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PREFACE

Some of the work in this thesis were performed in collaboration with other researchers. The clas-
sical theory in Chapter 2 was originally developed by previous members of the group and collabo-
rators, including W.M Fisher, A.A. Fisher, P.M. Anisimov, and E.F.C Dreyer. The quantum theory
and theoretical analysis of the rectification moment was done by me. The classical model de-
scribed in Chapter 3 was originally developed by E.F.C Dreyer and was modified by me to perform
simulations of pulsed excitation. The quantum model was my work alone. The second harmonic
generation experiment in Chapter 3 was performed in collaboration with M.T Trinh, K. Makhal,
and D.S. Yang. The experimental setup was built by M.T. Trinh and K. Makhal, while the sample
was fabricated by D.S. Yang. Alignment, data collection, and analysis was shared between M.T
Trinh and myself. The birefringence experimental setup and theory was done by me. Analysis of
the experimental results in Chapter 4 was shared between M.T Trinh and myself, while Sections
4.2 and 4.3 on the computational results are exclusively my analysis.

Some of the work in this thesis has been previously published. The classical computational
model described in Chapter 3 was published in ”Optical magnetization, part III: theory of molec-
ular magneto-electric rectification” (1). The second harmonic generation experiment and results
from Chapters 3 and 4 were published in ”Observation of magneto-electric rectification at non-
relativistic intensities” (2).
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ABSTRACT

The role of the optical magnetic field in light-matter interactions is often neglected due to its rel-
ative weakness with respect to the optical electric field. However, the magnetic field of light can
interact strongly with matter in magneto-electric interactions where it acts jointly with the opti-
cal electric field to drive optical nonlinearities. The inclusion of the magnetic field dynamically
breaks parity-time symmetry, so magneto-electric interactions can take place even in materials
where static symmetry prohibits all-electric second order interactions. This thesis further advances
the understanding of these magneto-electric nonlinearities, with a focus on magneto-electric recti-
fication.

Experimental and computational methods were used to characterize the magneto-electric recti-
fication moment. The first experimental observation of magneto-electric rectification is reported.
Time-resolved pump-probe experiments show a strong, ultrafast pump-induced second harmonic
radiation signal in a sample with inversion symmetry. It is shown that magneto-electric rectification
is the only process that is consistent with the experimental results. The design of a second exper-
iment based on measuring magneto-electric rectification induced birefringence is presented that
would offer improved sensitivity and permit a measurement of the magnitude of the rectification
field.

A classical model of magneto-electric interactions is used to simulate the magneto-electric re-
sponse of a material to an optical pulse. The role of two enhancement mechanisms, parametric
resonance and molecular torque, are analyzed in detail. These enhancement mechanisms allow the
observation of nonlinear relativistic magnetic effects at non-relativistic intensities. A generalized
time-dependent density matrix theory is presented that predicts the intensity, frequency, and po-
larization dependence of the rectification effect. This quantum theory is used to create a second
computational model of magneto-electric rectification. Simulation results of the predicted rectifi-
cation magnitude from both the classical and quantum models are presented and discussed. Both
models predict an ultrafast timescale for the rectification moment and show the dependence of
the duration and magnitude of the simulation output on molecular properties. The temporal char-
acteristics predicted by the models are in excellent agreement with the experimentally observed
rectification signal.

The results presented in this thesis show the first experimental observation of magneto-electric
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rectification as well as the first computational analysis of the temporal characteristics of the rec-
tification moment. Future research into magneto-electric nonlinearities could provide direct mea-
surements of the magnitude of the rectification field. This measurement could be accomplished by
using the induced birefringence experimental design. Applications of this work include ultrafast
all-optical switching, new methods of terahertz generation, and energy conversion.

xvi



CHAPTER 1

Introduction

There is considerable interest in interactions between the optical magnetic field and matter. If
the magnetization or permeability of a material could be controlled by an optical field to the same
extent that polarization can be controlled, that control could be used in applications such as negative
index materials [3; 4], optical cloaking [5], superlenses [6; 7], and negative refraction [8]. There
are however two inherent limitations in nature that have prevented these applications from being
universally realized. The first is that the optical magnetic field is much weaker than the optical
electric field. For a plane wave in vacuum, the magnitude of the optical magnetic field is related to
the magnitude of the optical electric field by the equation

|B0| =
k

ω
|E0| (1.1)

Given the dispersion relation k = ω
c
, it can be seen that the magnitude of the optical magnetic field

is a factor of the speed of light smaller than the optical electric field. On its own, this perhaps could
be overcome - electric field interactions with matter can be greatly enhanced if the frequency of
the optical field is close to an electronic resonance frequency in the material. However, the second
limitation is that the resonance frequencies for magnetic transitions are almost exclusively found in
the microwave region of the spectrum. Thus the responsibility for inducing strong magnetic inter-
actions with matter falls to the creativity of scientists. One method of doing so is through the use of
nonlinear magneto-electric (M-E) interactions mediated by the Lorentz force. These nonlinearities
are driven jointly by the optical electric and magnetic fields in molecular media. Because of their
unique resonance and geometry properties, M-E nonlinearities can occur in almost any dielectric
material, and the strength of the interaction can approach that of all-electric interactions.

The goal of this thesis is to advance the understanding of interactions of the magnetic field of
light with matter. To that end, an investigation of the M-E rectification nonlinearity in molecules
using experimental and computational methods is presented. The first experimental observation
of M-E rectification is reported. The theory of two enhancement mechanisms that account for
relativistic effects at non-relativistic intensities will be discussed.
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The organization of this thesis is as follows. Chapter 1 provides an overview of the history of
research into the magnetic field of light. Although the optical magnetic field is much weaker than
the optical electric field, there are scenarios in which the effect of the magnetic field can be en-
hanced. For high optical intensities that can accelerate electrons to relativistic velocities, the effect
of the optical magnetic field is comparable with that of the optical electric field. Enhancement of
magnetic field interactions can occur at lower intensities if the interaction medium has a magnetic
resonance near the frequency of light. Some unique materials do have magnetic dipole transitions
in the optical frequency range, although for most materials magnetic resonances are strong only at
microwave frequencies. Strong magnetic effects can also be obtained in materials where the elec-
tric field can directly drive material magnetization without the involvement of an optical magnetic
field, though this too is mostly limited to microwave frequencies. Artificial materials can also be
fabricated to have unique optical properties including magnetic enhancement at optical frequen-
cies. Magnetic effects can also be caused by ultrafast transfer of angular momentum even if the
optical magnetic field is not involved. Previous work on the family of M-E nonlinearities to which
the M-E rectification nonlinearitity belongs is reviewed.

Two theoretical models of M-E nonlinearities are presented in Chapter 2, with an emphasis
on M-E rectification. The first model is a classical model based on a pair of coupled oscillators.
One oscillator models the response of a bound electron to an electromagnetic field, while the
second models the rotational dynamics of a diatomic molecule. The two models are coupled to
allow the electromagnetic field to drive molecular rotations. Two enhancement mechanisms are
identified - a parametric resonance that seeds the M-E nonlinearities, and molecular torque which
further enhances the magnitude of the M-E polarization and magnetization moments. The second
theoretical model is derived from quantum mechanical density matrix theory applied to a three
level system in which rotational states are mixed with electronic states. The mixing of states
allows a magnetic dipole transition to take place at nearly the same frequency as an electric dipole
transition through a magnetic-field mediated exchange of orbital angular momentum for rotational
angular momentum. The implications of these theoretical models for the rectification moment is
discussed.

The experimental and computational methods used in this thesis are presented in Chapter 3. An
experimental setup to detect M-E rectification through induced second harmonic generation was
developed. This setup was based on a crossed-beam pump-probe geometry in which the pump and
probe beams were oriented at right angles. This unique geometry was necessary due to the lon-
gitudinal orientation of the M-E rectification field. This crossed-beam geometry necessitated the
use of tilted pulse fronts to maintain an ultrafast temporal resolution. The design of a second ex-
perimental setup to detect M-E rectification by measuring induced birefringence is also presented.
This second experiment could be calibrated using waveplates to directly measure the magnitude of
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the induced rectification moment. Details of the computational implementations of the theoretical
models of Chapter 2 are discussed as well.

Chapter 4 covers the experimental and computational results of this thesis. Data from the in-
duced second harmonic generation experiment is presented. A clear pump-induced second har-
monic signal is observed. The second harmonic radiation signal dependence on the power and
polarization of both the pump and probe beams is analyzed to show that the experimental results
are consistent with the theory of M-E rectification. Other possible sources of second harmonic
generation are discussed and ruled out. Computational results from both the classical and den-
sity matrix models are shown and analyzed. The similarities and differences of the two models
are explained. Chapter 5 summarizes the results and presents the main conclusion of this the-
sis. The ultrafast signal measured in the second harmonic generation experiment is found to be
uniquely consistent with M-E induced second harmonic generation, and as such represents the first
experimental observation of the M-E rectification moment. Results from the two computational
models showed the role of the electronic and molecular properties of the interaction medium on the
timescale and magntiude of the generated rectification moment. The computational results were
consistent with the experimentally measured results. Future avenues of work are discussed, along
with potential applications of the M-E rectification nonlinearity.

1.1 Background

This section covers related work on the interaction between the optical magnetic field and matter.
Areas of research in which material magnetization is affected by the optical electric field are also
included.

1.1.1 Relativistic Magnetic Effects

Despite the inherent weakness of the optical magnetic field, magnetic effects become significant at
high optical intensities due to relativistic electron motion. For intensities above I ≈ 1012 W/cm2,
matter is ionized to form a plasma. Plasma electrons subject to these high-intensity beams can be
accelerated to energies of 1 GeV and higher corresponding to a Lorentz factor γ > 2000 [9; 10].
At these energies, the contribution of the optical magnetic field to particle motion through the
Lorentz force becomes comparable to that of the optical electric field. Under these conditions a
quasi-static longitudinal electric field forms in the wake of the high intensity pulse as electrons are
ejected from the beam, leaving behind only the positively charged ions [11]. The field strength
of this longitudinal polarization is on the same order as the electric field from the laser. There is
also direct laser acceleration of electrons along the direction of beam propagation caused by the

3



v⃗ × B⃗ component of the Lorentz force [12; 13]. The path followed by these accelerated electrons
is shown in Fig. 1.1.

Figure 1.1: Plot of simulated electron position in y vs x as it is accelerated by an intense laser
source. The color axis shows electron energy. Reprinted from Ref. [12].

While these high energy effects show the power of the optical magnetic field, these effects
are only relevant for free electrons and are not directly applicable to work at intensities below
the ionization threshold. Researchers looking to take advantage of the optical magnetic field in
non-plasma matter must therefore find other enhancement mechanisms.

1.1.2 Magnetic Materials at Optical Frequencies

The most obvious way of enhancing the effect of the optical magnetic field is to use media that
interact strongly with magnetic fields at the desired frequency. These materials are easily found
when working at microwave frequencies, as the energy of microwave radiation is close to the en-
ergies of magnetic dipole transitions between magnetic sublevels of an electron orbital. However
very few materials exhibit magnetic resonances at optical frequencies. Some rare earth ions ex-
hibit optical frequency magnetic dipole transitions, such as the lanthanide series and in particular
europium [14; 15; 16]. These optical frequency transitions occur because the intra-configurational
transitions of the lanthanides often do not require a change in the radial quantum number. Hence
transitions which only change the projection of the orbital angular momentum quantum number
- magnetic dipole transitions - are sometimes allowed for linearly polarized light in these heavy
elements. The first direct measurement of the strength of a magnetic dipole transition in europium
ions was made in 2017 [17]. Measurements of the Rabi oscillation frequency were made by mea-
suring the transmission of a probe beam through the sample and calculating the period between
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adjacent peaks in the probe transmission as shown in Fig. 1.2. The magnetic dipole transition
matrix element µ was calculated using the equation

Ω =
Bµ

ℏ
(1.2)

where Ω is the measured Rabi frequency and B is the magnitude of the optical magnetic field.

Figure 1.2: Measured transmission of a probe beam through a sample versus the time duration
of a driving pulse. The black line was generated by a numerical simulation of the populations of
ground and excited state. Reprinted from Ref. [17].

Rabi flopping can only occur if the incident field is strong enough to drive the transition at a
rate faster than the rate of decay or dephasing of the system. Later work demonstrated spectral
hole burning and electromagnetically induced transparency on the same magnetic dipole transition
in europium, both of which require similarly strong interaction strengths [18]. The observation of
these strong-field effects demonstrated that strong interactions between the optical magnetic field
and matter are possible in materials which naturally possess magnetic dipole transitions at optical
frequencies.

1.1.3 Linear M-E Interactions

Another way of obtaining strong magnetic effects is to bypass the magnetic field entirely and use
the electric field of light to directly generate magnetic effects. Interactions in which the optical
electric field induces magnetic effects (or vice versa) are called magneto-electric interactions [19].
By expanding the polarization and magnetization of a material in powers of the electric and mag-
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netic field, the magneto-electric susceptibilities are found to be:

Pi(E⃗, H⃗) = P S
i + ϵ0ϵijEj + αijHj +

1

2
βijkHjHk + γijkHjEk + ... (1.3)

Mi(E⃗, H⃗) = MS
i + µ0µijHj + αijEj + βijkEjHk +

1

2
γijkEjEk + ... (1.4)

where P S
i and MS

i are the static polarization and magnetization moments respectively. Most re-
search into these magneto-electric interactions is focused on the linear magneto-electric effect
controlled by the αij tensor. An illustrative example of one such application of this effect is the de-
velopment of magnetization in a material that is simultaneously piezoelectric and magnetostrictive
[20]. If such a material is subjected to an electric field, the piezoelectric response will induce me-
chanical stress. This mechanical stress will then induce a magnetization through the magnetistric-
tive response, so the net effect is to induce a material magnetization through the application of an
electric field. The linear magneto-electric response does exhibit enhancement when the frequency
of the applied electric or magnetic field is tuned close to an existing magnetic resonance [21] or
electromechanical resonance [22; 23; 24; 25]. In most cases, these resonances occur at microwave
frequencies up to 9.3 GHz [22] although magneto-electric resonances in the THz frequency range
have been reported [26].

1.1.4 Metamaterials

Magneto-electric coupling between an electric field and a magnetic response is also the approach
used in metamaterials research. Metamaterials are fabricated materials in which the nanostructure
of the material is carefully designed such that the optical electric field induces optical frequency
magnetism in the material [27; 28]. These materials are an attempt to create a negative index ma-
terial, predicted by V. Veselago to possess lossless refractive at negative angles relative to normal
refraction [29]. Similar to the study of the linear magneto-electric effect, these materials offer an
alternate approach to manipulating the magnetic permeability µ in a broad class of materials. The
classic example of a metamaterial is a patterned series of circular nanoscale metal rings called
split-ring resonators [28], shown in Fig. 1.3.
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Figure 1.3: Diagram of (a) circular and (b) rectangular split ring resonators. Reprinted from Ref.
[30].

When illuminated, conduction electrons in the metal respond quickly to the optical electric field,
and the circular structure forces current to flow around the ring. Because of the small scale of the
ring with respect to the incident wavelength, the circular current flow can be treated as a material
magnetization. Similar enhancement can be found in small dielectric spheres, where enhanced
magnetization occurs at specific frequencies that are functions of particle size and shape due to Mie
scattering [31]. Because these materials are fabricated, the precise dimensions and properties of
the material can be chosen to obtain a desired operation frequency. Inhomogenous metamaterials,
where the type of nanostructure varies within the material itself, can also be designed [32; 33].
These structures offer unprecedented control over the manipulation of light and designs can even
be programatically generated to perform dedicated applications [34; 35].

1.1.5 Ultrafast Demagnetization

While not strictly involving the optical magnetic field, light can induce magnetization changes in
magnetized materials on ultrafast timescales through the transfer of angular momentum. Ultrafast
magnetization dynamics have been shown to take place in magnetized ferromagnetic nickel film
illuminated by intense ultrafast pulses [36]. After illumination, the net material magnetization as
measured by the magneto-optic Kerr effect decreases rapidly within 1 ps and gradually returns to its
original value on a much longer timescale. Demagnization has since been observed in a variety of
metallic materials [37]. The dynamics of this interaction are well described by a phenomenological
three temperature model that predicts the transfer of energy from hot electrons excited by the
optical field to the electron spins and the lattice. However while the three temperature model
can accurately describe the transfer of energy between electrons, spins, and the lattice, it does
not provide a mechanism for the transfer of angular momentum away from the spin system [38].
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There are competing explanations of the dominant mechanism for angular momentum transfer
including spin-flip scattering where angular momentum is transferred to a phonon during the spin-
flip process [38], spin-orbit torque induced by spin-orbit coupling [39], and direct coherent light-
spin interactions [40]. Regardless of the exact mechanism responsible for the transfer of angular
momentum, it has been shown through X-ray diffraction experiments that the angular momentum
from the spin system is ultimately transferred to the lattice through the generation of circularly
polarized phonons at an ultrafast timescale [41; 42].

1.2 Previous Work on M-E Nonlinearities

Research into the family of M-E nonlinearities which includes M-E rectification first began in
2007 with experimental work performed by S. Oliveira [43]. Scattering experiments on molecular
liquids found that strong magnetic dipole scattering could take place in isotropic liquids such as
CCl4 when illuminated by laser light at visible and near-IR wavelengths [43; 44]. The origin of
the scattered light was determined by detecting the scattered light at exactly 90◦ from the incident
laser pulse. At this angle, photons that were scattered by an electric dipole process were vertically
polarized in the lab frame while photons scattered by a magnetic dipole process were horizonatally
polarized. A polarizer with a high extinction ratio was placed in front of the detector. By rotating
the polarizer to pass only vertical (electric dipole) or horizontal (magnetic dipole) polarization, the
type of scattered light that reached the detector could be isolated. The total intensity of both electric
and magnetic dipole scattering was measured for all values of the incident polarization. The laser
intensities used in these scattering experiments were around I ≈ 108 W/cm2 to I ≈ 1010 W/cm2

which were well below the relativistic limit. Despite using samples that were traditionally assumed
to be non-magnetic due to compositions based on non-magnetic constituent atoms, significant
amounts of magnetic dipole scattering were detected. The intensity of this magnetic scattering was
found to have a quadratic dependence on the input intensity as seen in Fig. 1.4, and the ratio of the
intensities of magnetically scattered light to electric dipole scattered light was determined to be as
high as 1

4
. This experiment provided the first evidence of nonlinear magnetic dynamics that could

take place at optical frequencies.
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Figure 1.4: Intensity of magnetic dipole scattered light plotted vs input intensity. The black data
points show the magnitude of the magnetic dipole scattered light, while white data points show the
ratio in intensity between magnetic scattered light and electric scattered light. Reprinted from Ref.
[43].

A quantum theory of these M-E interactions based on density matrix theory for specialized rare
earth transitions with no change of principal quantum number was introduced in 2009 by S.C.
Rand [45], and a classical theory developed by W. Fisher followed soon after in 2011 [46]. These
theories both described atomic M-E dynamics in which nonlinearities could be jointly driven by
the optical electric and magnetic field. The density matrix analysis predicted three distinct M-E
nonlinearities. The first, enhanced optical frequency magnetism, was the cause of the strong mag-
netic dipole scattering observed in Refs. [43; 44]. The second and third nonlinearities induced
the development of quasi-static and frequency doubled longitudinal polarization moments parallel
to the direction of laser propagation. These nonlinear effects are similar to those observed in free
electrons driven at relativistic intensities, but occur instead at non-relativistic intensities in solid
and liquid media with bound electrons. Quantum theory of M-E interactions was later refined as
will be shown below. A time-dependent density matrix theory of M-E nonlinearities is described
further in Chapter 2. The classical theory from Ref. [46] simulated the motion of a bound electron
in response to both the electric and magnetic fields of an incident optical field. The action of the
optical magnetic field perturbs the motion of bound electrons causing enhanced magnetization.
The perturbed electron path also induces a pair of polarization moments parallel to the optical
wavevector; one frequency doubled moment and one quasi-static rectification moment. Thus the
classical theory also predicted the existence of the same three distinct magneto-electric polarization
and magnetization moments as the density matrix theory. The dynamics thought to be responsible
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for the large magneto-electric nonlinearities were revealed to be a parametric resonance that cou-
pled energy from electron motion parallel to the electric field to longitudinal electron motion [47].
However, while these theories did qualitatively explain enhanced magnetism at the optical driving
frequency, they could not completely account for the large magnitude of experimentally measured
magnetic dipole scattering in molecular liquids or the time dependence of these phenomena.

Figure 1.5: Scattering data for gadolinium gallium garnet. (a) Intensity of magnetic dipole scat-
tered light plotted vs incident polarization. The black data points show the magnitude of the mag-
netic dipole scattered light, while white data points show the magnitude of the electric dipole
scattered light. Dashed circles show fits to the unpolarized contribution to the scattering intensity
while solid lines show sin2(θ) fits to the polarized contribution. The residuals show that this com-
bination of unpolarized scattering and dipole scattering is an excellent fit to the data. (b) Intensity
of the unpolarized electric dipole (white) and magnetic dipole (black) scattered light versus inci-
dent optical intensity. Inset: plot of polarized electric dipole and magnetic dipole scattering versus
incident intensity. Reprinted from Ref. [48].

A breakthrough in the understanding of M-E nonlinearities was achieved when it was realized
that there was an additional enhancement mechanism that relied on a magnetic field mediated
exchange of orbital angular momentum for molecular angular momentum [49; 50; 1]. This transfer
of angular momentum from the electron to the molecular is similar to the Einstein de Haas effect
which found that electron spin could be converted into macroscopic rotational angular momentum,
but in this case the transfer of angular momentum is ultrafast [51]. This second enhancement
mechanism was capable of explaining the large relative intensity of magnetic dipole scattering
compared to electric dipole scattering that had been experimentally observed in liquids and, for
the first time, in solids by A. Fisher [48]. The experimentally measured magnetic dipole scattering
and electric dipole scattering in one such solid, gadolinium gallium garnet, is shown in Fig. 1.5.
The ratio of the electric and magnetic dipole scattered light is close to unity despite the fact that

10



the gadolinium gallium garnet sample was unmagnetized. Similar results were obtained in other
strictly non-magnetic solids. This experimental result was accompanied by additional theoretical
work that sought to develop a molecular theory of M-E nonlinearities. A dressed state quantum
theory was developed that provided a full description of molecular M-E nonlinearities [49]. In this
updated quantum theory, the role of the magnetic interaction was to convert the motion initiated
by the electric field into molecular motion. This mechanism can occur in any dielectric molecule.

Figure 1.6: Longitudinal polarization moment versus time generated by a classical model of M-E
nonlinearities. (a) Output when I⊥

I∥
= 1. (b) Output when I⊥

I∥
= 1000. Reprinted from Ref. [1].

A classical model of molecular magneto-electric effects was also developed [1]. The model of
an electron oscillator in a magnetic field from Ref. [46] was modified by allowing electron motion
to drive diatomic molecular motion. The intensity of the M-E polarization and magnetization mo-
ments was found to depend strongly on the molecular properties of the system under investigation.
The molecular torque enhancement factor was found to be proportional to the ratio of moments
of inertia I⊥

I∥
for rotational motion perpendicular and parallel to the internuclear axis, respectively.

This ratio represents the efficiency of converting electron motion to molecular torque. The effect
of molecular torque is shown in Fig. 1.6. For low values of I⊥

I∥
such as those used in generating

the results shown in Fig. 1.6(a), the overall magnitude of M-E polarization was low. The polariza-
tion nonlinearity was dominated by motion at the second harmonic frequency while the magnitude
of the quasi-static rectification was low. The M-E polarization generated when I⊥

I∥
is increased is

shown in Fig. 1.6(b). The overall magnitude of the polarization is increased due to the additional
efficiency of the torque exchange mechanism, and the quasi-static M-E rectification field forms
the bulk of the response. This classical model is further described in Chapter 2. The discovery of
torque enhancement meant that both the classical and quantum theory could accurately predict the
intensity of the magnetic dipole scattering observed in Refs. [43; 44; 48].
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Figure 1.7: Normalized spectra of scattered light arise from electric dipole (red) and magnetic
dipole (blue) scattering. The differences between the electric dipole and magnetic dipole spectra
are shown in the black curve. Transition frequencies of rotational and vibrational features are
shown by the green and red bars respectively. Inset: the electric dipole spectrum overlaid with the
laser spectrum. Reprinted from Ref. [52].

Further experimental evidence for the role of molecular dynamics in M-E interactions was
obtained in 2019 by T. Trinh [52]. In this work, scattering experiments were performed on CCl4
similar to those detailed in Refs. [43; 44; 48]. The scattered light was analyzed with a spectrometer,
and the spectra of the electric dipole scattered light and magnetic dipole scattered light are shown
in Fig. 1.7. The spectrum of the electric dipole scattered light was indistinguishable from that of
the laser, as expected for Rayleigh scattering. However the spectrum of magnetic dipole scattered
light deviated significantly from the the laser spectrum, as several additional spectral features were
observed. The difference of the normalized spectra showed that the placements of these spectral
features were in excellent agreement with the frequency of Raman shifts due to rotational and
vibrational excitations. The scattered light was therefore evidence that the laser was inducing
molecular rotational motion in the liquid sample. Because these features only appeared in the
magnetic dipole spectrum, the induced molecular motion could only be caused through interaction
with the optical magnetic field. The observation of magnetic field induced molecular rotations thus
confirmed the previous theoretical predictions of molecular M-E nonlinearities.

While significant work has been done in the field of nonlinear M-E scattering, work to date
on the M-E rectification moment has consisted of theoretical predictions with both classical and
quantum models as well as computational simulations based on the classical model. In all of
these cases, the driving field was assumed to be a steady state field so no study of the temporal
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characteristics of M-E rectification has been performed. To date, there has been no experimental
work performed to observe the M-E rectification moment. The work in this thesis aims to address
these limitations by providing the first experimental measurement of the M-E rectification field.
This experimental work has been published in Ref. [2]. In addition, two computational models of
M-E rectification are presented that can simulate the time-dependent M-E response of a material
to pulsed illumination. This includes an extension of the classical model presented in Ref. [1] as
well as for the first time a time-dependent quantum model of M-E rectification based on density
matrix theory. The classical and quantum theories are outlined in Chapter 2. A description of
the experimental and computational methods used in this thesis can be found in Chapter 3. An
experimental setup was designed to detect the M-E rectification moment through induced second
harmonic generation in a sample with inversion symmetry. Because even a small rectification field
would break inversion symmetry and allow second harmonic generation, this setup provided a
highly sensitive method of detecting the presence of the M-E rectification field. Additionally, a
second experiment was designed to detect M-E induced birefringence that could directly measure
the magnitude of the M-E rectification field. Details of the computational models are presented,
including a discussion of modifications made to the theory from Chapter 2 to allow for efficient
simulation. The results of the experimental and computational work are presented in Chapter 4, as
too is a discussion of the results. Finally, a summary of the results of the work in this thesis along
with a discussion of potential future avenues of research can be found in Chapter 5.
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CHAPTER 2

Theory

This chapter discusses the theory of M-E optical nonlinearities in molecules. Two models of a
molecular system are used. The first, described in Section 2.1, is a classical approach that models
the system as a coupled pair of oscillators. One oscillator tracks the response of an electron to an
applied optical field, while the other tracks molecular rotation. The two oscillators are coupled
allowing electron motion to drive molecular motion. Two enhancement mechanisms are identi-
fied, parametric resonance and molecular torque, that allow the M-E response to exhibit relativistic
characteristics at non-relativistic intensities. In the second method, the molecular system is mod-
elled as a three-state quantum system. This approach is detailed in Section 2.2. The response of the
quantum system to an optical field is calculated using the density matrix. A perturbative solution
is found up to second order. Both the coupled oscillator and density matrix models exhibit M-E
effects arising from the joint action of the optical electric and magnetic fields. The forms of the M-
E nonlinearities predicted by the two models are broadly consistent with the previously obtained
experimental evidence of M-E nonlinearities described in Chapter 1. A detailed discussion of M-E
rectification is presented in Section 2.3. Each model has similar predictions for the dynamics of
M-E rectification.

The theory presented in this chapter assumes the molecular system is driven by a plane wave
and focuses on steady state behavior. This allows analytic results to be obtained and makes the
underlying physics of M-E nonlinearities more clear. However, both the coupled oscillator and
density matrix models can be analyzed numerically to reveal the transient response of the system to
a laser pulse with fewer simplifying assumptions. The techniques used to produce these numerical
solutions are presented in Chapter 3, and the simulation results can be found in Chapter 4.

2.1 Classical Coupled Oscillator Model of M-E Interactions

The classical model describes a molecular system illuminated by light as a pair of coupled os-
cillators, the first of which models the linear motion of an electron driven by an electromagnetic
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Figure 2.1: Classical electron oscillator. The electron, in red, is attached to a static restoring point
by a spring-like force and excited by an electromagnetic field.

field while the second models the rotational motion of the molecule. The electron model is based
on the classical Lorentz electron oscillator model where the effect of the optical magnetic field
is included. The inclusion of magnetic effects makes the electron motion three dimensional and
generates the M-E nonlinearities. The electron model is then coupled to a rigid rotor model of a
molecule. The coupling is accomplished by letting the restoring point of the electron model ro-
tate around the center of mass of the molecule. This coupling allows the electron motion to drive
molecular rotations. The computational model of the coupled oscillator system is described in
Section 3.3.1, and the simulation results can be found in Chapter 4.

2.1.1 Electron Oscillator in a Magnetic Field

The first component of the coupled oscillator model is the electron oscillator model. This model
describes the response of an electron to an applied optical field. The electron is modelled as a point
charge attached to a restoring point by a spring-like force, as shown in Fig. 2.1. The interaction
between a plane wave and the electron is considered by letting the electric and magnetic fields of
the plane wave drive electron motion through the Lorentz force F⃗ = qE⃗ + q(v⃗ × B⃗). This gives a
set of equations of motion for the electron in Cartesian coordinates.

ẍ+ γẋ+ ω2
0x =

q

m
Ex +

q

m
ẏBz −

q

m
żBy (2.1)

ÿ + γẏ + ω2
0y =

q

m
Ey +

q

m
żBx −

q

m
ẋBz (2.2)

z̈ + γż + ω2
0z =

q

m
Ez +

q

m
ẋBy −

q

m
ẏBx (2.3)

Here γ is the damping rate of the electron motion, ω0 is the resonant frequency of the electron
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oscillator, and m is the electron mass. If the incident field is weak, the magnetic terms on the
right hand sides of Eqns. 2.1 - 2.3 are assumed to be negligible and the electron motion in each
direction can be calculated independently. However, for strong driving fields these magnetic field
terms couple the equations of motion through a parametric resonance, so all three dimensions of
electron motion must be considered simultaneously[53]. While an analytic solution to the coupled
equations of motion is generally impossible to obtain, applying a perturbative approach reveals
the characteristics of the M-E nonlinearities driven by the magnetic terms. If the incident optical
field is assumed to be a plane wave with E⃗ = E0cos(ωt)x̂, B⃗ = B0cos(ωt)ŷ with a wavevector
k⃗ = k0ẑ, the equations of motion simplify to

ẍ+ γẋ+ ω2
0x =

q

m
E0cos(ωt)− q

m
żB0cos(ωt) (2.4)

ÿ + γẏ + ω2
0y = 0 (2.5)

z̈ + γż + ω2
0z =

q

m
ẋB0cos(ωt) (2.6)

The electron is assumed to be initially at rest at the origin. Because there is no initial velocity, to
first order the electron motion depends only on the electric field.

ẍ+ γẋ+ ω2
0x =

q

m
E0cos(ωt) (2.7)

This has the well known solution

x =
qE0

m

1√
(ω2

0 − ω2) + γ2ω2
cos(ωt+ tan−1(

γω

ω2
0 − ω2

)) (2.8)

If the electron is driven on resonance so ω = ω0, the solution simplifies further

x =
qE0

mγω
sin(ωt) (2.9)

ẋ =
qE0

mγ
cos(ωt) (2.10)

Returning to Eqn. 2.6, this first order solution for the electron position and velocity drives a
magnetic contribution to the ẑ equation of motion in second order.

z̈ + γż + ω2
0z =

qE0

mγ
cos(ωt)

qB0

m
cos(ωt)

=
1

2

q2E0B0

m2γ
(1 + cos(2ωt)) (2.11)

The driving force for the ẑ equation of motion thus has two terms with different time dependencies
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which can be treated separately. The cos(2ωt) term results in a contribution to the electron motion
that looks similar to Eqn. 2.8.

z2ω =
1

2

q2E0B0

m2γ

1√
9ω4 + 4γ2ω2

cos(2ωt+ tan−1(
2γ

3ω
)) (2.12)

For the static term, it is sufficient to look only at the steady state dynamics of the electron motion.
The steady state static contribution is thus simply

z0 =
1

2

q2E0B0

m2γω2
0

(2.13)

The combined second order solution valid under steady state conditions is

z = z0 + z2ω

=
1

2

q2E0B0

m2γω2
0

+
1

2

q2E0B0

m2γ

1√
9ω4 + 4γ2ω2

cos(2ωt+ tan−1(
2γ

3ω
)) (2.14)

The position and linear momentum of the electron can be directly calculated in the form shown
in Eqns. 2.8 and 2.14. However, the three dimensional nature of the electron motion means that it
is possible for the electron to have angular momentum as well as linear momentum. The angular
momentum is defined relative to the electron rest position as

L⃗ = x⃗×mv⃗ = m(zẋ− xż)ŷ (2.15)

Using Eqns. 2.8 and 2.14, this becomes

Ly =
1

2

q3E2
0B0

m2γ2

(
cos (ωt)

ω2
+

−cos
(
ωt+ tan−1

(
2γ
3ω

))
+ 3cos

(
−3ωt+ tan−1

(
2γ
3ω

))
2
√

9ω4 + 4γ2ω2

)
(2.16)

The position and momentum of the electron correspond to the polarization and magnetization
moments induced by the optical field. The electric dipole moment of the electron p⃗ is proportional
to its displacement from its restoring point, while the magnetic dipole moment µ⃗ is proportional to
the electron angular momentum L.

p⃗ = −ex⃗ (2.17)

µ⃗ =
−e

2m
L⃗ (2.18)

Here e is the charge of the electron and m is the electron mass. Three distinct polarization and mag-
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Figure 2.2: Rigid rotor model of a diatomic molecule. The time evolution of angles θ⊥ and θ∥
describe the rotational motion of the molecule.

netization moments arise from the parametric resonance created by the addition of the magnetic
contribution to the Lorentz force. Two M-E polarization moments develop due to the longitudinal
electron motion caused by the coupling of linear motion in the x̂ and ẑ directions. The first is the
time-dependent term from Eqn. 2.12 which oscillates at twice the optical driving frequency. This
represents M-E second harmonic generation. The second is a quasi-static rectification term from
Eqn. 2.13 that does not oscillate. Both of these polarization moments are proportional to the prod-
uct of E0 and B0 and so are quadratic nonlinearities. The third effect is the magnetization caused
by the angular momentum seen in Eqn. 2.16. In this classical analysis, the magnetization has a
cubic dependence on the driving field and is proportional to E2

0B0. As shown later on in Section
2.2, this dependence is augmented by a quadratic dependence when formulated quantum mechan-
ically. These M-E nonlinearities are directly seen when the optical magnetic field is included in
calculations of the electron response to a driving field.

2.1.2 Coupling to a Rigid Rotor Model of a Molecule

The second component of the complete molecular model of M-E rectification is a rigid rotor model
of a molecule. The rigid rotor model tracks the angular displacement of a torsional oscillator while
assuming that the moment of inertia of the rotational motion is constant. The equations of motion
for a torsional oscillator have a similar form to the linear oscillator but with the angular position
and its time derivatives replacing the linear position.

θ̈ + γmθ̇ + ω2
mθ =

T

I
(2.19)
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Here T is the driving torque and I is the moment of inertia of the molecule. The simplest possible
system is a homonuclear diatomic molecular, which has two distinct moments of inertia for rotation
parallel and perpendicular to the intermolecular axis. Thus two copies of Eqn. 2.19 are needed to
track rotational motion for each rotational mode.

θ̈∥ + γmθ̇∥ + ω2
mθ∥ =

T∥

I∥
(2.20)

θ̈⊥ + γm ˙θ⊥ + ω2
mθ⊥ =

T⊥

I⊥
(2.21)

The electron oscillator is coupled to the torsional oscillator by placing the restoring point of
the electron model on the surface of the rigid rotor model, as diagrammed in Fig. 2.3. The initial
position of the restoring point relative to the center of mass of the molecule is defined as r⃗0 and
the instantaneous position is r⃗. Because the position of the restoring point is no longer fixed to a
specific position, the force that the electron exerts on the restoring point by Newton’s Third Law
can no longer be neglected. This force exerts torque on the molecular system which drives angular
motion as described by Eqns. 2.20 and 2.21.

T⃗ = mω2
0(x⃗× r⃗) (2.22)

The equations of motion of the combined system include the two torsional oscillator equations of
motion from Eqns. 2.20 and 2.21 in addition to the electron oscillator equations of motion from
Eqns. 2.1 - 2.3.

ẍ+ γẋ+ ω2
0x =

q

m
Ex +

q

m
ẏBz −

q

m
żBy (2.23)

ÿ + γẏ + ω2
0y =

q

m
Ey +

q

m
żBx −

q

m
ẋBz (2.24)

z̈ + γż + ω2
0z =

q

m
Ez +

q

m
ẋBy −

q

m
ẏBx (2.25)

θ̈∥ + γmθ̇∥ + ω2
mθ∥ =

(mω2
0(x⃗× r⃗))∥
I∥

(2.26)

θ̈⊥ + γm ˙θ⊥ + ω2
mθ⊥ =

(mω2
0(x⃗× r⃗))⊥
I⊥

(2.27)

Together, these equations constitute a full description of the molecular dynamics involved in M-
E nonlinearities. The addition of magnetic-field induced torque exchange to the electron oscillator
enhances the magnitude of the rectification motion as will be shown in Section 2.3.
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Figure 2.3: Coupled oscillator model of M-E nonlinearities. The restoring point of the electron
oscillator is attached to the rigid rotor model. The electron motion induced by the incident field
drives molecular rotations.

2.2 Density Matrix Model of M-E Interactions

An alternative, quantum mechanical formulation of M-E dynamics treats the molecule as a three
level quantum system and uses the density matrix to calculate the interaction between an optical
field and the molecule. The three level system described in Section 2.2.1 is the simplest quantum
system that can exhibit M-E effects. Coupling between molecular rotations and the electronic states
allows magnetic dipole transitions to take place at optical frequencies. The populations of the states
and the coherences that develop between the states are calculated using the density matrix. Much
like the coupled oscillator model, exact analytic solutions are difficult or impossible to obtain, so
a perturbative approach is used. By iteratively calculating successive orders of perturbation up to
second order, the nonlinear polarization and magnetization moments of the system can be found.
While there are higher order corrections, calculating up to second order is sufficient to observe
M-E rectification and magnetization. A computational model of the density matrix equations of
motion is described in Section 3.3.2, and the simulation results can be found in Chapter 4.

2.2.1 Three Level Model of M-E Interactions

The density matrix model treats the molecule as a three level system, the details of which are
described here. A diagram of this system is shown in Fig. 2.4. Two sets of basis states were
used. The first set of basis states described the electronic structure |nlm⟩ of the state in terms
of the principal quantum number n, the orbital angular momentum quantum number l, and the
magnetic quantum number m. The electronic ground state |100⟩ and all magnetic sublevels of the
first excited state |210⟩, |211⟩, and |21-1⟩ were included. Because the system under investigation
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is a molecule, the rotational states of the molecule were also included. The rotational basis states
were |00⟩, |10⟩, |11⟩, and |1-1⟩. The three levels of the system shown in Fig. 2.4 were assigned
combinations of these basis states depending on the electronic and rotational character of the state.

|1⟩ = |100⟩|00⟩ (2.28)

|2⟩ = |210⟩|10⟩ (2.29)

|3⟩ = |21-1⟩|11⟩ (2.30)

Given the electronic structure of the states, the allowed single-photon transitions between the states
can be determined from the selection rules. There are two possible transitions that can occur.
An electric dipole transition is permitted between two states if the change in the orbital angular
momentum quantum number is ∆l = ±1. Because the transitions between states |1⟩ and |2⟩ and
|1⟩ and |3⟩ require a change in the orbital angular momentum, electric dipole transitions are allowed
on those transitions. A magnetic dipole transition is allowed between states |2⟩ and |3⟩ because
∆l = 0 and ∆m = ±1. The energy levels of the three states are chosen such that the energy
of state |3⟩ falls between states |1⟩ and |2⟩ and states |1⟩ and |3⟩ are separated by the rotational
energy of the molecule. This can occur in molecules due to orbital hybridization and coupling of
electronic and rotational states in strong but not necessarily relativistic light fields. The electronic
states therefore are not representative of the state energy, but rather the symmetry of the electron
orbital. The energy of the electric dipole transition is equal to ℏω12, while the magnetic dipole
transition energy is ℏω23 and the energy of molecular rotation is ℏω13. Due to the structure of the
energy levels, the state energies are related by the equation ℏω12 = ℏω23+ℏω13 as seen in Fig. 2.4.
This relationship implies that the magnetic dipole transition is detuned from the electronic dipole
transition by an energy ℏω13. However, at optical frequencies, the energy of molecular rotation
is much lower than the energy of the electric dipole transition. Because ℏω12 ≫ ℏω13, it can be
assumed that ℏω12 ≈ ℏω23.

2.2.2 Density Matrix Analysis

The populations and coherences of the three level system described above can be found explicitly
using semi-classical density matrix theory. The three level system is driven by a classical optical
field at a frequency ω. The optical field drives the electric dipole (ED) transition between |1⟩ and
|2⟩ and the magnetic dipole (MD) transition between |2⟩ and |3⟩. The detuning on the ED transition
is expressed as ∆12 and the detuning on the MD transition is ∆23. Because ℏω13 ≪ ℏω, the field-
induced coupling between these states |1⟩ and |3⟩ is assumed to be negligible. The molecule is
initially in the ground state. When the driving field is turned on, the only possible transition is the
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Figure 2.4: Diagram of the three-state quantum model of a molecular system. ωϕ is equal to the
molecular rotational frequency ω13.

ED transition that couples states |1⟩ and |2⟩ as there is no population or coherence in the system
that can interact with the MD transition between states |2⟩ and |3⟩. During this transition the
molecule absorbs a photon from the optical field. Because of the symmetry requirements of ED
transitions, the excited state gains a quantum of angular momentum and thus has a total angular
momentum of L = 1. Once the interaction is initiated by the electric field, the MD transition
between states |2⟩ and |3⟩ can be driven by the optical magnetic field. During the downwards MD
transition a photon is released from the system which conserves the system energy, and the orbital
angular momentum is converted to rotational angular momentum which conserves the projection
of angular momentum along the axis of quantization. The combination of these two interactions
causes a coherence to form between states |1⟩ and |3⟩ from which the nonlinear M-E polarization
and magnetization moments can be calculated.

The density matrix ρ takes the form of a 3× 3 matrix with diagonal components. The value of
the diagonal terms ρii correspond to the probability that the system occupies state |i⟩, and the off
diagonal terms ρij correspond to the coherence that forms between the states |i⟩ and |j⟩. The time
evolution of the density matrix depends on the Hamiltonian of the system and the density matrix
itself [45; 53].

iℏρ̇ = [H, ρ] = Hρ− ρH (2.31)

The density matrix equation of motion can be solved analytically under certain simplifying as-
sumptions. Perturbation theory allows each order of the solution to be solved iteratively, with the
total solution to each density matrix element being the sum of all contributions. The perturbation
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expansion of the density matrix is given by

ρij = ρ
(0)
ij + ρ

(1)
ij + ρ

(2)
ij + ... (2.32)

Here, ρ(0)ij is the initial value of the density matrix element ρij , and ρ
(n)
ij is the nth order correction

term. Initially, the system starts in the ground state with no coherences.

ρ
(0)
11 = 1 (2.33)

ρ
(0)
22 = ρ

(0)
33 = ρ

(0)
12 = ρ

(0)
13 = ρ

(0)
23 = 0 (2.34)

The Hamiltonian H is written in the form H = H0 + V for simplicity. H0 is the component of
the Hamiltonian that has no dependence on the optical field, while the interaction Hamiltonian V

is the component of the Hamiltonian that comes from the interaction between the system and the
incident optical field. The optical field is assumed to be a plane wave at a frequency that can excite
the |1⟩ ↔ |2⟩ transition through a ED interaction and the |3⟩ ↔ |2⟩ transition through an MD
interaction. Because the |1⟩ ↔ |3⟩ transition occurs at a much lower energy scale, it is assumed
that the optical field cannot excite this transition. The interaction Hamiltonian for this field is

V = V
(1)
12 (eiωt + e−iωt) + V

(1)
32 (eiωt + e−iωt) (2.35)

= −ℏΩ12

2
(eiωt + e−iωt)− ℏΩ32

2
(eiωt + e−iωt)

The rotating wave approximation is valid because the detuning ∆12 of the |1⟩ ↔ |2⟩ transition is
assumed to be small. Thus the negative frequency terms can be neglected.

V = −ℏΩ12

2
eiωt − ℏΩ32

2
eiωt (2.36)

The matrix elements then follow the equation of motion

iℏρ̇ = [(H0 + V ), ρ] + iℏ
∂ρ

∂t rel
(2.37)

The ∂ρ
∂t rel

term accounts for relaxation processes that are proportional only to the magnitude of the
density matrix element and have no dependence on the Hamiltonian. The time evolution of each
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term is then given by the following differential equations

iℏ ˙ρ11 = (V12ρ21 − ρ12V21) + iℏγ21ρ22 + iℏγ31ρ33 (2.38)

iℏ ˙ρ22 = −(V12ρ21 − ρ12V21)− (V32ρ23 − ρ32V23)− iℏγ21ρ22 − iℏγ23ρ22 (2.39)

iℏ ˙ρ33 = (V32ρ23 − ρ32V23) + iℏγ23ρ22 − iℏγ31ρ33 (2.40)

iℏ ˙ρ12 = −ℏω12ρ12 + V12(ρ22 − ρ11) + (V13ρ32 − ρ13V32)− iℏΓ21ρ12 (2.41)

iℏ ˙ρ13 = −ℏω13ρ13 + (V12ρ23 − ρ12V23)− iℏΓ31ρ13 (2.42)

iℏ ˙ρ23 = ℏω23ρ23 + V23(ρ33 − ρ22) + (V21ρ13 − ρ21V13)− iℏΓ23ρ23 (2.43)

Here γij represents the population decay from state |i⟩ ↔ |j⟩ while Γij represents the decay of
the coherence of the |i⟩ ↔ |j⟩ transition. The remaining off diagonal matrix elements can by
calculated by making use of the fact that ρji = ρ∗ij

ρ21 = ρ∗12 (2.44)

ρ31 = ρ∗13 (2.45)

ρ32 = ρ∗23 (2.46)

2.2.2.1 First Order Terms

The first order corrections can be calculated by applying Eqns. 2.38 - 2.43 using the initial con-
ditions and the form of the interaction Hamiltonian. Ignoring terms that are zero due to the initial
conditions and rearranging to isolate the first order terms ρ(1)ij , the first order contributions are found
using the following differential equations

ρ̇
(1)
11 = γ21ρ

(1)
22 + γ31ρ

(1)
33 (2.47)

ρ̇
(1)
22 = −γ21ρ

(1)
22 − γ23ρ

(1)
22 (2.48)

ρ̇
(1)
33 = γ23ρ

(1)
22 − γ31ρ

(1)
33 (2.49)

ρ̇
(1)
12 = iω12ρ

(1)
12 − 1

iℏ
V

(1)
12 ρ

(0)
11 − Γ21ρ

(1)
12 (2.50)

ρ̇
(1)
13 = iω13ρ

(1)
13 − Γ31ρ

(1)
13 (2.51)

ρ̇
(1)
23 = −iω23ρ

(1)
23 − Γ23ρ

(1)
23 (2.52)

The first order corrections to the state populations are found by solving Eqns. 2.47 - 2.49. Under
steady-state conditions, the solution to Eqn. 2.48 is

ρ
(1)
22 = 0 (2.53)
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Using this result and applying the same logic to Eqns. 2.47 and 2.49, all first order corrections to
the state populations are found to be zero.

ρ
(1)
11 = ρ

(1)
22 = ρ

(1)
33 = 0 (2.54)

In order to solve Eqns. 2.50, the coherence ρ12 is assumed to oscillate at the same frequency as
the driving optical wave. The rotating wave approximation is valid on this transition, so only the
positive eiωt term is included.

ρ12 = ρ̃12e
iωt (2.55)

where ρ̃12 is a slowly-varying amplitude. On the timescale of the optical cycle, this amplitude is
assumed to be constant so the time dependence in Eqn.2.55 is contained entirely in the eiωt term.
Substituting Eqn.2.55 into Eqn.2.50 gives the first order solution for the slowly varying amplitude
ρ̃12

iωρ̃
(1)
12 e

iωt = iω12ρ̃
(1)
12 e

iωt − 1

iℏ
V

(1)
12 ρ

(0)
11 − Γ21ρ̃

(1)
12 e

iωt (2.56)

Because there are no driving terms in Eqns. 2.51 and 2.52, the solutions to those equations are
taken to be ρ

(1)
13 = ρ

(1)
23 = 0. Substituting the expression for V (1)

12 from Eqn. 2.36 into Eqn. 2.50
and simplifying gives the first order contribution to the ρ12 coherence.

ρ
(1)
12 =

1

2

Ω12

∆12 + iΓ12

ρ
(0)
11 e

iωt (2.57)

where the detuning ∆12 = ω12 − ω is defined for simplicity. Thus to first order, the only effect of
the optical field is to develop a coherence on the |1⟩ ↔ |2⟩ electric dipole transition.

2.2.2.2 Second Order Terms

The first order terms derived above can be used in turn to derive the second order contributions to
the solution for the density matrix elements. Returning to Eqns. 2.38 - 2.43 and keeping the terms
that will add to the second order contribution, the following equations must be solved:
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ρ̇
(2)
11 =

1

iℏ
(V

(1)
12 ρ

(1)
21 − ρ

(1)
12 V

(1)
21 ) + γ21ρ

(2)
22 + γ31ρ

(2)
33 (2.58)

ρ̇
(2)
22 = − 1

iℏ
(V

(1)
12 ρ

(1)
21 − ρ

(2)
12 V

(1)
21 )− γ21ρ

(2)
22 − γ23ρ

(2)
22 (2.59)

ρ̇
(2)
33 = γ23ρ

(2)
22 − γ31ρ

(2)
33 (2.60)

ρ̇
(2)
12 = iω12ρ

(2)
12 − Γ21ρ

(2)
12 (2.61)

ρ̇
(2)
13 = iω13ρ

(2)
13 − 1

iℏ
ρ
(1)
12 V

(1)
23 − Γ31ρ

(2)
13 (2.62)

ρ̇
(2)
23 = −iω23ρ

(2)
23 − Γ23ρ

(2)
23 (2.63)

Beginning with the second order contributions to the state populations, it is easiest to solve
Eqn. 2.59 first as it is independent of the solutions of Eqns. 2.58 and 2.60. Under steady state
conditions, the time derivative on the left half of Eqn. 2.59 goes to zero and the remaining terms
can be rearranged to obtain:

ρ
(2)
22 =

−iV
(1)
12

ℏ(γ21 + γ23)
(ρ

(1)
21 − ρ

(1)
12 ) (2.64)

Substituting the known forms of V (1)
12 and ρ

(1)
12 and making using of Eqn. 2.44 gives

ρ
(2)
22 =

Ω2
12

4(γ21 + γ23)

2Γ21

∆2
12 + Γ2

21

(2.65)

Once the form for ρ(2)22 is found, Eqn. 2.60 can be solved to find

ρ
(2)
33 =

γ23
γ31

ρ
(2)
22 (2.66)

The second order correction to ρ11 can be found by noting that the sum of all state populations
should equal 1. Because the sum of the initial state populations is equal to one, the sum of all the
corrections should equal zero. Using this result, ρ(2)11 can be written as

ρ
(2)
11 = −ρ

(2)
22 − ρ

(2)
33 (2.67)

For the coherences, it can be seen due to the lack of driving field terms that the solutions to
Eqns. 2.61 and 2.63 will be zero. The process of solving Eqn. 2.62 is different than the procedure
used to solve Eqn. 2.50. Here, the entire time dependence is contained in the ρ

(1)
12 V23 term. Using
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the full expression for V23 from Eqn. 2.35, we find

ρ
(1)
12 V23 ∝ eiωt(eiωt + e−iωt)

ρ
(1)
12 V23 ∝ (1 + e2iωt) (2.68)

Using Eqn. 2.68 and neglecting the terms that oscillate at 2ω, the only remaining terms are static
and non-oscillatory. The time derivative on the right hand side of Eqn. 2.62 thus goes to zero.

0 = iω13ρ
(2)
13 − 1

iℏ
ρ
(1)
12 V

(1)
23 − Γ31ρ

(2)
13 (2.69)

Substituting the known forms of V23 and ρ
(1)
12 , the solution to Eqn. 2.69 is

ρ
(2)
13 =

1

4

Ω12Ω
∗
32

(∆12 + iΓ12)(ω13 + iΓ13)
(2.70)

By inspection, Eqn. 2.70 can be modified to explicitly show its M-E characteristics.

ρ
(2)
13 =

(
1

2

Ω12e
iωt

(∆12 + iΓ12)

)(
1

2

Ω∗
32e

−iωt

(ω13 + iΓ13)

)
(2.71)

The left term in Eqn. 2.71 is equal to the coherence induced on the |1⟩ ↔ |2⟩ transition and
represent the electric contribution to the M-E interaction. The term on the right is the magnetic
contribution as it arises from the Ω∗

32 term that represents the optical magnetic field.

2.2.2.3 Calculating the M-E Polarization and Magnetization

The ρ13 term calculated above contributes to two M-E nonlinearities. The first is a quasi-static po-
larization moment orientated along the direction of propagation of the laser. This can be calculated
by taking the trace of the density matrix and the electric dipole transition moment between states
|1⟩ and |3⟩ and projecting the result along the x axis.

P (2)
x (0) = Tr[µ(e)ρ] = {(er⃗)13}x ρ31 + {(er⃗)31}x ρ13 (2.72)

It should be noted that because of the projection of the polarization moment is perpendicular to the
ẑ and ŷ oscillations of the electric and magnetic field, it is non-oscillatory. Recalling the electronic
states that make up states |1⟩ and |3⟩, the expectation value of the operator er⃗ can be decomposed

e⟨100|r⃗|211⟩ = e⟨100|x|211⟩x̂+ e⟨100|y|211⟩ŷ (2.73)
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Assuming a hydrogenic model so the electronic states have the same symmetry properties as the
corresponding electronic states of hydrogen, the expectation value can be evaluated directly. This
evaluation produces the following value

e⟨100|r⃗|211⟩ = ea0
128

243
(x̂+ iŷ) = µ

(e)
0

x̂+ iŷ√
2

(2.74)

The dipole moment µ(e)
0 in the density matrix model is assumed to be equal the transition moment

between the s and p states of hydrogen. It shows up in the molecular three-level system because the
electronic states are assumed to have the same symmetry properties as the corresponding hydrogen
states. Taking the projection along x, the static polarization moment reduces to

P (2)
x (0) =

µ
(e)
0√
2
(ρ31 + ρ13) (2.75)

The magnetization can be found by taking the y projection of the trace of the density matrix
and the M-E dipole moment. The y projection will only include the e−iωt oscillation of the optical
magnetic field, so it too will oscillate at ω.

M (2)
y (ω) = (µem

13 ρ31 + µem
31 ρ13)y (2.76)

The M-E moment is the tensorial product of the electric dipole moment on the |1⟩ ↔ |2⟩ transition
and the magnetic dipole moment on the |2⟩ ↔ |3⟩ transition

µem
31 = (er⃗)12

(
µ
(m)
0√
2
L̂−Ô+

)
(2.77)

where µ
(m)
0 is equal to the hydrogenic magnetic dipole transition moment on the |2⟩ ↔ |3⟩ transi-

tion, L̂− is the electronic angular momentum lowering operator and Ô+ is the molecular angular
momentum raising operator. The electric dipole moment er⃗12 is orientated along z, so only the
magnetic dipole term emerges from a projection of the M-E moment along y. The magnetization
thus reduces to

M (2)
y (ω) =

√
2µ

(m)
eff (ρ31 + ρ13) (2.78)

where µ
(m)
eff is defined as the expectation value of µ(m)

0 L̂−Ô+. Due to torque enhancement, it is

shown in Ref. [49] that µ(m)
eff =

cµ
(e)
0

2
. The final expression for the M-E magnetization that arises

from the ρ13 coherence is
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M (2)
y (ω) =

cµ
(e)
0√
2

(ρ31 + ρ13) (2.79)

2.3 Theoretical Form of the Rectification Nonlinearity

The theoretical results shown above explicitly yield the intensity, frequency, and polarization de-
pendence of M-E nonlinearities. In both theoretical approaches, the rectification appears as a
quadratic M-E process jointly driven by the optical electric and magnetic fields. The joint action
of the electric and magnetic field at the same frequency to generate M-E rectification is possible
because rotational mixing creates an allowed magnetic dipole transition at the same frequency as
the electric dipole transition. The addition of molecular torque in the coupled oscillator model
amplifies the rectification moment and changes the rectification timescale to that of the molecular
system rather than the electronic system. The density matrix model gives similar predictions, with
the sole exception that the magnetization first appears in the second order in the density matrix
analysis.

The coupled oscillator model predicts that the rectification nonlinearity is resonant on electric
dipole transitions. The full form of Eqn. 2.13 for an arbitrary optical frequency is

z0 = −1

2

q2E0B0

m2

ω√
(ω2

0 − ω2) + γ2ω2
sin(tan−1(

γω

ω2
0 − ω2

)) (2.80)

Based on Eqn. 2.80, z0 is maximized when the optical frequency is tuned to the electronic reso-
nance frequency ω0. The magnitude of the longitudinal displacement is further amplified by the
coupling of the electronic motion to molecular rotations. The torque induced on the molecular
model by the rectification moment can be directly calculated using Eqn. 2.22. The component of
torque that drives rotational motion around the internuclear axis is

T∥ = mω2
0(z0ry) (2.81)

It is noted that the y position of the restoring point can be expressed as rcos(θ∥). When Eqn. 2.81
is inserted into Eqn. 2.20 and the differential equation is solved in steady state, the angle of the
torsional oscillator is given by the following transcendental equation

ω2
mθ∥ =

1

I∥
mω2

0z0rcos(θ∥)) (2.82)
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For small angles, this simplifies to

θ∥ =
mr

I∥

ω2
0

ω2
m

z0 (2.83)

The z position of the restoring point is equal to rsin(θ∥). The total z displacement of the electron
relative to the center of mass of the molecule is then equal to the sum of the z displacement of
the restoring point and the z displacement of the electron relative to the restoring point. The small
angle approximation can again be taken for θ∥.

ztot = z0 + rsin(θ∥) =
(
mr2

I∥

ω2
0

ω2
m

+ 1

)
z0 (2.84)

From Eqn. 2.84, it can be seen that the effect of coupling the electron oscillator model to the rigid
rotor model is to amplify the rectification by a factor of mr2

I∥

ω2
0

ω2
m

. Because I∥ is the moment of inertia
for rotational motion around the internuclear axis, the nuclear masses which lie on that axis will
not contribute to I∥. The only mass that would contribute to I∥ is the electron mass at a distance r.
The moment of inertia of rotational around the internuclear axis is thus equal to mr2, so mr2

I∥
≈ 1.

The w2
0

ω2 term in Eqn. 2.84 is the square of the ratio between the electronic transition frequency
and the molecular rotation frequency. In most molecules, this ratio is 103 or larger, so the torque
enhancement factor shown in Eqn. 2.84 represents a 106 enhancement factor relative to the value
caused by parametric resonance alone.

The amplification by molecular torque also means that the decay behavior of the rectification
moment when the driving field is turned off will more closely match the timescale of the inter-
nal molecular motion than the electronic dynamics. If there is no driving field, the equations of
motion for the electron and molecule given by Eqns. 2.1 to 2.3 and Eqn. 2.19 simplify to their
homogeneous form. The solutions to these second order homogeneous equations are well known.

x = x0e
−γe±

√
γ2e−4ω2

0
2 (2.85)

θ = θ0e
−γm±

√
γ2m−4ω2

m
2 (2.86)

While the electron oscillator will return to its rest position at a timescale governed by γe and ω0 as
seen in Eqn. 2.85, the torsional oscillator will return to its rest position at a slower timescale that
comes from γm and ωm. Since the total z displacement of the electron in the coupled oscillator
model is largely caused by angular displacement of the torsional oscillator, the rectification mo-
ment will decay at this slower timescale of rotational motion. The density matrix model similarly
predicts that the rectification field will have a quadratic dependence on the optical field and will
decay at a timescale characteristic of molecular motion. The M-E rectification moment arises from
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the ρ13 coherence from Eqn. 2.70. If the system is driven to steady state and the driving field is
then turned off, the free decay of the coherence is described by Eqn. 2.42.

iℏ ˙ρ13 = −ℏω13ρ13 − iℏΓ31ρ13 (2.87)

This first order homogenous differential equation has the simple solution

ρ13(t) = ρ13(0)e
iω13t−Γ31t (2.88)

The coherence will thus decay at a timescale governed by the coherence decay rate Γ31. This decay
rate is tied to the timescale of molecular motion that causes the rotationally excited state |3⟩ to
decouple from the ground state. Explicit examples of the time dependence of rectification signals
are given in Chapter 4 with the results from the computational methods described in Chapter 3.
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CHAPTER 3

Methods

In this chapter, the experimental and computational methods used to investigate M-E rectification
are described. The experiment described in Section 3.1 and published in Ref. [2] measured the M-
E induced second harmonic generation (SHG) in polycrystalline thin films. A novel crossed-beam
pump-probe geometry was used that allowed for a highly sensitive measurement with ultrafast
temporal resolution. Because all-electric second harmonic generation was prohibited in the sample
by spatial inversion symmetry, the only possible source of a pump-induced second harmonic signal
was either an electric quadrupole interaction or a a pump-induced M-E rectification field. However
in Chapter 4 it is shown that the electric quadrupole moment is identically zero, leaving only the
magneto-electric possibility. A second experimental design based on the crossed-beam geometry
is discussed in Section 3.2 which could directly measure the magnitude of the induced rectification
field. In this second experiment, the polarization rotation of a probe beam would be measured to
characterize the M-E rectification field produced by the pump beam.

In addition to these two experiments, two computational models were used to assess the effect
that different experimental parameters and molecular properties have on the development of the
M-E rectification moment. The first was a classical model developed for steady state illumination
in Ref. [1] and extended in this thesis to model pulsed illumination, as described in Section 3.3.1.
The second model was based on density matrix theory which introduced a semi-classical and time
dependent description of magneto-electric interactions as seen in Section 3.3.2. The results from
these experimental and computational investigations can be found in Chapter 4.

3.1 Second Harmonic Generation Induced by M-E Rectifica-
tion

This section details the experimental methods used in the observation of M-E induced SHG. The
experiment was designed to observe the M-E rectification field by detecting second harmonic ra-
diation induced by the rectification field in a polycrystalline pentacene thin film sample. This
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experiment used a crossed-beam pump-probe geometry with tilted pulse fronts. Tilting the pulse
fronts of the pump and probe beams meant high temporal resolution could be achieved even though
the pump and probe were not co-linear. A sample was chosen that possessed inversion symme-
try on the scale of the optical wavelength. Second harmonic generation is prohibited in materials
with inversion symmetry, so the only possible source of second harmonic generation in the bulk
of the material would be dynamic symmetry breaking induced by the pump beam. This symmetry
breaking made the detection of second harmonic radiation a highly sensitive method of detecting
the M-E rectification field, as even a small rectification field would break the symmetry enough to
allow second harmonic generation.

It should be noted that all-electric second harmonic generation could occur at the surfaces of
the sample as well since inversion symmetry is broken at interfaces. However, the magnitude of
the surface second harmonic generation has a different dependence on the polarization of the probe
beam. By measuring the dependence of the signal on the probe polarization, the surface second
harmonic generation can be distinguished from second harmonic generation arising from dynamic
pump-induced symmetry breaking in the bulk of the sample. The portion of the detected signal that
comes from the bulk of the sample can be directly attributed to a pump-induced M-E rectification
field.

3.1.1 Crossed Beam Pump-Probe Geometry

The crossed beam pump-probe geometry used in the experiment was necessary due to the ori-
entation of the M-E rectification field with respect to the direction of propagation of the incident
field. In general, pump-probe experiments work by allowing two beams, the pump beam and probe
beam, to travel co-linearly through a sample to achieve maximum overlap, with an adjustable de-
lay between the two beams. The interaction between the pump beam and the sample generates a
nonlinear polarization moment. When the probe beam travels through the sample, it interacts with
the nonlinear polarization moment induced by the pump. This interaction alters the properties of
the probe beam, which can then be measured to determine the properties of the pump-induced po-
larization moment. However, only the projection of the nonlinear polarization on the probe electric
field direction has any effect on the probe.

As shown in Chapter 2, the M-E rectification field develops parallel to the direction in which the
optical field is travelling. If the pump and probe are aligned along the same beam path as is usually
the case in pump-probe experiments, the pump-induced M-E rectification field will be perpendic-
ular to the plane of the probe polarization. This co-linear geometry would make it impossible for
the probe beam to interact with the M-E rectification field. If the pump beam instead travels along
a path to the sample that is 90◦ from the probe beam as shown in Fig. 3.1b, a pump-induced M-E
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Figure 3.1: Diagram of the co-linear (a) and crossed beam (b) geometries. The pump beam is
shown in red and the probe beam is shown in blue. The plane of polarization of the pump and
probe are shown by the red and blue planes respectively.

rectification field would be in the same plane as the probe polarization. This new crossed-beam
geometry would allow the probe beam to interact with the M-E rectification field, enabling the
observation of the M-E rectification field.

3.1.2 Pulse-Front Tilt for Temporal Resolution

While altering the co-linear geometry to the crossed beam geometry allows the the M-E rectifica-
tion field to interact with the probe beam in order for induced second harmonic generation to be
measured, in general it limits the temporal resolution the setup can achieve. The temporal resolu-
tion determines how finely the temporal structure of the M-E rectification field can be determined.
If the temporal resolution is too coarse, it would not be possible to experimentally observe the rise
and decay behavior of the M-E rectification moment.

The temporal resolution of a pump-probe experiment is determined by the amount of delay
that needs to be added between the two beams such that they no longer temporally overlap in the
sample. This means that in a co-linear pump-probe experiment, the temporal resolution is limited
only by the time duration of the pulse. Assuming the pump and probe pulses have the same time
duration, delaying the probe pulse by a time equal to the pulse duration will cause the pulses to not
overlap temporally in the sample. In a crossed beam geometry, the temporal resolution is instead
limited by the transit time it takes the pump and probe beams to cross one another, which in turn is
proportional to the diameter of the beam. For an ultrafast laser pulse with a time duration of 100 fs
and a beam diameter of several millimeters, the temporal resolution in a crossed beam pump-probe
configuration will be over 100 times lower than the temporal resolution in a co-linear configuration.
Because the M-E rectification field persists for a time related to the speed of the molecule rotations
of the sample as shown in Chapter 2, the entire field decays after a few picoseconds. Thus, flat
pulse fronts will be unable to resolve the temporal characteristics of the M-E rectification field.

The decreased temporal resolution caused by using a cross-beam geometry can be overcome
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Figure 3.2: Use of tilted pulse fronts to improve temporal resolution (a) Plot of the SFG intensity
as a function of relative delay between pump and probe beams. Diagram of the pump-probe inter-
action when pulse fronts are (b) flat, (c) tilted by 45◦, or (d) tilted by -45◦. The experiment uses
case (c) to maximize the temporal resolution. Reprinted from Ref. [2].

by adding pulse front tilt to the pump and probe beams. Fig. 3.2a shows the temporal resolution
of a crossed-beam pump-probe setup for three different values of the pulse front tilt shown in Fig.
3.2b-d. When the pulse front is flat or tilted by -45◦, the temporal resolution of the setup is low and
the signal is spread out over a long time period. However if the pulse front is tilted by 45◦ in the
correct direction the ultrafast temporal resolution equal to the pulse width is restored. By tilting
the pulse front of the pump and probe beams, the crossed-beam pump-probe setup is capable of
measuring the M-E rectification field with the high temporal resolution required to observe the rise
and decay of the rectification field.

3.1.3 Experimental Setup

A diagram of the experimental setup is shown in Fig. 3.3. The laser used to perform the pump-
probe experiment was an ultrafast Ti:Sapphire system with a center wavelength of 800 nm. The
laser produced pulses with a 100 fs pulse width and a pulse energy over 0.4 mJ at a 10 kHz
repetition rate. The pulse front of the beam was first tilted. This was accomplished by diffracting
the beam off of a grating. The first order diffracted beam was picked off by a concave mirror and
reflected off of two flat mirrors into the rest of the setup. The diffracted beam then passed through
a cylindrical lens. The combination of the concave mirror and cylindrical lens compensated for the
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dispersion and chirp induced on the beam by the grating.
After passing through the cylindrical lens, the beam was split into the pump and probe arms.

The pump beam was chopped and sent through an adjustable delay stage. Both the pump and probe
beams passed through λ/2 wave plates so the pump and probe polarization could be independently
controlled. The beams met at the sample. The inset in Fig. 3.3 shows how the tilted pulse fronts of
the pump and probe beams met at the sample. The probe beam, along with any generated second
harmonic radiation, then travelled through a bandpass filter centered at 400 nm. The bandpass
filter removed any light remaining at the original laser wavelength, leaving only light at the second
harmonic frequency of 400 nm. The second harmonic radiation was then detected by a photomul-
tiplier tube (PMT), and the magnitude of the signal from the PMT was recorded along with the
position of the delay stage. By moving the delay stage and recording the PMT signal as a function
of the delay between the pump and probe, the temporal characteristics of the pump-induced M-E
rectification field were resolved.
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Figure 3.3: Experimental setup for the SHG experiment. The pulse front of the beam is tilted and
then passes through a beamsplitter to generate the pump and probe beams. The pump beam is
chopped and sent through an adjustable delay stage before it travels to the sample. After the probe
beam passes through the sample, light at the laser wavelength of 800 nm is filtered out and the
remaining light at the second harmonic wavelength of 400nm is collected by the PMT.

3.1.4 Alignment of the Experimental Setup

Temporal synchronization of the setup was achieved by using a gallium arsenide wafer and mea-
suring the second harmonic radiation generated by the spatial and temporal overlap between the
pump and probe beams. Due to the use of tilted pulse fronts and a crossed-beam geometry, the ex-
perimental setup was very sensitive to the alignment of the pump and probe beams on the sample.
The pump and probe beams must overlap both spatially and temporally for the maximum signal
to be achieved. The amount of second harmonic radiation produced through dynamic symmetry
breaking of the sample with the M-E rectification field was small, so a gallium arsenide wafer
was instead used for alignment. The wafer was placed at the location of the sample in the same
orientation. The beams were coarsely aligned by eye to hit the same location on the wafer. The
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Figure 3.4: Experiment setup for alignment of the SHG setup. Second harmonic radiation is
generated at the surface of the gallium arsenide wafer when the pump and probe beams spatially
and temporally overlap. The second harmonic light is radiated perpendicular to the sample surface,
where is it sent to the PMT for measurement.

delay stage was then scanned over a wide range. When the pump and probe beams spatially and
temporally overlapped on the surface of the wafer, second harmonic radiation was generated along
a direction perpendicular to the surface of the wafer. The generated light was collected at the PMT.
The magnitude of the PMT signal was maximized by finely adjusting the pump and probe beam
alignment. When the signal was maximized, the pump and probe had the best possible spatial over-
lap. The position of the delay stage that generated the best temporal overlap was also recorded.
The wafer was then replaced by the sample for data collection.

3.1.5 Isolating the M-E SHG Signal

After the total SHG signal was recorded on the PMT, the component of the signal that was induced
by the M-E rectification field was isolated from the component of the SHG signal that arose purely
from all-electric surface second harmonic generation. While all-electric SHG was prohibited in
the bulk of the material due to the inversion symmetry as will be shown in Chapter 4, the sur-
face of the sample did not possess inversion symmetry for the component of the probe beam that
was polarized perpendicular to the sample surface. Previous experiments have shown that second
harmonic generation in pentacene is mostly caused by surface effects [54] So all-electric second
harmonic generation was possible at the surface of the sample. The total nonlinear polarization
moment generated in the sample was thus a combination of the nonlinear polarization produced by
the interaction of the probe with the M-E rectification field and the nonlinear polarization produced
by the probe alone at the surface.

The total signal intensity measured by the detector was proportional to the square of the total
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Figure 3.5: Geometry of the pump-probe interaction at the pentacene thin film sample. The lab
axes are shown in the bottom right. The pump travels along the ẑ direction while the probe travels
along the x̂ direction. The probe is polarized at an angle α from the ŷ axis.

nonlinear polarization moment, which can therefore be written as

Stot ∝ |Ptot|2 = |Psurf + PM-E|2 = |Psurf|2 + 2|Psurf · PM-E|2 + |PM-E|2 (3.1)

where Stot was the total measured signal, Ptot was the total magnitude of the nonlinear polarization
of the sample, Psurf was the surface component of the nonlinear polarization, and PM-E was the M-
E induced component of the nonlinear polarization. The first term in Eq. 3.1 has no dependence
on the M-E induced polarization moment, while the second and third terms only appear if there
is a M-E induced polarization moment in the sample. The M-E induced signal was distinguished
from the surface-only signal by looking at how the signal measured at the PMT varied as the probe
polarization was rotated. This was done by analyzing the geometry of the interaction between the
pump and probe beams and the sample, as shown in Fig. 3.5 and described below.

The coordinate system was defined so that the pump beam travelled in the ẑ direction and
the probe beam travelled in the ŷ direction. Then the probe polarization was located in the xz

plane. As shown in Chapter 2, the M-E rectification field generated by the pump was oriented
along its direction of propagation. Then the rectification field takes the form Ez(0). When the
rectification field was induced by the pump beam, it dynamically broke the symmetry of the sample
along the ẑ direction. When the probe beam interacted with the region of broken symmetry, a
nonlinear polarization moment was produced at the second harmonic frequency proportional to
the rectification field.

PM-E(2ω) ∝ Ez(0)E
2
0(ω) (3.2)

E0 is the electric field of the probe beam. This M-E induced polarization moment is not dependent
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on the probe polarization angle.
The surface component of the polarization moment takes a different form. Only components

of the probe beam that are polarized perpendicular to the surface experience broken symmetry,
and thus only these components contribute to surface SHG. Referring back to Fig. 3.5, the probe
beam was always incident on the surface at a 45◦ angle. Hence the component of the probe beam
perpendicular to the surface was

E⊥(ω) = E0(ω)cos(45◦)sin(α) (3.3)

where α is the angle between the probe polarization and the ŷ axis. The nonlinear polarization
moment arising from the surface is proportional to the square of this field.

Psurf(2ω) ∝ E2
⊥(ω) = E2

0(ω)cos2(45◦)sin2(α) (3.4)

Note that the surface component of the polarization has a sin2(α) dependence on the probe polar-
ization angle.

By substituting Eqns. 3.2 and 3.4 into Eqn. 3.1, we can determine the dependence of each
term on the probe polarization angle α. The first term |Psurf|2 has a sin4(α) dependence on the
probe polarization, while the second term 2|Psurf · PM-E|2 has a sin2(α) dependence on α. The third
term |PM-E|2 has no dependence on the probe polarization angle. Because these different signal
components have different dependencies on the probe polarization, they can be distinguished by
measuring the response of the signal to a rotation of the probe polarization. The component of the
measured signal that has a sin4(α) dependence on the probe polarization cannot be attributed to
the M-E rectification field, while signals which are proportional to sin2(α) or are independent of
the probe polarization may be attributed to the pump-induced M-E rectification field.

3.2 Birefringence Induced by M-E Rectification

While the detection of induced second harmonic generation is a highly sensitive method of detect-
ing the presence of a M-E rectification field, the indirect nature of this approach complicated the
full characterization the rectification field. In this section, a more direct technique for observing
the magnitude and timescale of the M-E rectification field by measuring induced birefringence is
described. This second experimental technique is based on the same experimental structure of a
crossed-beam pump-probe experiment with tilted pulse fronts used in the second harmonic gener-
ation experiment from Section 3.1. The detection setup was calibrated so that the magnitude of the
signal could be directly related to the M-E pump-induced birefringence. The use of an isotropic
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sample would rule out most all-electric nonlinearities that could mimic the signal from the M-E
rectification field. The M-E induced birefringence could be distinguished from the remaining non-
linear interactions that can occur in isotropic media by looking at the dependence of the signal on
the pump beam polarization.

3.2.1 Theory of M-E Induced Birefringence

The quasi-static M-E rectification field can induce birefringence in a sample by dynamically modi-
fying the index of refraction for light polarized parallel to the rectification field. When light passes
through a medium, the phase velocity of light inside the medium is given by the equation

v =
c

n
(3.5)

where c is the speed of light in vacuum and n is the index of refraction of the medium. The index
of refraction is not always constant, and in some materials it can depend on the polarization of the
light. When a material has two indices of refraction for two orthogonal directions of polarization,
it is said to be birefringent. Birefringence can also be induced in a material by an applied field.
For example, when a static electric field is applied to a material, the index of refraction of that
material for light polarized parallel to the field will change by an amount proportional to both the
electro-optic coefficient of the material and the amplitude of the electric field.

∆n = γ · ⃗|E| (3.6)

The index of refraction along other directions will remain the same, so applying a static field to a
material will cause the material to become birefringent. As described in Chapter 2, although the
M-E rectification field is ultrafast it does not oscillate at high frequencies and so can be considered
quasi-static. The quasi-static rectification field can thus induce birefringence in a material.

∆nME ∝ EME(0) (3.7)

More precisely, the rectification field can interact with a beam E(ω) travelling through a material
to generate a nonlinear polarization moment that oscillates with frequency ω

PNL(ω) = χNLϵ0EME(0)E(ω) (3.8)
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where χNL is the value of the nonlinear susceptibility. The total polarization in the material that
oscillates at ω is equal to the sum of the linear and nonlinear contributions.

Ptot(ω) = PL(ω) + PNL(ω) (3.9)

Because the linear contribution PL and PNL are both proportional to ϵ0E(ω), Ptot(ω) can be rewrit-
ten to see that the magneto-electric induced polarization moment changes the effective linear sus-
ceptibility.

Ptot(ω) = (χL + χNLEME)ϵ0E(ω) = χeffϵ0E(ω) (3.10)

Assuming the nonlinear polarization is small and that the material magnetization is negligible, the
induced birefringence can be found by calculating the refractive index from χeff and subtracting
the unperturbed index of refraction.

∆nME =
1

2
χNLEME(0) =

1

2
χMEEH∗ (3.11)

For more details, see Appendix A.
The M-E induced birefringence can be measured by using a probe pulse to compare the original

index of refraction to the modified index of refraction. The presence of the rectification field will
modify the index of refraction for only the component of the probe beam polarized parallel to the
rectification field. If part of the probe pulse is linearly polarized parallel to the rectification field and
part is linearly polarized perpendicular to the rectification field, the two polarization components
will travel at different speeds through the material when the rectification field is present. This
difference in speeds means that the polarization component parallel to the rectification field will
acquire a delay relative to the other polarization component. For any given point along the path
of the probe beam, one polarization component will arrive before the other. This will cause the
polarization of the beam to appear to rotate. In effect, the original linear polarization is converted
into elliptical polarization by an amount proportional to the amount of induced delay between the
two polarization components. The amount of ellipticity introduced to the probe polarization can
then be measured to determine the magnitude of the induced delay, which in turn can be used
to calculate the magnitude of the M-E rectification field. In this way, the measurement of the
M-E induced birefringence permits a direct calculation of the magnitude of the M-E rectification
field. The 90◦ cross-beam geometry used in this experiment is not normally used in birefringence
experiments - the pump and probe beam are either co-linear [55; 56] or cross at a small angle [57].
The birefringence induced by M-E rectification thus cannot significantly affect the signal measured
in these experiments as the co-linear or nearly co-linear geometry does not allow the rectification
field to interact with the probe beam.
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Figure 3.6: Concept of the M-E induced birefringence experiment. The probe beam is linearly
polarized at 45◦ by the first λ/2 waveplate. The presence of the M-E rectification field in the
sample modifies the probe polarization state by adding ellipticity. The λ/4 waveplate converts this
ellipticity into a linear polarization rotation. The horizontal and vertical components of the pump
beam are separated and the difference in power between them is measured.

3.2.2 Experimental Setup

A diagram of the experimental setup is shown in Fig. 3.7. The same ultrafast Ti:Sapphire laser
that was described in Sec. 3.1 was used in this experimental design. The beam travelled through
the pulse-front tilt setup and acquired a 45◦ pulse front tilt. The laser beam was then split into
the pump and probe beams. The pump beam passed through a chopper and a delay stage before
it hit the sample, which allowed adjustment of the relative timing of the pump and probe beams.
The probe beam was rotated to 45◦ and then passed through the sample. The sample to be used in
this experiment was liquid CCl4. The liquid was placed in a quartz cuvette with lateral dimensions
of 10×10 mm2. The cuvette of liquid was held in place by a Thorlabs cuvette holder. When the
probe beam passed through the sample, its polarization state was changed by the presence of a
pump-induced M-E rectification field. The original 45◦ linear polarization was modified by the ad-
dition of a small amount of ellipticity. The probe beam then passed through a series of waveplates
which converted the induced ellipticity into a rotation of the linear polarization. The probe beam
was then focused into an all-fiber polarized beamsplitter. This beamsplitter separated the probe
beam into horizontal and vertical components, which were sent into the plus and minus ports of
a balanced photodetector. The balanced photodectector generated an output signal proportional to
the difference in intensity of the light on the plus and minus ports.

In order for the photodetector to properly subtract the two signals, it is critical that the two
polarization components were incident on the two ports of the detector at the same time. The
photodetector used in the experiment has a slight asymmetry where the response times of the plus
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Figure 3.7: Diagram of the experimental setup for the M-E induced birefringence experiment. Af-
ter passing through the sample, the probe beam was focused into a polarization maintaining fiber
(PMF) which was coupled into an in-line polarized beamsplitter. The two polarization components
then travelled through 1 m of PMF to the two input ports of the balanced photodetector and the
amplified difference between the photocurrent generated in each port is sent to the lock-in ampli-
fier.

and minus ports were not identical. To partially counteract this difference in response time, an
extra 1 m length of fiber could be added to the port with the faster rise time. A fiber with length
0.5 m would be added to the other port so that coupling losses on the two ports remained the same.
The signal from the balanced photodetector would subsequently be sent to a lock-in amplifier to
filter out signals that occurred at frequencies other than the chopping frequency. To carry out the
experiment, the position of the pump delay stage would be varied, and the signal from the lock-in
amplifier would be recorded along with the position of the delay stage. The pump-induced M-E
rectification field could be characterized by looking at the lock-in signal as a function of the delay
stage positioning.

3.2.3 Alignment of the Experimental Setup

The experimental setup can be aligned by measuring the two photon fluorescence produced in
a solution of Rhodamine 6G dye in methanol. Because a liquid sample was used, a different
alignment procedure from the one outlined in section 3.1.3 is required. As in the second harmonic
radiation experiment, the experimental setup is very sensitive to the alignment of the pump and
probe beams on the sample. The pump and probe beams must overlap both spatially and temporally
for the maximum M-E induced birefringence signal to be achieved. The Rhodamine 6G solution
was chosen for the alignment procedure because strong two-photon fluorescence was visible when
overlapped pulses were incident at the laser wavelength of 800 nm.

A diagram of the alignment process is displayed in Fig. 3.8. For coarse alignment, pinholes

44



Figure 3.8: Diagram of the two-photon alignment setup. The pump and probe beam temporally
and spatially overlap in the Rhodamine 6G solution in methanol. The pump output port is used
to collect the two-photon fluorescence (shown by green arrows). The pump beam at 800 nm is
filtered out by a narrow band pass filter centered at the fluorescence wavelength.

are attached to each of the four ports of the cuvette holder. The pump and probe beam are aligned
through the pinholes and are confirmed visually to spatially overlap in the dye solution. Once the
beams were coarsely aligned, a fiber coupling lens was attached to the output port of the pump
beam. A band pass filter is also installed to filter out the pump beam so that only the two-photon
fluorescence would reach the fiber coupling lens. The lens couple the fluorescence into a 1 m
multimode fiber. The fiber is attached to the input port of an avalanche photodiode. The output
of the photodiode is next sent to a lock-in amplifier whose output is recorded. The position of
the delay stage was varied over a wide range in order to find the position of the delay stage that
resulted in the highest lock-in signal. Once this point is found, fine adjustment of the pump and
probe beams can be performed to maximize the lock-in signal. The position of the stage that
generated the best temporal overlap is recorded as the zero delay position and the dye solution is
removed.

3.2.4 Calibration of the Experimental Setup

Before the experimental sample was put in place following alignment, calibration was performed
to determine the settings of the waveplates and probe polarization that resulted in the most sensitive
detection of birefringence. The proportionality constants that related the lock-in voltage signal to
the magnitude of the M-E induced birefringence were also measured. A conceptual diagram of the
setup used for the experimental calibration is shown in Fig. 3.9. The sample and λ/4 waveplate
were replaced by a second λ/2 waveplate. A rotation of the second waveplate by an angle α
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Figure 3.9: Concept of the calibration setup. The experimental setup is shown on top while the
modifications made for calibration are shown on the bottom. For a pump-induced phase delay in
the experimental sample of δ, the lock in voltage signal will be proportional to sin(δ). Replacing
the sample and the λ/4 waveplate with a second λ/2 waveplate at an angle α from 22.5◦ results in
a voltage signal proportional to sin(4α).

introduced the same amount of polarization rotation as a M-E induced phase delay of α/4. By
measuring the lock-in amplifier signal as a function of the angle α, its magnitude was related to
the amount of phase delay and thus the birefringence induced in the sample. This allowed the
direct measurement of the magnitude of the M-E rectification field. To perform this calibration,
the following technique was used:

1. Remove all waveplates from the probe beam path. While monitoring the signal from the
balanced photodetector on the oscilloscope, rotate the all-fiber beamsplitter until the signal
from the Input(+) channel of the photodetector is maximized and the signal from the Input(-)
channel is minimized. This aligns the axes of the polarization maintaining fiber with the
laser polarization axis.

2. Add the first λ/2 waveplate. Rotate the waveplate until the signals in the Input(+) and
Input(-) channel are equal. Once the signals are equal, fine-tune the waveplate angle by
minimizing the signal in the amplified different output. Record the waveplate angle at which
the amplified difference output is minimized

3. Remove the first λ/2 waveplate and put in the second λ/2 waveplate. Repeat the previous
step for the second waveplate.

4. Add the first λ/2 waveplate back into the setup. Rotate the chopper so it chops the probe
beam and turn on the chopper. Monitor the signals from the Input(+) and Input(-) channels
on the oscilloscope and monitor the amplified difference signal on the lock-in amplifier.

5. Block the laser beam and record the background noise of the laser.
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6. Rotate the second λ/2 waveplate in one direction until the signal from either the Input(+) or
Input(-) channels just begins to saturate.

7. Rotate the second λ/2 waveplate in the opposite direction and record the lock-in signal at
each position of the λ/2 waveplate. Continue doing this until reaching a waveplate position
at which the other Input channel saturates. Discard any data points that were recorded with
either Input channel saturated, as this can introduce error into the amplified difference signal.

A sinusoidal function of the theoretical detector response function V = m sin(α)+ b was fitted
to the data recorded in the calibration procedure. The data and sinusoidal fit are displayed in Fig.
3.10. The sinusoidal fit is a good match to the data. For a very small induced birefringence, the
detector response can be approximated as the linear function V = mα + b. The sensitivity of the
detector dV

dα
is then simply m. This sensitivity is defined in terms of the rotation angle α of the

second λ/2 waveplate in the calibration procedure. The sensitivity of the detector response with
respect to a pump-induced phase δ can be found by observing that dV

dα
is 4 times larger than dV

dδ
.

Using the values shown in Fig. 3.10, the detector sensitivity to an induced phase delay is

dV

dδ
= 5 · 10−4V/rad (3.12)

For measured voltage V , the phase delay that induced it is given by

δ =
V
dV
dδ

(3.13)

The phase delay can be related to the induced birefringence ∆n by the laser wavelength λ and the
interaction length L.

∆n =
λδ

2πL
(3.14)

The above equations can be rearranged to obtain an expression for the induced birefringence as a
function of the voltage signal

∆n =
λV

2πLdV
dδ

(3.15)

The induced birefringence can be directly related to the magnitude of the M-E rectification field.
For more details, see Appendix A. Background noise was measured to be V ≈ 10−7 V, so the
minimum resolvable birefringence signal assuming a signal to noise ratio of 1 was ∆nmin =

1.6 · 10−8 for a interaction length of 2 mm. This is comparable to the resolution observed in
birefringence experiments with similar methods of detection [58].
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Figure 3.10: Plot of the voltage signal from the lock-in amplifier as a function of the angle of the
second λ/2 waveplate. The experimental data is shown in black, while a linear fit ax+ b is shown
in red with fitting parameters a = −1.57 · 10−3 and b = 1.9 · 10−7. A linear fit is appropriate given
the small angles involved. The error bars on the experimental data correspond to the Xnoise value
calculated by the lock-in amp.

3.2.5 Isolation of the M-E Induced Birefringence

To prove that the pump-induced birefringence was indeed caused by the M-E rectification moment,
it is crucial that other mechanisms for obtaining pump-induced birefringence were ruled out or
minimized. Second-order, all-electric nonlinearities such as the electro-optic effect that would
induce rectification in the sample were ruled out by choosing a sample that did not support these
nonlinearities. The sample chosen for the experiment was carbon tetrachloride (CCl4). Due to
the symmetric structure of this molecule, it is totally isotropic and the electro-optic coefficient
is zero. The other nonlinear effect that could induce birefringence is the Kerr effect. The Kerr-
induced birefringence takes places in all materials, so the choice of a symmetric sample cannot
rule out the presence of this effect. Additionally, the magnitude of the Kerr birefringence has
the same dependence on pump power as the magnitude of the M-E induced birefringence. The
nonlinear polarization moment P (3)(ω) responsible for Kerr-induced birefringence is proportional
to the square of the pump field Epump.

P (3)(ω) = χKerrEpump(ω)E
∗
pump(−ω)Eprobe(ω) ∝ E2

pump (3.16)

Similarly, the magneto-electric induced birefringence is shown in Eqn. 3.11 to be proportional to
EH∗ ∝ E2. Thus the contribution to the pump-induced birefringence that arose from the Kerr
effect must be separated from the M-E induced birefringence in other ways.
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3.2.5.1 Signal Timescale

It is worth noting that the extended timescale of the M-E rectification nonlinearity potentially dis-
tinguishes it from the must faster timescale of the Kerr interaction. In experiments measuring the
optical Kerr effect, there are two components of the birefringence signal. The first is the coherent
part of the signal, which is observed only when the pump and probe directly overlap. This compo-
nent of the signal will have a timescale that matches the timescale of the pump pulse. The second
is the reorientational component which has an extended timescale that depends on the molecular
properties of the sample. However the sample in this work is isotropic so no reorientational com-
ponent of the signal is expected. Thus the only finite contribution to the Kerr birefringence signal is
the coherent component which has a timescale that matches the pulse duration. The M-E rectifica-
tion field on the other hand will have an extended timescale that is related to molecular rotational
motion, so a birefringence signal that persists well after the pump beam has passed through the
sample can only be caused by a pump-induced M-E rectification field.

3.2.5.2 Sign of Signal

In addition to the difference in timescale, the birefringence induced by the M-E rectification field
should have the opposite sign as birefringence induced by the Kerr effect. In the lab coordinate
system, the pump polarization lay in the xy plane and the rectification field was always oriented in
the ẑ direction. Because the probe beam crossed the sample at 90◦ from the pump beam, the probe
beam travelled in the ŷ direction and was polarized such that the x̂ and ẑ components of the probe
were equal. Due to the symmetry of the sample, the ŷ component of the pump beam cannot induce
birefringence as the induced polarization moments along x̂ and ẑ are equal.

Px = χxyyxEyEyEx = χzyyzEyEyEz = Pz (3.17)

Thus only the x̂ component of the pump polarization will contribute to Kerr-induced birefringence.
This means that the Kerr effect can only increase the index of refraction for the component of the
probe beam aligned along x̂ as the diagonal tensor element χxxxx is greater than the off diagonal
χzxxz. Since the probe beam is polarized at 45◦ from the x̂ axis on the xz plane, the Kerr effect
will cause clockwise rotation of the probe polarization as shown in Fig. 3.11. Similarly, the M-E
rectification field can only increase the index of refraction for the ẑ component of the probe, so
M-E induced birefringence will cause counterclockwise rotation of the probe polarization. The
voltage signal from the lock-in amplifier would be positive when the probe polarization is rotated
counterclockwise and negative when the probe polarization is rotated clockwise. Thus a positive
voltage signal would be indicative of M-E induced birefringence.
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Figure 3.11: Sensitivity of the signal to direction of polarization rotation. If phase delay is accu-
mulated on the x̂-polarized component of the probe beam as shown on the left, the polarization
will undergo clockwise rotation. For phase delay that accumulates on the ẑ-polarized component
of the probe, the polarization is rotated in a counterclockwise direction

3.2.5.3 Pump Polarization Dependence

The use of a crossed-beam geometry also implies that the Kerr effect contribution to the bire-
fringence signal depends on the pump polarization, while the M-E birefringence signal should be
polarization-independent. If the pump polarization was rotated in the xy plane, the component of
the pump that lies in the same plane as the probe polarization changed. This changed the strength
of the Kerr contribution to the birefringence, as it was directly proportional to the magnitude of
the pump beam that lay in the same plane as the probe polarization. As discussed in Chapter 2,
the M-E rectification field does not depend on the polarization of the pump field because it always
developed parallel to the direction of propagation of the pump beam. So the M-E birefringence
signal would not show any dependence on the pump polarization. For a more detailed analysis of
the polarization dependence of the signal, see Appendix A.

3.3 Computer Simulations of M-E Rectification

In addition to the second harmonic generation experiment described above in Sections 3.1, two
computational models were used to study the temporal development of the M-E rectification field.
The parameters of these simulations could be varied more widely than could be achieved exper-
imentally, which provided a broad understanding of the physics of M-E interactions. A classical
model first described in Ref. [1] was updated to simulate pulsed excitation. By numerically solv-
ing the coupled oscillator equations of motion from Chapter 2, the model provided an intuitive
understanding of the dynamics that occur in M-E interactions. The density matrix theory from
Chapter 2 was modified to include a time-dependent excitation pulse. The differential equations
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for the populations and coherences of the time-dependent system were numerically solved to find
the nonlinear M-E rectification moment.

3.3.1 Classical Model of M-E Rectification

The equations of motion for the coupled oscillator model of M-E rectification described in Chapter
2 were numerically solved by a Matlab differential equation solver. The time-dependent solution
for the M-E rectification moment was extracted, and the process was repeated over a wide range
of values of the model parameters. The changes in the numerical solution for the M-E rectification
moment were analyzed to understand the processes that most affect the development of the M-E
rectification field.

In order to use the built-in Matlab differential equation solver, the equations of motion first
needed to be expressed in a form that the equation solver could recognize. While the coupled
differential equations described in Chapter 2 are second order in time, the built-in Matlab solvers
can only process first order differential equations. Thus the equations needed to be rewritten as a
collection of first order differential equations. This was accomplished by introducing v⃗e, Ω∥, and
Ω⊥ to represent the electron velocity and rigid rotor angular velocity.

To improve computational stability, several approximations to the equations of motion were
made. The location of the rest position of the electron was tracked in Cartesian coordinates, sep-
arate from the rotational position of the rigid rotor oscillator. The rotational position of the rigid
rotor was expressed in terms of the angles between its original and current position for all three
Cartesian axes. These changes were made because the Matlab differential equation solver could
not simultaneously solve the coupled equations of motion in both Cartesian and spherical coordi-
nates. The approximation of the position of the rigid rotor was valid as long as the motion of the
rigid rotor was largely confined to a single plane. The validity of the approximation was tested
by varying the ratio between I⊥ and I∥ and measuring the residual energy in the model at the end
of the simulation time. Fig. 3.12 shows the result of the test. For large values of I⊥

I∥
, the residual

energy is low. This indicates both the electron and rigid rotor oscillator returned to their original
position, so the remaining potential energy in the simulation approaches zero. For lower values of
I⊥
I∥

, residual energy is high. The high residual energy occurs when the motion of the rigid rotor is
no longer confined to a single plane. The approximation of the rigid rotor position breaks down,
and the electron oscillator and rigid rotor oscillator decouple. To avoid this instability, the value of
I⊥
I∥

was fixed to 1000 where the approximations remained valid.
The modified versions of the differential equations were then:

ẋe = vxe (3.18)
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Figure 3.12: Stability of the classical model for pulsed excitation for 100 fs (black) pulses and 200
fs (red) pulses. For values of the ratio I⊥

I∥
below 20, the residual energy in the system rises sharply.

For larger values of I⊥
I∥

, the residual energy levels off at a low value.

ẏe = vye (3.19)

że = vze (3.20)

These equations for the electron position x⃗e are required to convert the second order equations of
motion into a system of first order equations. The rest of the equation of motion can be stated as a
first order differential equation in terms of the electron velocity v⃗e.

˙vxe =
e

m
Ex(t)− ω2

0(xe − xr)−
e

m

Ex(t)

c
vze − γevxe (3.21)

˙vye = −ω2
0(ye − yr)− γevye (3.22)

˙vze = −ω2
0(ze − zr) +

e

m

Ex(t)

c
vxe − γevze (3.23)

The position of the restoring point x⃗r needed to be tracked in Cartesian coordinates to use in Eqns.
3.21-3.23.

ẋr = (zrΩy − yrΩz) (3.24)
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ẏr = (−zrΩx + xrΩz) (3.25)

żr = (yrΩx − xrΩy) (3.26)

The equations of motion for the rigid rotor oscillator must similarly be written as a system of first
order differential equations by introducing the angular velocity Ωi around a cartesian axis î.

θ̇x = Ωx (3.27)

θ̇y = Ωy (3.28)

θ̇z = Ωz (3.29)

The rest of the rigid rotor equations can be written in terms of Ωi.

Ω̇x =
m

I∥
ω2
0(yrze − yezr)− γmΩx − ωmθx (3.30)

Ω̇y =
m

I⊥
ω2
0(−xrze + xezr)− γmΩy − ωmθy (3.31)

Ω̇z =
m

I⊥
ω2
0(xrye − xeyr)− γmΩz − ωmθz (3.32)

For the complete Matlab code used, see Appendix B.

3.3.2 Density Matrix Model of M-E Rectification

The development of the density matrix theory of M-E interactions permitted the development of a
time-dependent numerical model that solved the equations of motion the sample three level system
laid out in Chapter 2. The density matrix equations of motion were solved using the built-in
Mathematica differential equation solver. A time-dependent solution for the M-E rectification
moment was computed from the third order coherence ρ13. The time-dependent density matrix
equations of motion are obtained by swapping the original expression for the driving field from
Chapter 2 for a simulated Gaussian pulse.

V = −ℏΩ
2
e−2ln(2)(

t−t0
τ

)2eiωt (3.33)

The first order coherence ρ12 that arises from this driving field has an analytic solution. The
analytic solution is used to minimize the amount of numerical error introduced in to the solution.
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ρ12 = −
√
π

4ln(4)
e(−Γ12+iω12)te

(Γ12+i(ω−ω12))(Γ12τ
2+iτ2(ω−ω12)+4t0ln(4))

4ln(4) Ωt(
Erfi

[
iΓ12τ

2 + τ 2(ω − ω12) + 4it0ln(2)

2τ ln(4)

]
− Erfi

[
iΓ12τ

2 + τ 2(ω − ω12)− 4i(t− t0)ln(2)

2τ ln(4)

])
(3.34)

Given this analytic expression for the first order coherence, Eq. 2.70 for the second order term
for ρ13 were solved. A numerically solution for the rectification field can then be obtained using
Eq. 2.72. The complete Mathematica code used can be seen in Appendix C.
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CHAPTER 4

Results

This chapter covers the experimental and theoretical results from the methods described in Chapter
3. Results from the induced second harmonic generation experiment are presented in Section 4.1
and have been published in Ref. [2]. A strong pump-induced second harmonic signal was observed
when the pump and probe beams overlapped temporally in the thin film sample, in addition to
a static background signal. The power and polarization dependence of the pump-induced signal
were found to be consistent only with M-E induced SHG. The duration of the pump-induced signal
was larger than the duration of the pump beam or the temporal resolution of the detector which
matched the theoretical predictions from Chapter 2. These experimental results provided the first
observation of the magneto-electric rectification moment.

Theoretical results from the coupled oscillator model and the density matrix model are covered
in Sections 4.2 and 4.3. The outputs from both models exhibited an extended rectification duration
that was greater than that of the driving pulse. The duration of the output of the coupled oscilla-
tor model depended most on the electronic damping rate and the molecular rotational frequency.
Analysis of the peak rectification moment reached for different driving pulse widths showed the
ultrafast torque completion time. The temporal duration of density matrix model output was solely
dependent on the values of the Γ13 decoherence rate and the molecular rotational frequency. Re-
sults from the two computational models are compared in Section 4.4.

4.1 SHG Experiment

4.1.1 Sample Properties

The sample used in this experiment was a polycrystalline pentacene thin film. Polycrystalline pen-
tacene was chosen because it possessed inversion symmetry on the scale of the laser wavelength. It
also exhibited low absorption at the laser wavelength of 800 nm. The pentacene was deposited on
a glass substrate by vacuum thermal evaporation. After preparation, the sample was sealed in an
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inert gas environment and stored away from light to avoid degradation. The total thickness of the
thin film was approximately 400 nm. Individual crystallites within the thin film had sizes between
100 nm and 200 nm, as seen in Fig. 4.1. The sizes of the crystallites were much smaller than
the 800 nm wavelength of the laser, so the orientation of the individual pentacene molecules was
effectively random on the scale of the laser beam. This meant that the sample possessed inversion
symmetry, because if the sample was rotated by 180◦ it would not change the random orientation
of the crystallites. All-electric SHG in samples with inversion symmetry is prohibited because
any second order interaction of the field with the sample that produces a nonlinear polarization
moment also produces a symmetric response in the opposite direction. These two polarization
moments have equal magnitude but opposite sign and thus cancel out.

The absorption spectrum of the sample was measured with a spectrophotometer and is shown in
Fig. 4.1. The absorption peak was found at 670 nm, with a tail that extended only out to 750 nm.
The absorption at the laser wavelength of 800 nm was negligible, so the pump and probe beams
could not cause a transition to an excited state that could generate a charge separation field in the
sample. Additionally, the absorption of the pentacene at the second harmonic wavelength of 400
nm is also low. This meant that most of the generated second harmonic radiation would escape the
sample and could be measured at the PMT.

Figure 4.1: (a) AFM height image of the 400 nm thick pentacene film deposited on glass. The scan
size is 5 × 5 µm2 and the scale bar in the image corresponds to 1 µm. The individual crystallites
have a size between 100 nm and 200nm. (b) The absorption spectrum of the sample. The absorp-
tion of the sample is very low at the laser wavelength of 800 nm, and relatively low at the second
harmonic wavelength of 400 nm.

4.1.2 Observation of M-E Induced Second Harmonic Generation

A plot of the measured intensity of the second harmonic radiation as the delay time between the
pump and probe beam was scanned is shown in Fig. 4.2(a). The intensity is comprised of two
distinct signals. The first component is a pump-induced signal which appears when the relative
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delay time is close to zero and the pump and probe hit the sample simultaneously. It should be
noted that the total duration of the pump-induced signal is much greater than either the 100 fs
pulse duration of the pump and probe beam or the instrumental response, with a rise time around
0.5 ps and a slightly longer decay time around 0.6 ps. This ruled out the possibility that free
charges generated by weak two-photon absorption could be producing a charge separation field
with a quadratic dependence on pump power which would be similar to the expected behavior
from an M-E rectification field. However in this case, the signal rise time would be as fast as
the pulse duration, contrary to the observed rise time of about 0.5 ps. The decay time of pump-
induced second harmonic generation would then be either that of the singlet exciton lifetime (24
ns) [59; 60] or the singlet fission time scale (80 fs) [61]. Since the signal decay time in Fig. 4.2
was about 0.6 ps, it is clearly quite different from either of these possibilities.

The second component is a static background intensity which does not change in magnitude as
the delay time is scanned. The magnitude of this static background is much higher than that of the
pump-induced signal. The intensity of the background signal is plotted with respect to the probe
power in Fig. 4.2(b). The quadratic fit to the data is shown by the black dashed line. Because the
background signal is well fitted by a quadratic curve, it is caused by a quadratic nonlinear process,
consistent with second harmonic generation. Although the sample possessed inversion symmetry
as detailed in Section 4.1, the surface of the thin film could support surface second harmonic
generation by the probe beam alone. This mechanism qualitatively matches the observed behavior
in Fig. 4.2 where the intensity of the background remained constant as the relative timing of the
pump and probe beam were varied.
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Figure 4.2: (a) Intensity of second harmonic radiation versus delay time between pump and probe
beams. There are two distinct components: the static background SSHG and the pump-induced
signal ∆SHG. The black curve shows a convolution of the simulated M-E rectification field using
the classical model and the instrumental response. (b) Intensity of the static background versus
probe beam power.

However, it was possible to quantitatively determine that the source of the static background
signal was surface second harmonic generation (SSHG). As discussed in Section 3.1.5, changes in
the second harmonic radiation signal changes as the probe polarization was varied could be used
to distinguish all-electric second harmonic generation at the surface of the sample from M-E SHG.
To that end, the magnitude of the second harmonic radiation signal was measured as the probe
polarization angle was rotated from 0◦ to 180◦. The magnitude of the pump-induced signal versus
delay time is shown in Fig. 4.3(a) for three different values of the probe polarization. The peak
intensity of the second harmonic signal decreases as the probe polarization is rotated from 90◦ to
0◦. The static second harmonic signal (not shown) shows a similar decrease. The peak value of the
pump-induced signal and the static signal are plotted versus the probe polarization angle in Fig.
4.3(b). The dashed lines show sin2(α) and sin4(α) fits to the data for the pump-induced and static
signals, respectively. These fitting functions that were derived in Section 3.1.5 are in excellent
agreement with the experimental data. Thus, the static background observed in Fig. 4.2(a) is
entirely caused by surface second harmonic generation. The sin2(α) dependence pump-induced
signal, in contrast, shows that it is directly proportional to the M-E rectification field as detailed in
Section 3.1.5.
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Figure 4.3: Dependence of the second harmonic radiation on probe polarization. (a) Intensity of
second harmonic radiation versus delay time for different probe polarization angles. The angles
for the red, blue, and black curves were α = 90◦, α = 40◦, and α = 0◦. (b) Peak second harmonic
radiation intensity versus the probe polarization angle α. The red and blue data points show the
peak experimental signal for the pump-induced signal and the static background respectively. The
red and blue dashed lines show a sin2(α) fit to the pump-induced signal and a sin4(α) fit to the
background signal.

The characteristics of the pump-induced second harmonic signal were further investigated by
measuring the dependence of the signal on the power and polarization of the pump beam. The
peak intensity of the pump-induced signal is plotted versus pump power in Fig. 4.4(a). The dashed
line shows a quadratic fit to the data which agrees with the experimental data. The quadratic power
dependence ruled out the possibility that the signal was caused by electron-hole pair generation.
Even if electron-hole pairs were excited as the result of absorption at 800 nm and resulted in a
charge separation field, the field strength would exhibit a linear dependence on pump power. Ad-
ditionally, the quadratic power dependence ruled out any other all-electric quadratic nonlinearities
such as pump-induced rectification. The polarization dependence is plotted in Fig. 4.4(b). The
magnitude of the pump-induced signal does not change as the pump polarization is varied. The
observed (lack of) polarization angle dependence was in excellent agreement with the prediction
for a magneto-electric rectification field, and also served to rule out other all-electric processes.
Signals arising from hyper-Rayleigh scattering or pump-induced surface second harmonic genera-
tion would have a strong dependence on the pump polarization angle.

In theory, quadrupolar electric interactions could theoretically give rise to second order nonlin-
ear response that could explain the presence of a pump-induced rectification signal. However this
is not possible as quadrupole interactions can lead to frequency-doubling but not to rectification.
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Consider an x-polarized pump field

Ex = Ex0

(
ei(ωt−kz) + e−i(ωt−kz)

)
(4.1)

A second order polarization that points along the pump propagation axis and results from a
quadrupole interaction [62] then has the form

P (q)
z = ϵ0χ

(q)
zxzxEx

∂

∂z
Ex (4.2)

In an isotropic material the tensor susceptibility element χ(q)
zxzx does not vanish. However, upon

substitution of the pump field, the nonlinear polarization is found to be

P (q)
z = ϵ0χ

(q)
zxzx

(
Ex0

(
ei(ωt−kz) + c.c.

)) (
−ikEx0e

(i(ωt−kz)) + c.c.
)

(4.3)

P (q)
z = ϵ0χ

(q)
zxzx

(
−ikE2

x0e
2i(ωt−kz) + ikE2

x0e
−2i(ωt−kz)

)
(4.4)

This nonlinear polarization consists exclusively of second harmonic terms as the static field terms
vanish. Hence the quadrupole interaction does not support rectification. Moreover harmonic ra-
diation from this interaction yields no second harmonic generation signal from the probe alone
because the polarization cannot radiate along the propagation axis of the probe, the direction in
which the detector is located. While quadrupolar second harmonic generation from the pump alone
could reach the detector directly, it would not give rise to a pump-induced change in the second
harmonic signal from the probe. Therefore quadrupole interactions cannot account for observed
pump-induced signal.

The results of the induced second harmonic generation experiment are thus uniquely consis-
tent with M-E rectification. Analysis of the probe polarization dependence shows that the pump-
induced signal originates in the bulk of the material. The dynamic symmetry breaking that occurs
in the bulk of the material is shown to be a polarization-insensitive quadratic process. A pump-
induced magneto-electric rectification field is the only effect consistent with the observed results
that could induce dynamic symmetry breaking in the bulk of the sample.
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Figure 4.4: Dependence of the second harmonic radiation on the pump beam. The red data points
show experimental data. (a) Peak second harmonic radiation intensity versus pump power. The
red dashed line shows a quadratic fit to the data. (b) Peak second harmonic radiation versus pump
polarization angle.

4.2 Time Dependence from the Coupled Oscillator Simulations

The numerical implementation of the coupled oscillator model described in Section 3.3.1 was used
to simulate the M-E response of a molecule to an arbitrary optical field. A standard set of input
parameters shown in Table 4.1 was chosen. The incident optical field took the form of a Gaussian
pulse with

E(t) = E0e
2log(2)

(t−t0)
2

τ2p cos (ω(t− t0)) (4.5)

The induced rectification field is calculated as the product of the electron charge and the total
distance from the simulation origin to the current electron position. The temporal duration of the
rectification field was found to depend most on the electronic damping rate γe and the molecular
rotational frequency ωm. Changes in these parameters also affect the peak magnitude of the M-
E rectification field. The largest rectification magnitude was obtained when the driving field was
tuned to the electronic resonance frequency ω0. The total enhancement due to molecular torque was
found to increase as the pulse width of the driving pulse was increased until the torque enhancement
was saturated at a finite pulse width. This charge separation is shown with respect to simulation
time in Fig 4.5.
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Symbol Value Parameter
E0 109V/m Electric field magnitude
ω 0.9ω0 Optical Frequency
t0 0.5 ps Zero delay time
τp 100 fs Pulse width
ω0 1.63 · 1016 rad/s Electronic resonance frequency
γe 0.25ω0 Electronic damping constant
ωm 5 · 10−3ω0 Molecular resonance frequency
γm 0.4ωm Molecular damping constant

I⊥/I∥ 1000 Ratio of moments of inertia
r⃗0 {0,15 pm, 0} Coupling vector

Table 4.1: Standard input parameters for the coupled oscillator model.

Figure 4.5: Evolution of charge separation (red curve) versus time in the coupled oscillator model
when driven by a 100 fs excitation pulse (gray curve). Each curve was individually normalized.
All parameters were set to the values specified in Table 4.1.

The incident electric field is shown in gray and is centered around the zero-delay time. Simu-
lation time is adjusted so that the zero-delay time is at t = 0. The timescale for development of
fully-enhanced rectification and magnetization moments is neither instantaneous nor exactly coin-
cident with the excitation pulse. When illuminated by a Gaussian pulse, there is a delay of 100 fs
between the peak electric field of the excitation pulse and the peak value of the magneto-electric
rectification moment. Moreover, the rectification moment persists after the excitation pulse, de-
caying completely only after 500 fs. The delay and asymmetry of this response are indicative
of the underlying torque dynamics. It takes time for the driving field to generate enough molecu-
lar torque and electron drift for the rectification moment to become fully developed. Similarly, the
rectification field does not fall off on the same timescale as the driving pulse, as the intra-molecular
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dynamics take time to return to equilibrium.

Figure 4.6: Coupled oscillator model simulations of charge separation versus time for different
values of the electronic damping rate γe. Rates for the blue (dashed), black (solid), and red (dotted)
curves were γ = 0.015ω0, γ = 0.15ω0, and γ = 0.5ω0 respectively. All parameters except γe were
set to the values specified in Table 4.1. Each curve was individually normalized.

Having established the behavior of the model for the standard set of parameters, the parameter
space of the model was explored by varying one of the input parameters and observing how the
simulation results changed. The first input parameter investigated in this way was the electronic
damping rate γe. The simulation output is plotted versus time in Fig. 4.6 for rising values of
γe. Changing the electronic damping rate significantly changes the decay behavior of the charge
separation field. While the decay time for the base case is about 500 fs, both the low and high
damping cases show extended dynamics where the rectification moment persists for 1 ps after the
arrival of the excitation pulse. What differs in the low and high damping cases is the oscillatory
behavior. For low damping, multiple overshoots of the equilibrium position take place. For high
damping, there are no overshoots. The system simply returns to equilibrium monotonically. These
responses exemplify underdamped and overdamped dynamics respectively.

63



Figure 4.7: Peak magnitude of the rectification moment versus the electronic damping rate γe. All
parameters except γe were set to the values specified in Table 4.1.

Fig. 4.7 shows the peak value of the rectification moment as γe is varied. In addition to the
change in duration of the charge separation, there is also a clear decrease in the peak magnitude
of the rectification moment as γe increases. The decrease is slow for values of γe below 0.1ω0, but
further increases in γe result in a steep decrease in the peak rectification moment.

Figure 4.8: Coupled oscillator model simulations of the charge separation field versus time for
different values of rotational damping rate γm. Frequencies for the black, red, and yellow curves
were γm = 0.05ωm, γm = 0.1ωm, and γm = 0.5ωm, respectively. All parameters except γm were
set to the values specified in Table 4.1. Each curve was individually normalized.

Next, the molecular damping rate γm was varied. The simulated rectification field is plotted in
Fig. 4.8 versus simulation time. Changes in the molecular damping rate do not have a significant
effect on the simulation output. Large values of the molecular damping rate do slightly increase the
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rise time, but not to the same extent as seen for changes in the electronic damping rate. It should
be noted that the electron exerts a damping force on molecular motion proportional to γe due to
the coupling between the electronic and molecular oscillators. Because γe ≫ γm, this electronic
damping force dominates the molecular dynamics. This coupling behavior is described further in
Section 4.4.

Figure 4.9: Coupled oscillator model simulations of the charge separation field versus time for
different values of rotation frequency ωm. Frequencies for the blue (dashed), black (solid), and red
(dotted) curves were ωm = 5 · 10−5ω0, ωm = 5 · 10−3ω0, and ωm = 1 · 10−2ω0, respectively. All
parameters except ωm were set to the values specified in Table 4.1. Each curve was normalized to
the dashed blue curve

Changes in the molecular rotation frequency ωm were also investigated. Fig. 4.9 shows the
simulated rectification field plotted versus time for different values of the ωm. Changes in ωm

have similar effects of the rectification dynamics as changes in γe. Reducing the value of ωm

causes a dramatically extended timescale as shown in the dashed blue curve. Additionally, the rise
time is longer and the peak rectification is reached about 400 fs after the peak of the driving field.
Increasing ωm from the base case does not significantly change the total duration of the rectification
transient. However, increasing ωm does cause more overshooting to occur during the decay period.
The peak magnitude of the field also changes, as increasing the value of ωm decreases the peak
magnitude of the rectification transient.
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Figure 4.10: Peak value of the rectification moment versus molecular rotational frequency. All
parameters except ωm were set to the values specified in Table 4.1.

The dependence of the peak rectification magnitude on ωm is shown explicitly in Fig. 4.10.
For low values of ωm the peak rectification field is at its maximum. This peak value quickly
decreases as the molecular rotational frequency increases. This decrease is caused by the increase
of the restoring force in the torsional oscillator proportional to ω2

m. The relaxation behavior of
the magneto-electric rectification moment thus depends strongly on both molecular and electronic
properties.

Figure 4.11: Magnitude of the rectification dipole moment versus detuning for different values of
τp. The steady-state response is also shown for comparison. All parameters except τp and ω were
set to the values specified in Table 4.1.

Because M-E nonlinearities involve molecular dynamics with long reponse and decay times, ul-
trashort pulses may not drive the system long enough to saturate the M-E response. For extremely
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short pulses, the peak rectification moment is limited by pulse duration. A compelling demonstra-
tion of the ultrafast torque dynamics are required for the M-E rectification field to become fully
enhanced can be made by tracking development of the rectification dipole moment versus pulse
duration. A plot of the peak rectification moment versus optical frequency is shown in Fig. 4.11
for different values of the pulse duration. The steady state response curve is shown as well to illus-
trate the saturated response. For pulse durations between 10 fs and 200 fs, the M-E response grows
steadily with τp until it saturates for pulses longer than a well-defined ”torque completion time”
τc =

2πℏ
µE

[48]. For the coupled oscillator simulation with the parameters set as specified in Table
4.1, this saturation occurs at a pulse duration τp ≈ 250 fs. The torque completion time calculated
from the peak on-resonance steady state value of 2.4 · 10−30 (C · m) and the parameters in Table
4.1 is τc = 276 fs which is in excellent agreement with the saturating pulse duration of 250 fs.

4.3 Time Dependence from the Density Matrix Simulations

The numerical implementation of the density matrix model described in Section 3.3.2 was used
to simulate the M-E response of a molecule to an arbitrary optical field. A standard set of input
parameters shown in Table 4.2 was chosen. The incident optical field took the form of a Gaussian
pulse with

V (t) = −ℏΩ
2
e
2log(2)

(t−t0)
2

τ2p e(iω(t−t0)) (4.6)

The induced rectification field was calculated as the trace of the density matrix with the magneto-
electric transition moment as laid out in Chapter 2. The temporal duration of the rectification field
was found to depend most on the molecular properties of the three level system. In the model
described in Chapter 2, these were the magneto-electric decoherence rate Γ13 and the molecular
rotational frequency ω13. The electronic decoherence rate Γ12 had no effect on the timescale of
the generated M-E polarization, but did affect the peak magnitude of the rectification field. The
magnitude of rectification was also found to be affected by Γ13, but ω13 had no significant im-
pact on the peak rectification moment. As was found in simulations with the coupled oscillator
model, the largest rectification magnitude was obtained when the driving field was tuned to the
electronic resonance frequency ω12. The rise time of the rectification moment was found to be
approximately equal to the width of the driving pulse. This rectification moment is shown with
respect to simulation time in Fig 4.12.
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Symbol Value Parameter
Ω 4.235 · 1013 rad/s Rabi Frequency
ω 0.9ω0 Optical Frequency
t0 1 ps Zero delay time
τp 100 fs Pulse width
ω12 1.63 · 1016 rad/s Electronic resonance frequency
Γ12 0.25ω0 Electronic decoherence rate
ω13 10−7ω0 Molecular resonance frequency
Γ13 1012 rad/s M-E decoherence rate

Table 4.2: Standard input parameters for the density matrix model.

Figure 4.12: Evolution of charge separation versus time in the density matrix model when driven
by a 100 fs excitation pulse. All parameters were set to the values specified in Table 4.2.

The timescale of the rectification transient predicted by the density matrix simulation is signif-
icantly longer than the timescale of the 100 fs driving pulse. The induced rectification moment
exhibits significant asymmetry between the rise time and the decay time. The initial development
of the rectification moment takes about 100 fs, similar to the pulse duration of the incident optical
field. The decay period is 4 ps. This asymmetry is caused by the transfer of energy from |1⟩ ↔ |2⟩
coherence to the |1⟩ ↔ |3⟩ coherence. The decay period of the |1⟩ ↔ |3⟩ coherence is deter-
mined by molecular dynamics which are much slower than the electron dynamics that determine
the properties of the |1⟩ ↔ |2⟩ coherence.

68



Figure 4.13: Peak magnitude of charge separation versus the decoherence rate Γ12 in the density
matrix model. All parameters other than Γ12 were set to the values specified in Table 4.2.

The first parameter sweep for the quantum model was over the electronic decoherence rate Γ12.
The timescale of the rectification transient does not change as Γ12 is varied. Fig. 4.13 shows
the peak rectification moment plotted versus the decoherence rate as a fraction of the resonance
frequency ω12. For small values of the decoherence the peak rectification is low. Because the
frequency of the driving field is ω = 0.1ω12, the peak rectification magnitude is maximized for
Γ12 = 0.1ω12 and the driving frequency falls within the linewidth of the |1⟩ ↔ |2⟩ transition.
Beyond Γ12 = 0.1ω12, the peak rectification moment decreases gradually as the decoherence in-
creases. Large values of the decoherence cause the |1⟩ ↔ |2⟩ coherence to decay before the
magnitude field can transfer energy to the |1⟩ ↔ |3⟩ transition via molecular torque.

69



Figure 4.14: Evolution of charge separation versus time in the density matrix model for different
values of the decoherence rate Γ13. Decoherence rates for the black, red, and yellow curves were
Γ13 = 5 ·1011 rad/s, Γ13 = 1 ·1012 rad/s, and Γ13 = 5 ·1012 rad/s respectively. All parameters other
than Γ13 were set to the values specified in Table 4.2. Each curve was individually normalized.

Next, the relationship between the rectification moment and the magnetic decoherence rate Γ13

was examined. The peak magnitude of the rectification does not change significantly as the Γ13 is
varied. Fig. 4.14 shows the temporal development of the rectification field for different values of
Γ13. The rise time of the rectification moment does not change as Γ13 is varied. However, the decay
time is significantly affected by changes in the magnetic decoherence rate. The total duration of
the rectification field for low values of Γ13 can be as long as 9 ps, as shown in the black curve.
Increasing Γ13 decreases the total duration of the rectification moment, reaching as short as 1 ps
as shown in the yellow curve. This matches the predicted analytic behavior as the density matrix
element ρ13 should decay exponentially as shown in Eqn. 2.88.
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Figure 4.15: Evolution of charge separation versus time in the density matrix model for different
values of the rotational frequency ω13. Decoherence rates for the black, red, and yellow curves
were ω13 = 0.26 GHz, ω13 = 3.9 GHz, and ω13 = 13 GHz respectively. All parameters other than
ω13 were set to the values specified in Table 4.2. Each curve was individually normalized.

Fig. 4.15 shows the dependence of the rectification moment on the value of the rotational
frequency ω13. Changes in ω13 do not significantly change the peak magnitude of the rectification
transient. The total duration of the rectification moment increases slightly as ω13 is increased from
the value of 10−7ω0 from Table 4.2, but otherwise is largely unchanged. This again matches the
expected decay behavior predicted from Eqn. 2.88. However, decreasing ω13 causes a transition
from monotonic decay to an oscillatory decay pattern where rectification field begins to overshoot.
Molecular properties have a significant impact on the timescale of the rectification transient.

Figure 4.16: Peak magnitude of charge separation versus the detuning ∆12/ω12. All parameters
other than ω were set to the values specified in Table 4.2.
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The resonance behavior of the rectification moment predicted by the density matrix simulation
is shown in Fig. 4.16. Changes in the detuning were implemented by varying the frequency of the
incident optical field and fixing the frequency of the electric transition ω12. The peak dipole mo-
ment was reached exactly on resonance when ω = ω12, and the peak value decreases symmetrically
as the optical frequency is detuned in either direction from the electronic transition.

Figure 4.17: Evolution of charge separation versus time in the density matrix model for different
pulse widths τp. The pulse widths for the black, red, and yellow curves were τp = 40 fs, τp = 100
fs, and τp = 250 fs respectively. All parameters other than τp were set to the values specified in
Table 4.2. Each curve was individually normalized.

Finally, the dependence of the rectification field on the incident pulse duration is examined in
Fig. 4.17. The pulse width was varied from 40 fs to 250 fs, with the base case shown by the red
curve. In all cases, the field strength and the position of the zero-delay time were fixed to the values
specified in Table 4.2. For the 40 fs pulse, the rise time of the field matches the pulse duration of
the driving pulse. The time at which the rectification begins to increase is also right around the
zero-delay time. For the base case of 100 fs, the rise time is increased relative to the 40 fs case. The
rectification moment begins to increase before the zero-delay time and reaches its maximum about
100 fs after the zero-delay time. These trends continue for the 250 fs case, with the total rise time
of about 0.5 ps. The rectification moment begins to develop about 250 fs before the zero-delay
point, and the peak rectification value is reached about 250 fs after the zero-delay point.
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Figure 4.18: Evolution of charge separation versus time in the density matrix model for steady
state excitation. All parameters were set to the values specified in Table 4.2. The driving field was
assumed to be V (t) = −ℏΩ

2
e(iω(t−t0)).

The development of the rectification field in response to steady state excitation is shown in Fig.
4.18. Up until about 1 ps, the rectification field increases quickly and nearly linearly with respect
to time. After 1 ps, the rate of increase slows. The magnitude of the rectification field reaches 90%
of its peak value at around 2.5 ps, and slowly approaches its steady state peak. This produces a
”torque completion time” of about 4 ps.

4.4 Comparison of Simulation Results

The results described above offer insight into how the M-E rectification nonlinearity develops and
what material properties affect the magnitude and duration of the rectification signal. The results of
the coupled oscillator and density matrix simulations are largely consistent with one another and
show that the M-E rectification moment depends strongly on both the electronic and molecular
properties of the material under study. While the parameters of the coupled oscillator model and
density matrix model are not directly equivalent, some of the parameters have analogues that are
present in both models. These parameters are shown in Table 4.3. Where possible, the values of
these analogous parameters were chosen to be equivalent to one another so a direct comparison
between the models was possible. The timescale and duration of the simulated results from both
the coupled oscillator model and the density matrix model are consistent with the experimentally
measured rectification moment.

Changes in the electronic damping rate present a slightly more complex picture. While increas-
ing or decreasing the value of Γ12 in the density matrix model has little effect on the temporal
characteristics of the M-E rectification field, changes in γe in the coupled oscillator model have a
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Coupled Oscillator Parameter Density Matrix Parameter Notes

Ω E0
Strength of the incident
optical field

ω0 ω12
Electronic transition
frequency

Γ12 γe

Damping/decoherence
rate for the electric
transition

ω13 ωm
Molecular resonance
frequency

Γ13 γm
Molecular damp-
ing/decoherence rate

Table 4.3: Analogous parameters between the coupled oscillator and density matrix models.

substantial effect on the decay behavior of the rectification field. This difference in response be-
tween the models is due to the method by which the electronic and torsional oscillators are coupled
in the coupled oscillator model and is discussed further later in this section. Varying the electronic
damping rate in both models does result in changes to the peak magnitude of the M-E rectification
field. The changes in the peak rectification as γe and Γ12 are varied are shown in Figs. 4.7 and
4.13. In both models, there is an steep monotonic decrease in the peak rectification magnitude once
the damping rate is increased above 0.1ω0. This decrease is caused by decay of electronic motion
before it can be converted by the magnetic field into molecular motion. One difference between
the coupled oscillator model and the density matrix model can be seen for values of the damping
rate below 0.1ω0. The coupled oscillator model predicts little to no change in the peak rectifica-
tion magnitude as γe is varied below that value, while the density matrix model predicts a peak at
Γ12 = 0.1ω12 with an even sharper decrease in the rectification field as Γ12 decreases below 0.1ω12.
The difference between the model results for this region is caused by linewidth effects. Decreases
in Γ12 cause the linewidth of the |1⟩ ↔ |2⟩ transition to decrease. Because the base case uses a
driving frequency ω = 0.9ω12, the detuning falls within the linewidth of 0.1ω12. If the linewidth is
decreased and the detuning held constant, the detuning will begin to fall below the linewidth and
there will be a decreased driving efficiency of the |1⟩ ↔ |2⟩ coherence. Because this is a quantum
effect, the classical model has no mechanism which can capture this behavior.

The molecular damping has little effect on the peak rectification magnitude but does have a
significant effect on the timescale of the rectification moment. The most appropriate comparison of
the molecular damping is actually between the electronic damping rate γe in the coupled oscillator
model and the M-E decoherence rate Γ13 in the density matrix model. This is due to the method
by which the two models are coupled. The electron drives molecular motion by exerting a force on
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its restoring position, which manifests as a torque on the molecular system. When the electron is
being driven by the incident optical field, this torque drives molecular motion which enhances the
rectification field as described in Section 2.1. After the driving field passes through the system, the
molecular oscillator begins to return to its original position due to the restoring force proportional
to ω2

m. Because the electron is coupled to its restoring point, it too returns to its original position
in the simulation at a non-zero velocity. This non-zero velocity means that the electron motion is
dissipating energy at a rate proportional to γev⃗e. The rate of energy dissipation due to the electron
velocity is much greater than the rate of dissipation due to molecular motion which is proportional
to γmθ̇m because γe ≫ γm. The electron damping rate γe thus acts as the effective damping rate of
the molecular motion instead of γm. For this reason, changing γe in the coupled oscillator model
is most directly comparable to changing Γ13 in the density matrix model in terms of evaluating the
effect of changing the damping rate on the temporal properties of the M-E rectification field.

A comparison between Figs. 4.6 and 4.14 appears to show an inconsistency in how the two
models respond to a change in the molecular damping. Increasing γe in the coupled oscillator
model increases the decay period of the rectification moment but increasing Γ13 in the density ma-
trix model decreases the decay period. This apparent contradiction is due to the different structure
of the differential equations in each model and is discussed in further detail in Appendix D. If the
damping rate in the coupled oscillator model is kept below the critical damping rate, both models
are in agreement that increasing the molecular damping rate decreases the duration of the rectifi-
cation nonlinearity. Because these parameters are not equivalent, the timescale of the base cases
for the coupled oscillator and density matrix models cannot be directly compared. The two models
agree best on the temporal duration of rectification when the value of the Γ13 in the density matrix
model is increased from 1 · 1012 rad/s to 7 · 1012 rad/s. The rectification field predicted by the two
models when this change is made are overlaid on one another in Fig. 4.19.
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Figure 4.19: Comparison between the coupled oscillator and density matrix model predicts for the
rectification field. All parameters were set to the values specified in Tables 4.1 and 4.2 except for
Γ13 = 7 · 1012 rad/s.

In a related way, the molecular rotational frequency cannot be directly compared in the coupled
oscillator and density matrix models. As laid out in Appendix D, the structure of the differential
equations in each model is responsible for the difference in how the rectification field responds to
changes in the molecular rotational frequency. The coupling between the rotational frequency ωm

and the molecular damping γm in the coupled oscillator model is responsible for the behavior seen
in Fig. 4.10. Increasing the molecular rotational frequency also increases the effective damping
rate of the molecular model. However, both of the models agree on the qualitative change in the
decay behavior as seen in Figs. 4.9 and 4.15. Increasing the rotational frequency increases the
number and magnitude of the overshoots as the rectification field decays.

In both models, the magnitude of the M-E rectification moment is enhanced when driven exactly
on the electronic transition frequency. This is consistent with the theoretical predictions from
Section 2.3. The frequency response of the coupled oscillator and density matrix models around
the electronic resonance is shown in Figs. 4.11 and 4.16 respectively. Due to limited computational
resources, the density matrix simulation was only able to be carried out for a detuning ∆12 =

±2Γ12. However, both models predict a similar Lorentzian lineshape. M-E rectification can be
induced in a material even if the optical field is off resonance. This is further borne out in the
experimental results, as rectification is observed even though the pentacene thin film is excited
below the bandgap. Although a nonzero torque completion time can be observed in the output from
both models as shown in Figs. 4.11 and 4.18, the torque completion time is significantly different.
The coupled oscillator model predicts a torque completion time of around 250 fs, while the density
matrix model predicts a value of 4 ps. This discrepancy can be reduced by adjusted the parameters
of the density matrix model so the timescale of the rectification decay more closely matches the
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coupled oscillator model as seen in Fig. 4.19. The development of the rectification field in response
to steady state excitation is shown in Fig. 4.20 for the modified value of Γ13 = 7 · 1012 rad/s.

Figure 4.20: Evolution of charge separation versus time in the density matrix model for steady state
excitation. All parameters were set to the values specified in Table 4.2 except for Γ13 = 7 · 1012
rad/s. The driving field was assumed to be V (t) = −ℏΩ

2
e(iω(t−t0)).

The torque completion time is reduced to 700 fs. While this is much lower than the value
predicted by the base case of the density matrix model, it is still longer than the value predicted
by the coupled oscillator model. Further increasing Γ13 can reduce this torque completion time to
values closer to those predicted by the coupled oscillator model, but the temporal duration of the
rectification nonlinearity would be further reduced beyond the predictions of the classical model.
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CHAPTER 5

Conclusion

In this chapter, a summary of the results and future direction of research into M-E nonlinearities
is presented. Experimental and computational results are summarized in Section 5.1. The first
experimental measurement of M-E rectification was made by detecting M-E induced second har-
monic generation in a pentacene thin film. The characteristics of the measured rectification field
agree with the theoretical predictions made in Chapter 2 as well as the simulation results from
Sections 4.2 and 4.3. The results from the two computational models, one classical and the other
quantum mechanical, illustrate how the electronic and molecular properties of a material affect the
development of the rectification field. Both models are capable of simulating the M-E response
in a material under experimental conditions, and thus can be used to predict the M-E response of
molecular materials. A discussion of future areas of research into M-E nonlinearities is presented
in Section 5.2 along with potential applications of the findings of this thesis. The M-E rectification
field could be used in areas such as ultrafast all-optical switching, energy conversion, and terahertz
generation. The results of this thesis show the existence and properties of the M-E rectification
nonlinearity and what molecular properties are optimal for these applications. The computational
models presented in this thesis can be used to find the optimal material properties for these and
other potential applications.

5.1 Summary of Results

An experiment was carried out to measure the second harmonic radiation induced by the M-E rec-
tification effect in a pentacene thin film sample. Due to the unique geometry of M-E nonlinearities,
the experiment used a crossed-beam pump probe geometry. This design allowed the rectification
field to develop in the same plane as the probe polarization, so the electric field of the probe could
interact with the M-E rectifiction field. The crossed-beam experimental geometry retained the
ultrafast temporal resolution characteristic of co-propagating pump-probe geometries through the
use of pulse-front tilt. A 45◦ pulse front tilt was applied on both the pump and probe pulse to
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achieve a temporal resolution equal to the pulse duration.
The pentacene thin film sample was chosen because its structure made it effectively centrosym-

metric on the scale of the laser wavelength. Individual crystallites in the sample were oriented in
a specific direction, but the size of these crystallites is 100 to 200 nm, four to eight times smaller
than the 800 nm wavelength of the laser. The crystallites had a random orientation relative to one
another, so the sample possessed inversion symmetry on the scale of the laser wavelength. The ef-
fective symmetry of the sample meant that all-electric rectification or second harmonic generation
were not supported. Thus, the only possible second order effects that could contribute to a second
harmonic radiation signal would be surface second harmonic generation or M-E induced second
harmonic generation.

The detected second harmonic radiation signal showed a clear pump-induced transient along
with a static background field. The background signal showed a quadratic dependence on probe
power, which was clearly indicative of second harmonic generation from the probe beam. The
pump-induced signal has a slightly asymmetric shape, with a shorter rise time than decay time.
This asymmetry agrees with both the classical and quantum theories of M-E rectification.

To distinguish the source of second harmonic radiation, the magnitude of the second harmonic
signal was measured as a function of the probe polarization. It was found that the pump-induced
transient had a sin2(α) dependence on the probe polarization while the static background signal
had a sin4(α) dependence. A analysis of the geometry of the probe-sample interaction showed
that the sin4(α) background signal was caused by surface second harmonic generation, while the
pump-induced transient with the sin2(α) dependence was consistent with a signal arising from
dynamic symmetry breaking in the bulk of the sample. The only source of this dynamic symmetry
breaking could be a pump-induced polarization moment.

To determine the nature of the pump-induced asymmetry, the dependence of the magnitude of
the transient second harmonic radiation signal on the pump beam properties were measured. The
pump-induced transient was shown to have no dependence on the pump polarization, and it pos-
sessed a quadratic dependence on the pump power. The quadratic power dependence indicated
that a second order process was responsible for the induced asymmetry. Because all-electric sec-
ond order processes could be ruled out by the sample symmetry, the pump induced transient must
be caused in part by the optical magnetic field. Further evidence for the role of the optical mag-
netic field is provided by the pump-polarization dependence of the transient signal. An all-electric
process should exhibit a dependence on the pump polarization as the direction of the electric field
of the pump would change the orientation of the generated polarization moment. This change in
orientation would subsequently change the amount of detected second harmonic radiation. Taken
together, the measured dependence of the transient field on the pump beam show direct evidence
of the involvement of the optical magnetic field in the rectification dynamics.
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The results of the induced second harmonic generation experiment are thus uniquely consistent
with a M-E rectification process that induces a quasi-static polarization moment in the sample.
Surface second harmonic generation is responsible for the static background signal, but the pump-
induced signal is shown to originate in the bulk of the material. The only mechanism that would
permit bulk second harmonic generation would be pump-induced symmetry breaking, consistent
with the P-T symmetry of magneto-electric interactions [63]. This dynamic symmetry breaking is
shown to be a polarization-insensitive quadratic process, so it cannot be caused by an all-electric
effect. Thus a pump-induced magneto-electric rectification field must be the cause of the induced
second harmonic generation. Additionally, the temporal characteristics of the experimentally mea-
sured M-E rectification moment were found to agree with the predictions of the computational
models and ruled out the possibility that excited electron dynamics could be responsible for the
observed pump-induced signal. The work in this thesis therefore provides for the first time an
unambiguous experimental observation of the M-E rectification field.

In addition to the experimental results, two computational models were used to investigate the
properties of M-E rectification. The first computational model is based on a coupled oscillator
theory of M-E interactions. The electron response to a driving optical field is modelled using a
classical electron oscillator model of an atom. The optical magnetic field in the electron oscillator
model couples energy from motion parallel to the optical electric field to longitudinal motion.
This energy transfer exhibits a parametric resonance which seeds M-E nonlinearities. Molecular
motion is modelled by a rigid rotor model in which the angular motion of a molecular is tracked
by a torsional oscillator. The two models are coupled by fixing the restoring point of the electron
oscillator to a point on the surface of the rigid rotor model. The force between the electron and its
restoring point exerts torque on the molecule and thereby allows the electron to drive molecular
motion. This coupling represents the transfer of orbital angular momentum to rotational angular
momentum in the molecule. The M-E nonlinearities that were seeded by parametric resonance are
enhanced by this exchange of angular momentum. The combined effect of these two enhancement
mechanisms significantly reduces the intensity threshold of magnetic effects by several orders of
magnitude.

The second computational model is based on a density matrix model of M-E interactions. A
model three level system of a molecule is presented in which rotational coupling between the
ground and excited states allows for a magnetic dipole transition to exist at approximately the
same energy level as the electric dipole transition. The optical electric field excites the electric
dipole transition, adding energy and angular momentum to the molecular system. The magnetic
field then exchanges orbital angular momentum and rotational angular momentum, completing the
M-E transition and returning the molecular to near its ground state energy. The dynamics of the
three level system are analyzed using the density matrix. Perturbation theory is used to calcu-
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late the density matrix elements. Because the electric and magnetic transitions occur in different
quadratures, the M-E polarization is obtained by taking the projection of the trace of the M-E
coherence along the direction of optical propagation.

For the first time, computational simulations of M-E nonlinearities were carried out under
pulsed excitation conditions. The properties of the rectification moment predicted by these time-
dependent simulations was shown to depend strongly on both electronic and molecular properties
of the system under study. Both the classical coupled oscillator model as well as the quantum
density matrix model were used to simulate the M-E response to a incident optical field. The tem-
poral characteristics of the rectification moment were influenced most strongly by variations in
the molecular properties including the molecular damping or decoherence rate and the frequency
of molecular rotation. High values of the molecular damping rate cause rapid decay of the M-E
polarization moment and reduce the temporal duration of the rectification field. Changes in the
molecular rotational frequency have a similar effect, as large values of ωm cause ringing and over-
shooting as the molecule coherently rotates within the decay period. These two parameters do
also have a effect on the peak magnitude of M-E rectification. A faster decay of the rectification
period will limit the buildup of energy and reduce the maximum amplitude of the polarization
moment. Also, because the value of ωm is directly equal to the two-photon detuning, changes in
ωm can slightly affect the resonance conditions. However this effect is small because the energy
scale of the electronic transition is much larger than the energy of molecular rotations. The largest
impact on the peak rectification magnitude is caused by the electron damping or decoherence rate.
Because the magnetic field needs to act after the electric field, any decrease in the magnitude of
the electronic interaction will also affect the amount of energy transferred to the M-E polariza-
tion moment. The peak rectification field was also found to be strongest when the driving field
was in resonance with the electronic transition, confirming that M-E interactions offer a pathway
to strong magnetic effects on electronic transitions. Increasing the duration of the driving pulse
was also found to increase the peak magnitude of the rectification field up until the ”torque com-
pletion time” beyond which the magnetic response is saturated. Differences in simulation trends
between the coupled oscillator and density matrix models were attributed to the different forms of
the differential equations underlying each model.

5.2 Future Work

In this dissertation, the first experimental observation of M-E was accomplished and two com-
putational models of M-E rectification were developed. Future work can further characterize the
M-E rectification field and verify the validity of the two models. In particular, implementing the
birefringence experiment described in Section 3.2 would provide a more sensitive measurement of
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the M-E rectification field that could also directly measure the magnitude of the field. The mag-
nitude of the rectification field could then be compared to results from the computational models
for materials for which the electronic and molecular properties used in the simulations are known.
Additional work can focus on applying the understanding of the properties of the rectification field
to photonic applications. The unique geometry of M-E nonlinearities offer the potential for ultra-
fast all-optical switching at right angles, as well as for novel methods of terahertz generation. The
charge separation effect could also be used for new methods of energy conversion where optical
energy is converted to electrical energy.

5.2.1 Ultrafast Photonic Switching at Right Angles

The induced birefringence experiment outlined in Section 3.2 offers a proof of concept for the po-
tential use of the M-E rectification field for ultrafast photonic switching at right angles. The results
presented in this thesis confirm that the rectification field has a rise time similar to the pulse dura-
tion of the optical pulse that drives M-E rectification. The experimentally observed sub-picosecond
rise times are significantly faster than the timescale that can be achieved with electronic switching,
while the computational results show that the duration of the induced refractive index change can
be adjusted to some extent by the choice of the interaction medium. Theoretical calculations of the
M-E susceptibility have shown that the tensor element responsible for the M-E rectification field
is equal to the off-diagonal Kerr tensor element [64]. Thus an M-E photonic switch should have
similar power requirements and switching efficiency as an all-optical Kerr switch with the added
benefit of being able to switch at right angles. Full polarization rotation may be difficult or inef-
ficient to achieve using M-E induced refractive index changes. However, the switching efficiency
of such a device could be greatly enhanced by integrating the interaction medium in a photonic
crystal structure near the sharp edge of a stop band [65]. Kerr switching has previously been
demonstrated to work efficiently at low powers [66; 67]. Then the M-E induced increase in refrac-
tive index could modify the properties of the stop band and either enable or disable transmission
with high efficiency.

5.2.2 Terahertz Generation

Another future avenue of research into the M-E rectification field is its use in terahertz generation.
The potential for the use of M-E rectification in terahertz generation has been investigated before
[46]. The computational work described in this thesis can be used to accurately model the M-
E response to an ultrafast optical pulse. The simuated rectification field can then by analyzed
to determine the spectral properties of a potential M-E generated terahertz pulse. Preliminary
simulation results from the coupled oscillator model are shown in Fig. 5.1. The magnitude of
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Figure 5.1: Simulated rectification moment from coupled oscillator model. Inset: Frequency com-
position of the rectification signal obtained via a Fast Fourier Transform.

the simulated rectification moment is shown versus time, while the inset shows the frequency
composition of the signal as obtained through a Fast Fourier Transform (FFT) of the rectification
signal. The FFT shows that the simulated pulse has a large frequency component around 1 THz
which gradually falls off as the frequency approaches 5 THz. Using a different target material with
different material properties would alter the THz spectrum and could be tailored to find the desired
properties. Additional tuning could be achieved by changing the pulse front tilt of the incident
laser source [68]. Because the M-E rectification effect can occur in all dielectric materials, the use
of M-E rectification for terahertz generation could open up new classes of interaction materials for
terahertz generation.

5.2.3 Energy Conversion in Insulators

One intriguing potential use of the M-E rectification field is for energy conversion. This possibility
has been previously investigated by Fisher [46]. Unlike rectification that occurs parallel to the
optical electric field, M-E rectification is longitudinal. Thus the relevant length scale across which
charge separation occurs is not the diameter of the beam, but rather the distance travelled by the
beam through the interaction medium. Because the magnitude of the induced rectification field
is the same at all points along the interaction medium, the total voltage across the medium will
be proportional to the length of the medium. Focusing a laser into a long fiber could extend
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this interaction length and produce large voltages between either end of the fiber. This energy
conversion approach would likely be limited by material considerations. The damage threshold of
the conversion medium would need to exceed the strength of the induced rectification field. M-E
rectification is greatly enhanced when the incident field is tuned close to an electronic resonance,
so the highest energy conversion possible would occur for an intense monochromatic continuous-
wave source tuned close to resonance. Thus M-E rectification could be used to beam power across
long distances using a CW laser source.

84



APPENDIX A

Calculation of M-E Induced Birefringence

To derive the expected birefringence signal arising from M-E rectification, a complete mathemat-
ical treatment of the pump-induced birefringence that includes all possible nonlinear effects must
be developed. Because the probe beam is polarized in the xz plane, the total index of refraction
only needs to be calculated along these two directions. The total birefringence is the difference of
the index of refraction along the x and z directions.

The pump beam is assumed to be arbitrarily polarized in the xy plane while the probe beam is
polarized at 45◦ from the z axis in the xz plane. Mathematically, this means

E⃗pump = Ex(ω)(̂x) + Ey(ω)ŷ (A.1)

E⃗probe =
Eprobe(ω)√

2
x̂+

Eprobe(ω)√
2

ẑ (A.2)

The probe beam is assumed to be weak enough that nonlinear polarization moments that are gener-
ated only from the beam can be neglected. Because the sample is assumed to be isotropic, second
order all-electric effects such as the electro-optic effect are not supported. Thus the only nonlin-
ear pump-induced effects that must be included are the M-E rectification moment and all possible
Kerr terms. The form of the nonlinear polarization induced by M-E rectification is given in the
Supplementary Information of Ref. [64].

P
(3)
ME(ω) = ϵ0

{
[χ

(eme)
zyx (0;−ω, ω)]2

ϵr(0)− 1

}
E∗

0(−ω)E0(ω)Ez(ω)ẑ (A.3)

where χ
(eme)
zyx is the second order magneto-electric susceptibility, E0(ω) is the total pump field

E0 =
√

E2
x + E2

y , and Ez(ω) is the z component of the probe field. For simplicity, the term in

brackets will be defined such that
{

[χ
(eme)
zyx (0;−ω,ω)]2

ϵr(0)−1

}
= χME . The Kerr terms are generally

Pi(ω) = ϵ0χ
(3)
ijklEj(ω)E

∗
k(−ω)El(ω) (A.4)
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where χijkl is the third order susceptibility tensor. Because the sample is isotropic and is non-
resonantly excited, the only nonzero elements of this tensor are χiiii and χiijj = χijji = χijij . The
total polarization along x is then

Px(ω) = ϵ0χ
(1)
xx

Eprobe(ω)√
2

+ ϵ0χ
(3)
xxxxEx(ω)E

∗
x(−ω)

Eprobe(ω)√
2

(A.5)

+ ϵ0χ
(3)
xyyxEy(ω)E

∗
y(−ω)

Eprobe(ω)√
2

while the polarization along z is

Pz(ω) = ϵ0χ
(1)
zz

Eprobe(ω)√
2

+ ϵ0χ
(3)
zxxzEx(ω)E

∗
x(−ω)

Eprobe(ω)√
2

(A.6)

+ ϵ0χ
(3)
zyyzEy(ω)E

∗
y(−ω)

Eprobe(ω)√
2

+ ϵ0χMEE0(ω)E
∗
0(−ω)

Eprobe(ω)√
2

The common factor of ϵ0
Eprobe(ω)√

2
can be factored out to obtain

Px(ω) = ϵ0
Eprobe(ω)√

2

(
χ(1)
xx + χ(3)

xxxxEx(ω)E
∗
x(−ω) + χ(3)

xyyxEy(ω)E
∗
y(−ω)

)
(A.7)

Pz(ω) = ϵ0
Eprobe(ω)√

2

(
χ(1)
zz + χ(3)

zxxzEx(ω)E
∗
x(−ω) + χ(3)

zyyzEy(ω)E
∗
y(−ω) + χMEE0(ω)E

∗
0(−ω)

)
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The terms inside the parentheses can be treated as an effective susceptibility.

χx,eff = χ(1)
xx + χ(3)

xxxxEx(ω)E
∗
x(−ω) + χ(1)

xyyxEy(ω)E
∗
y(−ω) (A.9)

χz,eff = χ(1)
zz + χ(3)

zxxzEx(ω)E
∗
x(−ω) + χ(3)

zyyzEy(ω)E
∗
y(−ω) + χMEE0(ω)E

∗
0(−ω) (A.10)

Assuming weak magnetization i.e. µ = µ0, the refractive indices along x and z seen by the
component of the probe pulse polarized in those directions is given by the square root of these
effective susceptibilities. If the nonlinear contributions to the effectively susceptibility are small
compared to the linear susceptibility, the small argument approximation can be taken. This gives
the following expressions for the indices of refraction

nx ≈ n0 +
1

2n0

(
χ(3)
xxxxEx(ω)E

∗
x(−ω) + χ(1)

xyyxEy(ω)E
∗
y(−ω)

)
(A.11)

nz ≈ n0 +
1

2n0

(
χ(3)
zxxzEx(ω)E

∗
x(−ω) + χ(3)

zyyzEy(ω)E
∗
y(−ω) + χMEE0(ω)E

∗
0(−ω)

)
(A.12)
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where the unperturbed index n0 =
√
1 + χxx =

√
1 + χzz. The total birefringence ∆n is then the

difference nx − nz

∆n =
1

2n0

((
χ(3)
xxxx − χ(3)

zxxz

)
Ex(ω)E

∗
x(−ω)− χMEE0(ω)E

∗
0(−ω)

)
(A.13)

The Kerr contributions induced by Ey cancel, so the only Kerr contribution to the birefringence is
caused by Ex. If the pump polarization is set along the y axis, only the M-E term will contribute
to the birefringence because it has no dependence on the pump polarization.

∆n = − 1

2n0

χMEE0(ω)E
∗
0(−ω) (A.14)

Additionally, the sign of the birefringence due to the M-E term is negative, while the Kerr contri-
bution is positive.
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APPENDIX B

Coupled Oscillator Model

B.1 Main Program

% ME_ClassicalTheory_v1_RealVals_NoDim

% Elizabeth Dreyer

% 2017-07-10

% Magneto-Electric Scattering Experiment

% Purpose: Simulate the classical equations for the

% Magneto-electric scattering

% Edited 2019-03-1 by Greg Smail

% Changed filename

% Added parameter sweep capability

% Rearranged input files

plots = 0;

%% ODE Set-up

% ODE solver parameters

abserr = 1.0e-22;

relerr = 1.0e-20;

stoptime = 10e-12;

numpoints = 5e4;

t = linspace(0,stoptime,numpoints);

scanpoints = 1;
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% Load in molecular values, default parameters,

$ and initial conditions

Arbitrary_Molecular_Values_TRS_FEF;

Default_Parameters_TRS_FEF;

Initial_Conditions_TRS_FEF;

% Parameter Scans

lightIntv = linspace(1e9,1e9,scanpoints);

Ev = linspace(1e9,1e9,scanpoints);

tauPv = linspace(1e-14,25e-14,scanpoints);

gv = linspace(0.08*w0,0.8*w0,scanpoints);

gmolv = linspace(0.05*wm,0.5*wm,scanpoints);

w0v = linspace(.5*w0,5.0*w0,scanpoints);

wmv = linspace(1e-3*w0,1e-1*w0,scanpoints);

wv = linspace(w0-5*g,w0+5*g,scanpoints);

iPerv = linspace(1,200,scanpoints);

% Create arrays to store solution at all points

x1s_scan = zeros([scanpoints,numpoints]);

y1s_scan = zeros([scanpoints,numpoints]);

z1s_scan = zeros([scanpoints,numpoints]);

x2s_scan = zeros([scanpoints,numpoints]);

y2s_scan = zeros([scanpoints,numpoints]);

z2s_scan = zeros([scanpoints,numpoints]);

oxs_scan = zeros([scanpoints,numpoints]);

oys_scan = zeros([scanpoints,numpoints]);

ozs_scan = zeros([scanpoints,numpoints]);

xds_scan = zeros([scanpoints,numpoints]);

yds_scan = zeros([scanpoints,numpoints]);

zds_scan = zeros([scanpoints,numpoints]);

txs_scan = zeros([scanpoints,numpoints]);

tys_scan = zeros([scanpoints,numpoints]);

tzs_scan = zeros([scanpoints,numpoints]);

m2x_scan = zeros([scanpoints,numpoints]);

m2y_scan = zeros([scanpoints,numpoints]);
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m2z_scan = zeros([scanpoints,numpoints]);

m2xC_scan = zeros([scanpoints,numpoints]);

m2yC_scan = zeros([scanpoints,numpoints]);

m2zC_scan = zeros([scanpoints,numpoints]);

p0x_scan = zeros([scanpoints,numpoints]);

p0y_scan = zeros([scanpoints,numpoints]);

p0z_scan = zeros([scanpoints,numpoints]);

m2xt_scan = zeros([scanpoints,numpoints]);

m2yt_scan = zeros([scanpoints,numpoints]);

m2zt_scan = zeros([scanpoints,numpoints]);

p0xt_scan = zeros([scanpoints,numpoints]);

p0yt_scan = zeros([scanpoints,numpoints]);

p0zt_scan = zeros([scanpoints,numpoints]);

pf_scan = zeros([scanpoints,numpoints]);

Ex_scan = zeros([1,scanpoints]);

pulse_energy = zeros(1,scanpoints);

% Choose value over which to perform parameter sweep

plotv = wv;

xname = 'Frequency';

xunits = 'Hz';

xaxis = strcat(xname,xunits);

for counter = 1:scanpoints

disp(counter)

%Ex_scan(counter) = Ev(counter); %Electric field strength

%lightInt = lightIntv(counter);

%epulse = epulsev(counter);

%tauP = tauPv(counter);

%g = gv(counter);

%wm = wmv(counter);

%gmol = gmolv(counter);

w = wv(counter);

%w0 = w0v(counter);

%iPar = iParv(counter);

%iPer = iPerv(counter)*iPar;
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Ex = Ex_scan(counter);

% Pack up the paracmeters and initial conditions:

p = [w0, w, g, c, e, m, iPar, iPer,

Ex, kz, freq, tauP, gmol, wm, rb];

s0 = [x1, y1, z1, x2, y2, z2, ox, oy,

oz, xd, yd, zd, tx, ty,tz];

syms s

%% Run ODE 23s

options = odeset('RelTol',relerr,'AbsTol',abserr);

wsol = ode23(@(t,s)

mes_ODE_WithDim_func_GS_TRS_centered(t,s,p),t,s0);

reg_sol = deval(t,wsol);

%% Define Solutions

% Assign solution to separate arrays

tSol = t;

x1s_scan(counter,:) = reg_sol(1,:);

y1s_scan(counter,:) = reg_sol(2,:);

z1s_scan(counter,:) = reg_sol(3,:);

x2s_scan(counter,:) = reg_sol(4,:);

y2s_scan(counter,:) = reg_sol(5,:);

z2s_scan(counter,:) = reg_sol(6,:);

oxs_scan(counter,:) = reg_sol(7,:);

oys_scan(counter,:) = reg_sol(8,:);

ozs_scan(counter,:) = reg_sol(9,:);

xds_scan(counter,:) = reg_sol(10,:);

yds_scan(counter,:) = reg_sol(11,:);

zds_scan(counter,:) = reg_sol(12,:);

txs_scan(counter,:) = reg_sol(13,:);

tys_scan(counter,:) = reg_sol(14,:);

tzs_scan(counter,:) = reg_sol(15,:);
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% Dimensionalized vectors

m2x_scan(counter,:) =

e/2 (z1s_scan(counter,:).*yds_scan(counter,:)

+y1s_scan(counter,:).*zds_scan(counter,:));

m2y_scan(counter,:) =

e/2*(z1s_scan(counter,:).*xds_scan(counter,:)

-x1s_scan(counter,:).*zds_scan(counter,:)); %MD

m2z_scan(counter,:) =

e/2*(-y1s_scan(counter,:).*xds_scan(counter,:)

+x1s_scan(counter,:).*yds_scan(counter,:));

m2xC_scan(counter,:) =

e/2*(-z1s_scan(counter,:).*yds_scan(counter,:)

+y1s_scan(counter,:).*zds_scan(counter,:))/c;

m2yC_scan(counter,:) =

e/2*(z1s_scan(counter,:).*xds_scan(counter,:)

-x1s_scan(counter,:).*zds_scan(counter,:))/c; %MD/c

m2zC_scan(counter,:) =

e/2*(-y1s_scan(counter,:).*xds_scan(counter,:)

+x1s_scan(counter,:).*yds_scan(counter,:))/c;

p0x_scan(counter,:) = e*x1s_scan(counter,:); %ED

p0y_scan(counter,:) = e*y1s_scan(counter,:);

p0z_scan(counter,:) = e*z1s_scan(counter,:); %Charge Separation

%pf_scan(counter,:) =

exp(-2*log(2)*(t-2.5*tauP).ˆ2/tauPˆ2).*cos(w*(t-2.5*tauP));

pf_scan(counter,:) =

(1./(1+exp(-5e13*(t-2e-13)))

- 1./(1+exp(-5e13*(t-(2e-13+tauP))))).*sin(w*t);

pulse_energy(counter) =

eps0/2 * Exˆ2 *sum(pf_scan(counter,:).ˆ2);

end

E0_scan = p0z_scan/(eps0) * 6e23/278.36 * 1.3 * 1e6; %Pentacene

%E0_scan = p0z_scan/(eps0) * 6e23/153.82 * 1.59 * 1e6; %CCL4

if plots == 1

intensity_plot_code;

end
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B.2 ODE Solver

Addifunction[dy] = mes_ODE_WithDim_func_GS_TRS_centered(t,s,p)

% mes_ODE_func

% Elizabeth Dreyer, edited by Greg Smail

% 2019-02-4

% Magneto-Electric Scattering Experiment

% Purpose: System of ODEs for solving

% Input Parameters: t = time, s = functions, p = parameters

%Initialize dy

dy = zeros(12,1);

%Expand s and p in terms of other variables

%pn = [w0n, wn, gn, cn, en, mn, iParn,

iPern, Exn, kz, freqn, tauPn, t0, q0, me, rb];

%s0n = [x1, y1, z1, x2, y2, z2, ox, oy, oz, xd, yd, zd];

x1 = s(1); y1 = s(2); z1 = s(3);

x2 = s(4); y2 = s(5); z2 = s(6);

ox = s(7); oy = s(8); oz = s(9);

xd = s(10); yd = s(11); zd = s(12);

tx = s(13); ty = s(14); tz = s(15);

w0 = p(1); w = p(2); g = p(3); c = p(4);

e = p(5); m = p(6); iPar = p(7); iPer = p(8);

Ex = p(9); k = p(10); freq = p(11); tauP = p(12);

gmol = p(13); wm = p(14); rb = p(15);

% Define pulse function

%pulseFunc = sin(w*t);

pulseFunc =

exp(-2*log(2)*((t-1e-12)).ˆ2/tauPˆ2).*cos(w*((t-1e-12)));

%Write the equations

dy(1,1) = xd;

dy(2,1) = yd;
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dy(3,1) = zd;

dy(4,1) = (z2*oy - y2*oz);

dy(5,1) = (-z2*ox + x2*oz);

dy(6,1) = (y2*ox - x2*oy);

dy(7,1) = m/(iPar) * w0*w0 *(y2*z1-y1*z2)

- gmol*ox - wm*wm*tx; % azimuthal component

dy(8,1) = m/(iPer) * w0*w0 *(-x2*z1+x1*z2) - gmol*oy - wm*wm*ty;

dy(9,1) = m/(iPer) * w0*w0 *(x2*y1-x1*y2) - gmol*oz - wm*wm*tz;

dy(10,1) = e/m*Ex*pulseFunc-w0*w0*(x1-x2)

-e*Ex*k/(c*m)*pulseFunc*zd-g*xd;

dy(11,1) = -w0*w0*(y1-y2)-g*yd;

dy(12,1) = -w0*w0*(z1-z2)+e*Ex*k/(c*m)*pulseFunc*xd-g*zd;

dy(13,1) = ox;

dy(14,1) = oy;

dy(15,1) = oz;

end

B.3 Input Files

B.3.1 Molecular Values

w0 = 2.594e+15; %Arbitrary Oscillator 1.533e+15 1/s

w0R = w0*2*pi; %w0 in radians per second

g = 0.25*w0;

wm = w0*1e-3;

gmol = 0.5*wm;

n1 = 1;

B.3.2 Simulation Parameters

%% Define Intitial Conditions and Parameters for System

% Fundamental Constants

c = 299792458; %Speed of Light in m/s

e = 1.61e-19; %Electron charge in C
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m = 9.11e-31; %Electron mass in kg

eps0 = 8.85e-12; %Electric permitivity in Vacuum

M = 1.674e-27; %Mass of Hydrogen in Kg

R = 2*0.0375e-9; %Bond length of diatomic Hydrogen

rb = 5.292e-11; % Bohr Radius

hbar = 1.0545718e-34;

% Default Laser Parameter Values

var = 1;

freq = 80.0E6; %Laser Rep Rate

tauP = 100e-15; %Pulse Duration

lightInt = 1e8; %Pulse Intensity

Ex = 1e9;

pulse_spot = 20e-6; %Laser Spot Size

w = 0.9*w0; %Laser Frequency

kz = 1;

% Default MOI Parameter Values

iPar = hbar/w0R; %Molecular ratio arb

iPer = 1000*iPar;%M/2*R*R; %Molecular ratio arb

B.3.3 Initial Conditions

% Initial Conditions

% x1, y1, z1 are the position of the electron wrt. the foot point

x1 = 0.0;

y1 = 15e-12; %15e-12;

z1 = 0.0;

% x2, y2, z2 are the initial displacement

of the footpoint wrt. the COM

x2 = 0.0;

y2 = 15e-12;

z2 = 0.0;

% ox, oy, oz are the initial angular momentums of the electron

ox = 0.0;

oy = 0.0;
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oz = 0.0;

% xd, yd, zd are the initial velocities of the electron

xd = 0.0;

yd = 0.0;

zd = 0.0;

% tx, ty, tz are initial angles away from footpoint at rest

tx = 0.0;

ty = 0.0;

tz = 0.0;
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APPENDIX C

Density Matrix Model

C.1 Mathematica Code (Output Omitted)

vals =
{
Ω → 4235

1000
∗ 1013, ω → 147

100
∗ 1016, ω12 → 163

100
∗ 1016, τ → 10

10
∗ 10−13, a → 1 ∗ 10−12,

Γ12→ 25
100

∗ 163
100

∗ 1016, γ2 → 1013, γ3 → 106, ω13 → 20 ∗ 10−7 ∗ 163
100

∗ 1016,Γ13 → 1 ∗ 1012,

q → −1.6 ∗ 10−19, a0 → 5.29 ∗ 10−11} ;

q = −1.6 ∗ 10−19;

a0 = 5.29 ∗ 10−11;

V [Ω , ω , τ , a , t ]:= − ℏ∗Ω
2
e−2Log[2]( t−a

τ )
2

ei∗ω∗t;

Vc[Ω , ω , τ , a , t ]:= − ℏ∗Ω
2
e−2Log[2]( t−a

τ )
2

e−i∗ω∗t;

eqn =
{
x′[t] == (i ∗ ω12 − Γ12) ∗ x[t] + i

ℏV [Ω, ω, τ, a, t], x[0] == 0
}
;

sol = DSolve[eqn, x, t];

specSol = x[t]/.sol;

ρ12[Γ12 , ω12 , a , τ , ω ,Ω , t ]:= − 1
4
et(−Γ12+iω12)+

(Γ12+i(ω−ω12))(Γ12τ2+iτ2(ω−ω12)+8aLog[2])
Log[256] τΩ(

Erfi
[
iΓ12τ2+τ2(−ω+ω12)+4iaLog[2]

2τ
√

Log[4]

]
− Erfi

[
iΓ12τ2+τ2(−ω+ω12)−4i(−a+t)Log[2]

2τ
√

Log[4]

])√
π

Log[4] ;

Block[{$MaxExtraPrecision = ∞}, ρ13sol = NDSolve [{
ρ′[t] ==

(
(i ∗ ω13 − Γ13) ∗ ρ[t] + i

ℏρ12[Γ12, ω12, a, τ, ω,Ω, t] ∗ Vc[Ω, ω, τ, a, t]
)

/.vals,

{ρ[0] == 0}, {ρ, p}, {t, 0, 10 ∗ 10−12} ,WorkingPrecision →

50,Method->“StiffnessSwitching”]];

Plot
[
128
243

∗ q ∗ a0(Conjugate[Evaluate[ρ[t]]/.ρ13sol] + Evaluate[ρ[t]]/.ρ13sol), {t, 0, 5 ∗ 10−12} ,
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PlotRange→ Full,PlotPoints → 400

Plot
[
128
243

∗ q ∗ a0(Conjugate[Evaluate[ρ[t]]/.ρ13sol] + Evaluate[ρ[t]]/.ρ13sol), {t, 0, 10 ∗ 10−12} ,

PlotRange→ Full,PlotPoints → 400

Plot [Re[ρ12[Γ12, ω12, a, τ, ω,Ω, t]/.vals], {t, 0, 10 ∗ 10−12} ,

PlotRange→ Full,PlotPoints → 400

PSweepOutput1 = N
[
Table

[{
t,Re

[
128
243

∗ q ∗ a0(Conjugate[Evaluate[ρ[t]]/.ρ13sol]+

Evaluate[ρ[t]]/.ρ13sol)/.vals, {t, 0, 10 ∗ 10−12, 10−14} ;

PSweepOutput = Transpose[PSweepOutput1/.{x , {{y }}}->{x, y}];

Export[“filename.csv”,PSweepOutput]
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APPENDIX D

Effects of the Different Form of Coupled Oscillator
and Density Matrix Models

While the results of the two computational models are largely consistent, there are a few scenarios
in which the two models exhibit different behavior in response to a change in the simulation pa-
rameters. This is most apparent for changes in the damping parameters γe and Γ12 and changes in
the molecular rotational frequencies ωm and ω13. This difference is due to the different forms of
the differential equations used in the two models. The equations of motion for the coupled oscil-
lator model are second order in time, while the density matrix model equations of motion are first
order in time. The damping parameter and molecular frequencies thus appear in different forms
in the analytic and numerical solutions to these differential equations, which causes the observed
differences in the responses of the models to changing input parameters.

The coupled oscillator model has the equations of motion detailed in Eqns. 2.23 - 2.27. For
pulsed illumination, the driving electric and magnetic fields on the right hand side of Eqns. 2.23 -
2.27 will go to zero after the pulse passes through. The decay behavior of the electronic part of the
coupled oscillator model is thus described by the second order homogeneous differential equation.

ẍ+ γeẋ+ ω2
0x = 0 (D.1)

The general solution in terms of γe and ω0 is then

x(t) = Ae
−γe−

√
γ2e−4ω2

0
2

t +Be
−γe+

√
γ2e−4ω2

0
2

t (D.2)

This general solution has two branches corresponding to the two possible signs of
√

γ2
e − 4ω2

0 .
For the underdamped cases where γ2

e < 4ω2
0 , this term is entirely imaginary and causes oscillatory

decay behavior within a e−
γe
2
t envelope. In this case, increasing γe increases the rate at which the

total solution decays. However in the overdamped case where γ2
e > 4ω2

0 , the square root takes
on a real value. Increasing γe in this case decreases the total rate of decay, as the second term in
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Eqn. D.2 will decay slower than the e−
gammae

2
t envelope present in the underdamped case. The

equation of motion for the torsional oscillator of the rigid rotor model has a similar solution as it
also a second order differential equation.

θ(t) = Ae
−γm−

√
γ2m−4ω2

m
2

t +Be
−γm+

√
γ2m−4ω2

m
2

t (D.3)

It should be noted that the sign of γ2
m − 4ω2

m depends on both γm and ωm, so the transition from
underdamped to overdamped behavior can be caused by a change of ωm.

In contrast, the equation of motion for the coherence ρ13 in the density matrix model takes the
form of a first order differential equation. The general form of the homogeneous equation that
controls the decay behavior is thus

˙ρ13 + (iω13 + Γ13)ρ13 = 0 (D.4)

This has the simple solution
ρ13 = Ae−iω13t−Γ13t (D.5)

In this equation, Γ13 will only affect the decay rate of the solution, while ω13 changes only the
frequency of the oscillatory behavior. Notably, the decoherence rate of the electron transition Γ12

has no effect on the decay behavior of ρ13.
Because the two models have different forms, they respond differently to changes in the input

parameters. The coupling between the damping parameter and the resonance frequency in the
coupled oscillator model means that an increase in the damping rate can paradoxically decrease the
rate of decay. This also means that changes in the resonance frequency can affect the rate of decay
by changing the value of

√
γ2 − 4ω2. The density matrix model exhibits no such complications, so

increasing or decreasing the damping parameter will result in a corresponding increase or decrease
of the rate of decay. Similarly, changes in the resonance frequency will have no effect on the rate
of decay.
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