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ABSTRACT

Selection bias is a massive problem in infectious disease epidemiology that can result in needless
morbidity and mortality. This bias is both subtle and ubiquitous, occurring even in randomized
clinical trials. For example, medical researchers cannot randomize responses to treatment inter-
mediate to the outcome of interest, and epidemiologists cannot force patients to report sensitive
demographic information. In order to do inference in these complex scenarios, we need new
classes of models that capture the scientific process of interest while accounting for how the data
were observed.

In this thesis I develop theory and practice for Bayesian model expansion to mitigate and ad-
just for selection bias in the analysis of observational and experimental data arising in the areas
of missing data, causal inference, and survey research. In the second chapter I propose a novel
method to infer stratified incidence in disease surveillance data with partially-observed stratum in-
formation. Public health researchers often compare risk of disease among demographic subgroups
in order to design interventions. Missingness in demographic covariates like race/ethnicity, or age
group complicates this endeavor; dropping cases with missing covariates can lead to endogenous
selection bias. Instead, I develop a locally-identifiable joint model for the missingness process
and the disease process that allows for the missingness process to be not-missing-at-random. The
model is identified by marrying spatial information in the disease data with spatial Census data. I
investigate the finite-sample properties of the model via a simulation study, and apply my model to
COVID-19 case data in Southeastern Michigan. I show that the burden of COVID-19 from March
to July of 2020 for non-Whites relative to that of Whites is understated when cases that are missing
race/ethnicity information are omitted.

In the third chapter I develop a method to point-identify vaccine efficacy (VE) against post-
infection outcomes such as severe illness, and death. Policy makers need to quantify post-infection
outcome VE so as to design effective vaccination strategies, but these causal estimands are typi-
cally nonidentifiable. I propose a method to identify these estimands under measurement error on
infection and post-infection outcomes by taking advantage of the structure of vaccine efficacy tri-
als; these trials are typically run across different health systems and collect pretreatment covariates
related to an individual’s susceptibility to infection. I show that my method not only yields iden-
tifiability of the causal estimand, but also identifies the infection measurement error parameters. I

xiv



then investigate the Type I error and power of my method via a simulation study.
In the final chapter, I propose a new Bayesian generative semiparametric model for characteriz-

ing the cumulative spatial exposure to an environmental health hazard that is not well-represented
by a single point in space, like a system of wastewater canals. The model couples a dose-response
model with a log-Gaussian Cox process integrated against a distance kernel with an unknown
length-scale. I show that this model is well-defined, and that a simple integral approximation ade-
quately controls the computational error. Before applying the model to survey data from Mexico, I
quantify the finite-sample properties and the computational tractability of the discretization scheme
in a simulation study.
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CHAPTER 1

Introduction

The past several years have seen a marked increase in the volume of epidemiological data available
to public health researchers due to the COVID-19 pandemic. These data, however, may not be rep-
resentative of the population of interest. Even representative data may be made non-representative
by seemingly innocuous research decisions to limit the analyses to a subgroup (Elwert and Win-
ship, 2014; Lu et al., 2022). Worse yet, if researchers were to use non-representative data, their in-
ferences may be biased, which could lead them to draw conclusions with disastrous consequences.
The resulting bias in inferences is known as selection bias, reflecting the notion that how samples
are selected for analysis can lead to bias.

For example, early on in the pandemic, researchers noticed that COVID-19 case data had a high
rate of missing race information. This missing information frustrated efforts to compare COVID-
19 case fatality rates and cumulative incidence rates by race and ethnicity; if the probability that
race/ethnicity information was missing correlated with race/ethnicity, then limiting the case data
to only those with complete information would bias these comparisons (Millett et al., 2020). Poor
inferences on these differences could lead to health policies that are inefficient at best and harmful
at worst.

This thesis investigates three scenarios in epidemiology where selection bias can arise and re-
duces this bias by employing model expansion and data augmentation.

1.1 Selection bias

Broadly, selection bias occurs when measurements on individuals sampled from a population sys-
tematically differ from measurements on the population as a whole. Let i index an individual in
a population of size N , let the measurement of a quantity of interest be Yi, and let the binary
variable Ri be the selection indicator such that Ri equals 1 when an individual is included in the
sample and 0 otherwise. Selection bias is the difference between the estimand arising from the
sample, E [Yi | Ri = 1] and the population estimand, E [Yi]. Straightforward algebra shows that
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this difference is equal to the covariance between the selection indicator and the measurement of
interest:

E [Yi | Ri = 1]− E [Yi] =
Cov(Yi, Ri)

E [Ri]
. (1.1)

If subsequent analysis excludes some sampled units, there may be additional selection bias. Let
Si | Ri = 1 be a binary variable equal to 1 if unit i is included in subsequent analysis, 0 if the unit
is excluded for analysis, and let P (Si = 0 | Ri = 0) = 1. Then, by a repeated application of the
algebra in Equation (1.1), the total selection bias is the sum of two covariance terms:

E [Yi | Si = 1, Ri = 1]− E [Yi] =
Cov(Yi, Si | Ri = 1)

E [Si | Ri = 1]
+

Cov(Yi, Ri)

E [Ri]
. (1.2)

Thus, there are two potential sources of selection bias: (1) selection bias arising from subselecting
units from a sample for analysis, (i.e. E [Yi | Si = 1, Ri = 1] − E [Yi | Ri = 1]) and (2) selection
bias arising from selecting units from the population (i.e. E [Yi | Ri = 1] − E [Yi]) (Elwert and
Winship, 2014). Equation (1.2) clarifies that even if a sample is representative of the population,
i.e. Cov(Yi, Ri) = 0, subsequent analysis that results in nonzero covariance between Si and Yi
induces selection bias. For example, if Si indicates that a unit is not missing data, analysis limited
to completely observed units risks selection bias (Daniel et al., 2012).

1.2 Identifiability and selection bias

An important characteristic of parameters of statistical models is identifiability, or, whether data
generated from a model indexed by parameter θ can be mapped uniquely to θ. Identifiability is
formally defined in Rothenberg (1971) as

Definition 1.2.1 (Parameter identifiability). A parameter θ ∈ Θ is identifiable if there does not exist

a distinct parameter value θ′ ∈ Θ for which the density f(y | θ) = f(y | θ′) for all observations y.

This asymptotic property is important to verify for statistical models because it is necessary con-
dition for much of asymptotic theory (Keener, 2010; Lehmann and Casella, 1998). For Bayesian
inference, it is important to determine which parameters are nonidentifiable in order to understand
which parameters are asymptotically sensitive to priors (Gustafson, 2015).

Modifying a statistical model to account for selection bias may render an identifiable parameter
nonidentifiable. This is because the process by which selection occurs introduces more unknown
parameters, typically without a commensurate increase in observed information. One strategy to
identify the estimand E [Yi] under selection bias is by expanding the model with more information.

2



1.3 Model expansion

Given a covariate Xi ∈ X such that Cov(Yi, Ri | Xi = x) = 0, the estimand E [Yi] can be identi-
fied. To see why, note that when the conditional covariance is zero, E [Yi | Ri = 1, Xi = x] =

E [Yi | Xi = x]. If one has access to the population distribution for Xi, P (x), then E [Yi] =∫
X E [Yi | Ri = 1, Xi = x]P (dx). This technique is known as poststratification (Little, 1995; Gel-

man and Little, 1997; Lohr, 2019).
An alternative is to assume that there is a covariate Zi, also known as an instrumental variable,

that determines Ri but does not determine Yi. The selection and observation equations can be
parameterized as follows:

Ri = 1βZi−Vi≥0

Yi = α + Ui

(Vi,Ui) ∼ F

(1.3)

Then P (Ri = 1 | Zi = z) = P (Vi ≤ βz | Zi = z), and Cov(Yi, Ri) is equal to a function of the
propensity score, P (Ri = 1 | Zi = z) and the joint distribution of Ui, Vi (Heckman et al., 2006).
Explicitly:

Cov(Yi, Ri) = EZi
[E [Ui | Vi ≤ βz]P (Vi ≤ βzi | Zi = z)] (1.4)

The key assumptions that lead to identifiability of the model are: (1) that Zi occurs in the selection
equation only, (2) that Zi has support on R, (3) (Vi, Ui) is median zero, and (4) the errors are
independent of Zi (Heckman, 1990). If these properties hold, then E [Yi] = α. Powell (1994)
reviews semiparametric estimation of the selection equation and the joint error distribution.

1.3.1 Costs of model expansion

Model expansion is not without costs and potential pitfalls. First, without careful regularization,
the decreased bias of these approaches will be offset by increased variance. Second, the additional
structure of each model necessarily results in additional assumptions. To the extent these assump-
tions are violated, these methods may incur bias from model misspecification. Third, as Gustafson
(2005) shows, when expanded identifiable models nest nonidentifiable submodels, the nonidenti-
fiable parameter space is a measure-zero subset of the identified parameter space. As the true data
generating process approaches the nonidentifiable submodel the expanded models can exhibit large
mean squared error and poor coverage (akin to scenarios examined through a Frequentist lens in
Andrews and Mikusheva (2015)).
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1.3.2 Bayesian inference for model expansion

These pitfalls can be mitigated by the use of Bayesian inference. Bayesian inference with care-
fully formulated proper priors can combat increased model complexity as models expand (Gelman
et al., 2013). Furthermore, Bayesian inference with proper priors can mitigate poor performance
near a nonidentifiable submodel by trading a small bit of bias for a larger reduction in variance
(Gustafson, 2005). Bayesian inference can also be used to weaken strict identifying assumptions
by allowing for soft constraints (Gustafson, 2007).

Bayesian model expansion is the core technique linking the methods I have developed in this
thesis. At base, the solutions I propose depend on jointly modeling the selection process alongside
the scientific process of interest by incorporating additional data or covariates and prior informa-
tion. Bayesian inference in expanded models allows for identifiability while reducing the risks of
model expansion.

Next I will introduce the following chapters of the thesis.

1.4 Missing race/ethnicity information in COVID-19 cases

Chapter 2 deals with missing race and ethnicity data in COVID-19 case data. This is an ongoing
problem in case data collection, and will be a problem in future pandemics. The chapter is the
most straightforward demonstration of selection bias: limiting analysis to observations with no
missing covariates (also known as “complete-case analysis”) may result in selection bias (Elwert
and Winship, 2014). If the probability of missingness of the covariate data and the outcome are
influenced by the covariate values, then complete-case analyses may result in biased estimates
of relative rates of disease by race/ethnicity. This type of missingness, called not-missing-at-
random (NMAR) missingness, is the most pernicious missingness because it cannot be solved
by modeling the observed data. Moreover, NMAR missingness for discrete covariates is an area of
active research (Gómez-Rubio et al., 2019).

I developed a novel method for jointly modeling the missing covariate data and the disease
data by using known population data. Importantly, this model has disease rate parameters and
race/ethnicity missingness parameters that vary by race and ethnicity. The key idea is that cases of
disease arise from a population with a known joint distribution of demographic covariates. Using
this idea, along with the fact that cases are recorded with precise geographic information, allows
us to to associate each case with fine-scale Census areas like tracts or Public Use Microdata Ar-
eas. I then employ a parametric model that allows both the missingness model parameters and
the disease model parameters to be identifiable. The model can be naturally extended to include
other covariate information like age and sex, and admits a hierarchical generalization to borrow

4



strength across differing geographic areas. We showed that the model outperforms methods that
limit analysis to cases with no missing information, and multiple imputation methods that assume
that missingness does not depend on race/ethnicity. Then we applied our model to COVID-19
case data in Southeastern Michigan, and show that complete-case analysis understated the relative
burden of COVID-19 incidence in non-White race/ethnicities in the early pandemic.

1.5 Principal stratification for vaccine efficacy

Chapter 3 addresses an open problem in causal inference, namely how to identify a causal effect
of a treatment on a secondary outcome that is conditional on a post-treatment variable. This prob-
lem arises naturally in vaccine efficacy (VE) studies (i.e. randomized placebo-controlled trials for
vaccines) when inferring the post-infection outcome VE. Here too, lurks selection bias (Balke and
Pearl, 1994; Frangakis and Rubin, 2002). There are many post-infection outcomes that are of in-
terest to public health researchers: (1) binary outcomes like symptomatic disease, or severe illness,
(2) ordinal outcomes like symptom severity and antibody titer, and (3) continuous outcomes like
viral load or time to symptom onset. Conditional on the event that an individual is infected, vac-
cines may have an effect on each of these outcomes; quantifying the conditional effect is important
for developing an optimal vaccination policy, choosing between several vaccine candidates, and
communicating VE trial results to the public. The intuitive estimator for these effects, comparing
outcomes between the vaccinated and unvaccinated within the subgroup that is infected, results in
selection bias (Hudgens and Halloran, 2006).

In this instance, selection bias arises because the vaccinated and infected subgroup is different
than the unvaccinated and infected subgroup. The validity of causal inference depends on compar-
ing individual outcomes under vaccination and placebo (Frangakis and Rubin, 2002). For instance,
let Si(z) be the binary infection outcome for an individual i that would be observed under vaccina-
tion (z = 1) and under placebo (z = 0), let Yi(z, Si(z)) be the binary indicator for severe disease
given infection status Si(z), and let Zi be the treatment assignment for that individual. The indi-
vidual causal effect for vaccination on infection is Si(0)−Si(1). This is a valid causal comparison
because the individual is fixed; any unobserved variation between individuals is controlled for,
and the only explanation for the difference (or lack thereof) is that the vaccine prevented (or did
not prevent) infection in individual i. Randomized treatment assignment guarantees that treatment
assignment is independent of the outcomes (Si(1), Si(0)), and we can estimate the expectation of
this causal effect:

E [Si(0)− Si(1)] = E [Si(0)]− E [Si(1)] = E [Si | Zi = 0]− E [Si | Zi = 1] .
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However, the conditional comparison of severe disease in infected individuals, or

E [Yi | Si = 1, Zi = 0]− E [Si | Si = 1, Zi = 1]

does not correspond to an expectation of an individual causal outcome because the left-hand ex-
pectation is taken over different individuals than the right-hand expectation. To see why, we can
expand the conditional expectations. The expansion of the quantity E [Yi | Si = 1, Zi = 0] in terms
of potential infection outcomes:

E [Yi | Si = 1, Zi = 0] =E [Yi(0, 1) | Si(1) = 1, Si(0) = 1]P (Si(1) = 1, Si(0) = 1)

+ E [Yi(0, 1) | Si(1) = 0, Si(0) = 1]P (Si(1) = 0, Si(0) = 1)

shows that the expectation is a mixture of outcomes between people infected under both vaccina-
tion and placebo (the “always-infected” group), and people infected under placebo and protected
under vaccination (the “protected” group). The expansion of E [Si | Si = 1, Zi = 1] is

E [Si | Si = 1, Zi = 1] =E [Yi(1, 1) | Si(1) = 1, Si(0) = 1]P (Si(1) = 1, Si(0) = 1)

+ E [Yi(1, 1) | Si(1) = 1, Si(0) = 0]P (Si(1) = 1, Si(0) = 0).

This expansion shows that the expectation is a mixture of outcomes between people infected under
both vaccination and placebo (the “always-infected” group), and people infected under vaccination
and uninfected under placebo (the “harmed” group).

The difference of these expectations implicitly results in a comparison of two different groups of
people in addition to a comparison two treatments. Thus, any value we observe for this difference
could be attributed to the treatment effect, which is the estimand of interest, or the difference in
the baseline risk of severe illness outcomes between the two groups. Conditioning on infection
induces selection bias in that {i | Si(1) = 1} ≠ {i | Si(0) = 1} (Frangakis and Rubin, 2002).

The solution, called principal stratification, is to focus on the treatment effect in the group of
always-infected people (Hudgens and Halloran, 2006). Because we can only ever observe one
outcome for each person, however, we cannot identify the always-infected group.

In this chapter, I solve the problem probabilistically by using the structure of VE trials to our
advantage. These trials are typically run across several geographically-disparate health centers and
measure pretreatment covariates related to participants’ susceptibility to infection. We develop a
new model for vaccine efficacy that uses these characteristics, and show that our model identifies
the post-infection outcome VE given verifiable conditions on the data generating process. This
represents a novel contribution to causal inference literature as well as to vaccine efficacy literature.
We then use our model to design several VE trials, and show that the sample sizes required for
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high-powered trials are feasible.

1.6 Measuring cumulative spatial exposure to environmental
hazards

Chapter 4 concerns the problem of measuring exposure to an environmental health hazard or built-
environment source of disease that is extensive in space. Put another way, these hazards are not
well-represented by a single point in space. Examples of such exposures are roadways, wastewater
canals, and polluted waterways. There is a well-developed literature on inferring health risk from
point-source exposures, like chemical plants, or nuclear waste sites (Diggle et al., 1997). In order
to use these methods for extensive hazards, researchers may use the shortest distance to the hazard
to use as a proxy for exposure (Cassell et al., 2018). These methods, however, will yield biased
estimates of environmental risk if the individuals at risk are exposed at more than one point along
the hazard. Moreover, this choice ignores the geometry of the hazard as well as the variation in
risk intensity along the hazard.

To make things concrete, we will focus on an applied problem that exhibited key characteristics
that are common to other problems in extensive environmental exposure. Health researchers were
interested in how the risk of childhood diarrhea depended on household proximity to a system
of wastewater canals in the Mezquital Valley in Mexico. To measure this risk, researchers ran a
survey of households with children under 5 over two years (Contreras et al., 2017). This survey
included questions about whether the child or children in the household had experienced any bouts
of diarrhea in the past week. The initial data analysis, presented in Contreras et al. (2020), used
a shapefile of the canal system in conjunction with GPS measurements of household location to
measure the shortest distance between the household and the wastewater canal.

Selection bias arises in this scenario from the fact that points chosen for analysis under the
shortest-distance model may not be representative of the risk at all points along the wastewater
canal. In fact, if household locations are functions of risk at the shortest point, then inferences about
risk of diarrhea using only the shortest distance to the canal will be understated. This is plausible if
some houses were built after the canal system was built or that there are built-environment barriers
between houses and the canal system that vary across the canal system. In this case, selection bias
arises due to lack of information about the wastewater exposure process.

Chapter 4 presents a novel solution to measuring the cumulative spatial risk from environmental
exposures by formulating a generative model of infection from an environmental hazard. This
model involves a Poisson process of pathogen intensity along the canal, and a kernel function that
measures exposure to a point along the canal at a given distance; the total spatial exposure for
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a household to the wastewater canal is then an integral of these two functions across the extent
of the canal. Thus, we prevent the analyst from having to choose a single point of exposure for
each household, thereby mitigating selection bias. Because our method depends on approximating
an integral of an unknown function, we show that the approximate integration scheme converges
to the integral of the modeled function as our computational grid increases in resolution, and via
simulation study show that our method is computationally feasible. We also show via simulation
study that as the number of sampled households increases we learn the unknown intensity functions
with decreasing integrated absolute error. Finally, we apply our model to the Mezquital Valley
diarrheal illness dataset, and explore the differences between our model’s inferences and those
presented in Contreras et al. (2020).
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CHAPTER 2

Modeling Racial/Ethnic Differences in COVID-19
Incidence with Covariates Subject to Non-Random

Missingness

The contents of this chapter will appear as
Rob Trangucci, Yang Chen, and Jon Zelner, Modeling racial/ethnic differences in COVID-19

incidence with covariates subject to non-random missingness. Forthcoming in Annals of Applied

Statistics.

Complete and detailed surveillance data1 are critical sources of information for decision-making
and communication in public health emergencies like the COVID-19 pandemic. Under ideal con-
ditions, these data can provide an indication of emerging trends, e.g. growth in socioeconomic
inequity in infection and disease risk, which can be used to craft policies and target resources. For
example, after surveillance data pointed to wide racial/ethnic disparities in incidence and mortality
in the COVID-19 pandemic in the United States (Millett et al., 2020; Zelner et al., 2021), poli-
cies intended to narrow the gap were put in place Office of Michigan Governor (2020); Governor
Whitmer Executive Order (2020). However, without adequate information on the distribution of
infection within and between different socioeconomic and race/ethnic groups, the impact of such
policy measures is difficult to evaluate.

Missing covariates have long been a challenge associated with administrative datasets, such
as public health surveillance data, and the scale and importance of this problem has only grown
during the COVID-19 pandemic (Labgold et al., 2021; Millett et al., 2020). Covariate missingness
in surveillance data may result from a variety of mechanisms, ranging from non-response on an
intake form, refusal to participate in tracing interviews, or data-entry errors after these data are
collected. Often this missingness is implicitly or explicitly assumed to occur at random, i.e. not

1Surveillance data are aggregated sets of disease cases, often subject to timely reporting requirements, meeting a
common set of diagnostic characteristics so as to aid in the monitoring of disease outbreaks (Held et al., 2019).
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as a function of the disease process or the attributes of individual cases. But if the process causing
case data to be missing important categorical variables, e.g. age, race, sex, or neighborhood, is
dependent on the disease process, excluding cases that are missing these covariates may result in
estimates that are overconfident and biased. Furthermore, the direction of this bias is not easy
to characterize, and may result in over- or under-estimates of group-level differences in risk as
epidemic conditions shift.

In emergency situations, such as a surging pandemic, it is easy to see how the disease process
itself may induce non-random missingness of covariates. For example, during a period of rapidly
increasing caseloads, such as the Delta and Omicron surges of the COVID-19 pandemic, the over-
whelming number of cases is likely to limit the ability of case investigators to collect data that
are as detailed as those collected during lower-incidence periods. These differences may also be
more pronounced when comparing wealthier and poorer jurisdictions with differential resources
for case-finding and intervention. When these differential risks and resources are concentrated in
communities with large proportions of non-White residents, the likelihood that the missingness of
key demographic information, including race/ethnicity, will depend on the race of respondents is
high. The intensity of this missingness is also likely to vary in space, reflecting numerous factors
including differences in epidemic conditions as well as varying data quality across public health
jurisdictions.

Both of these characteristics point to a nonignorable missing data problem, as presented in Ru-
bin (1976). Both issues make quantifying the relative risk of infection among population strata
during the COVID-19 pandemic potentially error-prone: high proportions of cases are missing de-
mographic data, with missingness that is likely differential across population strata. It is in this
scenario that omitting cases with missing demographic data may yield biased estimates of relative
risk. Tools that assume ignorability, like multiple imputation methods typically do (Audigier et al.,
2018), cannot correct for missingness that depends on the value of the covariate, and will thus incur
bias as well. This problem is not exclusive to the challenge of characterizing sociodemographic
disparities in infection risk: incomplete reporting of vaccination status may lead to difficulty in
estimating risks of breakthrough COVID-19 infections among vaccinated people, and missing in-
formation on comorbid conditions increasing the risk of death may complicate efforts at estimating
risks of death associated with infection.

In order to employ statistical methods that appropriately account for missingness, such as those
presented in Little and Rubin (2002), one must make the modeling assumptions explicit in a joint
probability model for the outcome variable, the covariate subject to missingness, and the missing-
ness process for that covariate. When the missingness process is nonignorable, two broad classes
of models can be used to encode the assumptions about the joint distribution: selection models
and pattern mixture models (Little and Rubin, 2002). There is much literature on the theoretical
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and practical applications of both classes of models: Diggle and Kenward (1994); Clark and Houle
(2014); Roy and Daniels (2008). For a review of selection and pattern mixture models see Little
(2008) and Little (1995).

We develop a novel model that accounts for nonignorable missingness of demographic covari-
ates for which there is known population data, as in Zangeneh and Little (2022), but we take a
selection model approach instead of a pattern mixture model approach. Our probabilistic model
is similar to that of Stasny (1991), wherein Stasny develops a selection model for nonignorable
missingness in binary survey data, though we incorporate ideas from Zangeneh and Little (2022)
in using known census demographic data. Our approach is to develop a model that allows for si-
multaneous modeling of the disease and missingness processes, and that incorporates information
on spatial clustering of risk in addition to sociodemographic risk factors. Given the ubiquity of
missing categorical covariates in public health surveillance data and the generality of our model,
there are many potential applications of this class of models.

2.1 Alternative approaches

Because missing data can lead to ineffective and potentially life-threatening decision-making in
public health and medicine, analysis of epidemiological data subject to missingness is an area of
active research. This work, however, is often focused on accounting for data missing-at-random
or on imputing values of continuous covariates. Recent work focusing on accounting for miss-
ing covariates when modeling disease data in space and time like Holland et al. (2015); Gómez-
Rubio et al. (2019); Baker et al. (2014) suffer from several limitations. Gómez-Rubio et al. (2019)
presents a framework for joint modeling of the disease process and missingness process, which
can incorporate NMAR missingness, but only for continuous covariates. When missing covari-
ates are discrete, Gómez-Rubio et al. resort to multiple imputation, which compromises statistical
efficiency gained from joint modeling, increases the computational burden, and assumes MAR
missingness. Holland et al. (2015) does include a model for discrete missing covariates with an
outcome model, but the missing data mechanism is assumed to be MAR. In other work, Baker
et al. (2014) developed a cross-validation approach to missing data imputation, but assume MAR
missingness. Recent work in applications for missing data continue to assume MAR (Aguayo
et al., 2020; Labgold et al., 2021). As we argue above, assuming missingness is MAR can bias
inferences; Perkins et al. (2018); Sidi and Harel (2018); Stavseth et al. (2019) explore how mis-
taken assumptions in the missing data model impact inferences. When missing data are inherently
social in nature, MAR assumptions become even more tenuous than they might be in other set-
tings. In the context of the COVID-19 pandemic, missingness of race/ethnicity data reflects a host
of factors, including socioeconomic biases in the quality and thoroughness of public health data
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systems, which effectively guarantee correlation between the race/ethnicity of the respondent and
their likelihood of missing these data. This paucity of recent work in spatial epidemiology employ-
ing an NMAR missingness model for discrete missing covariates, and the urgency of improving
the quality of inferences from public health surveillance data provided the primary motivation for
the development of our model.

The most germane work is Labgold et al. (2021), which applies Bayesian Improved Surname
Geocoding (BISG) to the estimation of race/ethnicity disparities in COVID-19 incidence using
data from Fulton County, Georgia. BISG was originally developed in Elliott et al. (2009) for un-
derstanding disparities in health outcomes when race data are not available. The approach is an
extension of a geocoding model for race, which generates a categorical distribution over race using
the location of the unit of analysis (in Labgold et al. the unit of analysis is a case-patient notified
of a positive SARS-CoV-2 test). BISG adds surname information to this categorical distribution,
with the intention of more accurately imputing race. The weakness of this approach is that the
imputation is not informed by the outcome model or vice versa. In the infectious disease context,
the information that many cases for which one observes race or ethnicity should inform the cate-
gorical distribution for cases missing race information. Labgold et al. addresses this limitation by
further modeling the misclassification rate for BISG by comparing BISG’s imputed race to that of
race for case-patients not missing race. The procedure, however, does not correspond to a proba-
bilistic model, which makes it challenging to validate its implicit assumptions. Furthermore, BISG
assumes that the missingness process is missing-at-random, which may not be a good assumption
in the context of missing race data. Zhang et al. (2022) also accounts for missing race data in
COVID-19 cases via multiple imputation, again assuming MAR missingness.

Despite the wide-ranging literature on analyzing case with missing covariates, a common prac-
tice among academic and applied researchers is to omit observations with missing covariates, per-
forming what is known as “complete case analysis”, when confronted with missing data (Eekhout
et al., 2012). For example, complete case analysis has been used in studies of racial/ethnic dispar-
ities of COVID-19 burden when race/ethnicity data are missing (Millett et al., 2020; Zelner et al.,
2021) despite the authors’ acknowledgment of the risks inherent in dropping incomplete cases.
This is an indication of the pervasiveness of the practice, in part due to the ease of performing
complete case analysis in most statistical packages (e.g. the ubiquitous na.rm=TRUE argument
in the R language) and in part due to the lack of methods available to researchers for nonignorable
missingness. That complete case analysis is widely employed should galvanize methodologists to
develop techniques that are more finely attuned to infectious disease epidemiology.
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2.2 Considerations when imputing missing demographic infor-
mation

Imputing missing demographic data presents multiple challenges at the intersection of ethics, so-
ciology, and statistics (Kennedy et al., 2020). Kennedy et al. note that, beyond the formidable
statistical challenges, dealing with missing data of this nature requires understanding how demo-
graphic categories in administrative data have changed over time, the relationship between official
categories and categories that individuals use to identify themselves, and the fact that attributes like
sex, gender, and race/ethnicity must be understood through an intersectional lens rather than as in-
dependent dimensions of identity. Furthermore, the authors note that to the extent that there is an
imbalance in how groups are misrepresented in surveys, even imputation with uncertainty confers
statistical bias and, ultimately, discrimination. The authors argue that despite these realities and
being bound by data availability and antiquated study designs, researchers must take responsibility
for the choices they make in handling missing data.

Omitting cases that have missing data may be mistaken as a safe practice when missingness of
demographic information is assumed - implicitly or explicitly - to occur at random. However, in
real-world public health surveillance data, it is unlikely that such information will be missing at
random. Instead, there is a high likelihood that the rate of missingness will be correlated with the
burden of disease in a community and the resources local authorities have to address it, which are in
turn often reflected in race/ethnic disparities in disease outcomes. As this burden increases and the
financial and material tools to find new cases dwindle, it becomes increasingly likely that race/eth-
nic minority groups will be subject to higher rates of missingness which are positively associated
with disease risk. This intuition is reflected in our results, which show that when missingness does
not occur completely random, dropping cases can result in biased estimates and overstatement of
certainty in these estimates.

Furthermore, even when the data are missing completely at random - the most innocuous sce-
nario - random variation in which cases are missing can amount to statistical bias in finite samples.
Kennedy et al. note that this can serve as a form of discrimination if the conclusions from the
analysis are used to draw inferences about the population and make decisions. This is particularly
problematic when addressing missingness for groups that represent a small share of the observed
data or overall population: In this case, dropping even a small number of cases missing data can
result in diminished power to make valid inferences about group-specific risks. Because of this,
making every effort to account for all sources of information on race/ethnicity, even those that are
plausibly missing at random, is an ethical imperative.

Exact probabilistic imputation, like the approach we present below, avoids some, but not all,
of the risks of wrongly imputing demographic characteristics associated with deterministic ap-
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proaches. As Kennedy et al. point out, probabilistic imputation does not guarantee bias-free
conclusions, especially if the procedure’s misclassification rates are not equally distributed across
demographic subgroups. For example, a model that mistakenly assumes that the missingness pro-
cess is ignorable risks under-representing groups for which the baseline rate of missingness is
higher or for whom missingness is positively correlated with the disease process. A well-designed
procedure, with results interpreted with awareness of simplifying assumptions and their poten-
tial to induce bias, can facilitate increased relevance of study results for underrepresented groups,
while also providing a more appropriate representation of uncertainty in these conclusions.

2.3 Roadmap

In this chapter, we present a new joint model that allows researchers to account for relationships
between variation in the disease outcome measure of interest and the missingness process. This
approach makes the flow of information and model assumptions clear, while at the same time
affording researchers all the tools that have been developed to interrogate, summarize and present
results from a coherent probabilistic model.

In the following sections, we will 1) Describe the justification for our approach and theoretical
properties of the model, 2) Conduct a detailed simulation study to investigate the finite-sample
performance of the model under several known data-generating processes, and finally, 3) Apply
this model to detailed COVID-19 data from southeastern Michigan.

2.4 Methods

Suppose for each resident, indexed by n, in a large population with size E, the variable Un is a
binary random variable that represents a diagnostic test result (e.g. COVID-19 polymerase chain
reaction (PCR) test), Cn is a categorical variable with J levels that encodes race/ethnicity infor-
mation which may be missing for some residents, Rn is an indicator variable equal to 1 if Cn is
observed and 0 otherwise, and Sn is a categorical variable encoding stratum information, like age
or sex information for that resident. In other words, each resident is associated with the vector
(Un, Cn, Rn, Sn), of which Un and Rn are assumed to be random variables, while Cn and Sn are
fixed characteristics of each resident.

Let the variable Yij be the total cases in the population for which Sn = i and Cn = j, or more
explicitly,

Yij =
∑

{n |Sn=i,Cn=j} Un,

14



and let Eij be the total count of the population in stratum i and race/ethnicity j:

Eij =
E∑

n=1

1Sn=i1Cn=j.

Let the set of test results Un for the population be U ∈ {0, 1}E . Define Xij as the number of
cases in stratum i for which race/ethnicity Cn is observed to be j and Mi as the number of cases in
stratum i as the number of cases missing race/ethnicity information:

Xij | U =
∑

{n |Sn=i,Cn=j,Un=1}Rn and Mi | U =
∑

j

∑
{n |Sn=i,Cn=j,Un=1}(1−Rn)

Let Yij be conditionally independent Poisson random variables:2 Yij|µij ∼ Poisson(µij). where
we define incidence as

µij/Eij,

or the per-capita rate of disease. We further assume that race/ethnicity observation indicators Rn

are conditionally independent Bernoulli distributed random variables with probability observing
race/ethnicity information denoted as pij , which depends solely on stratum i and race/ethnicity
category j. Then

Xij|U
d
= Xij|Yij, =⇒ Xij|Yij, pij ∼ Binomial(Yij, pij)

The distributional assumptions imply that marginalizing over total cases of race/ethnicity j in stra-
tum i, Yij , yields conditionally independent Poisson random variables:

Xij|pij, µij ∼ Poisson(pijµij)

for cases of race/ethnicity j observed with race/ethnicity and missing cases are mutually indepen-
dent of Xij and conditionally independent Poisson random variables:

Mi|(pi1, µi1), . . . , (piJ , µiJ) ∼ Poisson(
∑

j(1− pij)µij)

We show the connection between our model and the missing data modeling paradigm introduced
by Rubin (1976) and further developed in Little and Rubin (2002) in appendix A.1, and also show
that the model implies that the missingness can be not missing at random (NMAR) if pij vary by
j.

Given that pi1 = pi2 = · · · = piJ for all i is a strong constraint, allowing the model to learn the

2We discuss the Poisson distribution and the conditional independence assumption in section 2.7.2.1
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extent to which probability of observing race/ethnicity varies by race/ethnicity (i.e. allowing the
model to learn how far missingness deviates from MAR) is the most judicious modeling choice.

2.4.1 Modeling incidence when missingness is dependent on race/ethnicity

We present a simple example of the model below, in which we assume that race/ethnicity is the
only characteristic that predicts both disease incidence and the rate of missingness for individual-
level race/ethnicity information. As above, we summarize population counts by age-sex stratum i

and race/ethnicity category j:

Eij =
E∑

n=1

1Sn=i1Cn=j.

Let ei be the vector (Ei1, . . . , EiJ)
T with the jth-element Eij , and let

E ∈ RI×J such that E[i,:] = eTi .

If exposure to the disease is governed solely by race/ethnicity, and infection probability and expo-
sure is constant across age-sex strata i, then we may assume that µij = λjEij and that pij = pj,∀i.
The observed data model, letting λ = (λ1, . . . , λJ) and p = (p1, . . . , pJ), simplifies to the follow-
ing:

Xij|pj, λj, Eij ∼ Poisson(pjλjEij),

Mi|p,λ, ei ∼ Poisson(
∑

j λj(1− pj)Eij);
(2.1)

where we have made the conditioning on parameters and population counts explicit.

2.4.1.1 Identifiability properties of the model

We can show that model (2.1) is globally identifiable by appealing to Theorem 4 of Rothenberg
(1971). Theorem 1 shows that the model parameters (p,λ) are globally identifiable given the
observed data under minimal conditions on the parameters, and an easily verifiable condition on
the population count matrix E.

Theorem 1. The observational model (2.1) is globally identifiable under the following conditions:

(E.a) E is rank J ,

(E.b) λj ∈ (0,∞)∀j ∈ [1, . . . , J ],

(E.c) pj ∈ (0, 1)∀j ∈ [1, . . . , J ].
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Proof. Reparameterize the model from (λj, pj) to (vj, uj) where vj = pjλj and uj = (1 − pj)λj .
Given conditions (E.b) to (E.c), the mapping is one-to-one and onto. Let u be the J-vector with
element j equal to uj and let v be similarly defined for vj . The reparameterized model becomes:

Xij|vj, Eij ∼ Poisson(vjEij) (2.2)

Mi|u, ei ∼ Poisson(
∑

j ujEij) (2.3)

We know that v̂j =
∑

i Xij∑
i Eij

is unbiased for vj . Let m be the I-vector with element i equal to Mi.
Then

E [m] = Eu

By condition (E.a)

(
ETE

)−1
ETE [m] = u. (2.4)

Given that we can define unbiased estimators for v and u , by Theorem 4 in Rothenberg (1971), the
model is globally identifiable in (vj, uj). Given that our mapping from (λj, pj) to (vj, uj) is one-
to-one and onto, global identifiability in (vj, uj) implies global identifiability in (λj, pj) because
we can define an inverse mapping from (vj, uj) to (λj, pj).

It can also be seen that the variance-covariance matrix for the estimator for λ̂ is a sum of two
components: the variance of v̂ and the variance-covariance matrix of the unbiased linear estimator
for u,

(
ETE

)−1
ETm. This coincides with the Fisher information matrix, as derived in Appendix

Section A.4.1, where we also show that the Fisher information matrix is positive definite under
conditions (E.a) to (E.c).

2.4.1.2 Model intuition

We examine a simple setting in which there are two race/ethnicity groups (or equivalently, J = 2)
subject to missingness. The unbiased estimator, û1, for u1 = (1− p1)λ1 can be expressed in terms
of a projection matrix:

P2 = e2(e
T
2 e2)

−1eT2

which is the projection for a vector in RI to the subspace spanned by e2. Then

û1 =
mT (I−P2)e1
∥(I−P2)e1∥22

. (2.5)

which can be understood as a relative measure of the strength of the covariance between the number
of cases with missing race/ethnicity information and population counts for group 1 after accounting
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for the variation in population counts attributable to group 2. The following estimator is unbiased
for λ1: ∑I

i=1Xi1∑I
i=1Ei1

+ û1. (2.6)

The first term in eq. (2.6) is the estimator for λ1p1 for a Poisson distribution with rate λ1p1, while
the second term is a correction to account for missingness. If the covariance of m and a residualized
e1 (by regressing e1 on e2) is large relative to the variance of the residualized e1 then the correction
will be large. If, on the contrary, this quantity is small, the correction factor will be small. The
estimator depends on the conditional expectation of the number of cases for each race/ethnicity
being proportional to the number of residents in that category, which is a common assumption in
modeling count data in epidemiology (Frome, 1983; Frome and Checkoway, 1985; Lash et al.,
2021).

2.4.1.3 Bayesian inference and prior sensitivity

The two group setting in which one group’s population is small compared to the other group’s
population motivates the careful choice of priors when doing Bayesian inference. We will show
that in this setting the posterior mean for the rate of disease in the minority group is sensitive to
priors. As above, let j ∈ {1, 2} and let the rate of disease in group j be λj while the probability of
observing race/ethnicity j is pj . Under the following priors:

pj
iid∼ Beta(αj, βj)

λj
iid∼ Gamma(αj + βj, rj),

(2.7)

vj = pjλj ⊥⊥ uj = (1− pj)λj . As shown in theorem 1, we can write the observed-data likelihood
in terms of uj and vj . If we assume, without loss of generality, that the majority group is 2 for
all i (i.e. that Ei1 ≪ Ei2 for all i) we can make a likelihood approximation, detailed in Appendix
Section A.4.2, that allows us to compute a closed-form approximate posterior mean and variance
for λ1, as well as the partial derivative of the posterior mean with respect to the prior rate parameter,
r1, for λ1 when β1 = 1, which is the second shape parameter for the beta prior over p1 as well as
part of the shape parameter for λ1.

Let s1 =
∑

i
miEi1

Ei2
, s2 =

∑
i
miE

2
i1

E2
i2

, and E+1 =
∑

iEi1. Further, let ϕ and Φ be the density and

distribution function of the standard normal distribution, respectively, and z = s1−u2(r1+E+1)√
s2

. If
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β1 = 1, the posterior mean for λ1 given u2 is then

E [λ1|u2, r1, β1 = 1] =
α1 +

∑
i xi1

r1 + E+1

+
s1 − u2(r1 + E+1)

s2/u2
+

u2√
s2
ϕ(z)Φ(z)−1 (2.8)

with variance:

Var (λ1|u2, r1, β1 = 1) =
α1 +

∑
i xi1

(r1 +
∑

iEi1)2
+
u22
s2

(
1− zϕ(z)Φ(z)−1 − ϕ(z)2Φ(z)−2)

)
(2.9)

Like our unbiased estimator for λ1 in eq. (2.6), the first term in eq. (2.8) is the posterior mean for
the rate of a Poisson random variable with rate λ1p1, while the second term is the correction for
missing data. The first term of the correction, s1

s2/u2

3 can be seen as an approximate least squares

estimator for u1 scaled by the weighted average of mi by dividing top and bottom by
∑

i
E2

i1

E2
i2

. The
estimate is shrunk towards zero with magnitude dependent on u2 and r1. In fact, for an increase in
u2 the posterior conditional mean is shrunk towards zero, while an increase in r1 similarly shrinks
the posterior mean towards zero. This agrees with intuition that as the prior rate parameter for λ1
increases, the prior mean decreases, and so too does the posterior mean. This can be seen from the
partial derivative of the posterior mean with respect to r1, which we show in appendix A.4.2 to be
∂E[λ1|u2,r1,β1=1]

∂r1
= −Var (λ1|u2, r1, β1 = 1). The magnitude of the derivative is equal to that of the

variance, eq. (2.9), which implies that the posterior mean is sensitive to r1. This sensitivity does
not decline as Ei1, Ei2 → ∞ such that group 1 remains a minority to group 2. Suppose that we
take Ei1, Ei2 → ∞ such that Ei1

Ei2
= O( 1

Ei1
). Then E2

i1

Ei2
→ K < ∞ for all i. Let u⋆2, and u⋆1 be the

true data generating parameters, and let z⋆ = (u⋆1IK − u⋆2r1)/
√
u⋆2IK + Z , where Z ∼ N(0, 1).

The posterior mean and variance for λ1 have the following convergence in distribution as Ei1, Ei2

goes to infinity in the same order:

E [λ1|u2, r1, β1 = 1]
d→ v⋆1 +

u⋆1IK − r1u
⋆
2

IK
+

√
u⋆2ϕ(z

⋆)Φ(z⋆)−1

√
IK

+

√
u⋆2
IK

Z,

Var (λ1|u2, r1, β1 = 1)
d→ u⋆2
IK

(
1− z⋆ϕ(z⋆)Φ(z⋆)−1 − ϕ(z⋆)2Φ(z⋆)−2)

)
.

We can see that as I → ∞, the posterior mean for λ1 converges in probability to v⋆ + u⋆, or the
true data generating parameter, as we would expect for a globally identifiable model. However, for
fixed I , the posterior mean remains both dependent on u⋆2 and r1, and, moreover, the derivative of
the posterior mean with respect to r1 can be seen to remain bounded away from zero and of the
same magnitude as the posterior variance.

3 s1
I =

∑
i
miEi1

Ei2
/I is an approximate empirical covariance between the vector m and a vector with elements Ei1

Ei2

because Ei1

Ei2
→ 0.
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Nor does the sensitivity of the posterior mean for λ1 to changes in β1 diminish. We can calculate
the limit for the expression (E [λ1|u2, r1, β1 = 2]−E [λ1|u2, r1, β1 = 1])/

√
Var (λ1|u2, r1, β1 = 1),

or the change in posterior mean scaled by the posterior standard deviation. The form is shown in
the appendix to be √

1− z⋆ϕ(z⋆)Φ(z⋆)−1 − ϕ(z⋆)2Φ(z⋆)−2

z⋆ + ϕ(z⋆)Φ(z⋆)−1
.

which approaches 1 as E [z⋆] → −∞.
This analysis implies that posterior inferences can be sensitive to both prior hyperparameters

βj and rj for minority groups and can behave like a partially identified model asymptotically
(Gustafson, 2015). In terms of classical approaches to prior sample size, like Gelman et al.
(2013), a change from pj ∼ Beta(1, 1) to pj ∼ Beta(1, 2), or from λj ∼ Gamma(2, 100) to
λj ∼ Gamma(3, 150) represents a small increase in prior information, but this can translate to
large changes in the posterior mean for λj for small minority populations.

Despite this prior sensitivity, we show in Figure A.1 in Appendix A.4.2 that for reasonable val-
ues of cumulative incidence and race/ethnicity reporting rate for the majority group, the posterior
mean dominates the maximum likelihood estimator in terms of root mean squared error for a large
range of u⋆1. Moreover, the asymptotic MLE for u⋆1 has a non-negligible probability of being zero,
whereas the posterior mean is almost surely positive. These results demonstrate the benefits of
using Bayesian inference over classical maximum likelihood estimation.

2.4.2 Modeling incidence when missingness is dependent on both age-sex
and race/ethnicity

Now assume that the rate of incident cases for age-sex stratum i in race/ethnicity group j, or
observation (i, j), depends on fully-observed covariates, zi ∈ RK , associated with each stratum
i. In the context of COVID-19, we expect that age-sex stratum will predict both exposure and
probability of infection and disease given exposure, as well as the probability of race/ethnicity
being recorded, so it is important to extend our model to incorporate this information. We assume
that coefficients for zi, β for incidence and γ for race/ethnicity missingness, both in RK , are shared
between race/ethnicity groups, which amounts to assuming there is no interaction between race and
age-sex strata for predicting incidence and missingness. As above, we allow average incidence,
λj , and log-odds of observing race/ethnicity or ηj to vary by group j. Let pi be the length-J vector
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with j th element equal to pij . Then we can define the following observed-data model:

Xij|λj, zi,β, pij, Eij ∼ Poisson(pijλj exp(zTi β)Eij),

Mi|λ, zi, β,pi, ei ∼ Poisson(exp(zTi β)
∑

j(1− pij)λjEij),

pij =
(
1 + exp(−(zTi γ + ηj))

)−1
;

(2.10)

where the Xij are independent of Mi since the missingness process is conditionally independent
of the disease process. See A.3.1 for a graphical depiction of the model.

Theorem 2. Let the model be defined as in (2.10) and let E be the I by J matrix where the i-th

row is ei = (Ei1, Ei2, . . . , EiJ)
T , and let Z be the I by K matrix where the i-th row is zi. If all of

the following conditions hold:

(S.a) E is rank J

(S.b) Z is rank K

(S.c) I ≥ J +K

(S.d) pj ∈ (0, 1) for all j

(S.e) λj ∈ (0,∞) for all j

(S.f) eziβ
∑J

j Eij ∈ (0,∞) for all i

(S.g) rank
([

diag(E[:,1])Z . . . diag(E[:,J ])Z E[:,1] E[:,2] . . . E[:,J ]

])
> J +K

the model is locally identifiable.

The proof is in Appendix A.5 and depends on showing that the model’s Fisher information
matrix I is positive definite. We use a technique employed in Mukerjee and Sutradhar (2002),
which establishes a lower bound for the positive definiteness of the Fisher Information matrix via
a method of moments estimator. The idea rests on the derivation of the multivariate Cramér-Rao
lower bound in Rao (2002). This partially establishes that the model is regular and shows that the
model is locally identifiable (Watanabe, 2009; Rothenberg, 1971).

Given section 2.4.1.3, it is important to use prior information for minority groups when possible.
To that end, the following priors can be employed:

λj ∼ LogNormal(µλj
, s2λ) ∀j ∈ [1, . . . , J ],

ηj ∼ Normal(µηj , s
2
η) ∀j ∈ [1, . . . , J ],

β ∼ MultiNormal(µβ,Σβ)

γ ∼ MultiNormal(µγ,Σγ)
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where µλj
, µηj , sλ, sη,µβ,Σβ,µγ and Σγ are known hyperparameters.

2.4.3 Modeling geographic heterogeneity in incidence and missingness

Suppose the case data are observed for more than one geographical area so we have an additional
fixed categorical variable Ln ∈ {1, . . . , G} encoding the geographic area to which each resident
in the population is associated. We may expect that geographical heterogeneity in incidence and
race/ethnicity missingness exists between areas. For instance, with respect to the COVID-19 pan-
demic, we might want to allow for geographic heterogeneity in population substrata incidence and
missingness because we expect that areas have different contact patterns. We can then further
stratify the observations by area g as:

Xigj | U =
∑

{n |Sn=i,Ln=g,Cn=j,Un=1}Rn , Mig | U =
∑

j

∑
{n |Sn=i,Ln=g,Cn=j,Un=1}(1−Rn),

and we can tabulate population counts Eigj as Eigj =
∑E

n=1 1Sn=i1Cn=j1Ln=g.
Model eq. (2.10) naturally extends to incorporate this structure. Let eig be the J-vector with

j-th element Eigj for age-sex stratum i and geographic area g. Similarly define the proportions of
cases in stratum i and geographic area g with observed race/ethnic information as pig, where pig

is the J-vector with j-th element pigj . We let the covariates for stratum i vary by area g, zig, vary
by area g, and we also let the coefficients vary by g, so βg,γg ∈ RK . Let λg be the J-vector with
j-th element λgj . The observed-data model becomes

Xigj|λgj, zig,βg, pigj, Eigj ∼ Poisson(pigjλgj exp(zTigβg)Eigj),

Mig|λg, zig,βg,pig, eig ∼ Poisson(exp(zTigβg)
∑

j((1− pigj)λgjEigj),

pigj =
(
1 + exp(−(zTigγg + ηgj))

)−1
.

(2.11)

See Appendix A.3.2 for a graphical depiction of the model with a table of model parameters. We
can draw on the results from 2 to characterize the local identifiability of 2.11. By 2, within a
geographic region g, the parameter set

θg = {λg,ηg,βg,γg}

is locally identifiable provided the conditions in 2 hold. However, when data are sparse, either be-
cause there is low incidence within an area or because there is a small minority group in geographic
region g, we would like to shrink our estimates for θg to the global mean. Ideally we would learn
the degree of shrinkage for each dimension of θg. This motivates a hierarchical prior for elements
of θg.

22



2.4.3.1 Hierarchical priors

To that end, we may wish to incorporate area-level covariates, represented by a D-length vector
wg, into the model for θg. Let Πλ,Πη be in RJ×D and let Πβ,Πγ be in RK×D. A suitable model
for the elements of θg is:

log(λg) ∼ MultiNormal (αλ +Πλwg,Σλ)

ηg ∼ MultiNormal (αη +Πηwg,Ση)

βg ∼ MultiNormal (αβ +Πβwg,Σβ)

γg ∼ MultiNormal (αγ +Πγwg,Σγ)

(2.12)

For a more detailed picture of how these parameters connect to eq. (2.11), see appendix A.3.2.
Let the operation vec(A) : RM×N → RMN via appending the N M -length columns of A into an
NM -length vector. Then the vector of unknown hyperparameters can be represented as

ϕ = (vec(Πλ), vec(Πη), vec(Πβ), vec(Πγ),

vec(Σλ), vec(Ση), vec(Σβ), vec(Σγ),

αλ,αη,αβ,αγ)

We can encode our prior knowledge about the geographic heterogeneity of parameters into a joint
prior over ϕ.

While the hierarchical prior in eq. (2.12) does not correspond to the set of priors in eq. (2.7) the
results in section 2.4.1.3 suggest that posterior inferences for incidence parameters for areas with
small minority groups relative to the majority groups can be sensitive to the priors over Σλ,Ση,
and αη.

Figure A.1 in Appendix A.4.2 shows the large-population RMSE for the incidence of minority
race/ethnicity cases that are missing race/ethnicity information, or u1, under different prior sce-
narios. The RMSE of the posterior mean estimators are minimized when the prior mean for u1 is
close to the true parameter, when the prior for u1 excludes prior mass near zero and the prior mean
underestimates the true parameter, or when the prior mean slightly overestimates the true parame-
ter and the prior for u1 does not put substantial prior mass near zero. The near-zero prior behavior
for u1 can be translated to priors on Ση, and αη. By limiting the amount of prior mass in the right
tail of the distribution for αη one can limit the amount of prior mass near zero for u1; a normal dis-
tribution with substantial mass below 5 would suffice. The prior over Ση will also affect the tails
of the marginal prior for geographic-specific parameters, and can also adversely affect shrinkage.
If one uses a prior over population standard deviation with heavy tails, like a half-Cauchy, then
the marginal prior for a geographic specific parameter will have substantial prior mass near zero.
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If, instead, the prior over the population standard deviation hews too closely to zero, like a half-
normal with a standard deviation of 0.1, then the prior will shrink geographic-specific parameters
too strongly towards the overall mean. Similar considerations about shrinkage should guide priors
over Σλ. For more information on techniques for prior formulation in Bayesian models see Gabry
et al. (2019a); Gelman et al. (2017).

See Section 2.5.7 for more information on prior specification for population parameters.

2.4.4 Inference

We perform Bayesian inference in Stan (Team, 2021). Stan is at once a domain-specific mod-
eling language and a suite of inference algorithms, including dynamic Hamiltonian Monte Carlo
(HMC), a descendant of the No-U-Turn-Sampler (Betancourt, 2018; Hoffman et al., 2014). Stan’s
implementation of dynamic HMC adaptively sets the algorithm’s tuning parameters (e.g. leapfrog
integrator stepsize and mass matrix) during warmup iterations, which makes the sampler robust to
many difficult-to-sample posteriors, such as those that arise from fitting hierarchical models like
model (2.11) (Betancourt and Girolami, 2015).

We use Stan for inference because we are able to exactly marginalize over the discrete un-
known cases as shown in appendix A.2. While Stan does not directly allow inference over discrete
parameters, as long as the target density can be expressed as a marginalization over the discrete un-
knowns, Stan can sample from the posterior over the continuous parameter space and subsequently
draw discrete random variables conditional on the draws of the continuous parameters.

2.5 Simulation study

In this section, we present a simulation study designed to quantify the finite-sample properties of
our model under varying degrees of missingness, as well as to compare the model’s performance
to alternative methods of inference commonly applied to datasets with missing covariates. We
chose complete-case analysis, and two different multiple imputation approaches as the compar-
ison methods because of their prevalence among researchers. The simulation study clarifies the
potential pitfalls of using such methods when analyzing data with missing covariates.

2.5.1 Population data

In our simulation study, we drew on georeferenced population data from Wayne County, Michigan,
which encompasses the City of Detroit and its surrounding suburbs. The geographical areas of
analysis were Public Use Microdata Areas (PUMAs), which are administrative areas defined by
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the Census Bureau such that they comprise at least 100, 000 people. We aggregated Census-tract-
level data from IPUMS National Historic Geographic Information System into PUMA-level counts
(Manson et al., 2021). In Wayne County, there are 13 PUMAs nested within the county borders.
Within each PUMA, we stratified the population by age and sex, with age in years binned in
10-year right-open intervals between 0 and 80: [0, 10), [10, 20), . . . , [70, 80) and used a single
group to capture those 80 and older. We used the 2010 Decennial Census population counts as
Eij for each PUMA. The use of U.S. Census data constrains our race and ethnicity classification
because Hispanic/Latino ethnicity is treated as mutually exclusive with race. This prevents a more
nuanced modeling of a separate effects of ethnicity and race. Despite these limitations, for our
simulation study we used the Census classifications to bucket the population into four groups:
Black, Hispanic/Latino, Other, and White. The Black and White categories comprised people who

Table 2.1: Population summary in Wayne County, Michigan as of the 2010 Decennial Census

Mean Age×Sex×Race/Eth. 100× Ratio
Race/Ethnicity Total Pop. ×PUMA Pop. Std. dev. PUMA Pop. to White
Black 732801 3132 3152 81
Hispanic/Latino 95260 407 757 11
Other 90343 386 397 10
White 902180 3855 3225 100

identified as Black or White alone and not Hispanic or Latino, while the Hispanic/Latino category
included anyone who identified as Hispanic and Latino. The Other category included Asians and
Pacific Islanders, Native Americans and Alaska Natives, mixed race individuals, as well as people
of Other races, all of whom did not identify as Hispanic or Latino. From table 2.1 we can see that
in Wayne the majority of the population is White, though the Black population is of a similar order
of magnitude. Hispanic/Latino people and people classified as Other are around 10% of the White
population.

2.5.2 Data generating process

We simulated age-sex-stratum-specific incident cases of disease by PUMA from model 2.11, with
fixed hyperparameters ϕ under four scenarios that varied the proportion of cases that had fully-
observed covariates: 90%, 80%, 60%, and 20%. The data were generated with two effects for sex,
and nine effects for age, both with a sum to zero constraint in both the Poisson log-rate parameter
and the Bernoulli log-odds parameter. More explicitly, the βg parameter was decomposed into
βsex, and βage; γg, αβ , and αλ were similarly decomposed. For the simulated datasets, the Poisson
log-rate parameters for αage

β were fixed at values that mimicked the age pattern of relative risk of
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COVID-19 cumulative incidence in the first stage of the pandemic, roughly between March 1st,
2020 and July 1st, 2020. The relative risk of COVID-19 for younger people was much lower com-
pared to that of older people, especially those over 60, and we set the values of αage

β accordingly:
(−2.5,−2.0, 0.0, 0.0, 0.5, 0.5, 1.0, 1.0, 1.5) (Zelner et al., 2021). For the age pattern of the log-odds
of missingness, older individuals were more likely to have race reported compared to younger ages
and was thus reflected in our values for αage

γ = (−0.3,−0.3,−0.2,−0.2,−0.2,−0.1, 0.1, 0.4, 0.8).
In order to investigate hyperparameter inference as well as other functions of the parameters

of epidemiological interest (like cumulative incidence per group at the county level or age-sex-
standardized incidence) for majority and minority groups that was solely a function of missingness
and not of rates of disease, we set each group’s average log-rate of disease, or the elements of
αλ, to −4 for all simulations. We then set αη, the group-wise population log-odds of observing
race, to vary between scenarios according to the average proportion of cases observed with race.
In order to set proportions of fully-observed cases for each race/ethnicity, we set ratios of the
proportions relative to that of Whites and then varied the White proportion such that the population
weighted average rate of cases with fully-observed covariates matched the population target rates
of 90%, 80%, 60%, 20%. Blacks-to-Whites was set to 0.75

0.9
, Hispanic/Latinos was set to 1, Other

was set to 0.6
0.9

. The generative model for the geography-specific parameters is:

logλg ∼ MultiNormal(αλ, diag(σλ))

ηg ∼ MultiNormal(αη, diag(ση))

βg ∼ MultiNormal(αβ, diag(σβ))

γg ∼ MultiNormal(αγ, diag(σγ))

(2.13)

with all elements of σλ and σβ equal to 0.5 and all elements of ση and σγ equal to 0.3,. The
elements of the hierarchical scale parameters related to cumulative disease incidence, σλ and σβ ,
were set to larger values than the parameters related to the missingness process, ση and σγ , to
reflect the fact that missingness of race data in Wayne County in the first wave of the pandemic was
driven by local-level patient non-response and county-wide lab processing issues, while cumulative
incidence was driven largely by local transmission.

Summaries of the simulated datasets are shown in Table 2.2. The differences between race in
the true cumulative incidence were driven solely by the difference in age distributions between
races within Wayne County. The table highlights the fact that, excluding random variation, the
scenarios differ only in the observed incidence, as the disease process model as represented via
hyperparameters αλ and αβ remains fixed between scenarios. The variance in incidence was a
function of the variance of the realizations of the geography-specific parameters λg and βg driven
by the population scale parameters σλ and σβ .
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Table 2.2: The table summarizes the simulation study by missingness scenario by race/ethnicity.
200 datasets were simulated in each scenario. The column “Mean Obs.” gives the average pro-
portion of cases observed with race/ethnicity data across 200 simulated datasets. Similarly, “Mean
True Inc.” is the mean true incidence by group, and “Mean Obs. Inc.” is the mean observed
incidence by group.

Proportion cases Mean Mean Mean
w/ race/ethnicity Race/Ethnicity Obs. Std. dev. True Inc. Std. dev. Obs. Inc. Std. dev.
90% Black 80.7% (2.4%) 3.4% (0.9%) 2.8% (0.8%)

Hispanic/Latino 96.7% (0.7%) 2.4% (0.7%) 2.3% (0.7%)
Other 63.9% (3.0%) 2.6% (0.6%) 1.7% (0.4%)
White 97.1% (0.5%) 4.4% (1.8%) 4.3% (1.7%)

80% Black 72.7% (3.0%) 3.4% (1.0%) 2.5% (0.8%)
Hispanic/Latino 85.0% (2.4%) 2.4% (0.6%) 2.1% (0.5%)

Other 57.4% (3.2%) 2.6% (0.6%) 1.5% (0.3%)
White 86.5% (2.1%) 4.2% (1.2%) 3.7% (1.0%)

60% Black 53.7% (4.6%) 3.5% (1.1%) 1.9% (0.7%)
Hispanic/Latino 60.3% (4.3%) 2.4% (0.6%) 1.5% (0.4%)

Other 42.3% (3.7%) 2.6% (0.5%) 1.1% (0.3%)
White 64.4% (4.4%) 4.3% (1.3%) 2.8% (1.0%)

20% Black 17.2% (3.5%) 3.4% (0.8%) 0.6% (0.2%)
Hispanic/Latino 18.4% (3.2%) 2.4% (0.7%) 0.4% (0.2%)

Other 12.9% (2.3%) 2.7% (0.5%) 0.4% (0.1%)
White 21.7% (4.5%) 4.4% (1.5%) 1.0% (0.6%)

2.5.3 Inferential models

We fitted four inferential models to the simulated datasets: model (2.11), which we will refer to
as the “joint” model, the “complete case” model, defined in Equation (2.15), in which cases with
missing race/ethnicity are dropped, and two “multiple imputation” models in which we impute
the missing/race ethnicity cases and subsequently fit the complete case model to the generated
datasets. The hierarchical prior structure of the joint model matched that of the data generating
model in equation 2.13, with priors over the hyperparameters:

αλ ∼ MultiNormal(−5, diag(1)) ,σλ ∼ MultiNormal+(0, diag(1))

αη ∼ MultiNormal(2, diag(1)) , ση ∼ MultiNormal+(0, diag(1))

αβ ∼ MultiNormal(0, diag(1)) , σβ ∼ MultiNormal+(0, diag(1))

αγ ∼ MultiNormal(0, diag(1)) , σγ∼ MultiNormal+(0, diag(0.25))

(2.14)
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A noteworthy characteristic of the priors for the hyperparameters is that the priors over αλ and αη

were misspecified compared to the data-generating parameters. The true data-generating parame-
ters fell one prior standard deviation above the prior means for αλ, while the prior mean for αη,
which did not vary by scenario, was too large by 4 prior standard deviations in the 20% observed
scenario and was too small by 1.5 standard deviations in the 90% observed scenario. This allowed
us to examine the joint model’s finite-sample properties for large groups and smaller groups.

2.5.3.1 Complete case model definition

The complete case model is

Xigj|λgj, zig,βg, pigj, Eigj ∼ Poisson(λgj exp(zTigβg)Eigj),

logλg ∼ MultiNormal(αλ, diag(σλ)),

βg ∼ MultiNormal(αβ, diag(σβ)),

(2.15)

which necessarily omits a model for the missing-race-data cases. The priors for the hyperparame-
ters matched those in eq. (2.14) for the shared parameters between the joint model and the complete
case model. We used the results of Theorem 2 to check that our PUMA-level models were locally
identifiable. All 13 PUMAs satisfied the local identifiability criteria in 2.

2.5.3.2 Multiple imputation method description

1. Ad-hoc MI: The first multiple imputation model is an ad-hoc method which imputes miss-
ing cases using a multinomial distribution with a probability parameter equal to that of the
population proportions. For example, suppose we observe mig missing cases for a certain
stratum i in PUMA g, along with xig cases by race. In order to generate a single imputation
draw, y(s)

ig , we draw the missing cases: ϵ(s)ig ∼ Multinomial(mig, eig/
∑

j Eigj) and add ϵ
(s)
ig

to eig: y(s)
ig = ϵ

(s)
ig + xig. We loop through i ∈ {1, . . . , I} to generate one complete dataset

and repeat this step to generate multiple complete datasets.

2. Gibbs MI: The second multiple imputation model is described in Chapter 18 of Gel-
man et al. (2013): The method generates complete datasets using a Gibbs sampler that

alternates between sampling missing cases ϵ
(s)
ig |θ

(s−1)
ig ∼ Multinomial(mig,

θ
(s−1)
ig∑

j θ
(s−1)
ig

) and

θ(s)|y, ϵ(s) ∼ Dirichlet(1 + y + ϵ(s)) where θ(s) is the concatenation of each θ
(s)
ig for the

Gibbs sampler iteration step s into a single vector, and y, ϵ(s) are also vectors formed by
concatenating yig, ϵ

(s)
ig into single vectors appropriately matching the indexing of θ(s) and 1

is an appropriately sized vector of 1s, representing the uniform prior over the simplex. We
run the Gibbs sampler for 20 MCMC chains for 2,500 burn-in iterations and 2,500 samples,
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which we subsequently thin by 25 steps, resulting in 5,000 total posterior samples. We then
take a subset of these samples 5,000 as our completed datasets.

We generate 100 imputed datasets from each method for each simulated dataset, fit model (2.15) to
each imputed dataset with Stan and combine the 100 sets of posterior draws into a single superset
of posterior samples. We then compute posterior summary statistics including credible intervals for
each method using the single superset of posterior samples, following advice in Zhou and Reiter
(2010) which showed that proper Bayesian inference using multiple imputation must follow this
procedure.

2.5.4 Estimands of interest

In order to compare the models on a common subset of parameters, we limited our comparisons
to those involving the data-generating disease process parameters αλ, and αβ . The simplest es-
timands against which we measured each model’s inferences were αλ, and σλ. We were also
interested in the following estimands:

(exp((αλ)1 − (αλ)J), . . . exp((αλ)J−1 − (αλ)J))

which are Wayne-county-level group-specific rates of disease relative to the rate of disease in cate-
gory J ; in the simulation study category J was Whites. There are several more complex estimands
which have epidemiological significance, which are similar to poststratification estimators Gelman
and Little (1997); Gao et al. (2021) that are functions of the PUMA-local parameters βg and λg,
or the Poisson model coefficients for strata and rates of disease by race/ethnicity category in a
geography g.

2.5.4.1 Modeled incidence

The first will be total modeled incidence for a race/ethnicity category j, or Ij . Let rigj =

λgj exp(z
T
i βg) be the rate of expected cases per person of disease in stratum i, geographical area g

for category j. Then

Ij =

∑I
i=1

∑G
g=1Eigjrigj∑I

i=1

∑G
g=1Eigj

is the total incidence for category j. Interest often lies in relative risk ratios, or

Ij/IJ .
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2.5.4.2 Standardized incidence

The second estimand is the standardized incidence or SIj . Let

ψi =

∑J
j=1

∑G
g=1Eigjrigj∑J

j=1

∑G
g=1Eigj

be the population average incidence for a single stratum i. Then the SIj for category j is:

SIj =

∑G
g=1

∑I
i=1Eigjψi∑G

g=1

∑I
i=1Eigj

.

The standardized incidence for race/ethnicity j quantifies the cumulative incidence based solely on
race j’s population distribution across strata.

2.5.4.3 Standardized incidence ratio

The third estimand is the standardized incidence ratio, denoted as the SIR in Lash et al. (2021),
though not to be confused with susceptible-infected-recovered models (Keeling and Rohani, 2011),
which is the ratio of the modeled incidence to standardized incidence:

SIRj =
Ij

SIj
.

The SIRj measures how modeled cumulative incidence for a race/ethnicity category j deviates
from the standardized incidence. A ratio above one indicates that race/ethnicity category j has
experienced higher rates of disease than would be expected based on the population distribution
across ages and sexes alone, while a ratio below one indicates the opposite. We can then derive
relative estimands from Ij , SIj , and SIRj as we did using αλ.

2.5.5 Computation

We ran Stan via the cmdstanr interface in R (Team, 2021; Gabry and Češnovar, 2021; R Core
Team, 2021) on University of Michigan’s Great Lakes Slurm High Performance Computing Clus-
ter. For the exhaustive combination of models and datasets for the joint and complete-case models
(1,600 in total), we ran four Markov chain Monte Carlo chains for 2,000 warmup iterations and
1,500 post-warmup iterations. In order to ensure that the posteriors had been sufficiently explored,
for each dataset/model combination we recorded the maximum of all parameters’ rank-normalized
R̂s, and the minima of bulk effective sample size and tail effective sample size divided by the total
post-warmup iterations, which was 6,000 (bulk ESS efficiency, and tail ESS efficiency, respec-
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tively) using the posterior package in R (Bürkner et al., 2021; R Core Team, 2021; Vehtari
et al., 2020).

We generated 100 imputed datasets for each of the 800 simulated datasets for each imputation
method, and subsequently ran (2.15) for 500 warmup iterations and 1,000 post-warmup iterations
with four MCMC chains, resulting in 160,000 fitted four-chain Stan models between both imputa-
tion methods.

Example R and Stan code, including models and code to verify identifiability condition (S.g),
can be found at https://github.com/rtrangucci/epi-missing-data.

2.5.6 Results

2.5.6.1 Computation

The joint and complete-case models ran with maximum rank-normalized R̂s below 1.013. All
but one model ran with bulk ESS efficiency greater than 10.0% (the 1 out of 1,600 model/data
pair that violated the threshold ran with 9.7% bulk ESS efficiency) and all ran with minimum tail
ESS efficiency greater than 10%. No divergent transitions were recorded, though 29 complete
case models fitted to datasets generated in the 20% observed scenario needed to be rerun with
a warmup-iteration target Metropolis acceptance rate of 0.995, an increase compared to the 0.95
target acceptance rate that all models were run with initially. No iterations were observed that hit
maximum treedepth, which was set to 14 for all runs.

A small minority of the multiple imputation runs encountered treedepth issues, though all
160,000 model-by-imputed dataset combinations ran with bulk and tail ESS efficiencies greater
than 10.0%. The CPU time required to run the multiple imputation methods was, at a minimum,
∼ 42 times greater than either the joint or the complete-case models which is a clear disadvan-
tage to multiple imputation methods. Zhou and Reiter note that for Bayesian credible intervals to
achieve nominal coverage with multiple imputation many more than the typically recommended
5-20 imputed datasets are required.

2.5.6.2 Bias and root mean squared error

We made boxplots of bias for each parameter across all simulation runs S. We used the posterior
mean from each model as the estimator for each estimand θ, or θ̂ = Eθ|Y [θ], and calculated bias
for a simulation run s as

bias(θ̂s, θs) = θ̂s − θs.
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Figure 2.1: Bias across simulated datasets for the incidence, or Ij for Blacks, Hispanic/Latinos,
Others, and Whites plotted against the proportion of cases observed with race data.

Root mean squared error was calculated as

RMSE(θ̂, θ) =

√
1

S

∑S
s=1 bias(θ̂s, θs)2.

Asymptotic 95% confidence intervals were calculated using the Delta method (Lehmann and
Casella, 1998).

Bias in estimating incidence by race/ethnicity As can be seen in Figure 2.1, for Blacks and
Whites, which comprise 49% and 40% of the total population in Wayne County, the bias in the
posterior mean incidence estimator generated by the joint model is small across all scenarios for
most simulated datasets. For Whites, the average bias in the joint model posterior mean is not sig-
nificantly different than zero in the 90%, 80% and 60% scenarios, while for Blacks, there is statis-
tically significant average bias for joint-model posterior mean incidence in all scenarios other than
80%, but it is an order of magnitude smaller than the average bias of the posterior mean estimator
from the imputation methods. The complete case model, as expected, is significantly negatively
biased in all scenarios. The average bias from ad-hoc multiple imputation is smallest among all
methods in the 20% scenario because the data generating process, outlined in Section 2.5.2, defines
the true population rate of disease for each race/ethnicity group to be the same. The distribution
of missing cases by category conditional on the total missing cases is multinomial with parameter
eig ⊙ (1−pig)/

∑
j Eigj(1− pigj). When missingness is high, (1− pigj) is close to one, so the ad-

hoc multinomial imputation procedure with parameter eig/
∑

j Eigj is approximately correct. As
missingness decreases, the ad-hoc imputation parameter diverges from the data generating process
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Figure 2.2: Bias across simulated datasets for the relative risk ratios, or Ij/IJ for Blacks, Hispan-
ic/Latinos, and Others relative to Whites plotted against the proportion of cases observed with race
data.

and the bias grows. This pattern can be seen in Figure 2.2 as well. In sum, the averages of the joint
model estimators’ biases are sometimes more than two standard errors from zero, but the model’s
absolute bias is significantly smaller compared to the absolute bias of the competing estimators,
with exceptions in the 20% scenario compared to the Ad-Hoc MI method.

Bias in estimating relative risk by race/ethnicity In Figure 2.2 the joint model was able to
estimate the relative risk of disease with mean bias that is not significantly different from zero for
Blacks vs. Whites in the 80%, 60% and 20% observed scenarios, while in the 90% scenario the
mean bias is significantly nonzero, but two orders of magnitude smaller than the mean bias incurred
by the complete case model’s estimators. For Hispanic/Latinos and Others, there exists some mean
bias in the 90%, 60%, and 20% scenarios, though in the 80% and 60% scenarios the mean bias is
an order of magnitude smaller than that of the complete case analysis. Complete case analysis does
yield estimators with average bias that is not significantly different from zero for the relative risk of
disease for Hispanics/Latinos to Whites in the 90% observed scenario and has smaller average bias
compared to the joint model’s estimators. This is due to the fact that in the simulated datasets the
log-odds of observing race data was equal for Whites and Hispanics/Latinos, all else being equal.
The average bias from multiple imputation using Gibbs sampling is consistently nonzero across
all missingness scenarios for all groups in Figure 2.2. The Gibbs multiple imputation procedure
assumes the data are MAR, when the DGP is NMAR for all scenarios. This highlights the danger
of using a MAR procedure when the data are NMAR. The pattern of bias is similar for exp((αλ)j−
(αλ)J): the complete-case estimators are comparable in terms of mean bias to that of the joint-
model estimators in the Hispanic/Latino group, while the complete-case estimators underperform
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in Blacks and Others. For σλ, the complete-case posterior mean estimators are positively biased
compared to the joint-model’s estimators, likely due to the fact that the complete case analysis
attributes all variance in local area estimates of λg to variation in disease incidence while the joint
model attributes some of the variation to variation in the observational process. The estimators
from the joint model are, however, negatively biased, likely due to the fact that we have only 13
PUMAs and relatively strong Normal+(0, 0.52) priors that shrink towards zero on the population
scale parameters σλ.

Root mean squared error The RMSEs are shown on in Appendix A.6.1. That of the joint-
model estimators for SIRj are significantly smaller (as measured shown by nonoverlapping 95%
confidence intervals) than the RMSEs for the complete-case estimators in the 90%, 80%, and
60% scenarios for nearly all groups (the exception is for Hispanics/Latinos in the 60% scenario,
where the RMSEs are not significantly different). In the 20% observed scenario, the RMSEs of the
joint-model estimators for Blacks and Whites are smaller than those of the complete case model,
but the RMSEs of the joint-model estimators for Hispanic/Latinos and Others are larger than the
complete-case estimators. This is due to the fact that Hispanic/Latinos and Others are smaller
populations in Wayne County, and the parameter space for the is 2× as large as the complete-
case model’s parameter space. We also present the RMSE comparisons for the relative risk ratios
and relative county-level rates, shown in figures A.3 and A.4, respectively. The relative risk ra-
tio plots show a similar pattern to that of the SIRj estimates, with the exception of relative risk
ratios for Hispanics/Latinos, for which the RMSEs of the complete-case estimators are smaller
than those of the joint model’s. This is due to the fact that White and Hispanics/Latinos case-
patients are observed at similar relative rates across simulations because the observation ratio, or
inv logit((αη)j)/inv logit((αη)J) = 1 for these two groups and the complete case analysis model
implicitly assumes the observation ratios for all races to be exactly 1.

On the contrary, figure A.4 shows that the RMSEs for the joint-model’s estimators are similar
in magnitude or larger in all scenarios. While the joint-model’s estimators show smaller mean
biases, the variance for the estimators is much larger compared to the complete case analysis.
This is again due to the fact that there are only 13 PUMAs included in the simulation study, and
the fact that the dimension of the parameter space is twice as large for the joint model as that of
the complete case model. The RMSEs for the ad-hoc imputation approach are small in the 20%
scenario for the same reason the bias is small in the 20% scenario, but the RMSE increases as the
missingness decreases. This is a clear indication that the data generating process does not agree
with the imputation procedure. The RMSEs for the Gibbs imputation approach are large for the
20% scenario, likely owing to the fact that as the number of missing cases increases, the variance
of the imputed datasets increased due to increased posterior uncertainty for the imputation model.
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This could be an indication that more than 100 imputed datasets are necessary for the imputation
procedure when missingness is high, which would accord with the observations in Zhou and Reiter
(2010), though we were constrained by computational budget to use only 100 imputed datasets per
simulated dataset.

2.5.6.3 Coverage and interval length

Table 2.3 summarizes the interval coverage for the complete-case model, the joint model, and
the multiple imputation procedures. All intervals that follow are central p% posterior credible
intervals. In the event the joint distribution of the simulated parameters and data matches the prior
and the likelihood of the inferential model and we can properly draw samples from the posterior,
the central p% posterior credible intervals (and any other posterior intervals, for that matter) will
contain the parameter that generated the data with exactly p% probability (Cook et al., 2006). As
expected, the complete-case model’s 50% intervals severely under cover for all but the county-level
relative rates of disease for Hispanics and Latinos compared to the rate for Whites. The ad-hoc
imputation method’s intervals over-covered for the population-level relative risk comparisons (as
seen in A.4), while they undercovered for the standardized incidence and relative risk measures,
while the Gibbs sampler imputation’s intervals severely undercovered in all scenarios for all the
parameters of interest. Despite the ad-hoc methods near-match to the data generating process in
the 20% scenario, the intervals for incidence under-cover more than the joint model’s credible
intervals. The joint model’s intervals are near the nominal coverage probabilities, i.e. the 50%
intervals cover the true parameter value in 50% of simulations, though they do under-cover for
sparsely populated groups like Others and Hispanic/Latinos, especially so with significant numbers
of missing cases.

The same pattern is exhibited in the figure 2.3, which shows boxplots of the average coverage
across all parameters related to the disease process for each simulated dataset for all models. The
complete-case model’s 50% and 80% interval coverage is about 25% and 35%, respectively, while
the joint model’s intervals achieve the nominal coverage probability on average. The multiple
imputation methods’ intervals fare a bit better though they still under-cover: the rates are near
30%-35% and 60% to 65% on average.

In appendix section A.6.2 we present table A.3, which mirrors table 2.3 but for 80% intervals.
The pattern of performance is similar.

2.5.6.4 Breakdown analysis

The joint model performs well under the 90%-, 80%- and 60%-observed scenarios, but when there
is a significant proportion of cases that are missing race data, like in the 20%-observed scenario, the
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Figure 2.3: Boxplots of simulation-wise mean 50% and 80% interval coverage by observed data
proportion scenario for the joint model, the complete-case model, and the multiple imputation
methods. Horizontal black lines indicate the nominal coverage probability rates.

model’s posterior intervals begin to undercover compared to the nominal coverage probabilities.
One can see this in figure 2.3, as the interval coverage in the 60% observed scenario begin to
undercover slightly as measured by the median across the 200 simulated datasets. In the 20%
observed scenario, the 75th quantiles of the mean parameter coverage for the full model for both
the 50% and 80% intervals lie below the nominal coverage rates. This leads us to conclude that
informative priors are necessary when the model is fitted to datasets that have significant numbers
of cases that are missing race data. If the likelihood and prior conflict, however, these priors may
have an outsized influence on the posterior estimands.

2.5.7 Prior sensitivity results

In order to test the sensitivity of model inferences to priors over population hyperparameters such
as the population mean log-incidence (αλ), or population mean log-odds of observing a specific
race/ethnicity category (αη), we used a subset of 100 simulated datasets from the 20% observed
scenario. We varied the parameters of the priors over the population hyperparameters over a grid
and re-estimated the quantities of interest for each prior specification. We varied one prior param-
eter at a time while holding the other prior parameters fixed at the values shown in eq. (2.14). The
parameter values are shown in Table 2.4.
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Population parameter Prior parameter Values

αηj E [αη]j {0.5, 1,2, 3}∀j
αλj E [αλ]j {−3.5,−4,−4.5,−5}∀j
αηj SD(αη)j {0.3, 0.5,1, 2, 3}∀j
αλj SD(αλ)j {0.3, 0.5,1, 2, 3}∀j
σηj E [ση]j /

√
2/π {0.25, 0.5,1, 2}∀j

σλj E [σλ]j /
√
2/π {0.25, 0.5,1, 2}∀j

Table 2.4: Prior sensitivity simulation study prior settings.
Bold values correspond to settings used for results presented in 2.5.6. Prior parameter for σλ and
ση is the standard deviation parameter for a half-normal distribution.

We measured 1) the sensitivity of the estimated posterior mean incidence by race/ethnic group,
or Ij , and 2) its bias. Our measure of posterior mean sensitivity to the prior mean was the change
in posterior mean against a reference mean scaled by a reference standard deviation, where the
reference mean and standard deviation were those obtained using the prior settings set out in Equa-
tion (2.14). Specifically, for an estimand g(θ), with a posterior over θ πb(θ|Data) under a prior
with reference parameters b and a posterior πa(θ|Data) under a prior with alternative parameters
a:

Posterior Z-score =
Eπa(θ|Data)[g(θ)]− Eπb(θ|Data)[g(θ)]√

Varπb(θ|Data)(g(θ))
. (2.16)

The measure of bias for a true estimand g(θ†) is

Eπa(θ|Data)[g(θ)]− g(θ†)

g(θ†)
. (2.17)

Figure A.5 shows that the posterior incidence estimate is somewhat sensitive to the priors over log-
population mean incidence and log-odds of observing race/ethnicity information. The right-hand
column in Figure A.5 shows that as the prior mean for αλ for the Other group differs from the true
data-generating mean by 3 prior standard deviations, the posterior mean can change by roughly
half a posterior standard deviation from the posterior mean under the baseline prior.

Meanwhile, the left-hand column of Figure A.5 shows the sensitivity of the posterior mean for
incidence by race/ethnicity to the prior for αη. Of interest is the posterior mean for the Other
group because it is the minority group. In the 20%-observed scenario, the true αη for the Other
group is approximately 0.3, while the prior mean for αη is 2. When the prior standard deviation is
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decreased to 0.5 from 1, the prior mean is approximately 3 prior standard deviations away from the
true data generating parameter, and the posterior mean decreases by about half a posterior standard
deviation. Despite the fact that the posterior means can shift due to changes in the prior, however,
the posterior mean never exceeds 2 posterior standard deviations, implying that the inferences do
not appreciably change.

Digging deeper into the upper-left-hand plot in Figure A.6 shows that when the prior for αη

is centered on missing-at-random missingness and the prior mean is too large compared to the
true proportion of cases with observed race/ethnicity, the model over-allocates missing cases to
majority groups while it under-allocates cases to minority groups. If we instead center the prior
too low then we may over-allocate cases to minority groups.

The lower-left-hand plot in Figure A.5 shows a similar phenomenon when the prior reflects
too-strong certainty that the data-generating process is nearly missing-at-random. When too much
prior weight is allocated to near-missing-at-random αη, the model deflates incidence for groups
with higher-than-average missingness and inflates incidence for groups with lower-than-average
incidence.

Figure A.6 shows that the bias is not appreciable for incidence, with the exception of the Other
group when the prior for αλ is about 3 standard deviations or more too large.

Figure A.7 shows posterior Z-score and bias plots for changes to the prior for population inter-
geography standard deviation parameters for λgj and ηgj , or σλ and ση. The posterior for incidence
is not especially sensitive to the prior over these parameters.

The results of the prior sensitivity simulation study show that the model inferences for incidence
are relatively robust to misspecification of priors for population hyperparameters, but that care
should be taken with the prior mass apportioned to data generating processes that are centered on
missing-at-random scenarios.

2.6 Application to COVID-19 case data in Wayne County,
Michigan

In this section we will apply both the complete-case model and the joint model to COVID-19 case
data in Wayne County from the first wave of the pandemic.

2.6.1 Data

The source of our case data is the Michigan Disease Surveillance System (MDSS) maintained by
the Michigan Department of Health and Human Services (MDHHS). MDHHS’s guidelines for the
collection of probable COVID-19 cases is set out in Michigan Department of Health and Human
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Services. (2020) as outlined in Zelner et al. (2021). We included all reported PCR-confirmed
COVID-19 cases for individuals outside of state prisons with that were entered into MDSS between
2020 − 03 − 01 through 2020 − 06 − 30. This comprises 22,141 cases of COVID-19. We then
filtered out 1,374 cases, or about 6% of the total cases, that could not be geocoded to a unique
address in Wayne County. We filtered a further 74 cases for which the case patients’ sex at birth
was unknown, as well as 7 cases for which age was unknown. Finally, we dropped 1,398 cases
which were matched to the address of a licensed nursing homes or long-term care facility (LTCF).
We excluded these cases for two reasons: 1) the populations of nursing homes and LTCFs are
likely not well-represented by the 2010 Census denominators and 2) the high incidence among
nursing home and LTCF residents does not accord with our assumption of a Poisson process for
disease cases. This results in a final dataset of 19,288 PCR-confirmed COVID-19 cases.

In total, approximately 18% of the 19,288 cases, or 3,464 cases, are missing race data. For
cases that do include the race of the respondent and are not identified as Hispanic or Latino, we
classify those who are identified as Asian or Hawaiian or Pacific Islander as Asian, those identified
as Black/African American or Black/African American/Unknown as Black, and Caucasian and
Caucasian/Unknown as White. We classify cases as Hispanic or Latino if the data field for patient
ethnicity is equal to Hispanic or Latino. We classify those who identify as Native American or
Alaska Native, mixed race, or other race as Other. Cases that are not missing race info but are
missing patient ethnicity information are classified as the indicated race and are treated as not
Hispanic or Latino.

We again have 13 PUMAs that comprise Wayne county, and 18 age by sex-at-birth strata per
PUMA.

2.6.1.1 Aggregation to PUMAs

This yields 234 observations of the counts of PCR-confirmed COVID-19 cases within each
race/ethnicity category, or 1,170 total observations of PUMA by age by sex-at-birth by race/eth-
nicity. The mean count is 13.5 while the variance is 696.9. As for observations of total counts
of cases missing race and ethnicity information by PUMA by age by sex-at-birth, 6% of the 234
PUMAs have zero observed cases with missing race and ethnicity.

2.6.1.2 Population data

We added the Asian/Pacific Islander group as an additional race/ethnic category, because such
individuals make up a significant fraction of the population in Wayne County, though in all other
respects the PUMA-level population data is the same as in the simulation study in Subsection 2.5.1.
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2.6.2 Models and priors

We fitted four of the models presented in Section 2.5.3: the joint model, the complete-case model,
and the ad-hoc and Gibbs multiple imputation models. The full specification for the joint model is:

Xigj|λgj, zi,βg, pigj, Eigj ∼ Poisson(pigjλgj exp(zTi βg)Eigj),

Mig|λg, zi,βg,pig, eig ∼ Poisson(exp(zTi βg)
∑

j((1− pigj)λgjEigj),

pigj =
(
1 + exp(−(zTi γg + ηgj))

)−1
,

logλg|αλ,σλ ∼ MultiNormal(αλ, diag(σ2
λ)),

ηg|αη,ση ∼ MultiNormal(αη, diag(σ2
η)),

βg|αβ,σβ ∼ MultiNormal(αβ, diag(σ2
β)),

γg|αγ,σγ ∼ MultiNormal(αγ, diag(σ2
γ)),

(2.18)

with the same priors over the hyperparameters as in eq. (2.14) with the exception of the prior scale
for σγ set to 1 instead of 0.5.

The full specification for the complete-case model is

Xigj|λgj, zi,βg, pigj, Eigj ∼ Poisson(λgj exp(zTi βg)Eigj),

logλg|αλ,σλ ∼ MultiNormal(αλ, diag(σ2
λ)),

βg|αβ,σβ ∼ MultiNormal(αβ, diag(σ2
β)),

(2.19)

with the same priors as the joint model over the shared hyperparameters αλ,αβ,σλ and σβ .
zi was 9-dimensional, with the first element encoding male vs. female and the next eight el-

ements encoding the age stratum from [0, 10) to [70, 80). We used a sum contrast for age and a
scaled sum contrast for male vs. female. We used the results of Theorem 2 to check that our model
as defined is locally identifiable for each PUMA. All 13 PUMAs meet our criteria for the model
to be locally identifiable. We needed to rerun the identifiability analysis because we expanded
our race/ethnicity categories by one to include Asians/Pacific Islanders as a separate group. Our
construction of the βg and γg is the same as in the simulation study.

2.6.2.1 Computational results

We again used cmdstanr as the Stan interface via R (Gabry and Češnovar, 2021; R Core Team,
2021). Each model was run with 8 MCMC chains with 3,000 warmup iterations, and 2,000 post-
warmup iterations with a target Metropolis acceptance rate of 0.99. For the joint model, all R̂s were
less than 1.01, while the minimum bulk and tail ESS efficiencies were 0.098 and 0.200 rounded,
respectively. For the complete-case model, all R̂s were less than 1.01, while the minimum bulk and
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tail ESS efficiencies were 0.156 and 0.238, respectively. All ESS efficiency numbers are rounded
to three digits.

The multiple imputation methods were run for 1,000 warmup, and 2,000 post-warmup iterations
for each of the 100 imputed datasets. All R̂s were below 1.01 for each imputed datasets MCMC
run, and minimum bulk and tail efficiencies exceeded 10% for the Gibbs imputation scheme while
minimum bulk and tail efficiencies exceed 9% and and 10%, respectively for the ad-hoc imputation
scheme. Note that the R̂ statistics for the combined chains are typically larger than 1.01 for many
parameters of interest, which can be seen in table A.6. This is due to the between-imputed-dataset
variance.

2.6.3 Results and Model Comparison

2.6.3.1 Comparison of model results on completely-observed cases

Following Gelman et al. (2020) and Gabry et al. (2019a), we performed a series of graphical
posterior predictive checks, or PPCs, using the bayesplot package (Gabry and Mahr, 2021).
These involved simulating PUMA by age by sex by race case counts from the fitted models and
comparing these outputs to the observed data. Along this dimension, the joint model and the
complete-case model were indistinguishable in terms of errors, squared errors, and 50%, 80% and
95% interval coverage for the observed data.

These checks also revealed that the observational variance, or 1
IJ−1

∑
i,j(xij − x̄)2, x̄ =

1
IJ

∑
i,j xij and the proportion of zeros, or 1

IJ

∑
i,j 1xij=0, fell near the 50th percentile for each

model’s posterior over the two statistics, which indicates that the Poisson distribution is a suitable
outcome distribution for this dataset.

We also used graphical PPCs to gauge whether the model assumption that there is no interaction
between race and age is reasonable. The plots are included in Appendix Section A.8.1, and show
that while there were deviations from the model’s posterior distribution for age by race cumulative
incidence, they are small compared to the total cumulative incidence. Moreover, our interest lies
in quantifying cumulative incidence by race for Wayne county instead of capturing all sources of
variation in the observed data.

2.6.3.2 Posterior predictive checks on missing cases

We can compare the observed statistics for the missing cases to the joint model’s posterior predic-
tive distribution for the same statistics. The mean, variance, and proportion of age/race/sex strata
with zero cases observed all fell well within the joint model’s central 50% posterior intervals. A
posterior predictive rootogram shown in Appendix Section A.8.2 that the tail is a bit thicker than
the joint model expects, but the deviation is not extreme enough to warrant modifying the model.
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2.6.3.3 Inference on epidemiological estimands

Following the results of our simulation study, the models’ inferences differed for the estimands
introduced in Subsection 2.5.4, like modeled incidence, standardized incidence, standardized inci-
dence ratios, and functions of these estimands.

A comparison of the modeled incidence inferences for the joint model, the complete-case
model, and the Gibbs-sampler-imputation method is shown in Figure 2.4. The most striking aspect
of the figure is the elevated incidence in the Other race category across all methods. The com-
plete case model infers uniformly lower incidence than does the joint model, which makes sense
as the complete case model omits cases that are missing race/ethnicity information. The left-hand
panel shows the Gibbs-imputation method imputes higher incidence for Whites, Asians/Pacific Is-
landers, and Hispanics/Latinos compared to the joint model. This mirrors the Gibbs performance
in the simulation study as shown in Figure 2.5. The plot shows that the standardized difference in
posterior means between the Gibbs imputation and the joint model is systematically greater than
zero for Hispanic/Latinos and Whites, while it is systematically lower than zero for Others in the
80% observed data scenario. Visually, we can see that the understatement for incidence is more
extreme for Blacks and Others than it is for Hispanics or Latinos and for Whites. Both the Gibbs
and complete case intervals are shorter than the joint-model intervals.

Figure 2.8 shows the relative modeled incidence, or Ij/IJ , where J is the category for Whites.
The plot shows that relative risks for all nonwhites are smaller when using complete case analysis
compared to that of the joint model. The increase is most substantial for the Other race/ethnicity
category, but both Blacks and Hispanic and Latinos have significant increases in relative risk.

Table A.5 in Appendix Subsection A.8.3 shows the exhaustive comparison between the two
models for all of the estimands. Despite the models showing statistically significant differences
for posterior means among the standardized incidence ratios, the practical differences are small
for Blacks, Hispanics and Latinos and Asians and Pacific Islanders. The 80% posterior credible
intervals, on the contrary, are larger on average for the joint models’ inferences on the standard-
ized incidence ratios. Whites and people of Other races are seen to have statistically significant
and practically significant differences in the models’ posterior mean estimators. The models’ in-
ferences differed most significantly in terms of relative incidence, as can also be seen in Figures
2.8, where for Blacks vs. Whites and Others vs. Whites the posterior 80% credible intervals do
not overlap, even after taking into account Monte Carlo standard error. The joint model’s posterior
intervals for the epidemiological parameters of interest were wider on average, in agreement with
the simulation study results.

42



2.6.3.4 Inference on missingness parameters

We cannot directly compare the inferences for the missingness parameters for the complete-case
model to the joint model. We can, however, examine how the ratio of modeled incidences by race
differs between races. In Figure 2.6, one can see that the 80% posterior credible intervals for the
ratio of the complete-case model’s incidence to the joint model’s incidence do not include 1 for
all races other than Asians and Pacific Islanders. The only groups for which the ratio of Gibbs-
to-joint-model incidences exclude zero are Whites and Others, which again mirrors the pattern in
Figure 2.5, though the difference is less extreme for Hispanics/Latinos and Asians/Pacific Islanders
for the real-world data. The Gibbs imputation method’s inference for Blacks nearly matched that
of the joint model. This is not surprising when we consider the fact that between-group compar-
isons of the ratio of incidences reveals that non-White residents, excluding Others had missingness
proportions that were near equal between groups. This can be seen from 2.6 as the posterior in-
tervals for the Complete Case comparison overlap for Hispanics/Latinos, Blacks and Asian/Pacific
Islanders. It can also be seen that the posterior intervals for Others do not overlap with any other
category, and that Whites and Blacks are also do not overlap. Figure 2.7 shows the supporting
evidence for NMAR missingness of race; the plot shows the Wayne-County-wide population in-
ferences for the probability that an individual with COVID-19 of a certain race will have race
reported in their case line-listing, all else being equal. This estimand is a transformation of the αη

parameter, namely, inv logit(αη). The strongest evidence for NMAR missingness exists for the
Other category, whose 80% posterior credible intervals do not intersect any other category’s inter-
vals. There is also some evidence for NMAR missingness for Blacks with respect to Whites, as the
80% posterior credible intervals for the probability of completely observing race are (0.81, 0.91)

vs. (0.89, 0.98), respectively, as shown in Table A.7 in Appendix Subsection A.8.3.

2.6.3.5 Summary

Our results largely align with those of prior analyses of racial disparities in COVID-19 incidence
in the U.S. For example, Labgold et al. found a similarly large incidence among case-patients of
Other race. The authors find a bias-adjusted PCR-confirmed COVID-19 rate of nearly 14% among
Other race case-patients compared to rates of at most nearly 4% in Hispanic/Latino case-patients,
who had the next-largest incidence among the races included in Labgold et al.’s study. The relative
incidence between Others and Whites is nearly 14, which puts our 80% posterior credible interval
of (4.77, 8.11) in context.

Several explanations are plausible for the elevated incidence among people of Other races;
Wayne county has a large Middle Eastern population and these individuals may identify them-
selves as not being Black, Hispanic or Latino, Asian or Pacific Islander or White. The case data
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Figure 2.4: Race/ethnicity category-specific modeled incidence by model. The inner intervals are
50% and the outer intervals are 80%.
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Figure 2.5: Boxplots of differences in posterior means between indicated methods and joint model
scaled by pooled posterior standard deviation by race/ethnicity category-specific modeled inci-
dence by simulated dataset for the 80% observed data scenario.
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does include a field for Arab ethnicity, but the 2010 Census did not include a Middle Eastern or
North African category for ethnicity. Another explanation may be our treatment of missing His-
panic/Latino ethnicity information. If many people who are identified as Other but do not have a
recorded Hispanic/Latino ethnicity are truly Hispanic/Latino then our model would inflate the in-
cidence in the Other category at the expense of the Hispanic/Latino category; given that the Other
group is so small a small inflation in counts would result in a large inflation of risk.

There is strong evidence for nonignorable missingness driven by not-missing-at-random race
covariates. The evidence is strongest for people of Other races. This means that omitting cases
that are missing race and calculating relative risk between any race and Other would yield a biased
estimate. Moreover, the size of the bias would be large because the probability of observing race for
Others is low compared to the other categories; the 80% posterior credible interval is (0.45, 077).
There is also some evidence for NMAR missingness for Blacks with respect to Whites. Given the
small number of PUMAs we modeled, there would likely be stronger evidence in favor of NMAR
missingness for other race/ethnicity categories if we were to model a larger geographical area, like
all of Southeastern Michigan instead of just modeling Wayne County.

While the Complete Case inferences are predictably different from the joint model’s, the mul-
tiple imputation using Gibbs sampling also produced significantly different inferences. The co-
herence between the simulated data example and the applied data analysis suggest that multiple
imputation procedures that assume MAR missingness when data are NMAR can exacerbate bi-
ases in the data by over-imputing cases for groups that are over-represented in the data because of
NMAR missingness. This suggests that care must be taken when choosing an imputation procedure
for missing demographic data.
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Figure 2.6: Posterior credible intervals for the ratio of modeled incidences by race/ethnicity, or
ICC
j /IJ

j where CC stands for complete case model and J stands for the joint model. The inner and
outer intervals are 50% and 80% respectively.
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Figure 2.7: Posterior credible intervals for the population proportion of cases with fully-observed
race data, all else being equal, by race/ethnicity, or inv logit((αη)j). The inner and outer intervals
are 50% and 80% respectively.

Overall, our case study illustrates the large risk of bias associated with ignoring NMAR cate-
gorical data when inferring relative risks from real-world data.

2.7 Discussion

Non-random missingness of race/ethnicity covariate data is a critical challenge for the analysis
of public heath data during the COVID-19 pandemic. Multiple imputation methods, which have
been adopted broadly in the analysis of survey data in which the assumption of ignorability is
typically reasonable (Audigier et al., 2018), may not be appropriate for the analysis of missing
race/ethnicity covariates in public health surveillance data in which the possibility of not-missing-
at-random (NMAR) missingness is greater.

In order to meet the needs of public health researchers to model disease data that are missing
important covariates, we developed a method to jointly model the missingness process along with
the disease process. Most importantly, the model can learn the extent to which the missingness
process is NMAR, so our method is broadly applicable to scenarios where missingness could
plausibly be NMAR, like that of missing race data.

We use a selection model formulation that combines a Poisson sampling model for the counts of
disease by stratum and a conditional binomial sampling model for cases with completely observed
race/ethnicity with a probability of success parameter that depends on the race/ethnicity category.
Through the incorporation of known population counts from census data, the model parameters can
be identified. The model can be extended to incorporate a log-linear model for incidence, a logistic
model for missingness, and a hierarchy to allow for geographic heterogeneity in local parameters.
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Figure 2.8: Relative risk of COVID-19. The inner intervals are 50% and the outer intervals are
80%.

Our use case is focused on missing race data in COVID-19 cases in Wayne County, Michigan
from March 2020 through June 2020, which we suspect may have been NMAR. Wayne county
saw the largest share of PCR-confirmed COVID-19 cases in the first wave of the pandemic, and
also had a large share of cases that were missing race data, so it makes for an appropriate test bed
for our method.

We ran a simulation study using Wayne county as the setting where we varied the proportion
of cases with observed race from as high as 90% to as low as 20% to quantify the joint model’s fi-
nite sample performance and to compare its performance against a complete-case analysis and two
multiple imputation methods. The results showed that the joint model performed well in the 90%-
through 40%-observed scenarios compared to the competing methods though its performance suf-
fered in the 20% observed-data scenario. This leads us to conclude that in order to use the joint
model effectively in sparse data scenarios, better priors will be needed; prior formulation for the
model is an area of active research.

We then applied the models to a dataset comprising PCR-confirmed COVID-19 cases with in-
complete race data from Wayne County between March 2020 through June 2020. The differences
between the joint-model inferences and the multiple-imputation inferences suggest that the miss-
ingness process for race may be NMAR and that care must be taken when applying methods that
assume data are MAR. Model results also suggest that cases in the Other category, which com-
prises those of mixed race, Native Americans, and Other races, are being undercounted in Wayne
County.
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2.7.1 Limitations

The biggest limitation of our analysis is the result of the joint model’s dependence on census data
for identifiability. This required the use of 2010 Decennial Census data, which is 10 years old, and
may be systematically different than the true population distribution in Wayne County in 2020. The
2010 Decennial Census, however, is the most up-to-date source of spatially detailed population
information, reflecting a broader limitation of any analysis that is dependent on decennial census
data to estimate infection rates and relative risks. Because of this dependence on census population
data, we were unable to model risk for race/ethnic categories that were potentially important in the
Wayne County COVID-19 dataset, but for which census data were not available. MDSS collected
information on Hispanic/Latino ethnicity separately from race, which resulted in missing covariate
information in both categorical variables. Ideally we would have applied our method to multiple
categorical covariates with missingness, but we were prevented from doing so due to the Census’
coarse race and ethnicity categories. As stated in Section 2.5.1, if the Census recorded ethnicity
and race separately, we would be able to model the effect of ethnicity separately from that of race
and we could treat the missing ethnicity data separately from that of missing race data. Instead,
we set race/ethnicity as being equal to the observed race if Hispanic/Latino ethnicity was missing,
which can understate uncertainty in our posterior and could result in understating incidence for
Hispanics and Latinos and overstating incidence in all other categories. We ran a separate analysis
where we treated these observations as missing race; the incidence results largely agreed with
the model we presented in the main text for Blacks, Latinos, and Asians, though we observed
significant differences in the White and Other incidences. This analysis overstates uncertainty,
because individuals for whom we observe race but not ethnicity can be only one of two categories,
but our model in its current formulation treats these cases as potentially arising from any of the
race/ethnicity categories. Until we have detailed 2020 Decennial Census results, we cannot model
ethnicity and race separately.

We are also constrained by the mismatch of the 2010 Census question about sex and our
dataset’s definition of sex at birth. As Kennedy et al. (2020) argues, responses to the U.S. Cen-
sus’ question of sex may not correspond to sexes at birth. This mismatch can lead to bias in our
parameter estimates and an understatement of uncertainty.

Another limitation of our model is that it assumes a Poisson sampling distribution for incident
cases of disease. When cumulative incidence increases over time, as has occurred with COVID-19,
a binomial sampling model may be more appropriate4. Similarly, our model assumes conditional
independence between disease counts, which may not be appropriate as cumulative incidence
grows5. Both of these reasons are why we decided to focus on the first wave of the pandemic,

4See appendix A.9 for an extension to a binomial likelihood
5See section 2.7.2.1 for more discussion
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which is when the disease was relatively rare among the population of Wayne County and for
which the violations of conditional independence assumption could be reasonably assumed to not
lead to too much understatement of uncertainty.

2.7.2 Conclusion

Public health surveillance systems will always have to contend with missing data. Because the
nature and causes of this missingness are likely to change over time and across disease systems, it
is important that the methods used to address missingness are flexible and able to account for both
MAR and NMAR covariates. In Michigan, missingness of categorical demographic data among
COVID-19 cases has varied over the course of the pandemic. For example, some localities in
our data reported as much as 40% of PCR-confirmed COVID-19 cases having missing data on
race/ethnicity for the period of rapidly-increasing incidence from October 2020 to February 2021.

Our simulation study shows that complete-case analysis or naı̈ve multiple imputation can yield
uncertainty intervals that are too short to be useful and point estimators that can over- or under-state
between-group relative risks. Our method represents a computationally tractable and analytically
transparent alternative that performs well in many scenarios, as evidenced in our simulation studies
as well as analysis of data from Wayne County, Michigan.Given the need for public health author-
ities to characterize risks of disease among different population groups in as close to real-time as
possible, flexible, efficient methods such as ours, are urgently needed.

2.7.2.1 Extensions and future work

This work can serve as a foundation on which to build new joint-disease-missing-covariate models
targeted to specific applications. Although the model presented here can give useful inferences in
its own right in a variety of settings, despite its relative simplicity, domain-specific modifications
may be appropriate. For example, future models could incorporate multi-level information on the
public health and healthcare systems generating surveillance data to account more explicitly for
contextual drivers of missingness.

The joint model can also be extended to account for infectious disease transmission dynamics
and other sources of temporal and spatial autocorrelation. For example, the one-period Poisson
sampling model can be extended to a time-series susceptible-infected-recovered (TSIR) model6 or
an endemic/epidemic model, both of which are discrete time analogues to classical susceptible-
infected-recovered models (Held and Paul, 2012; Meyer and Held, 2014; Wakefield et al., 2019;

6TSIR models use a negative binomial likelihood; the code in appendix A.9 is easily extensible from binomial to
negative binomial
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Bauer and Wakefield, 2018; Keeling and Rohani, 2011). See Appendix A.10 for an instantiation
of the model as an endemic/epidemic model.

When the disease becomes more widespread, potentially requiring a binomial likelihood, mod-
eling the data a finer spatial resolution would make integrating over non-Poisson random variables
more computationally efficient, particularly when combined with parallel computation of the like-
lihood. A dynamic programming implementation of the likelihood using binomial- instead of
Poisson-distributed disease counts is included in appendix A.9. In order to regularize the model’s
inferences as the parameter space dimension increases in step with the spatial resolution, one can
use a computationally-efficient log-Gaussian Cox process as a prior for the spatially-dependent
parameters (Li et al., 2012; Simpson et al., 2016). Furthermore, relaxing the conditional indepen-
dence between categories is possible through a latent Poisson model, as shown in Appendix A.10.3.

The dependence of the joint model on the availability of sufficiently detailed and recent census
data can also be mitigated. For example, uncertainty in group-specific population denominators
can be accounted using frequently updated population datasets, such as the American Community
Survey, even if these data are not available at the same level of spatial granularity as decennial
census data. An alternative route is to perform a “tipping point” sensitivity analysis (Liublinska and
Rubin, 2014) to flag changes in census data that would lead to a substantive change in conclusions
(e.g. a reversal of the sign for log relative-risk measures). Given the many degrees-of-freedom of
census population data, and the critical role played by such data in population-based analyses of
health and illness, this presents an interesting and important challenge that should be explored in
future work.
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Table 2.3: Table shows 50% posterior credible interval coverages and lengths for estimands of
interest from the simulation study. Coverage proportion is calculated across 200 simulated datasets
for each model/simulation scenario. Column headers for percentages (e.g. 20%) indicate the
missing-data simulation scenario which corresponds to the statistic calculated in the table column;
the simulation scenario corresponds to the proportion of cases observed with completely observed
race covariates.

50% interval coverage 50% mean interval length
Parameter Model 20% 60% 80% 90% 20% 60% 80% 90%
IBlacks Complete Case 0.00 0.00 0.00 0.00 1e-04 2e-04 2e-04 3e-04

Joint 0.37 0.48 0.46 0.51 2e-03 7e-04 5e-04 4e-04
Ad-Hoc MI 0.05 0.13 0.03 0.00 3e-04 3e-04 3e-04 3e-04
Gibbs MI 0.01 0.01 0.00 0.00 5e-04 3e-04 3e-04 3e-04

IHispanics/Latinos Complete Case 0.00 0.00 0.00 0.20 3e-04 5e-04 6e-04 7e-04
Joint 0.26 0.47 0.48 0.42 6e-03 3e-03 2e-03 1e-03

Ad-Hoc MI 0.07 0.15 0.18 0.00 9e-04 8e-04 8e-04 7e-04
Gibbs MI 0.00 0.01 0.01 0.00 2e-03 1e-03 8e-04 7e-04

IOthers Complete Case 0.00 0.00 0.00 0.00 3e-04 5e-04 5e-04 6e-04
Joint 0.12 0.44 0.48 0.41 6e-03 5e-03 3e-03 3e-03

Ad-Hoc MI 0.07 0.07 0.01 0.00 1e-03 8e-04 7e-04 7e-04
Gibbs MI 0.09 0.01 0.00 0.00 2e-03 9e-04 7e-04 7e-04

IWhites Complete Case 0.00 0.00 0.00 0.00 1e-04 2e-04 3e-04 3e-04
Joint 0.30 0.54 0.49 0.50 1e-03 7e-04 5e-04 4e-04

Ad-Hoc MI 0.13 0.12 0.00 0.00 3e-04 3e-04 3e-04 3e-04
Gibbs MI 0.14 0.01 0.00 0.00 4e-04 3e-04 3e-04 3e-04

IBlacks/IWhites Complete Case 0.03 0.01 0.00 0.00 0.02 0.01 0.01 0.01
Joint 0.48 0.54 0.52 0.48 0.06 0.03 0.02 0.01

Ad-Hoc MI 0.04 0.10 0.01 0.00 0.01 0.01 0.01 0.01
Gibbs MI 0.07 0.01 0.00 0.00 0.02 0.01 0.01 0.01

IHispanics/Latinos/ Complete Case 0.09 0.08 0.33 0.53 0.03 0.02 0.02 0.02
IWhites Joint 0.24 0.46 0.51 0.45 0.14 0.07 0.05 0.03

Ad-Hoc MI 0.09 0.12 0.17 0.24 0.02 0.02 0.02 0.02
Gibbs MI 0.00 0.09 0.07 0.05 0.05 0.02 0.02 0.02

IOthers/IWhites Complete Case 0.00 0.00 0.00 0.00 0.03 0.02 0.02 0.01
Joint 0.12 0.43 0.47 0.41 0.16 0.12 0.09 0.07

Ad-Hoc MI 0.09 0.06 0.00 0.00 0.02 0.02 0.02 0.02
Gibbs MI 0.09 0.00 0.00 0.00 0.05 0.02 0.02 0.02
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Table 2.5: Population summary in Wayne County, Michigan as of the 2010 Decennial Census

Mean Age×Sex Std. dev. 100× Ratio
Race/Ethnicity Total Pop. ×Race/Eth.×PUMA Pop. PUMA Pop. to White
Asian/Pacific Islander 45894 196 315 5
Black 732801 3132 3152 81
Hispanic/Latino 95260 407 757 11
Other 44449 190 150 5
White 902180 3855 3225 100

Table 2.6: Cumulative incidence of PCR-confirmed COVID-19 infections in Wayne County, MI
from March 1, 2020 through June 30, 2020. Mean and variance for Total uses only observed-
race/ethnicity cases. Mean and Variance columns rounded to zero digits.

Cumulative Risk Relative Prop. zero
Race/Ethnicity Total Cases Incidence to Whites Mean Variance counts
Asian/Pacific Islander 229 0.005 1.0 1 3 0.55
Black 9,577 0.013 2.6 41 1904 0.02
Hispanic/Latino 708 0.007 1.5 3 34 0.37
Other 834 0.019 3.8 4 13 0.18
White 4,476 0.005 1.0 19 389 0.08
Missing 3,464 NA NA 15 204 0.06
Total 19,288 0.011 2.1 14 697 0.24
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CHAPTER 3

Principal Stratification for Vaccine Efficacy

3.1 Introduction

Phase 3 randomized, placebo-controlled clinical trials are the gold-standard by which vaccine can-
didates are assessed for efficacy and safety. Such trials are an important source of data about
whether vaccines prevent outcomes such as infection and post-infection outcomes like secondary
transmission, severe illness, or death. For example, COVID-19 vaccination trials like Polack et al.
(2020) and Baden et al. (2021) measured vaccine efficacy against symptomatic disease, as well as
severe illness and death. Principal stratification, developed in Frangakis and Rubin (2002), may be
used to partition the intention-to-treat effect of vaccination on an outcome like hospitalization into
vaccine efficacy against infection and vaccine efficacy against hospitalization given infection in the
always-infected stratum; these separate effects help policy makers optimize vaccination programs,
communicate with the public, allocate scarce resources, and guide future pharmaceutical therapeu-
tic development (Lipsitch and Kahn, 2021). Methods to infer principal effects for vaccine efficacy
were first developed for continuous post-infection outcomes in Gilbert et al. (2003); Jemiai et al.
(2007); Shepherd et al. (2006, 2007), and further developed for binary post-infection outcomes in
Hudgens and Halloran (2006).

Unfortunately, vaccine efficacy against post-infection outcomes, binary or otherwise, is not
generally identifiable, even under the assumption that vaccine efficacy against infection is non-
negative almost-surely (monotonicity). Moreover, the method requires that both infection and
post-infection outcomes are perfectly measured. Neither monotonicity nor error-free measure-
ments can be assumed to hold in vaccine trials. Monotonicity can be violated if a vaccine increases
the per-exposure probability of infection for a participant (Gilbert et al., 2003), which is possible in
influenza vaccine trials where the vaccine targets a different antigen than the circulating strain. An-
other way monotonicity can be violated is if vaccination increases exposure for certain participants.
This can occur in a double-blinded placebo-controlled study where the vaccine is reactogenic and
leads to some participants in the vaccine group becoming unblinded. Measurement error is com-
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mon in vaccine trials due to the imperfect nature of diagnostic tests for infection (Kissler et al.,
2021; Wang et al., 2020). Post-infection outcomes like symptoms may also be observed with error.
For example, in an influenza vaccine trial, many different viruses circulate during influenza season
that produce similar symptom profiles.

We develop novel methodology to point identify vaccine efficacy against binary post-infection
outcomes without assuming monotonicity while allowing infection and post-infection outcomes to
be misclassified. Our framework immediately generalizes to multiple treatments as we will show.
We capitalize on the fact that many randomized trials for vaccines are run as multi-center trials
(i.e. geographically disparate study sites) (Francis, 1982; Longini Jr et al., 2000; The FUTURE II
Study Group, 2007; Halloran et al., 2010; Baden et al., 2021; Polack et al., 2020), and typically
measure pretreatment covariates relevant to infection. We build on literature for identifying princi-
pal stratum effects with covariates (Rubin, 2006; Ding et al., 2011; Jiang et al., 2016), on inferring
principal stratum effects in multisite randomized trials (Wang et al., 2017; Yuan et al., 2019; Luo
et al., 2023), on using covariates to hone large-sample nonparametric bounds (Zhang and Rubin,
2003; Grilli and Mealli, 2008; Long and Hudgens, 2013), and on identifying causal estimands un-
der unmeasured confounding (Miao et al., 2018; Shi et al., 2020). Our method also fits into recent
literature on inferring causal estimands under measurement error (Jiang and Ding, 2020) and on
identification of latent variable models (Ouyang and Xu, 2022).

We show that our method can be used to design randomized trials for comparison of multiple
vaccines against a control, which will be a necessity for public health agencies in future pandemics
as well as during the COVID-19 pandemic. Due to recent updates to regulatory guidance from
the European Medicines Agency, the authority that authorizes pharmaceuticals in the European
Union, principal effects are acceptable target estimands in randomized clinical trials and principal
stratification is an acceptable analysis method for these trial data (Bornkamp et al., 2021; Lipkovich
et al., 2022). This means that our methodology is directly applicable to the design and analysis
of clinical trials for vaccines. As noted by several authors, vaccine efficacy against post-infection
outcomes is mathematically analogous to the widely-studied survivor average treatment effects
(Ding et al., 2011; Tchetgen Tchetgen, 2014; Ding and Lu, 2017), so our methodology can be
readily used outside the domain of vaccine efficacy.

3.2 Vaccine efficacy in two-arm multi-center trials

Two-arm multi-center trials, or trials run in tandem across several disparate health centers where
each participant is randomly assigned to receive a vaccine or a placebo, are the most common vac-
cine efficacy study designs. To fix ideas, we will consider the example of an influenza vaccine trial,
where researchers are interested in understanding vaccine efficacy against influenza infection and
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vaccine efficacy against severe illness caused by influenza infection. Crucially, it is not possible
to perfectly observe influenza infection or severe illness. Instead, researchers are limited to using
imperfect tests for infection, like polymerase chain reaction (PCR) tests, or serology to detect a
participant’s infection status. These methods measure infection with error, with varying levels of
sensitivity and specificity. For example, PCRs for COVID-19 have very high specificity, but tend
to have sensitivities in the range of 0.6 to 0.8 due to variation among patients in how the virus
populates the nasal cavity, variation in swab quality, and viral RNA dynamics (Kissler et al., 2021;
Wang et al., 2020). Depending on the severity of the post-infection outcome, these outcomes may
also be mismeasured. For instance, a high proportion of participants report symptoms in vaccine
efficacy studies, despite many of these participants testing negative for the target disease. In the
presence of high-sensitivity tests, this necessarily means that specificity of symptoms following
infection is below 1. This is because it is possible for participants to develop influenza-like se-
vere illness from non-influenza viruses during a clinical trial. Thus our framework assumes that
observed infection and severe illness are noisy proxies for true unobservable infection and severe
illness states. The next section outlines the data structure for each participant.

Suppose there are n participants in the trial, and we observe the following sextuplet for each
participant i: (S̃i, Ỹi, Zi, Ri, Ai, Xi), where Zi is a binary variable representing treatment assign-
ment, S̃i is binary influenza test result, and Ỹi is observed binary severe illness status. Ri is a
categorical variable indicating the center with which each participant is associated, Ai is a discrete
pre-treatment covariate related to infection under treatment and control, and Xi is a univariate dis-
crete pre-treatment covariate that may combine several distinct covariates like age, sex, occupation,
and pre-existing conditions. Let Ri take values from 1 to Nr, Ai take values from 1 to Na, and
Xi take values from 1 to Nx. Zi = 1 for individuals assigned to receive vaccination, and Zi = 0

for individuals assigned to placebo; for S̃i and Ỹi, 1 indicates the presence of infection and severe
illness, respectively, for individual i, while 0 indicates the absence.

Let Si be the latent influenza infection state, and Yi be the latent influenza-caused severe illness
state for each participant.

Assumption 1 (Non-differential Misclassification Errors). Misclassification errors for S̃i, Ỹi are

conditionally independent of all else given the true values Si, Yi or

S̃i ⊥⊥ Zi, S
P0
i , Ri, Ai, Yi, Xi | Si, Ỹi ⊥⊥ Zi, S

P0
i , Ri, Ai, Si, Xi | Yi.

Under Assumption 1, we may completely characterize the distributions of the noisy outcomes
S̃i, Ỹi via the following four unknown parameters snS = P (S̃i = 1 | Si = 1), spS = P (S̃i = 0 |
Si = 0) and snY = P (Ỹi = 1 | Yi = 1), spY = P (Ỹi = 0 | Yi = 0), or the respective sensitivities
and specificities for infection and the post-infection outcome. This assumption can be loosened for
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infection misclassification as explored in Section 3.5.
We use the Neyman-Rubin causal model to define counterfactual variables Si, infection with

influenza, and Yi, severe illness caused by influenza, as partially-observed realizations of counter-
factual outcomes (Neyman, 1923; Rubin, 1974, 1978; Holland, 1986). For an extensive review of
statistical approaches to causal inference through the lens of missing data see Ding and Li (2018).
Let any potential treatment plan for all n individuals in the trial be the length-n binary vector z,
where the ith element is the potential treatment status of the ith participant. Accordingly, each in-
dividual is associated with a binary counterfactual infection outcome, Si(z), and a counterfactual
severe illness outcome, Yi(z, Si(z)), under treatment status z. Let the observed treatment status for
all n individuals in the trial be the length-n binary vector Z, where the ith element is the assigned
treatment of the ith participant.

Our causal model enforces the constraint that an uninfected individual cannot have severe illness
caused by influenza infection. In other words, post-infection outcomes are defined such that they
are caused by infection from a pathogen of interest (Gilbert et al., 2003; Hudgens and Halloran,
2006). Then Yi(z, 0) is undefined for all z, and is denoted as Yi(z, 0) = ⋆. Yi(z, Si(z)) is defined as
a binary variable only when Si(z) = 1, or, equivalently, Yi(z, 1). For the remainder of the chapter
we assume that Si(z) = Si(z

′) and Yi(z, Si(z)) = Yi(z
′, Si(z

′)) if zi = z′i. Therefore, we assume
the Stable Unit Treatment Value Assumption (SUTVA) holds:

Assumption 2 (SUTVA). There is only one version of each treatment, and counterfactual out-

comes are a function of only a unit’s respective treatment status, z.

SUTVA can be satisfied for vaccine efficacy trials by restrictions on participants and recruitment
(Gilbert et al., 2003). Furthermore, recruited participants are a small fraction of the total population
at risk of infection (Zhang et al., 2009). Thus the vector (Si(1), Yi(1, Si(1)), Si(0), Yi(0, Si(0))) is
the complete definition of counterfactual outcomes under vaccination and placebo for each indi-
vidual in the trial. Given Assumption 2, the latent realized values of the counterfactual variables
are as follows:

Si = ZiSi(1) + (1− Zi)Si(0), Yi = ZiYi(1, Si(1)) + (1− Zi)Yi(0, Si(0)). (3.1)

A second assumption we will make for the rest of the chapter is that the study is a randomized
experiment. This means that all trial participants have positive probabilities of being assigned
to either vaccine or placebo, and that treatment assignment is unconfounded (Imbens and Rubin,
2015).

Assumption 3 (Random treatment assignment). The probability of being assigned to treatment for
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each individual lies strictly between 0 and 1:

0 < P (Zi = 1 | Si(1), Si(0), Yi(1, S(1)), Yi(0, Si(0))) < 1.

Treatment assignment is independent of all potential outcomes, or

Si(1), Si(0), Yi(1, Si(1)), Yi(0, Si(0)) ⊥⊥ Zi.

With these assumptions, we can define several estimable causal estimands of interest.

Definition 3.2.1 (Vaccine efficacy against infection).

VES = E [Si(0)− Si(1)] /E [Si(0)] , and

Definition 3.2.2 (Intention-to-treat vaccine efficacy against severe illness).

VEITT = E [Yi(0)− Yi(1)] /E [Yi(0)] .

With Assumptions 2 to 3, the following identities hold

E [Si(z)] = E [Si | Zi = z] , E [Yi(z)] = E [Yi | Zi = z] .

These expressions, along with the identities

E [Si = 1 | Zi = z] =
E[S̃i=1|Zi=z]+spS−1

spS+snS−1
, E [Yi = 1 | Zi = z] =

E[Ỹi=1|Yi=z]+spY −1

spY +snY −1

suggest plug-in ratio estimators for each estimand if the sensitivities and specificities are known.

3.2.1 Conditional effects and principal stratification

We might be tempted to define vaccine efficacy against severe illness by comparing the rate of
severe illness in vaccinated participants to that of the unvaccinated among patients who have been
infected. Formally, these quantities are E [Yi | Si = 1, Zi = 1] and E [Yi | Si = 1, Zi = 0]. How-
ever, as argued in Frangakis and Rubin (2002), the set of participants {i | Si = 1, Zi = 1} is
different from the set of participants {i | Si = 1, Zi = 0}. A causal estimand is defined such
that the only source of variation is the change from z = 1 to z = 0, as in the numerator for VES:
E [Si(0)− Si(1)]. If we define the estimand E [Yi(0) | Si(0) = 1]− E [Yi(1) | Si(1) = 1], this is a
comparison between different individuals. This means that this quantity mixes changes between
treatments and changes between the two groups being compared. If the quantity is nonzero, this
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difference could potentially be explained by the difference in individual traits between the two
groups rather than the difference treatment.

In terms of counterfactual outcomes, the set {i | Si = 1, Zi = 1} includes trial participants with
(Si(1) = 1, Si(0) = 1) and those with (Si(1) = 1, Si(0) = 0), while the set {i | Si = 1, Zi = 0}
includes those (Si(1) = 1, Si(0) = 1) and those with (Si(1) = 0, Si(0) = 1). It may be the
case that the characteristics of patients protected by the vaccine, or (Si(1) = 0, Si(0) = 1),
are fundamentally different from the characteristics of those who are harmed by the vaccine, or
(Si(1) = 1, Si(0) = 0). Thus, a causal estimand that compares the outcomes of these two
groups does not represent a valid causal estimand because the two groups may be systemati-
cally different in characteristics that predict the baseline risk of severe disease when infected,
or E [Yi(0) | Si = 1].

The solution is to partition the participants into four strata defined by the individual’s complete
set of potential infection outcomes, or (Si(1), Si(0)). Then potential severe illness outcomes can
be compared conditional on stratum membership so that the group in which the causal estimand is
defined is homogeneous in terms of potential outcomes. Formally, let principal stratum, SP0

i , be
defined as the ordered vector of counterfactual infection outcomes for unit i, or

SP0
i = (Si(1), Si(0)), Si(z) ∈ {0, 1}

and let the set of all principal strata be denoted as S . Then S ≡ {0, 1}2.
The only group in which a causal comparison can be made is the (1, 1) stratum, otherwise

known as the always-infected stratum. This is because it is the only stratum in which participants
have a well-defined post-infection outcome under vaccination and under placebo. Thus we may
define vaccine efficacy against severe illness as:

Definition 3.2.3 (Vaccine efficacy against post-infection outcome).

VEI = 1− E
[
Yi(1) | SP0

i = (1, 1)
]
/E
[
Yi(0) | SP0

i = (1, 1)
]
.

The severe illness vaccine efficacy can be seen as the percent change in risk of severe illness
conferred by receiving a vaccine conditional on belonging to the always-infected principal stratum.
VEI is a principal effect as defined in Frangakis and Rubin (2002) because it is conditional on a
principal stratum.

The fundamental problem of causal inference (Holland, 1986), namely that we cannot observe
all counterfactual outcomes for the same individual, prevents the development of a simple ratio
estimator because the observed data cannot determine which individuals belong to the always-
infected stratum (Hudgens and Halloran, 2006). In fact, in the next section, we will show that no
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single parameter of the probabilistic model implied by Assumptions 2 to 3 can be identified by the
data, and that definition 3.2.3 is also not identified by the data.

3.2.2 Identifiability of principal stratum effects

Identifiability is an asymptotic characteristic of a statistical model by which each dataset maps to
a unique parameter. It is a necessary assumption for much asymptotic theory, including Bayesian
posterior consistency, (Keener, 2010; Van der Vaart, 2000), and thus is useful to characterize.
Formally, as defined in Rothenberg (1971):

Definition 3.2.4 (Parameter identifiability). A parameter θ ∈ Θ is identifiable if there does not exist

a distinct parameter value θ′ ∈ Θ for which the density f(y | θ) = f(y | θ′) for all observations y.

In order to investigate this property, we must first define how the counterfactual model governs
the latent variable distribution. Let psyz = P (Si = s, Yi = y | Zi = z) be the observable probabili-
ties of an infection outcome s, a post-infection outcome y given a vaccination status z, and let ps+z

be the marginal probability of infection given vaccination, or P (Si = s | Zi = z). We will now de-
fine the parameters for the counterfactual probability model. Let u ∈ {(0, 0), (1, 0), (0, 1), (1, 1)},
θu = P (SP0

i = u), and βu
z = P (Yi(z) = 1 | SP0

i = u). The map from the model parameters to the
observable probabilities is:

p110 = θ(0,1)β
(0,1)
0 + θ(1,1)β

(1,1)
0 , p111 = θ(1,0)β

(1,0)
1 + θ(1,1)β

(1,1)
1

p100 = θ(0,1)

(
1− β

(0,1)
0

)
+ θ(1,1)

(
1− β

(1,1)
0

)
, p101 = θ(1,0)

(
1− β

(1,0)
1

)
+ θ(1,1)

(
1− β

(1,1)
1

)
.

The joint distribution of the observed data has only 4 independent quantities, but the probability
model has 7 parameters. Thus, the observable probabilities do not uniquely map to counterfactual
probability model parameters, and the model parameters are not identified.

In this formulation VEI can be written in terms of the observable probabilities and three uniden-
tified parameters β(0,1)

2 , β
(1,0)
1 , θ(1,1).

VEI = 1− β
(1,1)
1

β
(1,1)
0

= 1−
p111 − β

(1,0)
1 (p1+1 − θ(1,1))

p110 − β
(0,1)
0 (p1+0 − θ(1,1))

. (3.2)

In fact, the structure of the model is such that no single counterfactual model parameter is identi-
fiable without restrictions on the principal stratum proportions. In order to identify Equation (3.2)
with observed data, one needs to learn θ(1,1), β

(1,0)
1 , β

(0,1)
0 . The form of the estimand suggests sev-

eral identification strategies.
One strategy is to assume that no participant is infected under the vaccine and uninfected under

the placebo. This assumption leads to θ(1,0) = 0, θ(1,1) = p1+1, and β(1,1)
1 as p111 (Gilbert et al.,
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2003; Hudgens and Halloran, 2006; Zhou et al., 2016). A consequence of this assumption is that
vaccine efficacy against infection is nonnegative with probability 1. VEI then simplifies to

VEI = 1− p111

p110 + β
(0,1)
0 (p1+1 − p1+0)

, (3.3)

If we further assume that the distribution of severe illness is mean-independent of study site, we
can use the variation in infection rates by study site to identify β(0,1)

0 (Jiang et al., 2016; Yuan et al.,
2019).

In some trials monotonicity may be appropriate, but it is not an assumption that is made when
assessing vaccine efficacy against infection (El Sahly et al., 2021). Accordingly, two separate anal-
yses must be performed to assess the two efficacy estimands. The price for two-step procedures is
two-fold: two-step estimators are often less statistically efficient, and it may be harder to commu-
nicate results to stakeholders because two sets of assumptions are needed. Assuming monotonicity
also complicates the use of prior vaccine efficacy trial results in priors for future studies. If past
trials have confidence intervals for vaccine efficacy against infection that include negative values, it
is not clear how to incorporate this information into a prior over a parameter that excludes negative
values by design.

Monotonicity may be violated if some participants are inadvertently unblinded during a vaccine
trial due to post-vaccine side effects (also known as reactogenicity); participants who experience
strong side effects may infer they are in the vaccine arm of the trial and may be more likely to be
exposed to influenza than if they had been in the placebo group.

For example, suppose that in addition to the post-vaccination infection outcome, Si(z), there are
post-vaccination binary exposure counterfactual variables Ei(z) for each trial participant. Assume
that exposure is a necessary condition for infection, (i.e. Si(z) = 0 | Ei(z) = 0 with probability
1). Furthermore, assume conditional monotonicity for Si(z): Si(1) ≤ Si(0) | (Ei(1), Ei(0)).
Despite the conditional monotonicity assumption, marginalizing over EP0

i = (Ei(1), Ei(0)) does
not preserve monotonicity:

P (Si(1) = 1, Si(0) = 0) = P (Si(1) = 1, Si(0) = 0 | EP0
i = (1, 0))P (Ei(1) = 1, Ei(0) = 0).

Thus P (Si(1) = 1, Si(0) = 0) ̸= 0 as long as P (Ei(1) = 1, Ei(0) = 0) ̸= 0.
This means that while it may be appropriate to assume that given an exposure to the influenza

virus, the vaccine does not increase the probability of infection, if vaccination somehow increases
exposure, then marginalizing over exposure will yield θ(1,0) > 0.

The identifiability of the estimand is further complicated by the fact that infection and post-
infection outcomes are observable only through proxy variables, S̃i and Ỹi with unknown sensitiv-
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ities and specificities. Let the observable probabilities, qsyz = P (S̃i = s, Ỹi = y | Zi = z) and be
defined as

qsyz = sns
S(1− snS)

1−ssny
Y (1− snY )

1−yp11z + sns
S(1− snS)

1−ssp1−y
Y (1− spY )

yp10z

+ sp1−s
S (1− spS)

ssp1−y
Y (1− spY )

yp0∗z.

Let q+yz = P (Ỹi = y | Zi = z), qs+z = P (S̃i = s | Zi = z), and β̃u
z = P (Ỹi(z) = 1 | SP0

i = u).
Under this probability model, the causal estimand of interest, or vaccine efficacy against severe
illness caused by influenza, is

VEI = 1−
q+11 − (1− spY )− (β̃

(1,0)
1 − (1− spY ))(

q1+1−(1−spS)
snS+spS−1

− θ(1,1))

q+10 − (1− spY )− (β̃
(0,1)
0 − (1− spY ))(

q1+0−(1−spS)
snS+spS−1

− θ(1,1))
(3.4)

This expression involves nonidentifiable causal parameters β̃(0,1)
0 , β̃

(1,0)
1 , θ(1,1) as well as the uniden-

tifiable measurement error parameters snS, spS, spY . It does not, however, involve the parameter
snY . This is due to the fact that for any binary random variable Q and its noisy measurement, Q̃,
we have the following identity:

P (Q̃ = 1) = (snQ + spQ − 1)P (Q = 1) + 1− spQ. (3.5)

Thus, one cannot identify the estimand of interest without additional information, though it
suggests that identifiability of the causal estimand can be achieved without identifying snY . The
next section outlines how we can use the structure of multisite randomize trials for vaccine efficacy
to infer post-infection outcome vaccine efficacy.

3.2.3 Incorporating study-site and covariate information

Two factors are necessary for influenza infection (and any infection, for that matter): exposure to
the pathogen and susceptibility to infection given exposure. Exposure is a post-treatment event in
randomized trials, and variation in exposure can lead to variation in rates of infection, and, sub-
sequently, principal strata. Variation in exposure can occur due to variation in disease prevalence
during the duration of the trial, and multi-scale spatial variation of disease prevalence is a hallmark
of infectious disease (Bauer and Wakefield, 2018). Thus, if study sites are sufficiently separated
geographically, it is reasonable to expect that the study site variable is predictive of exposure dur-
ing the duration of the trial. This variation in exposure should lead to variation in principal strata
due to differences in exposure. Thus it is reasonable to assume that Ri ̸⊥⊥ SP0

i | Xi.
Now we turn to susceptibility to infection given exposure. In influenza trials it is common to
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measure the pre-season, pre-vaccination (i.e. baseline) antibody concentrations via hemagglutina-
tion inhibition (HAI) assays or neuraminidase inhibition (NAI) assays (Monto et al., 2009). These
assays are categorical measurements generated from serial two-fold dilutions of patient serum
samples (Zelner et al., 2019). These measurements are related to the participants’ susceptibility
to infection given exposure because they measure immune markers of past infections and/or past
influenza vaccinations. Given the fact that the participants will be inoculated against influenza, it
is again reasonable that Ai ̸⊥⊥ SP0

i | Xi. The structure of multisite randomized trials is such that
we may make two further assumptions about the joint distribution of covariate values Ai and po-
tential post-infection outcomes (Yi(1), Yi(0)). Specifically, because patient recruitment is a tightly
controlled procedure with unified inclusion criteria between study sites (Weinberger et al., 2001),
it is reasonable to assume that participants’ covariate values and potential post-infection outcomes
are are exchangeable (Saarela et al., 2023). Formally,

Assumption 4 (Covariate homogeneity). Ai is conditionally independent of the study site and

treatment receipt given the principal stratum and baseline covariates, or Ai ⊥⊥ Ri, Zi | SP0
i , Xi,

and

Assumption 5 (Causal Homogeneity). Conditional on principal stratum SP0
i and Ai, Xi, the po-

tential outcomes (Yi(1), Yi(0)) are independent of Ri, or (Yi(1), Yi(0)) ⊥⊥ Ri | SP0
i , Ai, Xi.

Assumption 4 equates to assuming that individuals’ covariate measurements Ai are exchange-
able within strata defined by (Xi = x, SP0

i = u), and Assumption 5 is equivalent to assuming
conditional exchangeability of Yi(z) within strata defined by (Xi = x, SP0

i = u,Ai = k) (Saarela
et al., 2023). In the event that Assumption 4 does not hold, a parametric model for Ai | Ri, S

P0 , Xi

may be used.
Under Assumptions 1 to 5, we can define the joint distribution of influenza test results, reported

severe illness, and pre-season antibody concentration given treatment assignment and study site
membership.

Let θr,xu = P (SP0
i = u | Ri = r,Xi = x) for u ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}. Let uz =

P (Si(z) = 1 | SP0
i = u). Let au,xk = P (Ai = k | SP0

i = u,Xi = x), and βu,x
z,k = P (Yi(z) = 1 |

SP0
i = u,Ai = k,Xi = x). Further, recall snS = P (S̃i = 1 | Si = 1), spS = P (S̃i = 0 | Si = 0)

and snY = P (Ỹi = 1 | Yi = 1), spY = P (Ỹi = 0 | Yi = 0). Let the observable probabilities,
qsk|zrx = P (S̃i = s, Ai = k | Zi = z,Ri = r,Xi = x) be defined as:

qsk|zrx = sns
S(1− snS)

1−s
∑

u|u∈S,uz=1 a
u,x
k θr,xu + sp1−s

S (1− spS)
s
∑

u|u∈S,uz=0 a
u,x
k θr,xu .

The marginal probability of observing a positive influenza test result is the sum of the probability
of truly being infected with influenza and the influenza test correctly diagnosing the infection and
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the probability of being influenza-free and the influenza test incorrectly returning a positive result.
Meanwhile, the observable probabilities qy|kzrx = P (Ỹi = y | Zi = z,Ri = r, Ai = k,Xi = x)

are defined:

qy|kzrx = sny
Y (1− snY )

1−y
∑

u|u∈S,uz=1 β
u,x
z,k θ

r,x
u

+ sp1−y
Y (1− spY )

y(
∑

u|u∈S,uz=1(1− βu,x
z,k )θ

r,x
u +

∑
u|u∈S,uz=0 θ

r,x
u ).

The marginal probability of observing severe illness caused by influenza infection is the sum over
the probability of being infected, having severe illness from influenza, and reporting the illness,
the probability of being either being infected, avoiding severe illness from influenza or not being
infected, but in either case incorrectly reporting the illness.

In designing a clinical trial in which a primary or secondary endpoint is severe illness, limiting
the definition of severe illness to encompass only the most extreme illness can at once increase the
sensitivity and specificity of reporting.

3.2.3.1 Identifiability of expanded model

Given assumptions Assumptions 1 to 5, we will show that the joint variation in observed antibody
concentrations and infection rates across study sites identifies the joint distribution of principal
strata proportions and covariate values by study site. Then, given sufficient variation in principal
strata proportions between study sites, the distribution of post-infection potential outcomes can be
identified as well.

Identifiability results from arranging the observed distributions qsk|zr as 3-way arrays and using
a modified tensor decomposition uniqueness theorem from Kruskal (1977). Kruskal’s theorem
defines sufficient conditions for the uniqueness of the triple product decomposition of L, where
this product is defined in Definition 3.2.5.

Definition 3.2.5 (Array triple product). Let the array triple product with resulting array L ∈
RI×J×K be defined between matrices A ∈ RI×M , B ∈ RJ×M , C ∈ RK×M . The operation is

represented as L = [A,B,C]. As a result, the (i, j, k)th element of L, Lijk, is defined the sum of

three-way-products of elements aim, bjm, ckm, i.e.:

Lijk =
M∑

m=1

aimbjmckm.

The sufficient conditions concern the Kruskal ranks of the matrices A,B,C, defined in Defini-
tion 3.2.6.
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Definition 3.2.6 (Kruskal rank). Let the Kruskal rank of a matrix B ∈ RI×M be kB ∈
[0, 1, 2, . . . ,M ], and let kB be the maximum integer such that every set of kB columns of B are

linearly independent.

Kruskal rank is stricter than matrix rank. To see why, consider a matrix with M columns of
which two are repeated. At most the rank of the matrix can be M − 1, but Kruskal rank can be at
most 1. A corollary of the definition is that if a matrix is full column rank, its Kruskal rank equals
its column rank.

Let L be the 3-way array representing qsk|zrx, where we fix Xi = x for each unique value
of Xi. The array’s dimensions are 4 × Na × Nr and is defined so that the (j, k, r)th element
P (Si = 1j≤2, Ai = k | Z = j − 1 mod 2, Ri = r,Xi = x). If we look at the matrix that
results from fixing the third array index, also known as the 3-slab and denoted as Lr ∈ R4×Na , we
can see a possible decomposition of this array. Let

∑
uz=s a

u,x
k θr,xu denote the sum over elements

u ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} such that P (Si(z) = 1 | SP0
i = u). The let Lr be defined as

(a = 1) . . . (a = Na)


(1− spS)
∑

u0=0 a
u,x
1 θr,xu + snS

∑
u0=1 a

u,x
1 θr,xu . . . (1− spS)

∑
u0=0 a

u,x
Na

θr,xu + snS
∑

u0=1 a
u,x
Na

θr,xu (s = 1, z = 0)

(1− spS)
∑

u1=0 a
u,x
1 θr,xu + snS

∑
u1=1 a

u,x
1 θr,xu . . . (1− spS)

∑
u1=0 a

u,x
Na

θr,xu + snS
∑

u1=1 a
u,x
Na

θr,xu (s = 1, z = 1)

spS
∑

u0=0 a
u,x
1 θr,xu + (1− snS)

∑
u0=1 a

u,x
1 θr,xu . . . spS

∑
u0=0 a

u,x
Na

θr,xu + (1− snS)
∑

u0=1 a
u,x
Na

θr,xu (s = 0, z = 0)

spS
∑

u1=0 a
u,x
1 θr,xu + (1− snS)

∑
u1=1 a

u,x
1 θr,xu . . . spS

∑
u1=0 a

u,x
Na

θr,xu + (1− snS)
∑

u1=1 a
u,x
Na

θr,xu (s = 0, z = 1)

.

Elements L1kr can be represented as the dot product of the vectors

v1 = (1− spS, 1− spS, snS, snS)
T ,

and
wk = (a

(0,0),x
k θr,x(0,0), a

(1,0),x
k θr,x(1,0), a

(0,1),x
k θr,x(0,1), a

(1,1),x
k θr,x(1,1))

T ,

while element L21r can be represented as the dot product of

v2 = (1− spS, snS, 1− spS, snS)
T ,

and wk. Elements of rows 3 and 4 can be defined similarly as dot products between wk and single
vectors involving only spS and 1− snS .

This structure allows us to define L as the triple product of three matrices, each of which have
columns that correspond to principal strata:

P2(S̃ | Z, SP0) ∈ R4×4, P x
2 (A | SP0) ∈ RNa×4, P x

2 (S
P0 | R) ∈ R4×Nr .
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The matrix P2(S̃ | Z, SP0) is defined as

P2(S̃ | Z, SP0) =

(0, 0) (1, 0) (0, 1) (1, 1)


1− spS 1− spS snS snS (s = 1, z = 0)

1− spS snS 1− spS snS (s = 1, z = 1)

spS spS 1− snS 1− snS (s = 0, z = 0)

spS 1− snS spS 1− snS (s = 0, z = 1)

. (3.6)

The matrices P x
2 (A | SP0), P x

2 (S
P0 | R) are defined

P x
2 (A | SP0) =


a
(0,0),x
1 a

(1,0),x
1 a

(0,1),x
1 a

(1,1),x
1

a
(0,0),x
2 a

(1,0),x
2 a

(0,1),x
2 a

(1,1),x
2

...
...

...
...

a
(0,0),x
Na

a
(1,0),x
Na

a
(0,1),x
Na

a
(1,1),x
Na

 , P x
2 (S

P0 | R) =


θr1,x(0,0) θr2,x(0,0) . . . θ

rNr ,x

(0,0)

θr1,x(1,0) θr2,x(1,0) . . . θ
rNr ,x

(1,0)

θr1,x(0,1) θr2,x(0,1) . . . θ
rNr ,x

(0,1)

θr1,x(1,1) θr2,x(1,1) . . . θ
rNr ,x

(1,1)

 .

Kruskal’s theorem defines sufficient conditions for the uniqueness of the triple product L =

[P2(S̃ | Z, SP0), P x
2 (A | SP0), P x

2 (S
P0 | R)T ]:

Theorem 3 (Kruskal triple product decomposition uniqueness). Let matrices A,B,C be defined

as in Definition 3.2.5, with respective ranks rA, rB, rC , and let array L also be defined as in Defi-

nition 3.2.5. Suppose that kA ≤ rA, kB ≤ rB, and kC ≤ rC . Then if

rA + rB + rC − (2M + 2) ≥

min(rA − kA, rB − kB)

min(rA − kA, rC − kC)
,

min(kA, kB) + rC ≥ M + 2, and min(kA, kC) + rB ≥ M + 2 the decomposition L = [A,B,C]

is unique up to column permutation matrix P and column scaling Λ, G,N such that ΛGN is the

identity matrix. In other words, L can be represented as the triple product of any three matrices

[Ã, B̃, C̃] such that [Ã = APΛ, B̃ = BPG, C̃ = CPN ]. See proof in Kruskal (1977) on page

126.

We extend Kruskal’s theorem, similarly to Allman et al. (2009), to account for the structure of
matrices P x

2 (A | SP0) and P x
2 (S

P0 | R)T :

Lemma 4 (Uniqueness with column and row sum conditions). Suppose B has rows that sum to 1

and C has columns that sum to 1, or B1R×1 = 1J×1, and 11×KC = 11×R. If the rank conditions

in Theorem 3 on A,B,C also hold, and C is full column rank then [A,B,C] is the unique triple

product decomposition of array L up to a common column permutation.

The proof of Lemma 4 is a simple extension of Theorem 3 and is shown in Appendix B.5.1.

65



Given that the column indices of our matrices are meaningful in that they correspond to prin-
cipal strata, we need a stronger result that gives strict uniqueness of the decomposition. We show
in Lemma 15 that conditions on snS and spS , namely that they both lie in the same half interval
of [0, 1], yields a P2(S̃ | Z, SP0) whose column domains are not invariant column permutation.
This restriction, combined with the Kruskal rank conditions, yields strict identifiability of the joint
distribution of P (SP0

i = u,Ai = k | Zi = z, Ri = r,Xi = x), as well as the distributions
P (Ỹi(z) = 1 | SP0

i = u,Ai = k,Xi = x). Furthermore, we show that snS, spS , and spY are also
identified. Formally,

Theorem 5 (Identifiability of causal model parameters). Suppose that Assumptions 1 to 5 hold.

If both snS, spS lie in [0, 1/2) or both lie in (1/2, 1], P x
2 (A | SP0) is Kruskal rank 3 or greater

for all x and P x
2 (S

P0 | R) is rank 4 for all x, then both snS, spS are identifiable, as are the

following distributions: P (SP0
i = (m,n) | Ri = r,Xi = x), P (Ai = k | SP0

i = (m,n), Xi = x),

k ∈ {1, . . . , Na}, r ∈ {1, . . . , Nr}, (m,n) ∈ {(0, 0), (1, 0), (1, 0), (1, 1)}. Furthermore, if snY is

unknown (known), distributions P (Yi(z) = 1 | SP0
i = u,Ai = k,Xi = x) are identifiable up to an

unknown (known) common constant, rY = snY + spY − 1.

Note that these are sufficient conditions for identifiability of the model parameters. In Ap-
pendix B.8, we show that a two-arm trial with at least 5 study sites, and a binary covariate yields a
causal model with identifiable model parameters. The benefit of Theorem 5 is that the number of
study sites required is at least 4. Reducing the number of sites likely reduces the costs of running
a multisite trial more than reducing the number of covariates.

A consequence of Theorem 5 is that the marginal distribution of reported severe illness among
the always-infected stratum is identified. To see why, note that the conditional counterfactual
distributions for Ỹi(z) | SP0

i = (1, 1), Ai, Xi are identified, along with the distribution of Ai |
SP0
i = (1, 1), Xi. The following corollary marginalizes over Ai to yield identifiability of the

population distribution Ỹi(z) | SP0
i = (1, 1), Xi:

Corollary 6. By the conditions set forth in Theorem 5, P (Ai = k | SP0
i = (1, 1), Xi = x)

and P (Ỹi(z) = 1 | SP0
i = (1, 1), Ai = k,Xi = x) are identifiable for k ∈ {1, . . . , Na}. Let

P (Ỹi(z) = 1 | SP0
i = (1, 1), Xi = x) =

∑
k P (Ai = k | SP0

i = (1, 1), Xi = x)P (Ỹi(z) = 1 |
SP0
i = (1, 1), Ai = k,Xi = x). Then P (Ỹi(z) = 1 | SP0

i = (1, 1), Xi = x), P (Ai = k | SP0
i =

(1, 1), Xi = x), and P (Ỹ (z)i = 1 | SP0
i = (1, 1), Ai = k,Xi = x) are identifiable.

Given that the marginal distribution of reported severe illness for the always-infected stratum
is identified, along with the identity Equation (3.5) and spY we can write the estimand of interest,
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the vaccine efficacy against severe illness within the always-infected stratum:

VEI = 1−
E
[
Yi(1) | SP0

i = (1, 1)
]

E
[
Yi(0) | SP0

i = (1, 1)
]

= 1−
E
[
Ỹi(1) | SP0

i = (1, 1)
]
− (1− spY )

E
[
Ỹi(0) | SP0

i = (1, 1)
]
− (1− spY )

.

This estimand marginalizes over the population distribution of Xi, which may be known, or may
be estimated.

Moreover, the identifiability of the conditional counterfactual distributions P (Ỹi(z) = 1 |
SP0
i = (1, 1), Ai = k,Xi = x) allows for causal effect heterogeneity by covariate Ai.

Definition 3.2.7 (Conditional VE against post-infection outcome Y ).

VEI(k) = 1−
E
[
Ỹi(1) | SP0

i = (1, 1), Ai = k
]
− (1− spY )

E
[
Ỹi(0) | SP0

i = (1, 1), Ai = k
]
− (1− spY )

Again this estimand marginalizes over Xi.
The identifiability results presented in this section are in fact a special case of identifiability

results related to multiarm multisite trials. Because of this, the discussion of the proof and the
implications are deferred until the next section, which outlines the generalization to two or more
treatments.

3.3 Vaccine efficacy in multiarm, multisite trials

Many vaccine trials involve more than two treatment arms. For example, Monto et al. (2009)
compares the absolute and relative vaccine efficacy of an inactivated influenza vaccine and a live
attenuated influenza vaccine against two placebo arms. The results of trials such as these can
inform public health vaccine policy as well as suggest new directions for vaccine development.

Mirroring the notation presented in Section 3.2, for n total participants we observe the follow-
ing sextuplet for each participant i: (S̃i, Ỹi, Zi, Ri, Ai, Xi). Like Section 3.2, S̃i, Ỹi are imperfectly
observed proxies for true infection status, Si, and true severe illness status, Yi. In contrast to Sec-
tion 3.2, Zi is a categorical variable with Nz ≥ 2 categories representing treatment assignment.
Let Zi ∈ {z1, . . . , zNz}. The variables Ri, Ai, Xi, study site membership, pretreatment measure-
ment of susceptibility to infection, and other pretreatment covariates, are defined as in Section 3.2.
True infection status Si and true severe illness status Yi are assumed to be partially-observable re-
alizations of counterfactual variables Si(z), Yi(z, Si(z)), where z is a given n-vector of treatment
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assignments for each individual. The counterfactual variables are so-named because these vari-
ables are defined for any z, which is possibly different from the collection of observed treatment
assignments {Z1, . . . , Zn}. Our causal model enforces the constraint that Yi(z, 0) = ⋆ for all z,
meaning that severe illness is caused by an influenza infection; without an influenza infection there
can be no severe illness caused by influenza.

Like Section 3.2, we assume SUTVA, as is typical in vaccine trials (Gilbert et al., 2003); we also
continue to assume Non-differential Misclassification Errors. This allows us to write the variables
Si, Yi as

Si =
∑Nz

j=1 Si(zj)1Zi=zj , Yi =
∑Nz

j=1 Yi(zj, Si(zj))1Zi=zj . (3.7)

We continue to assume random treatment assignment in the multiarm setting.

Assumption 6 (Random treatment assignment multiple treatment). The probability of being as-

signed to treatment for each individual lies strictly between 0 and 1:

0 < P (Zi = zj | Si(z1), Yi(z1, S(z1)), . . . , Si(zNz), Yi(zNz , S(zNz))) < 1

for all zj ∈ {z1, . . . , zNz}.

Treatment assignment is independent of all potential outcomes, or

Si(z1), Yi(z1, S(z1)), . . . , Si(zNz), Yi(zNz , S(zNz)) ⊥⊥ Zi.

In keeping with the expanded set of treatments, let principal stratum, SP0
i , be defined as the

ordered Nz-vector of counterfactual infection outcomes for unit i, or

SP0
i = (Si(z1), Si(z2), . . . , Si(zNz)), Si(zj) ∈ {0, 1}, 1 ≤ j ≤ Nz,

and let the set of all principal strata be denoted as S. When the set of principal strata is not restricted
S ≡ {0, 1}Nz .

It is typical to restrict the set of principal strata as the size of S grows because the dimension of
the parameter space grows quickly. For example, monotonicity assumptions can be generalized to
three treatments, as in Yuan et al. (2019) or Cheng and Small (2006). Another strain of research
places strong assumptions on treatment ordering, such as Luo et al. (2023) and Wang et al. (2017).
We do not make such assumptions and allow for an unrestricted space of principal strata.

However, we do impose an ordering among the elements of S. Given that the set is a collection
of binary vectors, the natural ordering of the elements of the set is the base-10 representation of the
principal stratum. In order to formalize this ordering, we define a map, ϖm(j), which generates
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the m-digit binary representation of the integer j as a length-m binary vector. We also define its
inverse, ϖm(u)

−1, where u is an element of S.

Definition 3.3.1 (Base-10 to binary map). Let the operator ϖm be defined as ϖm(·) : j →
{0, 1}m, j ∈ N, j ≤ 2m − 1 with elements ϖm(j)i ∈ {0, 1}, so ϖm(j) is the base-2 repre-

sentation of j with m digits represented as a binary m-vector. The binary representation is in-

dexed so the ith element of the vector corresponds to the digit for 2i−1. Let the inverse operator

ϖ−1
m (·) : {0, 1}m → j, or the binary to base-10 conversion. Let digit i of ϖm(·) represent the digit

for 2i−1.

For example, ϖ3(4) = (0, 0, 1), ϖ5(4) = (0, 0, 1, 0, 0), and ϖ3((0, 0, 1))
−1 =

ϖ5((0, 0, 1, 0, 0))
−1 = 4. In order to see how S is ordered, suppose that Nz = 3 so S ≡ {0, 1}3.

Then the third and fourth elements of the ordered set of principal strata are (0, 1, 0) and (1, 1, 0)

respectively.
In the multiarm setting, we will modify our definition for the vaccine efficacy estimands. Vac-

cine efficacy against infection is now defined for any two treatments, zj and zk:

Definition 3.3.2 (Vaccine efficacy against infection zj versus zk).

VES,jk = 1− E [Si(zj)] /E [Si(zk)] .

Vaccine efficacy against severe illness is well-defined for any principal stratum u and any two
treatments zj and zk such that P (Si(zj) = Si(zk) = 1 | SP0

i = u).

Definition 3.3.3 (Vaccine efficacy against post-infection outcome Y ).

VEu
I,jk = 1− E

[
Yi(zj) | SP0

i = u
]
/E
[
Yi(zk) | SP0

i = u
]
.

VEu
I,jk is a principal effect as defined in Frangakis and Rubin (2002) because it is conditional

on a principal stratum u. For example, when Nz = 3, there are 8 principal strata, three of which
would admit comparisons between two treatments: (1, 1, 0), (0, 1, 1), (1, 0, 1), and one of which
would allow for comparisons between all three treatments: (1, 1, 1). Like the two-arm setting, in
which SP0

i = (1, 1) is the “always-infected” stratum, the stratum SP0
i = {1}Nz is the “always-

infected” stratum in the multiarm trial.
To give a concrete example about how one might use the expanded definition of vaccine efficacy

against severe illness, we will use Monto et al. (2009) as an example. Monto et al. (2009) treated the
four-arm trial as a three-arm trial by combining the two separate placebo arms into one unified arm.
Given that both placebo arms received inert treatments, albeit via different routes of administration,
this is a reasonable assumption. The aim of the trial was to measure the absolute and relative
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efficacies against symptomatic influenza; thus, it is of interest to infer the relative efficacy against
severe illness given influenza infection for the two competing vaccines. The following causal
estimand captures this effect:

E
[
Yi(z2) | SP0

i = (1, 1, 1)
]
− E

[
Yi(z3) | SP0

i = (1, 1, 1)
]

E
[
Yi(z1) | SP0

i = (1, 1, 1)
] = VE

(1,1,1)
I,31 − VE

(1,1,1)
I,21 . (3.8)

As in Section 3.2, we will assume Causal Homogeneity:

Assumption 7 (Causal Homogeneity for multiarm trials). Conditional on principal stra-

tum SP0
i , Ai, and Xi the potential outcomes (Yi(z1), . . . , Yi(zNz)) are independent of Ri, or

(Yi(z1), . . . , Yi(zNz)) ⊥⊥ Ri | SP0
i , Ai, Xi.

In order to expand the causal model, we shall update some of the notation introduced in Sec-
tion 3.2 to the multiarm trial. Let θr,xu = P (SP0

i = u | Ri = r,Xi = x) where u ∈ {0, 1}Nz , and
βu,x
j,k = P (Yi(zj) = 1 | SP0

i = u,Ai = k,Xi = x). Let uj = P (Si(zj) = 1 | SP0
i = u). Then

βu,x
j,k is only defined for j such that uj = 1. Further, let au,xk = P (Ai = k | SP0

i = u,Xi = x). Let
qsk|jrx be defined as

qsk|jrx = sns
S(1− snS)

1−s
∑

u|u∈S,uj=1 a
u,x
k θr,xu + sp1−s

S (1− spS)
s
∑

u|u∈S,uj=0 a
u,x
k θr,xu .

The observable probabilities qy|kjrx = P (Ỹi = y | Zi = zj, Ri = r, Ai = k,Xi = x), which
marginalize over the observed infection test results, are defined:

qy|kjrx = sny
Y (1− snY )

1−y
∑

u|u∈S,uj=1 β
u,x
j,k θ

r,x
u

+ sp1−y
Y (1− spY )

y(
∑

u|u∈S,uj=1(1− βu,x
j,k )θ

r,x
u +

∑
u|u∈S,uj=0 θ

r,x
u )

3.3.1 Identifiability of multiarm, multi-site trials
Our strategy will be the same as in Section 3.2. Fixing x, we can rewrite qsk|jrx as a 3-way array, L
and subsequently use Kruskal rank conditions to characterize the uniqueness of the array decom-
position. Let L be the 3-way array representing qsk|jrx. The array’s dimensions are 2Nz ×Na×Nr

and is defined so that the (j, k, r)th element P (Si = 1j≤Nz , Ai = k | Z = zj−1 mod Nz+1, Ri =
r,Xi = x). Again, we look to the 3-slab, denoted as Lr ∈ R2Nz×Na , to yield a possible decom-
position of this array. As above, let

∑
uz=s a

u,x
k θr,xu denote the sum over elements u ∈ S such that
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P (Si(z) = 1 | SP0
i = u). Let Lr be defined as

(a = 1) . . . (a = Na)



(1− spS)
∑

uz1
=0 a

u,x
1 θr,xu + snS

∑
uz1

=1 a
u,x
1 θr,xu . . . (1− spS)

∑
uz1

=0 a
u,x
Na

θr,xu + snS
∑

uz1
=1 a

u,x
Na

θr,xu (s = 1, z = z1)

(1− spS)
∑

uz2=0 a
u,x
1 θr,xu + snS

∑
uz2=1 a

u,x
1 θr,xu . . . (1− spS)

∑
uz2=0 a

u,x
Na

θr,xu + snS
∑

uz2=1 a
u,x
Na

θr,xu (s = 1, z = z2)

...
. . .

...
...

(1− spS)
∑

uzNz
=0 a

u,x
1 θr,xu + snS

∑
uzNz

=1 a
u,x
1 θr,xu . . . (1− spS)

∑
uzNz

=0 a
u,x
Na

θr,xu + snS
∑

uzNz
=1 a

u,x
Na

θr,xu (s = 1, z = zNz )

spS
∑

uz1
=0 a

u,x
1 θr,xu + (1− snS)

∑
uz1

=1 a
u,x
1 θr,xu . . . spS

∑
uz1

=0 a
u,x
Na

θr,xu + (1− snS)
∑

uz1
=1 a

u,x
Na

θr,xu (s = 0, z = z1)

spS
∑

uz2=0 a
u,x
1 θr,xu + (1− snS)

∑
uz2=1 a

u,x
1 θr,xu . . . spS

∑
uz2=0 a

u,x
Na

θr,xu + (1− snS)
∑

uz2=1 a
u,x
Na

θr,xu (s = 0, z = z2)

...
. . .

...
...

spS
∑

uzNz
=0 a

u,x
1 θr,xu + (1− snS)

∑
uzNz

=1 a
u,x
1 θr,xu . . . spS

∑
uzNz

=0 a
u,x
Na

θr,xu + (1− snS)
∑

uzNz
=1 a

u,x
Na

θr,xu (s = 0, z = zNz )

Following the same logic as Section 3.2, we can define matrices encoding the distribution of
principal strata by study site, and the distribution of pre-season titers by principal stratum. Let
the matrix P x

Nz
(A | SP0) in RNa×2Nz encode the distributions Ai | SP0

i , Xi with (k, j)th element
PNz(Ai = k | SP0

i = ϖNz(j − 1), Xi = x). Let the matrix P x
Nz
(SP0 | R) in R2Nz×Nr encode the

distribution SP0
i | Ri, Xi with (k, j)th element P x

Nz
(SP0

i = ϖNz(k − 1) | Ri = j,Xi = x).
Finally, let matrix PNz(S̃ | Z, SP0) ∈ R2Nz×2Nz with (k, j)th element

sn
ϖNz (j−1)k
S (1− spS)

1−ϖNz (j−1)k1k≤Nz + (1− snS)
ϖNz (j−1)k−Nz sp

1−ϖNz (j−1)k−Nz
S 1k>Nz .

Let P x
Nz
(SP0 | R = r) be the rth column of matrix P x

Nz
(SP0 | R). Then Lr can be represented

in matrix form as

Lr = PNz(S̃ | Z, SP0)diag(P x
Nz
(SP0 | R = r))P x

Nz
(A | SP0)T

This structure again allows us to define L as the triple product of these three matrices, each of
which have columns that correspond to principal strata:

L = [PNz(S̃ | Z, SP0), P x
Nz
(A | SP0), P x

Nz
(SP0 | R)T ].

The conditions for the identifiability of the model parameters are outlined below:

Theorem 7. Let Nz ≥ 2. Suppose Assumptions 1 to 2,Assumption 4, Assumption 6, and As-

sumption 7 hold. If both snS, spS lie in [0, 1/2) or both lie in (1/2, 1], P x
Nz
(A | SP0) is at least

Kruskal rank 2Nz − 1 and P x
Nz
(SP0 | R) is rank 2Nz for all x then the counterfactual distributions

P (SP0
i = u | Ri = r,Xi = x), P (Ai = k | SP0

i = u,Xi = x) are identifiable as are the quanti-

ties snS, spS, spY ,VE
u
I,jk(k), and VEu

I,jk. Furthermore, if snY is unknown (known), distributions

P (Yi(zj) = 1 | SP0
i = u,Ai = k,Xi = x) are identifiable up to an unknown (known) common

constant, rY = snY + spY − 1.

71



Theorem 7 allows for a more realistic model of infection measurement than Hudgens and Hal-
loran (2006) and does not require any restrictions on the space of principal strata. The primary
benefit of an unrestricted principal strata distribution is that we can jointly infer vaccine efficacy
against infection and vaccine efficacy against a post-infection outcome. This will aid in designing
comprehensive randomized trials for vaccine efficacy.

The proof of Theorem 7, shown in Appendix B.4 is related to the methods in Jiang et al. (2016)
and Ding et al. (2011). Ding et al. (2011) addresses problems of identifiability in survivor average
treatment effects, which is mathematically analogous to vaccine efficacy for post-infection out-
comes, by measuring covariates that are related to the principal strata. Jiang et al. (2016) identifies
principal causal effects in binary surrogate endpoint evaluations. Despite not being mathemati-
cally identical to vaccine efficacy, binary surrogacy endpoint evaluation is ultimately a problem
in identification of principal causal effects. The proof of Theorem 5 is shown in the Supplemen-
tary Materials. Most importantly, the proof does not encode any restrictions on the distribution
of secondary outcomes, otherwise known in our case as the post-infection outcomes. This makes
the result applicable to categorical or continuous post-infection outcomes, and, more broadly, to
principal stratification problems outside the scope of vaccine efficacy.

The identifiability results in Theorem 7 suggest the following so-called transparent parameteri-
zation1: (βu,x

j,k , spY , snY ) → (p̃u,xj,k = (snY + spY − 1)βu,x
j,k + (1− spY ), spY , snY ) . The quantities

p̃u,xj,k = P (Ỹi = 1 | Zi = zj, S
P0
i = u,Ai = k) and spY are identified by the data, while snY is not.

This yields the following asymptotic identification regions for snY and βu,x
j,k :

snY ∈
(
max
x,u,j,k

(p̃u,xj,k ), 1

)
, βu,x

j,k ∈

(
p̃u,xj,k − (1− spY )

spY

,
p̃u,xj,k − (1− spY )

maxx,u,j,k(p̃
u,x
j,k ) + spY − 1

)
(3.9)

This may be useful for policymakers interested in absolute risk of post-infection outcomes to fore-
cast the burden on healthcare centers under different vaccination policies.

We will present a final corollary that will be useful in our applied examples:

Corollary 8. Suppose in addition to Assumptions 1 to 2,Assumption 4, Assumption 6, and

Assumption 7, researchers do not directly observe Ai, but instead observe a misclassified

version of Ai, Ãi, such that the following nondifferential error assumption holds: Ãi ⊥⊥
S̃i, Ỹi, Yi(zj, S(zj)), Ri, Zi, S

P0
i | Ai, Xi. If both snS, spS lie in [0, 1/2) or both lie in (1/2, 1],

P x
Nz
(Ã | SP0) is at least Kruskal rank 2Nz − 1 and P x

Nz
(SP0 | R) is rank 2Nz for all x then the

counterfactual distributions P (SP0
i = u | Ri = r,Xi = x), P (Ãi = k | SP0

i = u,Xi = x)

are identifiable as are the quantities snS, spS, spY , and VEu
I,jk. Furthermore, if snY is unknown

(known), distributions P (Yi(zj) = 1 | SP0
i = u, Ãi = k,Xi = x) are identifiable up to an unknown

1See (Gustafson, 2015) for more details on inference in partially identified Bayesian models
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(known) common constant, rY = snY + spY − 1.

The proof, shown in Appendix B.4, follows directly from the proof of Theorem 7 and the
nondifferential misclassification error assumption for A.

While misclassified Ã precludes learning heterogeneous treatment effects, marginalizing over
the identifiable distribution Ãi | SP0 , Xi will yield the average post-infection vaccine efficacy.

3.3.2 Models, priors and sensitivity analyses

Under the assumptions laid out in Section 3.3 the observational model is a multinomial random
variable for each study site and treatment group.

Let ñsyk(j, r, x) be
∑n

i=1 1S̃i=s1Ỹi=y1Zi=zj1Ri=r1Ai=k1Xi=x, and let the error-free partially-
observed causal model probabilities psyk|jrx = P (Si = s, Yi = y, Ai = k | Zi = zj, Ri = r,Xi =

x) be defined as:

p1yk|jrx =
∑

u|u∈S,uj=1 a
u,x
k θr,xu (βu,x

j,k )
y(1− βu,x

j,k )
1−y, p0∗k|jr =

∑
u|u∈S,uj=0 a

u,x
k θr,xu , (3.10)

where we note that p01k|jrx = 0 for all k, j, r. Then we define the observable joint probabilities
qsyk|jrx = P (S̃i = s, Ỹi = y, Ai = k | Zi = zj, Ri = r,Xi = x) as

qsyk|jrx = sns
S(1− snS)

1−ssny
Y (1− snY )

1−yp11kjrx + sns
S(1− snS)

1−ssp1−y
Y (1− spY )

yp10kjrx

+ sp1−s
S (1− spS)

ssp1−y
Y (1− spY )

yp0∗kjrx,

This allows us to define the observational model as:

(ñ001(j, r, x), ñ011(j, r, x), ñ101(j, r, x), ñ111(j, r, x), . . . , ñ00Na (j, r, x), ñ01Na (j, r, x), ñ10Na (j, r, x), ñ11Na (j, r, x)) ∼

Multinomial(n(j, r, x) | q001|jrx, q011|jrx, q101|jrx, q111|jrx, . . . , q00Na|jrx, q01Na|jrx, q10Na|jrx, q11Na|jrx),

j ∈ {1, . . . , Nz}, r ∈ {1, . . . , Nr}, x ∈ {1, . . . , Nx}

(3.11)

The post-infection severe illness models can be formulated as logistic regressions:

log
P (Yi(zj) = 1 | SP0

i = u,Ai = k,Xi = x)

P (Yi(zj) = 0 | SP0
i = u,Ai = k,Xi = x)

= αu,x
j + δu,xj,k , β

u,x
j,k =

eα
u,x
j +δu,xj,k

1 + eα
u,x
j +δu,xj,k

,

δu,xj,1 = 0∀ j, u, x.

Deviations from Assumption 5 can be encoded as an additive term εu,xr capturing heterogeneity
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between study sites:

log
P (Yi(zj) = 1 | SP0

i = u,Ai = k,Ri = r,Xi = x)

P (Yi(zj) = 0 | SP0
i = u,Ai = k,Ri = r,Xi = x)

= αu,x
j + δu,xj,k + εu,xr ,

εu,xr ∼ Normal(0, (τuε )
2).

We can fix τu,xγ to several values for sensitivity analysis, as developed in Jiang et al. (2016).
We may write the probability models for SP0

i | Ri, Xi and Ai | SP0
i , Xi as two multinomial

regressions, given Assumption 4 that Ai ⊥⊥ Ri, Zi | SP0
i , Xi.

log
P (SP0

i = u | Ri = r,Xi = x)

P (SP0
i = u0 | Ri = r,Xi = x)

= µr
u + ηxu + ηr,xu

log
P (Ai = k | SP0

i = u,Xi = x)

P (Ai = k0 | SP0
i = u,Xi = x)

= νuk + γxk + γu,xk ,

where

θr,xu = eµ
r
u+ηxu+η

r,x
u∑

w∈S eµ
r
w+ηxu+η

r,x
u
, µr

u0
= 0∀ r, au,xk = e

νuk+γxk+γ
u,x
k∑Na

m=1 e
νum+γx

k
+γ

u,x
k
, νuk0 = 0∀u.

Note that ηxu0
, γxk0 , η

r,x
u0
, γxk0 , γ

u,x
k0

are all zero for all x. Furthermore, for given reference categories
x0, u0, r0, ηx0

u , γ
x0
k are zero for all u, k, while ηr0,xu is zero for all x, ηr,x0

u is zero for all r, γu,x0

k

is zero for all u and γu0,x
k is zero for all x. This leads to a tidy representation of the log-odds of

belonging to stratum u vs. u0 conditional on Ai = k,Ri = r,Xi = x:

log
P (SP0

i = u | Ai = k,Ri = r,Xi = x)

P (SP0
i = u0 | Ai = k,Ri = r,Xi = x)

= µr
u + νuk − νu0

k + γu,xk − γu0,x
k + ηxu + ηr,xu .

If we suspect deviations from Assumption 4, we can add an interaction between Ai and Ri:

log
P (Ai = k | Ri = r, SP0

i = u,Xi = x)

P (Ai = k0 | Ri = r, SP0
i = u,Xi = x)

= νuk +γ
x
k +γ

u,x
k + ϵu,rk , ϵu,rk ∼ Normal(0, (τuϵ )

2)∀r.

(3.12)
In order to avoid parametric models for Ai | SP0

i , Xi, S
P0
i | Ri, Xi, and Yi(zj) | SP0

i , Ai, Xi we
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can instead use categorical distributions with separate parameters for each stratum:

Ai | SP0
i = u,Xi = x ∼ Categorical(πu,x)

SP0
i | Ri = r,Xi = x ∼ Categorical(ρr,x)

Yi(zj) | SP0
i = u,Ai = k,Xi = x ∼ Bernoulli(βu,x

j,k )

πu,x
iid∼ Dirichlet(a), ∀u, x

ρr,x
iid∼ Dirichlet(b), ∀r, x

βu,x
j,k

iid∼ Uniform(0, 1), ∀u, k, x

(3.13)

Given the structure of our model, Gustafson (2015) suggests that integrating out nonidentifiable
parameters may improve efficiency. To do so, we reparameterize the Yi-observation-error param-
eters snY , spY : (snY , spY ) → (rY = snY + spY − 1, spY ), and put priors over rY | spY and spY .
The constraints on snY , spY , namely that both are greater than 0.5, yields that rY ∈ (0, 1] and that
rY | spY ∈ (spY − 1/2, spY ]. Finally, we let β̃u,x

j,k = rY β
u,x
j,k and integrate over rY | spY . If we use

uniform priors for βu,x
j,k and let rY | spY ∼ Uniform(spY − 1/2, spY ] the joint distribution for all

β̃u,x
j,k is proportional to (with a slight abuse of notation):

max

(
spY − 1/2, max

x,u,j,k
β̃u,x
j,k

)1−nβ

− sp
1−nβ

Y (3.14)

where nβ is the number of terms in βu,x
j,k . For example, if Nz = 2, nβ = 4NxNa. We leave the

details of the calculations to the Appendix.

3.4 Design and analysis of vaccine efficacy studies

There are several real-world applications for Theorem 7 in vaccine efficacy studies. The first is
for quantifying vaccine efficacy against post-infection outcomes like severe illness, medically-
attended illness or death, which is the primary motivation for the methods we have developed here.
A second is to quantify the impact on vaccination on secondary transmission to household contacts.
In both of these hypothetical trials, we imagine that participants are prospectively monitored for
infection as well as the post-infection outcome of interest. The infection monitoring might involve
regular diagnostic testing or analysis of blood specimens for signs of infection.
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3.4.1 Vaccine efficacy against severe symptoms trial design

To show how our model can be used to design a vaccine efficacy study, we consider determining the
sample size for two hypothetical clinical trials: one three-arm trial inspired by Monto et al. (2009),
and a two-arm trial inspired by Polack et al. (2020). Monto et al. (2009) investigated vaccine
efficacy against symptomatic influenza infection in a three-arm, double-blind placebo-controlled
randomized trial. Polack et al. (2020) presented the results of the COVID-19 Pfizer vaccination
trial, which measured vaccine efficacy against symptomatic infection using a two-arm double-blind
placebo-controlled randomized trial. All trials are designed so as to jointly test the efficacy against
infection and the efficacy against severe symptoms for the always-infected group.

In order to design our hypothetical trials, we simulate 100 datasets under the alternative hypoth-
esis for each sample size and measure the proportion of datasets in which we reject the null hypoth-
esis. For both trials, we will target a power of 0.8 against an alternative hypothesis that the vaccine
efficacy against symptoms is equal to 0.6 for the always-infected stratum (i.e. SP0

i = (1, 1, 1)

and SP0
i = (1, 1)). We reject the null when the posterior probability is 0.85 or larger that vaccine

efficacy against severe illness is above 0.1 and that the vaccine efficacy against infection is greater
than 0.3. We can write the rejection region for Data = {(S̃i, Ỹi, Zi, Ri, Ai, Xi), 1 ≤ i ≤ n}
as {Data : P (VE

(1,1,1)
I,31 > 0.1,VES,31 > 0.3 | Data) ≥ 0.9} for the three-arm trial and

{Data : P (VE
(1,1)
I,21 > 0.1,VES,21 > 0.3 | Data) ≥ 0.85} for the two-arm trial. Our decision

criterion is akin to that used in Polack et al. (2020), namely that the posterior probability is greater
than 0.986 that vaccine efficacy against confirmed COVID-19 is greater than 0.3. In our scenario
0.85 adequately controls the Type 1 error for a null hypothesis of no vaccine efficacy against severe
illness.

We use the model defined in Equation (3.11) along with the nonparametric model in Equa-
tion (3.13); the computational details are discussed in Appendix B.7. In each trial we examine two
scenarios: one in which we observe the covariate Ãi, orAi with error, and one in which we observe
Ai directly. Given the results of Theorem 7, we can determine the number of study sites and the
number of levels for Ai that need to be observed in order to point identify the causal estimand of
interest. For the three-arm trial, we need at least 8 study sites and a covariate with at least 7 levels,
while for the two-arm trial we need only 4 study sites and a covariate with at least 3 levels.

The power calculations are presented in Table 3.1, which shows power as a function of the
sample size, the number of treatments, and whether Ai or Ãi was measured.
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Table 3.1: Power against the alternative,VES ≊ 0.4, VE(1,1,1)
I,31 ≊ 0.6 for Nz = 3, and VES ≊ 0.5,

VE
(1,1)
I,21 ≊ 0.6 for Nz = 2 for sample sizes of 4,000 through 120,000. Scenarios in which Ai was

measured with error denoted by Ã, A otherwise.

Trial Measurements 4,000 20,000 40,000 80,000 120,000

3-arm
A NA NA 0.69 0.99 1.00
Ã NA NA 0.34 0.88 0.98

2-arm
A 0.01 0.43 0.83 0.94 NA
Ã 0.01 0.35 0.68 0.93 NA

While these results show that one needs large sample sizes to achieve 80% power for the esti-
mands of interest in both scenarios, this is expected because the always-infected principal strata,
(1, 1, 1) and (1, 1), are each only 3.5% of their respective populations in our simulation studies.
This highlights the extent to which power calculations for our models are dependent on principal
strata proportions. Furthermore, though the sample sizes are large, randomized vaccine trials of
similar magnitude have been run. For example, the trial presented in Polack et al. (2020) included
approximately 43,500 participants. In our simulation studies, this sample size would exceed a
power of 0.8 to detect joint vaccine efficacy against infection and severe symptoms. This high-
lights the fact that our model can be used to infer post-infection outcome vaccine efficacy from
large real-world studies.

3.4.2 Household vaccination study

Consider 2-person households recruited into a vaccination study to determine the infectiousness
effect, as defined in Halloran and Struchiner (1995) and further explored in VanderWeele and
Tchetgen Tchetgen (2011). In other words, if one person in the pair is infected, what benefit
does the other person in the household derive from the vaccination status of the infected individ-
ual? VanderWeele and Tchetgen Tchetgen (2011) considered a trial design in which exactly one
member of each household is randomized between vaccination and placebo. We consider a trial
in which the only source of infection for the non-randomized individual is from the individual
randomized to treatment. This might be a good model for households in which one member is
home-bound. Then the set of treatments for each household can be mapped to a categorical treat-
ment: z1 ≡ (0, 0), z2 ≡ (1, 0). Let the intermediate outcome Si(zj) be the infection status of
the randomized household member, let the set of principal strata be {(0, 0), (1, 0), (0, 1), (1, 1)},
and let the outcome Yi(zj, Si(zj)) be the infection status of the unvaccinated individual. The esti-
mand of interest, vaccine efficacy against transmission, is the expected difference in outcome for
the unvaccinated individual when the household member is unvaccinated vs. when the household
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member is vaccinated for the set of households in the stratum (1, 1):

VE
(1,1)
T,21 = E

[
Yi(z1) | SP0

i = (1, 1)
]
− E

[
Yi(z2) | SP0

i = (1, 1)
]
.

VanderWeele and Tchetgen Tchetgen (2011) derive large-sample bounds for this effect, but we can
use our method to identify this quantity. Theorem 7 shows that in order to identify this estimand
under noisy infection measurements using our method, one would need at least four study sites, a
relevant categorical covariate with three levels, and the sensitivity and specificity to both lie in the
same half-interval of [0, 1]. We write the rejection region for Data = {(S̃i, Ỹi, Zi, Ri, Ai, Xi), 1 ≤
i ≤ n} as {Data : P (VE

(1,1)
T,21 > 0,VES,21 > 0.3 | Data) ≥ 0.975} for the two-arm trial. The

0.975 cutoff was chosen to control the Type 1 error rate, as shown in the Supplementary Material.

Table 3.2: Power against the alternative that VES ≊ 0.5, VE(1,1)
T,21 ≊ 0.16. for sample sizes of 4,000

to 80,000. Scenarios in which Ai was measured with error denoted by Ã, A otherwise.

Measurements 4,000 20,000 40,000 80,000

A 0.01 0.49 0.78 0.96
Ã 0.01 0.52 0.87 0.97

In this example, the sample size should be understood in terms of households, rather than par-
ticipants. Our method is applicable to scenarios involving partial interference, which in this case
is the assumption that treatment statuses of households do not impact one another.

3.4.3 Misspecified model

A key assumption for our method is Covariate homogeneity, that the preseason antibody titers
are conditionally independent of the study site indicators given covariates and principal stratum.
This may not hold when Ai is a measurement of a factor causing infection; conditioning on SP0

i

would introduce collider bias and make Ai and Ri conditionally dependent. In order to measure
the robustness of our method to deviations from this assumption, we simulated data in which Ai

were not conditionally independent of Ri. To do so, we included an interaction term between
Ai and Ri for the multinomial logistic regression model used to simulate Ai measurements. We
generated the data under the same null and alternative scenarios as used in Section 3.4.1 We then
fitted two models, the full nonparameteric model for Ai, which does not include an interaction
effect between Ri, as can be seen in Equation (3.13), and a model which uses a parametric model,
namely a multinomial logistic regression for Ai that does include an interaction term. This model
is shown in Equation (3.12)
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The models had similar power against the alternative hypothesis, which is detailed in Table B.4.
However, with any misspecified model, it is of interest to investigate if the Type-I error is inflated.
We can see in Table 3.3 that the only scenario which shows inflated Type-I error for the misspeci-
fied model is the 80,000 observation scenario in which Ai is observed without noise.

Table 3.3: Size of the test,VES ≊ 0.5, VE(1,1)
I,21 = 0 for Nz = 2 for sample sizes of 20,000 through

80,000. Scenarios in which Ai was measured with error denoted by Ã, A otherwise.

Model Measurements 20,000 40,000 80,000

A Incorrect
A 0.03 0.04 0.28
Ã 0.01 0.00 0.01

A Correct
A 0.01 0.00 0.04
Ã 0.01 0.01 0.01

This likely means that the misspecified model does not protect the null asymptotically (Richard-
son et al., 2011). Despite this, the misspecified model does not show inflated Type I error in the
20,000 and 40,000 scenarios.

3.5 Discussion

Policymakers and public health experts can use vaccine efficacy for post-infection outcomes to
design more precise vaccination programs. Our method makes inferring these causal estimands
feasible in real-world multi-arm trials where outcomes are measured with error and vaccines cannot
be assumed to have a nonnegative effect on infection for every individual. The power of our
method is reflected in its flexibility to be applied to vaccine trials with multiple treatments as well
as various post-infection outcomes. Although we focus on binary post-infection outcomes here,
our method is readily extensible to ordinal and continuous measures, such as immune response as
measured by antibody titer. Accordingly, when paired with a parametric likelihood for continuous
post-infection outcomes, our method may be more statistically efficient than models identified by
likelihood assumptions alone, like that of Zhang et al. (2009). Furthermore, our identifiability
results are nonparametric, though we use parametric Bayesian estimators in our examples. One
can use these methods to design and analyze clinical trials, as we show in Section 3.4.

3.5.1 Limitations and extensions

As shown in Section 3.4.3, there is evidence that when the conditional independence condition
Assumption 4 does not hold, under the null hypothesis, the model will incorrectly asymptotically
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reject. More research is necessary to develop models that are robust to misspecification. An
extension to the model is to allow misclassification rates that differ by values of covariates X
and by treatment assignment Z. The identifiability results readily generalize to both scenarios,
and both are of interest in real-world trials. For instance, if a vaccine changes how the virus
populates the nasal cavity, we might expect that PCR tests from nasopharyngeal swabs will be
less sensitive in the vaccinated group. More work is needed to further generalize the procedure to
categorical intermediate outcomes, which would allow for more general vaccine efficacy against
transmission study designs (VanderWeele and Tchetgen Tchetgen, 2011), as well as applications
beyond vaccine efficacy to noncompliance in multi-arm trials where the exclusion restriction could
be violated (Cheng and Small, 2006).
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CHAPTER 4

Measuring Cumulative Spatial Exposure to
Environmental Hazards

4.1 Introduction

To measure the impact of environmental exposures, epidemiologists must account for both the
intensity of exposure from the environmental source of interest, factors impacting individual sus-
ceptibility to infection, and other unobserved potential sources of infection. Epidemiologists often
employ regression modeling to learn the relationship between exposure, susceptibility and dis-
ease risk (Bender, 2009). When a point source exposure to pathogens or other health hazard is
suspected, methods have been developed to incorporate these sources of disease into a regression
modeling framework (Diggle et al., 1997; Diggle and Rowlingson, 1994). Exposure to the envi-
ronmental source is typically operationalized as a function of distance to the point source (Diggle,
1990), and the modeler learns how quickly the magnitude of the exposure increases as the dis-
tance to the point source decreases. For example, if there is an abnormal clustering of cancer cases
near a chemical plant, we may suspect that this cluster arose in part due to exposure to hazardous
chemicals.

The assumption that legitimizes the use of these methods is that the location of the exposure to
be assessed is certain: the origin of the cancer risk posed by the chemical plant can reasonably be
assumed to originate from a single, discrete point in space. Thus, while there may be uncertainty
in the parameters governing the exposure as a function of distance to the point source, the modeler
assumes that there is no uncertainty in the distance for each unit of analysis. This method has
been used to quantify the risk of larynx cancer with respect to distance to an industrial incinerator
Diggle (1990), the risks of various cancers in relation to petrochemical plant exposure, Calculli
et al. (2010), the risk of multi-drug-resistant tuberculosis infection for individuals living near a
prison in Peru, Warren et al. (2018), and to understand the risks of fast food restaurant proximity
on childhood obesity Peterson and Sanchez (2018).
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When the environmental source of disease is spatially extensive, such as a river, lake, canal
network, or pipe system, the fundamental assumption of the point-source approach, i.e. that each
unit’s exposure can be summarized using a single distance from the source, no longer holds. There
is no longer a plausible single point from which exposure emanates; all points that comprise the
source could pose a hazard to health. In order to use the point-source method for these types of
sources, we need to assume that an individual’s exposure can still be summarized by their distance
to a single location along the source. The typical assumption is to take the shortest distance Cassell
et al. (2018); Jalava et al. (2014). This assumption will necessarily understate the uncertainty in
exposure because many points along the source may contribute to exposure at a given community
location. These methods also do not allow for variation in pathogen concentration along the en-
vironmental hazard, which in certain applications may not accord with reality. For instance when
modeling the risk of diarrheal illness with respect to wastewater runoff, enteric pathogen concen-
trations decline with distance to the source of runoff Brouwer et al. (2017a). Thus units near areas
of the waterway that are closer to the wastewater runoff will have higher exposure compared to
units that are proximate to sections of the waterway with lower concentrations of pathogens. This
can result in biased estimates of unit exposure, whereby average intensity is correctly estimated,
but the risk for high-exposure units is underestimated and vice-versa for low-exposure units.

Instead, we need to take into account cumulative exposure to the environmental hazard, where
every point contributes to exposure. The approach has several analogues in public health literature.
The first analogue is in determining exposure to fine particulate matter (PM2.5) and its effect on
birth weight in Berrocal et al. (2011). One measurement of exposure proposed was a summation
over a fixed window of time of daily PM2.5 minus a predefined threshold, only on days that PM2.5

exceeded the threshold. This measure accounts for the cumulative exposure to PM2.5. When
considering exposure to an environmental hazard, instead of summing over time, we can sum
exposure over the spatial extent of the hazard. Another analogous technique can be seen in joint
models of longitudinal outcomes and time-to-event data, summarized in Hickey et al. (2016) and
further generalized in Brilleman et al., where we model the time-dependent hazard of an event
dependent on parameters learned from the model for longitudinal outcomes. The form of the
interdependence between the time-to-event model and the longitudinal outcome is specified by the
modeler. One formulation of the joint model specifies that the log-hazard ratio of the time-to-event
model at time t depends on integral over the interval [0, t] of the latent parameter governing the
longitudinal outcome Andrinopoulou et al. (2017), which allows the event hazard to depend on the
cumulative exposure to the latent process. This corresponds to our problem setting, but substituting
space for time.

The problem of assigning risk to a spatially-continuous source of disease is widespread, and
the applications of a coherent model for these scenarios are myriad. The most direct application

82



is in modeling how infectious disease risk depends on household and occupational proximity to
waterways. In multiple settings, diarrheal illness risk has been observed to cluster around rivers
Thompson et al. (2015), canal systems, and other water sources. Legionella is also known to
spread through water and rivers provide one route to infection Cassell et al. (2018). In order to
develop an effective response to these public health risks, authorities would benefit from a detailed
understanding of the intensity of disease risk at different points along waterways. This could aid in
determining points at which to sample water quality, and predictive modeling could suggest groups
of households to inform about the health risks. Beyond infectious disease, childhood respiratory
diseases such as asthma and bronchitis have been linked to vehicle emissions Perez et al. (2012).
Learning how respiratory disease risk changes as a function of cumulative exposure to freeway
traffic, as well as how this exposure varies along freeway segments would be a boon to public
health in this context as well. Officials could target air pollution mitigation efforts at areas where
emissions concentrate and to which households have high exposure. Urban planners could use
model predictions to build new housing safely away from the worst highways.

We propose a flexible, generative model for quantifying environmental exposures that naturally
extends the point-source approach to account for spatially extensive sources of risk. The model
addresses two key problems in the measurement of exposure from spatially extensive point sources.
The first is the problem of uncertainty in the point of exposure, e.g. for a ‘single hit’ model in which
the disease outcome is the result of a single exposure (e.g. infection), and the second in which it is
impacted by the accumulation of exposure over space and/or time. To accomplish this, we allow
each unit’s exposure to be integrated across the entirety of the environmental hazard. We use a log-
Gaussian process to parameterize the risk at distance zero to the source of risk, which accounts for
differences in risk at distinct points along the source. We use Bayesian inference implemented in
the software package CmdStan to estimate the unknown model parameters Carpenter et al. (2017),
where we’re able to take advantage of parallel computing of the likelihood. We demonstrate the
model’s ability to infer environmental exposure under different data generating processes using
simulated data, and, finally, we apply our model to data collected on childhood diarrheal disease
in Mezquital Valley, Mexico to show how the model yields new insights that cannot be obtained
using existing methods.

4.2 Modeling environmental exposure

Suppose we observe outcome data Yit, where i indexes the individual, or stratum of the population,
and t designates a time interval, t = [t1, t2]. Typically Yit is discrete, either representing counts of
incident cases of a disease when i represents a stratum, or an indicator variable representing the
event that individual i is infected with the disease of interest. These cases are observed in a spatial
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domain R and each observed unit is associated with a location si ∈ R. The spatial domain also
contains a potential environmental source of disease, defined as a set C, which may be modeled
as a lower-dimensional manifold of R, with associated coordinate function ℓ : C → R. Then the
spatial domain of the environmental hazard is ℓ (C) ⊆ R.

How can we go about learning how the location of the unit i with respect to the set of points C
influences the risk of disease? We might fit a model to the observations, by specifying a distribu-
tion P for observations dependent on a parameter µ specific to each location i and interval t and
nuisance parameters δ:

Yit ∼ P (µit, δ). (4.1)

We then model how µit depends on unit location si with respect to the hazard C, and also potentially
on observed covariates, through a known function h and unknown parameters θ:

µit = h(si, C | θ, Xit).

The parameters are identifiable from the observed data via differential exposure to the hazard
between units that vary in location. If we can learn these parameters, we’ll know to what extent
the environmental hazard endangers those exposed.

4.3 Existing approaches to modeling environmental exposure

When the risk factor is a point-source the domain C comprises a single point, c, exposure can be
approximated via a function, K(d), of the scaled Euclidean distance of location si to the location
of the point c, given by the function ℓ(c): di = ∥si−ℓ(c)∥2. For instance, if Yi are binary indicators
of disease, we would model the outcome as a Bernoulli random variable with mean parameter µit:

Yit ∼ Bernoulli(µit),

and model h−1(µit) as an additive decomposition of baseline risk of disease λ and the increased
risk from the hazard, f(t)K(di/ρ). If we define K(d) to be a strictly monotone decreasing function
that evaluates to 1 at d = 0 and tends to 0 as d → ∞, then parameter ρ quantifies how quickly the
risk of disease decreases as one moves away from the hazard c, and the parameter f(t) gives the
increased risk of disease at distance zero to the source:

h−1(µit) = λ+ f(t)K(di/ρ), (4.2)
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We impose the constraint that λ, f(t) > 0∀t, and h−1 is a link function. For a fixed distance, K is
increasing in ρ. Some or all of the parameters that govern h−1(µit), ρ, λ, and f(t) will typically
be unknown and will need to be learned from observed data. Popular choices for K are the kernel
of a Gaussian density and the kernel of an exponential density Warren et al. (2018); Diggle and
Rowlingson (1994).

Diggle (1990) introduced the model for noninfectious disease case-control studies, namely can-
cer. Two independent nonhomogeneous Poisson processes with intensity functions λyi=1(si) and
λyi=0(si), are assumed to govern the spatial point pattern of cases and controls respectively. If we
define the intensity function for cases λyi=1(si) = rλyi=0(si)(1+α exp(−∥si−ℓ(c)∥22/ρ2)), then α
represents the incremental intensity for cases at distance 0 to the environmental hazard compared
to the base rate of disease r. As di → ∞ the risk approaches rλyi=0(si). Inference proceeds by
first estimating λyi=0(si), and subsequently estimating r, α and ρ. A later paper Diggle and Rowl-
ingson (1994) shows that inference of the nonhomogeneous Poisson process intensity function can
be avoided by conditioning on the locations of the cases and controls and fitting a nonlinear bi-
nary regression. The modeled outcome is the binary event that an observation is a disease case
conditional on the location of the observation. The probability of a case is µi:

µi =
r(1 + α exp(−∥si − ℓ(c)∥22/ρ2))

1 + r(1 + α exp(−∥si − ℓ(c)∥22/ρ2))
. (4.3)

The model can be derived by splitting a single Poisson process with intensity

rλyi=0(si)(1 + α exp(−∥si − ℓ(c)∥22/ρ2)) + λyi=0(si)

into cases and controls with a location-dependent thinning probability µi. Then P (Yi = 1 | si) =
µi.

The model in Diggle and Rowlingson (1994) is a special case of equation (4.2) and corresponds
to modeling the odds of disease, h−1 as

h−1(µ) =
µ

1− µ
,

and
h−1(µi) = r + rα exp(−∥si − ℓ(c)∥22/ρ2) (4.4)

λ = r, and f(t) = rα. This equation can be rearranged to show that the environmental exposure
multiplies the base odds of disease:

h−1(µi) = r(1 + α exp(−∥si − ℓ(c)∥22/ρ2)) (4.5)
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When modeling the effects of multiple environmental hazards on a disease of interest, the odds
model in equation (4.5) can be extended either multiplicatively:

h−1(µi) = r

Q∏
q=1

(1 + αq exp(−∥si − ℓ(c)∥22/ρ2q)), (4.6)

as in Diggle and Rowlingson (1994); Ramis et al. (2011), or additively:

h−1(µi) = r (1 +

Q∑
q=1

αq exp(−∥si − ℓ(c)∥22/ρ2q)), (4.7)

as in Biggeri and Lagazio (1999), though the authors note the inferential issues pertaining to cor-
related hazards.

4.3.1 Extending the model to infectious disease

The model has been successfully employed in infectious disease settings too. Warren et al. (2018)
extends the point-source exposure model to infectious diseases by modeling the probability of
cases of tuberculosis being multi-drug-resistant tuberculosis (MDR-TB) with respect to distance
to a prison. In this case, a probit model is used, corresponding to h−1(µ) ≡ Φ−1(µ), or the inverse
cumulative distribution function of the standard normal distribution.

The key difference between the model used in Warren et al. (2018) and Diggle and Rowlingson
(1994) is that in Warren et al. (2018) no assumption is made about the independence of cases and
noncases of MDR-TB. In Diggle and Rowlingson (1994) the cases and controls are modeled to
have arisen from independent nonhomogeneous Poisson processes, which is not a valid assumption
when modeling infectious disease.

4.3.2 Extensive environmental hazards

When the environmental exposure is not a point source, but is instead extensive in space, such as a
river, or a lake, modelers typically resort to using the shortest distance to the source for each unit i
as a proxy for exposure Cassell et al. (2018). If C is the set of all points that make up the source,
then we can apply the same model above, defined in equation (4.2), but with di defined as:

di = min
c∈C

∥si − ℓ(c)∥2 (4.8)

where ℓ maps an element of C to its spatial coordinates. This accounting doesn’t capture the true
extent of the unit’s dose, however, because the unit has a cumulative exposure from the entirety
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of the environmental risk. This method also imposes the implicit constraint that all points on the
canal impart equal exposure at distance zero, which doesn’t allow the researcher to model how
exposure changes as a function of c.

4.4 Cumulative exposure to extensive environmental hazards

As discussed in section 4.1, not accounting for each unit’s cumulative exposure to the environmen-
tal hazard can introduce bias in estimating the risk of disease for low- and high-exposure units. In
order to ameliorate this deficiency, we can extend the methodology introduced in section 4.3 by
partitioning the hazard into mutually exclusive subsets Cm, m ∈ {1, . . . ,M}, with spatial cen-
troids C̄m, and spatial areas ∆(Cm), such that

⋃M
m=1Cm = C. Then we could treat each section

Cm of the hazard as a separate point source:

h−1(µi) = r (1 +
M∑

m=1

fm∆(Cm)K(∥si − ℓ(C̄m)∥2/ρ)). (4.9)

Further, we can jointly model the dependence between different subsets by specifying a joint
distribution for the vector of exposures at distance zero, f ,

f ∼ Pf . (4.10)

This model is nearly a direct extension of model (4.2) and it accomplishes what we could not
by taking the shortest distance to the environmental hazard: the model accounts for cumulative
exposure and it allows the concentration of the disease-causing agent to change along the hazard.

In infectious disease modeling, we often model how risk depends additively on exposures Craw-
ford et al. (2019), rather than multiplicatively, like in (4.9) and (4.6). We can change the model to
allow for an additive relationship between the base rate λ and the environmental exposure C:

h−1(µi) = λ+
M∑

m=1

fm∆(Cm)K(∥si − ℓ(C̄m)∥2/ρ)). (4.11)

In section 4.5 we will show how an additive decomposition of risk arises naturally from a
generative model for infection and environmental exposure to a point source hazard. Then in
section 4.5.3 we will show how equation (4.11) can be derived for exposure to an extensive hazard
when pathogens along the hazard are distributed according to a nonhomogeneous Poisson process.
Finally, we will specify a nonparametric model for Pf in line (4.10), which further extends the
model to the generative scenario where pathogens along the source are distributed according to a
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log-Gaussian Cox process.

4.5 A new perspective on environmental exposure

Researchers and statisticians often find value in fitting generative models to observed data because
these models can tell coherent probabilistic stories about how the data arose, and allow researchers
to encode scientific information about the modeled phenomenon through distributions. This then
enables probabilistic model checking which can yield new models or suggest new datasets to col-
lect that would refine or enhance the scientific insights. In the context of environmental health,
generative models also allow us to examine counterfactual scenarios in order to estimate, e.g. the
proportion of observed disease risk attributable to a given exposure. These and other benefits of
generative modeling led us to recast the environmental hazard model as a natural consequence of
a specific probabilistic story about how environmental disease data came about. This recasting
allows us to extend the point-source model via an expanded generative process that yields a more
detailed picture of environmental exposure.

4.5.1 Dose-response model

Our treatment begins with a model for disease called the exponential dose-response model. It is
a generative model for infectious disease and, as such, can be used as a building block in a more
realistic model of infection from a point-source exposure. The model is typically used to infer the
dose of a pathogen that would lead to a 50% probability of infection or symptomatic disease.

First, we define some notation to be used throughout the chapter. Let a time interval, [t1, t2], be
defined for t1 < t2, and, with a slight abuse of notation, let t = [t1, t2]. Let the nonhomogeneous
Poisson process rateNi(t) be the number of disease-causing pathogens to which a unit i is exposed
over the time interval t. For shorthand, let Λ(t) =

∫ t2
t1
λ(τ)dτ :

Ni(t) ∼ Poisson(Λ(t)).

Subsequently, let the number of pathogens infecting unit i,Ki(t) | Ni(t), be conditionally binomial
with probability of success parameter ri:

Ki(t) | Ni(t) ∼ Binomial(N(t), ri).

Marginalizing over Ni(t) yields

Ki(t) ∼ Poisson(riΛ(t)). (4.12)
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Then the probability that unit i becomes infected over the time interval t is 1 − exp(−riΛ(t)), or
the probability that at least one of these pathogens infects person i. The parameter ri represents the
susceptibility of unit i to the disease and may depend on covariates Xi. See Brouwer et al. (2017b)
for more discussion on the merits of this model.

Given that Ni(t) is a Poisson process on R+, Ki(t) is a thinned Poisson process on R+ with
mean measure riλ(τ). The probability of i becoming infected over the interval t is the probability
of observing the first jump of a Poisson process in interval t, which is again 1− exp(−riΛ(t)).

We may also model the dose of a disease causing agent as the result of a probabilistic exposure
process governed by the distance to a hazardous environmental source. Recall that the environ-
mental source of disease is denoted c and is located at ℓ(c). Suppose Wi(t) is a second Poisson
process with mean measure f(τ) that defines the pathogens emitted from this hazardous source.
Again, let F (t) =

∫ t2
t1
f(τ)dτ

Wi(t) | F (t) ∼ Poisson(F (t)). (4.13)

Now we letNi(t) | Wi(t) be the dose that reaches unit i over t and assume that this is conditionally
binomial:

Ni(t) | Wi(t) ∼ Binomial(W (t), pi).

If individual i is located at si, then we can define the probability that a pathogen reaches individual
i as a function of i’s distance to the source: pi = K(∥si − ℓ(c)∥2/ρ). Marginalizing over Wi(t)

yields the marginal distribution for Ni(t)

Ni(t) | F (t) ∼ Poisson(F (t)K(∥si − ℓ(c)∥2/ρ)).

Using the results from equation (4.12) allows the derivation of the marginal distribution of
pathogens that infect individual i.

Ki(t) | F (t) ∼ Poisson(riF (t)K(∥si − ℓ(c)∥2/ρ)).

Finally, the probability that i becomes infected from the hazardous source located at ℓ(x) is
Bernoulli:

Yit | f(t) ∼ Bernoulli(1− exp(−rif(t)K(∥si − ℓ(c)∥2/ρ))). (4.14)
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Equation (4.14) is similar to equation (4.2) but with a different inverse link function:

g−1(θ) = − log(1− θ),

Yit | θit ∼ Bernoulli(θit) (4.15)

g−1(θit) = rif(t)K(∥si − ℓ(c)∥2/ρ)). (4.16)

4.5.2 Expanding the model to include background rate of exposure

The generative model can readily accommodate a term for representing spatially-invariant back-
ground exposure if the baseline exposure is modeled as an independent homogeneous Poisson
process. Let the mean measure of the background exposure process be λbdτ . Then the total dose
is the sum of the two exposures:

Ni(t) ∼ Poisson(F (t)K(∥si − ℓ(c)∥2/ρ) + λbt).

This then yields a model for binary infection as:

P (Yit = 1 | F (t)) = 1− exp(−ri(F (t)K(∥si − ℓ(c)∥2/ρ) + λbt)). (4.17)

The difference between the model in equation (4.3) and equation (4.17) is that the risk from the
environmental hazard adds to the background risk. In equation (4.3) the odds of an observation
being a disease case is modeled as:

odds(P (Yit = 1 | f(t))) = ri(1 + α exp(−∥si − c∥22/ρ2)). (4.18)

so we see that risk from the environmental hazard multiplies the background rate, ri.

4.5.2.1 Identifiability

Identifiability for a parametric model with a family of densities f(x | θ) over Rn indexed by
parameter vector θ ∈ Θ ⊆ Rd is defined as the condition that θ′ ̸= θ ∈ Θ implies that f(x | θ′) ̸=
f(x | θ) Rothenberg (1971). Given the multiplicative structure of the parameter space, we will
not be able to learn ri without assuming a functional form. For now, we let F (t)′ = riF (t) and
λ′b = riλb be the parameters of interest. Imagine we can move individual i to different locations
while keeping the hazard c fixed at fixed location ℓ(c). Let di =

√
si − ℓ(c). Given the kernel

function’s property that limd→∞ K(d) → 0, λ′b = limdi→∞− log(1 − P (Yit = 1 | F (t)))/t.
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Furthermore, F ′(t) = limd→0− log(1− P (Yit = 1 | F (t)))− λ′bt. Finally, given that K is strictly
monotonic, K−1 exists, and

ρ =
di

K−1 ((− log(1− P (Yit = 1 | F (t)))− λ′bt)/F
′(t))

.

4.5.3 Modeling exposure to extensive environmental hazards

If the source is extensive in space, we can extend the generative model for point source hazards.
Let C be the set of points that make up the environmental hazard and allow the intensity of the
Poisson distributed pathogens, f(τ) in equation (4.13), to depend on c ∈ C: f(c, τ), and model the
pathogens present at the source as a nonhomogeneous Poisson process with domain C ×R+. Then
the number of pathogens in a subset C ⊂ C is:

W (t) | F (c, t) ∼ Poisson
(∫

C×t

f(c, τ)dCdτ
)
. (4.19)

If we allow f(c, τ) to be a stochastic process itself, we can modelW as a doubly-stochastic Poisson
process. Then the probability that unit i gets infected over time interval t from section C of the
environmental hazard is:

Yit | F (c, t) ∼ Bernoulli
(
1− exp

(
−ri

∫
C×t

K(∥si − ℓ(c)∥2/ρ)f(c, τ)dCdτ
))

. (4.20)

The assumption that W (t) is a nonhomogeneous Poisson process ensures that f(c, τ) is integrable,
and thus given the property that 0 < K ≤ 1 the integral in Equation (4.20) is well-defined. A
question remains, however, as to how to model f(c, τ). Our model must guarantee almost surely
integrable functions f(c, τ) but be flexible so as to adapt to many different scenarios. For this
reason we model log f(c, τ) as a Gaussian process. In the next two subsections we describe the
properties of Gaussian processes and doubly-stochastic Poisson processes with log-Gaussian in-
tensities.

4.5.3.1 Gaussian processes

Gaussian processes are stochastic processes over a domain V where every finite-dimensional joint
distribution of the stochastic process is multivariate normally distributed:

z ∼ Multivariate Normal(µ,Σ),

for any points vi, i ∈ [1, . . . , N ], with µ[i] = µ(vi) and Σ[i,j] = σ(vi, vj) and each element of z
associated to a single vi. Gaussian processes are completely characterized by the mean function
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µ(v) and covariance kernel σ(v, v′). The Gaussian process represents a useful prior for unknown
functions because the sample paths of a GP can be thought of random functions from V → R. The
properties of the sample paths, such as differentiability and nonlinearity, are defined by µ(v) and
σ(v, v′). An example of a covariance kernel is the exponentiated quadratic kernel:

σ(v, v′ | α, ω) = α2 exp

(
− 1

2ω2
∥v − v′∥22

)
, (4.21)

which generates infinitely differentiable sample paths as long as σ(v, v′ | α, ω) is positive definite
within V(Rasmussen and Williams, 2006) . The hyperparameter ω controls the nonlinearity of the
function, in that large values of ω lead to almost-linear functions, while smaller values of ω lead
to functions with many peaks and troughs over the domain. The hyperparameter α controls the
marginal variance of the Gaussian random variable at a given location v. In our case, the domain
of the Gaussian process is (C × R+) and v = (c, τ). Next we describe how to use Gaussian
processes to define the log-intensity of a Poisson process.

4.5.3.2 Log-Gaussian Cox processes

A GP prior for log f(c, τ) is known as a log-Gaussian Cox process Møller et al. (1998). A log-
Gaussian Cox process is a doubly-stochastic Poisson process where the intensity function λ(c, τ)
is an exponentiated Gaussian process: λ(c, τ) = expZ(c, τ), where Z(c, τ) is a Gaussian process.

A nonhomogeneous Poisson process inherits the complete randomness property from homo-
geneous Poisson processes when conditioning on the intensity process. Namely if C1, . . . , Ck ⊂
(C×R+) andCi∩Cj = ∅ thenW (C1), . . . ,W (Ck) are independent Poisson random variables with
intensities

∫
Ci
λ(c, τ)dCdτ . Let the collection of pairs (Cm, tl),m ∈ [1, . . . ,M ], l ∈ [1, . . . , L]

be a partition of (C × t). Then if Z(c, τ) is a GP with domain (C × R+), with a valid covari-
ance function σ (validity as defined in (Møller et al., 1998, p. 453)), W (Cm, tl) | Z(c, τ) ∼
Poisson(

∫
Cm×tl

expZ(c, τ)dCdτ), and W (Cm, tl) ⊥⊥ W (Cj, tl) | Z(c, τ)∀j ̸= m. Given the
intractability of

∫
Cm×tl

expZ(c, τ)dCdτ , we can approximate this quantity by generating a finite-
dimensional draw from a multivariate normal with M × L elements:

z ∼ Multivariate Normal(µ,Σ),

where Σi,j = k((C̄⌊i/L⌋+1, t̄i mod L), (C̄⌊j/L⌋+1, t̄j mod L)) where C̄m, t̄l are the coordinates of the
centroid of Cm, and tl. Then we approximate the integral

∫
Cm×tl

expZ(c, τ)dCdτ at the centroid:∫
Cm×tl

expZ(c, τ)dCdτ ≈ exp(z[(m−1)L+l])∆(Cm)∆(tl),
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where ∆(Cm)×∆(tl) is the volume of element Cm × tl. Then

W (Cm, tl) | z ∼ Poisson(exp(z[(m−1)L+l])∆(Cm)∆(tl)).

We can use the above properties to approximate the distribution of the total pathogens generated
over (C × t):

W (C, t) | z ∼ Poisson

(
M∑

m=1

L∑
l=1

exp(z[(m−1)L+l])∆(Cm)∆(tl)

)
.

The approximation error depends on the nature of Z(c, τ), namely how much Z(c, τ) varies within
the approximation intervals. To make this precise:∣∣∣∣∣

∫
C×t

exp(Z(c, τ))dCdτ −
M∑

m=1

L∑
l=1

exp(Z(C̄m, t̄l))∆(Cm)∆(tl)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Cm×tl

exp(Z(c, τ))dCdτ −
M∑

m=1

L∑
l=1

exp(Z(C̄m, t̄l))∆(Cm)∆(tl)

∣∣∣∣∣
≤

M∑
m=1

L∑
l=1

∣∣∣∣∫
Cm×tl

exp(Z(c, τ))dCdτ − exp(Z(C̄m, t̄l))∆(Cm)∆(tl)

∣∣∣∣
≤

M∑
m=1

L∑
l=1

sup
{(c,τ),(c′,τ ′)}∈Cm×tl

|exp(Z(c, τ))− exp(Z(c′, τ ′))|∆(Cm)∆(tl)

Thus if the sample paths do not vary much within the intervals, the integral will be well-
approximated by the sum. If Z(c, τ) is s-Hölder continuous over C × t, then there is a bound
for |exp(Z(c, τ))− exp(Z(c′, τ ′))|:

|exp(Z(c, τ))− exp(Z(c′, τ ′))| ≤ B∥(c, τ)− (c′, τ ′)∥s,

for s ∈ (0, 1]; we have also used the fact that exp is 1-Hölder continuous. If we let ∆(Cm) =

∆(C)/M and ∆(tl) = (t2 − t1)/L for all m and l, the bound will be∣∣∣∣∣
∫
C×t

exp(Z(c, τ))dCdτ −
M∑

m=1

L∑
l=1

exp(Z(C̄m, t̄l))∆(Cm)∆(tl)

∣∣∣∣∣
≤ B∆(C)(t2 − t1)

√(∆(C)
M

)2

+

(
t2 − t1
L

)2
s

B and s are properties of the Gaussian process, while M and L are properties of our integration
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scheme. This treatment assumes that C is Euclidean. If the domain is non-Euclidean, there is
additional error incurred from discretizing the non-Euclidean domain. We will not treat that error
in this manuscript, but it is worth noting.

4.5.4 Log-Gaussian Cox process integrated exposure

With the log-Gaussian Cox process in hand, we can continue to build our model for extensive
environmental hazards. If we treat section Cm of the source as if it were a point source, we may
define the number of pathogens from Cm to which individual i is exposed over the time interval tl
as:

K(Cm, tl) | z ∼ Poisson(K
(

∥ℓ(C̄m)−si∥2
ρ

)
exp(z[m,l])∆(Cm)∆(tl)).

Given the independence of W (Cm, tl) ⊥⊥ W (Cj, tl) | Z(c, τ)∀j ̸= m, we can express the total
number of particles individual i is exposed to as

L∑
l=1

M∑
m=1

K(Cm) | z ∼ Poisson

(
L∑
l=1

M∑
m=1

K
(

∥ℓ(C̄m)−si∥2
ρ

)
exp(z[m,l])∆(Cm)∆(tl)

)
.

Finally, the probability that individual i becomes infected during t is

Yit | z ∼ Bernoulli

(
1− exp

(
−ri

L∑
l=1

M∑
m=1

K
(

∥ℓ(C̄m)−si∥2
ρ

)
exp(z[m,l])∆(Cm)∆(tl)

))
.

(4.22)

Using the same argument as above, we can show that as M,L→ ∞ our approximation converges
to the integral in Equation (4.20), substituting expZ(c, τ) for f(c, τ), under conditions on the
kernel and mean function of the Gaussian process. The proof is shown in Appendix C.

While we have presented the model in its full generality, with f nonparametrically dependent
on τ , we’ll make the simplifying assumption going forward that the intensity of the pathogen
generation from the environmental hazard is constant in time with rate λe. In other words, f(c, τ) =
f(c)λe, so Z(c, τ) = Z(c) + log(λe), for computational tractability. This leads to the probability
model for Yit being expressed as

Yit | Z(c, τ) ∼ Bernoulli
(
1− exp

(
−ri λet

∫
C
K
(

∥ℓ(c)−si∥2
ρ

)
exp(Z(c))dC

))
.
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4.5.4.1 Computational considerations

Given the approximate exposure term:

L∑
l=1

M∑
m=1

K
(

∥ℓ(C̄m)−si∥2
ρ

)
exp(Z(C̄m), t̄l)∆(Cm)∆(tl),

and the true modeled exposure∫
C×t

K
(

∥ℓ(c)−si∥2
ρ

)
exp(Z(c, τ))dCdτ,

we can bound the approximation error:∣∣∣∣∣
L∑
l=1

M∑
m=1

K
(

∥ℓ(C̄m)−si∥2
ρ

)
exp(Z(C̄m), t̄l)∆(Cm)∆(tl)−

∫
C×t

K
(

∥ℓ(c)−si∥2
ρ

)
exp(Z(c, τ))dCdτ

∣∣∣∣∣ .
(4.23)

As shown in Appendix C, this error has an upper bound of:

L∑
l=1

M∑
m=1

∫
Cm×tl

Kρ(C̄m)
∣∣exp(Z(c, τ))− exp(Z(C̄m), t̄l)

∣∣ dCdτ (4.24)

+
L∑
l=1

M∑
m=1

(
K
(

infc ∥ℓ(c)−sj∥2
ρ

)
−K

(
supc ∥ℓ(c)−sj∥2

ρ

))∫
Cm×tl

exp(Z(c, τ))dCdτ. (4.25)

Of most consequence is the term involving differences of the distance kernel:

K
(

infc ∥ℓ(c)−sj∥2
ρ

)
−K

(
supc ∥ℓ(c)−sj∥2

ρ

)
.

For units that are close to the hazard, this term is approximately 1−K
(

supc ∥ℓ(c)−sj∥2
ρ

)
. When ρ is

also close to zero this term will be near 1, leading to large integration error. Thus, when there are
many units that are near the environmental hazard, the computational grid should be finer than it
would need to be if few units were near the hazard in order to guarantee small approximation error.

4.5.5 Include covariates for susceptibility

Suppose we have covariates xi ∈ RK associated with each individual i that predict the individual’s
susceptibility to infection. For example, these might be measurements on age, diet, or comorbidi-
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ties. Then we could use a log-linear model for λeri conditional on covariates xi, with γ ∈ RK :

λer(xi) = e−γTxi .

Including the background rate of exposure along with the covariates would result in the observa-
tional model:

Yit | z ∼ Bernoulli

(
1− exp

(
−e−γTxit

(
λb +

M∑
m=1

K
(

∥ℓ(C̄m)−si∥2
ρ

)
exp(z[m])∆(Cm)

)))
.

(4.26)

4.5.6 Model Identifiability

The probability model in Equation (4.26) is not identifiable as written. To see why we expand the
expression for the multivariate normal z as the sum of µ+ η:

Yit ∼ Bernoulli

(
1− exp

(
−e−γTxit

(
λb +

M∑
m=1

K
(

∥ℓ(C̄m)−si∥2
ρ

)
exp(µ[m] + η[m])∆(Cm)

)))
η ∼ Multivariate Normal(0,Σα,ω).

If we added a constant to µ, multiplied λb by the exponentiated constant, and subtracted the con-
stant from the intercept term in γT we would not change the likelihood. Thus, we restrict µ = 0

and fix α = 1, neither of which will restrict the Gaussian process from representing unknown func-
tions (Ghosal and Roy, 2006). Furthermore, given that the total risk of infection is a product of the
individual hazard of infection and the sum of the instantaneous exposure from the environmental
hazard and background hazard, we cannot infer the scale of the individual hazard of infection. We
fix the intercept term of γ to be 0. The term eγ

Txi now models the relative risk of infection for two
individuals at the same location. The identified model is

Yit ∼ Bernoulli

(
1− exp

(
−e−γTxit

(
λb +

M∑
m=1

K
(

∥ℓ(C̄m)−si∥2
ρ

)
exp(η[m])∆(Cm)

)))
(4.27)

η ∼ Multivariate Normal(0,Σ1,ω). (4.28)

As in 4.5.2.1, λb is identified as the limit as ∥ℓ(C̄m) − si∥2 → ∞, and e−γTxi is identified by
comparing individuals within households with different values of covariates.
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4.6 Canal system simulation study

Our simulation study set up is similar to our intended application of the model: we simulate a
survey of childhood diarrheal illness in households located near a system of wastewater canals
within a region extending 10km horizontally and 4km vertically. This region is denoted R. The
system of canals and diarrheal illness risk is shown in Figure 4.2. The left-hand plot shows the
geographic location of the canal in dashed red lines, while the flow of the wastewater is shown
in solid blue arrows. There are three canal segments: the segment x1 runs horizontally along
the bottom edge of the region, segment y runs vertically through the middle of the region, and
segment x2 runs horizontally and intersects y1 at 22

3
km. In keeping with the notation developed in

Section 4.5.3, the extent of the environmental hazard is the set C = {x1, x2, y}.
Sources of wastewater are denoted as υ and are indexed by the canal segment to which they

are associated; sinks are denoted δ and are similarly indexed. The diarrhea-causing pathogens
along segment x1 are generated according to a nonhomogeneous Poisson process with Λx1(c) =

0.15 + c2/100, while the pathogens along segment y are generated with Λy(c) = Λx1(5) + c2/16.
Canal segment x2 has an intensity of Λx2(c) = Λy(8/3)−1/4+ c2/100. These intensities are such
that Λy(0) = Λx1(5) and Λy(8/3) = Λx2(5), and are respectively indicated as Λx1×y, and Λx2×y.

We simulate two populations of household locations to investigate our method’s sensitivity to
the distribution of households. One scenario, which we term the “uniform” scenario, all houses
are uniformly distributed within R, while in the “clustered” scenario, the houses are distributed
near the canal system. We simulate 200,000 household locations, from which we draw simple
random sample of size J , where J ∈ {500, 1000, 2000}. An example of the household locations
for J = 500 under the two scenarios is shown in Figure 4.1.

For each household in the population, indexed by j and with geographic location sj , we can
define the cumulative exposure to the wastewater pathogens from a canal segment ν ∈ C with
endpoints ν1, ν2 as ∫ ν2

ν1

exp
(
−∥ℓν(c)−sj∥2

ρ

)
Λν(c)dc.

Then the total exposure for household j from the entirety of the canal is

Ej =
∑

ν∈[x1,x2,y]

∫ ν2

ν1

exp
(
−∥ℓν(c)−sj∥2

ρ

)
Λν(c)dc. (4.29)

Of note, we have chosen the exponential kernel, exp
(
−∥ℓν(c)−sj∥2

ρ

)
, for the true measure of expo-

sure at a given distance from a differential element of the canal.
For the i-th observation within the j-th household, we observe Yij ∈ {0, 1}, where Yij is the bi-

nary indicator for disease. We simulate I total draws per household, which takes the values 10 and
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Figure 4.1: Graph shows household locations with respect to the canal segments under the uniform
scenario (left) and the clustered scenario (right). Dashed lines indicate the geographic location of
the canal segments. Black dots indicate the household locations.

100 for each J within each scenario. The table of simulation scenarios is shown in Appendix C.3.
These Yij are conditionally independent Bernoulli draws:

Yij | Λ, sj ∼ Bernoulli
(
1− exp

(
− exp(Xj γ)

(
λ+

∑
ν∈[x1,x2,y]

exposure(ν, sj, ρ)
)))

,

with λ = 0.05, ρ = 0.1, γ = −0.15, and Xj ∼ Normal(0, 1). The integrals are numerically
evaluated using Gauss-Kronod quadrature implemented in base R language’s integrate (R
Core Team, 2021).

The right-hand graph in figure 4.2 shows the function P (Yij = 1 | s) with Xj = 0. The graph
shows that the risk of disease concentrates close to the canal system and decays as the distance to
the canal increases. Figure 4.2 also shows that the risk of disease is higher for a fixed y coordinate
and an increasing x coordinate.

4.6.1 Inferential model likelihood

The inferential model is that of Equation (4.27) applied to the canal system shown in Figure 4.2.
We define the finite dimensional realization of log Λν(c) = Zν(c) as zν , with dimension Mν , for
canal segment ν. This finite-dimensional draw of the Gaussian process prior is associated with
partition {(Cm, C̄m,∆(Cm)) | m = 1, . . . ,Mν} such that

⋃Mν

m=1Cm = ν. As in Section 4.5.3.2 the
centroid of partition section m is C̄m, and, as such, the mth element of zν is Zν(C̄m). Then we can
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Figure 4.2: Left: Dashed lines indicate the geographic location of the canal segments x1, x2, y.
Blue arrows indicate the flow of wastewater. Crosses indicate points of interest on the canal net-
work: υs are sources of wastewater, δs are sinks of wastewater, and ps are canal intersections. Λs
denote the intensity function of the canal segment or point. Right: True probability surface, with
arrows depicting the flow of water through the canal.

define the approximate modeled exposure as:

F (ν, sj, ρ, zν) =
Mν∑
m=1

exp
(
−∥ℓν(Cm)−sj∥2

ρ

)
exp((zν)m)∆(Cm). (4.30)

Let θenvironj be the total approximate exposure:

θenvironj =
∑

ν∈{x1,x2,y}

F (ν, sj, ρ, zν). (4.31)

We assume the functional form for the kernel, namely the exponential kernel, is known.
The full inferential model is:

Yij | xj, zx1 , zx2 , zy ∼ Bernoulli
(
1− exp

(
− exp(xj γ)

(
λ+ θenvironj

)))
.

Given the discussion in Section 4.5.4.1, we would expect larger error the clustered scenario vs.
the uniform scenario. We thus use two grid sizes to investigate the impact of approximation error
on our inferences. We let Mx1 =Mx2 =My =M for M = 40, 160. Then zν is in RM for each ν.
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The partition associated with x1 and x2 is

{([10 n−1
M
, 10 n

M
], 10 2n−1

2M
, 10/M) | n = 1, . . . ,M}. (4.32)

Thus the nth element of zx1 is Zx1(10
2n−1
M

), while the nth element of zx2 is Zx2(10
2n−1
M

). The
partition associated with zy is

{([8
3

n−1
M/2

, 8
3

n
M/2

], 8
3
2n−1
M

, 16
3M

) | n = 1, . . . ,M/2}, (4.33)

{([8
3
+ 4

3
n−21
M/2

, 4 n−20
M/2

], 4
3
2(n−M/2)−1

M
+ 8

3
, 8
3M

) | n =M/2 + 1, . . . ,M}. (4.34)

4.6.1.1 Log-intensity priors

The Gaussian process prior we use for zx1 , zx2 and zy reflects that Λx1(5) = Λy(0) and
Λx2(5) = Λy(

8
3
). We impose the constraint by conditioning the values of zx, zx2 , and zy at the

intersection points to be equal. This is akin to the construction of string Gaussian processes intro-
duced in Samo and Roberts (2015), which explores the formal construction of Gaussian process
priors connected at intersection points such that the Gaussian process defined at the intersection is
finitely differentiable. Specifically, let Z(pν×ξ) be the value of the Gaussian field at the intersection
of canal segments ν and ξ and call pν×ξ the coordinates of the point of intersection. For instance,
the intersection of x1 and y in figure 4.2 is denoted px1×y and is the point (5, 0). The value of the
field at point px1×y would be Z(px1×y), and Zx1((px1×y)1) = Zy((px1×y)2) = Z(px1×y). Let the
mean and variance of the field at the intersection be µx1×y, σ

2
x1×y.

Let Σx1,ω, and Σy,ω to be the covariance matrices associated with each Gaussian process defined
on partitions Equation (4.32) and Equation (4.33) with length-scale hyperparameter set to ω. Let
Σν,ω(pν×ξ) to be the vectors of covariances associated with the centroids of the partition for ν and
an intersection point pν×ξ. Then the joint prior is

zx1 | Z(px1×y) ∼ Multivariate Normal
(
σ−2
x1×yΣx1,ω(px1×y)(Z(px×y)− µx×y),

Σx1,ω − σ−2
x1×yΣx1,ω(px1×y)Σx1,ω(px1×y)

T

)
zy | Z(px1×y) ∼ Multivariate Normal

(
σ−2
x1×yΣy,ω(px1×y)(Z(px×y)− µx×y),

Σy,ω − σ−2
x1×yΣy,ω(px1×y)Σy,ω(px1×y)

T

)
Z(px1×y) ∼ Normal(µx1×y, σ

2
x1×y)

The conditional distributions for the intersection of Zx2 and Zy is defined similarly. This prior
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has computational benefits as well, because it allows for parallel computation of the covariance
matrices Σy and the evaluation of the prior.

Of interest in the prior construction is that y’s partition is more fine than that of x1, x2. Specif-
ically, y has a discretization size of 1

15
km on one subsection and 2

15
km, while x1 and x2 both have

grids at 1
2
km resolution. In order to use the same Gaussian process prior on all three canal seg-

ments, we need to scale the length-scale parameter ω on canal section y so distances are the same
on y and x1. We define ωy = ω ∆y

∆x1
, which allows distances in y to be scaled to be distances as

measured within x1. ∆y =
1
15

or ∆215 depending on the subsection of y.
In order to reflect the dependence structure induced by the flow of the canal system, we put

independent Normal(0, 1) priors on the sources of the canal waterway, points υx1 , υx2 , υy, in figure
4.2. Then the values at points 5 and 2 are defined as:

Z(px2×y) | Z(υx2), Z(υy) ∼ Normal(µx2×y, σ
2
x2×y) (4.35)

µx2×y =
1√
2

(
exp

(
−d(px2×y ,υy)2

2ω2

)
Z(υy) + exp

(
−d(px2×y ,υx2 )

2

2ω2

)
Z(υx2)

)
(4.36)

σx2×y =

√
1− 1

2

(
exp

(
−d(px2×y ,υy)2

ω2

)
+ exp

(
−d(px2×y ,υx2 )

2

ω2

))
, (4.37)

and

Z(px1×y) | Z(υx1), Z(υx2×y) ∼ Normal(µx1×y, σ
2
x1×y) (4.38)

µx1×y =
1√
2

(
1

σx2×y
exp

(
−d(px2×y ,px1×y)2

2ω2

)
(Z(px2×y)− µx2×y) (4.39)

+ exp
(
−d(px1×y ,υx1 )

2

2ω2

)
Z(υx1)

)
(4.40)

σx1×y =

√
1− 1

2

(
exp

(
−d(px2×y ,px1×y)2

ω2

)
+ exp

(
−d(px1×y ,υx1 )

2

ω2

))
.

(4.41)

where d(·, ·) is the distance between two points along the canal. The priors for Z(δx1), Z(δx2) are
defined similarly.

In order to formulate priors for the parameters λ, γ, ρ, and α, we sampled from the prior
predictive distribution, as advised in Gabry et al. (2019b):

p(y) =

∫
p(y | θ)p(θ)dθ,
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if the vector θ represents a concatenation of all of the model parameters. The goal is to generate
plausible observations from our model with the joint prior distribution p(θ).

For λ and γ we use independent Normal+(0, 0.3) priors, and for α we use a Gamma(4, 1) prior.
For ρ, we use a weakly-informative prior (Gelman et al. (2008)) of Normal+(0, 0.5).

4.6.2 Target estimands

Our model’s inferential target is the cumulative exposure from the canal, defined above in Equa-
tion (4.29) for household j as Ej . In order to measure how well our model predicts this exposure,
we measured the bias, and posterior credible interval coverage for this quantity Recall the model’s
approximate exposure is θenvironj , defined in eqs. (4.30) to (4.31). Let ρ⋆ be the value of ρ that
generated the simulated data, in our case 0.1. Then the absolute bias in this estimand is

∣∣θenviron
j − Ej

∣∣ = ∣∣∣∣∣ ∑
ν∈[x1,x2,y]

Mν∑
m=1

∫
Cm

(
exp

(
−∥ℓν(C̄m)−sj∥2

ρ

)
exp(Z(C̄m))

− exp
(
−∥ℓν(c)−sj∥2

ρ⋆

)
Λν(c)

)
dc

∣∣∣∣∣.

Let Kρ(c) = exp
(
−∥ℓν(c)−sj∥2

ρ

)
The error within a partition interval Cm is

∫
Cm

(
Kρ(C̄m)

(
exp(Z(C̄m))− Λν(c)

)
+ Λν(c)

(
Kρ(C̄m)−Kρ⋆(c)

))
dc

≤ Kρ(C̄m)

∫
Cm

∣∣exp(Z(C̄m))− Λν(c)
∣∣ dc+ ∫

Cm

Λν(c)
∣∣Kρ(C̄m)−Kρ⋆(c)

∣∣ dc
≤ Kρ(C̄m)

∫
Cm

|exp(Z(c))− Λν(c)| dc+
∫
Cm

Λν(c) |Kρ(c)−Kρ⋆(c)| dc

+Kρ(C̄m)

∫
Cm

∣∣exp(Z(C̄m))− exp(Z(c))
∣∣ dc+ ∫

Cm

Λν(c)
∣∣Kρ(C̄m)−Kρ(c)

∣∣ dc
Thus, given that Kρ(C̄m) ≤ 1, and assuming the approximation error is small:

∣∣θenviron
j − Ej

∣∣ ≤ ∑
ν∈{x1,x2,y}

∫
ν

|exp(Zν(c))− Λν(c)| dc+ sup
c∈ν

Λν(c)

∫
ν

|Kρ(c)−Kρ⋆(c)| dc.

The upper bound on the absolute bias in the estimand is thus a function of the integrated absolute
error in the intensity approximation, and the integrated error in our inference for ρ weighted by the
true intensity function, and the resolution of the partition for ν. Thus it is of interest to quantify the
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approximate integrated absolute and mean-squared error in Λx1 ,Λx2 ,Λy, as well as the bias for ρ.

4.6.2.1 Error estimates

The bias for a point estimator ϕ̂ with true value ϕ⋆ is calculated as bias(ϕ̂, ϕ⋆) = ϕ̂−ϕ⋆. Our point
estimator for each parameter is the posterior mean so in the results that follow, the bias for a given
dataset D is bias(E [ϕ | D] , ϕ⋆). The expectation over datasets is approximated by the empirical
mean over S simulated datasets {Ds, s = 1, . . . , S} is 1

S

∑
s bias(E [ϕ | Ds] , ϕ

⋆). Similarly, the
mean-squared error is calculated as 1

S

∑
s bias(E [ϕ | Ds] , ϕ

⋆)2. We also compute the empirical
coverage of the equi-tailed 80%-credible intervals for the household-level environmental exposure
for a posterior quantile function for θj given dataset D Qθj |D(p) as

cover
(
Qθj |D, θ

⋆
j

)
= 1

(
θ⋆j ∈

(
Qθj |D(0.1), Qθj |D(0.9)

))
.

Then the empirical mean coverage across simulations is given as

1
S

∑
s

1
J

∑
j cover(Qθj |Ds , (θj)

⋆
s).

4.6.3 Inference procedure

We run full Bayesian inference inference in CmdStanR, an implementation of the Stan model-
ing language and inference algorithms using dynamic Hamiltonian Monte Carlo Carpenter et al.
(2017); Betancourt (2018); Gabry and Češnovar (2021). Each model was run with four Markov
chain Monte Carlo chains for 2,000 iterations of warmup and 2,000 iterations post-warmup sam-
ples with a target Metropolis acceptance rate of 0.95 during warmup. Convergence was monitored
using the Gelman-Rubin diagnostic, R̂, Gelman and Rubin (1992); Vehtari et al. (2020). All pa-
rameters achieved R̂ near 1 (max R̂ < 1.01), and the minimum bulk and tail effective sample size
divide by the total post-warmup samples across all parameters and simulations, was 0.07 and 0.04.
While these figures are lower than the recommended 10% minimum effective sample size cutoff,
we note that when M = 160, only 2 out of 1,200 datasets had minimum tail effective sample
size less than 10% of the total post-warmup sample size, while only 1 out of 1,200 dataset had
minimum bulk effective sample size out of total post-warmup sample size of less than 10%. For
M = 40, the number was 4 and 1 out of 1,200 for minimum tail and bulk effective sample sizes
of less than 10%. There were divergent transitions during sampling for small minority of models.
The total divergent transitions were small compared to the total post-warmup samples (≈ 0.2%).

Given our reliance on MCMC sampling, our posterior mean and quantile estimators are Monte-
Carlo estimators.
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Figure 4.3: Integrated mean absolute error for Λx1 and Λx2 with ±2 standard errors plotted as black
bars, 10 observations per household, grid resolution of M = 160.

4.6.4 Results

The most salient result from the simulation study is that the distribution of households with respect
to the canal has a large influence on the accuracy of the inferences. All results that follow use
the posterior mean of the parameter as the estimator. In figure 4.4, we can see that we estimate ρ
more precisely when households are clustered near the canal, but, on the contrary, we estimate λ,
the spatially-invariant risk of disease, more precisely when houses are uniformly distributed. This
makes sense, as the units that are most informative about λ are those that are far from the canal,
and we have far fewer of those observations when houses are clustered near the canal. Naturally,
we have more households that are far from the canal when the houses are arrayed uniformly on the
[0, 10]× [0, 4] plot of land.

However, there is more information about the intensities Λν(c) near the canal, so we see in
Figure 4.3 that the clustered household scenario allows for smaller integrated mean absolute error
compared to the uniform scenario.

We can also see in figure 4.5 that when the model is applied to either clustered or uniformly
sampled households, the 80% intervals achieve the nominal coverage. The uniform scenario yields
negatively biased estimates of the sample average environmental exposure, 1

J

∑
j θ

environ
j . This is

likely due to the fact that the prior for ρ shrinks the posterior towards zero so with less information
about ρ in the observed data in the uniform scenario, the prior continues to shrink the integrated
risk towards zero.

Figures for 100 observations per household are shown in Appendix C, and a comparison of
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Figure 4.4: MSE for ρ and λ with ±1.96 standard errors plotted as black bars, x-jittered for clarity
on the plot for ρ, 10 observations per household, grid resolution of M = 160.
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results for grid resolution of M = 40 vs. M = 160 is presented. The comparisons show very low
rates of coverage of θj for the 80% posterior intervals when M = 40. This coverage gets worse as
the number of households increase. The results also show that bias in our posterior-mean estimators
for θj persists despite increasing data sizes. These results highlight the importance of using a grid
resolution that is appropriate for the problem setting. Our intuition that approximation error would
be worse for the clustered scenario is borne out in Figure C.11. The picture is complicated by the
fact that, on a percentage basis, the bias is worse for the uniform scenario, as seen in Figure C.12.
This is due to the fact that many households in the uniform scenario have very small risk from the
canal system because ρ = 100m and the household locations are uniformly distributed in a 10km

by 4km square.

4.7 Application

We apply our integrated risk model to survey data collected from 2017 through 2019 measur-
ing how household proximity to a wastewater canal influences childhood diarrheal incidence in
Mezquital Valley, Mexico. See Contreras et al. (2020) for more detail on data collection, and
descriptive statistics. The data are longitudinal measurements of diarrheal disease in children by
household. These households are located along and near the wastewater canals, and grouped into
small localities. GPS coordinates were taken for each household, along with the GIS data for the
canals. Privacy concerns prevent us from sharing the full map of the households.

4.7.1 Models

We model Ytijk, survey responses of diarrheal illness for child i in household j at survey wave t in
locality k. The model must account for changes in susceptibility due to age of the child, wealth of
the household, parental education, and the intra-local correlation of exposure. We fit two models,
the first of which is the model presented in subsection 4.5.5, the second of which is the model fitted
in Contreras et al. (2020).

The portion of the Mezquital Valley wastewater canal system on which we are focused has
43 segments. We index these segments ν by q, of which there are Q total segments: νq, q =

1, . . . , Q. Let the parameters accounting for age-related differences in susceptibility be βage, the
parameter for differences in susceptibility over time be βwave[t], and the wealth and education-
related parameters be βwealth, βeduc, respectively. Let βk be the increased exposure for locality k
with respect to locality 1. The parameter ρ is defined as the spatial scale of exposure to the canal,
and λ is defined as the spatially-invariant exposure to diarrheal illness.

As in Equation (4.30) we define F (ν, sj, ρ, zν) to be the exposure at household location sj to

106



canal segment ν for a given bandwidth ρ:

F (ν, sj, ρ, zν) =
Mν∑
m=1

exp
(
−∥ℓν(C̄m)−sj∥2

ρ

)
exp((zν)m)∆(Cm),

Let Σν,ω be the marginal covariance matrix for multivariate Gaussian random variable zν , and let
Σν,ω(ν1, ν2) be the conditional covariance matrix conditional on the values of the Gaussian process
at points ν1, ν2. Let µν,ω(ν1, ν2) be the conditional mean function also dependent on the values of
the random field at ν1, ν2. Then we may define the full inferential model as

Ytijk ∼ Bernoulli(1− exp(−λtijk))

λtijk = exp(βage[it] + βwave[t] + βwealth[j] + educjβeduc)

× (exp(βlocal[k]) +

Q∑
q=1

F (νq, sj, ρ, zν))

zν | Z(ν1), Z(ν2) ∼ GP(µν,ω(ν1, ν2),Σν,ω(ν1, ν2))

ρ ∼ Normal+(0, 0.5)

βlocalj ∼ Normal(0, 1),

ω ∼ Gamma(3.7, 0.9)

(4.42)

Distance is measured in kilometers, so we discretized the canal in 50-meter-long segments so
∆(Cm) = 0.05∀m. This simplifies the Gaussian process construction in that we do not need to
scale ω in order to define distances between canal segments with different discretization sizes. The
prior for the length-scale of the Gaussian process puts 99% of its mass between 7km and 130km,
which enforces the soft constraint that intensity slowly varies along the canal. The total length of
the canal is about 4,400km, so a 130km length scale is still relatively local compared to the total
length of the canal.

The second model we fit is a version of the minimum distance model presented in subsection
4.3.2. This model is a logistic regression with a predictor for shortest distance to the canal, and is
presented in equation (4.43). We define the parameters that account for age-related differences in
log-odds of disease as βage, the parameter for differences in log-odds over time as βwave[t], and the
wealth and education-related parameters as βwealth, βeduc, respectively.

We control for the intra-household correlation of log-odds of diarrhea in house j with a pa-
rameter βhouse[j], over which we put multivariate normal prior with covariance matrix Σ(s⃗ |α, τ⃗).
We define τ⃗ to be a vector of locality-specific scales for βhouse[j]. If we collect all the household
locations into a vector s⃗ and define the Euclidean distance between household i and j as di,j then
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the elements of the covariance matrix are parameterized with a Matérn 3/2 covariance kernel:

Σ(s⃗ |α, τ⃗)i,j = τ⃗ 2local[i]

(
1 +

√
3di,j
α

)
exp

(
−
√
3di,j
α

)
1 (local[i] = local[j]) .

This model allows us to take into account inter-household correlation of log-odds of diarrhea.
The full model is below:

Ytijk ∼ Bernoulli(µtijk),

log(odds(µtijk)) = βage[it] + βwave[t] + βwealth[j] + educjβeduc

+ βcanal log

(
min
c∈C

∥sj − ℓ(c)∥2
)
+ βhouse[j],

β⃗house ∼ Multivariate Normal(0,Σ(s⃗ |α, τ⃗)).

(4.43)

The model will help elucidate the differences between our new method and the simpler methods
currently in use. We will call this model the shortest-distance model, while we refer to our proposed
model as the integrated exposure model.

4.7.2 Model inferences

The integrated exposure model infers that there is a small increased risk of diarrheal infection as
distance to a point on the canal decreases, as is shown in figure 4.6. The posterior mean of ρ is
0.01 with a standard deviation of 0.006. We estimate the posterior mean of λ to be 0.016 with a
standard deviation of 0.005.

From the figure we can see that exposure to wastewater canal is nearly zero when a household is
located at 200 meters to the canal. On the other hand model (4.43) shows a much slower decline in
risk. For instance, we show the change in odds of diarrheal illness as distance to the canal increases
from ten meters to one kilometer compared to the odds of diarrheal illness at ten meters in figure
4.7. The odds of diarrhea for the integrated exposure model, given a household with location sj , is
given by

exp(−(λ+

Q∑
q=1

F (νq, sj, ρ, zνq)))− 1

so the change in odds for a household located at s1 compared to s2 is

exp(−(λ+
∑Q

q=1 F (νq, s2, ρ, zνq)))− 1

exp(−(λ+
∑Q

q=1 F (νq, s1, ρ, zνq)))− 1
− 1.
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Figure 4.6: Posterior distribution for K(d/ρ). Red line indicates the posterior mean.

The change in odds for the shortest-distance model is given by

exp

(
βcanal log

d1
d2

)
− 1

where d1 and d2 are the shortest distances to the canal for locations s1 and s2. It is clear from figure
4.7 that the reduction in odds as distance to the canal increases is more extreme for the integrated
model than for the shortest-distance model.

Our integrated exposure model decocts the two processes that contribute to exposure from en-
vironmental hazards: the geometry of the hazard with respect to the at-risk population, and the
variable concentration of enteric pathogens along the hazard.

4.8 Discussion

We have presented a new model for exposure to environmental sources of disease that are extensive
in space. We showed how it was connected to existing methods for inferring exposure to potential
point-source hazards and how our method can arise from a generative model when applying our
model to infectious disease. After applying our model to five hundred simulated datasets under
several different sampling scenarios we investigated the performance of our model inferences for
these scenarios. We fitted a real dataset with our model and compared the results to a model
using existing methodology for extensive environmental hazards, where we were able to show the
benefits of our model.

109



0.05 0.10 0.15 0.20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Integrated exposure model

Shortest distance to canal (km)

C
ha

ng
e 

in
 o

dd
s

0.00 0.05 0.10 0.15

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Shortest distance model

Shortest distance to canal (km)

C
ha

ng
e 

in
 o

dd
s

Figure 4.7: Posterior realizations of change in odds of diarrhea versus change in distance to the
canal compared to 10 meters. Odds for the integrated model show the change in odds for a single
household that moves laterally from the westernmost edge of the canal. Red lines indicate posterior
means.

The model performed well when only 10 outcomes were observed per household. However,
performance degraded when there were 100 observations per household. More investigation into
why this is occurring is necessary.

Several theoretical concerns are open questions. Cotter et al. (2010) and Simpson et al. (2016)
give techniques to determine the rate of convergence of posterior moments when using an approx-
imate likelihood and Gaussian process prior. The proof in Appendix C.1 can be extended to that
end. Furthermore, it is not clear whether ρ and exp(Z(c)) are separately identifiable. The results
of the simulation study suggest the answer may be no. More research is needed to understand if
the model is identified, and, if not, how to do so.

The most exciting future work comes in extensions to the model. Several are immediately
apparent. First, as presented in section 4.5.3, the model can be extended to allow the concentration
of disease-causing agents to be time-varying and to be modeled using the kernel of the Gaussian
process. This can be a promising new direction, and the extension can be directly applied to the
Mezquital data example. There is evidence that diarrheal risk is higher in the rainy season, which
might be connected to canal flooding.

In applications where environmental monitoring of health hazards is feasible, such as in air
quality monitoring near roadways, we can augment our models with direct observations of con-
centrations of hazardous material at the source.

Our kernel specification depends only on distance to the segment or area of the environmental
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hazard, but the point-source literature has investigated the use of kernels that take into account
direction as well as distance. This could be useful in applications where the built environment can
provide further barriers to exposure. For example, in the Mezquital dataset, some canal segments
are only reachable via fields whereas other segments abut local roads lined with houses. It would
be beneficial to take this information into account in a model, and modifying the kernel would be
a way to do so.
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APPENDIX A

Missing data appendix

A.1 Selection model derivation

Following Little et al. (2017) and Gelman et al. (2013), we wish to model the joint distribution for
the data: ∏

(i,j)

f((yij, xij)|µij, pij)

which we have factorized according to a selection model paradigm: f(yij|µij), and f(xij|yij, pij),
which follows from the conditional independence across i and j assumed in the generative model
above. Let the vectors µi, pi be the J-vectors with respective j th elements µij and pij . Let xij , wij ,
mi be a specific realizations of Xij , Wij , Mi and let xi, wi be defined as µ was defined, and where
Wij = Yij −Xij . Let m be the I vector with ith element mi. Then the complete data likelihood is
defined as:

L((µ1,p1), . . . , (µI ,pI)|(x1,w1), . . . , (xI ,wI))

=

∫ ∏
(i,j)

e−µij
µ
yij
ij

yij!

yij!

xij!wij!
p
xij

ij (1− pij)
wijdw1 . . . dwI

which is shown in appendix A.2 to be

L((µ1,p1), . . . , (µI ,pI)|(x1,m1), . . . , (xI ,mI))

=

∏
(i,j)

e−pijµij
(pijµij)

xij

xij!

∏
i

e−
∑

j(1−pij)µij
(
∑

j(1− pij)µij)
mi

mi!

By the properties in Little et al. (2017) and Gelman et al. (2013) if pij ̸= pi∀(i, j) the complete
data likelihood does not factorize into a term governing the observational process in Y and the
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missingness process in R, viz.

L((µ1,p1), . . . , (µI ,pI)|(x1,m1), . . . , (xI ,mI)) ̸=

L(µ1, . . . ,µI |(x1,m1), . . . , (xI ,mI))L(p1, . . . ,pI |(x1,m1), . . . , (xI ,mI))

Given that equality does not hold when pij vary by j, we can say that in this case the data are not
missing at random (NMAR), and thus we must model the joint distribution of observed data and
missing data.

The observed data likelihood above is equivalent to the following generative model for the
observed random variables Xij and Mi:

Xij|pijµij ∼ Poisson(pijµij)

Mi|µi,pi ∼ Poisson(
∑

j µij(1− pij))
(A.1)

If we observe data for more than one geographic area, say for g ∈ {1, . . . , G}, we might ex-
pect our parameters to vary across locations. For example, geographic heterogeneity in cumulative
incidence has been a fundamental characteristic of the COVID-19 pandemic and many other infec-
tious disease outbreaks and epidemics (Bilal et al., 2021; Wakefield et al., 2019). We can extend
our generative model to capture geographic variation if we index our parameters with g and model
them as jointly distributed under Fϕ, with ϕ as a vector of unknown hyperparameters:

((µ1g,p1g), . . . , (µIg,pIg))|ϕ ∼ Fϕ ,∀g, (A.2)

where µig and pig are J-vectors where the j th elements are equal to µigj and pigj , respectively. The
observed data model becomes

Xigj|pigjµigj ∼ Poisson(pigjµigj),

Mig|µig,pig ∼ Poisson(
∑

j µigj(1− pigj)),
(A.3)

By extension, the joint hierarchical likelihood is:∏
g

(
L((µ1g,p1g), . . . , (µIg,pIg)|(x1g,m1g), . . . , (xIg,mIg))

f((µ1g,p1g), . . . , (µIg,pIg)|ϕ)
) (A.4)

where f((µ1g,p1g), . . . , (µIg,pIg)|ϕ) is the density associated with Fϕ.
In the context of the COVID-19 case data, one might focus their analysis on a single county

comprised of many smaller spatial units, with county-level parameters the target of inference, as
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in (A.4) and (A.2) as ϕ. We will typically have prior information about the hyperparameters from
data in other states or in nearby counties, so we opt to use Bayesian inference. If we represent the
prior density for ϕ as h(ϕ|τ ) and τ are known, the joint posterior is:

π((µ1g,p1g), . . . , (µIg,pIg),ϕ
∣∣(x1g,m1g), . . . , (xIg,mIg)) ∝(∏

g

(
L((µ1g,p1g), . . . , (µIg,pIg)|(x1g,m1g), . . . , (xIg,mIg))

f((µ1g,p1g), . . . , (µIg,pIg)|ϕ)
))
h(ϕ|τ )

(A.5)

Given the structure of the model, the marginal posterior for ϕ is informed by the data via the
terms L((µ1g,p1g), . . . , (µIg,pIg)|(x1g,m1g), . . . , (xIg,mIg)), so it is important to understand the
characteristics of the likelihood.

It can be seen that neither (A.1) nor (A.3) is identifiable as written without further assumptions.

A.2 Derivation of likelihood in Section 2.4

Here we give proof of the following property used in Section 2.4: the data generating model given
by the Poisson process and Binomial selection process at the beginning of Section 2.4 results in
model (A.1).

Consider two groups, j ∈ [1, 2]. As above, our fully observed likelihood gives the density for
the vector of random variables, (Xi1, Xi2,Wi1,Wi2)∀i, while we observe only (Xi1, Xi2,Mi)∀i.
Thus, we must integrate over the set of all {(Wi1,Wi2|Wi1 +Wi2 =Mi}.

P (Xi1 = xi1, Xi2 = xi2,Mi = mi) = (A.6)

P ((Xi1 = xi1,Wi1 = 0), (Xi2 = xi2,Wi2 = 0))1(mi = 0) (A.7)

+

mi∑
e=0

P ((Xi1 = xi1,Wi1 = e), (Xi2 = xi2,Wi2 = (mi − e))1(mi > 0). (A.8)

Given that Wij = Yij −Xij , this expression is equivalent to

P ((Xi1 = xi1, Yi1 = xi1), (Xi2 = xi2, Yi2 = xi2))1(mi = 0) (A.9)

+

mi∑
e=0

P ((Xi1 = xi1, Yi1 = xi1 + e), (Xi2 = xi2, Yi2 = xi2 + (mi − e))1(mi > 0). (A.10)

Each term
P ((Xi1 = xi1, Yi1 = yi1), (Xi2 = xi2, Yi2 = yi2))
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decomposes to

P (Xi1 = xi1|Yi1 = yi1) P (Yi1 = yi1) P (Xi2 = xi2|Yi2 = yi2) P (Yi2 = yi2)

given the independence between Yi1 and Yi2 and the conditional independence of Xi1|Yi1 and
Xi2|Yi2.

I∏
i=1

(
λ
xi1
i1 e−λi1

xi1!
p
xi1
i1

λ
xi2
i2 e−λi2

xi2!
p
xi2
i2

)
1(mi=0)

(
mi∑
e=0

λ
xi1+(mi−e)
i1 e−λi1

(xi1 + (mi − e))!

(xi1 +mi − e

xi1

)
p
xi1
i1 (1− pi1)

mi−e λ
xi2+e
i2 e−λi2

(xi2 + e)!

(xi2 + e

xi2

)
p
xi2
i2 (1− pi2)

e

)1−1(mi=0)

This simplifies to

I∏
i=1

(
µxi1
i1 e

−µi1

xi1!
pxi1
i1

µxi2
i2 e

−µi2

xi2!
pxi2
i2

)
(

mi∑
e=0

((1− pi1)µi1)
(mi−e)

(mi − e)!

((1− pi2)µi2)
e

e!

)

which, multiplying by mi!
mi!

and using the binomial theorem, further simplifies to

I∏
i=1

(
µxi1
i1 e

−µi1

xi1!
pxi1
i1

µxi2
i2 e

−µi2

xi2!
pxi2
i2

)
((1− pi1)µi1 + (1− pi2)µi2)

mi

mi!

Finally we multiply by e−((1−pi1)µi1+(1−pi2)µi2)e(1−pi1)µi1+(1−pi2)µi2 to yield

I∏
i=1

(
(µi1pi1)

xi1e−pi1µi1

xi1!

(pi2µi2)
xi2e−pi2µi2

xi2!

)
e−((1−pi1)µi1+(1−pi2)µi2) ((1− pi1)µi1 + (1− pi2)µi2)

mi

mi!

which we recognize as the product of filtered Poisson random variables, and the marginally Poisson
distributed cases missing stratum information.

The proof of the generalization to J groups, which can be show with induction, has been omit-
ted.
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A.3 Graphical model depictions

A.3.1 Graphical model of model with covariates

xij

yijEij

zi

λj

ηj

γ

β

I

J

i ∈ {1, . . . , I} : Stratum

j ∈ {1, . . . , J} : Category

: Observed

: Latent

Variable Domain Description

yij N0 Total cases
xij N0 Observed cases
Eij N0 Observed population
zi RK Observed covariates
λj R+ Per-capita rate of disease
ηj R Log-odds of observing category info.
β RK Log-relative rates of disease
γ RK Log-odds of observing category info.

Table A.1: Table of generative model variables for Model 2.10

The parameters of interest in Table A.1 are λj , which give the category-specific, per-capita rates of
disease, and transformations of the parameters like those enumerated in Section 2.5.4.
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A.3.2 Graphical model of hierarchical model with covariates

xigj

yigj

zig

Eigj

λgj

αλ

Πλ

Σλ

ηgj

αη

Πη

Ση

γg

βg

αβ Πβ Σβwg

αγ

Πγ

Σγ

I

J

G

i ∈ {1, . . . , I} : Stratum

g ∈ {1, . . . , G} : Geographic area

j ∈ {1, . . . , J} : Category

For ν ∈ {β,γ,η,λ} :

αν : Inter-geography mean for ν

Πν : Coefs. on wg for ν

Σν : Inter-geography cov. matrix for ν

: Observed

: Latent

Variable Domain Description

yigj N0 Total cases
xigj N0 Observed cases
Eigj N0 Observed population
zig RK Observed covariates
wg RD Observed geographic-specific covariates
λgj R+ Per-capita rate of disease
ηgj R Log-odds of observing category
βg RK Log-relative rates of disease
γg RK Log-odds of observing category

Table A.2: Table of generative model variables for Model 2.11

The parameters of interest in Table A.2 are λgj , which give the category-specific geographical-area-
specific, per-capita rates of disease, and transformations of the parameters like those enumerated
in Section 2.5.4. Interest may also lie in the across-geography mean category-specific log per-
capita rates of disease for category j, αλ the coefficients on wg or Πλ, and the inter-geography
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covariance between log-per-capita, category-specific rates of disease, Σλ
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A.4 Lemmas and Proofs for Model Identifiability Properties

A.4.1 Fisher information positive definiteness of simple model

The following is a derivation of the Fisher information matrix I for model 2.1. The likelihood for
the model is

ℓ(λ1, p1, . . . , λJ , pJ) =
I∑

i=1

J∑
j=1

−Eijλj + xij log (Eijλjpj)− log xij!

+
I∑

i=1

mi log

(
J∑

j=1

Eijλj(1− pj)

)
− logmi!

We reparameterize as we do in 1:

(λj, pj) → (vj, uj)∀j ∈ [1, . . . , J ] (A.11)

where vj = λjpj uj = λj(1− pj). Then the likelihood is

ℓ(v1, u1, . . . , vj, uJ) =
I∑

i=1

J∑
j=1

−Eij(uj + vj) + xij log (Eijvj)− log xij!

+
I∑

i=1

mi log

(
J∑

j=1

Eijuj

)
− logmi!

Let δi,j be the Kronecker delta function. The Fisher information matrix for the reparameterized
log-likelihood is:

−E
[

∂ℓ

∂vjvk

]
=

∑I
i=1Eij

vj
δj,k (A.12)

−E
[

∂ℓ

∂ujuk

]
=

I∑
i=1

EijEik∑J
m=1Eimum

(A.13)

−E
[

∂ℓ

∂ujvk

]
= 0 (A.14)

We can arrange the Fisher information in block matrix form for all I observations:

I =

[
V 0

0 U

]
(A.15)
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with

Ujk =
I∑

i=1

EijEik∑J
m=1Eimum

(A.16)

Vjk =

∑I
i=1Eij

vj
δj,k (A.17)

I is positive definite if U ≻ 0 and V ≻ 0. V is a diagonal matrix and is positive definite as long as
all elements along the diagonal are strictly positive. The parameter constraints on uj and vj yield
uj, vj > 0 for each j so as long as

∑I
i=1Eij > 0 for all j V ≻ 0 .

The matrix U can be represented as the matrix product of three matrices. Let E be the I × J

matrix with its (i, j)th entry as Eij , and let S be a diagonal matrix defined as

Sjk =
1√∑J

m=1Eimum

δj,k (A.18)

Then U = ETS2E. In order for U ≻ 0 SE must be rank J . This will be so if S is invertible and if
E is rank J . If detS ̸= 0 S is invertible:

det(S) = (
I∏

i=1

J∑
m=1

Eimum)
−1/2 (A.19)

S has a nonzero determinant if at least one Eimu>0 for all i ∈ [1, . . . , I]. Given the constraints on
the parameter space, pj ∈ (0, 1) and λj > 0 for all j ensures that uj > 0 for all j. The minimal
conditions for the positive definiteness of I are as follows:

• E is rank J

• pj ∈ (0, 1)

• λj ∈ (0,∞)

•
∑J

m=1Eim > 0∀i

Given estimators v̂j =
∑I

i=1Xij/
∑I

i=1Eij for vj and û = (ETE)−1ETm, the observed Fisher
information matrix Î is:

Î =

[
V̂ 0

0 Û

]
(A.20)
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where

V̂mn = δm,n
(
∑I

i=1Eij)
2∑I

i=1Xij

and
Û = ETdiag(E(ETE)−1ETm)−1E

The inverse of Î is just the block diagonal matrix with V̂−1 and Û−1 along the diagonal:

A.4.2 Derivation of posterior mean of λ1 for minority group

Let J = 2 and let the following priors be implemented for pj, λj

pj
iid∼ Beta(αj, βj)

λj
iid∼ Gamma(αj + βj, rj)

then vj = pjλj ⊥⊥ uj = (1 − pj)λj with vj ∼ Gamma(αj, rj) and uj ∼ Gamma(βj, rj) We can
write the observed-data likelihood in terms of uj and vj as follows:

exp
(
−
∑

j uj
∑

iEij

) I∏
i=1

(Ei1u1 + Ei2u2)
mi

mi!

J∏
j=1

exp (−vj
∑

iEij)
(∏I

i=1(Eij)
xij

)
v
∑

i xij

j∏I
i=1 xij!

If we assume that, WLOG, group 2 is the majority group for all i, or, in other words, Ei1 ≪ Ei2

for all i, then using the approximation

(Ei1u1 + Ei2u2)
mi = (Ei2u2)

mi expmi log

(
1 +

Ei1

Ei2u2
u1

)
≊ (Ei2u2)

mi expmi

(
u1

Ei1

Ei2u2
− u21

E2
i1

2E2
i2u

2
2

)
Leading to the approximate likelihood:

exp
(
−
∑

j uj
∑

iEij

)( I∏
i=1

Ei2

)
u
∑

i mi

2

∏I
i=1 exp

(
u1

Ei1

Ei2u2
− u21

E2
i1

2E2
i2u

2
2

)mi

mi!

×
2∏

j=1

exp (−vj
∑

iEij)
(∏I

i=1(Eij)
xij

)
v
∑

i xij

j∏I
i=1 xij!
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When we multiply by the priors and collect terms, we get an expression separable in uj and vj:(
I∏

i=1

Ei2

)
exp (−u2

∑
iEi2)u

β2+
∑

i mi−1
2 /mi!

uβ1−1
1 exp

(
−u21u−2

2

∑
i
miE

2
i1

2E2
i2

+ u1

(
u−1
2

∑
i
miEi1

Ei2
− r1 −

∑
iEi1

))
×

2∏
j=1

exp (−vj (rj +
∑

iEij))
(∏I

i=1(Eij)
xij

)
v
αj+

∑
i xij

j − 1∏I
i=1 xij!

The approximate posterior distribution, π(u1|u2,m), is a modified half-normal distribution, as
introduced in Sun et al. (2021). While the functional form of the posterior mean is complicated for
general values of β1, we compute the posterior mean, variance, and local sensitivity of the posterior
mean to r1 when β1 = 1 and β1 = 2, which correspond to implied priors for u1 of an exponential
distribution with rate r1, and a gamma distribution with shape 2 and rate r, respectively. Let s1 =∑

i
miEi1

Ei2
, s2 =

∑
i
miE

2
i1

E2
i2

, and E+1 =
∑

iEi1. Further, let ϕ and Φ be the density and distribution

function of the standard normal distribution, respectively, and z(u2, r1) =
s1−u2(r1+E+1)√

s2
. If β1 = 1,

the posterior mean of u1|u2,m is

E [u1|u2, r1, β1 = 1] =
u2√
s2

(
z(u2, r1) + ϕ(z(u2, r1))Φ(z(u2, r1))

−1
)

while the posterior variance is

Var (u1|u2, r1, β1 = 1) =
u22
s2

(
1− z(u2, r1)ϕ(z(u2, r1))Φ(z(u2, r1))

−1 − ϕ(z(u2, r1))
2Φ(z(u2, r1))

−2)
)

The posterior mean for λ1 is then

α1 +
∑

i xi1
r1 +

∑
iEij

+
u2√
s2
(z(u2, r1) + ϕ(z(u2, r1))Φ(z(u2, r1))

−1)

with variance:

α1 +
∑

i xi1
(r1 +

∑
iEi1)2

+
u22
s2

(
1− z(u2, r1)ϕ(z(u2, r1))Φ(z(u2, r1))

−1 − ϕ(z(u2, r1))
2Φ(z(u2, r1))

−2)
)

The partial derivative of E [u1|u2, r1] with respect to r1 is

−u22
s2

(
1− 1

√
s2
ϕ(z(u2, r1))Φ(z(u2, r1))

−2

×
(
√
s2ϕ(z(u2, r1)) + (s1 − u2(E+j + r1))Φ(z(u2, r1))

))
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which simplifies to

∂E [u1|u2, r1]
∂r1

=
−u22
s2

(
1− z(u2, r1)ϕ(z(u2, r1))Φ(z(u2, r1))

−1 − ϕ(z(u2, r1))
2Φ(z(u2, r1))

−2
)

= −Var (u1|u2, r1)

If β1 = 2, the posterior mean of u1|u2,m is

u2√
s2

(
z(u2, r1) +

Φ(z(u2, r1))

ϕ(z(u2, r1)) + z(u2, r1)Φ(z(u2, r1))

)
while the posterior variance is

u22
s2

(
2−

(
z(u2, r1) +

Φ(z(u2, r1))

ϕ(z(u2, r1)) + z(u2, r1)Φ(z(u2, r1))

))
The posterior mean for λ1 is then

α1 +
∑

i xi1
r1 +

∑
iEij

+
u2√
s2

(
z(u2, r1) +

Φ(z(u2, r1))

ϕ(z(u2, r1)) + z(u2, r1)Φ(z(u2, r1))

)
with variance:

α1 +
∑

i xi1
(r1 +

∑
iEi1)2

+
u22
s2

(
2−

(
z(u2, r1) +

Φ(z(u2, r1))

ϕ(z(u2, r1)) + z(u2, r1)Φ(z(u2, r1))

))
Taking the difference between E [u1|u2, r1, β1 = 2] and E [u1|u2, r1, β1 = 1] yields

u2√
s2

(
z(u2, r1) +

Φ(z(u2, r1))

ϕ(z(u2, r1)) + z(u2, r1)Φ(z(u2, r1))

−
(
z(u2, r1) + ϕ(z(u2, r1))Φ(z(u2, r1))

−1
))

Algebra reveals that E [u1|u2, r1, β1 = 2]− E [u1|u2, r1, β1 = 1] is

u2√
s2

1− z(u2, r1)ϕ(z(u2, r1))Φ(z(u2, r1))
−1 − ϕ(z(u2, r1))

2Φ(z(u2, r1))
−2)

z(u2, r1) + ϕ(z(u2, r1))Φ(z(u2, r1))−1

or

Var (u1|u2, r1, β1 = 1)

E [u1|u2, r1, β1 = 1]
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Dividing this by the standard deviation:√
Var (u1|u2, r1, β1 = 1)

E [u1|u2, r1, β1 = 1]

=

√
1− z(u2, r1)ϕ(z(u2, r1))Φ(z(u2, r1))−1 − ϕ(z(u2, r1))2Φ(z(u2, r1))−2)

z(u2, r1) + ϕ(z(u2, r1))Φ(z(u2, r1))−1

If we further assume that Ei2, Ei1 → ∞ such that Ei1/Ei2 → 0 and E2
i1/Ei2 → K < ∞ for all i,

the posterior for u2 converges to a point mass at u⋆2, the true data generating parameter.
This can be seen from the fact that the MLE for u2 converges to u⋆2. The gradient of the log-

likelihood ℓ with respect to u2 and u1 is:

∂ℓ

∂u1
= −E+1 −

s2u1
u22

+
s1
u2

∂ℓ

∂u2
= −E+2 +

s2u
2
1

u32
− s1u1

u22
+
m+

u2

Setting these equal to zero yields the following two solutions:

û1(u2) = u2
s1 − u2E+1

s2

û2 =
E+1s1 + E+2s2 ±

√
−4E2

+1m+s2 + (−E+1s1 − E+2s2)2

2E2
+1

Recall that Mi ∼ Poisson(u⋆1Ei1 + u⋆2Ei2). For Ei1, Ei2 → ∞ with u⋆1 and u⋆2 bounded away from
zero and < ∞, Mi−(u⋆

1Ei1+u⋆
2Ei2)√

u⋆
1Ei1+u⋆

2Ei2

d→ N(0, 1) by the CLT. Let Z ∼ N(0, 1), then s1 − u⋆2E+1
d→

u⋆1IK +
√
u⋆2IKZ, s2

p→ u⋆2IK.

√
−4E2

+1m+s2 + (−E+1s1 − E+2s2)2

2E2
+1

=

√
(E+1IKu1 − E2

+1u2 + E+2IKu2)2

4E4
+1

+Op(
1√
E+2

)

so
E+1s1 + E+2s2 ±

√
−4E2

+1m+s2 + (−E+1s1 − E+2s2)2

2E2
+1

p→ u⋆2

Finally, by Slutsky’s theorem

û1
d→ u⋆1 +

(√
u⋆2
IK

)
Z

We can calculate the asymptotic MSE of û1, assuming that when û1 ≤ 0 we set û1 to be 0.
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Let α = −u⋆1
√
IK/u⋆2. Then bias of û1 is√

u⋆2/IKϕ(α)− u⋆1Φ(α)

and the variance is√
u⋆2/IK(1 + αϕ(α)− ϕ(α)2 − Φ(α)) + 2ϕ(α)Φ(α)

√
u2/IKu1 + Φ(−α)Φ(α)u21

The asymptotics above also imply: z(u2, r1)
d→ u⋆

1IK−u⋆
2r1√

u⋆
2IK

+ Z = z⋆, and the posterior mean for

u1 given β = 1 is√
u2
IK

(
z⋆ + ϕ(z⋆)Φ(z⋆)−1

)
= u⋆1 −

r1u
⋆
2

IK
+

√
u⋆2ϕ(z

⋆)Φ(z⋆)−1

√
IK

+

√
u⋆2
IK

Z

The expression z + ϕ(z)/Φ(z) ≥ 0∀z, so the Bayesian posterior mean for u1 will be positive
a.s. whereas the MLE may be 0 with positive probability depending on I , K and u⋆1, u

⋆
2. The

asymptotic posterior mean for β = 2 is√
u2
IK

(
z⋆ +

1

z⋆ + ϕ(z⋆)Φ(z⋆)−1

)
We can compare the asymptotic root mean-squared error for the MLE and the posterior mean

under an exponential prior for u1, or Exp(r1) and under a Gamma(2, r1) prior for u1 for a range
of values of u⋆1 for I = 15 and K = 1. Note that u1 ∼ Exp(r1) corresponds to p1 ∼ Beta(α1, 1)

and u1 ∼ Gamma(2, r1) corresponds to p1 ∼ Beta(α1, 2). We use the square root of the exact
asymptotic MSE for the MLE, while we use a Monte Carlo approximation to the RMSE for the
two Bayesian estimators. We assume that u⋆i = (1 − p⋆i )λ

⋆
i and fix p⋆1 = 0.6 and p⋆2 = 0.9,

which represents a high race/ethnicity reporting rate for the majority group, and low race/ethnicity
reporting rate for the minority group. We assume λ⋆2 ∈ {0.001, 0.009, 0.02} while we examine
λ⋆1 from 0.001 to 0.05. We fix the posterior mean for u1 at 0.01, which implies r1 = 100 for the
exponential prior and r1 = 200 for the gamma prior.
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λ2 = 0.02, p2 = 0.9

u1

R
M

S
E

0.000

0.002

0.004

0.006

0.008

0.010

0.000 0.005 0.010 0.015 0.020

λ2 = 0.009, p2 = 0.9

u1

0.000 0.005 0.010 0.015 0.020

λ2 = 0.001, p2 = 0.9

u1

0.000 0.005 0.010 0.015 0.020

0

0

MLE Bayes, u1 prior ≡ Exp(r) Bayes, u1 prior ≡ Gamma(2,2r) Prior Mean u1

Figure A.1: Asymptotic root mean-squared error (RMSE) of posterior mean for two Bayes esti-
mators vs. MLE. Monte Carlo approximation to RMSE for posterior means, with standard error
on the order of 10−6 for all u1. Note an exponential prior puts prior mass near zero while the
gamma(2, r1) prior puts vanishing prior mass as u1 → 0. The y-axis represents the RMSE of the
a given point estimator for certain data-generating values of u1 and u2. The panels of the graphs
represent different true values of u2, corresponding to u2 = λ2p2, while the x-axes represent a
continuum of true values for u1. The dashed vertical line represents the prior mean for u1. Thus
each panel of the graph shows how RMSE of each point estimator varies as u1 increases from
4× 10−6 to 1.9× 10−2 given a certain value of u2. The RMSE of the MLE, shown as the solid red
line, slowly increases as u1 increases as the variance of the MLE increases faster than the squared
bias decreases. The Bayes estimators show decreasing RMSE as the prior mean for u1 approaches
the true u1. Two conclusions can be drawn from the graphs: Both Bayes solutions dominate the
MLE for reasonable values of u1 and u2. The exception is for small u2 and when the prior for u1
is several orders of magnitude too large. The second conclusion is that the Bayes estimator with
gamma prior dominates the exponential-prior estimator when the prior mean for u1 is moderately
larger than the true u1 and when the prior mean underestimates the true u1.

Figure A.1 shows that Bayes estimators yield gains over the MLE for minority groups. Within
the class of Bayes estimators, estimators derived from models with priors that put too much support
near zero (e.g. an exponential prior) can shrink too the posterior mean too strongly towards zero
even when the prior mean over-estimates the true parameter. Given that the near-zero behavior is
driven by the prior over p1, limiting prior mass near 1 for p1 can yield point estimators with lower
MSEs for a broad range of values for u1.

A.4.2.1 Results when shape of gamma prior not equal to sum of beta shape parameters

Set-up Let p ∼ Beta(α, β) and let λ ∼ Gamma(a, c) with p ⊥⊥ λ So

fp,λ(x, y) =
Γ(α + β)

Γ(α)Γ(β)

ca

Γ(a)
xα−1(1− x)β−1

1x∈[0,1]y
a−1e−cy

1y>0
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Let v = pλ and u = (1− p)λ so λ = v + u and p = v/(v + u). Then |J | =
∣∣− 1

v+u

∣∣ Then

fv,u(v, u) =
Γ(α + β)

Γ(α)Γ(β)

ca

Γ(a)
(

v

v + u
)α−1(

u

v + u
)β−1(v + u)a−1e−c(v+u)(v + u)−1

1u>01v>0

which simplifies to

fv,u(v, u) =
Γ(α + β)

Γ(α)Γ(β)

ca

Γ(a)
vα−1uβ−1(v + u)a−(α+β)e−c(v+u)

1u>01v>0

It follows that if a = α + β then the density factorizes in v and u into two Gamma distributions
with shape parameters α and β, respectively; thus v ⊥⊥ u.

If we want to calculate the marginal distribution of u, we can integrate over v:

=

∫ ∞

0

vα−1(v + u)a−(α+β)e−cvdv (A.21)

=

∫ ∞

0

vα−1va−α−β(1 +
u

v
)a−(α+β)e−cvdv (A.22)

=

∫ ∞

0

va−(β+1)(1 +
u

v
)a−(α+β)e−cvdv (A.23)

=

∫ 0

∞
(
u

x
)a−(β+1)(1 + x)a−(α+β)e−cu

xdx
−u
x2

(A.24)

=

∫ ∞

0

xβ−(a+1)(1 + x)a−(α+β)e−cu
xdxua−β (A.25)

=

∫ 0

∞
y(a+1)−β(1 + y−1)a−(α+β)e−cuy − dyy−2ua−β (A.26)

=

∫ ∞

0

y(a+1)−βyα+β−a(y + 1)a−(α+β)e−cuy − dyy−2ua−β (A.27)

= ua−β

∫ ∞

0

yα−1(y + 1)a−(α+β)e−cuydy (A.28)

= ua−β

∫ ∞

0

yα−1(y + 1)a+1−β−α−1e−cuydy (A.29)

= ua−βΓ(α)U(α, a+ 1− β, cu) (A.30)

where U(α, a + 1 − β, cu) is Tricomi’s confluent hypergeometric function. Then the marginal
distribution of u is

f(u) =
Γ(α + β)

Γ(β)

ca

Γ(a)
U(α, a+ 1− β, cu)ua−1e−cu

1u>0 (A.31)

From Oldham et al. (2008), we find that for α > 0, which is required by the Beta distribution,
U(α, a + 1 − β, cu) → 0 as u → ∞ For behavior as u → 0, if β ≥ a then f(u) → 0 as
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U(α, a+ 1− β, cu) is continuous and bounded at zero, namely:

U(α, a+ 1− β, 0) =
Γ(β − a)

Γ(α + β − a)

(Oldham et al., 2008). If, instead, β < a, then U(α, a + 1 − β, 0) → ∞ as u → 0. However,
whether limu→0 f(u) → ∞ or limu→0 f(u) → 0 depends on the relation between β and a (see
S48:9 in Oldham et al. (2008)). If a − β ∈ (0, 1) and β < 1 then the density approaches ∞ at 0,
while if β > 1 the density approaches 0 instead. If a − β > 1 then if β > 2 the approaches 0,
otherwise if β < 2 the density diverges at 0. At large u, the function U(α, a + 1 − β, cu) ∼ u−α

so the density can be approximated by:

f(u) ∼ ua−α−1e−cu (A.32)

and ultimately has an exponential tail.

With the likelihood Suppose J = 2. We can write the observed-data likelihood in terms of uj
and vj as follows:

exp
(
−
∑

j uj
∑

iEij

) I∏
i=1

(Ei1u1 + Ei2u2)
mi

mi!

J∏
j=1

exp (−vj
∑

iEij)
(∏I

i=1(Eij)
xij

)
v
∑

i xij

j∏I
i=1 xij!

If we assume that, WLOG, group 2 is the majority group for all i, or, in other words, Ei1 ≪ Ei2

for all i, then using the approximation

(Ei1u1 + Ei2u2)
mi = (Ei2u2)

mi expmi log

(
1 +

Ei1

Ei2u2
u1

)
≊ (Ei2u2)

mi expmi

(
u1

Ei1

Ei2u2
− u21

E2
i1

2E2
i2u

2
2

)
Leading to the approximate likelihood:

exp
(
−
∑

j uj
∑

iEij

)( I∏
i=1

Ei2

)
u
∑

i mi

2

exp
(
u1
∑

i
miEi1

Ei2u2
− u21

∑
i
miE

2
i1

2E2
i2u

2
2

)
∏I

i=1mi!

×
2∏

j=1

exp (−vj
∑

iEij)
(∏I

i=1(Eij)
xij

)
v
∑

i xij

j∏I
i=1 xij!

128



Let x+j =
∑

i xij, E+j =
∑

iEij, s1 =
∑

i
miEi1

Ei2
, s2 =

∑
i
miE

2
i1

E2
i2

. We condition on u2 and
multiply by the joint prior above for u1, v1:

πv1,u1(v, u|Data) ∝ vα+x+1−1uβ−1(v + u)a−(α+β)e−c(v+E+1)eu(s1/u2−E+1−c)−u2s2/2u2
21u>01v>0

=

∫ ∞

0

vα+x+1−1(v + u)a−(α+β)e−v(c+E+1)dv (A.33)

=

∫ ∞

0

vα+x+1−1va−α−β(1 +
u

v
)a−(α+β)e−v(c+E+1)dv (A.34)

=

∫ ∞

0

va+x+1−(β+1)(1 +
u

v
)a−(α+β)e−v(c+E+1)dv (A.35)

=

∫ 0

∞
(
u

x
)a+x+1−(β+1)(1 + x)a−(α+β)e−

u
x
(c+E+1)dx

−u
x2

(A.36)

=

∫ ∞

0

xβ−(a+x+1+1)(1 + x)a−(α+β)e−
u
x
(c+E+1)dxua+x+1−β (A.37)

=

∫ 0

∞
y(a+x+1+1)−β(1 + y−1)a−(α+β)e−(c+E+1)uy − dyy−2ua+x+1−β (A.38)

=

∫ ∞

0

y(a+x+1+1)−βyα+β−a(y + 1)a−(α+β)e−(c+E+1)uy − dyy−2ua+x+1−β (A.39)

= ua+x+1−β

∫ ∞

0

yα+x+1−1(y + 1)a−(α+β)e−(c+E+1)uydy (A.40)

= ua+x+1−β

∫ ∞

0

yα+x+1−1(y + 1)a+x+1+1−β−α−x+1−1e−(c+E+1)uydy (A.41)

= ua+x+1−βΓ(α)U(α + x+1, a+ x+1 + 1− β, (c+ E+1)u) (A.42)

where U(a, b, z) is Tricomi’s confluent hypergeometric function. Then the marginal posterior dis-
tribution for u is

f(u) ∝ U(α + x+1, a+ x+1 + 1− β, (c+ E+1)u)u
a+x+1−1eu(s1/u2−E+1−c)−u2s2/2u2

21u>0 (A.43)

When a = α and β = 1,

U(α + x+1, a+ x+1 + 1− β, (c+ E+1)u) = e(c+E+1)u

∫ ∞

(c+E+1)u

z−(α+x+1)e−zdz
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A.4.2.2 Hierarchy over u1
Let p1g | α1, β1 ∼ Beta(α1, β1), λ1g | α1, β1, r1 ∼ Gamma(α1 + β1, r1) so u1g | β1, r1 ∼
Gamma(β1, r1). Then using the approximate likelihood from above:

πu11,...,u1G (u11, . . . , u1G, r1|Data, u21, . . . , u2G) ∝ rGβ1
1 1r1>0

∏
g

uβ1−1
1g eu1g(s1/u2g−E+1−r1)−u2

1gs2/2u
2
2g1u1g>0

Assuming we know β1 = 2, we can integrate out each u1g in order to get an Empirical Bayes
estimator:

πr1(r1|Data, u21, . . . , u2G) ∝ rGβ1

1 1r1>0

∫ ∏
g

eu1g(s1/u2g−E+1−r1)−u2
1gs2/2u

2
2g1u1g>0du1g

Using the fact that the normalizing constant of a Modified Half Normal distribution is
Ψ(β1

2
, s1/u2g−E+1−r1√

s2/2u2
2g

) 1
2(s2/2u2

2g)
β1/2

, and that Ψ(β1

2
, x) has an analytic form for integer β1, we can

derive the integrated distribution. Let xg(r, u2g) =
s1/u2g−E+1−r1√

s2/2u2
2g

Ψ(
2

2
, xg(r, u2g)) = 1 +

√
πxg(r, u2g)e

xg(r,u2g)2/4Φ
(
xg(r, u2g)/

√
2
)

Then

πr1(r1|Data, u21, . . . , u2G) ∝ rGβ1

1 1r1>0

∏
g

(
1 +

√
πxg(r1, u2g)e

xg(r1,u2g)2/4Φ
(
xg(r1, u2g)/

√
2
))

which is more easily expressible as

πr1(r1|Data, u21, . . . , u2G) ∝ rGβ1

1 1r1>0

∏
g

(
1 +

zg(r1, u2g)

ϕ(zg(r1, u2g))
Φ(zg(r1, u2g))

)

where zg(r, u2g) = xg(r, u2g)/
√
2 and ϕ(x) is the standard normal density. This is not a proper

posterior, as the integral of the kernel does not converge. Note that r1 > 0, so we need to show
that the expression above is bounded below on zg(r, u2g) < 0 by a nonintegrable function. We can
bound Φ(x) above by the expression:

2ϕ(x)

−x+
√
x2 + 8/π
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for x < 0. Then

1 +
zg(r1, u2g)

ϕ(zg(r1, u2g))
Φ(zg(r1, u2g)) ≥ (A.44)

1 +
2zg(r1, u2g)

−zg(r1, u2g) +
√
zg(r1, u2g)2 + 8/π

(A.45)

on zg(r1, u2g) < 0. Let u = −zg(r1, u2g), then the expression above is

1− 2u

u+
√
u2 + 8/π

=
−u+

√
u2 + 8/π

u+
√
u2 + 8/π

(A.46)

This is asymptotic to 2
πu2 . Putting this together with the fact that β1 = 2,

r2G1 1r1>0

∏
g

(
1 +

zg(r1, u2g)

ϕ(zg(r1, u2g))
Φ(zg(r1, u2g))

)
≥ r2G1 1r1>0

∏
g

2

πzg(r1, u2g)2
(A.47)

= 1r1>0

∏
g

2s2r
2
1

π(s1 − u2g(E+1 + r1))2
(A.48)

for r1 large. Of course, ∫ ∞

0

∏
g

2s2r
2
1

π(s1 − u2g(E+1 + r1))2
dr1 → ∞ (A.49)

which implies that ∫ ∞

0

r2G1
∏
g

(
1 +

zg(r1, u2g)

ϕ(zg(r1, u2g))
Φ(zg(r1, u2g))

)
dr1 → ∞ (A.50)

We can, however, numerically maximize the expression to yield an MLE for r1, or we can put a
proper prior on r1 and integrate over the uncertainty.

A.4.3 DCT lemma

Lemma 9. Let pη(θ)(X = k) be defined

1

k!
exp

(
η(θ)k − eη(θ)

)
,

where η(θ) is a univariate differentiable function of θ, θ ∈ Rd. Let g(η(θ)) =
∫
f(x)pη(θ)(x)dµ(x)

where µ is the counting measure on [0, 1, 2, . . . ]. If we define the set θ ∈ Θf as the set for which
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∫
|f(x)| pη(θ)(x)dµ(x) <∞, then

∂

∂θj
g(η(θ)) =

∫
f(x)

∂

∂θj
pη(θ)(x)dµ(x)

Proof. By the chain rule, the ∂
∂θj
g(η(θ)) = dg(η(θ))

dη(θ)
∂η(θ)
∂θj

. By Theorem 2.4 in Keener (2010), dg(η(θ))
dη(θ)

exists and can be obtained via differentiating under the integral sign:

d

dη(θ)
g(η(θ)) =

∫
f(x)

dpη(θ)(x)

dη(θ)
dµ(x).

Using this result and the chain rule again yields

∂

∂θj
g(η(θ)) =

dg(η(θ))

dη(θ)

∂η(θ)

∂θj
(A.51)

=

∫
f(x)

dpη(θ)(x)

dη(θ)

∂η(θ)

∂θj
dµ(x) (A.52)

=

∫
f(x)

∂

∂θj
dpη(θ)(x) (A.53)

A.4.4 Lemmas and theorems in service of Fisher Info

Our local identifiability result is based on the following theorem that is referenced, though not
proven, in Mukerjee and Sutradhar (2002). To our knowledge an explicit proof has not been given,
though it follows directly from the proof of the Cramér-Rao lower bound in Rao (2002). This proof
provides a slightly different route to showing local identifiability compared to that of Catchpole
(1997). We give a proof below where we use the same notation as used in Rao (2002) for clarity’s
sake.

Theorem 10. Suppose we have observations Xn and let x ∈ RN be the collection of all obser-

vations, with the n-th element equal to Xn, where π(x,θ), parameterized by θ ∈ Rd with ith

element θi is the joint density of the observations. Let f1(x), . . . , fr(x) be r statistics for which

E [fi(x)] = gi(θ). Further, assume that ∂
∂θj

∫
fi(x)π(x,θ)dx =

∫
fi(x)

∂
∂θj
π(x,θ)dx = ∂gi(θ)

∂θj
.

Let ∆ be a matrix in Rr×d with elements ∆ij =
∂gi(θ)
∂θj

. Let I be a matrix in Rd×d where the (i, j)-th

element is defined as Iij = Cov
(

∂ logP (x,θ)
∂θi

, ∂ logP (x,θ)
∂θj

)
. Let V be the matrix in Rr×r with (i, j)

elements Vij = Cov (fi(x), fj(x)). If V is positive definite, and ∆ is full-rank, then the Fisher

information matrix I is positive definite.

Proof. Let f be the ordered collection of elements fi(x), and let ∇ log π(x,θ) be the score vector.
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Then let the random vector ρ = (f ,∇ log π(x,θ)). The covariance matrix associated with ρ, Σ, is
a block matrix. Under π(x,θ), Cov

(
fi,

∂ log π(x,θ)
∂θj

)
= ∂gi(θ)

∂θj
, which is element (i, j) of the matrix

∆. The block covariance matrix for ρ is:

Σ =

[
V ∆

∆T I

]

Suppose V is positive definite. We know I − ∆TV−1∆ ⪰ 0, because Σ is a covariance matrix
which ensures it is positive semi definite. Furthermore, I ⪰ ∆TV−1∆. If ∆ is full-rank then
I ≻ 0.

We need the following two lemmas to prove that the Fisher information is positive definite.
First, the following lemma is stated in Tian (2004):

Lemma 11. Let A† be the Moore-Penrose inverse of a matrix A ∈ RL×M . Let B ∈ RL×T . The

rank of a block matrix [A B] is the rank of A plus the rank of B−AA†B.

Next, we will need this lemma later on:

Lemma 12. Suppose W ∈ RI×K and E ∈ RI×J . Let E[:,j] be an I-vector of the j th column of

matrix E, let Fj = diag(E[:,j]).

(L.a) I ≥ J +K

(L.b) rank (E) = J

(L.c) rank (W) = K

(L.d) ∀i ∈ 1, . . . , I
∑J

j=1Eij > 0

(L.e) λj > 0∀j ∈ 1, . . . , J

(L.f) rank
([

F1W . . . FJW E[:,1] E[:,2] . . . E[:,J−1] E[:,J ]

])
> J +K

Then the matrix [(∑
j λjFj

)
W E[:,1] E[:,2] . . . E[:,J−1] E[:,J ]

]
is rank J +K.

Proof. Given conditions (L.a) to (L.e) above , the matrix
(∑

j λjFj

)
W is rank K. Using lemma

11 we proceed sequentially, showing first that

rank
([(∑

j λjFj

)
W E[:,1]

])
= K + 1
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By 11,

rank
([(∑

j λjFj

)
W E[:,1]

])
=rank

((∑
j

λjFj

)
W

)

+ rank

E[:,1] −

(∑
j

λjFj

)
W

((∑
j

λjFj

)
W

)†

E[:,1]


We can show that rank

(
E[:,1] −

(∑
j λjFj

)
W
((∑

j λjFj

)
W
)†

E[:,1]

)
= 1. We show by con-

tradiction that given conditions on the coefficient matrix, no solution to the equation in ak

E[:,1] =
K∑
k=1

ak

(
J∑

j=1

λjE[:,j] ⊙Wk

)
(A.54)

can be found. This follows from examining the matrix of coefficients of the equation, shown here
in block form: [

E[:,1] λ1F1W . . . λJFJW
]

(A.55)

Given condition (L.e), λj > 0 for all j, for a fixed set of parameters λj the matrix in eq. (A.55) has
the same column space as [

E[:,1] F1W . . . FJW
]

(A.56)

Given condition (L.f), matrix A.56 has rank greater than K, so the system of equations in A.54
will not have a solution in ak, k ∈ [1, . . . , K]. Thus the rank of matrix

E[:,1] −

(∑
j

λjFj

)
W

((∑
j

λjFj

)
W

)†

E[:,1] (A.57)

is 1 so the rank of . [(∑
j λjFj

)
W E[:,1]

]
is K + 1.

Now for the induction step: Suppose that[(∑
j λjFj

)
W E[:,1:M ]

]
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is rank M +K and suppose we want to determine the rank of[(∑
j λjFj

)
W E[:,1:M ] E[:,M+1]

]
.

By lemma 11, the rank of the above matrix is

rank
[(∑

j λjFj

)
W E[:,1:M ]

]
(A.58)

+ rank
(
E[:,M+1] −

[(∑
j λjFj

)
W E[:,1:M ]

] [(∑
j λjFj

)
W E[:,1:M ]

]†
E[:,M+1]

)
(A.59)

By the induction hypothesis, we know that eq. (A.58) equals K +M and we look to see whether
eq. (A.59) equals 1 by determining whether the system of equations below:

E[:,M+1] =
K∑
k=1

ak

(
J∑

j=1

λjEj ⊙Wk

)
+

M∑
m=1

dmE[:,m] (A.60)

has a solution in the variables ak, k ∈ [1, . . . , K], dm,m ∈ [1, . . . ,M ],M < J . Then for a fixed
{λj, j ∈ [1, . . . , J ]} the coefficient matrix for the system of equations in eq. (A.60) has the same
column space as [

E[:,M+1] F1W . . . FJW E[:,1:M ]

]
(A.61)

By condition (L.f), the rank of matrix (A.61) is greater thanM+K, which precludes E[:,M+1] from
lying in the column space of [(∑

j λjFj

)
W E[:,1:M ]

]
. Thus the line (A.59) is equal to 1 and summing with line (A.58) shows that the rank of[(∑

j λjFj

)
W E[:,1:M ] E[:,M+1]

]
is M + 1 +K. Therefore by induction,[(∑

j λjFj

)
W E[:,1] E[:,2] . . . E[:,J−1] E[:,J ]

]
is rank J +K.
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A.5 Full model local identifiability proof

Proof. In order to draw on the results of 10, we must ensure ∂
∂θj

∫
fiπ(x, θ)dν =

∫
fi

∂
∂θj
π(x, θ)dν

holds for model (2.10). This condition does indeed hold by lemma 9 because our observational
density is an exponential family density. Now we look for moment estimators, f = (f1, . . . , fr)

with full-rank ∆ and positive definite covariance matrices. As shown in section A.2, conditionally
on unknown parameters, known covariates zi and population counts ei, Xij is independent of Mi

for all i and j. Let xj = (X1j, X2j, . . . , XIj), and set

f = (x1,x2, . . . ,xJ ,M1,M2, . . . ,MI).

From the independence of the elements of the vector (Xi1, Xi2, . . . , XiJ , ,Mi)
T , and the condi-

tional independence between observations i, Cov(f) is diagonal, and is positive definite because
conditions (S.d) to (S.f) are assumed to hold. The final condition for theorem 10 to hold, which
establishes a lower bound on the positive definiteness of the Fisher information matrix is to ensure
that ∆ has full column-rank. To that end, let us calculate ∆, beginning with E [f ]: The expected
value of f is the vector: 

E11p11e
zT1 βλ1

E21p21e
zT2 βλ1

...
EI1pI1e

zTI βλ1

E12p12e
zT1 βλ2

E22p22e
zT2 βλ2

...
EI2pI2e

zTI βλ2
...

E1Jp1Je
zT1 βλJ

E2Jp2Je
zT2 βλJ

...
EIJpIJe

zTI βλJ∑
j E1j(1− p1j)e

zT1 βλj
...∑

j EIj(1− pIj)e
zTI βλj
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For efficiency of notation, let cij = pijλj p
′
ij = pij(1 − pij), and qij = (1 − pij) Let H by the

(J + 1)I × 2K matrix of partial derivatives of E [f ] with respect to the vector (β,γ):

H =



zT1 E11c11e
zT1 β zT1 E11p

′
11λ1e

zT1 β

zT2 E21c21e
zT2 β zT2 E21p

′
21λ1e

zT2 β

.

.

.
.
.
.

zTI EI1cI1e
zTI β

zTI EI1p
′
I1λ1e

zTI β

zT1 E12c12e
zT1 β zT1 E12p

′
12λ2e

zT1 β

zT2 E22c22e
zT2 β zT2 E21p

′
22λ2e

zT2 β

.

.

.
.
.
.

zTI EI2cI2e
zTI β

zTI EI2p
′
I2λ2e

zTI β

.

.

.
.
.
.

zT1 E1Jc1Jez
T
1 β zT1 E1Jp′1JλJez

T
1 β

zT2 E2Jc2Jez
T
2 β zT2 E2Jp′2JλJez

T
2 β

.

.

.
.
.
.

zTI EIJcIJe
zTI β

zTI EIJp′IJλJe
zTI β

zT1 ez
T
1 β ∑

j E1jq1jλj −zT1 ez
T
1 β ∑

j E1jp
′
1jλj

.

.

.
.
.
.

zTI e
zTI β ∑

j EIjqIjλj −zTI e
zTI β ∑

j EIjp
′
Ijλj



Let T be the (J + 1)I × 2J matrix of partial derivatives with respect to
(λ1, λ2, . . . , λJ , η1, η2, . . . , ηJ),

T =



E11p11e
zT1 β 0 . . . 0 E11p

′
11λ1e

zT1 β 0 . . . 0

E21p21e
zT2 β 0 . . . 0 E21p

′
21λ1e

zT2 β 0 . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

EI1pI1e
zTI β

0 . . . 0 EI1p
′
I1λ1e

zTI β
0 . . . 0

0 E12p12e
zT1 β . . . 0 0 E12p

′
12λ2e

zT1 β . . . 0

0 E22p22e
zT2 β . . . 0 0 E22p

′
22λ2e

zT2 β . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 EI2pI2e
zTI β

. . . 0 0 EI2p
′
I2λ2e

zTI β
. . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . E1Jp1Jez
T
1 β 0 0 . . . E1Jp′1JλJez

T
1 β

0 0 . . . E2Jp2Jez
T
2 β 0 0 . . . E2Jp′2JλJez

T
2 β

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 . . . EIJpIJe
zTI β

0 0 . . . EIJp′IJλJe
zTI β

E11q11e
zT1 β E12q12e

zT1 β . . . E1Jq1Jez
T
1 β −E11p

′
11λ1e

zT1 β −E12p
′
12λ2e

zT1 β . . . −E1Jp′1JλJez
T
1 β

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

EI1qI1e
zTI β

EI2qI2e
zTI β

. . . EIJqIJe
zTI β −EI1p

′
I1λ1e

zTI β −EI2p
′
I2λ2e

zTI β
. . . −EIJp′IJλJe

zTI β



Then

∆ =
[
T H

]
Let the matrix Ri,j(m) be the elementary row-addition matrix. When a matrix A ∈ RM×N is

left-multiplied by Rij(m), Ã = Eij(m)A, all rows of Ã equal that of A excepting Ã’s i-th row,
which is Ã[i,:] = A[i,:] + mA[j,:]. Let H̃ and T̃ be the result of left-multiplying H and T by the
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same product of elementary row-addition matrices, namely:

I∏
i=1

J∏
j=1

RJI+j,(j−1)I+i(1)

Then let ∆̃ be the matrix ∆ after applying the product of elementary row-addition matrices:

∆̃ =
I∏

i=1

J∏
j=1

RJI+j,(j−1)I+i(1)
[
T H

]
=
[∏I

i=1

∏J
j=1 RJI+j,(j−1)I+i(1)T

∏I
i=1

∏J
j=1 RJI+j,(j−1)I+i(1)H

]
=
[
T̃ H̃

]
where

H̃ =



zT1 E11c11e
zT1 β zT1 E11p

′
11λ1e

zT1 β

zT2 E21c21e
zT2 β zT2 E21p

′
21λ1e

zT2 β

...
...

zTI EI1cI1e
zTI β zTI EI1p

′
I1λ1e

zTI β

zT1 E12c12e
zT1 β zT1 E12p

′
12λ2e

zT1 β

zT2 E22c22e
zT2 β zT2 E21p

′
22λ2e

zT2 β

...
...

zTI EI2cI2e
zTI β zTI EI2p

′
I2λ2e

zTI β

...
...

zT1 E1Jc1Je
zT1 β zT1 E1Jp

′
1JλJe

zT1 β

zT2 E2Jc2Je
zT2 β zT2 E2Jp

′
2JλJe

zT2 β

...
...

zTI EIJcIJe
zTI β zTI EIJp

′
IJλJe

zTI β

zT1 e
zT1 β

∑
j E1jλj 01×K

...
...

zTI e
zTI β

∑
j EIjλj 01×K



,
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and

T̃ =



E11p11e
zT1 β 0 . . . 0 E11p

′
11λ1e

zT1 β 0 . . . 0

E21p21e
zT2 β 0 . . . 0 E21p

′
21λ1e

zT2 β 0 . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

EI1pI1e
zTI β

0 . . . 0 EI1p
′
I1λ1e

zTI β
0 . . . 0

0 E12p12e
zT1 β . . . 0 0 E12p

′
12λ2e

zT1 β . . . 0

0 E22p22e
zT2 β . . . 0 0 E22p

′
22λ2e

zT2 β . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 EI2pI2e
zTI β

. . . 0 0 EI2p
′
I2λ2e

zTI β
. . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . E1Jp1Jez
T
1 β 0 0 . . . E1Jp′1JλJez

T
1 β

0 0 . . . E2Jp2Jez
T
2 β 0 0 . . . E2Jp′2JλJez

T
2 β

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 . . . EIJpIJe
zTI β

0 0 . . . EIJp′IJλJe
zTI β

E11e
zT1 β E12e

zT1 β . . . E1Jez
T
1 β 0 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

EI1e
zTI β

EI2e
zTI β

. . . EIJe
zTI β

0 0 . . . 0



.

We can represent T̃ and H̃ as block matrices. We let E be the I × J matrix with (i, j)th

elements Eij , and we similarly define the matrix C to be in RI×J with its i, j element equal to cij .
Furthermore, let p′

ij = p′ij . Let the matrix ω be the diagonal matrix in RI×I with i, j elements
ez

T
i β
1(i = j). Let E[:,j] ⊙C[:,j] be the element-wise multiplication between the two matrices E[:,j]

and C[:,j]. Let Z ∈ RI×K with rows Z[i,:] = zTi . Let 1 be the I-dimensional vector with each
element equal to 1 and let

Dj = diag(E[:,j] ⊙C[:,j])

D′
j = diag(E[:,j] ⊙ p′

[:,j])

Fj = diag(E[:,j]).

Let Ω be the block matrix:

Ω =



ω 0I×I . . . 0I×I 0I×I 0I×I

0I×I ω . . . 0I×I 0I×I 0I×I

...
... . . . ...

...
...

0I×I 0I×I . . . ω 0I×I 0I×I

0I×I 0I×I . . . 0I×I ω 0I×I

0I×I 0I×I . . . 0I×I 0I×I ω


(A.62)
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Then we can write H̃ as

Ω



D1Z D′
1Zλ1

D2Z D′
2Zλ2

.

.

.
.
.
.

DJ−1Z D′
J−1ZλJ−1

DJZ D′
JZλJ(∑

j λjFj

)
Z 0I×K


(A.63)

and T̃ as

Ω



D11 0I×1 . . . 0I×1 0I×1 λ1D
′
11 0I×1 . . . 0I×1 0I×1

0I×1 D21 . . . 0I×1 0I×1 0I×1 λ2D
′
21 . . . 0I×1 0I×1

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0I×1 0I×1 . . . DJ−11 0I×1 0I×1 0I×1 . . . λJ−1D
′
J−11 0I×1

0I×1 0I×1 . . . 0I×1 DJ1 0I×1 0I×1 . . . 0I×1 λJD′
J1

E[:,1] E[:,2] . . . E[:,J−1] E[:,J] 0I×1 0I×1 . . . 0I×1 0I×1


(A.64)

Rearranging the columns of ∆̃ to form ∆̃′ does not change the rank of the matrix, and clarifies the
conditions needed for the matrix to be full-rank:

∆̃
′
= Ω



D1Z D11 0I×1 . . . 0I×1 0I×1 λ1D
′
1Z 0I×1 λ1D

′
11 0I×1 . . . 0I×1

D2Z 0I×1 D21 . . . 0I×1 0I×1 λ2D
′
2Z 0I×1 0I×1 λ2D

′
21 . . . 0I×1

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

DJ−1Z 0I×1 0I×1 . . . DJ−11 0I×1 λJ−1D
′
J−1Z 0I×1 0I×1 0I×1 . . . λJ−1D

′
J−11

DJZ 0I×1 0I×1 . . . 0I×1 DJ1 λJD′
JZ λJD′

J1 0I×1 0I×1 . . . 0I×1(∑
j λjFj

)
Z E[:,1] E[:,2] . . . E[:,J−1] E[:,J] 0I×K 0I×1 0I×1 0I×1 . . . 0I×1


(A.65)

is ∈ R(I(J+1))×(2K+2J). The first matrix Ω is a I(J + 1) × I(J + 1) block diagonal matrix of
diagonal matrices and by condition (S.f) is rank I(J + 1). Then the product in equation (A.65)
is rank 2K + 2J if the second matrix above is rank 2K + 2J by Sylvester’s rank inequality. The
second matrix above is rank 2K + 2J if the following three sub-blocks are full column rank:

L1 =


λ1D

′
11 0I×1 . . . 0I×1

0I×1 λ2D
′
21 . . . 0I×1

.

.

.
.
.
.

. . .
.
.
.

0I×1 0I×1 . . . λJ−1D
′
J−11

 (A.66)

and

L2 =
[(∑

j λjFj

)
Z E[:,1] E[:,2] . . . E[:,J−1] E[:,J]

]
(A.67)

and

L3 =
[
λJD′

JZ λJD′
J1

]
(A.68)

Sufficient conditions for L1 to be full column rank is

1. I ≥ (J − 1)S

2. diag(E[:,j])1 is full column rank for all j
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3. λj > 0∀j ≤ J

4. ηj ∈ (−∞,∞)∀j ≤ J

5. βk, γk ∈ (−∞,∞)∀k ≤ J

Sufficient conditions for L2 to be full column rank is

1. I ≥ K + J

2. ∀i ∈ 1, . . . , I
∑J

j=1Eij > 0

3. rank
([

Z E
])

= J +K

4. rank
([

F1Z . . . FJZ E[:,1] E[:,2] . . . E[:,J−1] E[:,J ]

])
> J +K

Sufficient conditions for L3 to be full column rank is

1. I ≥ K + S

2. FJ

[
Z 1

]
is full column rank

We recognize matrix L2 as the same matrix as in lemma 12 and that conditions (S.a) to (S.g) are a
superset of the conditions (L.a) to (L.f) in lemma 12. Then by lemma 12, matrix L2 is rank J +K.
Conditions (S.a) to (S.g) ensure that L1 and L3 are full rank as well, so rank(∆̃) is full rank.

Given that rank(∆̃′) = rank(∆̃) = rank(∆) = 2J + 2K, the column dimension of ∆, Cov(f)
is positive definite, and that the observational density, πθ(f) is Poisson so ∂

∂θj

∫
fiπθ(x)dν =∫

fi
∂
∂θj
πθ(x)dν, we can apply lemma 10, which bounds the positive definiteness below by 0

for the Fisher information matrix I. In other words, the Fisher Information matrix is posi-
tive definite. By Theorem 1 in Rothenberg (1971), model 2.10 is locally identifiable for any
(p,λ,β,γ) ∈ ((0, 1)J × (0,∞)J × RK × RK), where ((a, b)n) is the n-fold Cartesian product of
the set (a, b).

141



A.6 Further simulation study results

A.6.1 Root mean squared error plots
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Figure A.2: Root mean squared error across simulated datasets for the standardized incidence ratio,
or SIRj for Blacks, Hispanic/Latinos, Others, and Whites plotted against the proportion of cases
observed with race data. The blue color corresponds to the joint model in equation (2.11), while
the red color corresponds to a the model defined in equation (2.15), or a complete-case analysis.
Smaller magnitude is better.
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Figure A.3: Root mean squared error across simulated datasets for the relative risk ratio, or Ij/IJ
for Blacks, Hispanic/Latinos, Others relative to Whites plotted against the proportion of cases
observed with race data. The blue color corresponds to the joint model in equation (2.11), while
the red color corresponds to a the model defined in equation (2.15), or a complete-case analysis.
Smaller magnitude is better.
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Figure A.4: Mean squared error across simulated datasets for the population relative risk ratio, or
exp((αλ)j − (αλ)J) for Blacks, Hispanic/Latinos, Others relative to Whites plotted against the
proportion of cases observed with race data. The blue color corresponds to the joint model in
equation (2.11), while the red color corresponds to a the model defined in equation (2.15), or a
complete-case analysis. Smaller magnitude is better.

A.6.2 80% posterior interval coverage

Table A.3: Table shows 80% posterior credible interval coverage and lengths for estimands of
interest from the simulation study. Coverage proportion is calculated across 200 simulated datasets
for each model/simulation scenario. Column headers for percentages (e.g. 20%) indicate the
missing-data simulation scenario which corresponds to the statistic calculated in the table column;
the simulation scenario corresponds to the proportion of cases observed with completely observed
race covariates.

80% interval coverage 80% mean interval length

Parameter Model 20% 60% 80% 90% 20% 60% 80% 90%

exp
(
(αλ)Blacks Complete Case 0.70 0.70 0.68 0.60 0.51 0.47 0.47 0.44

−(αλ)Whites
)

Joint 0.78 0.81 0.81 0.78 0.62 0.55 0.55 0.53

MI-Ad-hoc 1.00 0.88 0.77 0.66 0.41 0.40 0.43 0.42

MI-Gibbs 0.75 0.70 0.67 0.61 0.52 0.46 0.46 0.44

exp
(
(αλ)Hispanics/Latinos Complete Case 0.77 0.80 0.83 0.77 0.63 0.56 0.56 0.53

−(αλ)Whites
)

Joint 0.56 0.77 0.84 0.78 0.68 0.61 0.57 0.56

MI-Ad-hoc 0.99 0.91 0.89 0.82 0.42 0.44 0.49 0.49

MI-Gibbs 0.07 0.68 0.82 0.78 1.13 0.65 0.58 0.55

exp
(
(αλ)Others Complete Case 0.42 0.33 0.27 0.28 0.44 0.38 0.37 0.36

−(αλ)Whites
)

Joint 0.37 0.73 0.77 0.82 0.63 0.67 0.60 0.58

MI-Ad-hoc 1.00 0.62 0.41 0.30 0.40 0.36 0.36 0.35
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80% interval coverage 80% mean interval length

Parameter Model 20% 60% 80% 90% 20% 60% 80% 90%

MI-Gibbs 0.70 0.48 0.32 0.29 0.71 0.42 0.39 0.37

SIBlacks Complete Case 0.06 0.04 0.01 0.00 0.03 0.02 0.01 0.01

Joint 0.67 0.77 0.80 0.78 0.09 0.04 0.03 0.02

MI-Ad-hoc 0.09 0.20 0.06 0.00 0.01 0.01 0.01 0.01

MI-Gibbs 0.03 0.01 0.00 0.00 0.02 0.01 0.01 0.01

SIHispanics/Latinos Complete Case 0.34 0.24 0.12 0.01 0.13 0.07 0.06 0.06

Joint 0.46 0.74 0.81 0.70 0.47 0.23 0.14 0.10

MI-Ad-hoc 0.12 0.23 0.27 0.06 0.07 0.06 0.06 0.06

MI-Gibbs 0.00 0.05 0.01 0.01 0.16 0.08 0.06 0.06

SIOthers Complete Case 0.03 0.00 0.00 0.00 0.11 0.06 0.05 0.05

Joint 0.27 0.70 0.76 0.77 0.49 0.36 0.25 0.20

MI-Ad-hoc 0.17 0.14 0.01 0.00 0.07 0.06 0.05 0.05

MI-Gibbs 0.20 0.01 0.00 0.00 0.15 0.06 0.05 0.05

SIWhites Complete Case 0.04 0.01 0.00 0.00 0.02 0.01 0.01 0.01

Joint 0.50 0.80 0.82 0.84 0.06 0.03 0.02 0.01

MI-Ad-hoc 0.14 0.17 0.00 0.00 0.01 0.01 0.01 0.01

MI-Gibbs 0.21 0.01 0.00 0.00 0.02 0.01 0.01 0.01

IBlacks/IWhites Complete Case 0.06 0.01 0.00 0.00 0.04 0.02 0.02 0.02

Joint 0.73 0.79 0.81 0.81 0.12 0.05 0.04 0.03

MI-Ad-hoc 0.10 0.20 0.02 0.00 0.02 0.02 0.02 0.02

MI-Gibbs 0.12 0.01 0.00 0.00 0.03 0.02 0.02 0.02

IHispanics/Latinos/ Complete Case 0.17 0.18 0.57 0.83 0.07 0.04 0.04 0.03

IWhites Joint 0.43 0.73 0.81 0.73 0.28 0.14 0.09 0.06

MI-Ad-hoc 0.12 0.21 0.32 0.41 0.04 0.04 0.04 0.03

MI-Gibbs 0.00 0.14 0.24 0.17 0.10 0.05 0.04 0.04

IOthers/IWhites Complete Case 0.00 0.00 0.00 0.00 0.06 0.03 0.03 0.03

Joint 0.26 0.72 0.74 0.76 0.32 0.24 0.17 0.13

MI-Ad-hoc 0.14 0.11 0.01 0.00 0.05 0.04 0.03 0.03

MI-Gibbs 0.21 0.00 0.00 0.00 0.10 0.04 0.03 0.03
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Table A.4: Table shows 50% posterior credible interval coverage and lengths for estimands of
interest from the simulation study. Coverage proportion is calculated across 200 simulated datasets
for each model/simulation scenario. Column headers for percentages (e.g. 20%) indicate the
missing-data simulation scenario which corresponds to the statistic calculated in the table column;
the simulation scenario corresponds to the proportion of cases observed with completely observed
race covariates.

50% interval coverage 50% mean interval length

Parameter Model 20% 60% 80% 90% 20% 60% 80% 90%

exp
(
(αλ)Blacks Complete Case 0.39 0.35 0.41 0.32 0.27 0.24 0.24 0.23

−(αλ)Whites
)

Joint 0.52 0.53 0.49 0.47 0.32 0.28 0.29 0.27

MI-Ad-hoc 0.96 0.56 0.47 0.30 0.21 0.21 0.22 0.22

MI-Gibbs 0.48 0.38 0.38 0.29 0.27 0.24 0.24 0.23

exp
(
(αλ)Hispanics/Latinos Complete Case 0.48 0.47 0.47 0.44 0.33 0.29 0.29 0.28

−(αλ)Whites
)

Joint 0.27 0.48 0.47 0.43 0.35 0.31 0.30 0.29

MI-Ad-hoc 0.96 0.62 0.53 0.47 0.22 0.23 0.25 0.25

MI-Gibbs 0.01 0.39 0.46 0.45 0.58 0.33 0.30 0.28

exp
(
(αλ)Others Complete Case 0.20 0.10 0.12 0.09 0.23 0.20 0.19 0.19

−(αλ)Whites
)

Joint 0.17 0.41 0.47 0.51 0.32 0.35 0.31 0.30

MI-Ad-hoc 0.91 0.29 0.15 0.10 0.21 0.18 0.19 0.18

MI-Gibbs 0.38 0.23 0.12 0.10 0.36 0.22 0.20 0.19

SIBlacks Complete Case 0.04 0.02 0.00 0.00 0.01 0.01 0.01 0.01

Joint 0.39 0.49 0.48 0.49 0.04 0.02 0.01 0.01

MI-Ad-hoc 0.04 0.09 0.03 0.00 0.01 0.01 0.01 0.01

MI-Gibbs 0.03 0.01 0.00 0.00 0.01 0.01 0.01 0.01

SIHispanics/Latinos Complete Case 0.17 0.12 0.05 0.00 0.07 0.04 0.03 0.03

Joint 0.27 0.47 0.51 0.41 0.24 0.12 0.07 0.05

MI-Ad-hoc 0.07 0.15 0.18 0.01 0.04 0.03 0.03 0.03

MI-Gibbs 0.00 0.01 0.01 0.00 0.08 0.04 0.03 0.03

SIOthers Complete Case 0.01 0.00 0.00 0.00 0.06 0.03 0.03 0.02

Joint 0.12 0.45 0.48 0.41 0.25 0.18 0.13 0.10

MI-Ad-hoc 0.08 0.07 0.01 0.00 0.04 0.03 0.03 0.03

MI-Gibbs 0.09 0.00 0.00 0.00 0.08 0.03 0.03 0.02

SIWhites Complete Case 0.03 0.01 0.00 0.00 0.01 0.01 0.00 0.00

Joint 0.28 0.51 0.54 0.51 0.03 0.02 0.01 0.01

MI-Ad-hoc 0.07 0.08 0.00 0.00 0.01 0.00 0.00 0.00

MI-Gibbs 0.08 0.00 0.00 0.00 0.01 0.01 0.00 0.00
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50% interval coverage 50% mean interval length

Parameter Model 20% 60% 80% 90% 20% 60% 80% 90%

IBlacks/IWhites Complete Case 0.03 0.01 0.00 0.00 0.02 0.01 0.01 0.01

Joint 0.48 0.54 0.52 0.48 0.06 0.03 0.02 0.01

MI-Ad-hoc 0.04 0.10 0.01 0.00 0.01 0.01 0.01 0.01

MI-Gibbs 0.07 0.01 0.00 0.00 0.02 0.01 0.01 0.01

IHispanics/Latinos/ Complete Case 0.09 0.08 0.33 0.53 0.03 0.02 0.02 0.02

IWhites Joint 0.24 0.46 0.51 0.45 0.14 0.07 0.05 0.03

MI-Ad-hoc 0.09 0.12 0.17 0.24 0.02 0.02 0.02 0.02

MI-Gibbs 0.00 0.09 0.07 0.05 0.05 0.02 0.02 0.02

IOthers/IWhites Complete Case 0.00 0.00 0.00 0.00 0.03 0.02 0.02 0.01

Joint 0.12 0.43 0.47 0.41 0.16 0.12 0.09 0.07

MI-Ad-hoc 0.09 0.06 0.00 0.00 0.02 0.02 0.02 0.02

MI-Gibbs 0.09 0.00 0.00 0.00 0.05 0.02 0.02 0.02

A.7 Prior sensitivity graphs

Graphs to support conclusions in 2.5.7
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Figure A.5: Graphs above show box plots of posterior-standard-deviation-scaled differences in
posterior mean incidences with respect to a baseline prior for various priors over population hyper-
parameters, or (Eπa(θ|Data)[g(θ)] − Eπb(θ|Data)[g(θ)])/

√
Varπb(θ|Data)(g(θ)). The graphs quantify

how sensitive posterior mean incidence for each race/ethnicity group is to priors over population
parameters αλ and αη.
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Figure A.6: Graphs above show box plots of scaled biases in the posterior mean for true incidences
g(θ†), or (Eπa(θ|Data)[g(θ)] − g(θ†))/g(θ†). The graphs quantify how priors over population pa-
rameters αλ and αη influence the bias of the posterior mean estimator.
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Figure A.7: The graphs above show the posterior bias (Equation (2.17)) and posterior z-scores
(Equation (2.16)) for σλ and ση

A.8 Further Wayne County applied data analysis results

A.8.1 Age-Race/Ethnicity posterior predictive checks

A.8.2 Rootogram

A.8.3 Tables for posterior summaries for estimands of interest

Table A.5: This table presents posterior summary statistics for the Wayne-County estimands of
interest. Post. mean stands for Posterior Mean, and MCSE stands for Monte Carlo Standard Error,
which is the standard error in the posterior estimator, which can be estimated assuming that the
MCMC central limit theorem holds. See Betancourt and Girolami (2015) and Vehtari et al. (2020)
for more details

Post. 10% Post. 90% Post.

Estimand Model Mean MCSE quant. MCSE quant. MCSE

exp
(
(αλ)Blacks Joint 3.93 1.28e-02 3.16 1.40e-02 4.76 2.06e-02

−(αλ)Whites
)

Complete Case model 3.56 1.02e-02 2.89 1.09e-02 4.29 1.79e-02

Ad-Hoc MI 2.96 1.80e-03 2.43 1.60e-03 3.52 2.15e-03

Gibbs MI 3.49 1.75e-03 2.78 1.84e-03 4.24 2.59e-03

exp
(
(αλ)Hispanics/Latinos Joint 2.10 6.34e-03 1.65 6.39e-03 2.59 8.22e-03
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Post. 10% Post. 90% Post.

Estimand Model Mean MCSE quant. MCSE quant. MCSE

−(αλ)Whites
)

Complete Case model 1.93 4.35e-03 1.58 4.66e-03 2.29 8.52e-03

Ad-Hoc MI 1.67 1.83e-03 1.35 1.72e-03 2.01 1.55e-03

Gibbs MI 2.09 3.22e-03 1.65 2.62e-03 2.56 3.87e-03

exp
(
(αλ)Others Joint 8.88 4.78e-02 6.09 5.51e-02 11.81 6.13e-02

−(αλ)Whites
)

Complete Case model 5.21 1.30e-02 4.26 1.55e-02 6.22 1.91e-02

Ad-Hoc MI 4.08 2.75e-03 3.32 2.52e-03 4.90 2.79e-03

Gibbs MI 5.27 5.03e-03 4.18 4.14e-03 6.42 4.88e-03

exp
(
(αλ) Asians/

Pacific
Islanders

Joint 1.35 4.79e-03 1.01 5.14e-03 1.73 7.37e-03

−(αλ)Whites
)

Complete Case model 1.29 3.30e-03 1.00 3.59e-03 1.61 6.06e-03

Ad-Hoc MI 1.21 1.98e-03 0.96 1.63e-03 1.48 2.43e-03

Gibbs MI 1.66 4.44e-03 1.22 3.10e-03 2.15 6.17e-03

SIBlacks Joint 1.59 6.62e-04 1.55 1.20e-03 1.64 7.33e-04

Complete Case model 1.58 8.02e-05 1.57 1.44e-04 1.60 1.53e-04

Ad-Hoc MI 1.56 1.47e-04 1.55 1.63e-04 1.57 1.37e-04

Gibbs MI 1.60 1.65e-04 1.58 1.72e-04 1.61 1.65e-04

SIHispanics/Latinos Joint 1.16 1.59e-03 1.02 1.55e-03 1.30 2.20e-03

Complete Case model 1.17 3.29e-04 1.12 6.04e-04 1.23 6.36e-04

Ad-Hoc MI 1.15 7.02e-04 1.10 6.59e-04 1.20 7.41e-04

Gibbs MI 1.23 9.89e-04 1.17 1.05e-03 1.28 1.01e-03

SIOthers Joint 4.64 1.81e-02 3.50 2.24e-02 5.64 1.38e-02

Complete Case model 3.06 8.03e-04 2.93 1.33e-03 3.19 1.77e-03

Ad-Hoc MI 2.68 1.21e-03 2.57 1.03e-03 2.80 1.38e-03

Gibbs MI 3.15 2.40e-03 3.01 NA 3.28 2.69e-03

SI Asians/
Pacific

Islanders

Joint 0.61 1.09e-03 0.53 4.95e-04 0.71 2.52e-03

Complete Case model 0.65 3.27e-04 0.60 7.57e-04 0.71 7.64e-04

Ad-Hoc MI 0.66 8.58e-04 0.61 8.63e-04 0.72 9.36e-04

Gibbs MI 0.72 1.14e-03 0.66 NA 0.78 1.34e-03

SIWhites Joint 0.46 4.25e-04 0.44 3.98e-04 0.49 4.65e-04

Complete Case model 0.52 5.20e-05 0.52 7.63e-05 0.53 1.08e-04

Ad-Hoc MI 0.55 1.00e-04 0.54 9.79e-05 0.56 1.02e-04

Gibbs MI 0.50 9.26e-05 0.49 1.11e-04 0.51 8.00e-05

IBlacks/IWhites Joint 3.01 2.86e-03 2.84 2.98e-03 3.19 3.31e-03

149



Post. 10% Post. 90% Post.

Estimand Model Mean MCSE quant. MCSE quant. MCSE

Complete Case model 2.63 3.77e-04 2.57 5.53e-04 2.70 7.52e-04

Ad-Hoc MI 2.49 6.53e-04 2.44 6.89e-04 2.55 6.51e-04

Gibbs MI 2.79 7.12e-04 2.73 6.31e-04 2.85 8.37e-04

IHispanics/Latinos/ Joint 1.69 3.26e-03 1.47 3.26e-03 1.92 4.36e-03

IWhites Complete Case model 1.50 4.66e-04 1.42 9.17e-04 1.58 1.13e-03

Ad-Hoc MI 1.42 9.31e-04 1.35 9.26e-04 1.49 9.86e-04

Gibbs MI 1.66 1.43e-03 1.57 1.44e-03 1.74 1.50e-03

IOthers/IWhites Joint 6.55 2.96e-02 4.74 3.24e-02 8.12 2.06e-02

Complete Case model 3.78 1.11e-03 3.60 2.05e-03 3.96 2.31e-03

Ad-Hoc MI 3.20 1.67e-03 3.04 1.40e-03 3.35 1.90e-03

Gibbs MI 4.10 3.36e-03 3.90 NA 4.30 4.10e-03

I Asians/
Pacific

Islanders

/ Joint 1.08 2.59e-03 0.92 1.60e-03 1.27 5.65e-03

IWhites Complete Case model 1.01 5.26e-04 0.92 1.04e-03 1.10 1.02e-03

Ad-Hoc MI 0.99 1.32e-03 0.91 NA 1.07 1.39e-03

Gibbs MI 1.18 1.89e-03 1.08 NA 1.28 2.25e-03

Table A.6: The table shows sampling efficiency for population estimands of interest presented
in table A.5. ESS stands for effective sample size; Bulk ESS and Tail ESS are measures of the
equivalent number of independent samples generated from a MCMC procedure. See Vehtari et al.
(2020) for more detail. Bulk and Tail ESS efficiency are the Bulk and Tail ESS figures divided by
the total number of MCMC samples, which is 16, 000. As noted in Vehtari et al. (2020) MCMC
samplers may generate Tail and Bulk ESS values greater than the total number of samples.

Estimand Model R̂ Bulk Tail Bulk Tail

ESS ESS ESS eff. ESS eff.

exp
(
(αλ)Blacks Joint 1.00 2465 4753 0.15 0.30

−(αλ)Whites
)

Complete Case model 1.00 3037 5645 0.19 0.35

Ad-Hoc MI 1.01 57036 223009 0.07 0.28

Gibbs MI 1.00 114009 259368 0.14 0.32

exp
(
(αλ)Hispanics/Latinos Joint 1.00 3506 6994 0.22 0.44

−(αλ)Whites
)

Complete Case model 1.00 4440 6910 0.28 0.43

Ad-Hoc MI 1.01 19965 91952 0.02 0.11

Gibbs MI 1.02 12435 68983 0.02 0.09
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Estimand Model R̂ Bulk Tail Bulk Tail

ESS ESS ESS eff. ESS eff.

exp
(
(αλ)Others Joint 1.00 2098 4315 0.13 0.27

−(αλ)Whites
)

Complete Case model 1.00 3742 6528 0.23 0.41

Ad-Hoc MI 1.01 51519 256045 0.06 0.32

Gibbs MI 1.01 30320 220330 0.04 0.28

exp
(
(αλ) Asians/

Pacific
Islanders

Joint 1.00 3850 7799 0.24 0.49

−(αλ)Whites
)

Complete Case model 1.00 5511 8283 0.34 0.52

Ad-Hoc MI 1.02 11078 45632 0.01 0.06

Gibbs MI 1.03 7298 30332 0.01 0.04

SIBlacks Joint 1.00 2531 4877 0.16 0.30

Complete Case model 1.00 16204 14672 1.01 0.92

Ad-Hoc MI 1.05 4322 15046 0.01 0.02

Gibbs MI 1.06 3490 13738 0.00 0.02

SIHispanics/Latinos Joint 1.00 4523 9442 0.28 0.59

Complete Case model 1.00 16596 12657 1.04 0.79

Ad-Hoc MI 1.07 3392 14038 0.00 0.02

Gibbs MI 1.12 1990 0.00 NA

SIOthers Joint 1.00 2034 4928 0.13 0.31

Complete Case model 1.00 16338 11881 1.02 0.74

Ad-Hoc MI 1.04 5584 18672 0.01 0.02

Gibbs MI 1.12 1938 0.00 NA

SI Asians/
Pacific

Islanders

Joint 1.00 6412 6513 0.40 0.41

Complete Case model 1.00 17496 11891 1.09 0.74

Ad-Hoc MI 1.10 2439 0.00 NA

Gibbs MI 1.15 1673 0.00 NA

SIWhites Joint 1.00 1722 5572 0.11 0.35

Complete Case model 1.00 16277 13527 1.02 0.85

Ad-Hoc MI 1.05 4083 17557 0.01 0.02

Gibbs MI 1.05 4488 0.01 NA

IBlacks/IWhites Joint 1.00 2197 5606 0.14 0.35

Complete Case model 1.00 16184 13675 1.01 0.85

Ad-Hoc MI 1.05 4225 16200 0.01 0.02

Gibbs MI 1.05 4673 0.01 NA
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Estimand Model R̂ Bulk Tail Bulk Tail

ESS ESS ESS eff. ESS eff.

IHispanics/Latinos/ Joint 1.00 2928 6147 0.18 0.38

IWhites Complete Case model 1.00 16631 12370 1.04 0.77

Ad-Hoc MI 1.06 3557 14586 0.00 0.02

Gibbs MI 1.11 2144 0.00 NA

IOthers/IWhites Joint 1.00 1933 4788 0.12 0.30

Complete Case model 1.00 16306 11978 1.02 0.75

Ad-Hoc MI 1.04 5156 0.01 NA

Gibbs MI 1.11 2114 0.00 NA

I Asians/
Pacific

Islanders

/ Joint 1.00 3827 6402 0.24 0.40

IWhites Complete Case model 1.00 17423 11926 1.09 0.75

Ad-Hoc MI 1.10 2447 0.00 NA

Gibbs MI 1.14 1731 0.00 NA
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Table A.7: The table shows the posterior means, 80% credible interval endpoints and the Monte
Carlo standard errors of these estimates. CC stands for the complete-case model while J stands for
the joint model.

Post. 10% Post. 90% Post.

Estimand Mean MCSE quant. MCSE quant. MCSE

ICC
Blacks/IJ

Blacks 0.81 3.50e-04 0.79 3.55e-04 0.84 5.80e-04

ICC
Hispanics/Latinos/IJ

Hispanics/Latinos 0.83 1.14e-03 0.73 1.14e-03 0.94 1.70e-03

ICC
Others/IJ

Others 0.55 2.41e-03 0.44 1.36e-03 0.71 4.26e-03

ICC
Asians/
Pacific

Islanders

/IJ
Asians/
Pacific

Islanders

0.88 1.42e-03 0.73 2.50e-03 1.03 1.71e-03

ICC
Whites/IJ

Whites 0.93 8.51e-04 0.88 7.85e-04 0.98 7.79e-04

P (Race observed)Blacks 0.85 7.55e-04 0.81 7.25e-04 0.91 1.35e-03

P (Race observed)Hispanics/Latinos 0.87 8.63e-04 0.78 1.43e-03 0.95 6.59e-04

P (Race observed)Others 0.58 2.93e-03 0.45 1.20e-03 0.77 5.31e-03

P (Race observed) Asians/
Pacific

Islanders

0.90 8.25e-04 0.81 2.36e-03 0.97 3.80e-04

P (Race observed)Whites 0.94 7.09e-04 0.89 8.70e-04 0.98 4.33e-04
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Figure A.8: Posterior predictive checks for cumulative incidence by age group by race for Blacks
and Whites.
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Figure A.9: Posterior predictive rootogram for missing case counts.
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A.9 Stan code for binomial likelihood

The following Stan code computes the likelihood related to the following generative model using
an efficient dynamic programming algorithm :

Yij ∼ Binomial(Eij, θij)

Xij|Yij ∼ Binomial(Yij, pij)

after marginalizing over all combinations of Yij such that
∑

j Yij = T where T is the total identified
cases of disease in stratum i, a known quantity.

The code was derived from Carpenter (2018).

f u n c t i o n s {
r e a l b i n o m i a l 2 l p m f ( i n t y obs , i n t y miss ,

r e a l p , r e a l t h e t a , i n t E ) {
r e t u r n b i n o m i a l l p m f ( y obs | y miss , p )

+ b i n o m i a l l p m f ( y m i s s | E , t h e t a ) ;
}
r e a l m i s s l p m f ( i n t [ ] y , i n t n miss ,

v e c t o r p , v e c t o r t h e t a ,
i n t [ ] E ) {

i n t N = rows ( t h e t a ) ;
r e a l a l p h a [N + 1 , n m i s s + 1 ] ;

/ / a l p h a [ n + 1 , t o t + 1 ] = l o g p of t o t m i s s i n g c a s e s
/ / d i s t r i b u t e d among f i r s t n c a t e g o r i e s

a l p h a [ 1 , 1 : ( n m i s s + 1 ) ] = r e p a r r a y ( 0 , n m i s s + 1 ) ;
f o r ( n i n 1 :N) {

/ / t o t = 0
a l p h a [ n + 1 , 1 ] = a l p h a [ n , 1 ]

+ b i n o m i a l 2 l p m f ( y [ n ] | y [ n ] , p [ n ] , t h e t a [ n ] , E [ n ] ) ;

/ / 0 < t o t < n

f o r ( t o t i n 1 : n m i s s ) {
i f ( n > 1) {

v e c t o r [ t o t + 1 ] vec ;
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f o r ( i i n 1 : ( t o t + 1 ) ) {
vec [ i ] = a l p h a [ n , i ]
+ b i n o m i a l 2 l p m f ( y [ n ] |

y [ n ] + t o t − ( i − 1 ) ,
p [ n ] , t h e t a [ n ] , E [ n ] ) ;

}
a l p h a [ n + 1 , t o t + 1 ] = log sum exp ( vec ) ;

} e l s e {
a l p h a [ n + 1 , t o t + 1 ]
= b i n o m i a l 2 l p m f ( y [ n ] | y [ n ]
+ t o t , p [ n ] , t h e t a [ n ] , E [ n ] ) ;

}
}

}
r e t u r n a l p h a [N + 1 , n m i s s + 1 ] ;

}
}

A.10 Extensions to current model

A.10.1 Dynamic disease models

Suppose we collect information from multiple time periods, indexed by 1 ≤ t ≤ T . Then our
observations are of the formXitjg,Mitg. Following the logic for dynamic infectious disease models
outlined in Held and Paul (2012); Meyer and Held (2014); Bauer and Wakefield (2018); Wakefield
et al. (2019), suppose that wg,g′ are known weights, as in Bauer and Wakefield (2018) and let the
observational model be of the form:

Yi1jg ∼ Poisson(λ1jgEijg)

Xi1jg|Yi1jg ∼ Binomial(Yi1jg, p1jg)

Yitjg|Yt−1,g ∼ Poisson(λtjgEijg + βtjg
∑

j′ Yi,t−1,j′,g + γtjg
∑

g′ wg,g′
∑

j′,i′ Yi′,t−1,j′,g′)

Xitjg|Yitjg ∼ Binomial(Yitjg, ptjg)
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which leads to an observational model of

Xitjg|Yt−1,g ∼ Poisson(ptjgλtjgEijg + ptjgβtjg
∑

j′ Yi,t−1,j′,g

+ ptjgγtjg
∑

g′ wg,g′
∑

j′,i′ Yi′,t−1,j′,g′)

Mitg|Yt−1,g ∼ Poisson(
∑

j(1− ptjg)λtjgEijg + (1− ptjg)βtjg
∑

j′ Yi,t−1,j′,g

+ (1− ptjg)γtjg
∑

g′ wg,g′
∑

j′,i′ Yi′,t−1,j′,g′)

Regressions of Xitjg on Eijg,
∑

j′ Yi,t−1,j′,g stratified by j, t, g that include an intercept will yield
unbiased estimators for ptjgλtjg, ptjgβtjg, ptjgγtjg and regressions of Mitg on Eitg,

∑
j′ Yi,t−1,j′,g

with an intercept, will yield unbiased estimators of (1 − pt1g)λt1g, . . . , (1 − pt1g)λtJg,
∑

j(1 −
ptjg)βtjg,

∑
j ptjgγtjg, provided all design matrices are full column rank. Using the same logic

set out in theorem 1, the model is identifiable. Extensions to negative binomial likelihoods are
also identifiable, and straightforward given the code in Appendix A.9. Note we can add stratum
specific transmission effects as well provided the design matrix formed by combining all stratified
regressions into a single regression model is full column rank.

A.10.2 Multivariate missing categorical data

Suppose we have observed the quintet (Un, Cn, R
C
n , Dn, R

D
n , Sn) for each person in a large popu-

lation with total size E in a geographic area g, where Un is an indicator for a positive test result for
a given disease, Cn is a categorical variable with J levels coded Cn ∈ {1, . . . , J}, RC

n is a binary
variable equal to 1 if Cn is observed, and 0 otherwise. Dn is a categorical variable with M levels
coded Dn ∈ {1, . . . ,M}, RD

n is a binary variable equal to 1 if Dn is observed, and 0 otherwise
Sn is stratum information coded Sn ∈ {1, . . . , I}. To make the problem more concrete, we will
connect the notation to the problem of missing race and/or ethnicity data in COVID-19 case data.
In the context of COVID-19 data, Un is an indicator for a positive COVID-19 polymerase chain
reaction (PCR) result, and Cn is a categorical variable encoding race information and Dn is a cat-
egorical variable encoding ethnicity information. Sn is additional information collected with each
positive PCR test, like the patient sex at birth and age in years, while the geographic area could be
a census tract, a zip code, or a larger area like a Public Use Microdata Area (hereafter referred to
as PUMA).

Let the variable Yijm be the total cases within a stratum defined as all units for which Sn = i,
Cn = j, and Dn = m, more explicitly,

Yijm =
∑

{n |Sn=i,Cn=j,Dn=m}

Un,
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and assume that these cases are conditionally independent Poisson distributed random variables
with rate µijm,

Yijm|µijm ∼ Poisson(µijm).

Let the set of Un be U . Then we further assume that RC
n are conditionally independent, Bernoulli

distributed random variables:

RC
n |pSn,Cn,Dn ,∼ Bernoulli(pSn,Cn,Dn),

where pSn,Cn,Dn is equal to pijm if Sn = i and Cn = j and Dn = m.
Let RD

n |RC
n be conditionally iid Bernoulli random variables:

RD
n |RC

n = r, qSn,Cn,Dn ,∼ Bernoulli(qSn,Cn,Dn,r),

where pSn,Cn,Dn,r = qijmr

Then let the random vector X⃗ijm be the cases that are in stratum Sn = i, Cn = j and Dn = m,
summarized by their respective missingness pattern in (RC

n , R
D
n ):

X⃗ijm|U =
∑

{n |Sn=i,Cn=j,Dn=m,Un=1}

((1−RC
n )R

D
n , (1−RC

n )(1−RD
n ), R

C
nR

D
n , R

C
n (1−RD

n ))

By the fact that RC
n are conditionally independent Bernoulli distributed random variables and are

identically distributed within a strata defined as (Sn = i, Cn = j,Dn = m), and that RD
n |RC

n = r

are conditionally independent Bernoulli distributed random variables ID within a strata (Sn =

i, Cn = j,Dn = m,RC
n = r) the following distributional equivalence holds:

X⃗ijm|U
d
= X⃗ijm|Yijm,

and, furthermore,

X⃗ijm|Yijm, pijm, qijm0, qijm1 ∼ Multinomial(Yijm, ((1− pijm)qijm0, (1− pijm)(1− qijm0),

pijmqijm1, pijm(1− qijm1)

Let Wij be the cases for which we do not observe Dn, but for which we do observe Cn:

Wij|U =
M∑

m=1

(X⃗ijm)4,
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and let Zim be the cases for which we do not observe Cn, but for which we do observe Dn:

Zim|U =
J∑

j=1

(X⃗ijm)1,

and let Ti be the cases for which we observe neither Cn nor Dn:

Ti|U =
J∑

j=1

(X⃗ijm)2.

Given that Yijm are conditionally independent with means µijm, then we can use results from
Poisson process theory to show that

(X⃗ijm)3 ∼ Poisson(pijmqijm1µijm),

while

Wij ∼ Poisson(
M∑

m=1

pijm(1− qijm1)µijm),

and

Zim ∼ Poisson(
J∑

j=1

(1− pijm)qijm0µijm).

Finally,

Ti ∼ Poisson(
J∑

j=1

M∑
m=1

(1− pijm)(1− qijm0)µijm).

A.10.2.1 Modeling without stratum information

Suppose M = 2 and that we observe population counts

Eij1 =
E∑

n=1

1Sn=i1Cn=j1Dn=1

and

Ei+2 =
J∑

j=1

E∑
n=1

1Sn=i1Cn=j1Dn=2
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If we assume that µij1 = λjEij1, µij2 = αEij2∀j and that pij1 = pj, ∀i and pij2 = ν∀j, qij1r = qjr

and qij2r = βr∀j, then the observed data model is:(
X⃗ij1

)
3
∼ Poisson (pjqj1λjEij1) ,∑

j

(
X⃗ij2

)
3
∼ Poisson

(∑
j

νβ1αEij2

)
,

∑
j

Wij ∼ Poisson

(∑
j

pj (1− qj1)λjEij1 + ν (1− β1)αEij2

)
,

Zi1 ∼ Poisson

(
J∑

j=1

(1− pj) qj0λjEij1

)
,

Zi2 ∼ Poisson

(
J∑

j=1

(1− ν) β0αEij2

)
,

(A.69)

which simplifies to(
X⃗ij1

)
3
∼ Poisson (pjqj1λjEij1) ,∑

j

(
X⃗ij2

)
3
∼ Poisson (νβ1αEi+2) ,

∑
j

Wij ∼ Poisson

(∑
j

pj (1− qj1)λjEij1 + ν (1− β1)αEi+2

)
,

Zi1 ∼ Poisson

(
J∑

j=1

(1− pj) qj0λjEij1

)
,

Zi2 ∼ Poisson ((1− ν) β0αEi+2) ,

Ti ∼ Poisson

(
J∑

j=1

(1− pj) (1− qj0)λjEij1 + (1− ν) (1− β0)αEi+2

)
.

(A.70)

This formulation explicitly throws away information, namely in the observed counts (X⃗ij2)3 and
Wij , both of which are observed, but for which we do not have Eij2.

The distinction between groups 1 and 2 is unnecessary, as can be seen by treating the group
M = 2 as, say, group j = J + 1, and setting

λJ+1 = α, pJ+1 = ν, qJ+1,0 = β0, qJ+1,1 = β1

and defining Eij as Eij = Eij1 for j ∈ [1, . . . , J ] and EiJ+1 = Ei+2. Finally, let Zi = Zi1 + Zi2
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We can then rewrite the above equations more succinctly(
X⃗ij1

)
3
∼ Poisson (pjqj1λjEij) , j ∈ [1, . . . , J + 1]

∑
j

Wij ∼ Poisson

(
J+1∑
j=1

pj (1− qj1)λjEij

)
,

Zi ∼ Poisson

(
J+1∑
j=1

(1− pj) qj0λjEij

)
,

Ti ∼ Poisson

(
J+1∑
j=1

(1− pj) (1− qj0)λjEij

)
.

(A.71)

We can design consistent estimators for λj for j ∈ [1, . . . , J +1], provided the I×J +1 matrix
of population counts E with (i, j)th element Eij1 for all i and j ∈ [1, . . . , J ] and (i, j)th element
Ei+2 for all i but j = J + 1.

One wonders if the better model would be

E⃗i2 ∼ Multinomial(Ei+2|ϕ⃗i),

(X⃗ij1)3 ∼ Poisson(pjqj1λjEij1),

(X⃗ij2)3 ∼ Poisson(νβ1α(E⃗i2)j),

Wij ∼ Poisson(pj(1− qj1)λjEij1 + ν(1− β1)α(E⃗i2)j),

Zi1 ∼ Poisson(
J∑

j=1

(1− pj)qj0λjEij1),

Zi2 ∼ Poisson((1− ν)β0α
J∑

j=1

Eij2),

Ti ∼ Poisson(
J∑

j=1

(1− pj)(1− qj0)λjEij1 + (1− ν)(1− β0)α
J∑

j=1

Eij2).

(A.72)

though the increase in dimensionality is quite staggering, as would be the integration over the space
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of E⃗i2 Another option might be

E⃗i2 ∼ Multinomial(Ei+2|ϕ⃗i),

(X⃗ij1)3 ∼ Poisson(pjqj1λjEij1),

(X⃗ij2)3 ∼ Poisson(νβ1α(ϕ⃗i)jEi+2),

Wij ∼ Poisson(
∑
j

pj(1− qj1)λjEij1 + ν(1− β1)α(ϕ⃗i)jEi+2),

Zi1 ∼ Poisson(
J∑

j=1

(1− pj)qj0λjEij1),

Zi2 ∼ Poisson((1− ν)β0α
J∑

j=1

Eij2),

Ti ∼ Poisson(
J∑

j=1

(1− pj)(1− qj0)λjEij1 + (1− ν)(1− β0)α
J∑

j=1

Eij2).

(A.73)

where E⃗i2 are observed in national surveys subsequent to the Decennial census.

A.10.3 Multivariate Poisson model

A key assumption of all models is that latent disease cases Yij and Yij′ are conditionally inde-
pendent given the data-generating parameters λj . However, this may not hold. To that end, we
can induce positive dependence between the latent disease cases via an unobserved shared Poisson
random variable.

A.10.3.1 Preliminaries

A useful expression to turn infinite series into finite series is Dobiński’s formula Weisstein:

n∑
ℓ=1

S(n, ℓ)λℓ = e−λ

∞∑
k=1

kn

k!
λk (A.74)

where S(n, k) is Stirling number of the second kind, which measures the number of ways of
partitioning an n-element set into k non-empty subsets. The simple recurrence relation

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k)

when used with dynamic programming with cells can yield fast calculation.
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A.10.3.2 Alternative generative model

Let λj, βj > 0 for all j and λ0 > 0.

Yi0 ∼ Poisson(λ0)

Yij|Yi0 ∼ Poisson(Eijλj + βjYi0) ∀j ∈ {1, . . . , J}

Xij|Yij ∼ Binomial(Yij, pj)

Leads to the observed data model, with Mi|Yi0 =
∑

j Yij|Yi0 −Xij|Yi0,:

Yi0 ∼ Poisson(λ0)

Xij|Yi0 ∼ Poisson(pj(Eijλj + βjYi0))

Mi|Yi0 ∼ Poisson(
∑
j

Eij(1− pj)λj +
∑
j

(1− pj)βjYi0))

It turns out that the joint marginal distribution for {Xij,Mi} has an analytic, finite series represen-
tation: We derive the distribution for J = 2: Let pjλj = vj , (1 − pj)λj = uj , and let pjβj = bj ,
(1− pj)βj = cj . Then the marginal distribution pXi1,Xi2,Mi

(x1, x2,m) is :

e−(Ei1(v1+u1)+Ei2(v2+u2)+λ0)

x1!x2!m!

∞∑
k=0

(Ei1v1 + b1k)
x1 (Ei2v2 + b2k)

x2 (
∑
j

Eijuj + k
∑
j

cj)
m (λ0e−(b1+c1+b2+c2))k

k!

=
e−(Ei1(v1+u1)+Ei2(v2+u2)+λ0)

x1!x2!m!

∞∑
k=0

x1∑
n=0

(x1

n

)
(Ei1v1)

x1−n(b1k)
n

x2∑
ℓ=0

(x2

ℓ

)
(Ei2v2)

x2−ℓ(b2k)
ℓ

m∑
q=0

(m
q

)
(
∑
j

Eijuj)
m−q(k

∑
j

cj)
q (λ0e−(b1+c1+b2+c2))k

k!

=
e−(Ei1(v1+u1)+Ei2(v2+u2)+λ0)

x1!x2!m!

x1∑
n=0

(x1

n

)
(Ei1v1)

x1−n(b1)
n

x2∑
ℓ=0

(x2

ℓ

)
(Ei2v2)

x2−ℓ(b2)
ℓ

m∑
q=0

(m
q

)
(
∑
j

Eijuj)
m−q(

∑
j

cj)
q

∞∑
k=0

(λ0e−(b1+c1+b2+c2))k

k!
kn+ℓ+q

=
e−(Ei1(v1+u1)+Ei2(v2+u2)+λ0)+λ0e

−(b1+c1+b2+c2)

x1!x2!m!

x1∑
n=0

(x1

n

)
(Ei1v1)

x1−n(b1)
n

x2∑
ℓ=0

(x2

ℓ

)
(Ei2v2)

x2−ℓ(b2)
ℓ

m∑
q=0

(m
q

)
(
∑
j

Eijuj)
m−q(

∑
j

cj)
q
n+ℓ+q∑
r=1

(λ0e
−(b1+c1+b2+c2))rS(n+ ℓ+ q, r)

A.10.3.3 Identifiability

In addition to the benefits of being amenable to computation, the parameters are identifiable be-
cause we can design consistent estimators for the parameters. The proof that consistency implies
identifiability is shown on page 57 of Lehmann and Casella (1998), but the short version is that
identifiability is a necessary condition for consistency.

164



Let our observations be (xi1, . . . , xiJ ,mi) for i ∈ {1, . . . , I}, and let Ej be the matrix where the
first column is an I-vector of 1s and the second column is ej , with the ith element is Eij . Define xj

the same way.

E†
jxj = θ̂j (A.75)

Let E be the J+1 column matrix where the first column is the I-vector of 1s and the last J columns
are ej .

E†m = ϕ̂ (A.76)

where A† is the Moore-Penrose inverse of a matrix A.
By the consistency of least squares ϕ̂[j+1]

p→ uj and θ̂j[2]
p→ vj so by the continuous mapping

theorem

θ̂j[2] + ϕ̂[j + 1]
p→ λj (A.77)

Then again by continuous mapping:

θ̂j[2]

θ̂j[2] + ϕ̂[j + 1]

p→ pj (A.78)

By the WLLN

Cov (xj,xk)
p→ bjbkλ0 (A.79)

and again by consistency of the least squares estimator

θ̂j[1]
p→ bjλ0 (A.80)

so by the continuous mapping theorem

Cov (xj,xk)

θ̂k[1]
θ̂j [2]

θ̂j [2]+ϕ̂[j+1]

p→ βj (A.81)

and

Cov (xj,xk)

θ̂j[1]θ̂k[1]

p→ 1

λ0
(A.82)
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In order to get incidence, we use the following estimator:

(θ̂j[2] + ϕ̂[j + 1])

(
1 +

θ̂j[1]/θ̂j[2]∑
iEij

)
(A.83)

A.10.3.4 Properties of the multivariate Poisson

Let Eij = Eik = 1. The covariance for Yij and Yik is βjβkλ0 while the variance is

Var (Yij) = Var (E [Yij|Yi0]) + E [Var (Yij|Yi0)] (A.84)

= Var (λj + βjk) + E [λj + βjk] (A.85)

= β2
jλ0 + λj + βjλ0 (A.86)

Then the correlation between Yij and Yik is

c(βj, βk, λj, λk, λ0) =
βjβkλ0√

β2
jλ0 + λj + βjλ0

√
β2
kλ0 + λk + βkλ0

(A.87)

When βj or βk is zero, the correlation is zero.

lim
βj→∞

lim
βk→∞

c(βj, βk, λj, λk, λ0) → 1 (A.88)

A.10.4 Asymptotic bias when population observed with error

Suppose we have the following generative model:
Let Mi|(Ei1, . . . , EiJ) ∼ Pois(

∑
j Eiju

⋆
j) Suppose we cannot observe Eij but instead observe:

Ẽij
iid∼ Poisson(µj)

such that
E
[
Eij|Ẽij

]
= gjẼij

for gj > 0 What happens when we fit the model

Mi ∼ Pois(
∑

jẼijuj)

The likelihood is:

∑
Imi log(

∑
jẼijuj)−

∑
jẼijuj (A.89)
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The MLEs, û(I)j will be the MLEs of the equation

1

I

∑
Imi log(

∑
jẼijuj)−

1

I

∑
i

∑
jẼijuj (A.90)

which converges a.s. as I → ∞ to

E
[
mi log(

∑
jẼijuj)−

∑
jẼijuj

]
(A.91)

or

E
[
E [mi|ẽi] log(

∑
jẼijuj)−

∑
jẼijuj

]
(A.92)

where ẽi is the J-length vector with j th element Ẽij . Then using the generative model for Mi

above:

E
[∑

jẼijgju
⋆
j log(

∑
jẼijuj)−

∑
jẼijuj

]
(A.93)

Then the set of û(I)j , the sequence of MLEs indexed by I for eq. (A.89), converges a.s. to the set of
uj that maximize eq. (A.93).

∑
jẼijgju

⋆
j log(

∑
jẼijuj)−

∑
jẼijuj (A.94)

We note that the solution

uj = gju
⋆
j (A.95)

maximizes eq. (A.97) for all realizations Ẽij , namely:

∑
jẼijgju

⋆
j log(

∑
jẼijuj)−

∑
jẼijuj ≥

∑
jẼijgju

⋆
j log(

∑
jẼiju

′
j)−

∑
jẼiju

′
j (A.96)

for all u′j ̸= gju
⋆
j . See Wooldridge (1999) for more information.: Monotonicity of the expectation

operator shows that eq. (A.95) maximizes eq. (A.93) as well.

E
[∑

jẼijgju
⋆
j log(

∑
jẼijuj)−

∑
jẼijuj

]
≥ E

[∑
jẼijgju

⋆
j log(

∑
jẼiju

′
j)−

∑
jẼiju

′
j

]
(A.97)

so
û
(I)
j

a.s.→ gju
⋆
j ∀j ∈ {1, . . . , J}
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This implies the following relation:

ûj
ûk

p→ gjuj
gkuk

(A.98)

so

gkûj
gjûk

p→ uj
uk

(A.99)
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APPENDIX B

VE appendix

We define our notation for principal stratification in vaccine efficacy (VE) in section B.1. In section
B.5, we give general properties of the Kruskal rank, and extensions to Kruskal (1977) theorems
that we derived. We apply these extensions in the context of principle stratification for VE in
section B.2. The proof of our main result, Theorem 7, is given in section B.4. These proofs are
based on results in Appendix B.5 and Appendix B.2.

B.1 Notation and definitions

In the following proofs, we have omitted the subscript i from random variables to simplify our
notation. We have also elided conditioning on Xi = x; the proofs shown in Appendix B.4 are
understood to be conditional on Xi = x. Let z be the Nz-category discrete variable taking values
in the set {z1, . . . , zNz} representing treatment, and let Z be treatment assignment. The principal
stratum, SP0 is defined as (S(z1), . . . , S(zNz)), S(zj) ∈ {0, 1}. Let S be the set of principal strata,
which is equal to {0, 1}Nz when there are no monotonicity assumptions; let u ∈ S.

Let the set of treatments be {z1, . . . , zNz}, with z ∈ {z1, . . . , zNz}
Let A have Na levels and take values in the set {1, . . . , Na}. Let P (A | R) be the Na × Nr

matrix with (i, j)th element equal to P (A = i | R = j). Let PNz(A | SP0) be the Na × 2Nz

matrix with (i, j)th element equal to P (A = i | SP0 = ϖNz(j − 1)), and let PNz(S
P0 | R)

be the 2Nz × Nr matrix with (i, j)th element equal to P (SP0 = ϖNz(i − 1) | R = j). Let
P (y | R,Z = z) be the 1 × R matrix with element (1, j)th equal to P (y | R = j, Z = z), and
similarly let PNz(y | SP0 , Z = z) be the 1× 2Nz matrix with element (1, j)th equal to P (y | SP0 =

ϖNz(j − 1), Z = z). Let P (y | R,Z = z, A = k) be the 1×R matrix with (1, j)th element equal
to P (y | R = j, Z = z, A = k), and similarly let PNz(y | SP0 , Z = z, A = k) be the 1 × 2Nz

matrix with element (1, j)th equal to P (y | SP0 = ϖNz(j − 1), Z = z, A = k). Let the matrix
PNz(S | Z, SP0) be in R2Nz×2Nz where column denotes principal stratum SP0 = ϖNz(j − 1) and
row represents a combination (s, z) ∈ {(1, 1), (1, 2), . . . , (1, Nz), (0, 1), . . . , (0, Nz)}, with (i, j)th
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element denoted PNz(S | Z, SP0)ij defined as

PNz(S | Z, SP0)ij = ϖNz(j − 1)i1i≤Nz + (1−ϖNz(j − 1)i−Nz)1i>Nz ,

and let PNz(S̃ | Z, SP0) be in R2Nz×2Nz with (i, j)th element denoted PNz(S̃ | Z, SP0)ij defined:

PNz(S̃ | Z, SP0)ij = sn
ϖNz (j−1)i
S (1− spS)

1−ϖNz (j−1)i1i≤Nz

+ (1− snS)
ϖNz (j−1)i−Nz sp

1−ϖNz (j−1)i−Nz
S 1i>Nz .

Let B+ be the Moore-Penrose inverse of the matrix B, 1m be the m-vector of 1s, 0m be the m-
vector of 0s, and Im be the m×m dimensional identity matrix.

B.2 Kruskal rank properties related to VE

In this section, we show that (a) the Kruskal rank of the matrix PNz(S̃ | Z, SP0) is 3 for Nz ≥ 2

when snS + spS ̸= 1 and (b) the column domains of PNz(S̃ | Z, SP0) are not invariant to column
permutation when snS, spS > 0.5 or snS, spS < 0.5 for Nz ≥ 2.

Lemma 13 (Kruskal rank P2(S̃ | Z, SP0) ). The Kruskal rank of

(0, 0) (1, 0) (0, 1) (1, 1)


1− spS snS 1− spS snS (s = 1, z = 1)

1− spS 1− spS snS snS (s = 1, z = 2)

spS 1− snS spS 1− snS (s = 0, z = 1)

spS spS 1− snS 1− snS (s = 0, z = 2)

(B.1)

is 3 as long as snS + spS ̸= 1.

Proof. All subsets of 3 columns of the matrix P2(S̃ | Z, SP0) are of the form:
a c e

b d f

1− a 1− c 1− e

1− b 1− d 1− f

 . (B.2)

These submatrices have a common maximal minor of

a(d− f)− c(b− f) + e(b− d).
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The quantities a, b, c, d, e, f are the elements of the 2× 3 matrix

[ ]
a c e

b d f (B.3)

in which (a, b)T , (c, d)T , (e, f)T are any 3 columns drawn without replacement from the 2 × 4

submatrix of Equation (B.1):

[ ]
1− spS snS 1− spS snS

1− spS 1− spS snS snS
. (B.4)

These minors are all equal to (up to a factor of −1):

(1− snS − spS)
2,

which can be seen after a brute-force calculation. The minors are nonzero for all snS, spS ∈ [0, 1]

such that snS + spS ̸= 1. Thus, by the determinantal rank definition, all 3 column matrices are
rank 3. In contrast, the determinant of P2(S̃ | Z, SP0) is 0 for all values of snS, spS . Thus by the
definition of Kruskal rank in Definition 3.2.6, kP2(S̃|Z,SP0 ) = 3.

Lemma 14 (Kruskal rank PNz(S̃ | Z, SP0), Nz ≥ 2 ). The Kruskal rank of P (S̃ | Z, SP0) for

Nz ≥ 2 is 3 as long as snS + spS ̸= 1.

Proof. We proceed by induction. For Nz = 2, Lemma 13 shows that the Kruskal rank is 3. Let
Nz = n for n > 2. Recall that Pn(S̃ | Z, SP0) is the 2n× 2n matrix with column j[

sj

1n − sj

]

with the ith element of sj denoted sij and defined as:

sij = sn
ϖn(j−1)i
S (1− spS)

1−ϖn(j−1)i .

The induction hypothesis is that the Kruskal rank of Pn(S̃ | Z, SP0) is 3. The columns of Pn+1(S̃ |
Z, SP0) are of the form 

sj

1− spS

1n − sj

spS
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for j ∈ {1, . . . , 2n}, and 
sj−2n

snS

1n − sj−2n

1− snS


for j ∈ {2n + 1, . . . , 2n+1}. The 3-column submatrices of PNz(S̃ | Z, SP0) made from column
j, ℓ,m indices fall into several classes. When j, ℓ,m ∈ {1, . . . , 2n}, j, ℓ,m ∈ {2n + 1, . . . , 2n+1}
or j, ℓ ∈ {1, . . . , 2n},m ∈ {2n + 1, . . . , 2n+1} \ {j + 2n, ℓ + 2n}, j ∈ {1, . . . , 2n},m, ℓ ∈ {2n +

1, . . . , 2n+1}\{j+2n} all matrices are rank 3 by the induction hypothesis. When j, ℓ ∈ {1, . . . , 2n}
but m ∈ {j + 2n, ℓ+ 2n} the submatrix is

sj sℓ sm−2n

1− spS 1− spS snS

1n − sj 1n − sℓ 1n − sm−2n

spS spS 1− snS

 .

WLOG, let m = j + 2n. This leads to the submatrix:
sj sℓ sj

1− spS 1− spS snS

1n − sj 1n − sℓ 1n − sj

spS spS 1− snS

 .
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The rank of this submatrix is

rank


sj sℓ sj

1− spS 1− spS snS

1n − sj 1n − sℓ 1n − sj

spS spS 1− snS

 = rank


sj sℓ sj

1− spS 1− spS snS

1n − sj 1n − sℓ 1n − sj

1 1 1



= rank


sj sℓ sj

1n − sj 1n − sℓ 1n − sj

1− spS 1− spS snS

0 0 1− snS
1−spS



≥ rank


sj sℓ

1n − sj 1n − sℓ

1− spS 1− spS

0 0

+ rank(1− snS

1− spS

)

= 3.

The inequality follows from Lemma 19. Other scenarios follow similarly.

Lemma 15 (Domain restriction lemma). If snS, spS ∈ [0, 0.5) or snS, spS ∈ (0.5, 1], the matrix

PNz(S̃ | Z, SP0) ∈ R2Nz×2Nz has column domains that are not invariant to column permutation.

Proof. We prove Lemma 15 by induction on Nz. The base case is Nz = 2. Let P be a 4 × 4

permutation matrix and let P2(S̃ | Z, SP0) be

(0, 0) (1, 0) (0, 1) (1, 1)


1− spS snS 1− spS snS (s = 1, z = 1)

1− spS 1− spS snS snS (s = 1, z = 2)

spS 1− snS spS 1− snS (s = 0, z = 1)

spS spS 1− snS 1− snS (s = 0, z = 2)

(B.5)

Recall from the definition in Appendix B.1 that the column indices {1, 2, 3, 4} of P2(S̃ | Z, SP0)

map to the following principal strata SP0: ϖ2(0), ϖ2(1), ϖ2(2), ϖ2(3). In other words, column
index j is mapped to SP0 via the relation ϖ2(j − 1). We consider permutation matrix P without
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loss of generality, and other cases are similarly shown,

P =


0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0


Let C = [0, 1], and let A be one of two half intervals of [0, 1]: [0, 0.5) or (0.5, 1]. Let B = C \ A.
Note that P2(S̃ | Z, SP0) maps C × C to a matrix with elements in C. Let 1 − spS ∈ A and
let snS ∈ B and suppose that the column domains for P2(S̃ | Z, SP0) are not invariant after
permutation by matrix P . Then we have the following domain for the map given by P2(S̃ | Z, SP0):

P2(S̃ | Z, SP0) |A×B: A× B →

(0, 0) (1, 0) (0, 1) (1, 1)


A A A A
A A A A
B B B B
B B B B)

However, we have,

P̄2(S̃ | Z, SP0) |A×B = P2(S̃ | Z, SP0) |A×B P (B.6)

=

(0, 0) (1, 0) (0, 1) (1, 1)


1− spS snS 1− spS snS

1− spS 1− spS snS snS

spS 1− snS spS 1− snS

spS spS 1− snS 1− snS


0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

 (B.7)

=

(0, 0) (1, 0) (0, 1) (1, 1)


snS 1− spS snS 1− spS

snS 1− spS 1− spS snS

1− snS spS 1− snS spS

1− snS spS spS 1− snS

. (B.8)
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But we see that the column domains are invariant after column permutation:

P̄2(S̃ | Z, SP0) |A×B: A× B →

(0, 0) (1, 0) (0, 1) (1, 1)


A A A A (s = 1, z = 1)

A A A A (s = 1, z = 2)

B B B B (s = 0, z = 1)

B B B B (s = 0, z = 2)

In order for the columns P̄2(S̃ | Z, SP0) |A×B to be on the same domain as P2(S̃ | Z, SP0) |A×B, a
necessary and sufficient condition is that snS and 1− spS are on the same domain. In other words,
{snS ∈ A, spS ∈ B} or {snS ∈ B, spS ∈ A}.

Thus P̄2(S̃ | Z, SP0) |A×B maps (snS, spS) to the same space that P2(S̃ | Z, SP0) |A×B. We
contradict our statement that the columns are not invariant to permutation.

The case for Nz > 2. Let Nz = n > 2 and let the column domains of Pn(S̃ | Z, SP0) be not
invariant to permutation. Furthermore suppose that snS, spS ∈ A or snS, spS ∈ B. Then matrix
Pn+1(S̃ | Z, SP0) has columns 

sj

1− spS

1n − sj

spS


for j ∈ {1, . . . , 2n} and 

sj−2n

snS

1n − sj−2n

1− snS


for j ∈ {2n + 1, . . . , 2n+1}. Permuting any two columns j, k ∈ {1, . . . , 2n} or j, k ∈ {2n +

1, . . . , 2n+1} yields different column domains given the induction hypothesis. If j ∈ {1, . . . , 2n}
and k = j + 2n, then the columns are 

sj sj

1− spS snS

1n − sj 1n − sj

spS 1− snS


Let the domain of sj be D, and let Dc = [0, 1]n \ D be the domain of 1n − sj . Then the domains
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are 
D D
A B
Dc Dc

B A


if spS, snS ∈ B and 

D D
B A
Dc Dc

A B


if spS, snS ∈ A. These two columns are not invariant to permutation. Because no two columns
may be interchanged without a change in domain, right multiplying Pn+1(S̃ | Z, SP0) by any
2n+1 × 2n+1 permutation matrix P ̸= In+1 to will yield a matrix with different column domains
than Pn+1(S̃ | Z, SP0).

B.3 Rank properties related to VE

In this section we show that whenNz ≥ 2 the rank of PNz(S̃ | Z, SP0) = Nz+1 when snS+spS ̸=
1.

Lemma 16 (Rank P2(S̃ | Z, SP0) ). The rank of P2(S̃ | Z, SP0), defined in Equation (B.1), is 3 as

long as snS + spS ̸= 1.

Proof. The determinant of P2(S̃ | Z, SP0) is 0. The determinant of the 3-minor M4,4 is (1− snS −
spS)

2 which is nonzero as long as snS + spS ̸= 1.

Lemma 17 (Rank PNz(S̃ | Z, SP0), Nz ≥ 2 ). The rank of P (S̃ | Z, SP0) for Nz ≥ 2 is Nz + 1 as

long as snS + spS ̸= 1.

Proof. We proceed by induction. For Nz = 2, Lemma 16 shows that the rank is 3. Let Nz = n for
n > 2. Recall that Pn(S̃ | Z, SP0) is the 2n× 2n matrix with column j[

sj

1n − sj

]

with the ith element of sj denoted sij and defined as:

sij = sn
ϖn(j−1)i
S (1− spS)

1−ϖn(j−1)i .
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The induction hypothesis is that the rank of Pn(S̃ | Z, SP0) is n + 1. The columns of Pn+1(S̃ |
Z, SP0) are of the form 

sj

1− spS

1n − sj

spS


for j ∈ {1, . . . , 2n}, and 

sj−2n

snS

1n − sj−2n

1− snS


for j ∈ {2n + 1, . . . , 2n+1}. After a row permutation we can express Pn+1(S̃ | Z, SP0) as a block
matrix: Pn(S̃ | Z, SP0) Pn(S̃ | Z, SP0)

(1− spS)1
T
2n snS1

T
2n

spS1
T
2n (1− snS)1

T
2n


Recall that by construction the sum of the ith row with the (i + n)th row of Pn(S̃ | Z, SP0) is 1T

2n

for i ≤ n. Then by Lemma 20, rank
(
Pn+1(S | Z, SP0)

)
is

rank
(
Pn+1(S | Z, SP0)

)
= rank

(
Pn(S | Z, SP0)

)
+ rank

([
snS1

T
2n

(1− snS)1
T
2n

]
−

[
(1− spS)1

T
2n

spS1
T
2n

])
(B.9)

= n+ 1 + 1 (B.10)

given that snS + spS ̸= 1.

B.4 Main results

Proof. Proof of Theorem 7
Define the three way array L with dimensions 2Nz × Na × Nr and (i, j, r)th element P (S̃ =

1i≤Nz , A = a | Z = zi−Nz1i>Nz
, R = r). Recall that the definition of matrix PNz(S̃ | Z, SP0)

requires that column j be [
sj

1Nz − sj

]
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where the ith element of sj is denoted as sij and is defined as:

sij = sn
ϖNz (j−1)i
S (1− spS)

1−ϖNz (j−1)i

Let the matrices PNz(S
P0 | R)T , PNz(A | SP0) be defined as in Appendix B.1. Then

P (S̃ = 1i≤Nz ,A = k | Z = zi−Nz1i>Nz
, R = r) =

2Nz∑
j=1

PNz(S̃ | Z, SP0)i,jPNz(S
P0 | R)Tr,jPNz(A | SP0)k,j.

Given that snS +spS ̸= 1, as shown in Lemma 14, kPNz (S̃|Z,SP0 ) = 3 and rank(PNz(S̃ | Z, SP0)) =

Nz + 1. Furthermore, by assumptions stated in Theorem 7, rank(PNz(S
P0 | R)T ) = 2Nz and

PNz(S
P0 | R)T ∈ RNr×2Nz so by Definition 3.2.6, kPNz (S

P0 |R)T = 2Nz . Given that kPNz (A|SP0 ) ≥
2Nz − 1 as stated in Theorem 7, the conditions in Lemma 4 hold:

min(3, 2Nz) + 2Nz − 1 ≥ 2Nz + 2 (B.11)

min(3, 2Nz − 1) + 2Nz ≥ 2Nz + 2 (B.12)

(B.13)

and

rank(PNz(S | Z, SP0)) + rank(PNz(S
P0 | R)) + rank(PNz(A | SP0)) (B.14)

≥ Nz + 1 + 2Nz + 2Nz − 1 (B.15)

= Nz + 2Nz+1 (B.16)

by the fact that rank(PNz(A | SP0)) ≥ k(PNz (A|SP0 ). Also

Nz + 2Nz+1 − 2(2Nz − 1) = Nz − 1 (B.17)

≥

min(Nz − 2, rank(PNz(A | SP0))− k(PNz (A|SP0 ))

min(Nz − 2, 0)
. (B.18)

Given that PNz(A | SP0) has columns that sum to 1, and PNz(S
P0 | R)T has rows that sum

to 1, we can apply Lemma 4 to the 3-way array L. Applying Lemma 4 yields that the triple-
product decomposition [PNz(S̃ | Z, SP0), PNz(A | SP0), PNz(S

P0 | R)T ] is unique up to a common
column permutation. However, Theorem 7 states the assumption that snS, spS lie in a common
half-interval. By Lemma 15, the only permutation matrix consistent with the column domain
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of PNz(S̃ | Z, SP0) is the identity matrix. We conclude that the 3-way decomposition of L,
[PNz(S̃ | Z, SP0), PNz(A | SP0), PNz(S

P0 | R)T ], is unique. It follows that two different de-
compositions [PNz(S̃ | Z, SP0), PNz(A | SP0), PNz(S

P0 | R)T ] and [PNz(S̃ | Z, SP0)′, PNz(A |
SP0)′, (PNz(S

P0 | R)T )′] yield different Ls. By the fact that L is a complete characterization of
the data distribution P (S̃ = s, A = a | Z = zj, R = r) and Definition 3.2.4 the parameter set
[PNz(S̃ | Z, SP0), PNz(A | SP0), PNz(S

P0 | R)T ] is strictly identifiable.
Define the matrix P (Ỹ | Z,R,A = k) with dimensions Nz × Nr with elements P (Ỹ = y |

R = r, Z = z, A = k)

P (Ỹ | Z,R,A = k)i,r = P (Ỹ = 1 | Z = zi, R = r, A = k).

Let the matrix PNz(Ỹ | Z, SP0 , A = k) be in RNz×2Nz for all k ∈ {1, . . . , Na} with elements

PNz(Ỹ | Z, SP0 , A = k)i,j = ϖNz(j − 1)irY P (Y = 1 | Z = zi, S
P0 = ϖNz(j − 1), A = k)

+ (1− spY )

(B.19)

where rY = spY +snY −1. Then P (Ỹ = 1 | Z = zi, A = k,R = r) =
∑2Nz

j=1 PNz(Ỹ | Z, SP0 , A =

a)i,jPNz(S
P0 | R)j,r which can be represented as matrix multiplication:

P (Ỹ | Z,R,A = a) = PNz(Ỹ | Z, SP0 , A = a)PNz(S
P0 | R) (B.20)

Given our assumption that PNz(S
P0 | R) is full row rank,PNz(S

P0 | R)PNz(S
P0 | R)+ = I2Nz and

P (Ỹ | Z,R,A = a)PNz(S
P0 | R)+ = PNz(Ỹ | Z,A = a, SP0) (B.21)

It then follows the definition of PNz(Ỹ | Z, SP0 , A = a) in Equation (B.19) that spY is identifiable,
as are the parameters rY P (Y = 1 | Z = zj, S

P0 = ϖNz(j−1), A = k) for all zj, j ∈ {1, . . . , 2Nz}
and k.

Let any allowable post-infection outcome vaccine efficacy estimand, necessarily where uj ul =
1, be defined as

VEu
I,jl(k) = 1−

E
[
Y (zj) | SP0 = u,A = k

]
E [Y (zl) | SP0 = u,A = k]

.

By Assumptions 2 to 3 P (Y = 1 | Z = z, SP0 = u,A = k) = P (Y (z) = 1 | SP0 = u,A = k)

for all z ∈ {z1, . . . , zNz} and E
[
Y (z) | SP0 = u,A = k

]
= P (Y (z) = 1 | SP0 = u,A = k).

Note that spY = 1 − PNz(Ỹ | Z, SP0 , A = k)1,1 by our definition of PNz(Ỹ | Z, SP0 , A = k) in
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Equation (B.19). Then

P (Y = 1 | Z = z, SP0 = u,A = k) =
PNz(Ỹ | Z, SP0 , A = k)z,j − PNz(Ỹ | Z, SP0 , A = k)1,1

rY

where j = ϖ−1
Nz
(u) + 1, so VEu

I,jl(k) is identifiable.

Proof. Proof of Corollary 8
By the conditions set forth in Corollary 8 we have that

P (S̃ = 1i≤Nz ,Ã = k | Z = zi−Nz1i>Nz
, R = r) =

2Nz∑
j=1

PNz(S̃ | Z, SP0)i,jPNz(S
P0 | R)Tr,jPNz(Ã | SP0)k,j.

This decomposition holds because of our nondifferential misclassification assumption, namely
Ã ⊥⊥ SP0 , S̃, R, Z | A, which allows for the following complete characterization of Ã | SP0:

P (Ã = k | SP0 = u) =
Nz∑
ℓ=1

P (Ã = k | A = ℓ)P (A = ℓ | SP0 = u).

Recall that snS, spS lie in the same half interval of [0, 1], so by the same logic as Appendix B.4,
the distributions P (S̃ = 1 | Z = z, SP0 = u), P (Ã = k | SP0 = u), P (SP0 = u | R = r)

are identifiable. Define the matrix P (Ỹ | Z,R, Ã = k) with dimensions Nz × Nr with elements
P (Ỹ = y | R = r, Z = z, Ã = k)

P (Ỹ | Z,R, Ã = k)i,r = P (Ỹ = 1 | Z = zi, R = r, Ã = k).

Let the matrix PNz(Ỹ | Z, SP0 , Ã = k) be defined in the same way as Equation (B.19). Then
P (Ỹ = 1 | Z = zi, Ã = k,R = r) =

∑2Nz

j=1 PNz(Ỹ | Z, SP0 , Ã = a)i,jPNz(S
P0 | R)j,r which can

be represented as matrix multiplication:

P (Ỹ | Z,R, Ã = k) = PNz(Ỹ | Z, SP0 , Ã = a)PNz(S
P0 | R) (B.22)

Given our assumption that PNz(S
P0 | R) is full row rank,PNz(S

P0 | R)PNz(S
P0 | R)+ = I2Nz and

P (Ỹ | Z,R, Ã = k)PNz(S
P0 | R)+ = PNz(Ỹ | Z, Ã = k, SP0) (B.23)

It then follows the definition of PNz(Ỹ | Z, SP0 , Ã = k) that spY is identifiable, as are the pa-
rameters rY P (Y = 1 | Z = zj, S

P0 = ϖNz(j − 1), Ã = k) for all j ∈ {1, . . . , 2Nz} and
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k ∈ {1, . . . , Na}.
Let any allowable post-infection outcome vaccine efficacy estimand, necessarily where uj ul =

1, be defined as

VEu
I,jl = 1−

E
[
Y (zj) | SP0 = u

]
E [Y (zl) | SP0 = u]

.

By Assumptions 2 to 3 P (Y = 1 | Z = z, SP0 = u, Ã = k) = P (Y (z) = 1 | SP0 = u, Ã = k)

and E
[
Y (z) | SP0 = u, Ã = k

]
= P (Y (z) = 1 | SP0 = u, Ã = k) for all z ∈ {z1, . . . , zNz}.

Note that spY = 1 − PNz(Ỹ | Z, SP0 , Ã = k)1,1 by our definition of PNz(Ỹ | Z, SP0 , Ã = k) in
Equation (B.19). Then

P (Y = 1 | Z = z, SP0 = u, Ã = k) =
PNz(Ỹ | Z, SP0 , Ã = k)z,j − PNz(Ỹ | Z, SP0 , Ã = k)1,1

rY

where j = ϖ−1
Nz
(u) + 1. Then

VEu
I,jl = 1−

∑
k

(
PNz(Ỹ | Z, SP0 , Ã = k)z,j − PNz(Ỹ | Z, SP0 , Ã = k)1,1

)
P (Ã = k | SP0 = u)∑

k

(
PNz(Ỹ | Z, SP0 , Ã = k)z,l − PNz(Ỹ | Z, SP0 , Ã = k)1,1

)
P (Ã = k | SP0 = u)

.

B.5 Kruskal rank properties

In the section that follows, we use properties and several theorems and lemmas that are proven in
Kruskal (1977). Where appropriate we will indicate on which pages the proofs of the theorems
and lemmas can be found.

Lemma 18 (Rank lemma). Let

HAB(n) = min
card(A′)=n

{rank(A′) + rank(B′)} − n

for an integer n where A′ is an n-column subset of the matrix A and B′ is the same column-index

subset of a matrix B. For any diagonal matrix D ∈ Rn×n with rank δ,

rank(ADBT ) ≥ HAB(δ).

See proof on p. 121 in Kruskal (1977).
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B.5.1 Proof of Lemma 4

Proof. Suppose that L = [A,B,C] and that [Ā, B̄, C̄] is another decomposition of L, where B̄, C̄
satisfy the respective row- and column-sum constraints. Let rB̄, rC̄ be the ranks of B̄ and C̄ re-
spectively. Definition 3.2.5 implies that Adiag(xC)BT = Ādiag(xC̄)B̄T for all x ∈ R1×I . If for
any y ∈ R1×K such that yC̄ = 0 =⇒ yC = 0 then col(C) ⊂ col(C̄), null(C) ⊃ null(C̄), and
rC ≤ rC̄ . If yC̄ = 0 then

Ādiag(yC̄)B̄T = 0 =⇒ Adiag(yC)BT = 0

Recall the definition of HAB(n) from Lemma 18. Kruskal (1977) shows that the condition on the
ranks and Kruskal ranks above imply the following inequalities (proof omitted):

kA ≥ max(R− rB + 2, R− rC + 2), (B.24)

kB ≥ R− rC + 2, (B.25)

kC ≥ R− rB + 2, (B.26)

HAB(n) ≥ R− rC + 2 if n ≥ R− rC + 2 (B.27)

HAC(n) ≥ R− rB + 2 if n ≥ R− rB + 2 (B.28)

HBC(n) ≥ 1 if n ≥ 1 (B.29)

The inequality eq. (B.27) implies that when HAB(n) < R − rC + 2 then n < R − rC + 2. When
n < R − rC + 2, the inequalities eqs. (B.24) to (B.26) and the definition of HAB(n) imply that
HAB(n) = n. Then

0 = rank(Adiag(yC)BT )

≥ HAB(rank(diag(yC))) ≥ 0,

where the second to last inequality comes from Lemma 18 and the last inequality comes from the
definition of HAB(n). This implies yC = 0. Let the function w(y) for a generic vector y return
the number of nonzero entries in the vector y. Let v be any vector such that w(vC̄) ≤ R− K̄0 +1.
Then we’ll show that w(vC) ≤ w(vC̄).

R− rC + 1 ≥ R− K̄0 + 1 ≥ w(vC̄) = rank(diag(vC̄) (B.30)

≥ rank(Adiag(yC̄)B̄T ) = rank(Adiag(yC)BT ) (B.31)

≥ HAB(rank(diag(vC)) = HAB(w(vC)). (B.32)
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The final line implies that HAB(w(vC)) = w(vC), which shows that w(vC̄) ≥ w(vC) when
R− K̄0 + 1 ≥ w(vC̄).

Given this condition, Kruskal’s permutation lemma (proved on page 134 of Kruskal (1977))
shows that for any matrices C and C̄ that satisfy the inequality, C̄ = CPCN where PC is a per-
mutation matrix and N is a diagonal nonsingular scaling matrix. If we have the stronger condition
that every two columns of C are linearly independent then PC and N are unique. Our matrices
satisfy these conditions, so we have that C̄ = CPCN , and a similar argument can be used to show
B̄ = BPBM

Given that we also have the condition that 11×KC = 11×R and 11×KC̄ = 11×R, then this
implies that C̄ = CPC because 11×KC̄ = 11×KCPCN = 11×RN which only equals 11×R if
N = IR×R.

Furthermore, if rB = R, the equation Bν = 1J×1 has a unique solution in ν ∈ RR×1, namely
ν = 1R×1. This implies that M is the identity matrix, as the condition B̄1R×1 = 1J×1 results in:

1J×1 = B̄1R×1 (B.33)

= BPBM1R×1 (B.34)

=⇒ PBM1R×1 = 1R×1. (B.35)

Given that M is a nonsingular diagonal matrix and PB is a permutation matrix, M must be the
identity to solve the equation PBM1R×1 = 1R×1.

We now have C̄ = CPC and B̄ = BPB. We can apply Kruskal’s permutation matrix proof
from pages 129-130 in Kruskal (1977) to show that PC = PB = P . The following two identities
hold for any diagonal scaling matrices M,N , any permutation matrix P , and any vector v:

Mdiag(v)N = diag(vMN) (B.36)

Pdiag(v)P T = diag(vP T ). (B.37)

Given Equations (B.36) to (B.37) and the condition that L = [A,B,C] = [Ā, B̄, C̄], then, for all
vectors v ∈ R1×J ,

Bdiag(vA)CT = B̄diag(vĀ)C̄T (B.38)

= BPdiag(vĀ)P TCT (B.39)

= Bdiag(vĀP T )CT . (B.40)
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The equality Bdiag(vA)CT = Bdiag(vĀP T )CT implies

Bdiag(v(A− ĀP T ))CT = 0 (B.41)

for all v. Furthermore,

0 = rank(Bdiag(v(A− ĀP T ))CT ) (B.42)

≥ HBC(rank(diag(v(A− ĀP T ))) ≥ 0. (B.43)

The last line follows from Lemma 18. Then using the implication from eq. (B.29) that ifHBC(n) <

1 =⇒ n = 0, rank(diag(v(A − ĀP T )) = 0 or v(A − ĀP T ) = 0 for all v. This further implies
that

A = ĀP T

or
Ā = AP.

B.6 Supporting lemmas and definitions from other work

Lemma 19 (Block rank lemmas Tian (2004)). Let A ∈ Rm×n, B ∈ Rm×k, C ∈ Rl×n.

rank

([
A B

C 0

])
= rank(B) + rank(C) + rank((I −BB+)A(I − C+C))

If range(B) ⊆ range(A) and range(CT ) ⊆ range(AT )

rank

([
A B

C D

])
= rank(A) + rank(D − CA+B)

Lemma 20 (Block rank lemma extension). LetA ∈ Rm×n, B ∈ Rm×k, C ∈ Rl×n. If range(CT ) ⊆
range(AT )

rank

([
A A

C D

])
= rank(A) + rank(D − C)

Proof. Given that range(A) ⊆ range(A), we can apply the second block rank lemma from
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Lemma 19 with B = A.

rank

([
A A

C D

])
= rank(A) + rank(D − CA+A).

By supposition, range(CT ) ⊆ range(AT ) and A+A is the projection matrix onto the column space
of AT . Then CA+A = C, and the statement follows.

B.7 Details behind numerical examples

We have three simulation scenarios where we vary the sample size to determine the power: a two-
arm trial to determine vaccine efficacy against severe symptoms, a three-arm trial to determine
relative vaccine efficacy against severe symptoms, and a two-arm trial to determine vaccine efficacy
against transmission. All trials are designed such that the assumptions of Theorem 7 are satisfied,
so the three-arm trial includes 8 study sites, and a categorical covariate with 7 levels, and both two-
arm trials include 4 study sites, and a categorical covariate with 3 levels. Within each scenario,
we allow for the categorical covariate, A, to be measured perfectly or with error. In addition, we
assume a 3-level, pretreatment categorical covariate has been measured for each participant. We
simulate from the parametric model defined in Section 3.3.2, which requires that we specify µr

u,
or the log-odds of belonging to stratum u relative to base stratum u0 for each study site r. Let
the ordered collection of log-odds of being in stratum u relative to stratum u2Nz for the reference
covariate level x = 1 be µr =

(
µr
u1
, µr

u2
, . . . , µr

u
2Nz−1

, 0
)

.
Let softmax be the function from v ∈ RL to the L+1-dimensional probability simplex, defined

elementwise for the ith element as:

softmax(v)i =
evi∑L
l=1 e

vrl

and let softmax−1 be the inverse function from θ ∈ the L + 1-dimensional simplex to RL, where
the ith element, i < L+ 1 is defined as

softmax(θ)−1
i = log(θi)− log(θL+1)

Let θr,xu = P (SP0 = u | R = r,X = x), and let θr,x be the ordered vector (θr,xu1
, θr,xu1

, . . . , θr,xu
2Nz

)

. For the 2-arm trials, the population principal strata proportions are as follows:

θr,1
iid∼ Dirichlet((91, 5, 0.5, 3.5))∀r
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while for the 3-arm trials, the proportions are

θr,1
iid∼ Dirichlet((91, 5, 0.1, 0.1, 0.1, 0.1, 0.1, 3.5))∀r

These parameter settings roughly equate to a cumulative true incidence of 0.05. Recall from
Section 3.3.2 that ηx ∈ R2Nz , so ηxu is the change in log-odds of belonging to principal stratum u

vs. u0 relative to x = 1. We set ηx2Nz = 0 for identifiability. Then let µr
u = softmax−1(θr,1) and

θr,x = softmax (µr
u + ηx) ,

where for all x > 1

ηxi
iid∼ Normal(0, 1), i < 2Nz , ηx2Nz = 0.

Let the Na-vector au,x be defined elementwise as au,xk where au,xk = P (A = k | SP0 = u,X = x).

au,1
iid∼ Dirichlet(21Na)∀u,

and νu = softmax−1(au,1). Then recall that γx ∈ RNa such that γxk is the change in log-odds of
A = k relative to A = k0, and that γxNa

= 0 for identifiability. Then

au,x = softmax (νu + γx) ,

and for all x > 1

γxi
iid∼ Normal(0, 1), i < Na, γ

x
Na

= 0.

Finally, recall that

log
P (Y (zj) = 1 | SP0 = u,A = k,X = x)

P (Y (zj) = 0 | SP0 = u,A = k,X = x)
= αu

j + δuj,k + ωx
j ,

where ωx
j is the change in log-odds of Y (zj) = 1, all else being equal, compared to x = 1.

In all of our simulations, ωx
j = (x − 1) log(1.1) for all j. For the 2-arm trial example, we let

α
(1,1)
1 = log(0.3/0.7), α

(1,1)
2 = log(0.3/0.7) + log(0.4), and δ(1,1)1,k = (k − 1) log(0.925), δ

(1,1)
2,k =

(k − 1) log(0.825). Further, we let α(1,0)
1 = log(0.15/0.85), α(0,1)

2 = log(0.2/0.8), and δ(1,0)1,k =

(k − 1) log(0.925), and δ(0,1)2,k = 0

For the 3-arm trial example, we let α(1,1,1)
1 = log(0.3/0.7), α

(1,1,1)
2 = log(0.3/0.7), α

(1,1,1)
3 =

log(0.3/0.7) + log(0.4), and δ
(1,1,1)
j,k = (k − 1) log(0.925) for j = 1, 2, 3. Further, we

let α
(1,0,1)
1 = log(0.2/0.8), α

(1,0,1)
3 = log(0.1/0.9),α(1,1,0)

1 = log(0.3/0.7), α
(1,1,0)
2 =
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log(0.15/0.85),α(0,1,1)
2 = log(0.25/0.75), α(0,1,1)

3 = log(0.08/0.92), α(0,0,1)
3 = log(0.25/0.75),

α
(0,1,0)
2 = log(0.25/0.75), α

(1,0,0)
1 = log(0.1/0.9) and δuj,k = 0 for all k, u ∈

{(1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)}, and all allowable j
In the 2- and 3-arm trial examples that pertain to inferring vaccine efficacy against severe symp-

toms, we set snS = 0.8, spS = 0.99 which reflects the sensitivity and specificity of a typical PCR
collected via nasopharyngeal swab (Kissler et al., 2021), and snY = 0.99, spS = 0.9 to reflect the
fact that most severe illness caused by the pathogen of interest will be reported, but that there are
many severe illness episodes that are reported that may be caused by other pathogens. These lead
to a true rate of severe illness of 0.01 but a rate of reported severe illness of 0.1. For comparison
Monto et al. (2009) symptom reporting data shows that 10% of participants reported at least one
severe symptom, but the cumulative incidence was 0.07.

For the transmission study, we use the same settings for snS, spS and set snY = snS, spY = spS .
In order to generate Ã | A for each participant, we use the following error model for the three arm
trial:

P (Ã = a | A = a) = 0.5, P (Ã = a+ 1 | A = a) = P (Ã = a− 1 | A = a) = 0.25

for a ∈ {2, . . . , 6}. When a = 1:

P (Ã = a | A = a) = 0.5, P (Ã = a+ 1 | A = a) = 0.5,

and when a = 7

P (Ã = a | A = a) = 0.5, P (Ã = a− 1 | A = a) = 0.5, a = 7.

For the two-arm trials, we generate Ã | A from the following probability model when a = 2:

P (Ã = a | A = a) = 0.875, P (Ã = a+ 1 | A = a) = P (Ã = a− 1 | A = a) = 0.0625.

When a = 1

P (Ã = a | A = a) = 0.95, P (Ã = a+ 1 | A = a) = 0.05,

and when a = 3

P (Ã = a | A = a) = 0.95, P (Ã = a− 1 | A = a) = 0.05.

These distributions were chosen to reflect the fact that detailed pre-season antibody titer measure-
ments are typically available for participants in influenza vaccination trials. Further discretizing

187



the titer measurements reduces the misclassification probabilities in our model. Let the collection
of these conditional probabilities be paNa

For each hypothetical participant in a study site R = r in our study we draw data in the follow-
ing manner

Zi
iid∼ Categorical(

1

Nz

1Nz)

Xi
iid∼ Categorical(

1

3
13)

SP0
i | R = r,X = x

iid∼ Categorical(θr,x)

Ai | SP0 = u,X = x
iid∼ Categorical(au,x)

Yi | SP0 = u,A = k,X = x, Z = j
iid∼ Bernoulli(inv logit(αu

j + δuj,k + ωx))

Ỹi | Y = y
iid∼ Bernoulli(ysnY + (1− y)(1− spY ))

S̃i | SP0 = u, Z = j
iid∼ Bernoulli(ujsnS + (1− uj)(1− spS))

Ãi | A = a
iid∼ Categorical(paNa

)

(B.44)

and we do this for all sites R ∈ {1, . . . , Nr}.
We fit the model defined in Equation (3.11). Recall

Ai | SP0
i = u,Xi = x ∼ Categorical(πu,x) (B.45)

SP0
i | Ri = r,Xi = x ∼ Categorical(ρr,x) (B.46)

Yi(zj) | SP0
i = u,Ai = k,Xi = x ∼ Bernoulli(βu,x

j,k ) (B.47)

We use the following priors:

snS ∼ Beta(0.5, 1, 4, 2)

spS ∼ Beta(0.5, 1, 10, 2)

snY ∼ Beta(0.5, 1, 4, 2)

spY ∼ Beta(0.5, 1, 4, 2)

πu,x
iid∼ Dirichlet(31Na), ∀u, x

ρr,x
iid∼ Dirichlet((80, 1.5, 0.51T

NU−3, 1)
T ), ∀r, x

βu,x
j,k

iid∼ Uniform(0, 1), ∀u, k, x

(B.48)

where Beta(0.5, 1, 4, 2) is the shifted, scaled Beta distribution in which the first two arguments
define the support of the distribution, and the second two parameters are shape parameters. For
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example, for snS this corresponds to χ ∼ Beta(4, 2) and snS = (1− 0.5)χ+ 0.5.
For fitting scenarios in which Covariate homogeneity does not hold, we used a parametric model

for Ai shown in Equation (3.12). It is shown here below

log
P (Ai = k | Ri = r, SP0

i = u,Xi = x)

P (Ai = k0 | Ri = r, SP0
i = u,Xi = x)

= νuk +γ
x
k +γ

u,x
k + ϵu,rk , ϵu,rk ∼ Normal(0, (τuϵ )

2)∀r.

We fix τuϵ → ∞ for all u, resulting in a nonpooled model for ϵ. The following priors are used for
inference:

νuk ∼ Normal(0, 1.72),∀u ∈ {u1, u2, u2Nz}, 1 ≤ k < Na

νuk ∼ Normal(0, 0.52),∀u ̸∈ {u1, u2, u2Nz}, 1 ≤ k < Na

γxk ∼ Normal(0, 0.52), 2 ≤ x ≤ 3, 1 ≤ k < Na

γu,xk ∼ Normal(0, 0.52), 2 ≤ x ≤ 3, 1 ≤ k < Na, u ∈ S \ u0
ϵu,rk ∼ Normal(0, 1), 2 ≤ r ≤ Nr, 1 ≤ k < Na, u ∈ S \ u0.

(B.49)

We use Stan for inference (Team, 2021) using the cmdstanr package (Gabry and Češnovar,
2022) in R (R Core Team, 2022). All models were run for 3,000 warmup and 3,000 post-warmup
iterations; all R̂ statistics (Gelman et al., 2013) were below 1.01, as recommended by Vehtari et al.
(2020). The bulk and tail effective sample sizes were greater than 9% of samples for all models.

Some misspecified models did not achieve R̂ < 1.01. This indicated multimodal posteriors
rather than lack of convergence. The summary of these results is in Table B.1.

Table B.1: Number of simulations with R̂ > 1.01. Null and alternative scenarios are combined,
resulting in 200 simulations for each scenario.

Model Measurements 20,000 40,000 80,000

A Incorrect
A 0 3 58
Ã 0 0 5

A Correct
A 0 0 1
Ã 0 1 2

We did not use these models for inference, as we expect that stronger priors would need to be
used to constrain the models to a single mode.

In order to ensure that our decision rule did not lead to high Type 1 error rates, we simulated
data under the null hypothesis that vaccine efficacy against post-infection outcomes was 0. The
results presented in Table B.2 show that the Type 1 error rates are less that 0.05 for each scenario.
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Table B.2: Type 1 error rates for vaccine efficacy against severe illness designs

Trial A meas. 4,000 20,000 40,000 80,000 120,000

3-arm
A NA NA 0.01 0.05 0.03
Ã NA NA 0.00 0.02 0.00

2-arm
A 0.00 0.01 0.00 0.02 NA
Ã 0.00 0.00 0.01 0.01 NA

The Type 1 error rates for vaccine efficacy against transmission are presented in Table B.3.
None of the Type 1 error rates are statistically significantly greater than 0.05.

Table B.3: Type 1 error rates for vaccine efficacy against transmission designs

A 0.00 0.05 0.03 0.01
Ã 0.00 0.06 0.03 0.05

Table B.4: Power of the test,VES ≊ 0.5, VE(1,1)
I,21 ≊ 0.6 for Nz = 2 for sample sizes of 20,000

through 80,000. Scenarios in which Ai was measured with error denoted by Ã, A otherwise.

Model Measurements 20,000 40,000 80,000

A Incorrect
A 0.44 0.79 0.99
Ã 0.33 0.66 0.87

A Correct
A 0.42 0.64 0.86
Ã 0.36 0.66 0.85

B.8 Alternative identifiability scenarios

Theorem 7 is a set of sufficient conditions for the identifiability of VEI . There are alternative
conditions for identifiability, however, that do not rely on Kruskal rank conditions. The following
is such an example.

Theorem 21 (Two-arm trial, binary covariate). Let Ai be a binary covariate observed for each

participant in a multi-site randomized trail. Suppose Assumptions 1 to 3 hold and that there are

at least five study sites. Given conditions on the covariate distribution conditional on principal

stratum, VEI is identifiable.
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Proof. Let au = P (Ai = 1 | SP0
i = u), ps+kzr = P (S̃i = s, Ai = k | Zi = z,Ri = r), and

rS = snS + spS − 1.

p1+10r = rS(θ
r
(0,1)a

(0,1) + θr(1,1)a
(1,1)) + (1− spS)p++10r

p1+11r = rS(θ
r
(1,0)a(1,0) + θr(1,1)a

(1,1)) + (1− spS)p++11r

(B.50)

and that

θr(0,1) =
p1++0r − (1− spS)

rS
− θr(1,1)

θr(1,0) =
p1++1r − (1− spS)

rS
− θr(1,1)

(B.51)

then

p1+10r = rS(
p1++0r − (1− spS)

rS
a(0,1) + θr(1,1)(a

(1,1) − a(0,1))) + (1− spS)p++10r

p1+11r = rS(
p1++1r − (1− spS)

rS
a(1,0) + θr(1,1)(a

(1,1) − a(1,0))) + (1− spS)p++11r

(B.52)

so

θr(1,1) =

p1+11r−(1−spS)p++11r

rS
− p1++1r−(1−spS)

rS
a(1,0)

(a(1,1) − a(1,0))
(B.53)

and

p1+10r = (p1++0r − (1− spS))a
(0,1) + (p1+11r − (1− spS)p++11r)

a(1,1) − a(0,1)

a(1,1) − a(1,0)

− (p1++1r − (1− spS))a
(1,0)a

(1,1) − a(0,1)

a(1,1) − a(1,0)
+ (1− spS)p++10r

expanding terms

p1+10r = p1++0ra
(0,1) − (1− spS)a

(0,1) + p1+11r
a(1,1) − a(0,1)

a(1,1) − a(1,0)
− (1− spS)p++11r

a(1,1) − a(0,1)

a(1,1) − a(1,0)

− p1++1ra
(1,0)a

(1,1) − a(0,1)

a(1,1) − a(1,0)
+ (1− spS)a

(1,0)a
(1,1) − a(0,1)

a(1,1) − a(1,0)
+ (1− spS)p++10r
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and collecting terms

p1+10r = p1++0ra
(0,1) + p1+11r

a(1,1) − a(0,1)

a(1,1) − a(1,0)
− p1++1ra

(1,0)a
(1,1) − a(0,1)

a(1,1) − a(1,0)

− (1− spS)p++11r
a(1,1) − a(0,1)

a(1,1) − a(1,0)
− (1− spS)a

(0,1) + (1− spS)a
(1,0)a

(1,1) − a(0,1)

a(1,1) − a(1,0)

+ (1− spS)p++10r

Note that p++10r = p++11r so

p1+10r = p1++0ra
(0,1) + p1+11r

a(1,1) − a(0,1)

a(1,1) − a(1,0)
− p1++1ra

(1,0)a
(1,1) − a(0,1)

a(1,1) − a(1,0)

(1− spS)p++11r
a(0,1) − a(1,0)

a(1,1) − a(1,0)
− (1− spS)a

(0,1) + (1− spS)a
(1,0)a

(1,1) − a(0,1)

a(1,1) − a(1,0)

If specificity spS is unknown, we need at least 5 groups to solve the above equations

p1+10r1 − p1+10r5 = (p1++0r1 − p1++0r5)a
(0,1) + (p1+11r1 − p1+11r5)

a(1,1) − a(0,1)

a(1,1) − a(1,0)

− (p1++1r1 − p1++1r5)a
(1,0) a

(1,1) − a(0,1)

a(1,1) − a(1,0)
+ (p++11r1 − p++11r5)(1− spS)

a(0,1) − a(1,0)

a(1,1) − a(1,0)

p1+10r2 − p1+10r5 = (p1++0r2 − p1++0r5)a
(0,1) + (p1+11r2 − p1+11r5)

a(1,1) − a(0,1)

a(1,1) − a(1,0)

− (p1++1r2 − p1++1r5)a
(1,0) a

(1,1) − a(0,1)

a(1,1) − a(1,0)
+ (p++11r2 − p++11r5)(1− spS)

a(0,1) − a(1,0)

a(1,1) − a(1,0)

p1+10r3 − p1+10r5 = (p1++0r3 − p1++0r5)a
(0,1) + (p1+11r3 − p1+11r5)

a(1,1) − a(0,1)

a(1,1) − a(1,0)

− (p1++1r3 − p1++1r5)a
(1,0) a

(1,1) − a(0,1)

a(1,1) − a(1,0)
+ (p++11r3 − p++11r5)(1− spS)

a(0,1) − a(1,0)

a(1,1) − a(1,0)

p1+10r4 − p1+10r5 = (p1++0r4 − p1++0r5)a
(0,1) + (p1+11r4 − p1+11r5)

a(1,1) − a(0,1)

a(1,1) − a(1,0)

− (p1++1r4 − p1++1r5)a
(1,0) a

(1,1) − a(0,1)

a(1,1) − a(1,0)
+ (p++11r4 − p++11r5)(1− spS)

a(0,1) − a(1,0)

a(1,1) − a(1,0)

Let ∆1+10r1 = p1+10r1 − p1+10r5 and other differences similarly defined. This results in the linear
equation

∆1+10r1

∆1+10r2

∆1+10r3

∆1+10r4

 =


∆1++0r1 ∆1+11r1 −∆1++1r1 ∆++11r1

∆1++0r2 ∆1+11r2 −∆1++1r2 ∆++11r2

∆1++0r3 ∆1+11r3 −∆1++1r3 ∆++11r3

∆1++0r4 ∆1+11r4 −∆1++1r4 ∆++11r4




a(0,1)

a(1,1)−a(0,1)

a(1,1)−a(1,0)

a(1,0) a
(1,1)−a(0,1)

a(1,1)−a(1,0)

(1− spS)
a(0,1)−a(1,0)

a(1,1)−a(1,0)

 .
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Provided that the coefficient matrix is invertible, we can solve the equation:
∆1++0r1 ∆1+11r1 −∆1++1r1 ∆++11r1

∆1++0r2 ∆1+11r2 −∆1++1r2 ∆++11r2

∆1++0r3 ∆1+11r3 −∆1++1r3 ∆++11r3

∆1++0r4 ∆1+11r4 −∆1++1r4 ∆++11r4


−1 

∆1+10r1

∆1+10r2

∆1+10r3

∆1+10r4

 =


x1

x2

x3

x4

 .

This yields solutions â(1,0), â(1,1), â(0,1), ŝpS in terms of observable probabilities:

â(0,1) = x1 (B.54)

â(1,0) =
x3
x2

(B.55)

â(1,1) =
x1 − x3/x2
1− x2

(B.56)

ŝpS = 1− x4
x1 + x3 − 2x3

x2

(1− x2)(x1 − x3

x2
)

(B.57)

provided that x2 ̸= 0, x2 ̸= 1, x1 ̸= x3

x2
. These conditions imply that x1 + x3 − 2x3

x2
̸= 0.

With these solutions, we may solve for r̂sθr(1,1), r̂sθr(0,1), r̂sθr(1,0) for all r:

r̂Sθr(1,1) =
(p1+11r − p1++1r

x3

x2
)(1− x2)

x1 + x3 − 2x3

x2

− x4
p++11r +

x3

x2

x1 − x3

x2

(B.58)

r̂Sθr(0,1) = p1++0r − x4
x1 + x3 − 2x3

x2

(1− x2)(x1 − x3

x2
)
−

(p1+11r − p1++1r
x3

x2
)(1− x2)

x1 + x3 − 2x3

x2

+ x4
p++11r +

x3

x2

x1 − x3

x2

r̂Sθr(1,0) = p1++1r − x4
x1 + x3 − 2x3

x2

(1− x2)(x1 − x3

x2
)
−

(p1+11r − p1++1r
x3

x2
)(1− x2)

x1 + x3 − 2x3

x2

+ x4
p++11r +

x3

x2

x1 − x3

x2

(B.59)

and

rS − r̂Sθr(0,0) = p1++1r + p1++0r − 2x4
x1 + x3 − 2x3

x2

(1− x2)(x1 − x3

x2
)

−
(p1+11r − p1++1r

x3

x2
)(1− x2)

x1 + x3 − 2x3

x2

+ x4
p++11r +

x3

x2

x1 − x3

x2

(B.60)
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Finally, let

p0+10r = (1− snS)(θ
r
(0,1)a

(0,1) + θr(1,1)a
(1,1)) + spS(θ

r
(1,0)a

(1,0) + θr(0,0)a
(0,0)) (B.61)

= (1− snS)p++10r + rS(θ
r
(1,0)a

(1,0) + θr(0,0)a
(0,0)) (B.62)

= (1− snS)p++10r + rS(θ
r
(1,0)a

(1,0) + (1− θr(1,0) − θr(1,1) − θr(0,1))a
(0,0)) (B.63)

where we take advantage of θr(0,0) = (1 − θr(1,1) − θr(0,1) − θr(1,0)). Then we can solve system of
equationsp0+10r1 − r̂Sθr1 (1,0)â

(1,0)

p0+10r2 − r̂Sθr2 (1,0)â
(1,0)

p0+10r3 − r̂Sθr3 (1,0)â
(1,0)

 =

p++10r1 1 −r̂Sθr1 (1,0) − r̂Sθr1 (0,1) − r̂Sθr1 (1,1)

p++10r2 1 −r̂Sθr2 (1,0) − r̂Sθr2 (0,1) − r̂Sθr2 (1,1)

p++10r3 1 −r̂Sθr3 (1,0) − r̂Sθr3 (0,1) − r̂Sθr3 (1,1)


(1− snS)

rsa
(0,0)

a(0,0)


(B.64)

as long as

det


p++10r1 1 −r̂Sθr1 (1,0) − r̂Sθr1 (0,1) − r̂Sθr1 (1,1)

p++10r2 1 −r̂Sθr2 (1,0) − r̂Sθr2 (0,1) − r̂Sθr2 (1,1)

p++10r3 1 −r̂Sθr3 (1,0) − r̂Sθr3 (0,1) − r̂Sθr3 (1,1)


 ̸= 0

p++10r1 1 −r̂Sθr1 (1,0) − r̂Sθr1 (0,1) − r̂Sθr1 (1,1)

p++10r2 1 −r̂Sθr2 (1,0) − r̂Sθr2 (0,1) − r̂Sθr2 (1,1)

p++10r3 1 −r̂Sθr3 (1,0) − r̂Sθr3 (0,1) − r̂Sθr3 (1,1)


−1 p0+10r1 − r̂Sθr1 (1,0)â

(1,0)

p0+10r2 − r̂Sθr2 (1,0)â
(1,0)

p0+10r3 − r̂Sθr3 (1,0)â
(1,0)

 =

x5x6
x7


(B.65)

Then

â(0,0) = x7 (B.66)

r̂s = x6/x7 | x7 ̸= 0 (B.67)

ŝnS = 1− x5 (B.68)

With these solutions, we can back out θr(1,1), θ
r
(0,1), θ

r
(1,0). With solutions for θr(1,1), θ

r
(0,1), θ

r
(1,0) in

terms of observable probabilities, we can use the technique in Appendix B.4 to infer VEI .
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B.9 Derivation of transparent reparameterization prior

Let r | spY ∼ Uniform(spY − 0.5, spY ), and let βu,x
j,k ∼ Uniform(0, 1). Let r be the dummy

variable for rY , let pi be the dummy variable for a single βu,x
j,k .

Suppose we have only p1, p2. We wish to compute the distribution of c1 = rp1 and c2 = rp2.
Thus we have the transformation: r = v, p1 = c1/v and p2 = c2/v. The Jacobian:

J2 =

∂
∂c1

∂
∂c2

∂
∂v
0 0 1 p1

1
v

0 − c1
v2

r

− ccv
c21

v
c1

c2
c1

p2

Then |det J2| = 1
v2

.
Suppose i ∈ {1, . . . , n}, and |det Jn| = 1

vn
. Let cn+1 = rpn+1. Then pn+1 =

cn+1

v
. The partial

derivatives of pn+1 are:

∂pn+1

∂ci
= 0∀i ̸= n+ 1 (B.69)

∂pn+1

∂v
=

−cn+1

v2
(B.70)

Collect the partial derivatives of pn+1 with respect to the first n parameters and v into a n + 1

length vector ν = (0T
n ,−

cn+1

v2
)T The partials of the other parameters with respect to cn+1 are all

zero. Then Jn+1

Jn+1 =

[
Jn 0n+1

ν 1
v

]

so |det Jn+1| =
∣∣det Jn 1

v

∣∣ = 1
vn+1 . Thus the absolute determinant of the Jacobian for the transfor-

mation with n pi is 1
vn

.
The constraints are simple.

sp− 1/2 ≤ r ≤ sp (B.71)

0 ≤ pi ≤ 1 (B.72)
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become

sp− 1/2 ≤ v ≤ sp (B.73)

0 ≤ ci
v
≤ 1. (B.74)

This yields the combined bounds on v:

max(sp− 1/2,max
n

ci) ≤ v ≤ sp (B.75)

The joint prior is:

f(c1, . . . , cn) ∝
∫ sp

max(sp−1/2,maxn ci)

v−ndv (B.76)

∝ max
(
spY − 1/2,max

n
ci

)1−nβ

− sp
1−nβ

Y (B.77)
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APPENDIX C

Cumulative exposure to environmental hazards
appendix

C.1 Approximate integral proof

Lemma 22. Approximation of log-Gaussian integral Let K : R+ → (0, 1] be a continuously

differentiable function, and let Z(c, τ) be a GP with domain (C × R+), with a valid covariance

function σ (validity as defined in (Møller et al., 1998, p. 453)). Let the target integral over domain

C × t be ∫
C×t

K
(

∥ℓ(c)−si∥2
ρ

)
eZ(c,τ)dCdτ

Let (Cm, tl),m ∈ [1, . . . ,M ], l ∈ [1, . . . , L] with volumes ∆(Cm)∆(tl) be an equi-spaced partition

of (C × t), and let C̄m, t̄l be the coordinates of the centroids of Cm, and tl, respectively. The

approximate integral for M,L is be

L∑
l=1

M∑
m=1

K
(

∥ℓ(C̄m)−si∥2
ρ

)
eZ(C̄m,t̄l)∆(Cm)∆(tl)

Then

lim
M→∞
L→∞

∣∣∣ ∫
C×t

K
(

∥ℓ(c)−si∥2
ρ

)
eZ(c,τ)dCdτ

−
M∑

m=1

L∑
l=1

K
(

∥ℓ(C̄m)−si∥2
ρ

)
eZ(C̄m,t̄l))∆(Cm)∆(tl)

∣∣∣→ 0

Proof. First, we may use the integrability of Z(c, τ), as guaranteed for valid covariance functions
(Møller et al., 1998), and the fact that 0 < K ≤ 1 to show that the integral is well-defined.

Next, we show that the approximation error is almost surely bounded by a constant and terms
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that depend on our approximation error:∣∣∣∣∣
∫
C×t

K
(

∥ℓ(c)−si∥2
ρ

)
eZ(c,τ)dCdτ −

M∑
m=1

L∑
l=1

K
(

∥ℓ(C̄m)−si∥2
ρ

)
eZ(C̄m,t̄l))∆(Cm)∆(tl)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Cm×tl

K
(

∥ℓ(c)−si∥2
ρ

)
eZ(c,τ)dCdτ −

M∑
m=1

L∑
l=1

K
(

∥ℓ(C̄m)−si∥2
ρ

)
eZ(C̄m,t̄l))∆(Cm)∆(tl)

∣∣∣∣∣
≤

M∑
m=1

L∑
l=1

∣∣∣∣∫
Cm×tl

K
(

∥ℓ(c)−si∥2
ρ

)
eZ(c,τ)dCdτ −K

(
∥ℓ(C̄m)−si∥2

ρ

)
eZ(C̄m,t̄l))∆(Cm)∆(tl)

∣∣∣∣
≤

M∑
m=1

L∑
l=1

∆(Cm)∆(tl)

∣∣∣∣∣ sup
{(c,τ)}∈Cm×tl

K
(

∥ℓ(c)−si∥2
ρ

)
eZ(c,τ) −K

(
∥ℓ(C̄m)−si∥2

ρ

)
eZ(C̄m,t̄l))

∣∣∣∣∣
≤

M∑
m=1

L∑
l=1

∆(Cm)∆(tl)

∣∣∣∣∣ supc∈Cm

K
(

∥ℓ(c)−si∥2
ρ

)
sup

{(c,τ)}∈Cm×tl

eZ(c,τ) −K
(

∥ℓ(C̄m)−si∥2
ρ

)
eZ(C̄m,t̄l))

∣∣∣∣∣
≤

M∑
m=1

L∑
l=1

∆(Cm)∆(tl)

(
sup

{(c,τ)}∈Cm×tl

eZ(c,τ)

∣∣∣∣ sup
c∈Cm

K
(

∥ℓ(c)−si∥2
ρ

)
−K

(
∥ℓ(C̄m)−si∥2

ρ

)∣∣∣∣
+K

(
∥ℓ(c)−si∥2

ρ

) ∣∣∣∣∣ sup
{(c,τ)}∈Cm×tl

eZ(c,τ) − eZ(C̄m,t̄l))

∣∣∣∣∣
)

≤
M∑

m=1

L∑
l=1

∆(Cm)∆(tl)

(
sup

{(c,τ)}∈Cm×tl

eZ(c,τ) sup
c,c′∈Cm

∣∣∣K (∥ℓ(c)−si∥2
ρ

)
−K

(
∥ℓ(c′)−si∥2

ρ

)∣∣∣
+K

(
∥ℓ(c)−si∥2

ρ

)
sup

{(c,τ),(c′,τ ′)}∈Cm×tl

∣∣∣eZ(c,τ) − eZ(c′,τ ′)
∣∣∣)

Given that our partitions are equi-spaced, let ∆(Cm) = ∆(C)/M and ∆(tl) = (t2 − t1)/L for all
m and l. Given the integrability condition on eZ(c,τ), namely that

∫
C×t

eZ(c,τ) < ∞ a.s. for any
bounded region (C × t), sup{(c,τ)}∈Cm×tl

eZ(c,τ) < K for some finite number K. Given that K is
continuously differentiable, there exists a BK <∞ such that:

sup
c,c′∈Cm

∣∣∣K (∥ℓ(c)−si∥2
ρ

)
−K

(
∥ℓ(c′)−si∥2

ρ

)∣∣∣ ≤ BK
∆C
M
.

Finally, the term sup{(c,τ),(c′,τ ′)}∈Cm×tl

∣∣eZ(c,τ) − eZ(c′,τ ′)
∣∣ can be bounded as well. Given a suffi-

ciently regular covariance function, sample functions are almost-surely s-Hölder continuous (Stu-
art, 2010), for a given compact interval C × t, s ∈ (0, 1), there exists a BexpZ <∞ such that:

sup
{(c,τ),(c′,τ ′)}∈C×t

∣∣∣eZ(c,τ) − eZ(c′,τ ′)
∣∣∣ ≤ BexpZ∆(C)(t2 − t1)

(√(
∆(C)
M

)2
+
(
t2−t1
L

)2)s

.
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Then

M∑
m=1

L∑
l=1

∆(Cm)∆(tl)

(
sup

{(c,τ)}∈Cm×tl

eZ(c,τ) sup
c,c′∈Cm

∣∣∣K (∥ℓ(c)−si∥2
ρ

)
−K

(
∥ℓ(c′)−si∥2

ρ

)∣∣∣
+K

(
∥ℓ(c)−si∥2

ρ

)
sup

{(c,τ),(c′,τ ′)}∈Cm×tl

∣∣∣eZ(c,τ) − eZ(c′,τ ′)
∣∣∣)

≤
M∑

m=1

L∑
l=1

∆(C)
M

t2−t1
L

(
KBK

∆C
M

+BexpZ∆(C)(t2 − t1)

(√(
∆(C)
M

)2
+
(
t2−t1
L

)2)s)

Thus, as M,L→ ∞

lim
M→∞
L→∞

∣∣∣∣∣
∫
C×t

K
(

∥ℓ(c)−si∥2
ρ

)
eZ(c,τ)dCdτ −

M∑
m=1

L∑
l=1

K
(

∥ℓ(C̄m)−si∥2
ρ

)
eZ(C̄m,t̄l))∆(Cm)∆(tl)

∣∣∣∣∣→ 0

C.2 Error bounds
Let Kρ(c) = K

(
∥ℓ(c)−sj∥2

ρ

)
.

∣∣∣∣∣
L∑

l=1

M∑
m=1

Kρ(C̄m)eZ(C̄m,t̄l)∆(Cm)∆(tl)−
∫
C×t

Kρ(c)e
Z(c,τ)dCdτ

∣∣∣∣∣
=

∣∣∣∣∣
L∑

l=1

M∑
m=1

∫
Cm×tl

Kρ(C̄m)eZ(C̄m,t̄l) −Kρ(c)e
Z(c,τ)dCdτ

∣∣∣∣∣
=

∣∣∣∣∣
L∑

l=1

M∑
m=1

∫
Cm×tl

Kρ(C̄m)
(
eZ(c,τ) − eZ(C̄m,t̄l)

)
+ eZ(c,τ)

(
Kρ(c)−Kρ(C̄m)

)
dCdτ

∣∣∣∣∣
=

∣∣∣∣∣
L∑

l=1

M∑
m=1

∫
Cm×tl

Kρ(C̄m)
(
eZ(c,τ) − eZ(C̄m,t̄l)

)
dCdτ +

L∑
l=1

M∑
m=1

∫
Cm×tl

eZ(c,τ)
(
Kρ(c)−Kρ(C̄m)

)
dCdτ

∣∣∣∣∣
≤

L∑
l=1

M∑
m=1

∫
Cm×tl

Kρ(C̄m)
∣∣∣eZ(c,τ) − eZ(C̄m,t̄l)

∣∣∣ dCdτ +

L∑
l=1

M∑
m=1

∫
Cm×tl

eZ(c,τ)
∣∣Kρ(c)−Kρ(C̄m)

∣∣ dCdτ
≤

L∑
l=1

M∑
m=1

∫
Cm×tl

Kρ(C̄m)
∣∣∣eZ(c,τ) − eZ(C̄m,t̄l)

∣∣∣ dCdτ
+

L∑
l=1

M∑
m=1

(
K
(

infc ∥ℓ(c)−sj∥2

ρ

)
−K

(
supc ∥ℓ(c)−sj∥2

ρ

))∫
Cm×tl

eZ(c,τ)dCdτ
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J I N Distribution No. sim.
500 10 5,000 Uniform 100
1,000 10 10,000 Uniform 100
2,000 10 20,000 Uniform 100
500 100 50,000 Uniform 100
1,000 100 100,000 Uniform 100
2,000 100 200,000 Uniform 100
500 10 5,000 Clustered 100
1,000 10 10,000 Clustered 100
2,000 10 20,000 Clustered 100
500 100 50,000 Clustered 100
1,000 100 100,000 Clustered 100
2,000 100 200,000 Clustered 100

Table C.1: Table of simulation study settings. J is the number of households, I is the number of
observations per household, and N = J × I . Distribution is the spatial distribution of

where in the last line we have used the fact that K is a monotonically decreasing function of
distance ∥ℓ(c)− sj∥2. The lower bound, using the same decomposition of the error above∣∣∣∣∣

L∑
l=1

M∑
m=1

Kρ(C̄m)eZ(C̄m,t̄l)∆(Cm)∆(tl)−
∫
C×t

Kρ(c)e
Z(c,τ)dCdτ

∣∣∣∣∣
≥

∣∣∣∣∣
∣∣∣∣∣

L∑
l=1

M∑
m=1

∫
Cm×tl

eZ(c,τ)
(
Kρ(c)−Kρ(C̄m)

)
dCdτ

∣∣∣∣∣−
∣∣∣∣∣

L∑
l=1

M∑
m=1

∫
Cm×tl

Kρ(C̄m)
(
eZ(c,τ) − eZ(C̄m,t̄l)

)
dCdτ

∣∣∣∣∣
∣∣∣∣∣

C.3 Simulation scenarios

C.3.1 Comparison of different grid resolutions
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Figure C.1: Integrated mean absolute error for Λx1 and Λy with ±1.96 standard errors plotted as
black bars, 100 observations per household, M = 160
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Figure C.2: MSE for ρ and λ with ±2 standard errors plotted as black bars, x-jittered for clarity
on the plot for ρ, 100 observations per household, M = 160
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Figure C.3: Bias and 50% interval coverage for θenviron
j ±2 standard errors plotted as black bars.

The horizontal dotted line in the left plot corresponds to the nominal coverage of 50%, while the
horizontal dotted line in the right plot corresponds to zero bias., 100 observations per household,
M = 160
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Figure C.4: Comparison of mean coverage rates of θj by number of households for M = 40 and
M = 160 grid resolutions, 100 observations per household, clustered household distribution.
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Figure C.5: Comparison of mean bias of posterior mean estimator for θj by number of households
for M = 40 and M = 160 grid resolutions, 100 observations per household, clustered household
distribution.
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Figure C.6: Comparison of mean percent bias of posterior mean estimator for θj:
|E[θj |Y ]−θj |

θj
by

number of households forM = 40 andM = 160 grid resolutions, 100 observations per household,
clustered household distribution.
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Figure C.7: Comparison of mean coverage rates of θj by number of households for M = 40 and
M = 160 grid resolutions, 10 observations per household, clustered household distribution.
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Figure C.8: Comparison of mean bias of posterior mean estimator for θj by number of households
for M = 40 and M = 160 grid resolutions, 10 observations per household, clustered household
distribution.
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Figure C.9: Comparison of mean percent bias of posterior mean estimator for θj:
|E[θj |Y ]−θj |

θj
by

number of households for M = 40 and M = 160 grid resolutions, 10 observations per household,
clustered household distribution.
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Figure C.10: Comparison of mean coverage of 80% posterior credible intervals for θj by number
of households for M = 40 grid resolution, 100 observations per household, clustered household
distribution.
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Figure C.11: Comparison of mean bias of posterior mean estimator for θj by number of households
for M = 40 grid resolution, 100 observations per household, clustered household distribution.
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Figure C.12: Comparison of mean percent bias of posterior mean estimator for θj:
|E[θj |Y ]−θj |

θj
by

number of households for M = 40 grid resolution, 100 observations per household, clustered
household distribution.
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