 is calculated for a particular question on some
assessment by first dividing overall grades into low and high groups (typically the top and bottom
27% are used). The index is then the fraction of high-score students who got the question correct
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minus the fraction of low-score students who got the question correct.

𝑑 ≡ 𝑓high, correct − 𝑓low, correct (6.1)

This then ranges 𝑑 | [−1, +1] for each question, where −1 means only low-scoring students an-
swered correctly and +1 means only high-scoring students answered correctly. Scores 𝑑 < .2 are
considered non-discriminating whereas scores 𝑑 > .3 are considered highly discriminating. If
high-scoring students consistently do poorly on a certain question, especially if they do worse than
average, then that question is perhaps poorly worded or a trick question, not properly assessing
student performance. Discrimination index thus quantifies the utility of a question: how well it
discriminates between students with high levels of comprehension and those without. By quanti-
tatively scoring question utility, I will continually curate my courses, improving my tests (be they
quizzes or exams) so they can be of greatest utility to both teacher and student alike.

The Age of AI

Large language models (LLMs) like ChatGPT, Bard, Perplexity, and others have opened a new era
for the human race, moving from the information age into the intelligence age. We are still in the
“Wild West” of handling AI in the classroom. As I’ve chatted with various physics departments in
my job interviews, they’ve shared with me their hopes, sense of unknown, wariness, and wishes for
the future of LLMs and other AI software in the classroom.

I have already planned several ways to use LLMs in the classroom, which I discussed in a U–M
Teach-Out on ChatGPT [University of Michigan, 2023]. Of top priority is to teach students the
fallibility of LLMs; secondarily is to teach students the power of LLMs. Working through problems
with LLMs as copilot or analyzing how LLMs solve problems (and especially when they fail to) can
deepen students’ understanding of physics, helping them to better organize their own thinking and
catch errors in their own reasoning. Moving forward, teaching and assessments must fundamentally
change in order to help students make the largest positive use of the tools at their disposal.

Like any tool, LLMs have potential for good as well as for harm. (“A scalpel can be used to
either heal a wound or to create one.”) A quote from Dune is particularly relevant here:

“Once, men turned their thinking over to machines in the hope that this would set them
free. But that only permitted other men with machines to enslave them.”
– Frank Herbert

As we use ChatGPT and other tools in life, we must ensure that the tools don’t enslave us; that is,
we shouldn’t give up our thinking to ChatGPT or other tools, but rather, we should only use it to
aide our thinking—to think more effectively and more efficiently, so we can think more.
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6.3 Final Thoughts

A scholar once told me that they believed most of modern technology wouldn’t exist without the
stars to motivate humans towards nobler causes. We are truly blessed to live on a planet with an
atmosphere transparent at night, in a darker region of our Milky Way galaxy (far from brilliant star
clusters or nebulae, which could overshadow or outshine our view of the skies), in a darker region
of our local supercluster, Lanieakea (allowing us to see a larger fraction of our local structure, less
obscured than it would be if the Milky Way were in the core of the Virgo Cluster). How fortunate
we are to live early enough in the universe to be able to detect the CMB (and early enough to still
see distant galaxies, before Hubble expansion rips them away from our view) yet late enough in the
universe to be able to observe the matter and dark energy equality epoch! And how grateful I am
to have been born in an era of CCD telescopes and handheld computers with GHz clock speeds!
Without these inventions, my research would be impossible.

The “DIKW pyramid” shows a process of data being contextualized into meaningful infor-
mation given understanding and insight to develop knowledge which is then applied soundly as
wisdom. What a fantastic age we live in, where “educational data mining” (EDM) can be a com-
mon phrase or acronym thrown around—to live in an era where data is so abundant, and tools so
freely available to analyze and learn from data, drawing out information and knowledge. But the
jump from knowledge to wisdom is far from inevitable. It’s easy to think, especially when one is
intelligent or knowledgeable, that wisdom naturally follows from knowledge. But this hubris serves
no one. Wisdom is ratified by its observed consequences, not by data analysis. As we continue
to seek wisdom in how to best apply knowledge, may we all move with caution in a world which
sometimes has more artificial intelligence than true wisdom.

With more tools at our disposal than ever before, we have great potential to learn about scales
as large as our universe and as small as our selves; The sky is no limit.

Ad Astra!
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APPENDIX A

Density Characterization

Density characterized using same vetting as in table 2.1. To account for cosmic / local variance, I
used a fit of the comoving number density rather than the local number density directly. Fitting in
log density space ensured positive number densities while fitting relative to the log of the expansion
factor 𝑎 = 1/(1 + 𝑧) better matches the universe’s evolution rate. We find a fit of

�̄�(𝑧) ∼ (0.00429 cMpc−3) (1 + 𝑧)0.820 exp
{
.532 [ln(1 + 𝑧)]2} (A.1)

to the redshift-evolving mean number density of galaxies brighter than 0.2 𝐿∗ in Buzzard (v2.0.0).
Deviations from the black line suggest LSS over- or under-densities at those redshifts. In the

local, low-redshift universe, the overdensity near 𝑧 = 0.1 indicates LSS near the simulated observer
significant enough to deviate from the homogeneity observed at larger volumes. (Low redshift
observations suffer more from the statistical errors of cosmic variance than higher redshifts.)
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Figure A.1: Number density of 𝐿 > 0.2𝐿∗ galaxies in Buzzard. Power law fit (black line; see
equation A.1) weighted by Poisson uncertainty (red; five sigma).
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APPENDIX B

Radial profiles extended

See figures B.1 and B.2 below for binning in mass and redshift simultaneously. These show minimal
redshift evolution, so combining all into the single frame of figure 2.13 loses little information while
gaining statistical power.

Figure B.3 shows visually the distortions in profile shapes at high and low masses, visually
depicting differences from NFW expectations.
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Figure B.1: Radial profiles of galaxies in clusters in contrast with NFW expectations.
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Figure B.2: Radial profiles of galaxies in clusters, given relative to NFW expectations.
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Figure B.3: Visualized 2D radial profiles, exemplifying differences between Buzzard (left) and
observations (right), for a low-mass (top) and a high-mass (bottom) halo. Red circle indicates 𝑟vir
while the faint inner circles indicate 1/10 and 1/100 𝑟vir.
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APPENDIX C

Flipped Space

Here we present the inverse HOD relation to that of §2.3.1, i.e. log mass ` conditioned on richness
_. We use power law fit:

⟨` |_⟩ = 𝛼 + 𝛽 log10(_/_𝑝) ± 𝜎 (C.1)

(where _𝑝 = 40; pivot richnesses typically span _𝑝 | [20, 70] in the literature). As in §2.3.1, I
parameterize temporal evolution with Z ≡ ln 1+𝑧

1+𝑧𝑝 , using 𝑧𝑝 = .4 as a pivot redshift.
Figure C.1 shows the redshift evolution of the HOD in this flipped space. Our fit finds log

mass normalization 𝛼 = 14.82 ± 0.01, slope 𝛽 = (1.049 ± 0.016) − (0.71 ± 0.13) Z , and intrinsic
scatter 𝜎 = 0.147±0.0021. Though 𝛼 generally includes redshift evolution, we find no evidence of
evolution for 𝛼 nor 𝜎. In contrast, 𝛽 shows > 6𝜎 evidence for evolution: a significant shallowing
of the slope with redshift.
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Figure C.1: Redshift evolution of mass–richness relation, given by equation C.1. Fit lines show
mean and scatter in the mean as measured by linmix, fit in log((1 + 𝑧)/(1 + .4)) space. Only the
slope 𝛽 shows significant evolution with redshift (> 6 sigma evidence, as compared to 𝛼 and 𝜎2

which have < 1 sigma evidence for evolution).
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APPENDIX D

Varying threshold of truth label

Because the distribution of sSFR is skew-lognormal rather than bimodal, hard cuts separating
quenched and star-forming galaxies—such as that of equation (3.9)—are not robust. That is, shifts
in the cut parameterization can result in relatively large shifts in truth label. (In contrast, if the
distribution were bimodal, with a large valley between components, then small shifts to the dividing
line would affect relatively few galaxies’ truth labels.)

Here we show the effect of shifting the sSFR limit on the balanced accuracy of the SDSS/low-𝑧
sample, effectively recreating the Red Dragon points of Figure 3.4, extending the plot for various
truth labels. Though balanced accuracy covers a range of about 10% in this plot, it’s reasonable
to expect equation (3.9) to be accurate within ±0.25 dex, which then corresponds to only a ∼ 3%
shift in accuracy between either extreme. Furthermore, we see here that relative characterization
is somewhat consistent, with each of the values being within a few percent of each other across the
board. This means that in all plots using a sSFR cut, one should read results as relative to each
other (rather than as absolute measurements of accuracy).
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Figure D.1: Balanced accuracy shift due to changing sSFR truth label (the limit shown in equa-
tion (3.9); dashed line) for various Red Dragon component counts 𝐾 . Ran on bootstrap resamplings
of the SDSS/low-𝑧 sample; results then smoothed with KLLR.
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APPENDIX E

Magnitude trends in Buzzard

Here we investigate trends of magnitude running as found in Buzzard. Though running of param-
eters \ with magnitude is statistically significant (see §3.5.4), slope of mean color relative to the
scatter of the populations was relatively small (§E.1), so differences in selection were relatively
minimal (§E.2). Magnitude trends had the largest effect for dimmer galaxies, resulting in ≲ 10%
differences in selection.

E.1 Shift of mean color relative to RS width

Though the RS may have a statistically significant shift in mean color, it may not significantly
change selection of the RS by Gaussian mixture if that running is small compared to the width of
the RS. To measure this, we use the metric 𝜍 to quantify slope of the RS relative to its scatter:

𝜍 ≡ 𝑑⟨`𝑎⟩/𝑑𝑀𝑏

𝜎𝑎
(E.1)

(for color 𝑐𝑎 and magnitude 𝑀𝑏; the magnitude may be any—our three fits use 𝑀𝑟 , 𝑀𝑖, and 𝑀𝑧).
This measure of relative drift quantifies the significance of magnitude differences. For a sample

of 0.2 𝐿∗ limited galaxies with luminosities following a Schechter function (with 𝛼 | [−1.5,−1]),
≳ 99.9% of its galaxies fall in a magnitude spread of Δmag < 4. Using the ±2𝜎RS definition of
RS width from Hao et al. [2009], we can then take 4𝜎 as the distance needed to move such that the
RS radically shifts with magnitude. These two factors of four then cancel, leaving 𝜍 as a unitless
metric for significance of RS running. If |𝜍 | < 1, the magnitude variation of the RS mean color
is completely within the typical scatter of the RS, but if |𝜍 | > 1, then the RS mean color moves
beyond the typical scatter of the RS.

We measured 𝜍 values from SDSS data Baldry et al. [2004], the Buzzard flock, and a redMaPPer
Rykoff et al. [2014] fit of the DES Y3 RS. Each of the three datasets had typical values of |𝜍RS | ≲ 0.5
(focusing at a given redshift on the appropriate primary color from table 3.2), implying that in nearly
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every case, the running of the RS mean color was insignificant compared to its width. This implies
that it takes many magnitudes to significantly shift the mean RS color, relative to its intrinsic scatter.
Therefore, characterizing the RS in a magnitude-ignorant way will still properly select galaxies.

E.2 Similarity in selection

Though including magnitude running of GMM parameters would better represent the photometric
population, the extra dimensionality of running with magnitude increases the number of parameters
needed for fitting without drastically altering selection.

Though the current version of Red Dragon doesn’t include magnitude running, there are a few
workarounds to model it explicitly. 1) You can slice your data by magnitude and run Red Dragon
to characterize a bright vs dim sample of your galaxies, then interpolate between (or simply bin
using) the two fits to estimate 𝑃red for individual galaxies. 2) If working with a relatively thin
redshift slice, you can set in the code Z=m_i, i.e. let Red Dragon measure and interpolate across
magnitude rather than redshift. We use this latter method to measure similarity in selection between
magnitude-running and redshift-running versions of Red Dragon.

At several thin redshift slices (for 𝑧 | [.1, .7]), we measured 𝑃red differences between the color-
only and magnitude-running dragons. In binary selection, these two dragons resulted in about
7% opposing characterization (i.e. 7% of galaxies were characterized as RS instead of BC or
vice versa) with a balanced accuracy of about 94% (between magnitude-running dragons and
redshift-running dragons; not an accuracy of selecting the quenched population). Looking at
Δ𝑃 = (𝑃red,mag − 𝑃red,𝑧), we found that though ∼ 10% of galaxies had |Δ𝑃 | ≳ 0.25, less than ∼ 3%
of galaxies had |Δ𝑃 | ≳ 0.50 (so few galaxies had significantly different characterization). While
the effect of running with magnitude is notable, it can be ignored without much loss.

Magnitude matters most when you’re uncertain of redshift, but the current version of Red Dragon
is designed for clusters, where you have very good redshift estimates. For the current iteration of
Red Dragon, the algorithm remains magnitude-ignorant, solely using colors to distinguish the RS
from the BC.
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APPENDIX F

Band Characterization

Table F.1 characterizes the photometric bandpass filters used in this analysis, including central
wavelengths, filter widths, and entry/exit wavelengths for the 4000 Å break. Note that the exit and
entry wavelengths don’t usually coincide between bands, since filters may overlap (e.g. in the case
of 𝑟 → 𝑖) or have gaps between them (e.g. the VIRCAM filters). These entry and exit redshifts can
be shifted for any other rest-frame wavelength _ (rather than 4000 Å):

𝑍_ = (𝑍4k + 1)4000 Å

_
− 1 (F.1)

So, for example, the Balmer break at _B = 3647.05 Å would have shifted transition redshifts, such
that 𝑍B ≈ 1.097(𝑍4k + 1) − 1 = 1.097𝑍4k + .097 and the Lyman limit at _L = 911.763 Å would
have 𝑍L ≈ 4.4(𝑍4k + 1) − 1. Thus Balmer transition redshifts are roughly 10% larger than 4000 Å

break redshifts. Note that the Lyman limit enters 𝑔 band at 𝑍L ≈ 3.37, just beyond the maximum
redshifts considered in this paper.

Transition wavelengths between filters are taken as the geometric midpoint between edges, i.e.:

_tr ≡

√︄(
_c,𝑎 +

1
2
Δ_𝑎

) (
_c,𝑏 −

1
2
Δ_𝑏

)
(F.2)

for bands 𝑎 and 𝑏 (using the geometric mean rather than the arithmetic tends to make a < 1/1000
difference, but it makes more sense to think in terms of log wavelengths, rather than linear, so geo
mean makes more sense). This yields the transition wavelengths listed in Table F.2.
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Table F.1: Entry and exit redshifts of the 4kÅ break: Redshifts at which a 4000 Å (“4k”) rest-
frame wavelength source will enter (“EN”) and exit (“EX”) visible and NIR bands from DECam
(𝑢𝑔𝑟𝑖𝑧) and VIRCAM (𝐽𝐻𝐾s). Note that central wavelengths _c and widths Δ_ (FWHM) belie
the asymmetries and rounded edges of each filter’s transmission, so crossing redshifts are only
approximate. Also note that the central wavelength for 𝑢 band is shorter than even the Balmer
break, so the entry redshifts are negative.

band _c (Å) Δ_ (Å) 𝑍4k,EN 𝑍4k,EX
𝑢 3552 885 -.22 0
𝑔 4730 1503 -.01 .371
𝑟 6415 1487 .418 .790
𝑖 7835 1470 .776 1.14
𝑧 9260 1520 1.12 1.50
𝐽 12 523 1725 1.92 2.35
𝐻 16 451 2915 2.75 3.48
𝐾s 21 467 3090 3.98 4.75

Table F.2: Transition wavelengths: locations at which a monochromatic signal moves from being
picked up by one band more than another.

bands _tr (Å)
𝑢 → 𝑔 3987
𝑔 → 𝑟 5576
𝑟 → 𝑟 7131
𝑖 → 𝑧 8534
𝑧 → 𝐽 10,800
𝐽 → 𝐻 14,200
𝐻 → 𝐾s 18,900
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APPENDIX G

Other color fits to main dragon

Here we detail the remaining color parameterization of the 𝑔𝑟𝑖𝑧 dragon, including the remaining
mean colors, scatters, and correlations not discussed in the main text.

We note here that Figure G.1 shows the RD fit to the RS in 𝑔 − 𝑟 has a ∼ 0.5 mag divergence
from RM near 𝑧 = 1. However, the RM-measured slope of mean color with respect to luminosity is
significantly larger than this offset. Therefore, relative to Figures 4.5 & G.2, and taking into account
divergence from fit relative to slope offset, the fit is still in fair agreement. Also worth noting: this
separation is roughly the size of the measured RS scatter at that redshift (see Figure G.3), so to 2𝜎,
the lines are in fine agreement.

We note that Figure G.4 shows RD measuring a significantly larger RS scatter than RM, by
roughly a factor of three in places (most often closer to a factor of two). This could perhaps be
related to a difference in data quality, in estimated uncertainties in 𝑖 − 𝑧 color between the DES
Y3 sample as compared to the COSMOS2015 sample. For example, if the DES Y3 catalogue
overestimated uncertainties in 𝑧 band, or if the COSMOS2015 catalogue underestimated the same,
then this could explain the difference in measured scatter.
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Figure G.1: As Figure 4.5, but for 𝑔 − 𝑟.
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Figure G.2: As Figure 4.5, but for 𝑖 − 𝑧.
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Figure G.3: As Figure 4.6, but for 𝑔 − 𝑟.
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Figure G.4: As Figure 4.6, but for 𝑖 − 𝑧.
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Figure G.5: As Figure 4.7, but for 𝜌(𝑔 − 𝑟, 𝑟 − 𝑖).
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Figure G.6: As Figure 4.7, but for 𝜌(𝑔 − 𝑟, 𝑖 − 𝑧).
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APPENDIX H

Permissible thickness of mass and redshift bins

What step size in redshift or galactic stellar mass causes a significant drift in RD fit parameters ®\?

H.1 Color slope method

One straightforward way to quantify this is to compare how much the RS mean color drifts in
comparison to its scatter. Using redshift as an example (though one can mirror the analysis using
stellar mass), if a step Δ𝑧 in redshift makes the mean color shift by more than its scatter, we
must consider decreasing redshift bin width in order to not miss significant spectral features. In
particular, as ±2𝜎RS has historically been used to select the RS, if the mean color drifts by 4𝜎RS,
it would be completely excluded from selection, so we use 4𝜎RS as an upper limit. We can then
demand Δ𝑧 · 𝑑 ®𝑐RS/𝑑𝑧 < 4 · 𝜎RS, so

Δ𝑧 <
4𝜎RS

𝑑 ®𝑐RS/𝑑𝑧
= Δ𝑧max. (H.1)

This then estimates a maximum 𝑧-bin width, beyond which colors vary more within the bin than
they scatter at a fixed 𝑧. A more conservative bin width would be half this value, but there would
be little justification to move bin width below a quarter this value (unless, as will be discussed in
§H.2, other parameters drift significantly quicker than mean color does compared to its scatter).

From our three main fits here, we find Δ𝑧max tends to be lowest (most strict) at lower redshifts
and at higher stellar masses. In particular, we measure a minimum of Δ𝑧max ∼ .12, implying that
redshift bins should not exceed this width if the RS is to be properly characterized (at low redshifts
and high stellar masses). Both the increased RS scatter and the decreased RS mean color slope
with redshift at lower stellar masses lead to higher values of Δ𝑧max; we find values of .25 and .75
for the middle and lowest mass sample respectively. (This analysis can also be performed for the
BC; we find strictest values of Δ𝑧max for each sample were consistent with ∼ .3, indicating a looser
requirement for the highest-mass sample but a stricter requirement for the lowest-mass sample).
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This analysis can also be performed with stellar mass-running dragons, using 𝑑 ®𝑐/𝑑`★. Prelimi-
nary results find strictest values of Δ`★,max ∼ 1, implying that within a stellar mass decade, the RS
and BC mean colors tend to not experience a drift in mean colors greater than four times the RS
scatter. However, parameters besides mean color may experience significant drift with redshift or
stellar mass, suggesting stricter bin width requirements.

H.2 Parameter curvature method

A more conservative approach would use bootstrap uncertainties of fit parameters and curvature of
fit parameters to determine desired bin width.

Generally speaking, if an unknown function 𝑓 (𝑥) is linear in a given domain, then only two
points (at any distance from each other) are needed to characterize the curve, with no constraint on
bin width; in contrast, if the function has significant curvature, this constrains bin size. In particular,
one might hope to have sufficiently sampled space so as to properly characterize all curvatures in
the function, ensuring that all peaks are identified. If all points sampled of the function have some
uncertainty, then one could demand insignificant curvature between neighboring points. This
would distinguish outliers from significant peaks.

In particular, using finite differencing, the curvature 𝑓𝑥𝑥,𝑖 of a function at point 𝑥𝑖 is estiamted by

𝑓𝑥𝑥 (𝑥𝑖) ≈
𝑓𝑖−1 − 2 𝑓𝑖 + 𝑓𝑖+1

ℎ2 (H.2)

(where ℎ is bin width). Demanding no significant curvature between points would then imply

𝑓𝑥𝑥

𝜎 𝑓𝑥𝑥
≲ 1. (H.3)

We can then estimate an optimal bin width using this constraint. Because 𝑓𝑥𝑥 ∝ ℎ−2, we find that
to make point-to-point curvature insignificant, we must use bin width

ℎnew = ℎold ·
√︂
𝜎 𝑓𝑥𝑥

𝑓𝑥𝑥
. (H.4)

Thus, larger relative uncertainties on curvature 𝜎 𝑓𝑥𝑥/ 𝑓𝑥𝑥 allow for larger bin widths while more
significant curvatures 𝑓𝑥𝑥/𝜎 𝑓𝑥𝑥 demand narrower bins. Using ℎnew thus ensures that all point-
to-point trends are consistent to 1𝜎 with linear, attesting that the function is well-characterized,
without missing any significant peaks of 𝑓 (𝑥).

Applying equation (H.4) to our parameters ®\ then gives us a strict estimate on bin width, setting a
minimum reasonable bin width for a given dragon. Rather than strictly adhere to equation H.3, one
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could reasonably allow for significance of curvature up to 𝑓𝑥𝑥/𝜎 𝑓𝑥𝑥 ≲ 5, only excluding undeniably
significant curvatures. Restating these bounds in terms of a given parameter \, we then have

ℎold ·
√︂
𝜎\𝑥𝑥

\𝑥𝑥
≲ ℎnew ≲ ℎold ·

√︄
5𝜎\𝑥𝑥
\𝑥𝑥

. (H.5)

Using the left constraint for component weights, mean colors, log variances, and correlations, we
find that across parameters and components, the typical desired redshift bin width ℎnew falls around
Δ𝑧 = .04 and a minimum across parameters towards Δ𝑧 = .013, leading to an upper constraint of
Δ𝑧 ≲ .065 as a strict value of a maximum permissible bin width for redshift. Our study’s bin width
of Δ𝑧 = .05 is thus permissible, albeit near the wide side (as is desired, for the sake of increasing
RS number counts in each bin, improving statistical power).

Constraints on bin width are often most stringent due to sharp evolution of colors, but depending
on sample, other elements of ®\ demand narrow bin widths: weight, correlation, or even scatter (in
decreasing frequency) can also issue the strictest calls for narrow bin widths.

The same methodology can be used for magnitude-running dragons. Analyzing one such dragon,
we find preliminary results of a typical desired bin width of Δ`★ ∼ .35 and a minimum desired bin
width of Δ`★ > .1 (implying an upper limit of Δ`★ ≲ .5 for negligible parameter evolution within
a mass bin). This implies that using bins any thinner than a tenth of a mass decade is unreasonable
for the purposes of GMM characterization of galaxy colors. This suggests that using a full decade
for a stellar mass bin width is too lenient, as it may miss significant parameter evolution.

H.3 Suggestions

In summary, we find no evidence of needing bin width thinner than Δ𝑧 < .01 for redshift and
Δ`★ < .1 for stellar mass. Future modeling of galaxy populations in photometric space should
ensure their models use bin widths Δ𝑧 ≲ .05 and Δ`★ ≲ .5; analyses otherwise risk missing
significant evolution of parameters within their bins.

We end with a warning that if mass bins are made too wide, then high-` BC galaxies are likely
to be characterized as RS galaxies. As this population tends to have lower star formation rates and
is likely to be in the middle of mass quenching, this characterization may not be entirely wrong,
though it is perhaps incorrect.
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APPENDIX I

Problem Roulette structure

After logging in and selecting a course, students can choose from various modes of study: Individ-
ual, Group, or Practice Exam (student-generated or faculty-generated as formal practice exams).
Problem Roulette also collects questions from topics that students struggle with most, which stu-
dents can study from.

In the Individual or Group study modes, students select which topics to study (e.g., “Vector
Algebra”, “Relative Motion”), whether or not to use a timer for the session, and how many questions
to pull (defaults: 10, 25, all). They are then presented with an exam-like set of questions one at a
time. After the session, they are presented with a review of the questions attempted with correct
answers indicated, along with an overall accuracy score and the session duration.

Instructors can view course analytics for a given term. At the instructor dashboard, they see
student activity (e.g., which days saw more PR use), student accuracy versus questions answered
for each topic, the accuracy of answers by topic, and the accuracy of individual questions answered.
This information can reveal which topics or types of questions students tend to struggle with most
or least.
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APPENDIX J

Additional issues with GPAO

Though GPAO correlates more with course grade earned (GPE) than any other indicator we
investigated, it has a several issues. The most crucial issue of its correlation with study is detailed
in §5.3.3; here we delineate several additional issues with using GPAO as a baseline for GPE
comparison (vs. 𝑇 as a baseline, as used in this paper), that is, using grade anomaly GPE − GPAO
instead of the metric GPE − `GPE(𝑇) used herein.

J.1 Relation to personality traits

Personality traits correlate significantly with grades,Köseoglu [2016] mediated through study
habits.Aluja and Blanch [2004] Because GPAO depends on study and some demographic pop-
ulations have different mean study behaviors than others, significant differences exist between
some different demographic sub-populations. For example, male students tend to study less than
female students, and they tend to have a lower GPAO than female students by roughly 0.07 to 0.14
points, despite having significantly higher 𝑇 scores on average.Richardson et al. [2012] This means
that in a class where each student got identical grades, the grade anomaly for males and females
could still differ for causes extrinsic to the course in question.

J.2 Differing course selection

GPAO depends on course selection of individual students, but course selection differs drastically
by demographics, and not all course loads are equal. If all students took similar courses regardless
of demographic group, then GPAO would be a fair measure of “anomaly”—how differently the
course was graded compared to expectations from other courses. However, different groups tend
to take different courses, leading to systemic shifts between different demographic sub-groups. If a
student tends to take easier courses, they could have a 4.0 GPAO, then this would allow the student
more free time to study on PR. However, a similar signal comes from a student who, despite taking
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incredibly challenging courses, works very hard and still has a 4.0 GPAO, yet then has very little
free time to study on PR. While this exemplifies why GPAO has power in predicting GPE, it also
shows that interpretation of GPAO is clouded.

J.3 Deletion of campus-wide trends

Grade anomaly GPE−GPAO wipes out campus-wide biases. Expressing this numerically: if every
course in the school consistently awarded lower grades by a bias 𝑏 to a given group 𝑔 versus the
rest of the population 𝑝, then the grade anomaly of that group would be

(grade anomaly)𝑔 = GPE𝑔 − GPAO𝑔 (J.1)

= (GPE𝑝 − 𝑏) − (GPAO𝑝 − 𝑏)
= GPE𝑝 − GPAO𝑝 = (grade anomaly)𝑝,

so the group then has identical grade anomaly to the rest of the population. This then erases the
effects of campus-wide biases.
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A. Leauthaud, S. Lilly, L. Lin, S. Marchesi, B. Milvang-Jensen, M. Salvato, D. B. Sanders,
N. Scoville, V. Smolcic, M. Stockmann, Y. Taniguchi, L. Tasca, S. Toft, Mattia Vaccari, and
J. Zabl. The cosmos2015 catalog: Exploring the 1 ¡ z ¡ 6 universe with half a million galaxies.
The Astrophysical Journal Supplement Series, 224(2):24, Jun 2016. ISSN 0067-0049. doi: 10.
3847/0067-0049/224/2/24. URL https://dx.doi.org/10.3847/0067-0049/224/2/24.

C Laigle, C Pichon, S Arnouts, H J McCracken, Y Dubois, J Devriendt, A Slyz, D Le Borgne,
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Abdalla, S. Allam, J. Annis, A. Benoit-Lévy, G. M. Bernstein, E. Bertin, D. Brooks, D. L. Burke,
D. Capozzi, A. Carnero Rosell, M. Carrasco Kind, F. J. Castander, M. Childress, C. A. Collins,
C. E. Cunha, C. B. D’Andrea, L. N. da Costa, T. M. Davis, S. Desai, H. T. Diehl, J. P. Dietrich,
P. Doel, A. E. Evrard, D. A. Finley, B. Flaugher, P. Fosalba, J. Frieman, K. Glazebrook, D. A.
Goldstein, D. Gruen, R. A. Gruendl, G. Gutierrez, M. Hilton, K. Honscheid, B. Hoyle, D. J.
James, S. T. Kay, K. Kuehn, N. Kuropatkin, O. Lahav, G. F. Lewis, C. Lidman, M. Lima, M. A. G.
Maia, R. G. Mann, J. L. Marshall, P. Martini, P. Melchior, C. J. Miller, R. Miquel, J. J. Mohr,

187

https://doi.org/10.1093/mnras/stw1281
https://doi.org/10.1088/0004-637x/699/1/768
https://doi.org/10.1088/0004-637x/703/1/601
https://doi.org/10.1088/0004-637x/703/1/601
https://github.com/erykoff/redmapper/issues/78#issuecomment-860775426
https://github.com/erykoff/redmapper/issues/78#issuecomment-860775426
https://doi.org/10.1088%2F0004-637x%2F785%2F2%2F104


R. C. Nichol, B. Nord, R. Ogando, A. A. Plazas, K. Reil, M. Sahlén, E. Sanchez, B. Santiago,
V. Scarpine, M. Schubnell, I. Sevilla-Noarbe, R. C. Smith, M. Soares-Santos, F. Sobreira, J. P.
Stott, E. Suchyta, M. E. C. Swanson, G. Tarle, D. Thomas, D. Tucker, S. Uddin, P. T. P. Viana,
V. Vikram, A. R. Walker, Y. Zhang, and DES Collaboration. The RedMaPPer Galaxy Cluster
Catalog From DES Science Verification Data. The Astrophysical Journal Supplement Series,
224(1):1, May 2016. doi: 10.3847/0067-0049/224/1/1.

Paul R. Sackett, Matthew J. Borneman, and Brian S. Connelly. High stakes testing in higher educa-
tion and employment: Appraising the evidence for validity and fairness. American Psychologist,
63:215–227, 2008. ISSN 1935-990X. doi: 10.1037/0003-066X.63.4.215.

B. Sartoris, A. Biviano, C. Fedeli, J. G. Bartlett, S. Borgani, M. Costanzi, C. Giocoli, L. Moscardini,
J. Weller, B. Ascaso, S. Bardelli, S. Maurogordato, and P. T. P. Viana. Next generation cosmology:
constraints from the Euclid galaxy cluster survey. MNRAS, 459(2):1764–1780, June 2016. doi:
10.1093/mnras/stw630.

Guan Saw, Chi-Ning Chang, and Hsun-Yu Chan. Cross-sectional and longitudinal dispari-
ties in stem career aspirations at the intersection of gender, race/ethnicity, and socioeco-
nomic status. Educational Researcher, 47(8):525–531, Nov 2018. ISSN 0013-189X. doi:
10.3102/0013189X18787818. URL https://doi.org/10.3102/0013189X18787818.

Kevin Schawinski. Black hole – galaxy co-evolution. arXiv: 1206.2661 [astro-ph], Jun 2012. doi:
10.48550/arXiv.1206.2661. URL http://arxiv.org/abs/1206.2661. arXiv:1206.2661
[astro-ph].

Kevin Schawinski, Daniel Thomas, Marc Sarzi, Claudia Maraston, Sugata Kaviraj, Seok-Joo
Joo, Sukyoung K. Yi, and Joseph Silk. Observational evidence for agn feedback in early-type
galaxies. Monthly Notices of the Royal Astronomical Society, 382(4):1415–1431, Dec 2007. ISSN
0035-8711. doi: 10.1111/j.1365-2966.2007.12487.x. URL https://doi.org/10.1111/j.
1365-2966.2007.12487.x.

Kevin Schawinski, C. Megan Urry, Brooke D. Simmons, Lucy Fortson, Sugata Kaviraj, William C.
Keel, Chris J. Lintott, Karen L. Masters, Robert C. Nichol, Marc Sarzi, and et al. The green
valley is a red herring: Galaxy zoo reveals two evolutionary pathways towards quenching of
star formation in early- and late-type galaxies. Monthly Notices of the Royal Astronomical
Society, 440(1):889–907, May 2014. ISSN 0035-8711. doi: 10.1093/mnras/stu327. URL
https://doi.org/10.1093/mnras/stu327.

E. Schinnerer, C. L. Carilli, N. Z. Scoville, M. Bondi, P. Ciliegi, P. Vettolani, O. Le Fèvre, A. M.
Koekemoer, F. Bertoldi, and C. D. Impey. The vla-cosmos survey. i. radio identifications from
the pilot project. The Astronomical Journal, 128(5):1974, Nov 2004. ISSN 1538-3881. doi:
10.1086/424860. URL https://dx.doi.org/10.1086/424860.

S J Schmidt, A I Malz, J Y H Soo, I A Almosallam, M Brescia, S Cavuoti, J Cohen-Tanugi,
A J Connolly, J DeRose, P E Freeman, M L Graham, K G Iyer, M J Jarvis, J B Kalmbach,
E Kovacs, A B Lee, G Longo, C B Morrison, J A Newman, E Nourbakhsh, E Nuss, T Pospisil,
H Tranin, R H Wechsler, R Zhou, R Izbicki, and (The LSST Dark Energy Science Collaboration).

188

https://doi.org/10.3102/0013189X18787818
http://arxiv.org/abs/1206.2661
https://doi.org/10.1111/j.1365-2966.2007.12487.x
https://doi.org/10.1111/j.1365-2966.2007.12487.x
https://doi.org/10.1093/mnras/stu327
https://dx.doi.org/10.1086/424860


Evaluation of probabilistic photometric redshift estimation approaches for the rubin observatory
legacy survey of space and time (lsst). Monthly Notices of the Royal Astronomical Society, 499
(2):1587–1606, Oct 2020. ISSN 0035-8711. doi: 10.1093/mnras/staa2799.

David P. Schmitt, Anu Realo, Martin Voracek, and Jüri Allik. Why can’t a man be more like a
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Rachel S. Somerville and Romeel Davé. Physical models of galaxy formation in a cos-
mological framework. Annual Review of Astronomy and Astrophysics, 53(1):51–113,
2015. doi: 10.1146/annurev-astro-082812-140951. URL https://doi.org/10.1146/
annurev-astro-082812-140951.

J. S. Speagle, C. L. Steinhardt, P. L. Capak, and J. D. Silverman. A highly consistent framework
for the evolution of the star-forming “main sequence” from 𝑧 ∼ 0–6. The Astrophysical Journal
Supplement Series, 214(2):15, Sep 2014. ISSN 0067-0049. doi: 10.1088/0067-0049/214/2/15.

D. Spergel, N. Gehrels, C. Baltay, D. Bennett, J. Breckinridge, M. Donahue, A. Dressler, B. S.
Gaudi, T. Greene, O. Guyon, C. Hirata, J. Kalirai, N. J. Kasdin, B. Macintosh, W. Moos, S. Perl-
mutter, M. Postman, B. Rauscher, J. Rhodes, Y. Wang, D. Weinberg, D. Benford, M. Hudson,
W. S. Jeong, Y. Mellier, W. Traub, T. Yamada, P. Capak, J. Colbert, D. Masters, M. Penny,
D. Savransky, D. Stern, N. Zimmerman, R. Barry, L. Bartusek, K. Carpenter, E. Cheng, D. Con-
tent, F. Dekens, R. Demers, K. Grady, C. Jackson, G. Kuan, J. Kruk, M. Melton, B. Nemati,
B. Parvin, I. Poberezhskiy, C. Peddie, J. Ruffa, J. K. Wallace, A. Whipple, E. Wollack, and F. Zhao.
Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA
2015 Report. arXiv e-prints, art. arXiv:1503.03757, March 2015.

Markus Wolfgang Hermann Spitzer. Just do it! study time increases mathematical achieve-
ment scores for grade 4-10 students in a large longitudinal cross-country study. Euro-
pean Journal of Psychology of Education, 37(1):39–53, Mar 2022. ISSN 1878-5174. doi:
10.1007/s10212-021-00546-0. URL https://doi.org/10.1007/s10212-021-00546-0.

190

https://academic.oup.com/mnras/article/480/4/5385/5079647
https://academic.oup.com/mnras/article/480/4/5385/5079647
https://link.aps.org/doi/10.1103/PhysRevPhysEducRes.16.020125
https://link.aps.org/doi/10.1103/PhysRevPhysEducRes.16.020125
https://www.sciencedirect.com/science/article/pii/S2211949322000011
https://www.sciencedirect.com/science/article/pii/S2211949322000011
https://doi.org/10.1146/annurev-astro-082812-140951
https://doi.org/10.1146/annurev-astro-082812-140951
https://doi.org/10.1007/s10212-021-00546-0


Volker Springel. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on
a moving mesh. Monthly Notices of the Royal Astronomical Society, 401(2):791–851, Jan 2010.
ISSN 0035-8711. doi: 10.1111/j.1365-2966.2009.15715.x.

Volker Springel, Simon D. M. White, Adrian Jenkins, Carlos S. Frenk, Naoki Yoshida, Liang
Gao, Julio Navarro, Robert Thacker, Darren Croton, John Helly, and et al. Simulating the joint
evolution of quasars, galaxies and their large-scale distribution. Nature, 435(7042):629–636, Jun
2005. ISSN 0028-0836, 1476-4687. doi: 10.1038/nature03597. URL http://arxiv.org/
abs/astro-ph/0504097. arXiv: astro-ph/0504097.

Volker Springel, Carlos S. Frenk, and Simon D. M. White. The large-scale structure of the universe.
Nature, 440(70887088):1137–1144, Apr 2006. ISSN 1476-4687. doi: 10.1038/nature04805.
URL https://www.nature.com/articles/nature04805.

Dominik Steinhauser, Sabine Schindler, and Volker Springel. Simulations of ram-pressure stripping
in galaxy-cluster interactions. Astronomy & Astrophysics, 591:A51, Jul 2016. ISSN 0004-
6361, 1432-0746. doi: 10.1051/0004-6361/201527705. URL https://www.aanda.org/
articles/aa/abs/2016/07/aa27705-15/aa27705-15.html.

P Steyrleithner, G Hensler, and A Boselli. The effect of ram-pressure stripping on dwarf galaxies.
Monthly Notices of the Royal Astronomical Society, 494(1):1114–1127, May 2020. ISSN 0035-
8711. doi: 10.1093/mnras/staa775. URL https://doi.org/10.1093/mnras/staa775.

Ralph Stinebrickner and Todd R. Stinebrickner. The causal effect of studying on academic perfor-
mance. The B.E. Journal of Economic Analysis & Policy, 8(1), Jun 2008. ISSN 1935-1682. doi:
10.2202/1935-1682.1868. URL https://www.degruyter.com/document/doi/10.2202/
1935-1682.1868/html.
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