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Abstract 
 

Atmospheric carbon dioxide (CO2) accounts for the largest radiative forcing among 

anthropogenic greenhouse gases. There is a pressing need to understand the rate at which CO2 

accumulates in the atmosphere, in both the seasonal and the interannual timescales (mainly 

driven by terrestrial and oceanic carbon flux), because of their relationship with climatic 

variations that may provide insights into long-term carbon-climate feedback. Given advances in 

space-based measurements of atmospheric CO2, which enables us to monitor atmospheric CO2 

abundance over open ocean, and in techniques to estimate ocean air-sea exchange based on 

sparse surface ocean observations, we have novel opportunities to refine our understanding of the 

ocean influence on atmospheric CO2 variation at the interannual timescale.  Meanwhile, it 

remains challenging for current satellite missions to quantify and separate emissions of old 

carbon from permafrost from labile high-latitude carbon. This dissertation focuses on space-

based observations over ocean and permafrost. In the first and second case study on the ocean, 

we estimate the likely range of IAV in the atmospheric CO2 owing to air-sea carbon exchange by 

simulating three-dimensional atmospheric CO2 using the GEOS-Chem atmospheric transport 

model. The ocean carbon fluxes we use are from state-of-the-art products that report calculated 

air-sea fluxes. In addition to global integration, we separately label CO2 from individual ocean 

regions, aiming to identify the fingerprints of ocean subregions and the whole ocean on 

atmospheric total column CO2 dry mole fraction (XCO2). These simulations were analyzed in 

conjunction with observed atmospheric CO2 IAV from NASAs OCO-2 satellite mission, which 

detects the combined imprint of the ocean, terrestrial ecosystem, and human activities. The case
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study on the ocean suggests that OCO-2 IAV provides new opportunities to monitor climate-

driven variations in CO2 over open ocean and remote regions; and over remote ocean regions, 

simulations suggest that ocean fluxes contribute a large proportion of IAV. In the third study, we 

quantify permafrost-driven atmospheric CO2 enhancement using the GEOS-Chem atmospheric 

transport model with tagged CO2 species originating from permafrost sources in North America, 

Europe, and Asia. We then explore the detectability of these perturbations using an Observing 

System Simulation Experiment based upon a hypothetical satellite mission that employs a multi-

spectral imaging spectrometer with channels in the thermal infrared and shortwave infrared, 

capable of providing two pieces of vertical information about the CO2 abundance. Our analysis 

points toward and provides preliminary estimates of observational requirements to identify 

signals from the Northern Permafrost regions using space-based observations.  

 
 
 
 
 

 
 



 

1 
 

Chapter 1 Introduction 

 

1.1 The Earth's global Carbon Cycle Under Climate Change 

Carbon is stored in the atmosphere, the ocean and freshwater, the soils and terrestrial 

biomass, the rocks and sediments (Fig 1.1). The processes and reservoirs in the carbon cycle can 

be placed into groups: the slow carbon cycle, and the fast carbon cycle, with intergrate with one 

another but have different timescales. The slow carbon cycle moves carbon between the 

atmosphere, lithosphere, and oceans with a timescale of 100 to 200 million years, while the fast 

carbon cycle happens over years or decades, especially between the atmosphere and terrestrial or 

marine ecosystems. The largest reservoir of carbon is the deep water of the ocean, which 

contains about 37000 GtC - 80% of the Earth’s carbon; oceanic sediments contain about 1750 

GtC - 4%; ocean surface waters hold about 1000 GtC. Oil, gas, and coal contribute about 1300 

GtC which is 3%; soil and permafrost hold 5%(~2200 GtC) and 4%(~1750 GtC); vegetation 

adds about 1%(~400GtC); atmosphere holds 2%(~750GtC) (IPCC AR6; IPCC 2021). CO2 could 

transfer among these reservoirs through physical, chemical, and biological processes. The three 

most important repositories associated with anthropogenic climate change are the atmosphere, 

terrestrial biosphere, and ocean. These repositories are constantly exchanging carbon over time 

spans of up to centuries or as relatively rapid interannual to seasonal timescales.



 

2 
 

 

 

Figure 1.1: Fast carbon cycle showing the movement of carbon between land, atmosphere, and oceans. The 
effects of the slow carbon cycle, such as volcanic and tectonic activity are not included. Obtained from “The 
Carbon Cycle” (2011). 

 

The concentration of carbon dioxide (CO2) in the atmosphere has increased from 

approximately 278 parts per million (ppm) in the Industrial Era to 414.7 ± 0.1 ppm in 2021 

(Dlugokencky and Tans, 2022). Global emissions and their partitioning among the atmosphere, 

ocean, and land are in balance in the real world. The CO2 emissions are from (1) fossil fuel 

combustion and oxidation from all energy and industrial processes, including cement production 

and carbonation (EFOS), and (2) the emissions resulting from human activities on land, including 

those leading to land-use change (ELUC), which could partition among (3) the growth rate of 

atmospheric CO2 concentration (GATM), (4) the ocean sink (SOCEAN) and (5) the land sink (SLAND) 

(Friedlingstein et al., 2022; Jackson et al., 2022). In the global carbon cycle, the former five 

quantities shall sum to zero. However, the estimates of these quantities do not balance due to the 
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limitation of our knowledge of the carbon pools and carbon fluxes, which generates a carbon 

budget imbalance (BIM) with the following equation: 

BIM = EFOS + ELUC – (GATM + SOCEAN + SLAND) 

The BIM, also demonstrate by the discrepancies between the red dashed line and blue bold line in 

Fig 1.2, is about 3% of emissions (Friedlingstein et al., 2022). Although the small percentage of 

imbalance in the global carbon cycle suggests the partitioning of emissions among the 

components of the carbon cycle is almost complete, the discrepancy can reach up to 1 GtC yr−1 – 

which is still a large variability in CO2 fluxes in seasonal to interannual timescale. With a 

persistent low agreement between the magnitude of the land CO2 flux in the northern extra-

tropics and an apparent discrepancy between the ocean sink outside the tropics - particularly in 

the Southern Ocean based on the different methods and approaches, yet a scientific consensus on 

the source of the imbalance has not been reached.  

In the global carbon cycle, the five components listed here shall sum to zero. However, 

due to the limitation of our knowledge, the quantities do not really balance. Such discrepancies 

are demonstrated by the gap between the red dashed line which reflects the sum of human-

induced emissions, and the blue edge, which accounts for the total balance ability of land, ocean 

and atmosphere. Although this imbalance is small in terms of percentage compared to the 

cumulative change since the 19th century. The discrepancy can reach up to 1GtC per year, which 

is large in seasonal to interannual timescale. We especially would like to understand what is 

happening with the ocean and the permafrost component which tracks a large portion of 

Northern extra-tropical land – those are prominent source of where uncertainty lies. 
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Figure 1.2: Combined components of the global carbon budget as a function of time, for fossil CO2 
emissions and emissions from land-use change, as well as their partitioning among the atmosphere, 
ocean, and land. Source: Global Carbon Budget 2021. 
 
 
1.1.1 Ocean 

One source of the uncertainties in the understanding of carbon cycle points toward the 

ocean sink. Ocean covers 70% of the Earth and is one of the most essential Earth System 

Components in the removal (~2.5 PgC/yr) of the anthropogenic emissions (Friedlingstein et al., 

2022). Oceans have a large capacity to absorb CO2, mainly through three ocean processes that 

draw down CO2 into the oceans: the physical carbon pump, the biological carbon pump, and the 

carbonate pump, thus balancing the amount of CO2 in the atmosphere and exchange with the 

ocean system.  

The physical pump makes CO2 constantly exchange between the ocean and the 

atmosphere. When warm water in oceanic surface currents is carried from low latitudes to high 
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latitudes and cooled, surface waters loaded with dissolved CO2 move to the deeper ocean 

through vertical mixing of the ocean. Inversely, when cold water returns to the surface and 

warms up again, CO2 is emitted to the atmosphere.  The oceanic biological carbon pump is 

driven by organisms like phytoplankton and heterotrophic zooplankton, through photosynthesis, 

respiration, eating, producing waste products, decay and decomposition, helping transform 

carbon compounds into new forms, moving carbon throughout the ocean or down to seafloor 

sediments. In the carbonate pump, CO2 can combine with water molecules and then enters into 

reversible chemical reactions that produce bicarbonate ions(H+ CO3- ) hydrogen ions (H+), and 

carbonate (CO32- ) ions. The carbonate ions could combine with calcium ions (Ca2+ ) and form 

calcium carbonate (CaCO3), which is used by Shell-building organisms such as coral.  

1.1.2 Permafrost  

Another source of the uncertainties in the understanding of carbon cycle points toward 

the Northern extra-tropics, with ¼ of the land area consisting of permafrost and spans an area of 

~18.8 million km2.  Permafrost is soil, sediment, or rock that is perennially frozen and may or 

may not contain a significant amount of ice. The permafrost contains large amounts of organic 

carbon, which are the remnants of plants, animals, and microbes that have lived and died in the 

tundra and boreal ecosystems, accumulating in frozen soil over hundreds to thousands of years 

(Schuur et al., 2016). The current estimated inventory of organic soil carbon within the northern 

circumpolar permafrost region is approximately 1,460–1,600 petagrams of carbon. From 0 to 3m 

depth, the permafrost region represents 33% of the global pool stored in only 15% of the total 

global soil area. Substantial permafrost carbon exists below 3-m depth - the Yedoma deposits of 

Siberia and Alaska contain 327–466 Pg C, and Arctic River deltas contain 96 ± 55 Pg C (Strauss 

et al., 2017). 
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Warming is causing perennially frozen permafrost to thaw, with permafrost in many 

locations currently reaching record-high temperatures (Biskaborn et al. 2019). Active layer 

(portion of the soil above permafrost that thaws and freezes seasonally) thickening is the most 

important mechanism in permafrost thawing as warming affects the surface permafrost. When 

active-layer thickening has become deep enough so that the entire summer-thawed layer does not 

re-freeze in the winter, talik (year-round unfrozen ground that lies in permafrost areas) formation 

occurs and deeper permafrost thawing occurs through talik expansion. Organic carbon contained 

in soils of the permafrost region represents a climate-sensitive carbon reservoir that is affected by 

warming air and ground temperatures and permafrost thaw. Additional net releases of CO2 to the 

atmosphere from permafrost thaw as a result of warming and faster microbial decomposition of 

permafrost carbon have the potential to accelerate climate warming. (illustrated in Fig 1.4, 

Schuur and Hugelius, 2016).  

Regional atmospheric measurements like the Carbon in Arctic Reservoirs Vulnerability 

Experiment (CARVE) (Miller and Dinardo, 2012) and the Arctic and Boreal Vulnerability 

Experiment (ABoVE) consist of a combination of in situ and remote measurements (Parazoo et 

al. 2016). However, the NASA aircraft campaign operates from April through November and 

ground-based measurements, which have 80 study-years of summer measurements yet only 9 

study-years of non-summer measurements available for upscaling (McGuire et al. 2012). With 

large uncertainty in the stability of permafrost carbon and the accelerated positive feedback, it 

would be valuable to complement the existing networks, and campaigns with a satellite-based 

approach to monitoring CO2 from Arctic permafrost.  

Permafrost thawing and increased microbial decomposition due to warming in the 

Northern Artic cause intensive release of stored organic carbon into the atmosphere. Across the 
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landscape, the arctic carbon cycle is also influenced by disturbances, such as wildfires and abrupt 

permafrost thaw. During non-growing seasons, the ecosystem CO2 fluxes across the circumpolar 

region, were 2 to 3 times higher than previously estimated from ground-based measurements 

(Natali et al. 2019), which suggests that during the cold season when microbes remain 

metabolically active, CO2 release could even offset CO2 uptake during the growing season and 

serve as a source of 0.6 Pg C annually to the atmosphere. The heterogeneity of permafrost and its 

changing conditions make the exact balance of CO2 difficult to predict, with a wide range, from a 

low of ~9 PgC (Schneider von Deimling et al., 2012), under a scenario that includes negative 

anthropogenic emissions to a high of 104 ± 37 PgC (Schaefer et al., 2011) for the remaining 21st 

century. 

 

Figure 1.3: The positive feedback from thawing permafrost amplifies existing atmospheric warming due 
to human activities. Source: UNEP report “Policy Implications of Warming Permafrost”. 
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1.2 The Observing System of CO2 

Now we understand the mechanism of the carbon cycle in the ocean and permafrost, and 

we also care about what effect they have on the atmosphere. To monitor atmospheric CO2 

concentration so as we can trace back of the influence of ocean and permafrost, traditionally, we 

have access to the surface network such as the NOAA ESRL measurement stations at the ground 

surface, the FLUXNET to help quantify photosynthesis or evapotranspiration of the terrestrial 

ecosystem, or Argos/research vessels/commercial ships over the ocean regions are utilized to 

create observation records (Fig 1.5 and Fig 1.6). The National Oceanic and Atmospheric 

Administration Earth System Research Laboratory (NOAA ESRL) network has ∼155 CO2 

measurement stations monitoring atmospheric CO2 at the surface (GLOBALVIEW, 2010). 

FLUXNET can identify trace gases fluxes in the boundary layer, and help quantify 

photosynthesis, evapotranspiration, soil moisture, and respiration (Pastorello et al., 2020; 

Euskirchen et al., 2017). The Total Carbon Column Observing Network (TCCON) has used a 

ground-based Fourier transform spectrometer to measure column CO2 (Washenfelder et al. 2006, 

Wunch et al. 2011).  

Oceanic regions are visited by research vessels and commercial ships of opportunity 

(SOOP) equipped with underway pCO2 systems that also make routine measurements of CO2 in 

the Marine Boundary Layer – MBL (Sutton et al., 2014). The international GO-SHIP network 

collects high-quality, high spatial and vertical resolution of ocean interior carbon measurements 

to determine changes in anthropogenic CO2 inventories over the full water column below the 

depth of Argo floats.  
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Figure 1.4: NOAA GML Carbon Cycle measurement programs. 
 

Using ensembles of models and inventories, as well as CO2 surface measurements, 

different components of the global emissions of CO2 can be estimated. Retrieval of atmospheric 

CO2 vertical profiles from ground-based near-infrared spectra can serve as a validation tool for 

these estimates. The space-based measurements of XCO2 have great potential to provide 

additional constraints on sources and sinks of CO2. 
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Figure 1.5: Illustration of the satellite, aircraft, and cruise observation. Obtained from the National 
Institute for Environmental Studies (NIES). 
 

The atmospheric CO2 surface network shows a decadal-average growth rate of reaching 

2.41±0.26 ppm/y (mean ± 2 std dev) on an annual basis due to the impacts of interannual climate 

variability (Buchwitz et al., 2018). This IAV has been shown to reflect, primarily, variations in 

the rate of terrestrial CO2 uptake due to climate stressors (Luo et al., 2022) and disturbance 

(Keppel-Aleks et al., 2014), but also embodies IAV in net ocean carbon exchange and fossil fuel 

emissions (Doney et al., 2009). Although studies have suggested that ocean flux IAV may impart 

an observable impact on atmospheric CO2 IAV (Crisp et al., 2022), gaps remain in quantifying 

the influence from the ocean since most atmospheric CO2 observations are made on land. As for 

the permafrost, previous studies focused on CO2 flux measurements have produced results that 

have not been fully agreed upon. The differential response of individual ecosystem types and the 

relative scarcity of measurement sites across the Arctic region makes it difficult to upscale the 

aggregated effect of ecosystems, including tundra, boreal forests, and wetland/lake/fresh water 
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(Belshe et al., 2013; Commane et al., 2017), and the long cold Arctic winter season limits 

ground-based observations due to operating difficulties. Given advances in space-based 

measurements of atmospheric CO2, which enables us to monitor atmospheric CO2 abundance 

over open ocean and remote areas, we have novel opportunities to refine our understanding of 

the regional ocean and permafrost influence on atmospheric CO2 variation at the interannual to 

seasonal timescale. 

1.3 Monitoring CO2 with Satellite Remote Sensing 

Atmospheric carbon dioxide abundance can be indirectly observed by various satellite 

instruments, which give measurements of spectrally resolved near-infrared or infrared radiation 

reflected or emitted by the atmosphere. Through the analysis of molecular absorption signals in 

the radiance observations, the averaged CO2 concentration in the sampled atmospheric column 

can be identified. The space-based measurements of total column CO2 have great potential to 

provide knowledge on sources and sinks of CO2, due to its better coverage on spatial scales, 

especially over remote regions. Increased research has led to the monitoring of CO2 from more 

than 200 locations on the earth's surface, and a growing development of space-based satellites 

with near-global coverage, which increased our opportunities to understand climate change and 

the carbon cycle. Satellite observations dedicated to monitoring the carbon cycle, including 

GOSAT (Kuze et al.,2016), the Orbiting Carbon Observatory-2 (OCO-2, Eldering et al., 2017), 

the Orbiting Carbon Observatory-3 (OCO-3), circulating in the low Earth orbit, are giving the 

hourly to daily to seasonal coverage, and helping to create multi-year dataset records for the 

research community.  

Satellites retrieve XCO2, which is the column-averaged dry air mole fraction of CO2 

(Crisp, 2015). To estimate XCO2, satellites use high-resolution spectroscopic observations of 
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reflected sunlight, and monitor atmospheric oxygen (O2) and CO2 concentrations by measuring 

absorption spectra in three bands, including the molecular O2 A-band (approximately 0.765 μm, 

Visible), a weak CO2 band (1.61 μm, short-wave IR), and a strong CO2 band (approximately 

2.06 μm) (Crisp, 2017). A variety of algorithms have been developed for retrievals of CO2 from 

NIR and SWIR spectra, including the Differential Optical Absorption Spectroscopy (DOAS) 

approach for SCIAMACHY (Reuter et al., 2010), the retrieval algorithm from short-wavelength 

infrared spectral observations for CO2 by the GOSAT TANSO-FTS described by Yoshida et al. 

(2011), the Atmospheric CO2 Observations from Space (ACOS) algorithm applied to GOSAT,  

OCO-2 and OCO-3 measurements (O'Dell et al., 2018), etc.  

The algorithms developed by different institutions to retrieve CO2 concentrations are 

based on a general inverse method, which begins such that the initial guess and the a 

priori values, and based on an optimal estimation method to yield a weighted mean value of the 

actual state and an a priori state. Using an inverse model coupled with the forward model and 

constrained by a priori, the initial state vector is modified by minimizing the difference between 

the simulated and observed radiance spectra through iteration. Specifically, the ACOS optimal 

estimation algorithm, is a full physics algorithm that takes into account XCO2 and other physical 

parameters, including 100 surface pressure, surface albedo, temperature, and water vapor profile 

in its state vector (O'Dell et al., 2018).  

GOSAT, OCO-2, and OCO-3 – can provide higher CO2 sensitivity in total column 

measurements that include near surface emissions (Buchwitz et al., 2010; Liu et al., 2018). The 

weighting function in the algorithm ensures that the signal from surface emissions in the lower 

troposphere is stronger than earlier CO2 detecting instruments (Crisp et al., 2017). Mainly 

dedicated for measuring natural CO2 fluxes in the global scale, they also have the potential to 
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monitor strong anthropogenic emission sources at a local scale. GOSAT has an resolution of ~10 

× 10 km2, while OCO-2 performs a relatively better combination of high precision and fine 

spatial resolution (1.29 × 2.25 km2), and OCO-3 has similar precision and spatial resolution 

(Eldering et al., 2019). After validation with ground-based FTIR measurements (such as 

TCCON), they can provide seasonal and annual variation by smoothing its sampling pixels, and 

their global emission results have in good agreement with global CO2 emission inventories. 

However, it was planned to sample a small proportion of a large region with a 16-day repeat 

cycle (Miller et al., 2007) thus has limitations to detecting a broad region simultaneously. 

Compared with ground-based monitoring methods, the top-down space-based observing 

approach offer widely distributed measurements and high monitoring density.  

1.4 Motivations 

The overarching question of the dissertation is “How could space-based observations 

give insight into our better understanding of the carbon cycle?” This question is driven the 

opportunity by provided by satellite remote sensing to obtain a more complete, precise, and 

timely measurement of CO2 emissions, and distinguish the natural sources of CO2. In this case, 

we need to employ various tools and approaches including numerical models for the underlying 

physical processes. By presenting a comparison of observation and fluxes-driven forward 

atmospheric chemical transport model simulations, we could assess and determine the 

importance of fluxes from a different component of the carbon cycle in multiple timescales. 

Besides, the numerical model is an essential component of observing system simulation 

experiments (OSSEs), which is a powerful tool used to evaluate the potential impact of the future 

observing system (Masutani et al., 2010). We could know the “true” state, which is usually a 

standard model simulation driven by the assimilated meteorological data and generate simulated 
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observations of a potential observing system (e.g., satellite), then evaluate the value of a new 

observing system when actual observational data are not available. We especially focus on ocean 

and permafrost, with the timescales from annual to interannual, since uncertainties in the 

measurements of the ocean and land surface sink point to the gap in the understanding of the 

imbalance in the carbon cycle. 

1.5 Organization of Dissertation  

The dissertation explores the CO2 using satellite remote sensing observations from 

multiple aspects and in different components of the global carbon cycle, and is divided into 3 

principal chapters:  

Chapter 2 leverages the new opportunity provided by observations from the Orbiting 

Carbon Observatory-2 (OCO-2) mission, and examined the interannual variability (IAV) in 

OCO-2 data to determine whether the small variations that result from interannual flux variations 

can be detected in light of other sources of variance in the space-based dataset. We especially 

focus on remote terrestrial regions and the open ocean where traditional in situ CO2 monitoring 

is difficult, yet space-based OCO-2 provides better spatial coverage compared to ground-based 

monitoring techniques. The IAV is tied to climatic variations (e.g. ENSO), and characterizing the 

temporal-spatial pattern can provide insights into long-term carbon-climate feedback.  

Chapter 3 expands on the work of Chapter 2, and further evaluates the imprint that sea-air 

CO2 fluxes from the whole ocean and different oceanic subregions leave on the atmospheric 

XCO2 IAV, by quantifying more than 7 years of XCO2 IAV based on the OCO-2 total column 

CO2 observation from late 2014 to 2022 and comparing against the simulated ocean-driven 

XCO2 derived from the GEOS-Chem simulation using ocean carbon flux products as input. 
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Chapter 4 investigates atmospheric XCO2 increase driven by permafrost thawing using 

the GEOS-Chem atmospheric transport model with tagged CO2 species originating from 

permafrost sources in North America, Europe, and Asia, and explores the detectability of 

regional flux perturbations and local atmospheric CO2 enhancements. This analysis points 

toward and provides preliminary estimates of observational requirements to identify signals from 

the Northern Permafrost regions using space-based observations.  

Chapter 5 summarizes the key findings from the above chapters and discusses the 

implications for future work. 
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Chapter 2 Characteristics of Interannual Variability in Space-Based XCO2 Global 

Observations 

 

This chapter was published as Guan, Y., Keppel-Aleks, G., Doney, S. C., Petri, C., Pollard, D., 
Wunch, D., Hase, F., Ohyama, H., Morino, I., Notholt, J., Shiomi, K., Strong, K., Kivi, R., 
Buschmann, M., Deutscher, N., Wennberg, P., Sussmann, R., Velazco, V. A., and Té, Y.: 
Characteristics of interannual variability in space-based XCO2 global observations, Atmos. 
Chem. Phys., 23, 5355–5372, https://doi.org/10.5194/acp-23-5355-2023, 2023. 
 

Abstract 

Atmospheric carbon dioxide (CO2) accounts for the largest radiative forcing among 

anthropogenic greenhouse gases. There is, therefore, a pressing need to understand the rate at 

which CO2 accumulates in the atmosphere, including the interannual variations (IAV) in this 

rate. IAV in the CO2 growth rate is a small signal relative to the long-term trend and the mean 

annual cycle of atmospheric CO2, and IAV is tied to climatic variations that may provide insights 

into long-term carbon-climate feedbacks. Observations from the Orbiting Carbon Observatory-2 

(OCO-2) mission offer a new opportunity to refine our understanding of atmospheric CO2 IAV 

since the satellite can measure over remote terrestrial regions and the open ocean where 

traditional in situ CO2 monitoring is difficult, providing better spatial coverage compared to 

ground-based monitoring techniques. In this study, we analyze the IAV of column-averaged dry 

air CO2 mole fraction (XCO2) from OCO-2 between September 2014 to June 2021. The 

amplitude of IAV variations, which is calculated as the standard deviation of the timeseries, is up 

to 1.2 ppm over the continents and around 0.4 ppm over the open ocean. Across all latitudes, the 
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OCO-2 detected XCO2 IAV shows a clear relationship with ENSO-driven variations that 

originate in the tropics and are transported poleward. Similar, but smoother, zonal patterns of 

OCO-2 XCO2 IAV timeseries compared to ground-based in situ observations and with column 

observations from the Total Carbon Column Observing Network (TCCON) and the Greenhouse 

Gases Observing Satellite (GOSAT) show that OCO-2 observations can be used reliably to 

estimate IAV. Furthermore, the extensive spatial coverage of the OCO-2 satellite data leads to 

smoother IAV timeseries than those from other datasets, suggesting that OCO-2 provides new 

capabilities for revealing small IAV signals despite sources of noise and error that are inherent to 

remote sensing datasets.  

2.1 Introduction 

Increasing atmospheric CO2 concentration from anthropogenic emissions is the major 

driver of the observed warming of Earth’s climate since the industrial revolution (IPCC, 2021). 

Although CO2 accumulation in the atmosphere generally is ~45% of anthropogenic emissions on 

a multi-year average (Ciais et al., 2013; Friedlingstein et al., 2019), the growth rate shows 

substantial interannual variability (Conway et al., 1994). The difference between emissions and 

the atmospheric CO2 growth rate results from net CO2 uptake by oceans and terrestrial 

ecosystems (Prentice et al., 2001; Doney et al., 2009), and the fluctuations reflect variations in 

the strength of those sinks due to climate variations (Peters et al., 2017; Friedlingstein et al., 

2019). Much research has suggested that interannual variability (IAV) in the growth rate is 

predominantly due to variations in terrestrial ecosystem carbon uptake (Marcolla et al., 2017), 

even though the average uptake is roughly comparable between land and ocean (Le Quéré et al., 

2009). Existing atmospheric CO2 observations from surface flask sampling and in situ networks 

have been used to estimate global- and regional-scale interannual variability in CO2 fluxes 
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(Gurney et al., 2008; Peylin et al., 2013; Keppel-Aleks et al., 2014; Piao et al., 2020). We note, 

however, that the surface observing network is located primarily on land and coastal sites, and 

more subtle ocean flux signals may be obscured by the large IAV in terrestrial fluxes.  

Previous analyses of surface CO2 IAV has shown a strong relationship with the phase and 

intensity of El Niño–Southern Oscillation (ENSO) (Le Quéré et al., 2009; Schwalm et al., 2011). 

ENSO variations originate from coupled ocean-atmosphere dynamics that are reflected in large 

wind and sea surface temperature anomalies over the central and eastern Pacific Ocean. ENSO 

affects the climate of much of the tropics and subtropics via atmospheric teleconnections on 

timescales of 2-7 years (Timmermann et al., 2018). On land, suppressed precipitation and high 

temperature associated with positive phases of ENSO (El Niño conditions) suppress CO2 uptake 

by tropical ecosystems, while promoting fires that further reduce the CO2 uptake by lands (Feely 

et al., 2002; McKinley et al., 2004; Piao et al., 2009; Wang et al., 2014). Although of smaller 

magnitude, the equatorial Pacific Ocean experiences weakening of the easterly trade winds and 

suppression of ventilation of deep, cold, carbon-rich waters to the surface during an El Niño, 

reducing the efflux of natural CO2 to the atmosphere (Patra et al., 2005 ; Chatterjee et al., 2017).  

Chatterjee et al. (2017) were able to directly observe the ocean flux-driven signal on 

atmospheric CO2 from El Niño for the first-time using XCO2 (column-averaged dry air CO2 

mole fraction) observed over the ocean by NASA’s OCO-2 satellite. Space-based observations 

from OCO-2, which launched in July 2014, provide novel opportunities to characterize the 

patterns of IAV in XCO2 in areas that were previously not directly observed by existing 

monitoring networks. The IAV in XCO2 is being used implicitly for flux attribution in inverse 

modeling studies (Nassar et. al, 2011). These exciting results, however, must be tempered by an 

awareness that atmospheric CO2 IAV is a relatively small signal. For example, IAV in the 
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surface network is about 1 ppm in scale compared to a seasonal amplitude of around 10 ppm in 

northern high latitudes. OCO-2 measures column averaged CO2, so its measurements are 

sensitive to variations in the boundary layer mole fraction, which is in direct contact with the 

land or atmospheric fluxes, but also variations in the free troposphere and stratosphere, where 

flux signals are generally smaller than those observed at the surface (Olsen and Randerson, 

2004). Furthermore, variations in the free troposphere are expected to have relatively long 

correlation length scales due to efficient mixing, making it important to consider the spatial 

scales at which XCO2 observations provide unique information. This is especially important in 

light of analysis which suggests that the error variance budget in OCO-2 observations is large 

and contains substantial spatially coherent signal (Baker et al., 2022; Torres et al., 2019; Mitchell 

et al., 2023). 

In this paper, we analyze XCO2 from OCO-2 to characterize spatiotemporal patterns in 

IAV at near-global scale, over both land and ocean, and relate XCO2 variations to ENSO 

conditions. We contextualize the information contained in OCO-2 observations by comparing 

with space-based GOSAT and ground-based TCCON XCO2 and with surface measurements of 

CO2. Finally, we use these comparisons to emphasize the spatial scales at which the IAV signal 

emerges from instrumental noise.  

2.2 Data and Methods 

2.2.1 Datasets 

2.2.1.1 OCO-2 observatory 

We analyzed IAV in dry air, column-average mole fraction XCO2 inferred from OCO-2 

satellite observations. The OCO-2 observatory was launched in July 2014 and has measured 

passive, reflected solar near infrared CO2 and O2 absorption spectra using grating spectrometers 
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since September 2014 (Eldering et al., 2017). XCO2 data are retrieved from the measured spectra 

using the Atmospheric CO2 Observations from Space (ACOS) optimal estimation algorithm, 

which is a full physics algorithm that takes into account XCO2 and other physical parameters, 

including surface pressure, surface albedo, temperature, and water vapor profile in its state vector 

(O'Dell et al., 2018). The satellite flies in a polar and sun-synchronous orbit that repeats every 16 

days, with three different observing modes of OCO-2, namely nadir (land only, views the ground 

directly below the spacecraft), glint (over ocean and land, views just off the peak of the 

specularly reflected sunlight), and target (typically for comparison with specific ground-based or 

airborne measurements) (Crisp et al., 2012; Crisp et al., 2017). We use the version 10 OCO-2 

Level 2 bias-corrected XCO2 data product from Goddard Earth Sciences Data and Information 

Services Center (GES DISC) Archive: 

https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_FP_10r/summary), which has been validated 

with collocated ground-based measurements from the Total Carbon Column Observing Network 

(TCCON; discussed in more detail in Section 2.2). After filtering and bias correction, the OCO-2 

XCO2 retrievals agree well with TCCON in nadir, glint, and target observation modes, and 

generally have absolute median differences less than 0.4 ppm and Root Mean Square differences 

less than 1.5 ppm (O'Dell et al., 2018; Wunch et al., 2017).  

2.2.1.2 TCCON 

We corroborate patterns of XCO2 IAV from OCO-2 with those from TCCON, a ground-

based network of Fourier transform spectrometers that measure direct solar absorption spectra in 

the near infrared (Wunch et al., 2011). Retrievals of XCO2 and other gases are computed using 

the GGG algorithm, a nonlinear least-squares spectral fitting algorithm. The TCCON retrievals 

are tied to the World Meteorological Organization (WMO) X2007 CO2 scale via calibration with 
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aircraft and AirCore profiles above the TCCON sites (Karion et al., 2010; Wunch et al., 2010). 

This ensures an accuracy and precision of ~0.6 ppm (1-sigma) throughout the network 

(Washenfelder et al., 2006; Messerschmidt et al., 2010; Deutscher et al., 2010, Wunch et al., 

2010). TCCON has been used widely as a validation standard by providing independent 

measurements to compare with multiple satellite XCO2 retrievals including OCO-2. In previous 

work Sussmann and Rettinger (2020) have demonstrated a concept to retrieve annual growth 

rates of XCO2 from TCCON data, which are regionally to hemispherically representative in spite 

of the non-uniform sampling in time and space inherent to the ground-based network.  In our 

study, we focus on IAV in the XCO2 timeseries from 26 TCCON sites (Table 2.1, Fig 2.1) that 

have at least 3 years of observational coverage within the period from September 2014 to June 

2021. These TCCON data have been filtered using the standard filter that is based on a measure 

of cloudiness and limits the solar zenith angle. Data are publicly available from the TCCON 

GGG2014 Data Archive (https://tccondata.org/) hosted by the California Institute of Technology. 

 

 
Figure 2.1: Map showing the locations and the acronyms of the TCCON sites.  
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Table 2.1:  TCCON Column-Averaged Dry-Air Mole Fractions of CO2 (GGG2014 Data) 
 

 
2.2.1.3   Marine Boundary Layer Observations 

To explore differences in surface and column-average CO2 IAV, we analyze IAV in the 

surface CO2 mole fraction at marine boundary layer (MBL) sites in the NOAA (National 

Oceanic and Atmospheric Administration) cooperative sampling network 

(https://gml.noaa.gov/dv/site/?program=ccgg). At these sites, boundary layer CO2 is measured 

Region Site Acronym Latitu
de 

Longitude Start 
Date 

End 
Date 

Publication 

Polar 
Northern 

Hemisphere 
(60-90°N) 

Eureka (NU) eu 80.05 -86.42 2010-07 2020-07 Strong, K. et al., 2017 

Ny Ålesund sp 78.90 11.90 2014-04 2019-09 Notholt, J. et al., 2019 

Sodankylä (FI) so 67.37  26.63 2009-05 2020-10 Kivi, R. et al., 2017 

Temperate 
Northern 

Hemisphere 
(20-60°N) 

East Trout Lake(SK) et 54.35 -104.99 2016-10 2020-09 Wunch, D., et al., 2017 
Bialystok (PL) bi 53.23 23.03 2009-03 2018-10 Deutscher, N. et al., 2017 
Bremen (DE) br 53.10 8.85 2010-01 2020-06 Notholt, J. et al., 2017 
Karlsruhe (DE) ka 49.10 8.44 2010-04 2020-11 Hase, F.  et al., 2017 
Paris (FR) pr 48.97 2.37 2014-09 2020-06 Te, Y. et al., 2017 
Orléans (FR) or 47.97 2.11 2009-08 2020-06 Warneke, T. et al., 2017 
Garmisch (DE) gm 47.48 11.06 2007-07 2020-06 Sussmann, R. et al., 2017 
Zugspitze (DE) zs 47.42 10.98 2015-04 2020-06 Sussmann, R. et al., 2018 
Park Falls (US) pa 45.95 -90.27 2004-06 2020-12 Wennberg, P. O. et al., 2017 
Rikubetsu (JP) rj 43.46 143.77 2013-11 2019-09 Morino, I. et al., 2017 
Lamont (US) oc 36.60 -97.49 2008-07 2020-12 Wennberg, P. O. et al., 2017 
Anmyeondo (KR) an 36.58 126.33 2015-02 2018-04 Goo, T.-Y. et al., 2017 
Tsukuba (JP) tk 36.05 140.12 2011-08 2019-09 Morino, I. et al., 2017 
Edwards (US) df 34.96 -117.88 2013-07 2020-12 Iraci, L. et al., 2017 
Caltech (US) ci 34.14 -118.13 2012-09 2020-12 Wennberg, P. O. et al., 2017 
Saga (JP) js 33.24 130.29 2011-07 2020-12 Shiomi, K.et al., 2017 
Izana (ES) iz 28.30 -16.50 2007-05 2021-02 Blumenstock, T. et al., 2017 

Tropical 
Northern 

Hemisphere 
(0-20°N) 

Burgos (PH) bu 18.53 120.65 2017-03 2020-03 Morino, I., et al., 2018 

Tropical 
Southern 

Hemisphere 
(0-20°S) 

Ascension Island (SH) ae -7.92 -14.33 2012-05 2018-10 Feist, D. G. et al., 2017 

Darwin (AU) db -12.46 130.94 2005-08 2020-04 
Griffith, D. W. T., et al., 
2017 

Temperate 
Southern 

Hemisphere 
(20-60°S) 

Réunion Island (RE) ra -20.90 55.49 2011-09 2020-07 De Maziere, M. et al., 2017 

Wollongong (AU) wg -34.41 150.88 2008-06 2020-06 
Griffith, D. W. T. et al., 
2017 

Lauder (NZ) ll -45.04 169.68 2010-02 2018-10 Sherlock, V. et al., 2017 
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using weekly flask samples (Masarie and Tans, 1995; Dlugokencky et al., 2021). MBL sites are 

typically far away from anthropogenic sources and regions of active terrestrial exchange, so they 

provide an estimate for large-scale patterns in the global background CO2 concentration. The 

surface MBL dry air mole fraction data has an accuracy level of about 0.1 ppm. In this study, we 

select 16 sites with at least 80% data coverage for the approximately 7-year period overlapping 

with OCO-2 (Table 2.2, Fig 2.2), and the data are aggregated into four north-south zones for 

comparison with OCO-2 XCO2: northern and southern hemisphere tropical (0 - 20°) and 

Northern Hemisphere/Southern Hemisphere extratropical zones (20-60°). Each belt contains at 

least three MBL sites. Higher latitudes (60-90°) are not considered in this comparison due to the 

gaps remaining in the OCO-2 XCO2 record in high latitudes during wintertime and shouldering 

seasons. 

Table 2.2: Marine Boundary Layer stations within the NOAA Earth System Research Laboratory CO2 
sampling network  
 

 
 

 Region Station Acronym Latitude Longitude Start Date End Date 

 
Temperate 
Northern 

Hemisphere 
(20-60°N) 

Mace Head, Ireland MHD 53.3 -9.9 2014-01 2020-07 
Shemya, AK SHM 52.7 174.1 2014-01 2020-07 
Terceira Island Azores AZR 38.8 -27.4 2014-01 2020-07 
Tudor Hill, Bermuda BMW 32.3 -64.9 2014-01 2020-07 
Sand Island, Midway MID 28.2 -177.4 2014-01 2020-07 
Key Biscayne, FL KEY 25.7 -80.2 2014-01 2020-07 

Tropical 
Northern 

Hemisphere 
(0-20°N) 

Cape Kumukahi, HI KUM 19.5 -154.8 2014-01 2020-07 

Mariana Islands, Guam GMI 13.5 144.7 2014-01 2019-08 
Ragged Pointed, Barbados RPB 13.2 -59.4 2014-01 2020-07 

Christmas Island, Republic of Kiribati CHR 1.7 157.2 2014-01 2019-08 
Tropical 
Southern 

Hemisphere 
(0-20°S) 

Seychelles SEY -4.7 55.2 2014-01 2020-07 

Ascension Island ASC -8.0 -14.4 2014-01 2020-07 

Tutuila, America Samoa SMO -14.2 -170.6 2014-01 2020-07 

Temperate 
Southern 

Hemisphere 
(20-60°S) 

Cape Grim, Australia CGO -40.7 144.7 2014-01 2020-07 

Baring Head BHD -41.4 174.9 2014-01 2020-07 

Crozet Island CRZ -46.5 51.9 2014-01 2020-07 
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Figure 2.2: Map showing the locations and the acronyms of the Marine Boundary Layer stations within 
the NOAA Earth System Research Laboratory CO2 sampling network.  
 

2.2.1.4 GOSAT 

We compare patterns of XCO2 IAV from OCO-2 with those from GOSAT. Also known 

as Ibuki, GOSAT is the world's first satellite dedicated to greenhouse gas monitoring, measuring 

global total column CO2 and CH4 since 2009.  With the Thermal and Near infrared Sensor for 

carbon Observation (TANSO) - Fourier Transform Spectrometer (FTS) onboard for greenhouse 

gas monitoring using three SWIR bands and one TIR band (Cogan et al., 2012; Yoshida et al., 

2013). Column-averaged dry mole fraction are obtained at a circular footprint of approximately 

10.5 km. GOSAT has a regional biased of about approximately 0.3 ppm and 1.7 ppm single 

observation error versus the TCCON (Kulawik et al., 2016). We utilize the FTS SWIR Level 3 

data global monthly 2.5° resolution mean CO2 mixing ratio products from 2009 June to 2021 

December to generate IAV and make comparisons with OCO-2. L3 products are generated by 

interpolating, extrapolating, and smoothing the FTS SWIR column-averaged mixing ratios of 

CO2 and apply the geostatistical calculation technique Kriging method. GOSAT observation 
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datasets are available to public at NIES GOSAT website 

(https://www.gosat.nies.go.jp/en/about_5_products.html). 

2.2.1.5 Multivariate ENSO Index (MEI) 

We use the bi-monthly Multivariate El Niño/Southern Oscillation (ENSO) index (MEI; 

downloaded from Physical Sciences Laboratory: https://psl.noaa.gov/enso/mei/) to explore the 

relationship between CO2 IAV and ENSO. The MEI is the time series of the leading combined 

Empirical Orthogonal Function of five different variables (sea level pressure, sea surface 

temperature, zonal and meridional components of the surface wind, and outgoing longwave 

radiation) over the tropical Pacific basin. Positive values in the MEI indicate El Niño conditions, 

while negative values indicate La Niña conditions, and the magnitude reflects the relative 

strength. Unlike other ENSO indices which use only one climate metric (e.g., the sea level 

pressure difference between Tahiti and Darwin or the sea surface temperature anomaly within a 

pre-defined box), the MEI provides for a more complete and flexible description of the ENSO 

phenomenon than traditional single variable ENSO indices and has less vulnerability to errors 

(Klaus Wolter et. al, 2011).  

2.2.2 Methods 

2.2.2.1 Spatial Aggregation 

We aggregate daily XCO2 observations from the version 10 OCO-2 Level 2 lite product 

to monthly scale, exploring patterns of IAV at three spatial scales: gridcell-level, zonal averages 

over 5° of latitude, and broad zonal belts. Aggregating soundings reduces random noise in the 

observations, mitigates the impact of data gaps due to cloud cover, and partly mitigates effect 

from low winter sunlight levels in polar regions. For gridcell level analysis, we aggregate data 

equatorward of 45° to 5°x5° bins since these data are not limited by polar night or degraded by 



 

29 
 

high solar zenith angles during winter. Poleward of 45° in both hemispheres, we aggregate the 

satellite observation to a latitude-longitude resolution of 5°x10° to compensate for fewer and 

noisier soundings in these latitudes, especially during winter and its shoulder seasons. Within 

each 5°x5° or 5°x10° gridcell, only months that have more than 5 soundings are included in the 

analysis. Our criteria for aggregation are based on sensitivity experiments in which we 

modulated the grid cell resolution from 1°x1° to 15°x15° (Fig A.1 and Fig A.2) and varied the 

threshold on the required number of soundings within a month from 1 to 25 (Fig A.3, Fig A.4 

and Fig A.5). Our goal was to reduce noise but maintain high spatial coverage (Fig A.6 and Fig 

A.7). The 5°x5° and 5°x10° aggregation strike the necessary balance of reducing noise 

(evidenced by the smoother IAV amplitude fields as aggregation increases in Fig A.1) but 

maintaining spatial information by not oversmoothing (evidenced by the fact that the aggregation 

occurs at spatial scales finer than the “elbow” where correlations among 1° gridcells stop 

changing with separation distance in Fig A.8)  

In our analysis, we also aggregate data to zonal averages. At intermediate spatial scales, 

we average all data around the 5° latitude bins described above. For comparison with TCCON 

and MBL data, which are spatially sparse, we further aggregate XCO2 data into four broad zonal 

belts – each of which contains at least 1 TCCON or 3 MBL stations -- (delineated in Table 2.1 

and Table 2.2) to assess IAV patterns among the datasets. Keppel-Aleks et al., (2014) showed 

that drivers of IAV (i.e., temperature, drought stress, or fire) could be attributed when surface 

CO2 were aggregated into similar broad zonal belts, whereas process-level attribution was not 

possible with global averaging. We therefore analyze broad zonal belts to gain a large-scale 

understanding of how three CO2 datasets are similar and where differences lie.  
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2.2.2.2 Deriving Interannual Variations 

We use a consistent process to calculate IAV (Equation 1) from the raw OCO-2, TCCON 

and MBL timeseries. The methodology is based on approaches used in Keppel-Aleks et al. 

(2013) and NOAA curve fitting methodology (Thoning et al, 1989 ). We decompose the raw 

time-series data into a long-term trend (which is a function of location (x,y) and time (t)), a 

seasonal cycle (which is a function of location and calendar month (m)), and IAV anomalies 

using Equation 1:  

IAV(x,y,t) = Raw(x,y,t) − Trend(x,y,t) − Seasonal(x,y,m)                             Equation 1 

We first fit a third order polynomial to the Raw timeseries to calculate the observed trend 

at each location (Fig 2.3a). After removing the trend calculated at each gridcell (Fig 2.3b), we 

calculate a mean seasonal cycle by taking the mean value of all January, February, etc. data (Fig 

2.3c). Particularly at high latitudes, some months are systematically under sampled. For these 

gridcells, we must have at least two years with sufficient observations to calculate a 

climatological mean for that month, otherwise, that calendar month is assumed to have 

insufficient data to infer the IAV. Finally, we remove the mean seasonal cycle from the 

detrended timeseries at each gridcell to obtain the IAV anomaly timeseries (Fig 2.3d). Given the 

short data record, we quantify the uncertainty in our calculation of the climatological seasonal 

cycle as the standard error for each calendar month (blue shading in Fig 2.3c), and this 

uncertainty is propagated to the corresponding IAV timeseries (Fig 2.3d). We fit a third order 

polynomial to the raw timeseries since the GOSAT, MBL and TCCON timeseries extend over a 

decade in length. We confirm that the use of a third-order polynomial, versus a second-order 

polynomial, does not remove the IAV signal from the shorter OCO-2 timeseries (Fig A.9). 
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Figure 2.3: Methodology to calculate the CO2 interannual variability timeseries, using OCO-2 XCO2 
data at the 5° grid cell at 20°N, 155°W, which contains Moana Loa, as an example. (a) 5°resolution 
monthly mean raw OCO-2 XCO2 and the associated 3rd order polynomial trend. (b) detrended monthly 
XCO2 after removing the long-term trend with a repeating 12-month annual cycle obtained from 
calculating the mean for each month. The light blue shading gives the uncertainty of the seasonal cycle, 
which is derived by calculating the standard deviation across all Januarys, Februarys, etc. (c) 12-month 
mean annual cycle together with the uncertainty range plotted in (b). (d) Resulting interannual 
variability, when mean annual cycle is removed from detrended timeseries.   
 

2.3 Results 

2.3.1 Spatiotemporal Variations Based on OCO-2 Observation 

When averaged into broad zonal belts representing the tropics and mid-latitudes, the 

OCO-2 XCO2 IAV timeseries anomalies range between -0.5 to 0.75 ppm (Fig 2.4a). All latitude 

bands show increasing IAV during positive MEI (El Niño) and decreasing IAV during negative 

MEI (La Niña), although the phasing varies among latitudes. During the strong 2015–2016 El 

Niño, which began around March 2015 and reached its peak at the start of 2016, XCO2 showed 

the largest IAV. The Southern Hemisphere extratropical region (Fig 2.4d) have larger and more 
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rapid response in the IAV associated with ENSO compared to other zones, especially for the 

smaller El Niño that peaked at the beginning of 2020. At this time, the XCO2 IAV timeseries 

(Fig 2.4d) had an anomaly nearly twice as large as that of other latitude belts (Fig 2.4a to 2.4c). 

During both El Niño events, the IAV timeseries in the NH tropics zone peaks nearly six months 

after the maximum MEI value.  

We assess the spatial correlation patterns with no time lag, 3-month, 6-month lag 

between the IAV timeseries and MEI (Fig 2.8a). The XCO2 IAV timeseries have strong 

correlation coefficient with the MEI index in both Southern Hemisphere and Northern 

Hemisphere low latitudes from 0° to 30°N at lag 0, whereas in the Northern Hemisphere 

extratropics, the maximum positive correlation occurs at month 4 (Fig 2.8b).  The positive 

correlation between MEI and the IAV timeseries is gradually attenuated, with no clear 

correlation at six months lag (Fig 2.8c). 

The differences in temporal phasing between the broad zonal belts (Fig 2.4a) associated 

with El Niño events can be linked to transport of El Niño-driven CO2 flux anomalies away from 

the tropics when zonal means are calculated from OCO-2 observations at 5° latitude resolution 

(Fig 2.5). For the two El Niño periods in 2015-2017 and late-2018 to 2021, high IAV values 

originate in the tropics and a smooth transition to high IAV values is seen at higher latitudes as 

time progresses (Fig 2.5a). We note that fluxes outside the tropics may also be influenced by 

ENSO-related climate variability, yet the transport of tropical-driven anomalies appears to 

dominate. This 7-year study period also captures the half-year lags for atmospheric transport or 

climate-ecological teleconnections that impacts XCO2 variations in the far North. While the 

OCO-2 patterns largely conform with variability expected based on ENSO and are in broad 

agreement with other observational networks, there are some anomalies that cannot be explained, 
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such as the high XCO2 in early 2020 around 60°S (Fig 2.5a). Even with more aggressive data 

filtering, this episode persists, requiring more investigation of unknown geophysical drivers of 

high XCO2 or potential retrieval issues that could cause a high bias. 

 

Figure 2.4:  IAV timeseries averaged for zonal bands between 60 °N and 60 °S from four different 
observing strategies: Space-based OCO-2 XCO2 (Black), Surface CO2 observations from NOAA’s marine 
boundary layer (MBL) sites (Blue), Ground-based TCCON XCO2 (Red), Space-based GOSAT XCO2 
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(Gray). (a) temperate northern hemisphere (20°N-60°N), (b) tropical northern hemisphere (0° - 20°N), 
(c) tropical southern hemisphere (0°-20°S), (d) temperate southern hemisphere (20°S-60°S). For all 
panels, the background shading indicates the Multivariate ENSO Index (MEI), which is positive during El 
Niño phases. 
 

 

Figure 2.5: Hovmöller Diagrams diagram showing zonal mean OCO-2 XCO2 IAV timeseries for 5° 
latitude bins (a) and the zonal standard deviation of XCO2 IAV (b), which gives an estimate of coherence 
in the IAV patterns among grid cells in the 5° zonal belt. 
 

We quantify coherence in CO2 IAV within a latitude circle by taking the standard 

deviation across gridcell-level IAV anomalies within each 5° latitude zone. The standard 

deviation among gridcells is highest in the far North, with values as high as 1 ppm poleward of 

45°N and as low as 0.2 ppm in the Southern Tropical bands (Fig 2.5b), indicating that IAV is 
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less spatially coherent in the Northern Hemisphere. This may be consistent with studies that 

show greater IAV in terrestrial ecosystem fluxes (concentrated in the northern hemisphere) 

(Zeng et al., 2005) relative to ocean fluxes, or may reflect that our IAV timeseries also retains the 

imprint of sampling, measurement, and retrieval errors, which become more pronounced at 

higher latitudes. In general, there is not a time-dependent or ENSO-related pattern for the 

longitudinal variation of IAVs (no obvious changes during the two El Niño periods), which 

suggests the variation within each 5° band may be approximately stable and does not change 

substantially with interannual climate events. 

 

 
Figure 2.6: OCO-2 XCO2 IAV amplitude, determined as the standard deviation of the IAV timeseries. 
Data equatorward of 45° are averaged at 5°by 5° resolution , and data poleward of 45° are averaged at 
5°by 10° resolution. Shaded regions indicate gridcells that lack mean annual cycle data for at least two 
calendar months due to polar night or related retrieval challenges.  
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Figure 2.7: Similar as Figure 2.6 but based on GOSAT data.   

 

The XCO2 IAV amplitude (the standard deviation of the IAV timeseries) is notably larger 

over continental gridcells compared to ocean gridcells (Fig 2.6). In both hemispheres, the IAV 

amplitude over subtropical ocean basins is less than 0.4 ppm, while the IAV amplitude over 

tropical land in Southeast Asia, Congo forests and Amazon Basin is about 1 ppm. In higher 

latitudes, the XCO2 IAV amplitude can exceed 1.2 ppm above deciduous and boreal forests in 

North America and Eurasia. Higher values over land likely occur due to the active CO2 exchange 

between terrestrial ecosystem and the atmosphere, but we cannot rule out that retrievals over 

land show more variance due to complex topography, albedo, etc., which are elements of the 

retrieval state vector. Nevertheless, over land areas with low carbon exchange (e.g., Australia, 

the Middle East, the Sahara Desert), the XCO2 IAV amplitude is nearly of the same low level as 

the ocean basins. It is worth noting that for high latitude regions, including both Northern 

continents and Southern Ocean, OCO-2 does not obtain observations over a full calendar year 

(stippled gridcells in Fig 2.6) due to polar nights, low light levels, and high solar zenith angles.  
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Figure 2.8:  Correlation coefficient between local grid cell OCO-2 XCO2 IAV timeseries and MEI, for (a) 
synchronous timeseries, (b) with 3-month lags, (c) with 6-month lags. 

 

The XCO2 IAV amplitudes are less zonally coherent through these regions than those in the 

tropics and mid-latitudes, for both land and ocean. When averaging all ocean or land grid cells 

around a latitude circle, the zonal mean IAV amplitude over the ocean ranges from 0.3 to 1.0 

ppm, while the land IAV amplitude ranges from 0.4 to 1.1 ppm (Fig 2.9). Both the land and 
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ocean profiles have similar north-south patterns, with higher IAV amplitude in the Northern 

Hemisphere and lower IAV amplitude in the Southern Hemisphere, and the small IAV 

amplitudes in the subtropics of both hemispheres, with more scatter among land gridcells than 

ocean (Fig. 2.5b and  Fig 2.9), suggesting either the influence of local flux IAV on land or 

greater error associated with retrievals on land. We note better coherence between the XCO2 

IAV timeseries of each local grid cell and that of zonal mean XCO2 IAV timeseries for ocean, 

with correlation coefficients of approximately 0.8. In contrast, land gridcells are generally 

correlated with the zonal mean at around 0.4 to 0.6 (Fig 2.10).  

 
 
Figure 2.9:  Latitudinal profile for zonal mean of IAV amplitude and the standard deviation among land 
(green) or ocean (blue) gridcells in each latitude band (shaded area). Individual points represent all grid 
cells valid IAV record within the certain zonal band. 
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Figure 2.10:  Correlation coefficient between local grid cell IAV timeseries and the corresponding 5° 
zonal mean OCO-2 XCO2 IAV timeseries.  
 

2.3.2 OCO-2 XCO2 IAV compared to GOSAT XCO2 IAV 

We carried out comparisons between the global spatiotemporal pattern of XCO2 IAV 

between OCO-2 and GOSAT, since GOSAT has data beginning in 2009. The XCO2 timeseries 

from OCO-2 provides higher coverage over mid-latitude oceans and tropical rainforests 

(stippling in Fig 2.6, 2.7). The IAV amplitude of OCO-2 is generally smaller than that of 

GOSAT worldwide (Fig 2.6, 2.7), which may be due to greater data volume and reduced noise in 

the OCO-2 dataset (Wu et al., 2020). OCO-2 and GOSAT zonal mean IAV timeseries generally 

share the same feature from 2014 to 2021 (Fig 2.4a-d), with an increasing trend during El Niño 

and decreasing trend during La Niña, however the GOSAT XCO2 shows a delayed response in 

the northern midlatitudes, by almost 9 months, to the strong 2015 El Niño compared to the other 

datasets. Generally, GOSAT IAV timeseries are nosier, from month-to-month, compared to 

those from OCO-2.  
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2.3.3 XCO2 IAV compared to surface and TCCON ground-based sites  

Given that the small IAV signal (up to 1 ppm over land, and smaller over ocean) is 

similar in magnitude to noise and systematic bias in OCO-2 soundings (Torres et al., 2019), we 

corroborate patterns of IAV from OCO-2 with other datasets. The OCO-2 IAV timeseries in 

broad latitudinal belts share similarities with those of TCCON XCO2 and MBL surface CO2 

ground-based IAV timeseries, with all timeseries showing similar relationships to MEI. 

Especially striking is that all timeseries capture the lagged response in the NH midlatitude belt to 

the strong 2015/16 El Niño (Fig 2.4a-d). Although the patterns are similar, the magnitude of IAV 

at the MBL sites is almost double the IAV in the OCO-2 XCO2 timeseries. Given that the 

atmospheric boundary layer, where surface observations are made, is on average 10% of the total 

column, this suggests that much IAV in total column observations is present within the free 

troposphere. For TCCON, the amplitude of IAV is similar to that of OCO-2, since both methods 

capture total column variations. We note that the zonal IAV timeseries for MBL and TCCON 

appear to have more high frequency variations than those from OCO-2 (Fig A.10, Fig A.11 & 

Fig A.12), which likely stems from the fact that the zonal composites are developed from sparse 

ground-based sites (between 1 and 12 observatories) within each latitude belt, whereas the 

satellite measures at all longitudes within a belt, though with more limited time resolution. The 

zonal mean OCO-2 observations are correlated with MBL sites within the same latitude band 

with R between 0.5 and 0.75 (diagonal elements on Fig 2.13b). Correlations between zonal 

TCCON and OCO-2 observations range between 0.15 and 0.55. The correlations are weakest in 

the northern tropics band, where TCCON data were unavailable during the strong El Niño (Fig 

2.3c). It is noteworthy that OCO-2 zonal averages are more correlated among different latitudes 

than are MBL or TCCON observations (off-diagonal elements in Fig 2.13c, d, e). The greater 
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correlation across latitudes for OCO-2 compared to MBL sites is likely due to the sensitivity of 

the OCO-2 XCO2 observations to the free troposphere, where meridional transport is more rapid 

than at the surface. While TCCON data are also sensitive to the free troposphere, we hypothesize 

that the zonal belt averages for TCCON, constructed from only a few sites, are more affected by 

noise, both instrumental and geophysical, and thus show lower coherence than the OCO-2 XCO2 

averages constructed from the whole latitudinal bands.   

We further compared the IAV from OCO-2 XCO2 with TCCON stations at the site level 

(Fig 2.12). Across all sites, the IAV amplitude generally shows good agreement and lies between 

0.4 to 1.2 ppm. We note a slight low IAV amplitude in OCO-2 relative to TCCON for all five 

sites in the Southern Hemisphere which lie below the one-to-one line. Low OCO-2 IAV 

amplitudes may be due to the fact that a 5x5 ° gridcell encompassing these near-coastal locations 

includes both land and ocean OCO-2 soundings, and may be due to specific sources of variance 

from retrieval bias affected by surface type for the OCO-2 (e.g., Fig 2.9). It is also worth noting 

that OCO-2 is looking at a region of 5° by 5° gridcell (or 5° by 10° in higher latitudes) around 

TCCON sites, so there are different signals affecting the variance between the two types of 

observations. 
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Figure 2.11: Latitudinal profile of regression Slope (panel a) and correlation coefficient (R, panel b) of 
OCO-2 versus TCCON XCO2 IAV. The Slope and R values are based on using monthly XCO2 IAV. The 
error bars result from a Monte Carlo bootstrapping approach. The colours represent the number of 
months data which used for the regression calculation, given gaps in both the OCO-2 and TCCON 
datasets. 
 

We derive the regression slopes and Correlation Coefficient R between OCO-2 and 

monthly averaged TCCON IAV through bootstrapping Linear Regression fitting techniques to 

investigate the coherence between IAV signals from space-based and in-situ ground-based 

observations. We compute the linear regression 1000 times, by iteratively resampling the IAV 

timeseries with replacement, and calculate the 95% significant level for regression slopes based 

on the histogram of the sample distributions during the bootstrapping (Fig A.13). Despite having 

similar IAV amplitudes, the IAV timeseries from OCO-2 are only moderately correlated with 

those from TCCON (Fig 2.11). The regression slopes range from 0.1- 0.6 and R values are 

generally around 0.1 – 0.5, indicating that less than 25% of the IAV in OCO-2 is explained by 
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IAV measured by TCCON. These R values are, as expected, smaller than the zonal averages 

shown in Fig 2.11b, which average some of the site-level noise for TCCON and gridcell-level 

noise for OCO-2. The detailed XCO2 IAV timeseries of each site (Fig A.10) for OCO-2 and 

TCCON show that the IAV timeseries in the NH are more variable, which can partly explain the 

hemispheric difference in amplitude, slope, and correlation coefficients.  

 

Figure 2.12: Comparison of OCO-2 and TCCON XCO2 IAV amplitude at individual sites. Colours reflect 
site latitudes. The grey dashed line is the one-to-one identity line. The grey solid line is the error bar of 
the IAV amplitude.  
 
 
2.4 Discussion 

We use seven years of OCO-2 total column carbon dioxide observations from late 2014 

to mid-2021 to illustrate the global temporal-spatial patterns of atmospheric XCO2 interannual 

variations. OCO-2 and GOSAT showed reasonable agreement (Fig 2.4) in northern and southern 

hemisphere tropical zones (0-20°), although there were some notable phase differences during 

the strong 2015 El Niño for GOSAT compared to the other timeseries in both the northern and 

southern extratropic regions. In contrast, OCO-2 shows good temporal agreement with the 

ground-based observations from MBL and TCCON. The temporal agreement of the OCO-2 and 
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TCCON XCO2 IAV timeseries and the MBL surface CO2 IAV timeseries in broad zonal belts 

improves our confidence that we can quantify IAV timeseries from the satellite record. We note 

that amplitude differences remain among the timeseries, owing to two major factors: first, 

compared to MBL surface observations, we expect XCO2 timeseries to have smaller amplitudes 

of variability since it integrates over the entire atmospheric column (Olsen and Randerson 2004), 

and second, the fact that the OCO-2 timeseries averages around a full latitude circle rather than a 

few discrete sites reduces some of the IAV contained in site-level records. From the space-based 

and ground-based detection, we are able to characterize the global response of OCO-2 and 

TCCON XCO2 or MBL surface CO2 IAV to ENSO, and track the CO2 IAV against the 

positive/negative phase of ENSO, together with the transport of the signal from South to North 

(Fig 2.4). All datasets show consistent patterns in the response to the El Niño periods, although 

we note that the IAV amplitude is a factor of almost two smaller in the column average mole 

fraction compared to the boundary layer CO2, which reflects the fact that IAV variations emerge 

due to surface fluxes in the lower part of the atmosphere (Olsen & Randerson, 2004), but are 

efficiently transported into the free troposphere which comprises the bulk of the column. When 

taken together, the use of surface and column data may allow better separation of transport-

driven versus local flux driven variations at the interannual timescale. In the future, as partial 

column retrievals (e.g., Kulawik et al., 2017) mature, intercomparisons of lowermost 

tropospheric partial columns may provide a useful bridge between variations in surface MBL 

observations and total column observations. 

Our results, however, underscore the difficulty in detecting IAV signals from remote 

sensing of XCO2 -- while northern hemisphere seasonal amplitudes are typically 10 ppm scale 

(Basu et al., 2011), the magnitude of OCO-2 detected XCO2 IAV is almost an order of 
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magnitude smaller (less than 0.4 ppm over ocean and about 1ppm over continents). The 

magnitude of IAV is therefore comparable to other components of the XCO2 variance budget; for 

instance, Torres et al. (2019) show random noise in individual OCO-2 soundings of about 0.3 

ppm in the southern hemisphere and of about 0.7 ppm in the northern hemisphere, and spatially 

coherent errors in the retrievals ranging from 0.3 to 0.8 ppm (Torres et al., 2019). Moreover, the 

uncertainty which originally comes from the varying climatological seasonal cycle, can also 

reach the level of 0.5ppm (Fig 2.3d). Therefore, robust partitioning of IAV from the observed 

XCO2 signal at a given location requires a comprehensive variance budget (Mitchell et al., 

2023), and efforts to infer interannual variations in fluxes from OCO-2 must take gridcell-level 

variance into account or leverage zonally averaged data, which is characterized by greater 

separation between IAV signal and noise. 
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Figure 2.13:  Correlation coefficient (R) between among mean CO2 timeseries using three observing 
strategies.  Panel (a) shows the correlation between zonal mean OCO-2 XCO2 IAV and zonal mean 
marine boundary layer CO2. Panel (b) shows the correlation between zonal mean XCO2 IAV from OCO-2 
and TCCON. Panels (c-e) show the correlation in zonal mean IAV timeseries across four latitude bands 
for a single observing strategy. Panel (c) shows OCO-2 XCO2, Panel (d) shows MBL CO2 and Panel (e) 
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shows TCCON XCO2. For Panels c-e, the diagonal elements are 1 by construction.  Zonal bands include 
tropical (0°-20°) and NH/SH temperate zone (20°-60°). 
 

Our analysis shows that proper spatial averaging of the monthly XCO2 signal can 

mitigate the imprint of random noise and systematic effects from weather systems at sub-

monthly timescales. Based on sensitivity tests, we recommend averaging low to mid-latitude of 

XCO2 (equatorward of 45°) to 5°x5° bins, and 5° latitude x 10°  longitude grid cell poleward of 

45°, ensuring that each gridcell aggregates at least 5 soundings within a month. At these levels of 

spatial averaging, the XCO2 IAV amplitude was comparable to that of the co-located ground 

based XCO2 IAV amplitude measured by TCCON (Fig 2.12). However, the moderate to low 

correlation between the IAV timeseries from each monitoring platform reveals the discrepancies 

of the two measurements in sampling, detection or retrieval, suggesting that one or both is still 

convolving another source of variance with the calculated IAV signal. Based on the good 

agreement between the two timeseries in broad zonal belts, we expect that random noise in both 

observations may degrade the comparison. 

The smaller coherence in the IAV timeseries in nearby land and ocean gridcells may be 

due to larger error over land or may reflect that XCO2 observations over land contain 

information about heterogeneous local flux IAV. Complete analysis of the variance budget for 

OCO-2 observations (Mitchell et al., 2023) will elucidate the likely imprint of each process. 

When using IAV timeseries for flux inference, it will be crucial to account for non-flux imprints 

such as imprint from atmospheric transport, random errors, systematic errors, and remote 

geophysical coherence on the timeseries (e.g., Torres et al., 2019; Mitchell et al., 2023), since 

spurious attribution of IAV will lead to biased fluxes. 
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2.5 Conclusions 

We examined IAV in OCO-2 data to determine whether the small variations that result 

from interannual flux variations can be detected in light of other sources of variance in the space-

based dataset. Our results show that zonal averages reveal relationships with ENSO that are 

consistent with those from established ground-based monitoring network. Zonal averages greatly 

reduce random noise in XCO2 compared to 5x5o averages. In general, OCO-2 can successfully 

monitor CO2 IAV over both land and ocean, contributing important spatial coverage beyond 

inferences of IAV from existing ground-based networks.   
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Chapter 3 Quantifying Atmospheric CO2 Interannual Variability Driven by Ocean From 

OCO-2 Observations and Atmospheric Transport Simulations 

 

Abstract 

Interannual variability (IAV) in the atmospheric CO2 growth rate is caused by variation 

in the balance between uptake by land and ocean and accumulation of anthropogenic emissions 

in the atmosphere. While variations in terrestrial fluxes are thought to drive most of the observed 

atmospheric CO2 IAV, the ability to characterize ocean impacts has been limited by the fact that 

most sites in the surface CO2 monitoring network are located on coasts or islands or within the 

continental interior. NASA’s Orbiting Carbon-Observatory 2 (OCO-2) mission has observed the 

atmospheric total column carbon dioxide mole fraction (XCO2) from space since September 

2014. With a near-global coverage, this dataset provides a first opportunity to directly observe 

IAV in atmospheric CO2 over remote ocean regions. We assess the impact of ocean flux IAV on 

the OCO-2 record using atmospheric transport simulations with underlying gridded air-sea CO2 

fluxes from observation-based products. We use three  observation-based products to bracket the 

likely range of ocean air-sea flux contributions to XCO2 variability (over both land and ocean) 

within the GEOS-Chem atmospheric transport model. We find that the magnitude of XCO2 IAV 

generated by the whole ocean is between 0.1-1 ppm throughout the world. Depending on 

location and flux product, between 20-80% of the IAV from the ocean flux-GEOS-Chem 

simulations is caused by IAV in air-sea CO2 fluxes, with the remainder due to IAV in 

atmospheric dynamics acting on climatological ocean flux-driven XCO2 gradients. The Southern 

Hemisphere mid-latitudes and low-latitudes are the dominant ocean regions in generating the 
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XCO2 IAV globally, showing substantial imprints on ocean-driven IAV in the Northern 

Hemisphere across all three flux products. Nevertheless, the small magnitude of the air-sea flux 

impacts on XCO2 presents a substantial challenge for detection of ocean-driven IAV from OCO-

2. Although the IAV amplitude arising from ocean fluxes and transport is  20 to 50% of the total 

observed XCO2 IAV amplitude of 0.4 to 1.6 ppm in the Southern Hemisphere and the tropics, 

ocean-driven IAV represents only 10% of the observed amplitude in the Northern Hemisphere. 

We find that for all three products, the simulated ocean-driven XCO2 IAV is weakly anti-

correlated with OCO-2 observations, suggesting that even over ocean basins, terrestrial IAV 

obscures the ocean signal.  

3.1 Introduction  

The ocean regulates the uptake, storage, and release to the atmosphere of carbon on 

annual to millennial timescales, helping mitigate climate change by significantly modulating the 

long-term trend in the atmospheric CO2 growth rate. The ocean took up on average, 3.0 ± 0.4 

PgC yr−1 or 29% of the total anthropogenic CO2 emissions for the decade beginning in 2011, and 

cumulatively has sequestered over 1/3 of fossil emissions since the industrial era (Le Quéré et 

al., 2018; Friedlingstein et al., 2022). When also taking into account land-use change emissions 

to the atmosphere, which counteracts the residual terrestrial sink, the ocean is the only long-term 

sink for anthropogenic carbon (Ballantyne et al., 2012, Crisp et al. 2022).   

Interannual variability (IAV) in the atmospheric CO2 growth rate is superimposed on the 

long-term positive trend. The atmospheric CO2 surface network shows a decadal-average growth 

rate of 2.41±0.26 ppm/y (mean ± 2 std dev) on an annual basis due to the impacts of internal 

climate variability during 2003–2016 (Buchwitz et al., 2018). This IAV has been shown to 

reflect, primarily, variations in the rate of terrestrial CO2 uptake due to climate stressors (Luo et 
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al., 2022) and disturbance (Keppel-Aleks et al., 2014), but also embodies IAV in net ocean 

carbon exchange and fossil fuel emissions (Doney et al., 2009, Crisp et al. 2022). The global 

ocean carbon flux IAV is estimated at about 0.3 PgC/yr (equivalent to about 0.15 ppm CO2 

mixed into the global atmosphere), with the tropical Pacific Ocean, which is modulated by El 

Niño-Southern Oscillation (ENSO), accounting for a large fraction of variability (Rodenbeck et 

al., 2014, Bennington et al. 2022). Considering only a global value, however, may obscure key 

regions of ocean flux IAV and its impact on spatial patterns of atmospheric CO2 IAV.  

The net flux of CO2 between the atmosphere and the ocean is a function of (1) wind-

driven gas exchange kinetic rates and (2) the difference of the partial pressure of CO2 in the air 

and the ocean surface (ΔpCO2), with the ocean component being far more regionally 

heterogeneous. Local variations in oceanic pCO2 are related to physical or biogeochemical 

processes including sub-surface water upwelling, which can enrich the surface water in CO2, 

temperature-driven solubility variations, alkalinity (which is closely related to salinity and 

controls the speciation of dissolved inorganic carbon), and phytoplankton photosynthesis and 

respiration (Doney et. al, 2009, Crisp et al. 2022). These variables are all affected by interannual 

climate variability (McKinley et al. 2020). Because the response of the global carbon cycle to 

climate fluctuations may provide insight into the long-term response to climate change, 

understanding the global and regional characteristics of ocean-driven atmosphere CO2 IAV can 

help to improve our understanding of the climate–carbon cycle processes and our ability to 

project the fate of the ocean CO2 sink in the future.  

Although studies have suggested that ocean flux IAV may impart an observable impact 

on atmospheric CO2 IAV (Crisp et al., 2022), gaps remain in quantifying the influence from the 

ocean since most atmospheric CO2 observations are made on land and coasts, with fewer island 
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and ship-based measurements in the remote open ocean. Early research deduced that the CO2 

flux variation over the ocean, especially the equatorial Pacific Ocean, is one of the main causes 

of the atmospheric CO2 IAV (Francey et al., 1995). Later studies based on inverse models, 

seawater system measurements, and air-sea CO2 flux estimates (Rodenbeck et al., 2003; Feely et 

al., 2002) suggested air-sea CO2 flux is not the primary driver for interannual to seasonal 

variations in atmospheric CO2. Nevison et al. (2008) used an atmospheric transport model with 

an underlying mechanistic ocean flux model to show that the amplitude of atmospheric IAV 

owing to ocean fluxes was around 10% of the IAV amplitude at northern hemisphere surface 

stations, and up to 50% of the observed IAV in the Southern Hemisphere. In neither hemisphere, 

however, was the IAV owing to ocean fluxes highly correlated with the observations (Nevison et 

al., 2008). Setting aside uncertainties within the atmosphere, there remain substantial 

uncertainties as to the magnitude of air-sea CO2 flux variability itself based on ocean 

biogeochemical models (Hauck et al. 2020), observation-based flux products (McKinley et al. 

2020, Bennington et al. 2022, Hauck et al. 2023) and atmospheric CO2 inverse models (Peylin et 

al., 2013). 

Quantifying ocean-driven atmospheric CO2 IAV remains challenging since direct 

observations of pCO2 in surface waters and the corresponding difference with the atmosphere are 

sparse, and there are large spatiotemporal gaps.  CO2 fluxes can be estimated from observation-

based pCO2 products, which use statistical or mechanistic approaches to interpolate oceanic 

partial pressure measurements (Rödenbeck et al., 2014, Landschutzer et al. 2014, 2016, Denvil-

Somier et al 2019. These observation-based products estimate near global 1ox1o, monthly pCO2 

fields from sparse pCO2 data using various techniques, including statistical interpolation, linear 

and non-linear regressions, and machine learning-based methodologies.  The CO2 flux is then 
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calculated from the interpolated pCO2 fields (Fay et al., 2021). Robust estimates of mean and 

seasonality can be derived from observation-based products (Gloege et al. 2021, Fay and 

McKinley 2021), while significant uncertainties in terms of higher and lower frequency 

variability remain (Rodenbeck et al. 2015, Hauck et al. 2020, Bennington et al. 2022).   

New space-based observations of the column-integrated CO2 mole fraction, XCO2, from 

NASA’s Orbiting Carbon Observatory 2 (OCO-2) mission may provide a unique vantage to 

observe the atmospheric imprint of IAV in air-sea CO2 fluxes. OCO-2 is NASA’s first dedicated 

Earth remote sensing satellite to study atmospheric carbon dioxide from space (Eldering et al., 

2017). It was designed to collect space-based measurements of atmospheric CO2 with high 

precision and near-global coverage (Crisp et al., 2012; Crisp et al., 2017). Compared to surface 

in-situ CO2 observations, such as from the NOAA greenhouse gas network, which is mostly sited 

in coastal, island, and inland locations, OCO-2 can observe directly over the open ocean, which 

may improve the spatiotemporal attribution of ocean fluxes.  

The research presented here leverages these two advances in carbon cycle data products 

to answer the following scientific questions: (1) What are the fingerprints of ocean carbon fluxes 

on IAV of atmospheric CO2, and from what regions are these imprints most prominent?  (2) 

What differences emerge from different observation-based products, and how large are these 

differences compared to the IAV owing from atmospheric transport?  (3) How detectible is the 

IAV signal from ocean fluxes in surface or column CO2? To answer these questions, we run 

atmospheric transport simulations with underlying air-sea fluxes from several observation-based 

products. We use the output from these simulations to quantify the imprint of regional and global 

sea-air CO2 fluxes on atmospheric CO2 IAV. As a final step, we use OCO-2 observations of 

XCO2 to contextualize the simulated ocean-driven XCO2 variations.   
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3.2 Data and Methods 

3.2.1 Datasets 

3.2.1.1 SOCOM Fluxes 

Gridded air-sea CO2 fluxes estimated from observation-based products for near-global 

surface ocean pCO2 have been developed from the same sparse in situ pCO2 data using a variety 

of interpolation / mapping methods (Rodenbeck et al. 2015, Fay et al., 2021). In this study, we 

choose 3 data products that use different spatial interpolation methods and provide the best 

temporal and spatial coverage over the past 4 decades from 1982 to 2021. We use the JENA 

product (Rödenbeck et al., 2014), which is a temporally and spatially resolved estimate of the 

global surface-ocean CO2 partial pressure field and the sea–air CO2 flux obtained by fitting a 

simple data-driven diagnostic model of ocean mixed-layer biogeochemistry to surface-ocean 

CO2 partial pressure data from the SOCAT database. Second, we use the Self-Organizing Map 

Feed-Forward Neural Network (SOMFFN) product, which is based on a combination of self-

organizing maps (Landschutzer et al., 2013, 2014, 2016). Finally, we use the Copernicus 

Environment Monitoring Service product (CMEMS; LSCE-FFNN-v1), which is a two-step 

neural network model for the reconstruction of surface ocean pCO2 over the global ocean 

(Denvil-Sommer et al., 2019). In these networks of models, the information travels forward in 

the neural network, through the input nodes then through the hidden layers (single or multiple), 

and finally through the output nodes. JENA has a resolution of about 4◦ × 5◦ spatially at daily 

time scale, while SOMFFN and CMEMS are reported at 1◦ × 1◦ on a monthly basis. Each 

product covers the global ocean but excludes some coastal areas and/or the Arctic. Based on 

surface water pCO2 measurements of surface water, for each product, the sea–air CO2 flux is 

calculated through gas exchange parameterization, which uses a calculated value of the gas 
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transfer velocity and the solubility of CO2 in seawater near-surface salinity, and observed values 

of sea surface temperature and dry air mixing ratio of atmospheric CO2. Our analysis is based on 

the overlapping ocean region of the three products, and we mask-out high latitude ocean in the 

Arctic and Antarctic regions as well as the coastal areas in order to have intercomparability 

among the three products.  

We divide the ocean into 7 subregions (Fig 3.1) based on the oceanic biome regions 

defined by climatological criteria (Fig B.1) and analyze these flux products (Fig B.2) aggregated 

to the ocean subregions. Oceanic biomes are classified from sea surface temperature, 

spring/summer chlorophyll-a concentrations, ice fraction, and maximum mixed layer depth (Fay 

and McKinley, 2014). The biome regions partition the surface ocean into regions of common 

biogeochemical function and are consistent with a variety of observational and modeling studies 

assessing air-sea CO2 fluxes and primary productivity.   

 

 
 
Figure 3.1:  The tracers defined for the tagged simulations based on ocean biome regions in Fay and 
McKinley, 2014.  
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3.2.1.2 OCO-2 Observations 

We analyze IAV in dry air, column-average mole fraction XCO2 inferred from OCO-2 

satellite observations. The OCO-2 observatory was launched in July 2014 and has measured 

passive, reflected solar near-infrared CO2 and O2 absorption spectra using grating spectrometers 

since September 2014 (Eldering et al., 2017). XCO2 data are retrieved from the measured spectra 

using the Atmospheric CO2 Observations from Space (ACOS) optimal estimation algorithm, 

which is a full physics algorithm that solves for XCO2 and other physical parameters, including 

surface pressure, surface albedo, temperature, and water vapor profile in its state vector (O'Dell 

et al., 2018). The satellite is in a polar and sun-synchronous orbit that repeats every 16 days, with 

three different observing modes of OCO-2, namely nadir (land only, views the ground directly 

below the spacecraft with insufficient signal to noise over the ocean), glint (ocean and land, 

views the spot with directly reflected sunlight resulting in a higher ocean signal), and target (sites 

of specific interest, primarily for validation) (Crisp et al., 2012; Crisp et al., 2017). We use the 

version 10 OCO-2 Level 2 bias-corrected XCO2 data product from 2014 September to 2022, 

(From Goddard Earth Sciences Data and Information Services Center Archive: 

https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_FP_10r/summary), which has been validated 

with collocated ground-based measurements from the Total Carbon Column Observing Network 

(TCCON). After filtering and bias correction, the OCO-2 XCO2 retrievals agree well with 

TCCON in nadir, glint, and target observation modes, and generally have absolute median 

differences less than 0.4 ppm and RMS differences less than 1.5 ppm (O'Dell et al., 2012; Wunch 

et al., 2017).  

We characterize IAV from OCO-2 XCO2 in Guan et al. (2023). In that analysis, we 

determined optimal spatiotemporal scales for aggregating the observations to detect IAV 
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variability in light of other sources of error. We evaluated IAV signals against the TCCON 

ground-truth network, confirming that the IAV inferred from OCO-2 is robust given the small 

magnitude of IAV compared to other sources of variance (Mitchell et al., 2023). Further, the 

OCO-2 IAV timeseries show similar zonal patterns of OCO-2 XCO2 IAV timeseries compared 

to GOSAT space-based observation and ground-based NOAA ESRL in situ data. The analysis by 

Guan et al. (2023) validates that the OCO-2 satellite provides new capabilities for discerning 

atmospheric XCO2 IAV. 

3.2.2 Methods  

3.2.2.1 GEOS-Chem simulations 

We simulate atmospheric XCO2 generated by ocean carbon fluxes using GEOS-Chem 

(Bey et al., 2001), an offline global chemical transport model driven by meteorological input 

from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and 

Assimilation Office (GMAO) and developed by an extensive global community of researchers. It 

has been widely used for gas flux inversion and source attribution studies, including for CO2, 

CH4, and CO (e.g., Nassar et al., 2010; Fisher et al., 2017). We use the version 12.0.0 of GEOS-

Chem, released in Aug 2018.  

To simulate atmospheric CO2 fields from individual subregions, we modify the GEOS-

Chem code base to tag the source regions and separately track different CO2 tracers originating 

from each region (Lin et al., 2020). This approach is possible since CO2 is a passive tracer that is 

not involved in atmospheric chemical reactions. In the simulation, each CO2 tracer corresponds 

to the influence of ocean CO2 fluxes from one tagged region, and the simulation using the JENA 

product has two more tracers than SOMFFN and CMEMS since the JENA product has slightly 

larger data coverage in both the far North and the far South.  
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The meteorological inputs for GEOS-Chem come from the Modern-Era Retrospective 

analysis for Research and Applications, 80 Version 2 (MERRA2) reanalysis. We run simulations 

for 1982-2021 at 2° latitude by 2.5° longitude resolution with 47 vertical levels up to 0.01 hPa on 

a hybrid eta (sigma-pressure) grid. Convective transport in GEOS-Chem is simulated with a 

single-plume scheme (Wu et al., 2007) while boundary layer mixing in GEOS-Chem uses the 

non-local parameterization (Lin and McElroy, 2010) which draws on the mixing depths, 

temperature, latent and sensible heat fluxes, and specific humidity. Although some bias in the 

vertical distribution of CO2 has been shown in GEOS-Chem for northern high latitudes (Schuh et 

al., 2019), similar tagged transport runs have been shown to generally capture seasonal cycles in 

surface CO2 as well as gradients between surface and mid-tropospheric CO2 across a range of 

latitudes (Lin et al., 2020). We initialize all tracers with a 3-year spin-up. We calculate XCO2 in 

the GEOS-Chem runs by integrating the dry air mole fraction for the 47 model layers accounting 

for pressure differences with height.  

In a sensitivity study, we isolate the impact of atmospheric transport IAV, rather than air-

sea flux IAV, on the resulting IAV in XCO2. For this analysis, we simulate XCO2 from the 

seasonal climatology of air-sea CO2 fluxes averaged over the 40-year period of the GEOS-Chem 

simulation, maintaining time-varying atmospheric transport from the MERRA2 reanalysis. 

Together with the baseline experiment using time-varying air-sea fluxes and time-varying 

transport, we can distinguish the effect of dynamical-driven variation, flux-driven variation, and 

the combination of both.  

3.2.2.2 Timeseries analysis  

We characterize spatiotemporal patterns of OCO-2 detected XCO2 by first aggregating 

OCO-2 observations to monthly averages on a 5° by 5° grid equatorward of 45° and to a 5° 
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by10° grid poleward of 45° from 2014.08 (August) to 2021, which overlaps with the simulation 

time period. Our analysis shows that averaging XCO2 observations at these scales minimizes the 

effect of retrieval error and mitigates influences caused by missing measurements due to cloud 

cover in the tropics and weak winter sunlight in polar regions (Guan et al., 2023). We similarly 

aggregate GEOS-Chem model output at this scale when compared to OCO-2. We use a 

consistent process to calculate IAV from the OCO-2 XCO2 (Equation 1), and GEOS-Chem 

XCO2 (Equation 2), noting that we must account for an additional term in the multi-decadal 

GEOS-Chem simulations since curvature in the long-term atmospheric growth trend must be 

taken into account. The methodology is based on approaches used in Keppel-Aleks et al. (2014) 

and NOAA curve fitting methodology (Thoning et al, 1989).  

IAVOCO-2(x,y,t) = Raw(x,y,t) – Long Term Trend(x,y,t) − Seasonal(x,y,m)                      Equation 1 

IAVGEOS-Chem(x,y,t) = Raw(x,y,t) – Long Term Trend(x,y,t) − Multi-Decadal (x,y,t)− 

Seasonal(x,y,m)                                                                                                                Equation 2 

In these equations, (x,y) denotes a specific gridcell, t denotes a specific time, and m 

denotes a monthly average. We first fit a third-order polynomial to the Raw timeseries to 

calculate the observed trend at each location. For the GEOS-Chem simulation, since polynomial 

fitting does not fully capture the long-term trend over multiple decades, we apply a Fast Fourier 

Transform 10-year low-pass filter to remove decadal-scale variability. We calculate a mean 

seasonal cycle by taking the average value of all January, February, etc. data after removing the 

long-term trends.  Finally, we remove the mean seasonal cycle from the detrended timeseries at 

each gridcell to obtain the IAV anomaly timeseries. We calculate the IAV amplitude as the 

standard deviation of the IAV anomaly timeseries. An identical method is used to calculate IAV 

from the gridded fluxes. 
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3.3 Results  

Figure 3.2 shows the global distribution of air-sea CO2 flux IAV amplitude (calculated as 

the standard deviation of IAV anomalies) over 40 years from 1982 to 2021 in the observation-

based products. The three observation-based products show broadly similar magnitudes and 

spatial patterns in air-sea flux IAV (Fig B.3). The flux IAV amplitude is highest over the 

northern midlatitude ocean, Eastern Pacific, and Southern Ocean, with the largest inter-product 

differences in the northern hemisphere. In the Southern Hemisphere, the zonally integrated air-

sea flux IAV is largest at 60°, around 0.6-0.7 mol m-2 y-1. The flux IAV decreases by almost a 

factor of three in the subtropical regions in both hemispheres to around 0.2 mol m-2 s-1. The large 

zonal IAV and the small zonal standard deviation around a latitude circle in the Southern Ocean, 

especially for SOMFFN and CMEMS (shading in Fig 3.2d,f), is due to the fact that the flux IAV 

is more uniform across the whole latitudinal band while in the Northern Hemisphere, the larger 

positive and negative flux IAV at the gridcell level partially cancels when integrated around a 

latitude band. (shading in Fig 3.2d-f). Consequently, the Southern Hemisphere has a bigger 

imprint of atmospheric XCO2 IAV, as we will show below. 

The XCO2 timeseries simulated from global air-sea fluxes (i.e., the sum of all tagged 

regions) shows small IAV that ranges from +/-0.2 ppm for Jena (Fig 3.3) with smaller variations 

for SOMFFN and CMEMS. Both spatially averaged timeseries (Fig 3.3) and maps of IAV (Fig 

B.4) are notably different across the three observation-based flux product when propagated 

through an atmospheric transport model. The simulated XCO2 from Jena is also somewhat phase 

shifted compared to that that derived from the other two observation-based flux products, 

although XCO2 simulated from any one flux product is generally coherent across latitude bands.  

The corresponding globally averaged XCO2 IAV amplitude is about 0.11 ppm for Jena, but less  
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Figure 3.2:  Map of ocean flux IAV amplitude (a-c) and latitudinal profile of zonal mean flux IAV 
amplitude (d-f). Warmer colors signify more IAV while cooler colors indicate lower IAV regions. The IAV 
amplitude is calculated from the standard deviation of the IAV timeseries. The zonal mean IAV is 
obtained by averaging the IAV timeseries for all longitudes within the specified latitude band, while the 
shading shows the standard deviation of the IAV timeseries among all longitudes, indicating the 
coherence of flux IAV around a latitude circle. Panels (a, d) show results for SOMFFN; panels (b, e) 
show results for JENA and (c,f) show results for CMEMS (e,f) product.   
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Figure 3.3:  XCO2 IAV timeseries averaged for zonal bands between 60 °N and 60 °S from three different 
observation-based products. (a) 20 – 60 °N, (b) 0 – 20 °N, (c) 0 – 20 °S, (d) 20 – 60 °S. The background 
shading indicates the Multivariate ENSO Index (MEI), which is positive during El Niño phases. 
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Figure 3.4:  XCO2 IAV amplitude based on simulation from 1982 to 2021, using SOMFFN (a) JENA (b) 
and CMEMS (c) ocean observation-based products as input surface CO2 fluxes to GEOS-Chem 
atmospheric transport runs. Modeled XCO2 IAV amplitude based on simulation during the period of 
overlap with OCO-2 (September 2014 through the end of 2021), using SOMFFN (d), JENA (e), and 
CMEMS (f) as input fluxes. 
 

Flux Contribution Percenta
ge of 
Global 

NH 
high-lat 

NH  
mid-lat 

NH 
low-lat 

Equatorial SH low-
lat 

SH mid-
lat 

SH 
high-lat 

SOMFFN 1st contributor Area  1%  3.2% 4.8% 91%  
Gridcells  1.6%  2% 3.1% 93.3%  

2nd 
contributor 

Area  25.9% 2.2% 3.8% 48.1% 7.2% 12.8% 
Gridcells  33.2% 1.5% 2.5% 35.5% 5.5% 21.8% 

JENA 1st contributor Area  12.1% 18.2% 1% 54.3% 14.4%  
Gridcells  22.6% 14.2% 0.6% 37.6% 25%  

2nd 
contributor 

Area  3.6% 15.7% 2% 28% 50.7%  
Gridcells  3.4% 25% 1.3% 34.7% 35.6%  

CMEMS 1st contributor Area  16.4% 1.4% 5.9% 12.3% 64%  
Gridcells  25.5% 0.9% 3.8% 8% 61.8%  

2nd 
contributor 

Area  13.4% 2.6% 3.4% 47.1% 30.9% 2.6% 
Gridcells  11.3% 1.7% 2.2% 46.3% 34.9% 3.6% 

 

Table 3.1: The percentage of global area or global gridcells for which each ocean flux region is the 
dominant driver of IAV in simulations with time-varying ocean fluxes and time-varying atmospheric 
transport.  
 

than 0.07 ppm for SOMFFN and CMEMS (Fig 3.4 a-c). Each data product shows the ocean-

driven XCO2 IAV amplitude largest over the tropical Pacific and the Southern Ocean. When the 

IAV amplitude is calculated for the period from September 2014 to 2021, the overlapping period 

between OCO-2 observations and observation-based products, the amplitude is similar for 
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SOMFFN and JENA (around 0.12 ppm globally averaged), and similar for CMEMS (around 

0.08 ppm). The difference in simulated IAV for a given observation-based product calculated 

across two different time periods suggests that the ocean may leave a larger imprint on XCO2 

IAV in recent years compared to historical averages. 

The Southern Hemisphere oceanic regions are the dominant contributors to XCO2 IAV 

across the three models. We calculated the XCO2 IAV amplitude arising separately from each 

regional tracer, then determined the region that contributes the largest and second largest IAV 

amplitude to each global atmospheric gridcell (left-hand column of Fig 3.5, and Fig B.5-7). 

Across all three models, the Southern Hemisphere low- and mid-latitude regions are the primary 

contributors to IAV over 70-95% of the global area (Table 3.1), including large swaths of the 

Northern Hemisphere for SOMFFN and CMEMS. In fact, the SOMFFN simulation shows that 

Northern Hemisphere ocean regions are not a dominant contributor to XCO2 IAV even locally. 

In contrast, the XCO2 IAV from the simulation with JENA and CMEMS fluxes show a modest 

contribution from the Northern Hemisphere, with the mid latitude region emerging as the 

dominant contributor to about 15% of the global area. The dominant region in each gridcell 

accounts for up to 60% of the atmospheric XCO2 IAV amplitude for CMEMS (Fig 3.5f), and 

roughly 35-50% of the IAV amplitude for SOMFFN and JENA (Fig 3.5b and Fig 3.5d), 

suggesting more equable contributions from different regions. The second most-dominant 

contributors to atmospheric CO2 IAV are similarly the Southern Hemisphere, or tropics or 

Northern Hemisphere mid-latitude across all three ocean-flux-GEOS-Chem simulations (Table 

3.2). 

Not all IAV in XCO2 arises from IAV in surface fluxes; IAV in patterns of atmospheric 

transport is also an important contributor to XCO2 IAV. We calculate the relative contributions 

of ocean flux variability and IAV in atmospheric transport from GEOS-Chem simulations with 

climatological monthly-mean cyclostationary ocean CO2 fluxes as surface boundary conditions. 

IAV in these simulations arises only from IAV in atmospheric transport acting on the spatial 

gradients in XCO2 set up by the climatological annual cycle of ocean air-sea CO2 exchange. All 

three models show nearly identical spatial patterns in the XCO2 amplitude arising from 

cyclostationary air-sea CO2 fluxes (Fig 3.6 a-c), suggesting that seasonal flux patterns result in 

similar atmospheric gradients across the three models. The western Pacific warm pool is a 

hotspot for dynamics-driven variability, likely due to ENSO-driven changes in atmospheric 
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transport, and this region has an IAV amplitude of 0.07-0.08 ppm across all three simulations. 

Given the large variability in the magnitude of IAV among SOMFFN, JENA, and CMEMS (Fig 

3.4), the ratio of dynamics-driven variations to total IAV diverged among the ocean-flux-GEOS-

Chem simulations  (Fig 3.6 d-f). For SOMFFN and CMEMS, which showed smaller IAV when 

driven with interannually varying fluxes, transport contributes about 50% of IAV in the Southern 

Hemisphere subtropics and subpolar regions, and 50-80% of IAV in the tropics and high 

latitudes of both hemispheres. For JENA, which had high IAV in the full simulations (Fig 3.4b), 

transport contributes less than 20% of total IAV except in the tropical Pacific, where it 

contributes 50%. 

In the atmospheric transport simulations with cyclostationary fluxes, the Southern 

Hemisphere mid-latitude region is the dominant contributor to IAV for about 60% to 96% of the 

global area. Consistent across the three observation-based products, the second dominant 

contributor is the Southern Hemisphere low-latitude region. These results suggest that IAV in 

transport interacts most strongly with atmospheric gradients set up by Southern Hemisphere 

fluxes. Jena and CMEMS show that the Northern Hemisphere mid latitude regions are also 

important contributors when run with cyclostationary fluxes, and are the dominant contributor to 

roughly 15% to 25% of the global area. Fig 3.7 shows that in the cyclostationary simulations, the 

influence of Northern and Southern Hemisphere regions are more localized to the originating 

hemisphere. Taken together with the results from the time-varying fluxes, these results suggest 

that IAV in the Southern Hemisphere fluxes is synergistic with IAV from atmospheric transport, 

whereas, in the Northern hemisphere, IAV in the fluxes counteracts the IAV due to transport 

alone. 
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Figure 3.5: The most influential ocean subregions at different locations based on simulations from 1982 
to 2021 with time-varying SOMFFN (a), JENA (c), and CMEMS (e) fluxes. The dominant tracer is 
identified by calculating the XCO2 IAV amplitude for each gridcell caused by a single tracer and then 
ranking them. The fraction of the overall IAV amplitude accounted for by the dominant tracer is shown in 
the left-hand column for SOMFFN (b), JENA (d), and CMEMS (f).   
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Figure 3.6:  The XCO2 IAV amplitude from transport only simulations based on (a) SOMFFN, (b) JENA, 
and (c) CMEMS. The ratio of total IAV generated by transport alone for (d) SOMFFN, (e) JENA, and (f) 
CMEMS.  
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Products Contribution Percenta
ge of 
global 

NH 
high-lat 

NH  
mid-lat 

NH 
low-lat 

Equatorial SH low-
lat 

SH mid-
lat 

SH 
high-lat 

SOMFFN 1st contributor Area    1% 3% 96%  
Gridcells    0.6% 1.9% 97.4%  

2nd 
contributor 

Area  42.6%  3.4% 50.5% 3.5%  
Gridcells  45.2%  2.1% 50.4% 2.3%  

JENA 1st contributor Area  16.3%  6.2% 2.9% 74.6%  
Gridcells  23%  3.9% 1.9% 71.2%  

2nd 
contributor 

Area  30.5%  2.3% 45.7% 21.5%  
Gridcells  25.5%  1.5% 46.7% 26.3%  

CMEMS 1st contributor Area  25.8%  6% 10.2% 58%  
Gridcells  31.2%  3.8% 6.7% 58.3%  

2nd 
contributor 

Area  16.9% 0.2% 4.8% 45.4% 32.5% 0.2% 
Gridcells  14% 0.1% 3.1% 46.9% 35.6% 0.3% 

 
Table 3.2: Same as Table 3.1, except for simulations with cyclostationary ocean fluxes and time-varying 
atmospheric transport. 
 

The ocean-driven XCO2 IAV simulated by the three observation-based products is 

largely unrelated to observed patterns of IAV as observed by OCO-2, which includes other 

sources of IAV.  The OCO-2 IAV amplitude for the 2014-2021 period was an order of 

magnitude larger than that simulated from any of the three ocean observation-based products 

(Fig 3.4, Fig 3.8), although we note that the OCO-2 observations contain the imprint not only of 

ocean fluxes but also land and fossil emissions. The OCO-2 XCO2 IAV amplitude, calculated as 

the standard deviation of the IAV timeseries, suggests that XCO2 interannual variability over 

ocean basins is smaller than that over continent (around 0.4 ppm vs 1.2 ppm; Fig 3.8), although 

this may be due to larger error variance due to complex topography and land surface albedo 

variations (Guan et al., 2023; Mitchell et al., 2023). We calculate the correlation coefficient, 

slope, and fractional ratio between simulated XCO2 IAV and OCO-2 XCO2 IAV (Fig 3.9, Fig 

B.8) at the gridscale to explore where the imprint of the ocean might be detectible. Over most of 

the planet, the observed XCO2 IAV is only weakly correlated with the XCO2 IAV simulated 

from ocean fluxes, with many regions showing a slight negative correlation. Simulations from 

the three different flux products show different meridional patterns of correlation, with Jena 
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simulations showing slight positive correlations within the tropics and CMEMS showing slight 

positive correlations in the Southern Hemisphere, although we note these relationships are not 

statistically significant. Across all regions, the slope between the observed and simulated XCO2 

IAV is less than 0.2, consistent with the magnitude of the observed IAV being dominated by 

terrestrial signals.  The maps of correlations and slopes suggest that detecting ocean IAV directly 

from space-based measurements is challenging given other sources of variability. Disentangling 

these multiple impacts to differentiate between plausible ocean flux products, such as the three 

analyzed here, will require a combination of observations and modeling. 

Previous analysis of OCO-2 observations over the tropical Pacific suggested that space-

based observations can detect an ocean-driven decrease in XCO2 , potentially as large as 0.5 

ppm, during the initial phases of the strong 2015 El Niño (Chatterjee et al., 2017). Our 

simulations show that atmospheric XCO2 decreases over the Nino 3.4 region during the strong 

1997-1998 El Niño (by about 0.3 ppm), but show a weaker decrease (about 0.1ppm) during 

2015-2016 El Niño. The decrease in the atmospheric XCO2 IAV timeseries corresponds to the 

reduced ocean outgassing over the Niño 3.4 region (up to 1.5 mol/m2/y) (Fig 3.10), which is 

roughly similar between the two El Niño periods and leads to similar decreases in the tropical 

XCO2 tracer (Fig B.9). During the strong 1997-98 El Niño, however, a temporary reduction in 

Northern Hemisphere CO2 outgassing also reduced XCO2 over the Niño.4 region, amplifying the 

apparent response (Fig B.9).  As expected, XCO2 anomalies during the two El Niño events are  
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Figure 3.7:  The most influential ocean subregions at different locations based on simulations with 
cyclostationary SOMFFN (a), JENA (c), and CMEMS (e) ocean fluxes. The dominant tracer is identified 
by calculating the XCO2 IAV amplitude for each gridcell caused by each region and then ranking them. 
The fraction of the overall IAV amplitude accounted for by the dominant region is shown in the left-hand 
column for SOMFFN (b), JENA (d), and CMEMS (f).   
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Figure 3.8:  Observed OCO-2 XCO2 IAV amplitude, determined as the standard deviation of the IAV 
timeseries. Data equatorward of 45° are averaged at 5° by 5° resolution, and data poleward of 45° are 
averaged at 5° by 10° resolution based on Guan et al., (2022).  

 

mainly driven by changes in the air-sea CO2 flux rather than changes in the atmospheric 

circulation (Fig B.10). These simulations suggest that even during strong El Niño events, 

detecting the direct atmospheric imprint of changes in ocean outgassing within the tropics will be 

challenging given the small direct signal predicted from all three observational flux products, 

compounding variability from other ocean and terrestrial regions, and retrieval uncertainties in 

XCO2. 
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Figure 3.9:  (a-c) The correlation coefficient between simulated XCO2 IAV and OCO-2 IAV for (a) 
SOMFFN, (b) JENA, and (c) CMEMS data products. (d-f) The ratio of IAV amplitude between simulated 
oceanic XCO2 IAV and OCO-2 XCO2 IAV, for (d) SOMFFN, (e) JENA, (f) CMEMS 

 

3.4 Discussion 

We simulate ocean-driven IAV in atmospheric CO2 based on three estimates of air-sea 

CO2 fluxes from interpolated observation-based products. Although these observation-based 

products all use the same ocean pCO2 data to estimate gridded fluxes and show largely similar 
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spatial patterns of flux IAV, they result in very different estimates of atmospheric XCO2 IAV 

over the 40 year period from 1982-2021 (Fig 3.3; Fig 3.4 a-c). The inter-model spread was much 

reduced when looking at the four years from 2014-2021 overlapping with OCO-2 observations 

(Fig 3.4 d-f). During this period, all three observation-based flux products show a multi-year 

decrease in the net ocean flux. These results, together with the low correspondence with total 

IAV from OCO-2, suggest that multi-decadal variability in air-sea CO2 fluxes may be more 

detectable in atmospheric XCO2 than year-to-year variability. Our results largely corroborate the 

results from Nevison et al. (2008), who showed a small imprint for the ocean on atmospheric 

CO2 IAV.  Our results show that even in the remote Southern Ocean, which shows large IAV in 

the fluxes, the atmospheric IAV signature imparted by the ocean is small. 

Further, our simulations show that a large fraction of the IAV in atmospheric XCO2 

results from IAV in atmospheric transport acting on atmospheric gradients derived from 

cyclostationary ocean fluxes (Fig 3.6), not from IAV in the ocean fluxes themselves. The three 

observation-based products showed a very similar pattern of transport-induced IAV, with the 

dominant spatial contributors showing high consistency among the three data products (Table 

3.1). This is somewhat expected, since the MERRA/GEOS-Chem atmospheric transport patterns 

were common among all three simulations, but also requires that the three observation-based 

products simulate similar mean spatial seasonal patterns in atmospheric XCO2 (Fig B.11).  
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Figure 3.10:  IAV timeseries averaged over the Niño 3.4 region for three years centered on two strong El 
Niño events: 1997-1998 in blue; 2015-2016 in black. Year 1 and Year 3 are shaded blue, and Year 2 is 
shaded with green. Left Column shows the Ocean Flux IAV whereas the right column shows the simulated 
XCO2 IAV. (a)(d) SOMFFN, (b)(e) JENA, (c)(f) CMEMS. 

 
Our study shows that atmospheric XCO2 IAV is affected most strongly by air-sea CO2 

fluxes in the Southern Hemisphere (Fig 3.7), although the observation-based products show 

tradeoffs between the Southern Hemisphere low- and mid-latitude regions in terms of which 

region dominates. In the simulations with time-varying air-sea fluxes, the Southern Hemisphere, 

and to a lesser extent the tropics, dominate ocean-driven XCO2 IAV even in the Northern 
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Hemisphere. This pattern generally holds in the simulations with cyclostationary fluxes, although 

the Northern Hemisphere regions have a relatively larger contribution. 

Given the small signature of ocean fluxes on atmospheric XCO2 IAV, attributing ocean-

induced IAV based on space-based observations will be challenging.  Mitchell et al. (2023) 

provides a detailed assessment of time and space scales of variation in OCO-2 XCO2 over North 

American land and coastal ocean using a geostatistical approach. They identify synoptic scale 

variations as contributing up to 2 ppm2 variance, mesoscale transport, and correlated error as 

contributing up to 1 ppm variance, and random noise as up to 1 ppm. Given that our simulations 

suggest the imprint of ocean IAV is less than 0.1 ppm, these results suggest that directly 

observing ocean IAV is not possible with the current technology for space-based remote sensing 

of atmospheric CO2. Rather, XCO2 observations will require precision better than 0.1 ppm, or 

0.025% on a ~400 ppm background to detect and attribute ocean-driven variation. 

Furthermore, because transport is an important contributor to the patterns of atmospheric CO2 

IAV, using methods such as atmospheric inversions to back out ocean fluxes in an optimal 

estimation framework requires fidelity in atmospheric transport modeling (Schuh et al., 2019). 

Here, patterns of atmospheric transport-induced IAV from cyclostationary air-sea CO2 fluxes 

(Fig 3.6) are similar because all flux products were transported through the same GEOS-Chem 

transport model. The choice of a different transport model would likely result in different spatial 

patterns, albeit with a similarly small magnitude compared to the IAV amplitude of the 

observations.  

Our results temper the optimistic results from Chatterjee et al. (2017), who showed that a 

large ocean flux signal could be discerned from space-based XCO2 data. We note that this study 

targeted the area with the largest ocean-driven XCO2 IAV in our simulations (Fig 3.4), as well as 
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the region that was most sensitive to IAV in atmospheric transport (Fig 3.6). Nevertheless, all 

three ocean products we analyze suggest a smaller XCO2 IAV than what was observed for the 

2015-16 El Niño. These results suggest that flux anomalies associated with changing modes in 

ocean oscillations in other basins may impart smaller variations in the atmosphere that are 

difficult to detect using OCO-2 or a similar satellite. 

3.5 Conclusions   

We evaluate the imprint that air-sea CO2 fluxes from the whole ocean and different 

oceanic subregions leave on the atmospheric XCO2 interannual variation. We quantify the 

observed total XCO2 IAV based on OCO-2 column-mean CO2 observation from late 2014 to 

2022 and compare against the simulated ocean-driven XCO2 derived from the GEOS-Chem 

simulation using air-sea CO2 fluxes estimated from observation-based surface pCO2 products as 

input. The ocean-driven IAV in atmospheric XCO2 caused by air-sea CO2 exchange and IAV in 

atmospheric transport is about 0.1 ppm (standard deviation). While this magnitude is up to 40% 

of the total IAV in OCO-2 XCO2 over the tropical and subtropical ocean basins, this magnitude 

is well below random noise in individual OCO-2 soundings and systematic errors in the satellite 

observations themselves. These results indicate that direct observation of air-sea CO2 flux 

variations from total column XCO2 would be very challenging with current space-based sensors. 
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Chapter 4 Quantifying the Potential Influence of Arctic Permafrost Thawing on 
Atmospheric CO2 

 

Abstract 

The Northern permafrost region covers a quarter of the Northern Hemisphere’s land and 

contains nearly twice the amount of carbon (~1600 PgC) currently stored in the Earth’s 

atmosphere. The warming due to anthropogenic carbon emissions, which for the Arctic is over 

twice as fast as the global mean, is causing permafrost to thaw and microbial decomposition 

release – with a potential for positive carbon-climate feedbacks on par with anticipated emission 

reductions. Despite the critical role of Arctic permafrost degradation in the global carbon budget, 

it remains challenging to quantify and separate emissions of old carbon from permafrost from 

labile high-latitude carbon.  

In this study, we quantify permafrost-driven atmospheric CO2 enhancement using the 

GEOS-Chem atmospheric transport model with tagged CO2 species originating from permafrost 

sources in North America, Europe, and Asia.  Land-atmosphere net ecosystem CO2 exchange 

from an atmospheric inversion was adjusted by adding 1 Pg C/y of additional carbon release to 

North American, European, and Asian Arctic regions. We conduct two sensitivity tests (1) in 

which the additional 1 Pg C/y is uniformly released across the annual cycle and (2) in which the 

additional carbon release follows the seasonal cycle of heterotrophic respiration from labile 

carbon. CO2 tagging to individual Arctic regions enables quantification of fingerprints of each 

subregion and the whole Northern Permafrost on atmospheric partial column CO2 dry mole 

fraction in the lower or upper troposphere.
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We explore the detectability of these perturbations using an Observing System 

Simulation Experiment based upon a hypothetical satellite mission that employs a multi-spectral 

imaging spectrometer with channels in the thermal infrared and shortwave infrared, capable of 

providing two pieces of vertical information about the CO2 abundance. We sampled the GEOS-

Chem transport simulations using a realistic sampling pattern to generate pseudo-observations. 

During summertime, 1 Pg C/y of additional carbon release from North American permafrost can 

cause a mean of 3.5ppm and as large as 6ppm partial XCO2 increase in the lower troposphere, 

which is potentially detectable from space. The CO2 release from the permafrost has a much 

larger influence on the lower troposphere than the upper troposphere - the difference is as large 

as 3.5 ppm near the source region and as low as 0.5 ppm in a remote area. 

4.1 Introduction  

The northern hemisphere permafrost area is approximately 14 million km2 – equal to 

15% of the exposed land surface area, yet permafrost soils store about 60% of the world’s soil 

carbon (Turetsky et al., 2020). Much of this permafrost is critically vulnerable to climatic and 

disturbance-induced changes. Since 1981, the global temperature warming rate is 0.32° F (0.18° 

C) per decade (IPCC, 2021), and in high latitudes of the Northern Hemisphere, temperatures 

have been rising twice as fast as the global average - which is a phenomenon known as arctic 

amplification (Previdi et al., 2021). Such rapid warming and shifting climatic conditions are 

causing Arctic permafrost to become a substantial carbon source to the atmosphere (Turner et al., 

2020). 

Current estimates report 1200 Pg C in the active layer (where the soil freezes and thaws 

seasonally) and around 500 PgC in deeper Yedoma (carbon-rich Pleistocene-age permafrost with 

50–90% ice content by volume) and deposits (Strauss et al. 2013; Biskaborn et al., 2019). 
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Seasonal thawing of the active layer begins in spring when air temperatures rise above 0 °C and 

snow cover is removed. The temporal and spatial variations of these seasonal freeze-thaw 

processes within the active layer are a major determinant of permafrost vulnerability and can be 

influenced by factors including temperature, snow depth, vegetation coverage, land topography, 

soil moisture, precipitation, and disturbance such as wildfire and land-use change (Douglas et al., 

2020; Neumann et al., 2019). Systematic climate warming and related climatic changes are the 

main cause of gradual permafrost thaw, while extreme temperature or episodic events such as 

wildfires (Scholten et al., 2021; Mack et al., 2021) can cause abrupt thaw. Both the abrupt and 

gradual thawing of permafrost can expose larger quantities of organic carbon to aerobic 

conditions to decompose, and carbon can also be mobilized by erosion from upland soils into 

water systems (Schwab et al., 2020; Vonk et al., 2015). In this way, human-induced climate 

warming cause Northern Hemisphere permafrost regions to emit greenhouse gases into the 

atmosphere, generating positive feedback to make climate change happen faster than expected 

based on projected emissions from human activities alone (Natali et al., 2019; Schuur et al., 

2015).  

The need to understand these emissions is critical given that climate simulations indicate 

that by next century, permafrost area could decrease by 3 to 5 million km2 (4PgC) under the 

Representative Concentration Pathway 4.5 (RCP4.5) scenario and by 6 to 16 million km2 

(341PgC) under the Representative Concentration Pathway 8.5 (RCP8.5)  scenario, and abrupt 

thaw over the twenty-first century will lead to a CO2 feedback of 3.1PgC per °C global 

temperature increase based on RCP8.5 projection, and RCP4.5 CO2 feedback from abrupt thaw 

is 2.3PgC per °C increase, but increases to 11.6PgC per °C increase beyond the twenty-first 

century (Walter et al., 2018). Currently, the Earth system models framework applied to the 
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northern permafrost region mainly focuses on how the thickness and changing of the 

hydrological state of the permafrost active layer (Fisher et al., 2018; Burke et al., 2020). 

However, there are considerable uncertainties in the thawing rate and extent, the vegetation 

response, the characteristics of regional heterogeneities in soil properties, the decomposition 

timescales, and the effect of arctic amplification of global warming on permafrost degradation, 

which may result in an underestimate of the carbon emissions from thawing permafrost (Jin et 

al., 2021; Mishra et al., 2021).  

Detailed monitoring and characterization are required to better understand permafrost 

vulnerability, seasonal and interannual changes, and the thawing and degrading processes. In-situ 

observations such as NOAA Earth System Research Laboratories Global Monitoring Laboratory 

and FLUXNET eddy covariance towers can quantify trace gas concentrations in the boundary 

layer or help quantify net carbon fluxes. Atmospheric CO2 observations, however, are sensitive 

to large concentration footprints (>1000 km). Flux towers are localized data with few locations, 

limited coverage, and sensitivity (Schimel, D. & Schneider, F. D, 2019), thus have limitation in 

detecting carbon release from permafrost, especially episodic events.  Airborne campaigns such 

as HIAPER Pole-to-Pole Observations (HIPPO) target measurements in the troposphere provides 

regional coverage and vertical profiles from several hours to days, and can bridge spatial scales 

between in-situ and satellite observations. Yet the campaigns are usually offering short-term 

snapshots, not routine monitoring.  Previous studies focused on CO2 flux measurements have 

produced results that have not been fully agreed upon. For instance, Belshe et al. (2013) 

suggested that the tundra remained a general carbon source of 0.462 Pg C per year. The recent 

NASA campaign (Commane et al. 2017) found tundra Alaska to be a consistent net CO2 source 

to the atmosphere, whereas the boreal forest region was either neutral or a net CO2 sink due to 
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the interannual variation of photosynthesis and respiration and the combustion emissions by 

wildfire. The differential response of individual ecosystem types and the relative scarcity of 

measurement sites across the Arctic region makes it difficult to upscale the aggregated effect of 

ecosystems, including tundra, boreal forests, and wetland/lake/fresh water. The long cold Arctic 

winter season limits both Airborne and ground-based observations, due to operating difficulties. 

Space-based shortwave infrared satellite observations dedicated to monitoring the carbon cycle, 

including GOSAT (Kuze et al.,2016), OCO-2 (Eldering et al., 2017), GHGSat, CO2M, Sentinel-5 

circulating in the low Earth orbit, provide monthly to seasonal coverage, and are creating multi-

year dataset records for the research community. However, carbon loss in winter and shoulder 

seasons (fall and spring) is difficult to observe given the high solar viewing angles and the fact 

that all the missions above use reflected solar sunlight in the NIR. Microbes rely on fresh plant 

matter in summer but older organic matter from fall to winter to spring, and the polar night can 

serve as a critical period for climate-vulnerable permafrost Carbon pools (Pedron et al.,2022). 

Moreover, the current satellites, either operating with a low Earth orbit (LEO) or 

geosynchronous orbit (GEO), are not especially well suited to provide observations for carbon 

cycle studies at northern high latitudes. LEO is sun-synchronous – a satellite passes over a given 

point on the Earth at a fixed time of day, but obtaining adequate temporal coverage requires 

multiple LEO satellites (Velazco et al., 2011). GEO can offer continuous coverage, yet 

observations are limited to ~55°S–55°N, and the difficulty remains when viewing higher 

latitudes caused by the large nadir viewing angles.  

In this study, we quantify the detectability of permafrost thaw using a hypothetical 

observing system that represents the next generation of space-based carbon observations, to 

determine the observable atmospheric CO2 enhancement owing to permafrost thawing by 
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simulating three-dimensional atmospheric CO2 using the GEOS-Chem atmospheric transport 

model with tagged CO2 species originating from boreal and Arctic regions across North 

America, Europe, and Asia. Our analysis points toward and provides preliminary estimates of 

observational requirements to identify signals from the Northern Permafrost regions using space-

based observations. 

4.2.  Data and Methods 

We perform an Observing System. Simulation Experiment (OSSE) to determine the 

feasibility of detecting permafrost carbon losses from space. Our OSSE is based on a 

multispectral imaging spectrometer (Natraj et al., 2022) in a highly elliptical Molniya orbit, with 

an inclination of 63.4 degrees, an argument of perigee of 270 degrees, and an orbital period of 

approximately half a sidereal day (Trichtchenko et al., 2019). In this orbit, the spacecraft would 

see the Pan-Arctic (north of 48N) for at least 8 hours of every 12-hour period. For this study, we 

make a conservative assumption that the spacecraft would be able to image the Pan-Arctic only 

twice per day. This observing system is used to sample atmospheric CO2 in the GEOS-Chem 

atmospheric transport model in simulations with and without enhanced permafrost carbon 

emissions. We analyze pseudo observations based on our simulations to quantify CO2 

enhancements that could be seen given a perfect sampling system and a realistic sampling system 

based on the orbit and instrument characteristics. The observing system and atmospheric 

simulations are described below. 

4.2.1 Multispectral Imaging Spectrometer 

The multispectral imager would measure CO2 absorption spectra in the shortwave 

infrared (SWIR) region at 1.6 and 2.0 µm, and those in the thermal infrared (TIR) regions at 4.6, 

10, and 15 µm. Observations in these two spectral bands provide the potential for two vertical 
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pieces of information since SWIR observations are sensitive to the near-surface where carbon 

exchange occurs and TIR observations are sensitive to the upper free troposphere. TIR 

observations do not require reflected sunlight and therefore may provide observational 

constraints on carbon losses during winter and shoulder seasons.  

Similar to Natraj et al., (2022) synthetic retrievals were performed to determine the 

precision and vertical sensitivity of the information from these spectral channels. Briefly, the 

averaging kernel as a function of altitude defines the relation between the retrieved quantities and 

the true atmospheric state. The averaging kernels are computed for every scene as part of the 

retrieval algorithm, starting with an estimate of the initial state of the atmosphere and the surface, 

then using the Jacobians and the retrieval constraint in the forward model, which would account 

for the radiative transfer in the atmosphere, satellite observation geometry (solar zenith angle, 

viewing angle), properties of clouds, surface properties, the presence of other tracers and 

aerosols, spectral line strengths and instrument aspects. As an output of this algorithm, the 

averaging kernel (defined as AK) is a valid concept for interpreting the optimal estimation 

retrieval. Figure 4.3 and Figure 4.4 show the Pseudo averaging Kernel for TIR and SW band 

detections for different months, AK = 1,2,21,22 are for OCT to MAY (assuming solar zenith 

delta T = 0.72 ); AK = 4,5,24,25 are for JUN and JUL (assuming solar zenith delta T = 1.2 ); AK 

= 5,7,25,27 (assuming solar zenith delta T = 1.5 ) are for AUG and SEP. AK = 2, 5, 22, 25 are 

based on the assumption that land is covered by snow;  AK = 1,4,7,21,24,27 are based on the 

assumption that land is covered by forest. The TIR AK (Fig 4.3) peaks at 0.2hPa, but the SWIR 

(Fig 4.4) peaks from the low to mid-troposphere, and more rapid increases in the lower 

troposphere.  
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In the analysis described below, we apply the averaging kernels to the simulated 

atmospheric CO2 to generate “realistic” pseudo observations. Because only a limited number of 

synthetic retrievals were conducted, we map the AKs to all locations and seasons in the Pan-

Arctic based on presence or absence of snow, vegetation type of the underlying surface, and 

mean solar zenith angle of a particular location and month. 

4.2.2 GEOS-Chem Simulations 

We simulate atmospheric CO2 using GEOS-Chem (Bey et al., 2001), an offline global 

chemical transport model driven by meteorological input from the Goddard Earth Observing 

System (GEOS) of the NASA Global Modeling and Assimilation Office (GMAO) and developed 

by an extensive global community of researchers. It has been widely used for carbon gas flux 

inversion and source attribution (Nassar et al., 2010; Fisher et al., 2017). We use version 12.0.0 

of GEOS-Chem which was released in Aug 2018.  

The meteorological inputs for GEOS-Chem come from the Modern-Era Retrospective 

analysis for Research and Applications, 80 Version 2 (MERRA2) reanalysis, with the dynamic 

time step set to be 600s. The model is initialized with a globally uniform atmospheric CO2 mole 

fraction equal to 410 ppm. We run simulations at 2° in latitude by 2.5° in longitude with 47 

vertical levels up to 0.01 hPa on a hybrid eta (sigma-pressure) grid.  Convective transport in 

GEOS-Chem is simulated with a single-plume scheme (Wu et al., 2007); while boundary layer 

mixing in GEOS-Chem uses the non-local parameterization (Lin and McElroy, 2010) which 

draws on the mixing depths, temperature, latent and sensible heat fluxes, and specific humidity. 

Although bias in the vertical distribution of CO2 has been shown in GEOS-Chem for northern 

high latitudes (Schuh et al., 2019), similar tagged transport runs have been shown to agree 

favorably with observations (Lin et al., 2020). 
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To simulate CO2 fields, we use realistic net ecosystem exchange (NEE) as the lower 

boundary condition to the atmospheric model. In this study, we follow the patterns of monthly 

land fluxes from the CAMS CO2 global inversion v17r1 (Chevallier et al., 2019), which covers 

1979 to 2017 with a spatial resolution of 1.875° in latitude by 3.75° in the longitude to get the 

estimates of net ecosystem exchange, and represents the carbon balance of the land. The net 

fluxes include contributions from the natural biosphere including vegetation and wetlands. Based 

on the comprehensive synthesis estimation for CO2 emissions from thawing permafrost across 

the Arctic region, which shall be between 5 and 15% of the permafrost carbon pool over decades 

and centuries under RCP 8.5 pathway, the magnitude of annual CO2 release of ∼0.5–2 Pg C/yr 

(Schuur and Mack, 2018). Therefore, we adopt a setting that the carbon fluxes exchange between 

the permafrost and the atmosphere to be 1PgC/yr for each of the Arctic terrestrial ecosystems 

region in each single simulation run, in which we consider permafrost thawing as an important 

accelerator to climate change on a similar scale to land-use change. 

We simulate atmospheric CO2 contributions from individual subregions, from 2011 to 

2016, including a 3-year spin-up, by modifying the GEOS-Chem code base to tag the source 

regions and separately track different CO2 species originating from each region (Lin et al., 2020). 

This approach is possible since CO2 is a passive tracer that is not involved in chemical reactions. 

In this baseline simulation, each CO2 tracer corresponds to the influence of NEE CO2 fluxes 

from one tagged region, which is defined as 10 tagged regions for terrestrial ecosystems (Fig 

4.1), including North America Arctic, European Arctic, Siberian Arctic, four boreal, two 

temperate ecosystems, with the combined regions of Equatorial and Southern Hemisphere 

Terrestrial. The delineation of these ecosystems was mostly according to the dominant plant 

functional types (PFTs), together with the climate zones into account (Lin et al., 2020). We 
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calculate XCO2 in the GEOS-Chem runs by integrating the dry air mole fraction for the 47 model 

layers.  

 

 

Figure 4.1:  The tracers defined for the tagged GEOS-CHEM 3D atmospheric transport simulations 
based on different vegetation types.  
 

4.2.3 Perturbations to Represent Permafrost Loss 

We perturb the NEE fluxes from CAMS in two ways to represent additional carbon 

losses from permafrost (Fig 4.2). First, we use heterotrophic respiration (Rh) from the Carnegie-

Ames-Stanford Approach (CASA; Olsen and Randerson 2003) model at  1 by 1° resolution to 

represent the baseline mean annual cycle of respiration. Rh fluxes of the CASA model are based 

on a compartmental pool structure, which simulates the loss of CO2 from decomposing plant 

residue and surface soil organic matter (SOM) pools. We add a monthly enhancement to the 

CASA Rh, distributing 1 Pg C of total annual increase over the annual cycle proportional to the 

CASA Rh estimate for any given month (Fig 4.5). This enhanced Rh is added to the original 

NEE fluxes in Arctic North America, or Arctic Europe, or Arctic Siberian so that there is a net 

source of carbon to the atmosphere from the individual regions. In the second type of 



 

102 
 

configuration, we add a uniform monthly Rh enhancement, again with 1 Pg C of total annual 

increase, for each of the 3 Arctic Regions. As a following step, we execute six enhanced 

respiration simulations, separately quantifying the atmospheric imprint of permafrost thaw in the 

3 source regions, with type 1 (Fig 4.2 a-c) or type 2 (Fig 4.2 d-f) thawing settings. We then 

separately track and attribute the enhancement of atmospheric CO2 by comparing results from 

the perturbation simulation with those from the baseline simulation. 

 

 

 

Figure 4.2:  The input fluxes in the 2 types of the simulation run mirroring the permafrost thawing 
process. (a)-(c) shows the fluxes reflecting thawing with a seasonal cycle; (d)-(f) shows the fluxes with 
uniform thawing throughout the year. 
 

4.2.4 Analysis Framework 

Starting with the GEOS-Chem nature run and enhanced emissions runs described above, 

we sample the simulations to produce pseudo-observations. First, we integrate total column 

XCO2 and lower tropospheric (LT) and upper tropospheric (UT) partial columns. The LT is 

sensitive to pressures greater than 500 hPa and the UT is sensitive to pressures less than 500 hPa. 

For a “perfect” observing system, we assume that the AKs equal unity for all pressures. For a 
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“realistic” observing system, we apply the SWIR and TIR AKs (Fig 4.3 and Fig 4.4). We also 

calculate a ΔCO2 value, which represents the difference between the LT and UT partial columns 

and may reflect the magnitude of the underlying surface fluxes. 

We propagate error in our estimates of the CO2 enhancements based on the synthetic 

retrieval precisions. We assume a 4 km footprint; thus 3850 observations can be detected within 

a 2x2.5 degree gridcell, of approximately 220 km (north to south) by 280 km (east to west). Error 

is calculated as the square root of the sum of lower troposphere CO2 enhancement error, upper 

troposphere CO2 enhancement error, and total column CO2 enhancement standard deviation, 

over the number of the cloud free pixels.  

We also apply a cloud mask, since clouds can corrupt both the shortwave infrared 

reflectance and thermal infrared emission signal, therefore we mask our sampling. We apply a 

mask generated from the cloud fraction based on the MODerate-resolution Imaging 

Spectroradiometer (MODIS) Cloud Product Daily Global Level 2 data at 1-km spatial 

resolutions resolution and hourly temporal resolution to mask for the presence of clouds. The 

algorithm combines infrared and visible techniques to determine both physical and radiative 

cloud properties, specify confidence for an unobstructed view, and identify scenes where land 

and ocean should be retrieved based upon the degree of surface obstruction caused by cloud. 

Throughout the rest of the paper, we analyze only the simulation with enhanced Rh from 

North America distributed according to the seasonal cycle of Rh (Fig 4.6 – Fig 4.12).  
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Figure 4.3: The Pseudo averaging Kernel of the space-based satellite TIR band detections for different 
months, AK = 1 and AK = 2 are for OCT to MAY (assuming solar zenith delta T = 0.72 ); AK = 4 and AK 
= 5 are for JUN and JUL (assuming solar zenith delta T = 1.2 ); AK = 5 and AK = 7 (assuming solar 
zenith delta T = 1.5 );  are for AUG and SEP. AK = 2, 5 are based on the assumption that land is covered 
by snow;  AK = 1,4,7 are based on the assumption that land is covered by forest. 
 
 

 

Figure 4.4: The Pseudo averaging Kernel of the space-based satellite TIR band detections for different 
months, AK = 21 and AK = 22 are for OCT to MAY (assuming solar zenith delta T = 0.72 ); AK = 24 and 
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AK = 25 are for JUN and JUL (assuming solar zenith delta T = 1.2 ); AK = 25 and AK = 27 (assuming 
solar zenith delta T = 1.5 );  are for AUG and SEP. AK = 22, 25 are based on the assumption that land is 
covered by snow;  AK = 21,24,27 are based on the assumption that land is covered by forest. 
 

 

Figure 4.5: (a) Cloud-free pixels of the space-based satellite detections for July based on MODIS 0.25 
degree cloud mask and assumption of a 4x4 km satellite footprint. (b) Number of hours favorable to TIR 
sampling assuming a possibility of two satellite overpasses per day, where and how many hours that TIR 
band has detectability, (c) shows the regions where and how many hours that SWIR band has 
detectability. 
 

4.3 Results  

Given a perfect observing system (AK=1 and no cloud masking), the total column XCO2 

enhancement for July is typically around 3 ppm over the North American source region given a 1 

Pg C y-1 enhancement distributed according to the seasonal cycle of heterotrophic respiration 

(Fig 4.6a).   In the upper troposphere, less than 0.6 ppm of increase can be generated in the 

summertime July, when the emission is the strongest and most intense (Fig 4.6b). By contrast, 

the lower troposphere can have an increase of up to 4.5 ppm over the Arctic North America 
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emission sourcing region (Fig 4.6c). The influence from the upper troposphere is subtle – since 

the difference in the CO2 enhancement between the lower and upper troposphere is nearly as 

large as that of the total column (Fig 4.6c). We highlight a longitudinal and a latitudinal transect 

that intersects over boreal Canada, which shows that most of the enhancement is below 500 hPa 

(Fig 4.6e and Fig 4.6f). 

 

Figure 4.6:  Difference (enhancement) in CO2 variables between simulations with enhanced respiration 
and baseline NEE. All panels show monthly mean data for July. (a) Total Column XCO2 enhancement, (b) 
Lower Tropospheric Partial Column, (c) Upper Tropospheric Partial Column UT CO2 enhancement, (d) 
Δ(UT-LT) CO2 enhancement, (e) north-south cross-section in the CO2 mole fraction enhancement along 
120°W (f) east-west cross-section in the CO2 mole fraction enhancement along 60°.  
 

The time series of monthly mean XCO2 enhancement for our simulation show a summer 

peak, consistent with the period of maximum emissions, with a secular increase over the 12 

months simulated due to the continued accumulation of the 1 Pg anomalous flux (Fig 4.7).  The 
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partial column CO2 in the lower troposphere shares the same pattern, albeit with a stronger signal 

up to 1 ppm larger than for XCO2. The upper partial column has an increasing trend throughout 

the year, with minimal seasonality arising from the seasonality of fluxes at the surface. The 

vertical contrast ΔCO2 between upper and lower troposphere peaks with surface emissions, and 

notably shows a larger decrease after peak emissions compared to the total column, more closely 

tracking fluxes (Fig 4.7c vs 4.7a).  

 

Figure 4.7: Simulated Monthly Mean CO2 enhancement over NA arctic Region for 2015 JAN to DEC, 
with model input fluxes from North America, for Total Column (a), Lower (Blue) and Upper Troposphere 
(RED) (b), and the difference between Upper and Lower Troposphere (c). (d)-(f) is over EU arctic 
Region, (g)-(h)is over SIB arctic Region. 
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Histograms of hourly CO2 enhancement at 12 sample locations within the Arctic (Fig 4.8) 

show substantial variation in LT CO2 enhancement over the North American source region (Fig 

4.9). During the 744 hours in July, the sites within the North American source region show a flat 

distribution of LT CO2 within the month, with enhancements up to 3 ppm (Fig 4.9a-d, Fig 4.10a-

d). Outside the source region, sites closer to the source (e.g. MBC and TER, in Fig 4.9e-f, Fig 

4.10e-f) show smaller mean enhancements, albeit with a heavy tail between 2-3 ppm 

enhancement. In contrast, sites in Europe and Asia show reduced variability with hourly 

enhancements typically less than 1.5 ppm with a tighter distribution (Fig 4.9g-n).  

 

Figure 4.8:  Maps of the selected sample locations in the mid-lat to the high-lat Northern Hemisphere. 
 
 

 

Figure 4.9: Histogram showing monthly Lower Troposphere CO2 enhancement of the NA permafrost 
thawing generated CO2 enhancement over the selected locations, listed in the order from the west to the 
east. 
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Figure 4.10:  Monthly mean (bold) and STD (shading) of the vertical profile of the permafrost thawing 
generated CO2 enhancement over the selected locations, with Comparisons of the mean and STD of CO2 
enhancement between UT and LT over. 
 

The vertical contrast ΔCO2 is a sensitive diagnostic for the underlying surface flux (Fig 

4.11). XCO2 (Fig 4.11a) and the lower tropospheric partial column (Fig 4.11b) are both 

positively correlated with the flux anomaly but also reflect the large-scale flux accumulation 

(evidenced by the ~1ppm contrast between the January and December values, despite having the 

same underlying surface flux). The upper tropospheric partial column does not correlate well 

with the flux anomaly at the surface (Fig 4.11b). In contrast, the ΔCO2 shows a strong positive 

correlation (Fig 4.11c) with only a 0.5 ppm difference between December and January when the 

underlying flux was the same. Nevertheless, over Europe and Siberia, far from the enhanced 

North American source, the enhancements mirror the pattern over North America with a monthly 

mean magnitude that can be 75% that of the source region. 
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Figure 4.11: Land-Atmosphere exchange fluxes seasonal cycle vs Simulated Monthly Mean XCO2 
enhancement for 2015 JAN to DEC, with model input fluxes from North America, for Total Column 
(a,d,g), Lower Troposphere (Blue) and Upper Troposphere (Red), and the difference between Upper and 
Lower Troposphere (c,f,i). (a)-(c) over NA Arctic, (d)-(f) over EU Arctic, (g)-(i) over SIB Arctic.  
 

The above analysis reflects perfect sampling, but results appear robust when realistic 

sampling, with the application of cloud masks and averaging kernels, is applied. In Figure 4.12, 

during July, the expected satellite detected XCO2 enhancement due to permafrost thawing at the 

scale of 3.5ppm, and with the coverage to the northern regions over all continents, the estimated 

detection error is less than 10% of the idealized detection signal, indicating the latent reliability 

and precision. In Figure 4.13, during the shouldering season in September, there is still 
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promising coverage of the XCO2 signal with only minor loss near the Northern coastal edges, 

implying the great potential of monitoring the atmospheric CO2 in the Arctic, which could help 

fill the vacuums of current observations. 

 

Figure 4.12: The comparison of the ideal modeled, the expected satellite detected XCO2 enhancement, 
and the estimation of detection error due to NA permafrost thawing mirroring the NEE cycle, using 2015 
July as an example.  
 

 

 
Figure 4.13: The comparison of the ideal modeled the expected satellite detected XCO2 enhancement, the 
estimation of detection error due to NA permafrost thawing mirroring the NEE cycle, using 2015 
September as an example.  
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4.4 Discussions 

TIR has the advantage of providing both day and night continuous measurements in 

either summertime, wintertime and shouldering seasons. The column averaged CO2 enhancement 

from the pseudo satellite observation shows the promising potential capability to capture the 

atmospheric XCO2 annual variation (Fig 4.11) which reflects the seasonal cycle of the land 

fluxes from permafrost thawing and Net Ecosystem Exchange. The ideal 2x2.5 degree high-

resolution sounder would help to attain a substantial gain of information mostly due to their 

broader spectral coverage and finer resolution. Therefore, the ideal XCO2 from measurements 

could reach the precision of 0.1 ppm on a monthly time scale, with an estimated error of less than 

1 percent (Fig 4.12 and Fig 4.13). The OSSE described in this study demonstrates that TIR 

retrieved pseudo XCO2 from a designed mission provides improved constraints on Northern 

Arctic CO2 fluxes relative to current satellite missions since it offers better observations during 

winter months and Northern Arctic Latitudes. Future space instruments could consider this wide 

range of values to obtain CO2 concentrations regionally, and possibly extend the CO2 monitoring 

system over Southern Hemisphere Antarctica.  

Despite the encouraging performance of the perfect model and pseudo satellite 

observation in estimating CO2 concentration, we understand that there will be challenges to 

assimilating the high-temporal-resolution data from the sounding detections, the generates 

difficulty in rapid evolving processes (e.g. sudden emission events). The spacecraft would only 

be able to pass the Pan-Arctic only once per day. Although the overpasses occur at various times 

per day, and we could aggregate the detections into larger gridcells, it would remain challenging 

to get the XCO2 diurnal cycle in fine scales from spaceborne observations. 

 



 

113 
 

4.5 Conclusions   

We quantify permafrost-driven atmospheric CO2 enhancement using the GEOS-Chem 

atmospheric transport model originating from permafrost sources in North America. We simulate 

land-atmosphere CO2 exchange by adding 1 Pg C/y of additional carbon release following the 

seasonal cycle of heterotrophic respiration from labile carbon, to quantify the fingerprints on 

atmospheric partial column CO2 dry mole fraction in the lower or upper troposphere. During 

summertime, 1 Pg C/y of additional carbon release from North American permafrost can cause a 

mean of 3.5ppm and as large as 6ppm partial XCO2 increase in the lower troposphere, which is 

potentially detectable from space. The CO2 release from the permafrost has a much larger 

influence on the lower troposphere than the upper troposphere - the difference is as large as 3.5 

ppm near the source region and as low as 0.5 ppm in a remote area. Our analysis points toward 

and provides preliminary estimates of observational requirements to identify signals from the 

Northern Permafrost regions using space-based observations. 
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Chapter 5 Conclusions 

 

The space-based detecting satellites launched in recent years have the potential to provide 

regional to global measurements of CO2, can successfully monitor CO2 from seasonal to 

interannual timescales over both land and ocean, improve the spatial coverage compared with the 

currently existing ground-based networks, and help to refine our understanding of Earth’s 

sources and sinks of carbon. This dissertation work has combined the observed atmospheric CO2 

IAV from NASAs OCO-2 satellite mission-which detects the combined imprint of the ocean, 

terrestrial ecosystem, and human activities, and a three-dimensional atmospheric transport 

model, to estimate the likely range of IAV in the atmospheric CO2 owing to air-sea carbon 

exchange. As a further step, the detectability of the perturbations intrigued by permafrost 

thawing was quantified based upon a hypothetical satellite mission. The following are the 

chapter conclusions and recommended next steps for continued research. 

Chapter 2 describes interannual variability in atmospheric CO2, as measured from 

NASA’s Orbiting Carbon Observatory-2. This study shows that IAV in space-based column 

observations XCO2 are highly correlated to that of ground-based surface CO2 from long-term 

monitoring sites, but that zonal averages of satellite IAV are more correlated than are those of 

surface CO2, reflecting an important role for tropospheric transport in XCO2. Further, XCO2 IAV 

timeseries show a strong impact from El Nino conditions, with higher anomalies during El Nino 

years. Because OCO-2 provides near-global coverage, this study provides a roadmap to study 

IAV in regions where the surface network is sparse, such as oceans and remote land region
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In Chapter 3, I quantify the likely range of IAV in the atmospheric CO2 mole fraction 

owing to air-sea carbon exchange by simulating three-dimensional atmospheric CO2 using the 

GEOS-Chem atmospheric transport model. The ocean fluxes I use are data products from the 

Surface Ocean pCO2 Mapping intercomparison (SOCOM), which interpolate air-sea fluxes from 

ΔpCO2 observations through various mapping techniques. I separately label CO2 from individual 

ocean regions, aiming to identify the fingerprints of ocean subregions and the whole ocean on 

atmospheric total column CO2 dry mole fraction XCO2. These simulations were analyzed in 

conjunction with observed atmospheric CO2 IAV from NASA’s OCO-2 satellite mission, which 

detects the combined imprint of ocean, terrestrial ecosystem, and human activities.    

We found that XCO2 simulated from three SOCOM flux products showed large 

differences in the magnitude of IAV, although all products showed that the magnitude of ocean-

driven IAV was generally less than 0.1 ppm at any location.  It is the variabilities in the ocean 

fluxes that play the dominant role , contributing to more than 70% of the ocean driven XCO2 

IAV, although over certain regions such as the tropical Pacific, XCO2 IAV is strongly tied to 

variations in atmospheric transport as well. Over remote ocean regions simulations suggest that 

ocean fluxes contribute a large proportion of IAV, nevertheless, given precision and bias 

limitations to the satellite data, our analysis suggests that the XCO2 IAV signals may be difficult 

to attribute to regional patterns of air-sea fluxes. 

In Chapter 4, I quantify permafrost-driven atmospheric CO2 enhancement using the 

GEOS-Chem atmospheric transport model originating from permafrost sources in North America 

as an case study. The simulation was carried out using land-atmosphere CO2 exchange by adding 

1 Pg C/y of additional carbon release following the seasonal cycle of heterotrophic respiration 

from labile carbon, to quantify the fingerprints on atmospheric partial column CO2 dry mole 
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fraction in the lower or upper troposphere. During summertime, 1 Pg C/y of additional carbon 

release from North American permafrost can cause a mean of 3.5ppm and as large as 6ppm 

partial XCO2 increase in the lower troposphere, which is potentially detectable from space. The 

CO2 release from the permafrost has a much larger influence on the lower troposphere than the 

upper troposphere - the difference is as large as 3.5 ppm near the source region and as low as 0.5 

ppm in a remote area. Our analysis points toward and provides preliminary estimates of 

observational requirements to identify signals from the Northern Permafrost regions using space-

based observations. 

Next steps for furthering research into the science questions presented here include the 

following: One of the challenges in Chapter 2 was to investigate the best resolution to aggregate 

the detection from OCO-2 in order to avoid either noise or large-scale biases. We tried to find the 

answer by aggregating the OCO-2 detection in different resolution - from 1° resolution to 15° 

resolution, and compare the difference of these resolutions (In Fig A.1 and A.2) to find the 

threshold that balanced the two goals of reducing noise yet revealing IAV at sub-zonal 

resolution. At 5°x5° (lower latitudes and 5°x10° (higher latitudes), the appearance of hotspots is 

minimized and the IAV amplitudes are spatially smooth, which we interpret as IAV signals 

emerging above the noise. We further calculated the correlation coefficient among the IAV 

timeseries in neighboring gridcells of 1° resolution (Fig A.9). The R value decreases as the 

distance between the gridcell increases in each 10° zonal bands from 70°N to 70°S. We see a 

rapid decrease in the correlation between gridcells separated by 1° and gridcells separated by 5°, 

and generally stable correlation coefficient from 5° to 15°separation.  

In this study, we consider that the work involved in the suggested model analysis would 

first require a validation of the model IAV, and the scope of adding a model analysis is beyond 
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the scale of our current study. As a future step, besides the sensitivity studies with the 

observations themselves, it would be valuable to make extra sensitivity analysis with high-

resolution model data (rather than real data), sampled like OCO-2, which would have sufficient 

resolution for this purpose. 

For Chapter 4, The OSSE described in this study demonstrates that TIR retrieved pseudo 

XCO2 from a designed mission provides improved constraints on Northern Arctic CO2 fluxes 

relative to current satellite missions since it offers better observations during winter months and 

Northern Arctic Latitudes. Future space instruments could consider this wide range of values to 

obtain CO2 concentrations regionally, and possibly extend the CO2 monitoring system over 

Southern Hemisphere Antarctica. Despite the encouraging performance of the perfect model and 

pseudo satellite observation in estimating CO2 concentration, it would be valuable to analyze the 

detectability of rapidly evolving processes - could the projected satellite observe the imprint of a 

single sudden emission event? This question could be answered by starting an independent 

nature run and enhanced emissions runs, with pulse input fluxes mirroring the emission such as 

wildfire combustions, and sample the simulations to produce pseudo-observations. As a final 

step, error of the CO2 enhancements based on the synthetic retrieval precisions shall be 

estimated.
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Appendix A: Supplemental to Chapter 2 

 
 
Figure A.1: The IAV amplitude map, with different resolution from (a) 2.5° longitude by 2.5 ° latitude, to 
(b) 5 ° longitude by 5 ° latitude, to (c) 10 ° longitude by 10 ° latitude, to (d) 5 ° longitude by 10 ° latitude 
and (e) 5 ° longitude by 15 ° latitude, each gridbox has at least 5 soundings. 
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Figure A.2:   The IAV amplitude difference for different resolution. (a) between 5° longitude by 5 ° 
latitude and 2.5 ° longitude by 2.5 ° latitude, (b) between 10° longitude by 10 ° latitude and 5 ° longitude 
by 5 ° latitude,(c) between 10° longitude by 5 ° latitude and  5 ° longitude by 5 ° latitude,(d) between 15° 
longitude by 5 ° latitude and  10 ° longitude by 5 ° latitude. 
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Figure A.3: The IAV amplitude map, using different sounding numbers as the benchmark to filter and get 
the aggregated OCO-2 detected XCO2.   
 
 
 
 
 



 

126 
 

 
 
Figure A.4: The IAV amplitude difference between OCO-2 detected XCO2 IAV based on different 
sounding numbers.  
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Figure A.5: The Log of Mean sounding numbers for 12 months for each 5 by 5 ° gridcell all over the 
world.  The colorbar range is set to log -1 to 10 which is equivalent absolute soundings of 0 to 20000. 
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Figure A.6: The number of valid years (X out of 6 for JAN~JULY, 5 for AUG or 7 for SEP~DEC) for 
each month (JAN, FEB, etc…) for each 5° by 5° gridcell.   
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Figure A.7: The number of months out of 12 months in the year of 2014~2020 (JAN,FEB,MAR…) are 
available for each grid cell. It shows the OCO-2 XCO2’s capability of detecting, which is related to the 
validity of our calculated IAV. 
 
 
 
 
 

 
 
 
Figure A.8: Mean Correlation coefficient between the OCO-2 XCO2 IAV of neighbouring gridcells in 
each 10° latitudinal band. 
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Figure A.9: Timeseries comparison between the zonal mean GOSAT XCO2 IAV, based on detrending 
method using 2nd and 3rd polynomial fit. 
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Figure A.10: Timeseries comparison between the OCO-2 XCO2  and TCCON IAV, blue shading shows 
the uncertainty range of TCCON, green for OCO-2. 
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Figure A.11: Timeseries comparison between surface CO2 MBL IAV and the co-located OCO-2 XCO2. 
Orange lines based on OCO-2 observations while blue lines based on MBL sites. 
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Figure A.12:  Timeseries comparison between the zonal mean OCO-2 XCO2 and zonal mean MBL 
surface CO2 IAV. 
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Figure A.13: Bootsrapping Linear Regression fit between TCCON and OCO-2 monthly averaged XCO2 
IAV over 26 TCCON sites which have records between 2014.09 to 2018.12. Light-blue regression lines in 
each plot are based on 1000 times ‘resampling’ of the original OCO-2 vs. TCCON IAV data points. The 
Steelblue line in each plot is just a simple polynomial fit between y and x. The 95% significant level for 
regression slope is calculated based on the distribution of the possible 1000 slopes during the 
bootstrapping process. The last figure, which is the histogram of the 1000 slopes for Lauder, gives an 
example of how to obtain the range of k-slope. 
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Appendix B: Supplemental to Chapter 3 
 
 

 
 
Figure B.1: Mean biome map created from mean climatologies of maxMLD, SST, summer Chl a, and 
maximum ice fraction. The acronyms include ice biome (ICE), subpolar seasonally stratified biome 
(SPSS), subtropical seasonally stratified biome (STSS),subtropical permanently stratified biome (STPS), 
equatorial biome (EQU). The super-biome we defined and used in the tagged simulations are aggregated 
based on these open-ocean biomes. 
 
 

 
 

Figure B.2: The global CO2 fluxes between the ocean and atmosphere based on three different products. 
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Figure B.3: The correlation coefficient between the CO2 fluxes based on different products. (a) between 
SOM-FFN and JENA, (b) between SOM-FFN and CMEMS, (c) between CMEMS and JENA 
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Figure B.4: Correlation coefficient between the modeled XCO2 IAV based on dynamic simulation using 
different products.(a) between SOM-FFN and JENA, (b) between SOM-FFN and CMEMS, (c) between 
CMEMS and JENA 
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Figure B.5: First four most important tracers contributing to XCO2 IAV based on time-varying fluxes 
from SOMFFN and time-varying transport. The tracers in the left column are determined by calculating 
XCO2 IAV amplitude for each gridcell caused by each single tracer and ranking them relative to other 
tracers. The ‘right column shows the ratio of modelled XCO2 IAV amplitude of the tracer to that of the 
whole ocean. (a)(b) for first most important tracer,(c)(d) for second most important,(e)(f) for third most 
important tracer,(g)(h) for fourth most important tracer. 
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Figure B.6: First four most important tracers contributing to XCO2 IAV based on time-varying fluxes 
from Jena and time-varying transport. The tracers in the left column are determined by calculating XCO2 
IAV amplitude for each gridcell caused by each single tracer and ranking them relative to other tracers. 
The ‘right column shows the ratio of modelled XCO2 IAV amplitude of the tracer to that of the whole 
ocean. (a)(b) for first most important tracer,(c)(d) for second most important,(e)(f) for third most 
important tracer,(g)(h) for fourth most important tracer.tracer,(k)(l) for sixth most important 
tracer,(m)(n) for seventh most important tracer. 
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Figure B.7: First four most important tracers contributing to XCO2 IAV based on time-varying fluxes 
from CMEMS and time-varying transport. The tracers in the left column are determined by calculating 
XCO2 IAV amplitude for each gridcell caused by each single tracer and ranking them relative to other 
tracers. The ‘right column shows the ratio of modelled XCO2 IAV amplitude of the tracer to that of the 
whole ocean. (a)(b) for first most important tracer,(c)(d) for second most important,(e)(f) for third most 
important tracer,(g)(h) for fourth most important tracer. 
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Figure B.8:  The slope of regression between simulated oceanic XCO2 IAV and OCO-2 detected XCO2 
IAV, (a) for SOMFFN, (b) for JENA, (c) for CMEMS 
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Figure B.9:  The IAV timeseries averaged over the Nino 3.4 region of the key contributing tracers (NH 
mid-lat, NH low-lat, SH mid-lat, SH low-lat) in driving the XCO2 IAV during 2 strong ENSO events: 
1997-1998 and 2015-2016 - Year1 and Year3 are shaded with blue, Year2 is shaded with green. Tropical 
Tracer is in red, NH Key Competing Tracers is in green, SH Key Competing Tracers is in Blue, and Sum 
of All Tracers in black. Left Column is for the 1997-1998 ENSO, Right Column is for the 2015-2016 
ENSO. (a)(d)for SOMFFN, (b)(e) for JENA, (c)(f) for CMEMS. 
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Figure B.10:  The XCO2 IAV timeseries averaged over the Nino 3.4 region of the key during 2 strong 
ENSO events: 1997-1998 and 2015-2016 - Year1 and Year3 are shaded with blue, Year2 is shaded with 
green. The left column is based on the simulation with varying fluxes. The right column is based on the 
simulation with cyclostationary fluxes. (a)(d)for SOM-FFN, (b)(e) for JENA, (c)(f) for CMEMS. 
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Figure B.11:  Climatological XCO2 gradients simulated for each observation-based flux product across 
four seasons. The gradient is calculated by subtracting the global mean seasonal XCO2 from the 
simulated XCO2 at every gridcell averaged over three months. The left column shows results for SOM-
FFN, the middle column shows results for JENA, and the right column shows results for CMEMS. The 
first row shows results for winter (DJF), second row for spring (MAM), third row for summer (JJA) and 
fourth row for autumn (SON). 
 
 
 
 


