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ABSTRACT

Understanding the geometry of the Mandelbrot set has been a central pillar of holomorphic
dynamics over the past four decades. Much of its structure is now understood, but a critical
question remains unresolved: is the Mandelbrot set locally connected? The first major break-
through towards this conjecture was achieved by Yoccoz in the nineties, who proved that the
Mandelbrot set is locally connected at all parameters which are not infinitely quadratic-like
renormalizable. A key ingredient in Yoccoz’s work is the PLY-inequality, which bounds the
diameter of certain subsets, called limbs, of the Mandelbrot set. These limbs are naturally
labeled by the rational numbers, and the PLY-inequality asserts that the p/g-limb of the
Mandelbrot set has size O(1/¢). Milnor conjectured that O(1/¢?) is the correct scale. For
any N > 1, the main result of this thesis is to verify Milnor’s conjecture for all p/g-limbs
where a finite continued fraction of p/q has uniformly bounded length. Our strategy relies
on careful analysis of the bifurcation of parabolic fixed points; we also further develop some
of the classical theory in this area. We introduce parabolic and near-parabolic renormaliza-
tion operators for maps which have parabolic fixed points of arbitrary multiplier and there
perturbations, constructing invariant classes for these operators. We provide an alternative
definition to the parabolic towers introduced by Epstein and construct a dynamically natural
topology on the space of all parabolic towers. We also study the dynamics of Lavaurs maps,
constructing analogues of polynomial external rays for these functions showing that these

rays arise as the Hausdorff limits of polynomial external rays.

vi



CHAPTER I

Introduction

A holomorphic function f is said to be parabolic if there is some point 2z such that f™(zy) = zo
and the multiplier A = (f™)'(20) is a root of unity; the point z; is called a parabolic periodic
point of f. The local dynamics of f near zy are relatively simple; there exists an integer
v > 1 such that orbits under iteration of f" are attracted toward z, along vq directions
and repelled away from z, along rq other directions. The parabolic point zy is said to be
simple when A = 1 and non-degenerate when v = 1. Using the dynamics of f near z,
we can construct a new family of holomorphic functions, called Lavaurs maps, by sending
points along the attracting directions to points along the repelling directions. While this
construction is a priori purely synthetic, it is closely related to the perturbation theory of
f; if h is another holomorphic function which approximates f, then high iterates of h may
approximate a Lavaurs map. This phenomenon is called parabolic tmplosion and was first
developed by Douady and Lavaurs in [Dou94| and [Lav89).

In [Shi98] and [Shi00], Shishikura introduced the parabolic and near-parabolic renormal-
ization operators, defined by quotienting the dynamics of f and h respectively near z,, which
provide another framework to study parabolic implosion in the simple non-degenerate setting.
These operators produce new holomorphic functions which themselves could be parabolic or
near-parabolic, so in some cases the renormalization operators can be repeatedly applied.
Shishikura produced a class of maps which is invariant under parabolic renormalization in
[Shi98], and classes of maps invariant under near-parabolic renormalization have been con-
structed by Inou and Shishikura in [IS08], Yang in [Yan15], and Chéritat in [Ché22]. These
invariant classes have had several remarkable applications in holomorphic dynamics, see for
example [BC12], [Chel3], [CC15], [CS15], [SY16], [Chel7], [AC18], and [Chel9].

While the results of Chéritat, Inou, Shishikura, and Yang only apply to parabolic im-
plosion in the simple non-degenerate case, it is natural to ask what can be said in the
general case. This question was studied by Oudkerk in [Oud99] and[Oud02], where he gave
a comprehsive description of implosion and Lavaurs maps in for degenerate parabolic maps.

However, the additional complexity makes it difficult to describe parabolic renormalization



operators and construct invariant classes for general parabolic implosion. If we instead con-
sider parabolic maps which are non-degenerate, but allow the multiplier to be any root
of unity, then parabolic implosion can be described in analogy to the simple case. In the
first chapter of this thesis, we present parabolic implosion in this generality and observe
that Chéritat’s argument can be applied to construct invariant classes for the corresponding
parabolic and near-parabolic renormalizations.

In [Dou94], Douady used parabolic implosion to show that the function from polynomials
to their filled Julia sets is discontinuous at parabolic polynomials. The fundamental issue is
that for a parabolic polynomial f we can defined an analogue of the filled Julia set for the
Lavaurs maps of f, and these sets arise as the limits of filled Julia sets of perturbations of
f. If a Lavaurs map L of f is also parabolic, then we can similarly define filled Julia sets of
the Lavaurs maps of L; these sets also arise as the limits of filled Julia sets of perturbations
of L or perturbations of f. By considering further parabolic Lavaurs maps of L and so on,
we can continue enriching the set of limits of filled Julia sets of quadratic polynomials. It is
natural to ask, what is the set of all possible limits? In [Eps93], Epstein introduced parabolic
towers, dynamical systems associated to successively constructed Lavaurs maps, and studied
their Julia sets. In the second chapter of this thesis we give an alternative definition of
parabolic towers, instead defining them to be sequences of analytic maps constructed by
successive parabolic renormalizations. While these two notions or parabolic towers are closely
related, indeed they can be directly compared by analytic semi-conjugacies, the upshot of
our definition is that we can use the near-parabolic renormalization operators to explicitly
construct the basis of a topology on the space of parabolic towers. Using this topology and
results in [Eps93], we show that there is a subset w of the space of parabolic towers
such that the function from quadratic polynomials to their filled Julia sets extends to the
continuous function from towers in @ to their associated filled Julia sets. Additionally,
we show that the filled Julia sets of towers m give us exactly the set of all possible limits
of filled Julia sets of quadratic polynomials.

For a quadratic polynomial, the points which escape under iteration of f, that is the points
whose orbit tends to infinity, can be analytically labeled using the Bottcher coordinate for
the polynomial. Ezternal rays for f are constructed from the Bottcher coordinate and can
be used to combinatorially describe the dynamics of f. As both the Bottcher coordinate
and external rays depend holomorphically on f, similar Bottcher coordinates and external
rays can be realized in parameter spaces of polynomials. For a Lavaurs map L of a parabolic
map [ we can similarly consider the set of points that escape under iteration of L, where
here escaping means the orbit of the point eventually leaves the parabolic basin of f. In

the third chapter of this thesis, we introduce analogues of Bottcher coordinates and external



rays, the latter we call bubble rays, for Lavaurs maps of parabolic maps, and study their
geometry. The space of all Lavaurs maps associated to a fixed parabolic map provides a
natural parameter space of Lavaurs maps, and just as for polynomials we realize coordinates
and rays in this parameter space.

As noted above, when h is a perturbation of a parabolic map f, high iterates of h may
approximate a Lavaurs map L of f. If both h and f are polynomials, and so have external
rays, then we can show that in this case the external rays of h approximate bubble rays
of L. Lifting this convergence to parameter space, we can show that external rays in the
polynomial parameter space near f approximate the bubble rays in the parameter space
of Lavaurs maps for f. But what if f and h are not polynomials? If A has some suitable
analogue of external rays near the parabolic fixed point of f, then the same argument above
can be used to show convergence of these rays to bubble rays of Lavaurs maps, with similar
statement in parameter space. In the final chapter of this thesis, we study the convergence of
rays to bubble rays in this generality. In particular, the external rays of polynomials induce
suitable rays for their successive near-parabolic renormalizations, allowing us to control the
geometry of the external rays of polynomials which are close to a parabolic tower in @.

This geometric control gives us the main theorem of this thesis:

Theorem I.1. For any N > 1, there exists a constant C'y > 0 such that if

€1
P/q: —

€9
aq +
. EN
an
where €, = £1 and a,, > 2 are integers for all 1 < n < N, then the diameter of the p/q-limb

of the Mandelbrot set has diameter bounded above by Cn/q* and below by 1/(Cnq?).

It is natural to ask what we can say about the constant Cy in the theorem above when N
tends to infinity. The integer N records exactly how many near-parabolic renormalizations
of polynomials must be considered, so to tackle this question we must understand infinite
near-parabolic renormalization. At present, the tools developed in this thesis cannot be
applied to case of infinitely near-parabolic renormalizable polynomials, but we may hope
that the invariant classes constructed Chéritat, Shishikura, and Yang may help resolve this

issue in the future.



CHAPTER 11

Non-Degenerate Parabolic Implosion

Let us fix some z, € C and a holomorphic function f defined in a neighborhood of z,. The
point zy is said to be k-periodic for some integer k > 1, or fixred when k = 1, if k is the
minimal positive integer such that f*(zy) = zo. If 2y is k-periodic, then the multiplier of
2o is the value A = (f*)'(2); 2o is said to be attracting, repelling, or indifferent if |\ < 1,
|A| > 1, or |A\| = 1 respectively. We will say that z, is p/g-parabolic for some p/q € Q if

A\ = e2™P/4_If 2, is k-periodic and p/g-parabolic, then it is non-degenerate if
fH(2) =2+ alz — 20)T™ + O((z — 2)"™?)

for z close to zg for some a € C*. After conjugating by a Mébius transformation and replacing
f with f*, we will usually assume that 0 = z; is a parabolic fixed point of f. The arithmetic
properties of p/q will play a role in the local dynamics of f near 0 and its perturbations, so

we will briefly recall some facts about continued fractions.

I1.1: Modified continued fractions

Let us fix some rational number z € [—1/2,1/2]. We can associate a (possibly empty)

N
n=1»

xo = x and assume that z,, € [—1/2,1/2] is defined for some n > 0. If x, # 0, then there

exists a unique £,,; € {£1} and a unique y,,; € (0,1/2] such that x, = ,11 - Yp+1. In this

sequence w; = ((an,€n)) called the modified continued fraction of x, as follows. First, let

case, there exists a unique integer a,; > 2 and a unique z,,11 € (—1/2,1/2] such that

1

Yn+1

= Qp+1 + Tpt1-

We repeat this construction recursively to produce w,; as x is rational the sequence is
guaranteed to be finite. For N > 0, we denote by Qy the set of all rational numbers in

[—1/2,1/2] whose modified continued fraction has length N. It follows from our construction



that if a,, = 2 and ¢,, = —1, then n = 1.

The approzimates of x are inductively defined as

poi(z) =1, po(x) =0, Pn(x) = appn_1(x) + nppn_o(z) for 1 <n <N,

q,1($) = 07 CIo(x) = 17 qn(x) = anqnfl<x) + 5nqnf2<x) fOI‘ 1 S n S N.

By construction, if x = p/q € Qu, then p = py(x) and ¢ = qn(z). If N > 0, then we will
call p,—1(p/q)/an-1(p/q) the parent of p/q.

Proposition II.1. If z € Qy, then q,(z) > %qn_l(x) for all0 <n < N.

Proof. This holds automatically when n = 0, so we assume that n > 0 and ¢,_1(z) >

%qn_g(x). If a, > 2, then

() 2 300 1(2) = ua(e) 2 500 1(2),

If a,, = 2, then either €, = +1 or j = 1. As q_1(z) =0, in either case we have

(2) 2 200 1(2) 2 Sa,1(2).

Corollary 11.2. If x € Qp, then

Proof. When z = 0/1, we have

So now we assume that N > 0 and that the proposition holds for the parent of z. As ay > 2,
proposition II.1 implies

2

3’ Andn-1(7) < anGn-1(T) + Endn_a(r) < 3 anGn—1(T).

e~

The proposition therefore follows by induction on N. O



We define the signature of = to be

N
&) = (- [ e
n=1
Proposition I1.3. If x € Qyu, then

S(z) = py-1(z)an(z) — pn(z)an-1(2).
Proof. If N =1, then §(z) =1=1-1-0-0. If N > 1, then
prn-1(x)an(z) — py(z)an-1(z) = pn-1(z)(anvan-1(z) + enqn-2(2)) — anv-1(z)(anpn-1(z) + enpr-2(2))
= —en(py-2(@)an-1(2) — pr-1(z)qn-2(T))

by induction. O

We define the Mobius transformation p, : C—C by

_pn(@) +6(x) -z pyoa(z) €1
(H.l.l) ﬂm(z) = CIN(JZ) + 6(33) Lz qul(x> o e

a; +

EN
* ay +6(z) - =

When x # 0 and 2’ is the parent of x, we have

(I1.1.2) o (2) = (ﬁ) .

an +6(z) -z
We conclude this section by recording some important properties of p,.
Proposition 11.4. If z € D, then u,(z) € D.

Proof. If x = 0, then p,(z) = 2. So we assume that x € Qy with N > 0 and that the
proposition holds for the parent 2’ of x. As ay > 2, if |z] <1 then

en - S(a) 1 .
ay +6(x) 2| " ay—1"
The inductive hypothesis combined with (I1.1.2) implies |u,(z)| < 1. O



Proposition I1.5. If z,w € D then

R 9z — w|
) = o) < L

Proof. Using (I1.1.1) and proposition II.1, we can directly compute

(prv—1(z)an(z) —pn(T)qn_1 (7)) - &(z) - (2 — w)
an(2) + () - zqn-1(2))(an (2) + & () - wan-1(x))
2 — wl
(an(z) — qn-1(z))?
- 9|z — w| |

— q(x)?

<

Proposition I1.6. p_,(z) = —p.(—2).

Proof. Straightforward inductions show that §(—x) = —&(z), p(—z) = —p(x), and q(—z) =
q(z). It then follows from (II.1.1) that p_,(2) = —p.(—2). O

11.2: Parabolic Renormalization

For an analytic map f : C --» C, we define a petal for f to be a Jordan domain P C Dom(f)
such that f is univalent on P and there exists a univalent map ¢ : P — C, called a Fatou

coordinate, which satisfies:
1. For all z € P, the following are equivalent:
o f(z) e P.
o $(z)+ 1€ ¢(P).
e ¢(f(2)) = ¢(2) + 1.
2. If both w and w + n belong to ¢(P) for some integer n> 0, then w + j € ¢(P) for all
0<j<n.

3. For any w € C, there exists n € Z such that w +n € ¢(P).

A Fatou coordinate ¢ is unique up to post-composition with a translation. If f(P) C P or
P C f(P), then we will say that P is an attracting or repelling petal respectively. We will
call any petal P’ of f contained in P a sub-petal of P.



Let us now fix a holomorphic function f which has a non-degenerate p/g-parabolic fixed
point at 0. The following classical result describes how the local dynamics of f near 0 can

be completely characterized by petals.

Theorem I1.7. For any neighborhood V' of 0, there exist attracting and repelling petals Pftt
and PZ, respectively for f? which satisfy (see Figure I1.1):

rep

1. The following geometric conditions:

(a) The union

q—1

J /(v PL)

n=0

forms a punctured neighborhood of 0 contained in V.

(b) P, ) .NP Tep is esther a Jordan domain with O on its boundary if ¢ > 1, or the union

of two Jordan domains with 0 on their boundaries if ¢ = 1.

(c) There exists some 1o > 0 and 0 € R such that

e?™ e pl o\ Prep and re®™0+1/20) ¢ pf \%

rep
for all 0 < r <.

2. The following dynamical conditions:

(a) The sets P, f(PL,),.... fFY(PL) are all pair-wise disjoint.

(b) Every forward or backward orbit under f which converges asymptotically towards

z = 0 intersects P, it OT Prfep respectively.

Proof. See [Mil06, Chapter 10]. O

Let us fix some P/ ) and P/ as in theorem I1.7. We will also denote P/ := Patt U P/

Tep rep”

We can analytically extend the attracting Fatou coordinate by defining

p(2) = i (f" 7 (2)) = n

for all n > 0,0 < m < ¢, and z such that f"7t™(z) € P/,. We can similarly extend the

inverse of the repelling Fatou coordinate by defining

X (w) = [0 (¢fe,) " (w = n)



Figure I1.1: Left: Attracting and repelling petals near a 2/3-parabolic fixed point of f. The
long external arrows indicate the action of f, the short internal arrows indicate the action
of f3. Right: A petal for a positively implosive perturbation of h of f as in theorem I1.22.

for all n > 0 such that w —n € ¢/ ,(P%)) and (¢!,,)"'(w —n) € Dom(f"?). The horn map
for f is defined to be
H = ploy/.

Note that the maps p/, x/, and HY depend on our choice of petals and Fatou coordinates
for f.

For any integer n, we denote T, (w) = w + n for all w € C.

Proposition I1.8. The horn map H' is defined and univalent on both an upper and a lower
half-plane and satisfies:
H'oTy =Ty 0 H'.

There are two constants ¢l such that H (w) — w — ¢, when Imw — +o0.

Proof. See [Shi00] for the p/q = 0/1 case, the general p/q case follows by similar argument.
O

Note that changing the attracting or repelling Fatou coordinates post or pre-composes

the horn map by a translation. For the rest of this thesis, we will always choose the repelling



Fatou coordinate relative to the attracting Fatou coordinate so that

1-6(p/q) 0 if &(p/q) = +1,

C_f"_:—:

2 1 it S(p/g) = —1,

The horn map H/ is therefore well-defined up to conjugation by a translation.

Let us also record the following fact on the intersection of petals:

Proposition I1.9. For any € R, if ¢/ _(2) = x — iy for some sufficiently large y > 0,

rep

then z € Pl,. If instead ¢! (z) = x + 1y for some sufficiently large y > 0, then f"(z) € Pl

rep

where 0 < n < q satisfies np = —1 mod gq.

We will call the component of P(j;t N P1fep which contains gb{ep(—t) for large t > 0 the lower
component.

Let + : C — C be the map which sends each point to its complex conjugate and set
Exp™(2) := €™ and Exp ™ (2) = Exp™ oi(z). We define a parabolic renormalization of f to

be a function of the form
R5 f = Exp™ oTs_ g © H7 o (Exp®)™' = Exp*™(0) - REf

with 0 € C. It follows from proposition I1.8 that the domain of Rf f contains punctured
neighborhoods of 0 and oo, and we can analytically extend Ry f by setting R f(0) = 0 and

R5 f(o0) = co. Moreover, this extension satisfies
(REF)(0) = Exp(3) and (R f)'(c0) = Exp*(&(c. — ) —9)

While the parabolic renormalization is only well-defined up to linear conjugacy, in the next
subsection we will restrict to maps for which the parabolic renormalization can be uniquely
defined.

The renormalizations Ry f and Ry f are called top and bottom parabolic renormalizations
respectively. We will be primarily interested in top renormalizations and denote Exp := Exp™

and R; := RY. We also define the extremal parabolic renormalizations
Riicof : Dom(Rof) \ {0} — {0} and Ry f : Dom(Rof) \ {0} — {00}

to be the corresponding constant functions, so Rsf — Riicof when Imd — +o0.

Let us note that our terminology here differs from other conventions in the literature.
Specifically, R{ f and R, f are called the top and bottom parabolic renormalizations of f
respectively in [ISO8] as they both have a non-degenerate 0/1-parabolic fixed point at 0.

10



These specific renormalizations will not play as special of a role in this thesis, so we will not
name them.

For any 0 € C, we define the attracting d-elevator of f to be the map

nc{tt,é = Exp OTE—c{: op.

We also define the repelling elevator of f to be the map

n,fep = Exp oqb{fep.

We have the following alternative definition of parabolic renormalizations in terms of eleva-

tors:
,R'Ef - T]z:tt,é © (nvjjep)_l'

I1.2.1: Invariant classes

We will now focus on the class F of holomorphic functions f : C --» C which satisfy the

following three conditions:
1. Dom(f) is open and contains both 0 and oo;
2. f(0) =0 and f(o0) = o0;

3. the restriction

ffe) s

is a branched covering map with a unique critical value cvf and all critical points are

of local degree 2.

For example, the class F contains every quadratic polynomial of the form
fo(z) i= ¥z 4 22

with o € C.

Proposition I1.10. Any map in F can have at most one parabolic cycle, and the cycle is

non-degenerate if it exists.

Proof. This follows from the uniqueness of the critical value and a standard argument, see
for example [Shi00, Lemma 4.5.2]. O

11



We denote by FE the set of all maps in F which have a parabolic cycle. Fixing some
fe ]-"%e, we denote by

Ul = (P = Dom(p')
n>0
the parabolic basin of f. The immediate parabolic basin U({ is defined to be the component

of Uf which contains the critical value cv?.

Proposition II.11. There exists a unique choice of P t and ¢ w such that ol € 8P£t,
¢!, (2) = 0 when z — v, and

¢!, (PL) ={we C:Rew > —|Imwl}.

For any sujﬁciently large t > 0 and ¢ € C satisfying Re( < |Im (| — ¢, there is a unique
and ¢! such that

choice of P! tep

ep

(brep( ,,ep) ={w—-(eC:Rew < [Imwl|}.

We equip the space of holomorphic functions C --» C with the compact-open topology

with domains, that is a neighborhood of f is a set of the form
{h :C --» C | X ¢ Dom(h),sup | f(z) — h(z)| < 6}
zeX

where X is a compact subset of Dom(f) and ¢ > 0. We will write h — f when h converges
to f in this topology. If A is a holomorphic function sufficiently close to f which has a
unique critical value cv™ and a a parabolic cycle with the same period and multiplier as f,
then proposition I1.11 holds for h; we will say that h is a stable perturbation of f. We can
similarly define stable perturbations of h so that proposition II.11 holds for these maps as
well. We define Comp*(@) to be the set of all non-empty compact subsets of C and equip it
with the Hausdorff metric, so the distance between X, X, € Comp*(C) is given by

su inf da(z — inf da(z
wEXngg HEX) ( 1, W ) 29EXs ( 2, W )

where dg is the spherical metric. Given non-empty open proper subsets Vi and V5 of C, we
will also say that Vi converges to V5 when Vi, — V5 and C \Vi — C \ V4 in the Hausdorff

metric.

Proposition 11.12. If the same ( s chosen in proposition I1.11, then the compact sets PL{;t,

P,?;p, C \ Patt, and (C\ Tep depend continuously on f. Moreover, the Fatou coordinates qbf:tt

12



and ¢f_ depend continuously and holomorphically on f.

rep

Proof. See [IS08] or [Oud99]. O

Returning to the dynamics of f € .7-"%8, we have the following property of the parabolic
basin of f.

Proposition I1.13. Every component of U’ is simply connected, and the first return map

to Ug is holomorphically conjugate to the restriction of fo to U™,
Proof. See [Shi00, Lemma 4.5.2]. ]

The parabolic renormalizations R f with 6 € C are defined exactly on
(Expo(x!)™(U7)) U {0, 00}

Thus the geometry of U/ descends to the geometry of Dom(Rof).

Corollary I1.14. Every component of Dom(Rf) is simply connected. Moreover, if every
component of U’ is a Jordan domain, then every component of Dom(Rof) is a Jordan

domain.
Let us also record here the following properties of the extended Fatou coordinate p.

Lemma I1.15. Assume that U] is a Jordan domain and let X C C be an unbounded simply
connected set which avoids the negative integers. There is a unique component of X of
Ug N (p/)~Y(X) which has the parabolic fived point 0 on its boundary, and p’ is univalent
on the interior of X. If 0 is in the closure of X, then cv! is in the closure of X. If X is
an open set whose boundary is a Jordan arc, then X is a Jordan domain whose boundary

intersects U only at 0.

Proof. Tt follows from the definition that p/ is a covering map branched over the negative
integers. Thus p/ is a covering map over X. Let us assume that X avoids the R<_;. There
is a unique branch of (p/)~! defined on C\ R<_; which is invariant under f?¢ and has image
in U({ . it follows from classical arguments that this component contains cv/. The boundary
of the image of this branch intersects 8U({ in a connected nonempty f-invariant set, this set
is therefore {0}. The lemma follows. If X does not avoid R<_;, then we can apply the same
argument to one of the unbounded components of X \ R<_; and then perform an analytic

continuation. N

One of the main reasons for restricting to the class F is that it is invariant under parabolic

renormalization:

13



Proposition I11.16. For all § € C, Rsf € F and cv™/ = Exp(d) = nf:tt’é(cvf).
Proof. See [Shi00, Lemma 4.5.5] and [Ché22]. O

We denote by Domgy(Rof) the component of the domain of Ry f which contains 0. Let
@l - D — Domg(RY) be the unique analytic isomorphism with (%)’ (0) > 0.

Proposition I1.17. There exists a unique univalent map @’ : D — Domo(Rof) such that
(07)'(0) = (¢*)'(0) and
(Rof) o ¢’ = (Rofo) o P

Proof. See [Shi00], [LY14a], or [Ché22]. O

For all € > 0, we define the classes of maps
S.:={¢:Di_c = C | ¢ is univalent, ¢(0) = 0, and ¢'(0) = (¢)'(0).}

and
Fei={(Rofo) o o' |p€S.}.

Equipped with the compact-open topology, it follows from the Koebe distortion theorem
that these classes are all compact. Proposition I1.17 that Rqf has a restriction in Fy. The
above constructions could also be recreated for the bottom parabolic renormalization R f;

the following proposition shows that we get the same class of maps:
Proposition I1.18. R{fy = R, fo.

Proof. 1t is shown in [LY14a] that ¢ o fy o ¢ = f implies that
toH" oy = Hb.
Thus ¢° = 1(c?), so
Ry fo=Expoco T_Cf_o o H"o0,0Exp~! = Exp OT—cfE oroH"o,0Exp™t = R o

]

For any f € Fy and p/q € Q, the map e>™?/4f belongs to F* and is mapped into Fy by
Ro. We define the p/q-parabolic fiber renormalization of f to be

Rpa0f = RO(QQMP/qf)’

14



SO

R6(€27rip/qf> — 627ri§Rp/q,0f-

Thus the class Fy is invariant under R,/ 0 for every choice of p/q. For any sequence

(Pn /)2, of rational numbers and f € Fy, we can define the sequence of maps

<an/qn,0 e 'RPI/QLOJC)’ZO:I'

When each p,/q, = 0/1, the above sequence has studied in [IS08|, [LY14a], and [Ché22];
in particular it is shown that Ry = Ro/1,0 has a unique attracting fixed point in F,. We
will spend the remainder of this section showing that those results can be extended to more
general sequences of rational numbers.

We will first work with F, with € > 0. By restricting the domain, we have a natural
inclusion map F, — F. for any 0 < ¢ < €. However, this map is not surjective. For any

e >0 and ¢ € S, the function

ZH(1—6)¢<1;)

belongs to S.. This induces homeomorphisms Sy — S, and Fy — F. which depend continu-

ously on e.

Proposition I1.19. For any p/q € Q there exists some € > 0 such that R,/.0f is defined
forall f € Fo and 0 <€ <e.

Proof. This follows immediately from the compactness of F. [

Theorem I1.20. For all p/q € Q, if € > 0 is sufficiently small then there exists 0 < € < €
such that Ry q0f has a restriction in Fo for all f € F..

Proof. For p/q = 0/1, this theorem is the main result in [Ché22]. We will not recreate the
full argument here; we will instead examine the two main steps used by Chéritat and observe
that the same reasoning applies to the general case. For details, see [Ché22].

Let us fix some f € Fy, p/q € Q, and set h = €2™P/4f. The first part of the argument
in [Ché22] is a contraction: showing that for any e > 0 sufficiently small there exists some
0 < € < e such that the restriction of R,/q0f = Roh in Fo depends only on the restriction
of f in F,. Proving this fact requires showing that U intersects only finitely many connected

components of

B:i=h"'({z € C":|z]| £ |"]}),

and comparing four different metrics:

15



1. The hyperbolic metric on Domg(Roh).
2. The hyperbolic metric on Up.

3. The boz-Fuclidean metric on Domg(h), which is the pull-back of the flat metric on C*
by h.

4. The hyperbolic metric on Domg(h) = Domg(f).

When we switch to general p/q € Q, we must consider the structure of UZ_:B Uy instead of
just Ul. In [Ché22], showing that Ul intersects only finitely many components of B when
q = 1 follows from studying the geometry of the set p,'(R>_1). The same analysis can be
applied to show that UZ;B Ul intersects only finitely many components of B in the general
case. The comparison of the four metrics is identical in the p/q = 0/1 and general p/q case.

The second part of the argument in [Ché22] is a perturbation: showing that for any e
sufficiently small and f € Fy, when we apply the homeomorphism Fy — F. the orbits of h do
not move very far. For this step, the argument for general p/q is identical to the p/q = 0/1

case. OJ

The key feature of theorem II1.20 is that we can pick ¢ < e. As a consequence, the

following proposition shows that every parabolic fiber renormalization is contracting.

Proposition I1.21. For any 0 < ¢’ < €, there is a complete metric 0 on F., such that if
R : F. — Fo is an holomorphic operator, then

AR(f1),R(f2)) <

11: E,D(fb f2)
€

for all fy, fo € Fo. Convergence in this metric implies convergence in the compact-open

topology.

Proof. This is essentially the same as Main Theorem 2 in [IS08]; the same argument can be

applied. O

I1.3: Near-parabolic renormalization

While the petals, Fatou coordinates, and parabolic renormalizations were defined in the pre-
vious section for maps with a parabolic periodic cycle, the fundamental theorem of parabolic
implosion is that similar objects can be constructed for maps which have a periodic cycle
with multiplier close to a root of unity. The prototypical example is an analytic map h
satisfying h(0) = 0 and h'(0) = A for some A close to 1.

16



I1.3.1: Perturbed petals and Fatou coordinates

As in the previous section, we now fix a map f which has a p/g-parabolic k-periodic cycle
for some rational p/q and k£ > 1. While most of the constructions in this section can be
made in this generality, we will also add the assumption that f has a unique critical value
cv/ and that proposition II.11 holds; so for example f is a stable perturbation of a map in
FE After conjugating by Mobius transformations, we can assume that 0 is the parabolic
periodic point on the boundary of Pj;t. Let h : C --» C be another holomorphic function
such that
hE(z) = e teial@) ;4 O(2?)

for z close to 0 and a € C. Setting
Al )y ={2 € C\ {0} : |a] < 1/2,]arg a| < 7/5},

we will say that h is a positively implosive perturbation of f if a € AY/Q.

Theorem 11.22. For any 0 € [—n/4,7/4] and sufficiently large M > 0, if h is a sufficiently
close positively implosive perturbation of f, then there exists a unique petal P for h*
satisfying (see Figures II.1 and II.2):

1. The following geometric conditions:

(a) P™ is bounded by two arcs joining 0 to a non-zero fized point o’/ of h¥4.
(b) cvh € oP™I.
(¢c) There exists a branch of log defined on P™/ such that

log P/

60’ /
C e C: |R <M
o {e"w [Rew| }

for some constant M’ which depends does not depend on h and for some
0 =6+ 0(x).

2. The following dynamical conditions:

a) There erists a Fatou coordinate ¢ : P/ — C such that
att

- 1/a— M
gbZ;{(Ph’f): {ewweC:O<Rew<Re </a—>}

610

(b) z € Pf tends to 0 or o when Tm ¢5f (2) tends to +00 or —oo respectively.

17



pht

°
Q|-

h?f
(batt

Figure I1.2: The image of under the attracting Fatou coordinate of the petal for h relative
f as in theorem II1.22. The image must be contained in the region bounded by the dashed
lines, and changing # changes the slant.

(c) The sets P h(P™T), ... hk=Y(P™)Y are all pair-wise disjoint.
3. The following continuity conditions:

(a) The compact sets PP/ and C\ P"/ depend continuously on h.
(b) There are petals PL/ < P!, and PLIC PL for f* such that

Phaf N vaf

when h — f, where PhHf = PJJUP@J)P'
(c) When h — [, ¢l — dly on Pl

Proof. For the case where p/q = 0, almost all of this theorem is proved in [Shi00] and
[LY14a], while the general p/q case is proved in [Oud99]. The only parts of this theorem
which are not proved in those papers are parts (1c) and (2a), these parts are proved in

[BC12, Appendix A] when 6 = 0 and « > 0; the general case holds by similar argument. [

Note that the petal P/ depends on the choice of repelling petal P/ as well as the choice

Tep

of # and M in theorem I1.22. We will call a consistent choice of Pf . 6 ,and M for h close

rep’

to f a choice of petals near f.

Let us make the following observation which follows from part (2a).

Proposition I1.23. Ifa € AT/Z s sufficiently close to 0, then

1 7
Re4— <sup{r €R:w+x € ¢" (PP} —inf{r € R:w + 2 € ¢"/ (P} < Re4—
o a

18



for all w € C.

Proof. First we note that

Re (W—,;M) = (Rel — M) cosf + (Iml) sin 6.
et « o

As |0] < § and o € AT/Q, |sinf| < cos@ and |ImX| < tan(Z)Rei. As tan(Z) < 0.73 < 3/4

and M is constant, if |« is sufficiently small then

Rei cosf < Re w—,_M < Rel cos 6.
dav et 4o

It follows from part (2a) of theorem I1.22 that we need only prove the proposition for w = 0,

S0
inf{z € R:w+z € ¢"/ (P} = 0.

For any z > 0, z = ¢(%) and

T
Re— = z cosf.
619

Thus z € ¢"/(P"7) if < Rej- and z & ¢™/ (P"7) if © > Re{-. O

Similarly to the Fatou coordinates for f, we can extend the attracting Fatou coordinate.
However in this case, the orbit of a point may enter and exit the petal P™/ infinitely often;
we must take care to only consider the “first” arrival to P*f. We will say that a point
z € PMS is petal-entering if

1
Re ¢l (2) — Re—— ¢ ¢l (P™F).

120

If h"ka+m(2) is petal-entering for some 0 < n < Reﬁ and 0 < m < kq, then we define
o = ] (A () —

Note that p™/ is the extension of a restriction of (bZ,;{ . Indeed there may be points in P"/
which are not petal-entering and which have different images under ¢!/ and ph/.
Setting
Oeh = To1/0 0 Guif

we will view gb?éé as the analogue of the repelling Fatou coordinate qbfep. We will say that a
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point z € P/ is petal-exiting if

Re ¢rep( z) + Re ¢ ¢r6p( 7).

If 2 is petal-exiting and in Dom(h™) for some 0 < n < Re7i-, then we define

120
" (gred(2) + m) o= hF(2).
The horn map for h relative to f is defined by
HE = phf oy Iof

Unlike H/ the horn map H™/ is not defined on a T}-invariant domain; we extend H/ using

the equation
H™ 0Ty =T, o H" .

Proposition I1.24. The horn map H™/ is well-defined and analytic on both an upper and a

lower half-plane. There exist constants ¢'t% such that H (w) —w — o when Tmw — +o00.

Proof. See [Shi00] or [Oud99]. O

7f.

Our choice ¢/ was made precisely so that we can compute the constants ¢y

rep

Proposition I1.25. If h is sufficiently close to f, then c}fr’f = cfr and

211

hE /g —
R e COICC0)

Proof. Let us denote Py = P™/ and set So,att and Spep to be the set of all petal-entering
and petal-exiting points in Fy respectively. For all 0 < j < g we set P;, S o, and S ,p to
be the components of h™* (Fy), h ™ (Sg.au), and h™* (S ,.,) respectively which have 0 on
their boundary. Thus the sets P; are pair-wise disjoint Jordan domains. We define Fatou

coordinates on P; by
) L h ik
Djan = Guif © W and 6;,p = Olf 0 W

As a € A, so
qRe pipjq(a) —p > p/y,

the orbit of h? travels counter-clockwise around 0. In particular, for 0 < m < ¢ satisfying

mp=—1 mod g,
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and taking the indices modulo g, the orbit of a point in Sp,¢, close to zero must enter, in

order, the sets

SO,T‘Ep) Sm,att> Sm,repa SZm,att7 SQm,repa R Sqm,att-

Let H be the map in the repelling Fatou coordinate induced by the first non-trivial return
to Sp rep under h*¥a. More precisely, for any z € So,rep and minimal integer n > 0 such that

hR4(2) € Sprep and hF4(2) ¢ Sp e, for some 0 < 0/ < n, we set

H (0 rep(2)) = Gorep(W79(2)) — .

It is shown in [Oud02] that

2mi —1
lim H(w)—w=— ™

q /
= =—= -0
i g 0]~ amgle) —p a0

where p’/q’ is the parent of p/q. For all 0 < j < ¢, let H; be the map in Fatou coordinates
induced by the orbit under h* of points traveling from Sirep 10 Sjtm.att- More precisely, for

any z € Sj,ep and minimal integer n > 0 such that h”kq(z) € Sjtmyrep, We set
Hj(¢rep(2)) = bjim,ane(B"(2)) — .
AS @jrep = T-1/0 0 Gjae for all j, if 2 € Sy ey is sufficiently close to 0 and w = ¢grep(2), then
H(w) =T 1/o 0 Hg_1ym © -+ 0 T_1/0 0 Ho.

Now let us fix some zy € Sprep and set w = Pgrep(2). For all 0 < j < ¢, we let z; € S} ,ep
be the point such that h'*(z;) = zg, 50 @;ep(2;) = w. We assume that Ho(w) is defined,
so there exists some minimal integer n > 0 such that z/, := h"™(z)) € Spau. We set
2o = k™ (z,) € Soa, and for all 0 < j < g we let 2} € Sj 4 be the point in Sj .y such that
hi*(2}) = 2y, so Djae(2;) = Po.au(2). If m + j < ¢, then

hnk:q-l—jk(zj) — hnkq(zo) — Z;na

so h™(z;) = 2, ; and
Hj(w) = @jmatt(2ni;) =1 = Gman(z,) —n = Ho(w).
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If m+j > ¢, then

h(n+1)kq(2j) = h("H)kq*jk(Zo) = h(qij)k@?/n) = Z’:TLJFJ'*Q’

SO
Hj(w) = ¢m+j,(ltt(’2;n+ij) —n—1= bman(z,) —n—1= Ho(w) — 1.

Note that there are exactly m choices of 0 < 7 < ¢ such that m 4+ j > q.
Now we fix some 2 € Spep and w = @ rep(2) such that H"f(w) is defined. Thus there
exist integers 0 < n < Re% and 0 < j < kq such that h"*(z) € S 4 and

Hh’f(w) = ng,’c{tt(hnkqw(z)) —n.
If z is close to 0, then we can choose n so that that h”kq(z) € Smant and j = mk. Hence

Hh’f<w) = ¢g,’£tt(hnkq+mk<z)) —n= ¢m,att(hnqu) —n = Hy(w).

Thus
¢ -
Im'LlulinJroo H<w> - _a + z;lm'}ulglJroo Hj(w) -
j:
= ———m—l—q( lim  Hy(w) —w)
Imw—+oc0
T
SO

ni_ m—6(p/9)d
C+ _— .
q
Setting p’/q’ to be the parent of p/q, or p'/¢' = 1/0 if p/q = 0/1, we have

p'qa—pqd =6(p/q) = 1.

We can therefore directly compute that

1-6(p/q) q if &(p/q) = +1,

szquG(p/q)q’: o :
q—q ifS(p/q) =-1

Hence

1-6&(p/q)
h)
il = 2 L
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The computation of ¢/ is similar. As o™/ is not on the boundary of h™(P™7) for an
0 <n < q, it follows that
H(w) = T/ 0 B (w)

for z close to o™/ and w = ¢f (w). Tt is similarly shown in [Oud99] that

Tep

. 2me
i A w) —w = log(hkaY (ghF)

[]

h, . . s g .
Corollary 11.26. When h — f, (;STEJ; converges to the restriction of gbfep to PTfeg. Addition-
ally, X" — x/ and H" — H/.

Proof. 1t suffices to just show that qbf}y; converges to a restriction of gzﬁfep, the other conver-
gences then follow immediately from the definitions. It follows from Montel’s theorem that
up to a subsequence gbfég converges locally uniformly to a Fatou coordinate ¢ on Pfe’g It

follows from proposition I11.25 that

lim pfo¢ Hw)= lim lim p" o (¢")) ™ (w) = ¢,

Im w—+o00 Imw—+o0c0 h— f rep

SO ¢ = qzﬁfep on P/ by the uniqueness of the Fatou coordinate. O

rep
The convergence of Fatou coordinates gives us the following classical result:

Theorem I1.27 (Douady, Lavaurs, Oudkerk). For any 6 € C, if h — f andn —1/a — ¢
when n — 400, then for any z € U({,

' — o Tso0p’

locally uniformly near z if the latter function is defined at zo.

Proof. For any zy € U({ , there exists some m > 0 such that f™(z) € P(j;tf for all z close to
2. Additionally, there exists some k > 0 such that T5_; o p/(2) € ¢!, (PLS) for all 2z close

rep\* rep
to z. Thus

49— KO0 (ot o o 17
_ hkq o h(n—k—m)q o <¢h,f)—l o Tfmfl/oz o ph,f

rep

=10 (¢rd) "t 0 Tomrja 0 p

= Xh7f © Tn—l/a © ph7f
— Xf oTj5o0 pf
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locally uniformly near zy when h — f and n — 1/a — 0. O]

Let us note that the maps p™f, ¥/, and H/ all depend on our choice of petals near f.

However, the following proposition shows that this dependence evaporates as h tends to f:

Proposition I1.28. For any other choice of petals P near f and any compact set X
contained in the domain of either p/ or x/, the restriction of p™f or x™/ respectively to X

does not change if we replace P with P"I when h is sufficiently close to f.

Proof. Let ézt{ and éf}éf; be the corresponding Fatou coordinates for P*/. As cv® lies on

boundary of both P/ and P/ it follows from the uniqueness of Fatou coordinates that
gbztf = gzNSZt{ on P/ 1 P™f Tt then follows from the definition that ¢/ = ¢nf on P A PhT

rep rep
It follows from part (2a) of theorem I1.22 that for any compact set X C C, there exists a
constant n > 0 such that X +n C ¢/ (Pf 0 PP/) and X —n C ght (Phf O PMI) when h

is sufficiently close to f. Thus

X = o (i) o T

on X does not depend on the choice of P/ or P"/. By similar reasoning, the analogous
statement holds for p/. O]

A near-parabolic renormalization of h relative to f is defined to be a map of the form
ijh = Exp* oI 1/q 0 H™ o (Exp*)~!.

It follows from proposition I1.24 that R]jfh is defined on punctured neighborhoods of 0 and
oo and we can analytically extend by setting Rjjfh(O) =0 and R?h(oo) = oo. Additionally
proposition I1.28 implies that for any two choices of petals near f and any compact subset X
of Dom(Ra—L f), if h is sufficiently close to f then the restriction of Rifh to X does not depend
on the choice of petals. So while ijh is not canonically defined as a function which depends
only on f and h, this is a technicality which we can ignore asymptotically when A — f. As
in the parabolic case, R?h and R} h are called the top and bottom renormalizations of h
relative to f respectively, we will focus on the top renormalization and denote R; = R]T
Corollary II1.26 implies that Ryh — Rsf when h — f and —1/a — § mod 1. For any integer
j > 0 which depends on h, we will say that h converges to (f, Rsf) with combinatorics j if
j—l/a—>5—ci when h — f.
We define the attracting elevator of h relative to f to be the map

Mt = ExpoT_y/q 0 o™/
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We define the repelling elevator of h relative to f to be the map

it (2) := Expogf(2),

defined only when z € P™/ is petal-exiting. Similarly to the parabolic case, it follows
immediately from the definitions that 7’/ o (nuf)~" is a restriction of Ryh. It follows from
corollary I1.26 that n/») — nl,, when h — f, and it follows from part (3c) of theorem II.22
that 0% — natt’& when h — f and —1/a — § mod 1.

Proposition I1.29. For any z and 2/, if

Ryh oy () = e (2),

then there exist integers Re— <n< Re = and 0 < m < q which depend continuously on

2 and 2’ such that h™*+m(z) = 2.

Proof. Set w = ¢fid(2),u’ = ¢h(), ¢ = Exp(w), and ¢ = Bxp(w'). I Ryh(C) = ¢
then there exists an integer n so that 71/, 0 H"/(w) = v’ — n. As H"/(w) is defined
and z is petal-exiting, there exists some integers 0 < j < Re% and 0 < m < ¢ so that
hikatm () € PhJ is petal-entering and

H" () = gif (W (2)) — j.

Hence
h,f —
¢rep(zl) - ’lU/
:Hh’f( )+n—1/a
= it (W7 (2) + 0 — j = 1/a

_ 1h,f jkqg+m .

_¢rep<h] I ( ))+n_j
As ¢l:f is a Fatou coordinate, 2’ is petal-exiting, and h/**™(z) is petal-entering, it follows

from proposition I1.23 that we can conclude that Req— < n—j < Res and 2/ = h"ktm(z).
It follows immediately from the above argument that the integers n and j both depend

continuously on w and w'. O]

Proposition I1.30. For any z, 2, if
h, ,
nat{(z) = nfe]pj(’z%
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then there exist integers Reﬁ <n< Reé—i and 0 < k < q which depend continuously on z
and 2’ such that h"*(z) = 2.

Proof. This follows directly from the same argument used to prove proposition I1.29 above.
O

Proposition I1.31. Fiz some § € C, z € Dom(ngtt,é), and set ( = nj:tm(z). For any
0 € [—m/4,7/4] and M > 0, if h is sufficiently close to f and —1/« is sufficiently close to
0 modulo 1, then for any simply connected set Y C C which avoids Exp(—1/a), contains (,

and on which there is a continuous branch of Exp™! satisfying

Exp 1(Y) C {w : |Rew| < M},
the petals near f can be chosen so that there exists a unique continuous branch of (nfj;{)*l
defined on'Y which sends ¢ close to z. If Y has cv™ on its boundary and Y has 0 on its
boundary, then 0 is on the boundary of Y.

1

Moreover, using the above branch and setting Y := (772;{)* , there exists a branch of

Exp~! defined on Y satisfying
Exp (V) C {¢w : [Rew| < M},

where

0=0+0()
when o — 0 and M depends only on M and zy.

Proof. Set wy = p/(2). If h is sufficiently close to f, then we can choose the petals near f
so that
{ew + wy : |[Rew| < M}

is contained in the image of p/. If h is close to f and n — 1/« is close to § for some n € Z,
then there is a unique branch of (Exp o7}, ; /a)*1 defined on Y which sends ( close to wyg. It
follows from the definition that p™/ is a covering map branched over the negative integers;
hence if h is sufficiently close to f then there exists a unique branch (n5/)~! defined on Y
which sends ¢ close to z. If cv™ is on the boundary of Y, and 0 is on the boundary of Y,
then the same argument used in the proof of lemma II.15 allows us to conclude that 0 is on
the boundary of Y.

If Y ¢ P/, then the second part of the proposition follows from part (1c) of theorem

rep )
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I1.22. Otherwise, the same conclusion follows from the fact that

M
Y c | o)

m=0
for some integer M which does not depend on a. O]

Let us observe that in the above constructions we never actually use the function f, just
that h is sufficiently close to f. Thus if g is a stable perturbation of h which is close enough
to f, then Ph/ = pha HM = HM9 R :h = R,h, ete.

I1.3.2: Negatively implosive perturbations

Let us now assume that instead h/(0) = e*»/a(®) for some o € A7, := —Af,. We set

1/2 1/2°
ff=toforand h* =1ohou, so

(f7)'(0) = Exp(—=p/q) and (h")'(0) = Exp(=t(pp/q(c))) = Exp(pi—p/q(—t(a)))

by proposition I1.6. Thus A* is a positively implosive perturbation of f*; in this case we will
say that h is a negatively implosive perturbation of f. We define

Pt — (PR and PR = f7o (PRI,

rep rep
where 0 < n < ¢ satisfies np =1 mod ¢q. We also define
h _ h* *
il = Bxporo Ty o Bxploniy? o,

hot . —1_ k", —n
Nrep = Exporo chi*,f*_ci oExp™ on.’ owoh™, and

Ryh =l o ().

using the branch of A~ which sends P/ to (P" /™). It follows from the definitions that on

rep rep

their respective domains, we can alternatively write these maps as

hf _ WL f
Mair = Exporo Tpese_ oy 0P’ ou,

ht _ . h* £ —n
n —EXpOLOTC}i,f_C{LOQb ovo f7", and

rep rep

Rih(z) = Exp ("7 —ef) - R B Z )
rh(z) p( 1) f (EXp_(C}i’f _Ci)
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So in particular, we can compute the multiplier of R¢h at 0 and oo as

(Rsh)(0) = (R7.27)(0) = Exp~ (<" + 1/u()) = Exp(u(c" ") + 1/a), and
(Ryh)'(00) = (Ry.h*)'(00) = Bxp™ (=(d}" + 1/1(a))) = Exp(—1/a).

Proposition 11.32. The petals near f and f* can be chosen so that

h»
nat{ - 773;5,:,5;
Wiy = Moy and
th — Rsf

when h — f and o(¢”) +1/a — § mod 1.

Proof. First we observe that ((P/,) is an attracting petal for f with cv/ on its boundary

and with Fatou coordinate ¢ o ¢£t o ¢. By the uniqueness of P/ e and %m we therefore have
Po{tt = L<Pc{;t) and ¢£tt =10 ¢£tt oL
As cfr € 7, it follows that
h.f E T I* —E T f—
Nt — LXpoLo L((;)_Ci cp olL=LHXpo 5_Ci O 0" = Nate,s

when h — f and L( )+ 1/a — 6 mod 1. Similarly, the uniqueness of ¢/ combined

Tep

Wlth part (1c) of theorem II.7 implies that we can choose the petals near f and f* so that
P = f"ou(PL,). By the uniqueness of Fatou coordinates, it follows that there is some
A € C so that

qbrep_TAOLoqsrepobof_n

on P/ . using the branch of f~" which sends P/ to «(PZ ). Thus for any fixed z € R, if y

rep’ rep rep

is sufficiently large then proposition I1.9 implies that

H (-T + @Z/) = p © (¢7"6p) 1($ + Zy)
- ¢att (¢rep) l(x + Zy)
:bo¢atto<f) (¢rep) YoroT y(z +1iy)

—opl o (@) e ro Ty + i)
=10 H" oroT_\(z —iy).
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Thus

W) = lim o(H' (z + iy) — (z +iy))

Yy—r+o0

= lim H' (z —iy —1(N\) — (x — iy — t(N)) — ¢(N)

Yy—>+0o0
=" —N),
SO
My — Expovo Ty 0 ¢l 000 f7" = Expod], =/,
on the domain of n{ep. The convergence Rsh — Rsf immediately follows. n

In this setting, for any integer j < 0 which depends on h we will say that h converges to
(f,Rsf) with combinatorics j if j — 1/a — 1(¢") — 6 when h — f.

Proposition I1.32 ensures that the top parabolic renormalizations of f are exactly the
limits of the top near-parabolic renormalizations of h for both positively and negatively
implosive perturbations. We will say that h is an implosive perturbation of f if it is either a
positively or negatively implosive perturbation of f. We will say that h is a non-implosive

perturbation of f if it is neither an implosive perturbation of f nor a stable perturbation of

f.

11.3.3: Comparing renormalizations

So far in this chapter, we have introduced several different renormalization operators. We
will now focus on exactly how we can relate these renormalizations.

We consider a map fy and § € C such that both f, and f; are stable perturbations of
maps in FE. Let go be an implosive perturbation of f; such that g; = Ry,g0 is a stable
perturbation of f;. In particular, g; has a parabolic cycle with the same multiplier and
period as the parabolic cycle of f;. If hy is another map close to gy, then hg is also an

implosive perturbation of fy; we set hy = Ry, ho.

Proposition 11.33. In the situation above, gy also has a parabolic cycle. Moreover, if hg
1s sufficiently close to go and hy is sufficiently close to gy, then hg is a stable or implosive

perturbation of go if and only if hy is the same for g, respectively.

Proof. If g, has a parabolic periodic cycle contained in C*, then it follows immediately from

proposition 11.29 that gy does as well. Moreover, the dynamics of hy near the parabolic cycle

hO:

Tepfo to the dynamics of hy near the parabolic

of g; are locally analytically conjugate by 7

cycle of gg, which completes the proof in this case.
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Now that us assume that 0 is a p;/q; parabolic fixed point of g; for some rational p/q €
[—1/2,1/2], so ¢1(0) = Expopy, /e, (0). As fo has a py/go-parabolic k-periodic point, after
conjugating by Mobius maps we can assume that 0 is the fixed point of ggq on the upper end
of P9:fo_ that is Im ¢/ (z) — 400 when z — 0, and that (g;?)'(0) = Exp ofip/q(cr), where

cff —1/a=p;/¢1 mod 1.

Let us assume that gq is a positively implosive perturbation of fj, so there exists some integer

J > 0 satisfying

1
a== fo ’
JTCE = Hpy /g (0)

in particular there exists some rational pj/q, € [—1/2,1/2] such that

1
J+ C{ro - Mpl/‘]l(z)

Kol /gl (2) =

Thus 0 is a p/qy-parabolic periodic point of go. Recall that h; is a stable or implosive

perturbation of g; if and only if h; is close to g; and

h/l (O) = Exp Olupl/(h(a/>

for some o’ € Ay, U{0}. Again conjugating by a Mdbius transformation, if h is sufficiently

close to gop then 0 is a fixed point of hlgq on the boundary of P/ and

1
J+ Cf&? - :um/th(o‘/)

k
(he?)'(0) = Exp Oflp/q ( ) = BExp opty /gt ().
Thus hg is a stable or implosive perturbation of gy if and only if h; is a stable or implosive
perturbation of g; respectively.
The argument when g, is an negatively implosive perturbation is similar. If instead oo
is a parabolic fixed point of fy, then the desired results follow from the same argument as

above and proposition I1.25. O

Proposition 11.34. Assume that hy is an implosive perturbation of g1. If go is sufficiently

close to fy, then there exist choices of petals near fy, go, and g1 such that

h7 h7 j— h7
i (Pro) = ph
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Pho.fo

pho,fo

Figure 11.3: The lift of P9t to Pho:9 as in proposition I1.34. The critical value cv™ and
its corresponding images are given by the red starts.

and

ho,90 — ,h1,91 ho, fo
nrep - nrep O Natt

when hg and hy are sufficiently close to gy and g, respectively. For any compact X C
(027" (Dom(p™)), if ho is sufficiently close to go and if hy is a sufficiently close to gy,

then

ho,g0 __ , h1,91 ho,fo
Natt™ = MNatt™ © Nast

on X.

Proof. Let us assume that fy has a pgy/qo-parabolic kg-periodic cycle and that g; has a py/q;-

parabolic kj-periodic cycle. We set a to be the complex number satisfying

h,
¢h0,f0 — T—l/a o ¢ag£f0_

rep

Lemma II1.35. For any € > 0 and |0] < § — €, there exists a choice of petals near g, and
a constant M > 0 such that if hy is sufficiently close to g; then there exists a branch of log
defined on P9 satisfying

log P"9  {e"w € C : [Rew| < M}.
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Proof. 1f the parabolic cycle of g; avoids C* then the petals P9:9" are compactly contained
in C*. The convergence of P"91 to P9:91 therefore implies the lemma. If instead 0 or oo is

the parabolic fixed point of g;, then the lemma follows from part (1c) of theorem 11.22. [

s

4
branch of log defined on P"9 satisfying

Let us fix some |#| < T and continuous choice of petals near g, such that there exists a

log P"9  {e®w € C: [Rew| < M}

for some constant M as in the above lemma. It therefore follows from part (2a) of theorem
I1.22 that there is a choice of petals near f, for which there exists a connected component
P’ of (nhof0)~1(P"9") on which n!%° is univalent. It similarly follows from lemma I1.35
and proposition I1.31 that if gy is sufficiently close to fy and if hg is sufficiently close to g,
then there exists a unique connected component P of (nﬁft’f 0)=1(Ph191) which has cv™ on its

boundary. As P is connected, proposition I1.30 implies that there exists an integer

1 11
gokoRe—— <m < qo [ 1 + kgRe—
12« 6

such that h*(P) = P and 1'%/ = nlo.fo o b on P.

rep

As P is connected, it follows from proposition I1.29 that there is an integer

1 23
koRe—— 1+ kyRe—
) 0R€12a <n<q ( + ORelQa)

so that nf}&;fo conjugates h? on P to h¥'% on P"91 In particular, P is a petal for hl.
Moreover, P converges to the union of attracting and repelling petals for g when hy — go
and hy — g¢;. It follows from the proofs of proposition I1.29 and I1.30 that m < n. As
hy is univalent near 0, it follows that P is also a petal for h{ and converges to the union
of attracting and repelling petals for gj when hy — go and h; — g¢;. It follows from the
uniqueness of petals that there exists a choice of petals near gy so that P = Pho9,

It follows automatically from the above that
nggt,fo (Pho,go) — phuar

If X is a connected compact subset of (n%%7°)~1(Dom(p')), then X9 := n®/°(X) is a
compact subset of Dom(p?) and there exists some integer j > 0 so that ¢ (z%") C P%,. If
hg is sufficiently close to gg, then X is a compact subset of Dom(ngft’fo). If hy is also close

to g1, then XM := %% (X) is a compact subset of p" 91 and hI (XM) ¢ P91, Proposition
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I1.29 implies that for any connected compact subset of X of (nrosfo)y=1(X 1) there exists an
integer J such that kJ(X) C P and

23 1
J < jqo | 1+ koRe—— ) < 245q0koRe—— < 24jn.
12c 12a

Thus hB”“J(X ) C P, moreover if hg and hy are sufficiently close to gg and g; respectively we
can ensure that k"7 (X) is a subset of the petal-entering points in P. As .J < 12jn, if hg is
sufficiently close to go then X C Dom(ph0:90) and

ho,90 hi1,91 o

_ ho,fo
Natt™ = Natt

n

on X. We can extend from connected X to arbitrary X by including X in a larger connected

compact subset of (%;7)~1(Dom(p)). O

Proposition 11.36. Assume that hy is a stable perturbation of g,. If go is sufficiently close

to fo, then there exist choices of petals near fo, go, and gy such that

hy 5 h ’
Ny (Pait) = Pari and 1,3, (Plt,) = Pl

rep rep’

and
h h ho, h h ho,
¢a?t = ¢atlt © naft fo and ¢rgp = ¢rép © nai?t fo
when hg and hy are sufficiently close to gy and g, respectively.

Proof. The argument is the same as that in the proof of proposition 11.34 above. O

Corollary I1.37. If gy is sufficiently close to fy and if hy is a stable perturbation of g1, then
R5h0 and R5h1

eventually agree on every compact subset of Dom(Rog1) for any 6 € C when hy — go and
hy — g1. If hy is an implosive perturbation of g1, then

Rg1 hl and Rgoho
eventually agree on every compact subset of Dom(Rog1) when hg — go and hy — g.

I1.3.4: Invariant classes

Let us fix some fy € Fy, and rational p/q € [—1/2,1/2]. Setting A, := AT U A, for all r > 0,

for any sufficiently small o € A/, we can define the (p/q, a)-fiber renormalization of fy to
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be
Rp/q.afo = Exp oH'" o Exp~!

where f = e¥™/4f, and h = e*™#»/a(*) f,. The fiber renormalization is closely related to

near-parabolic renormalization, indeed

Exp(—1/a) - Rpqafo if v € AT/Q

Ryh = e
Exp(u(c" " =) +1/a) ‘Rpjgafo fa€A,

It follows from the compactness of Fy that for any rational p/q there exists e > 0 and r > 0
such that R, /4.« fo can be similarly defined for all f, € . and a € A,.

Proposition I1.38. For all p/q € Q, if € > 0 is sufficiently small then there exists r > 0
and 0 < € < € such that Ryqaf has a restriction in Fo for all f € F. and o € A,.

Proof. Theorem I1.20 implies that for all € > 0, there exists some 0 < ¢ < € such that
Rpjq0f has a restriction in Fo for all f € F.. The local uniform convergence of R, /qqf to
Rpq0f when oo — 0 implies that if r > 0 is sufficiently small, then R/, . f has a restriction

in Feyey 2 for all a € A, As F. is compact, 7 can be chosen uniformly. O

I1.4: Orbit correspondences

We end this chapter by generalizing a classical result in parabolic implosion, the parabolic
orbit correspondence introduced in [Lei00], or similarly the Tour de Valse introduced in
[DHS5].

Let us fix a map f and let P,; and P,., be attracting and repelling petals for f with
Fatou coordinates ¢qy and ¢, respectively. Let us fix some ¢, > 0 and compact sets
X C P, Y C Pp. Let hy be a holomorphic family of maps parameterized by a € I such
that for any o € AF sufficiently close to 0:

1. There exists a petal P, for h, with Fatou coordinates ¢uo and ¢rep o which depend

holomorphically on « and satisfy
¢rep,a = Tfl/a o ¢att,a-
2. Both X and Y are subsets of P, and

Sup |Pau(2) — ¢att,a(2)| < e and sup |¢r6p(z) - ¢rep,a(z)| <€
zeX z€Y
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for all « € AF.

Proposition I1.39. There exists an integer ng > 0 and constant C' > 0 which depend only
onr,e, X, andY such that if x - AF — X andy : AT — 'Y are holomorphic functions, then

for any n > ng the equation

gbatt(x(a)) +n— é = ¢rep,a(y(a))

has a unique solution o, € A} which satisfies

1
a, ——| <
n

C

n2

when n > ng. Moreover, if y = vy, depends holomorphically or univalently on t € D, then

oy, = apy also depends holomorphically or univalently on t respectively.

Proof. Let us fix some large M > 0 such that
Diam ¢a:(X) + Diam ¢y, (Y) + 26 < M.

Thus
|¢att,a(a> - ¢att(a/)| + |¢rep,a(b) - ¢rep(b/)| < M

for all a,a’ € X, b,/ € Y, and a € A}. We fix some points a9 € X, by € Y, and set

C = ¢att(a0) - ¢rep(bo>~

For all integers n > 0, we define the holomorphic function F, (o) = (+n+ = on A} Let ng
be sufficiently large so that

D,:={1/z:|z—C—n|]<2M} C Af

for all n > ng. Thus the equation F,,(a) = 0 has a unique solution in D,, for all large n.

Now let us fix some n > ng, and define the holomorphic functions

Ga0) = bunalw(@)) + 71—~ — Grepaly(a),
E(Oé) = Qsatt,a(x(a)) - ¢rep,a(y(a)) - C
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on Af. Thus F,(a) + E(a) = G,(a) and |E(a)| < M. As

sup |F,(a) — Gu(a)| = sup |E(a)| <M <2M = inf |F,(a)l,

aE@D,L aeaDn aeaDn

Rouché’s theorem implies that the equation G, () = 0 has a unique solution «, inside D,,.

Thus, increasing ng if necessary, we have

2M + |C| AM + 2|(|
n(n —2M — [¢]) n’

ap — —
n

o |an| ‘ 1
= — n_ PR
n

Qp

when n > ny.

Now we suppose that y = y; depends on ¢t € D, so G, = G, ; and «a,, = ;4 also depend
on t. If y; depends holomorphically on ¢t € D, then for any ¢, € D we can repeat the above
argument to conclude that G, is univalent in a neighborhood of «,,;,. Thus o, depends
holomorphically on ¢ near ¢, by the implicit function theorem. Moreover, if y, depends

univalently on ¢, then o, also depends univalently on ¢. O]
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CHAPTER 111

Parabolic Towers

We will call any sequence T = (f,)™_; of holomorphic functions, with 1 < N < oo, a tower
of height N. For any 1 < M < N, we will call (f,)*, the height M sub-tower of T. We
will not distinguish between a sequence of length 1 and its sole entry, so for example we will
write (f1) = fi. If T = (f,)_, is a sequence of length 1 < N < oo, then we will denote

(7] = (funs and [T := (fu)n s

We define a parabolic tower to be a tower T = (f,)2_; such that for all 1 < n < N,
fn € F* and frar1 = Rs, fn for some 6,, € C/Z. We will say that the T is strictly parabolic
if N <ooand fy € F % We will call the function f1 the base of the tower and the sequence
((5n)fj:_11 the data of the tower. Thus any parabolic tower is uniquely determined by its base
and data, and every sub-tower of a parabolic tower is a strictly parabolic tower.

We denote by T the set of all parabolic towers, and for all N > 1 we denote by Ty the
set of all parabolic towers with height less than or equal to N. We define ny : T — Ty to
be the map which is the identity on Ty and sends

<fn>nN;1 = <fn>7]:[:1

when N’ > N.

II1.1: The space of parabolic towers

Let us now assume that 7 = (f,))_, is a finite height parabolic tower. For any other
parabolic tower 77 = (g,)" |, we define a renormalization tower of T' relative to T to be a
tower

RTT, = <hn>N

n=1»
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T h f fs fa fs

Ry h R h Re, h
RT' hy —2% hy —25 by hy —2% by
T 5N g2

Figure III.1: A renormalization tower of 7' = (g,)2_; relative to T = (f,)>_; with jump-
heights (1,4, 6). The double arrow < indicates equality.

if it exists, such that there exists some 1 < M < min(N, N’) and integers
1:5’1<"'<SM+1:N+1

such that for all 1 < 57 < M:
1. th =95,
2. for all s; <n < sj;1 —1, hy is an implosive perturbation of f,, and h,y1 = Ry, hy,

3. if j > 1 and n = s; — 1, then h, is a stable perturbation of f,.

We will call the sequence (sﬁ?f{l the jump-heights of R+7T’. The renormalization tower
R+T" is uniquely defined when we fix a choice of petals near each f,. We note that the
renormalization tower R+7" depends only on my (7).

For any sequence (N,)Y_, where N, is a neighborhood of f, for all 1 < n < N and
any choice of petals near f,, for all 1 < n < N, we will call the set of all parabolic towers

T = (gn)" | which satisfy the following two conditions an unbounded neighborhood of T
1. The renormalization tower RyT’ = (h,)N_, is defined for the choices of petals.
2. Foralll1<n <N, h, €N,.

If T is strictly parabolic, then for any set Ay, which is a union of neighborhoods of R4.o fx
and any choice of petals near fy, we will call the set of all such 7’ which also satisfy the

following additional conditions a bounded neighborhood of T:
3. If M < N'" and hy is a stable perturbation of fy, then gyy1 € Nyi;

4. If hy is an implosive perturbation of fy, then Ry, gn € Nyt
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For any N > 1, we will say that a subset X of ¥ is a bounded or unbounded neighborhood
of height N if X is a bounded or unbounded neighborhood of a parabolic tower of height N
respectively. Note that these bounded and unbounded neighborhoods are partially ordered
by inclusion.

Let us recall that a topology on a space X is first-countable if for every x € X, there

)
n=1

then there exists some n > 1 such that V,, C V.

exists a a sequence of (V,,)* ;| of neighborhoods of x such that if V' is a neighborhood of z,

Proposition II1.1. The set of all sufficiently small bounded and unbounded neighborhoods
forms the basis of a first-countable topology on X.

Proof. Every parabolic tower is automatically in every unbounded neighborhood of any of
its sub-towers, so the union of all bounded and unbounded neighborhoods covers T. Fix
some finite height tower T = (f,)_; € T and let N be a either a bounded or unbounded

neighborhood of 7. Fix some T = (f,)~_, € N, so the renormalization tower
RTT = <§n>7]:[:1

is defined with jump-heights (5])]]\5{1 for some 1 < M < min(N, N). Let 7" = (h,)Y, be

another parabolic tower such that

RfT/ = <iLn>nN:1

is defined with jump-heights (tj)j]\f{l for some 1 < M < min(N, N’). Let us observe that
when 77 belongs to a sufficiently small neighborhood of T, we can define a tower (gn)D_,
such that

1. ggj . ;Lj, and
2. forall 5; <n <3841 —1, g1 = Ry, 9n,

for all 1 < j < M. Indeed for any 1 < j < M and 5, <mn < 5541 — 2, gy is an implosive
perturbation of f,. Thus if g, is defined and sufficiently close to g,, then g, is also an
implosive perturbation of f, and Ry, g, is close to Ry, g,. By taking 7' in a sufficiently
small neighborhood of T, we can force gs; = Bj to be arbitrarily close to fj = gs,;, combined
with the above this guarantees that the tower (g, )Y_; is defined. Moreover, by taking 7 in
a sufficiently small neighborhood of 7, we can force each g, to be arbitrarily close to g,.
Setting s; = 5, for all 1 < j < M + 1, let us now show that (g)N_, = R7T' and has

n=1 —

jump-heights (s;)MH1 As iLtj = h;, we first need to check that for any 1 < 57 < M and all
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hs 94
x fa N Rgz=Rps
f2 \ : g3 \3
ha 9s

f 1 §1 Ry
hq hy Ql
T T RiT RrT RrT

Figure I11.2: An example of the renormalization towers in the proof of proposition II1.1. Here
the double arrow < indicates equality, the arrow — indicates convergence when 7" is taken
in successively smaller bounded neighborhoods of T, and the dashed arrow --» indicates the
action of the labeled operator.
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tj <k< tj+17
95, = RfEk—lggk_l'

By definition, g,,_; is a stable perturbation of f,, _;, so
Rf§k—1g§k*1 = Rggk—lggkfl'

Repeated application of corollary I1.37 implies that, by taking 77 in a sufficiently small

unbounded neighborhood of 7~ and requiring that A is sufficiently small, we can ensure that
Ris, 195-1 = Ry, 951 = Rj_ w1 = I = g5,

on any compact subset of the domain of Ryg;s, 1. It follows from the definition that for any
1<k<M+1,

J3,-1 = (Rf5r2 - 'Rfék_1> By
As

Jsp—1 = (ngk,g . 'ng,H) fer

is a stable perturbation of f; _; for all 1 <k < M +1 and iztj_l is a stable perturbation of
ftj_l for all 1 < j < M, repeated application of corollary I1.37 implies that g,, 1 = 5, -1
is a stable perturbation of f,,_; for all 1 < j < M if N was chosen sufficiently small. This
verifies that (g,)"_, = R7+T’ when T is in a sufficiently small unbounded neighborhood of
T.

Thus if AV is an unbounded neighborhood of 7T, then there exists an unbounded neigh-
borhood of T contained in A. If instead N is a bounded neighborhood, then fy € FEIf
gn is an implosive perturbation of fy, then gy is also an implosive perturbation and Ry, gn
can be made arbitrarily close to Ry, gy by forcing gy to be close to gn. If gy is a stable
perturbation of fy, then repeated application of corollary I1.37 implies that gy is a stable
or implosive perturbation of gy if and only if hy, is a stable perturbation of fy. In the
stable case, Rogny and Rohar agree on any compact subset of the domain of Rygy when
has is close to fys and gn is close to gy. In the implosive case, Rj,gn and RfMizM agree
on any compact subset of the domain of Rogy when hjy; and gy are sufficiently close to
fM and gy respectively. Thus there exists either a bounded or unbounded neighborhood
N of T contained in N. It follows from the definition that any non-empty intersection of
two bounded or unbounded neighborhoods of 7 contains a bounded neighborhood of 7.
Thus if N7 and N, are sufficiently small bounded or unbounded neighborhoods of 77 and 7
respectively and 7 C N N Na, then we can find a bounded neighborhood of T contained
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in A7 NN,. So we can conclude that the bounded and unbounded neighborhoods form the
basis of a topology. The fact that this topology is first-countable follows immediately from
the fact that the compact-open topology is first-countable. O

For the rest of this thesis, we equip ¥ with the topology described by proposition III.1.
While we have a natural inclusion ¥y C T, we will not equip ¥ with the subspace topology.

To define an alternative topology on ¥y, we first make the following observation.

Proposition II1.2. Let N be a bounded or unbounded neighborhood of height N and set
M = N+1 or M = N respectively. For any T € T, T € N if and only if m7p(T) € N.

Proof. This follows immediately from the fact that R+7" depends only on 7x(7") for any
T eZn. O

For all N > 1, we endow ¥y with the topology generated by the sets 7y (X) where X
is a bounded or unbounded neighborhood of height no more that N — 1 or N respectively.
We can repeat the proof of proposition III.1 to verify that these sets do indeed form the
basis of a first-countable topology on Ty. It follows from proposition I11.2 that with this
choice of topology the map my is continuous for any N. Note that given two finite height
parabolic towers 7 and 7", if we write 7' — T then there is some ambiguity to whether we
are considering the convergence in ¥ or T for some N > 1. To avoid possible confusion, we
will always assume that the convergence is in ¥ unless explicitly stated.

Let 7 = (f,)Y_, be a parabolic tower with data (5,))"', let 7’ be another parabolic

n=1>
tower with Ry7" = (h,))_,, and let (k,))! be a sequence of integers which depends on 7.
When 77 converges to 7 in ¥ or T, we will say that the convergence has combinatorics
(kn)NZVif b, converges to (fn, Rs, fn) With combinatorics k, for all 1 <n < N — 1 such that
h, is an implosive perturbation of f,,. Note that while we normally consider the entries §,
of the data of T in C/Z, in this context we instead take J inside C.

It will be important to understand how convergence of towers induces convergence of

their sub-towers. Let 7 = (f,)Y_, and T’ = (g,)"_, be parabolic towers with N finite and

M'+1
n=1

such that the renormalization tower R77T" is defined with jump heights (s,,)
M = sy < N, let us denote Ty = mp(T) and Ty = mar (T7).

. Setting

Proposition II1.3. If the jump heights remain constant when T' — T, then T,, — T. If
M' > 1, then additionally | T{; ] — | Tu]-

Proof. Tt follows from the definition that R7T;, = RyT' = (h,)Y . When 7' — T we

n=1"

have that h, — f, for all n. Moreover, if hy is an implosive perturbation of fy, then Ry, hn
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is eventually contained in every union of neighborhoods of Ry fn, 50 Typ — T. IE M > 1,

so M > 1, then a hy;_; is a stable perturbation of fj;_; and
RLTMJ |.TJ\/4’J = <hn>7]\z/[:_11>
hence | T | — [Ta]. O

I11.1.1: Inverse limits

Let (X, fn)2, be a sequence such that X, is a topological space and f, : X,11 — X, is
continuous for all n. Such a sequence is called an inverse system. The inverse limit of the
inverse system, which is denoted by T&n(Xm fn)22,, is defined to be the set of all sequences
(xn)22 such that x, € X, and f,(x,4+1) = x,, for all n > 1. The inverse limit is a subset of

the infinite product Hn21 X, and is equipped with the subspace topology.
Proposition I1I.4. T is homeomorphic to @(Tm Tn)olq.

Proof. Given any parabolic tower T, we can define the sequence (7,)>° , by T, = m,(T). It
is easy to check that the resulting map ¢ : T — @1(‘3,“ Tn)oo is a bijection. Given any
bounded or unbounded neighborhood X of height N and setting M = N+ 1or M = N

respectively, proposition II1.2 implies that
QO(X) = (l'&n<zn77rn>zo:1) N (( H Sn) X 71-M(AXV) X (H Zn>) .
1<n<M n>M

In particular, ¢ maps the basis of the topology on ¥ to a basis of the topology on T&n(‘lm Tn)o2 .

Thus ¢ is a homeomorphism. O

I11.1.2: Elevators

For any finite height parabolic tower 7 = (f,)2_, with data (05)2_ !, we define the attracting

n=1">

elevator of T inductively by

T Z if N=1,
Natn(2) = o1 7] .
Natt, 65—, © Matt (2) N>L1

We denote the domain of ), by U7 so UT) = C* when N =1 and

U = @) )
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when N > 1. Thus if 7 is a strictly parabolic tower, then U7 is defined.

Proposition IIL.5. The map nl, : U7} — C* is an analytic branched covering map whose

unique critical value, if it exists, is cv/N = nl (cv’t). Moreover, cv’* is not a critical point

of 773;1#

Proof. The proposition clearly holds when N = 1, so assume that N > 1 and that the
proposition holds for n&ttJ It follows from the definition of p/N-1 that cv/N-1 = 77L J( v/1) is
not a critical point of p/¥-1 so cvft is not a critical point of nJ,. Additionally, the critical

values of p/N-1 are all integers, so Exp(dy_;) = cv/V is the unique critical value of n/,. [

Proposition II1.6. For any open set V which contains a point in OUT) and any y € C*,
there exists infinitely many points x € V such that nl,(z) = y.

Proof. This is a special case of proposition II1.18 below. [

Corollary IIL.7. If N > 1 and T is a strictly parabolic tower, then
ou”T = oulTlu (g1t OUM™).

Proof. 1t follows immediately from the definition that
oUT N U = (ngy) 1 (QUTY).

Moreover, OUT ¢ ULT) as UT < ULT!. Proposition II1.6 implies that any point in OU L7’
can be approximated by points inside or outside of (n7,,)~*(UV), so OUT! c oUT . O

We also define the repelling elevator of T inductively by

z itN=1
nz;p<z) = fN-1 7] : E
Nrep - © Nrep () if N > 1.

Let 77 = {g,)Y", be another parabolic tower of possibly infinite height whose renormal-
ization tower Ry T’ = (h,)N_, is defined with jump heights (s,)* 11, Setting M = s5 < N,
so har = g, let us denote Ty = mp(T) and Ty, = mar (T7). We define the attracting and
repelling elevators of T' relative to T to be

T.T .  hy-1,fn-1 har,far Tarr

Natt = Natt O+ OTatt O Ty, and
T T . hN—1,fn-1 har, fur Tarr

nrep T nrep ©--+0 77 O Mrep -

44



Proposition IIL.8. If in(T7) — T in Ty, then nl," — nT, and S

Proof. We will only prove the proposition for the repelling elevators, the same argument can
be used for the attracting elevators. Up to a subsequence we can assume that the jump
heights (s,)*F1 do not change when 77 — 7.

If N =1, then M = M’ =1 and the proposition holds by definition. So we assume that
N > 1 and that the proposition holds for smaller values of N. If M < N, then

T —1,fN-1 g nT'iTJ

T\ T _ nhN
T/rep - nrep rep ’

so the proposition holds by the inductive hypothesis and the convergence of nfé}’l’f M1 to
nfg,‘l. If N=M = sy, then N > 1 and s; = 1 implies that M’ > 1. We set My = spp_1,
SO gpr—1 = hMg‘ As

hay—1 = RfN—z © RfN—3 00 RfNO he s

and hys_q is a stable perturbation of fy;_1, repeated application of proposition I1.34 implies
that

Im’—1

ha hn_— hn— _ Ry, fu
ne :nrepoan1o77N2,fN 25.. 0/ Mo

rep rep * O Mrep

The inductive hypothesis and proposition II1.3 therefore imply that

T T Tor 91 [Tal  anra [T 1oL Taa ] Targ | Tar]

= - T
Nrep = Trep = Nrep OMrep = Nrep O Nrep =l ooy o =gl

]

Proposition II1.9. Fiz some z € Dom(nl,), and set ¢ = nl,(z). For any |0] < 7/4 and
M >0, if T is sufficiently close to T, then for any simply connected set Y C C which avoids

"N | contains ¢, and on which there is a continuous branch of Exp™! satisfying
Exp 1Y) C {w : |Rew| < M},
the petals near T can be chosen so that there exists a unique continuous branch of (nz;;’T)_l

defined on'Y which sends ( close to z.

Proof. If N = 1, then both 1, and nZ;’T are the identity, so the proposition holds automat-
ically. So we assume that N > 1 and that the proposition holds for towers of lesser height.
It follows from the definition that either

TT _ hwendnon o TIT
Natt = nag Mo 7]1"@10L J7
or nz;;’T =l where T" is a sub-tower of 7”. In the former case, the proposition holds by
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proposition I1.31 and the inductive hypothesis. In the latter case, the proposition holds as

nl, is a covering map onto C* branched at cv~. ]

I11.2: Quadratic parabolic towers

For all o € C, we define the quadratic polynomial
fol(2) = ™2 4 22,

We also define f,;00(2) := 22, and define f_;o to be the constant function from C\ {0} to

{oo}.
Proposition I11.10. When Ima — 00, fo = frico-

Proof. When Im a@ — +ioco, €*™@ — (). For any 0 < € < 1 and 2 € C satisfying € < |z| < 1/e,
[fal(2)] = [2]*™ + 2| > €(|e*™] = 1/€) = o0

when Im o — —i00. O

We denote by Quad the space of all f, with & € C U {%ico} with the compact-open
topology. it follows from proposition II1.10 that Quad is homeomorphic to C/Z U {%ico}
with the natural topology; in particular Quad is compact and Hausdorff.

We will say that a parabolic tower is quadratic if its base is in Quad, and define @ c%

to be the space of all quadratic parabolic towers, and for all N > 1 we denote
wN = WN(@E) C Tn.

Proposition I11.11. For all N > 1, @N 1s Hausdorff.

Proof. Fix some 1 < N; < Ny < N and let T = (f,, 1), and T = (f,2)2?, be quadratic
parabolic towers. For all 1 < n < Nj let NV, ; be aneighborhood of f,,; and forall1 <n < N
let V,, 2 be a neighborhood of f,, 2. Together with choices of petals, these neighborhoods define
unbounded neighborhoods N; and N, of 77 and 75 respectively. Let us assume that 7; # 7Ts,
so either there exists some minimal 1 < M < Nj so that 7y (71) # ma(7T2) or N7 < Ny and
Ti =73 (T2)-

First we consider the case where 7y, (77) # 7 (T2) for some minimal 1 < M < N;. Thus
faa # fae. I M =1, then we can pick N1 and Ny so that the intersection Ny NNy o

is empty as Quad is Hausdorff. If M > 1, then the same conclusion holds from the fact
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that far1 = Re, fa—11 and faro = Ry, faur—1,1 for some 0 # do. If T is a quadratic parabolic
tower such that the renormalization towers Ry T := (hy1)nt, and Ry T := (hn2)22,, then
it follows from the minimality of M that hy1 = hag,. Hence the intersection My N N3 is
empty.

Now we consider the case where Ny < Ny and T; = 7, (7T2). Thus fy, 112 = Rsfn,a
for some § € C. Let Ny,+11 be a union of neighborhoods of Ry fn, .1, this defined a
bounded neighborhood Ny of 77. As § € C, we can choose Ny 411 and Ny so that the
intersection Ny, 111 NNy, 112 is empty. Repeating the argument above, we can conclude

that the intersection Nj N N5 is empty. O

Recall that a topological space X is sequentially compact if every sequence in X has a

convergent subsequence.
Proposition I11.12. For all N > 1, m]\, 18 sequentially compact.

Proof. Let
(T = <fn,m>7]:[;nl>$r?:1

be a sequence in @N. Up to a subsequence, we can assume that N, does not depend
on m. As Quad is a compact, up to a subsequence there exists some f; € Quad such that
fim — fi when m — oo. Setting T = (f1), the renormalization towers Ry7,, are therefore
defined for all large m and have jump-heights (1,2). Let us now assume more generally that
there is some quadratic parabolic tower T = (f, )2 | with height 1 < M < N such that up

to a subsequence the renormalization towers
RyTm = <hnm>nM:1

are defined for all large m > 0 and have jump-heights (s;) 7'} for some 1 < M’ <
min(M, N,,) which do not depend on m. Additionally, let us assume that h,,,, — f, for all
1 <n< M when m — oo. If fy ¢ FEor M = N, then by definition 7,, — 7 in @N
when m — oo. If fy, € F®and M < N , then up to a further subsequence we can assume
that hasm is either a non-implosive, implosive, or stable perturbation of fj, for all large m.
In the non-implosive case, it follows from the definition that 7,, — 7 in m]\,. In the
implosive case, up to a further subsequence there exists some dy; € C U {+ioco} such that
har = Rs,, frr when m — oco. If 6y = £ioo then by definition 7, — 7 in wm otherwise
we can set fi+1 := Rs,, fu. In the stable case, if M = N,, then by definition 7,,, — T.

Otherwise, by definition there exists some sequence (dpy )0, € C/Z so that

h'M-l—l,m = fM’—l—l,m = R(SMxyme’,m = 7?'(5M/7mh'M’,m
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by proposition I1.37. Thus up to a subsequence there exists some dy; € C U {4ioo} so that
Onrrm — Opr when m — oo. If )y = +ioo then by definition 7, — 7 in w}\/; otherwise
we can set fary1 = Rs,, fm and hayrp1m — fue1. The proposition therefore follows by
induction on M. O

We have the following classical result on inverse limits:

Proposition II1.13. If (X, )22, is an inverse system of sequentially compact Hausdorff
spaces, then @(Xn, fn)oey is sequentially compact and Hausdorf.

Corollary III.14. @ 18 sequentially compact and Hausdorff.

II1.3: Continuity of filled Julia sets

For any non-constant analytic function f : C --» C defined on an open subset of @, the
Fatou set Q(f) of f is defined to be the set of all z € C which have a neighborhood U
satisfying either

1. U C Dom(f™)\ Dom(f™) for some n > 0, or
2. U C Dom(f") for all n > 0 and the family {/ } is normal.

The Julia set of f is defined to be C\ Q(f).

An analytic map f : C --» C defined on an open subset of C is said to be finite-type
if f has finitely many singular values; that is there exists a finite set X C C such that the
restriction

f:Dom(f)\ [7H(X) = C\ X

is a covering map. Finite-type maps were introduced by Epstein [Eps93], where he proved

the following two theorems.

Theorem II1.15 (Epstein). For any finite type map f,

J(f) = {repelling periodic points of f}.

Theorem II1.16 (Epstein). For any finite type map f, every component of Q(f) which
belongs to mnzo Dom(f™) is eventually periodic under f. Moreover, any periodic component
of Q(f) is either either an attracting basin, a parabolic basin, a Siegel disk, or a Herman

Ting.
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Note that every map in F is finite-type. For any quadratic polynomial f, the filled Julia
set K(f) is defined to be the complement of the unique component of Q(f) which contains
oo. The filled Julia sets of polynomials have been well studied, see for example [DH84]. In

particular it is known that K (f) is non-empty and compact,

K(f) ={2€C: ["(2) # oo},

and that 0K (f) = J(f). We also define

J(Frioe) := K(Foioo) = {0, =1, 00},
so that the J(f) and K(f) are defined for all f € Quad.
Proposition II1.17. When Ima — —o0,

lim K (fo) = lim J (fa) = K (F-ico)-
Proof. Set p = e*™* and f,(2) = fa(2) = pz + 2% If |2| > |u| + 2, then

[fu(2)] = 12l = |ull2] > 2]2].

For any € > 0, if |2| > € and |1 + z| > ¢, then

2
£ = |2+ 2) (004 2) + 2] > Tl > [l +2

when |4| is sufficiently large. Hence lim J(f,) C {0, —1,00} when g — co. As O and 1 — g
are repelling fixed points of f, and f,(—1) = 1 — p, it follows that {0, —1,00} C lim J(f,)
when y — oo. O]

We will say that an analytic map f : C --» C has hyperbolic domain if Dom(f) is a
hyperbolic subset of C; that is C\ Dom(f) contains at least three points. It is shown in

[Eps93| that for such maps, every point in the boundary acts as an essential singularity:

Proposition II1.18. If f is a finite-type map with hyperbolic domain which is a branched
covering over C*, then for z € OU, open set U containing z, and any y € C*, there are

infinitely many x € U satisfying f(x) = y.
For an analytic map f with hyperbolic domain, we define the filled Julia set by
K(f)={zeC: f"(z) ¢ C\ Dom(f) for any n > 0}.
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It follows from the definition that K(f) is non-empty and compact.

Proposition 111.19. If f has hyperbolic domain, then

J(f) = 0K(f) = |J oDom(f").

n>1

Proof. For any z which is not in Dom(f") for some n > 0, it follows from the definitions
that both z € J(f) and z € K(f) hold if and only if there exists some 0 < m < n such that
z € dDom(f™).

Let z be a point which is in Dom(f") for all n > 0. As Dom(f) is a hyperbolic, by
Montel’s theorem it follows from the definitions that both z € J(f) and z € OK(f) hold if

and only if there is a sequence of points (zx)?2; such that

2, & ﬂ Dom(f")

n>1

and z; — z when z — co. As both Dom(f™) and C\ Dom(f") are open for any n > 1, for

any connected neighborhood V of z it follows that there exists a point belonging to

VN <U E)Dom(f”)) :

n>1
]

The filled Julia set of a map with hyperbolic domain is in many ways analogous to the
filled Julia set of a polynomial; indeed both are the set of all points which do not “escape”
for some notion of escaping. Given any f € F we will say that an analytic map h is an
appropriate perturbation of h if f and h either both belong to Quad or both have hyperbolic

domain.

oo

Let us recall that for the Hausdorff metric the lim inf and lim sup of a sequence (X,,)%°,

~

in Comp™*(C) are defined by

liminf X, := {z e C: lim inf de(z,x) = O}, and

n—oo z€X,

limsup X, := {z eC: lim inf da(z,2) = O} .

n—00 er Xm

m>n

Moreover, if liminf X,, = limsup X,, = X, then X = lim X,, when n — oc.
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Theorem II1.20. Fix some f € F which is either a polynomial or has hyperbolic domain.
If (fn)32, is a sequence of appropriate perturbations of f which converge to f when n — oo,
then

J(f) C liminf J(f,) C limsup K(f,) C K(f).

Moreover, every Siegel disk and Herman ring of f is contained in liminf J(f,) and every
attracting basin of f is contained in liminf K(f,). If f has a parabolic cycle and either

(fn)o2, is a sequence of either

1. stable perturbations of f,

2. non-implosive perturbations of f, or

3. implosive perturbations of f such that Ry f, — Riicof,
then every parabolic basin of f is contained in iminf K(f,).

Proof. When f is a polynomial, this theorem follows from results in [Dou94] and [McMO00].
The argument in [Dou94]| relies on studying the perturbation of periodic components of Q( f).
When instead f has hyperbolic domain, by proposition II1.16 we have the same classification
of periodic Fatou components, and we can apply the same argument used in [Dou94]. Let
us note that while the perturbation of Herman rings is not treated in [Dou94], the same

analysis used to study Siegel disks can be used in that case. O

I11.3.1: Filled Julia sets of towers

For a finite height quadratic parabolic tower T = (fy)Y_,, we define the filled Julia set of
T to be

K(T) == (ndu) = (K (fw))

if N > 1 is finite, and
K(T) = () K(zu(T))

M>1
if N = oo. It follows from the definition that if T is a strictly parabolic tower then

U c K(T) c UL

We define the Julia set of the tower to be

J(T) = (ndw) " (J(fn))
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if N is finite and

IT) = Ju(T))
M>1
if M = co. If T has height 1, then we define K(|7]) and J(|T]) to be C and the empty

set respectively.

Proposition I11.21. If T has finite height N > 1, then

Proof. 1t follows immediately from the definition that any point z € K (7)) either belongs to
OULT] or is mapped into K (fy) by n/,;. Conversely, proposition I11.6 implies that any point
in QU7) can be approximated by points which project by 5/, into K(fy). With a similar
argument for J(7), the proposition follows. ]

Corollary II1.22. For any T € @, J(T)=0K(T). If T" is a subtower of T, then
J(T') € J(T) C K(T) € K(T').

Thus as we increase the height of a parabolic tower, the Julia set grows and the filled
Julia set shrinks. In the limit, for infinite height towers, Epstein showed that these two sets

equalize.
Theorem I11.23 (Epstein). If T has infinite height, then K(T) = J(T).

Proof. This is one of the main results in [Eps93]. The formalism used by Epstein differs from
ours, so we will briefly comment on how to translate from our towers to the the objects in
[Eps93].

For any parabolic tower T = (f,,))_,, we can define the pre-sheaf O of holomorphic

functions induced by all possible compositions of local continuous branches of
_ ] T
(n/3) ™" o far o mai'

where 1 < M < N, Ty = (fu)M |, and j > 0. The pre-sheaf O is a holomorphic dynamical
system in the sense of Epstein. In [Eps93], Epstein proved that if T € @, or more
generally if the base of T is finite-type, then the holomorphic dynamical system O has no
wandering domains. If 7 has infinite height, then any component X of the interior of K(7T)
is a wandering domain of of O as the orbit under fy; of n/¥ (X) converges towards the

parabolic cycle of fy,. O
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Just as for polynomials, we have semi-continuity of filled Julia sets of towers.

Proposition 111.24. For any integer N > 1 and towers T1,T5 € mm
J(T1) C liminf J(73) C limsup K(72) € K(T7)
when Ty — Ti in wN. Moreover, if the height of Ty is strictly less than N, then
lim K(73) = K(Th)

when To — T1 in @N for any quadratic parabolic tower T, which has Ty as a subtower.

Proof. Let T1 = (f,)2, and T3 = (g,)22, be quadratic parabolic towers in @N Setting
RrTe = (h )n 1, there exists some max1mal M such that hyy, = gy, for some 1 < My < M;.
Up to a subsequence we can assume that M; and M; remain constant when 75 — 77 in
@. We set T/ = map, (T1) and T3 = man, (72). Proposition I11.3 implies that 75 — 77 when
To — Ti, and |T}| — |T/] if My > 1. We also define 7}, and 7%, to be the functions so
that

Th —
natlt - natt o natt and nrép nrep nrep

We similarly define 772 and nTgp to be the functions so that

2T _ =T T2 T2, Ti
natt = Natt © Natt and nrezp b= nrep nrep

As nat; = 7]Z;2t7—, and nrep = nzép ' it follows from proposition II1.8 that 772 — 7%, and
72, = 7%, when T3 — Ti. Moreover, it follows from proposition III.21 that

K(T) = J(T ) U ()™ o (@)~ (K ()

and
JT) = HUTD U ()™ o (i) (T ()

It follows from corollary II1.22 that if M > 1 then

K(Ts) € K(T3) = J(IT3)) U ()" (K (ga))

and

/

J(TD U0 (T(gm) = J(T) C J(Ta).
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We proceed by induction on N;. To prove the proposition, it suffices to show
(II1.3.1) J(|T1]) € liminf J(73) C limsup K(73) € K(|T1])

and
(II1.3.2)
(ﬁz;lt) ( (fN1)) C UfMl M lim inf J(gMz) C UfMl N lim sup K(gMQ) C (ﬁczgt)il(K(fNJ)'

The inclusions (II1.3.1) hold automatically when N; = 1 and by the inductive hypothesis
when N; > 1, so we only need to prove (I11.3.2). If Ny = M then 7/}, and 7% are both the
identity, so the desired inclusions follow from theorem III1.20. So we assume that Ny > M;.

Fix some connected compact set

X UM\ (7l) 7 (K(fa)-

Thus there exists some integer j so that

fi o (X)) € €\ Dom(fy).

Thus there exists a connected compact set X’ ¢ C\ U™ = C\ K(fu,) whose interior

compactly contains a component of

(ﬁZ;lp)_ (fN o ﬂatt( ))-

Thus when 75 is close enough to 77, theorem II1.20 and gy, = hy, — fa, implies that
X' ¢ C\ K(gag,). Moreover, there exists a compact set X} C X’ such that

ﬁqu(X )= h] OﬁZ;“)t(X)'

Repeated application of propositions I1.29 and I1.30 therefore implies that X is mapped into
X' by an iterate of gy, hence X € C\ K (gag) as K (gag,) is invariant under g~ Thus we

have shown that
U1 0 lim sup K(gm,) C (ﬁz;lt)*l(Kqu))-

Now fix some point
€ ()~ (I (fxn))

and let X C U/™ be any open neighborhood of x. It follows from theorem III.15 that there
exists a point z; € X such that 774 (x;) is a repelling periodic point of fy,. As repelling

o4



periodic points are stable under perturbation, when 75 is sufficiently close to 7; there exists
a point z, € X such that 7/} (x,) is a repelling periodic point of hy,. Repeated application
of propositions I1.29 and I1.30 therefore implies that x5 is mapped onto a repelling periodic
point of gy, by an iterate of gy, theorem II1.15 therefore implies that x5 € J(gas,) as J(gas)

is invariant under gﬁQ. Thus we have shown that
(7a2) ™ (J(fwy)) € UM N liming T (gag,),

completing our verification of (I11.3.2).

To show the second statement in the proposition, let us observe that if 77 is not a strictly
parabolic tower, then theorem I11.20 implies that lim K (hy,) = K(fy,), so the above implies
that K(7;) = liminf J(mpg (72)). Thus K(77) = lim K(73) for any quadratic parabolic tower
7, which has 75 as a sub-tower. If 7; is a strictly parabolic tower and N; < N, then our
definition of bounded neighborhoods of 77 combined with theorem III.20 implies similarly
that K(7;) = lim K (7, (72)). Up to a subsequence one of the following cases holds:

1. hpy, is a stable perturbation of fy, and gy, 11 converges to Riioo [y,
2. hy, is an implosive perturbation of fy, and Ry, hn, — =+, or
3. hpy, is a non-implosive perturbation of fy;.

The first case implies that gy;,+1 ¢ f%, and we can recreate the earlier arguments in this
proof to conclude that K(77) = lim K(73). The second and third cases above imply that
hx, has an attracting cycle, so hyy, = gu, € FE Thus 7, (T2) = Ta. Note that in all three

cases, the same holds for any parabolic tower which has 75 as a sub-tower. O

As K is continuous and Comp*(@) is Hausdorff, K (m) is sequentially compact and
hence closed. As we have the following commutative diagram for the embedding f +— (f) of
Quad into Quad

Quad

[

Quad —£— Comp*((@),

it follows that

{K(f): [ € Quad} C K(Quad).

The following proposition implies that the above inclusion is actually an equality.
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Proposition I11.25. For any T € @, there exists a sequence (g )o_, with g,, € Quad
such that (gm) — T.

Proof. For any T = (f1), we can set g,, = f1 for all m > 1. If f; has a p/g-parabolic
k-periodic cycle for some p/q and k, after conjugating by a Mébius transformation we can
assume that 0 belongs to the parabolic cycle. It follows from [MnSS83] that Quad has no
persistently parabolic cycles, that is for any sufficiently small @ € C we can find some g,

such that, after conjugating by a Mobius transformation, 0 is k-periodic for g, q,
(gm a)/(()) _ 627riup/q(o<)’

and gm0 — gm When o = 0. For any ¢ € C, we set

1

o '—= — .
k4l =0

If Rsf1 € .7-"98, then we can modity ay, slightly so that g, o, is a stable perturbation of Rsf1
when m and k are sufficiently large. Thus ¢,.a, — (f1, Rsf1) when m — oo and k — oo.

Let us fix a tower T = (f,))_, for some integer N > 1 and assume that there is a

N
n=1»

sequence (gm)n>, such that g, — 7. We additionally assume that for Rrg,, = (hm.n)
I, N is a stable perturbation of fy for all large m. Thus h,, x has a parabolic cycle with the
same period and multiplier as fy, and proposition I1.33 implies that g,, also has a parabolic
periodic cycle. It follows from the above that for any 6 € C we can produce a sequence

(Gm) 52y such that Gpr — (gm, Regm) when k — oo. Corollary I11.37 implies that
Régm = 72'5hm,N — RﬁfN

when m — oo, hence

gm,k —Td <R5fN> =T

when both m and k tend to co. Moreover, we can modify g, slightly so that g, is a
stable perturbation of 7.
By induction, this proves the proposition for all finite height towers. We can extend to

infinite height towers by a diagonalization argument. O]

A

It is well known that the function K : Quad — Comp*(C) is injective, see for example
[Fer89]. We can ask if K remains injective on Quad. If it is injective, then we can conclude
that

K:@%{K(f):fé@uad}
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is a homeomorphism as every continuous bijection from a sequentially compact first-countable

space to a Hausdorff space is a homeomorphism.
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CHAPTER IV

The Geometry and Dynamics of Lavaurs Maps

Let us fix a map f which is Mobius conjugate to a map in F % Without loss of generality we
will assume that f has a p/g-parabolic fixed point at 0 for some rational p/q € [—1/2,1/2];
the general periodic case can be studied similarly by considering the appropriate iterate of
f and conjugating by a Mobius transformation.

In this chapter, we restrict our attention to the case where every connected component
of U/ is a Jordan domain, in this case we will say that f has Jordan basin. Fixing some
d € C, we will only consider the dynamics of the restriction of Rsf to Domg(Rsf); let us
denote this restriction by h. Corollary 11.14 implies that Dom(h) is a Jordan domain. Note
that proposition II.18 implies that we could similarly study instead the restriction of Ry f
to the component of its domain containing 0.

Let 0 < kﬂ: < q be the integer such that /{:_{p = —1 mod ¢q. Proposition I1.9 implies that
o (wi) = U
Denoting Xi = f’“i o x/, we define the (upper) §-Lavaurs map for f to be
Lg = XioT(gopf.

We will suppress the dependence on f and the dependence on ¢ in the notation when the
choices are clear, so for example y, = Xi and L = Lf; . As0 < ki < q, it follows from the

definition of p that we have the following commutative diagrams:

Uy ---—------- Lo > Uy
ﬁ’” TW/ W, 2w,
C fﬂc’ﬂ C and lx+ lx+
no{tt,é lExp Exp ﬁ,{tt,g UO ___L_‘s__> UO
C--ocC
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It follows from the definition that
Lso f'= Lsy1 = f%0 Ls.
For any (possibly negative) integer m we define
Lso f7 = Ly,

We equip Z? with the lexicographic ordering; so (m,n) > (m’,n’) if and only if either m > m/
or m =m’ and n > n'. The function Lo f9™ is therefore defined if and only (d,m) > (0,0).
While Ljs is not necessarily defined on all of U({ ,any z € U({ lies in the domain of Lgso f~9™

when m > 0 is sufficiently large.

IV.1: Escaping sets

We denote & = C\ Wf: As OW, is a Jordan arc and x (W) = Uy, we can continuously
extend x, to OW, = 0&; such that

X+(851) = 0Uj,

where all the boundaries above are taken in C.

Proposition IV.1. There exists a unique homeomorphism
T{ & —H

which satisfies:

1. T is univalent on &;.
2. TloTl :TloTl.

3. t =0 is the minimal real number satisfying x4 o Y1 (t) = 0.

Proof. As & is simply connected, contains a lower half-plane, avoids an upper half-plane,
and is invariant under 77, there exists an analytic isomorphism T; : & — H, unique up to
post-composition by a translation, which commutes with 77. As the boundary of & in C
is a Jordan curve in, T; extends continuously to a homeomorphism from & — H. As y.
maps a left half-plane to a punctured neighborhood of 0 and y(9&) = Uy, there exists
some minimal to € R such that y; o Y;'(t)) = 0. We can uniquely post-compose Y by a
translation so that ty = 0. O
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We will say that a point in C is 0-nonescaping, 0-Julia, or 0-nonescaping for Ls if it
belongs to Uy, Uy, or C \ Uy respectively. For any d > 1, we will similarly say that a point

z is d-nonescaping, d-Julia, or d-nonescaping for L if it is (d — 1)-nonescaping and
Tsopo Ld_l(z)

belongs to W, W, or & respectively. For all d > 0, we denote by K%, JE and EY the
set of all d-nonescaping, d-Julia, and d-escaping points respectively. We will say that L
is d-nonescaping, d-Julia, or d-escaping when cv/ is the same respectively for L. Given a
component B of Ey for d > 1, we will say that z € 9B is a parent of B if z is not d-Julia.
We will say that a point z € Uy is pre-critical for L if there is some (d,m) > (0,0) such
that z is d-nonescaping and L? o f™(2) = cv/. Otherwise, we will say that z is off-critical
for L. If L is d-escaping or d-Julia for any d > 1, then the critical value cv’ is automatically

off-critical. We have the following alternative characterization of off-critical points:

Proposition IV.2. For all d > 0, z € Ky is pre-critical for L if and only there is some
integer m with (d,m) > (0,0) such that z is a critical point of L% o f™.

Proof. Let us fix some point z € Uy; z is a critical point of f™¢ for some m > 0 if and only
if there exists some 0 < m’ < m such that f™9(z) = cv/. It follows from the definition of p
that z is a critical point of p if and only if f™4(2) = cv/ for some m > 0. It follows from the
definition of y, that any point w € W is a critical point of x if and only if there is some
integer m > 0 such that y, oT_,,(w) = cv/. Thus z € K| is a critical point of Lo f™ for any
integer m if and only if either f™9(2) = cv/ for some integer m’ > 0 or Lo f(m="4(2) = cvf

for some m’ > 0. The proposition then follows by a straightforward induction on d. m

For all d > 1, we define the function
Uﬁ = TloT(gopoLd_1 - B, U J; — H.
Let A = A’ denote the set of all # € R such that
X+ 0Tz +m)=0

for some integer m. We will say that a point z is d-asymptotic for L if vg4(z) € A. We will
also say that every point in
X+ o TiH(A) C Jo

is 0-asymptotic. We have the following description of the escaping and Julia sets:
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Proposition IV.3. For all d > 1, J; has countably many connected components. FEach
component is either an open Jordan arc or the union of two open Jordan arcs which intersect
at a pre-critical point of L. Conversely, any pre-critical point in Jg lies in the intersection
of two distinct curves in Jy.

For any continuous branch ~ of U;l defined on R, both limits lim; 4 Y(t) exist and are
(d — 1)-asymptotic points for L. For any (d — 1)-asymptotic off-critical point z and large
M > 0, there exists a unique continuous branch v of v;* defined on {t € R : |[t| > M} such
that

lim ~(t) = 2.

t—+oo

Proof. Tt follows from the definitions and proposition IV.2 that the restriction vy 5y Jas— R
is an infinite degree branched covering map whose critical points are exactly the pre-critical
points of L inside .J;. Moreover, if z € J; is a critical point of vy, we can repeat the proof
of proposition IV.2 to conclude that either vy iy has local degree two at z or there exists
(0,0) < (d1,m1) < (d2,m2) < (d,+00) such that

L% o fra(z) = L% o fm2d(z) = et

The latter case implies that
L& o fma(ev)) €

for some (d, m) > 0, and
LA2mdr o plma=ma(cyly = eyf

which is a contradiction. This completes the proof of the first paragraph in the proposition.

It follows from proposition I1.15 that for any large M > 0 there is a unique branch ~, of
vy ! defined on {t € R : |[t| > M} such that v(t) — 0 when [t| — +oc. Every other branch
of v;! must correspond to pre-images of 7y by iterates of f, which completes the proof of
the second paragraph in the proposition when d = 1. It then follows from the definition of
X+ that for any continuous branch of X:Ll ov; ! defined on R with image in W, both limits
limy 4, (t) exist and are pre-images under x. of 0-asymptotic points in Jy. Pulling back
by (Ts o p)~1, the second paragraph in the proposition when d = 2 follows. We can repeat

this argument inductively to complete the proof. O]

Proposition IV.4. If L is 1-escaping, then Ei is has a single connected component and
that component is simply connected. Otherwise, E4 is a countable union of disjoint Jordan

domains for all d. In either case, every parent of a component of Eq is (d — 1)-asymptotic.

Proof. This follows from a similar argument to the proof of proposition IV.3. O]
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Figure IV.1: The 1l-escaping set (in light gray) and the 2-escaping set (in dark gray) for
L = Lfgl and different choices of d. Upper left: L is 2-nonescaping. Upper right: L is
2-escaping. Bottom left: L is weakly 1-escaping. Bottom right: L is 1-escaping.
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For any d > 1 and component B of E;, we inductively define a component B’ of Ey with
d' > d to a descendant of B if either d = d and B’ = B or d’ > d and a parent of B’ belongs
to the closure of a descendant of B.

For d > 1 we define an enriched angle of depth d for f to be a sequence © = (0,,)¢_, with

0,, € A for all n. We will also denote © + 1 = (6, +1)¢_,. When d = 1, we define the point

n=1"
=2k .= Y740 J
20 = z2g =X+ 0 Y7 (61) € Jo.

For general © of depth d > 1, if zg is defined and off-critical for L, then by propositions
IV.4 and IV.3 we can define B to be the unique component of F,; which has zg as a parent.
If L is d-nonescaping or d-escaping and zg is defined, then it follows from proposition IV.3
that there is a unique branch g of U;l defined on R such that vg(t) — ze when t — +o00.
If instead L is d-Julia, then it follows from propositions IV.3 and IV .4 that there is a unique
continuous branch ~g of v;l defined on R whose image is contained in 0Bg and which

satisfies yg(t) — zo when t — +o00. In either case above, for any 6 € A we define

zoso =Yg (0) € Ju.

Thus we have inductively defined zg for all enriched angles © of depth d > 2 when L is
(d — 2)-active and z|g| is off-critical. In particular, if L is (d — 1)-active then zg is defined
for all enriched angles © of depth d and every (d — 1)-asymptotic point is labeled by an
enriched angle. We will say that the enriched angle © is off-critical for L if zg is defined and
off-critical for L. Note that by definition, if © has depth d > 1 and is off-critical for L, then
|©] is off-critical.

We will say that two enriched angles © = (0,,)¢_, and ©" = (#/)?_, are equivalent, and

write © ~ ©') if and only if
1.d=d,
2. 0,=0 forall 1 <n <d, and
3. 20 = Ze)-
Up to equivalence, off-critical asymptotic points are uniquely determined by enriched angles.

Proposition IV.5. For any two off-critical enriched angles ©,0" of depth d > 1, zg = zer
if and only if © ~ ©'.

Proof. If d = 1, then by definition © ~ ©' if and only if zg = zg/. If d > 1, then zg is

uniquely determined by vq(2e) and z|g|, so the proposition follows by induction. O
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Our labeling also respects the dynamics of f¢ and L:

Proposition IV.6. For any d > 1, f9(ze) = zey1 for any enriched angle © of depth d such
that ze is defined. If additionally d > 1, then L(zg) = ze7.

Proof. Set © = (0,)¢_,. If d = 1, then

fi(ze) = fI(x+ 0T (1)) = x4 0 Y(01 + 1) = 2041

If d > 1, then we observe that the map § := f?0 g oT_; is a continuous branch of chl.

Moreover if f9(ze)) = 2|0|+1, then

tLiiﬂoo{(t) - tLiEloofq oye)(t—1) = f1 <tLi+mOO%ej (t— 1)) = fUz10)) = 2j0)+1-

Hence £(t) = v,0)+1(t) for all ¢t > 0 sufficiently large, so

fi(ze) = f1ov6)(0a) = Ve)11(0d+ 1) = zo41.

If d = 2, then

L(ze) = L ovye(02)
= Lovi ()
=(xyoTs0p)o (pfloT,(;oT) (02)
= X+ 0 T(62)

- Z"@" .

If d > 2, then we observe that Lo~|g) is a continuous branch of U;jl. Moreover, if L(zje|) =

ZH@” then

t£+mooL ove(t) =L (tlg-noo Ve (t)) = L(zje)) = 2[10)7-

As L is automatically (d — 1)-active, hence (d — 2)-nonescaping, Bfje is the unique com-

ponent of E;_; which has z[g|7 as a parent. Thus L oo = 7|0/, 50

L(ze) = Love/(0a) = vrj051(0a) = 2re7-

By induction on d, the proof is complete. O

We will say that an enriched angle is © = (6,)¢_, is basic if (6;) ~ (0). The basic

n=1

off-critical enriched angles always capture the critical value when it escapes:
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Proposition IV.7. For any d > 1 and component B of Ey, if cvf € B, then there exists a
basic off-critical enriched angle © so that B = Bg. Moreover, if L is not 1-escaping then ©

18 unique up to equivalence.

Proof. As cv? € B, the Lavaurs map L is either d-escaping, d-Julia, or (d —1)-Julia. Thus L
is automatically (d — 1)-active, so there is an enriched angle © of depth d such that zg is a
parent of B. The point zg will be the unique component unless either L is 1-escaping or B
contains a pre-critical point of L. If B contains a pre-critical point of L then L is d-escaping
and cv/ € B implies that there is an integer m > 0 such that f™¥(B) = B. This is only
possible when B has the fixed point 0 on its boundary, so L is 1-escaping. Thus if L is not
1-escaping, then zg is the unique parent of B and ©. If zg is pre-critical for L, then L is
(d — 1)-Julia hence zg = cv/. Moreover, as zg is pre-critical for L there exists an integer
m > 0 such that f™4(cv’) which is a contradiction. Hence © is off-critical for L, so B = Bg
and O is unique up to equivalence if L is not 1-escaping by proposition IV.5.

Let us now show that © is always basic. If L is 1-escaping then we can just pick © = 0,
so we assume that L is not l-escaping. Set O, = © and for all 1 <n < dset ©,, = |O,41].

Let
d

be a simple curve connecting cv to zg,. As L is (d — 1)-nonescaping, B_@j also avoids the
critical points of p for all 1 < j < d. Our argument above that © is unique up to equivalence
implies that additionally Bg avoids all the critical points of p. Thus we can choose v so that
it avoids the critical points of p. Thus we can choose 7 so that p(y N Up) is a simple curve
connected 0 to co which avoids the non-negative integers. Lemma I1.15 therefore implies

that 0 € 7, so zg, = 0 and © is basic. ]

IV.1.1: Bubble rays

If L is oo-nonescaping, then we define a bubble ray of L to be a sequence (B;)%,, where
By is a connected component of E; for all d, such that By is a descendant of B;_; for all
d > 1. We will say that the bubble ray is at enriched angle © = (6,)52, if for any n > 1,
B, = By,

bubbles are equivalent.

»_ . We will say that two bubble rays are equivalent if all of the corresponding

IV.1.2: Pre-petals

As Uy is a Jordan domain, for any 6 € A there exists a unique minimal integer m > 0 such

that f™9(z4) = 0, using the continuous extension of f™? to dU,. We define the attracting
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pre-petal for f at enriched angle (f) to be the unique component P a OF ST (Pcf;t) con-
tained in Uy and which has zj) on its boundary. As ™ is a coverlng map over P,fep,
can define the repelling pre-petal for f at enriched angle (f) to be the unique component
P<f e OF 7Y Tep) which contains the corresponding pre-image of the lower component of

Pftt N P/ contained in P<’;>

rep ,att’

If © is an enriched angle of depth d > 1 which is off-critical for L, then proposition IV.2
implies that there is some (d,m) > (0,0) and § € A such that L% o f™ is univalent in a
neighborhood of zg and maps zg to zy. We can therefore define the attracting and repelling
pre-petals for L at enriched angle © to be the corresponding pre-images PJ, o and Pk ¢ of
sub-petals of Pam(e> and P£p7<9>. Thus there exists some m’ > m such that

Ldofm/q(Ptte) - Ptt and Ldofmq< Pl ) C P

a rep,© rep’

so we can define

¢éatt = ¢l 0 Lo fm9 Po .t — C, and
d ‘q
¢®rep _qbrepoL ofmq-P@/repﬁC.

We can define the pre-petals uniquely, up to our choice of P _, by requiring that

rep’

¢é,att(Patt @) Ty o ¢att( att) and ¢@ rep(P'rep @) T po ¢rep< 'rep)

for some maximal M > 0.

IV.1.3: Virtually parabolic Lavaurs maps

If h has a parabolic periodic cycle, then that cycle lifts by ngtt, s to a parabolic periodic cycle
of L. If h has instead a parabolic fixed point at 0, we cannot similarly lift the parabolic
fixed point but we can lift the parabolic dynamics; in this case L is said to have a virtually
parabolic fixed point.

Let us fix some rational p/q € [~1/2,1/2] and assume that A’(0) = e>™/9. As both P,
and Prhep are Jordan domains with 0 on their boundaries and avoid cv®, nf;t, s 1s a covering
map over both of these sets. As cv® = nitt’ s(cv?) lies on the boundary of P", we can define
PL, to be the component of (nl,5) " (Ph,) which has 0 on its boundary. We can then define
P to be the component of (n.5)" " (Ph,) which contains the lift of the lower component

rep rep
h h ; - pL
of Py, N P, contained in P,

Proposition IV.8. Both PL, and P,,ep are Jordan domains which have 0 on their boundaries.
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There exists some integer m such that 773;155 conjugates LY o f™4 on PaLtt U ]5,,pr to h? on
P U P

Tep”

Proof. Set X =T;_ s o p(PL). So by construction, X is a component of Exp~*(P",). Thus
X is simply connected, contains points with arbitrarily large positive imaginary part, and
has boundary which is an open Jordan arc. It therefore follows from lemma I1.15 that Pét
is a Jordan domain, moreover the fact that cv/ lies on its boundary implies that 0 also lies
on its boundary. The semi-conjugacy between the horn map and h implies that there is an
integer m so that

T o (T

—cf © Hf)ql(f)ftt) C X.

The semi-conjugacy between the horn map and the Lavaurs map implies that there is a

component X of (T,__s o p)~}(X) such that L7 o f™4(PL,) C X. As X contains points with
+ ~

arbitrarily large imaginary part, it follows from the definition of x, that X has 0 on its

boundary. The uniqueness in lemma I1.15 therefore implies that X = P. The argument for

L

.. and PL ensures that we can use the same

PL is similar; the non-empty intersection of P, o,

rep a

integer m. 0
We denote by Ul the unique connected component of (nj;t, 5) (UL which contains PL,.
Proposition IV.9. Every component of U" is a Jordan domain.

Proof. When p/q = 0/1, this fact is proved in [LY14a]. The same argument there can be
applied for the general p/q case. O

Corollary IV.10. The set [~]0L 15 a Jordan domain on which nitw 15 injective.

Proof. We use the same argument as for proposition IV.8. The injectivity follows from
lemma I1.15 and the fact that cvf € UF. O

For all basic § € A" we denote z}' = 0. If § € A" is not basic, then 2! # 0 and we
denote by zF the unique lift by (nitt’ 5) " of 2} which lies on the boundary of UF. We similarly
define Pf,,, to be the unique lift by (n/,, 5)~* of P}, contained in U}, and define Pf,,, to
be the unique lift by (nitt’ 5) " of By
Pl

for any nonbasic # € A", where m is the integer in proposition IV.8.

rep Which contains the lift of the lower component of

. . L q/ mq DL DL
contained in Py’ . Thus L7 o f™? maps Py, and P,

DL pL
O,re to Pc9+1,att and P@—i—l,re
P D

rep

Proposition IV.11. If /(0) = e2™'/9" for some p/q € Q, then there is a unique bubble ray

(Ba)3, up to equivalence and some dy > 1 such that:

1. If B is a descendant of By,, then B C PL

rep*
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2. If B is a component of Ey for some d > 1 and there is a point in B N PL  which is

rep

sufficiently close to 0, then B is a descendant of By, .

3. For alld > ¢,
4 o f™(By) = Bi_y,

where m s the integer in proposition IV.8.

Proof. For all 0 < n < ¢ we set U" := h*(U}). Tt follows from proposition I1.14 that
UM is a Jordan domain for all n. Proposition I1.13 implies that there is a unique analytic
isomorphism ¢ : Ugo — Ul which conjugates fyo to h and which extends continuously to
a homeomorphism between the closures. For all 0 < n < ¢’ we define =, to be the arc
h™ o &([-1,0]). As

lim, h( 0 (1)) = lim, € 0 o(t) = €(0) =0,

t——1
the curve 7,_; contains a point on the boundary of Domg(h). As Domg(h) is a Jordan
domain, we can define I' to be the union of all ~, and a simple curve which connects the
point in y,—1 N dDomy(h) to oo, avoids Domg(h), and which is contained in R near oco. It
follows from the construction that the the image of I' N Domg(h) under h is contained in h.
We define V := C\ IT".

Lemma IV.12. V is simply connected.

Proof. For all z € U_él, 0<n<gq andty€[-1,0),

lim k" 0 £(t) = h" 0 £(to),

using the continuous extension of h" to Uy. As the only asymptotic values of h are 0 and
oo, it follows that £(tg) is contained in Dom(h?™!). By similar argument we can conclude
that as long as (n,ty) # (¢ — 1, —1), the point A" o {(ty) is in the domain of h. If V is not
simply connected, then there exists some 0 < n; < ny < ¢ and t,t; € [—1,0) such that

. ni 1 ng P—

tlgﬁ R o &(t) = tlgqtl2 h™ o (t) = z.
If t, # —1, then it follows from the above that h?"2(2/) € Uk, so ny = ny which is a
contradiction. If ¢, = —1, then h?~'"2(2') ¢ Dom(h) and the above implies that n; = ny

which is again a contradiction. ]

As V avoids all the critical values of A% and h? is injective in a neighborhood of 0, there

are exactly ¢’ components of h~7 (V) which have 0 on their boundary. Let us fix one such
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component I and let ¢ : V — U be the corresponding branch of h=¢". As 0 is on the boundary
of U, the Denjoy-Wolff theorem implies that the iterates of ( converge locally uniformly to
0. As V is connected, there exists some integer 0 < n < ¢ such that for any z € V,
¢7(z) € h*(Pl,) for all large j > 0. Replacing Y with another component of h=7(V), we can
assume that n = 0; in particular P C V. We define V to be the component of (ngtm)_l(V)
and define U to be the component of (ngtt’ 5) "1 (U) contained in U. Thus

773:&,5 conjugates the restriction LY o f™9 : Y — V to the restriction h? : U — V, where m is

. . oL
which contains P,

the integer in proposition IV.8. Let 5 :V — U be the corresponding inverse map, so

f ;o f
Natt,s © ¢=¢o Natt,s

As V intersects the compliment of Domg(h) in a single component, it follows that Y
intersects Ef in a single connected component. For ever integer s > 0, let By, be the

unique component of F; ., which contains (VN ER.

Lemma IV.13. Fix some integers s,s' > 0 and a component B of Ey with parent zg. If
BN (V) is non-empty, the one of the following holds:

1. 8 =1+4+s¢ and B = Byy4y.
2. 5 >24sq¢ and B C (3(V).
3. 8 =2+sq, B\ {2} C*(V), and 25 € OB 4y

Proof. As B and ¢*(V) are Jordan domains, if B N ¢*(V) is non-empty, then B N {5(V) is
also non-empty. As L7 o fm = 5 —1, we must have s’ > 1+ sq’. Moreover, the uniqueness in
the definition of Bj sy implies that B = B4y if s = 1+ s¢’. Thus we can restrict to the
case s’ > 1+ sq¢'.

Assume that there is some point
= B CJyUEyUJy_4

which belongs to the boundary of (5(V). As s’ > 1+ s¢/, the point z := (LY o f™9)*(z/) is
defined and belongs to V. We have four possible cases:

1.z ¢ Ul

2. ﬁc{tt,a(if) ¢ Wa

3. nﬁtt’é(z) e I'ndDomyg(h), or
4. nj;t’é(x) € I' N Domgy(h).
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The first case above implies that = &€ Jqu,, and the second case implies that 2’ € Ej .
Both are impossible as s’ > 1 4 s¢’. The third case above implies that x € J; N 9By, so
2" € Jitsy N Biisy. Hence 2’ = zp and s’ = 2 4 s¢’. The fourth case above is impossible as
every point in I' N Domg(h) has infinite forward orbit under h.

Thus we have shown that if s > 1+ s¢/, then B can intersect the boundary of ¢*(V) only
at the parent of B and only when s = 2 + s¢’, which completes the proof. O]

For all integers d > 1 not equivalent to 1 modulo ¢/, we inductively define B, to be the
unique component of E; which has the parent of By, on its closure. Lemma IV.13 implies
that (By)3, is a bubble ray for all n. It follows from the construction of ¢ and lemma TV.13
that this bubble ray has the desired properties. O]

We will call the (B;)32, as in proposition IV.11 the parabolic bubble ray for L. We can
associate to this bubble ray an infinite depth enriched angle (64)52,, which we will call the
parabolic enriched angle for L, so that B; = Bg,ya_, for all d > 1.

We end this section with the following observation, which follows from our analysis in

the proof of proposition IV.11.

Corollary 1V.14. The only point in U_g)‘ which is not in the domain of h? is 2.

IV.2: Parameter spaces

Let us fix some f as in the previous section. For any d > 1, we define the d-nonescaping

parameter set, d-Julia parameter set, and the d-escaping parameter set to be

ng = {5 eC: Lj; is d—nonescaping} ,
jdf = {5 eC: Lg is d—Julia} , and

56’; = {(5 eC: Lf; is d—escaping}

respectively. We will say that a parameter 6 € J df is d-asymptotic if cv/ is d-asymptotic for

Lg . For any basic enriched angle © for f, we similarly define
BL = {5€C:cvf€Bé§}.
For all d > 0, we define the function Tg : 56{ U jdf —H by
TH(8) = vg* (7).
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Figure IV.2: The parameter space of the tower 7 = (f;). The d-escaping parameter set is
shown in light gray for d = 1, dark gray for d = 2, and white for d > 2.

Proposition IV.15. Both 81f and T{ agree with our definitions in the previous section.

Proof. We observe that by definition, Ly is 1-escaping if and only if
§=Tsop(c)) €&l
Moreover,
Loy =
vy (cv”) = T1(0)
by definition. m

We can generalize proposition IV.15 to arbitrary basic enriched angles.

Proposition IV.16. For any basic enriched angle © of depth d > 1, Be is a Jordan domain

and Y g4 restricts to an analytic isomorphism from Bg to H.

Proof. Let us fix some enriched angle © of depth d > 1 and assume that there exists some
0o € Bg. We set wy = U§50 (cv?). First we will show that in this case, T4 restricts to an
analytic isomorphism from Bg to H.

For all w € 7H, we define the quasiconformal map &, : &1 — &1 by
£u(2) =TT (Re Y1(2) + dwIm Ty (2)).

It follows from the definition that £, commutes with 77 and is equal to the identity on 0&;.
Let us denote by A, the Beltrami differential on & defined by pulling back the standard
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complex structure by &,. Pulling back by iterates of the restriction of 75, o H to W, we
extend 5\w to a Tt and T}, 0 H invariant Beltrami differential on C. Pulling 5\1,, back by Ty, 0p,
we can define a Beltrami differential A\, on Uy which is invariant under both f¢ and Ls,. As
X+ semi-conjugates Ts, o H to Ls = x4 o T}, o p, the pullback of A\, by the restriction of x
to W, agrees with Aw ON W_,. By the measurable Riemann mapping theorem, there exists a
quasiconformal homeomorphism ¢,, : Uy — Uy depends continuously on w and which pulls

back the standard complex structure to A,,. The map
wwo flop,t Uy — Uy

is therefore holomorphic and quasiconformally conjugate to f9. After post-composing ¢,
with an analytic automorphism of Uj if necessary, we can ensure that ¢, o f? = f?0 ¢, and
@w(cv?) = cvf. The continuous extension of ¢, to Uy must therefore satisfy o, (z) = z for
all z € 9.

On the intersection of W, and left half-plane, the map

P = Prep © Pu © Prey

is defined an commutes with 77. We can therefore extend ¢,, to a quasiconformal map from
W, to C which extends continuously to W, as the identity. We can continuously extend
Py to all of C by defining
Gu(z) ifze W,

¢w<z) = . _
Ew(z) ifze&

It follows from this construction that ¢,, pulls back the standard complex structure to M-

The set ¢, (Pay) is an attracting petal for f¢ with Fatou coordinate
Py 0 Tsy 0 ¢£tt © 90;1 : pr(Patt) — C.
The uniqueness of Fatou coordinates therefore implies that there is some d,, € C so that
Puw 0 Ty, 0 ¢£tt oy, =T, 0 ¢£tt-

The function Y., : @ (W4 U ¢!, (P1

rep\" rep

)) — C defined by

. Qw0 X+ 0Py (2) if 2 € Pu(Wy)
Xu(2) = -
X+ (2) if 2 € Pu(&r)
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is holomorphic and the image under Y, of @w(gzﬁ{fep(Pfep)) is a repelling petal for f¢ with

Fatou coordinate y,!, the uniqueness of Fatou coordinates therefore implies that there is
some ¢ € C so that

>~<w :X+OT5"

Post-composing ¢, with a translation if necessary, we can assume that 6’ = 0. Thus
w0 Lsy 00" = 0w 0 X4 0@y 0 By 0o Ty 0 po ' =xi 0Ty, 0p= L,
L,

on ¢, (K;"). Moreover,

vy (evf) = Ty, 0 po L (o)
=10, 0Ts0p0 @, o Li ! (cvf)
=T 0&0Ts5,0po Lgo_l ot (cvf)
=T 00T o 0550 (cv®)

= Rewqy + twlm wy.

Thus §,, € & and T4(d,) = Re wg+iwlm wy. As ¢, depends continuously on w, the function
w — 0, is continuous. Moreover, this function induces a continuous branch of Tgl defined
on H whose image lies in Bg, the image must therefore be all of Bg. Hence T, restricts to
an analytic isomorphism from the connected component of Bg containing dy to H.

To show that a dy as above exists, and that Bg is a Jordan domain, we observe that if

cv/ belongs to Bé‘s for some 9, then it follows from proposition IV.7 that © is off-critical.
Thus, a neighborhood of cv/ inside B_é‘S moves holomorphically near ¢, so it follows from
standard arguments that the geometry of Bg near § mirrors the geometry of B_é‘s near cv’.
Thus if a component of Bg is non-empty, then it will be a Jordan domain so long as it is
compactly contained in C. If such a component of Bg is not compactly contained in C, then
it is contained in a horizontal strip as it must avoid & and if Imd > 0 is sufficiently large
then Rsf has an attracting fixed point at 0 so Ls cannot be d-nonescaping. The parameter
bubbles Bg + j = Bo; with j € Z must therefore have an accumulation point ¢ € C, more
precisely for any € > 0 there exists some j and ¢’ € Bg; such that |§ — ¢'| < e. But this
would imply the same property for the bubbles Béij near cvf which is a contradiction as
either cv’ is d-Julia for Ls, so Jf % is near cv/ is an arc, or cv/ is d-non-escaping for Ls, so
J dL % avoids cvf. Thus every non-empty component of Bg is a Jordan domain.

Let us now suppose that either d = 2 or d > 2 and that the proposition holds for smaller

values of d. Thus for there is a unique parameter Zg € 0B|g| such that cvf = zéze. Thus
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Be is non-empty, and by the above there is a unique component of Bg which has Zg on its
boundary. Additionally, any non-empty component of Bg must have Zg on its boundary, so

it follows by induction on d that Bg is non-empty and has a unique connected component. []

For any basic enriched angle © of depth larger than 1, we denote by zZ! = Zg the unique
parameter in 0Bg such that cv/ = Zéze; we call Zg the parent of Bg. We define a parameter
bubble ray of T to be a sequence ()%, where B, is a component of &; and the parent of
By is on the boundary of By for all d > 1.
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CHAPTER V
The Near-Parabolic Geometry of the Mandelbrot Set

V.1: Quadratic polynomials

Let us now focus our attention to the family of quadratic polynomials. Most of the objects
and statements in this section are classical results in holomorphic dynamics, for more details
and proofs we refer the reader to [DH84], [DH85], or [Hub16].
For any
fo(2) = 2™z + 22
with o € C, §, has a fixed point at z = 0 with multiplier Exp(«), and a unique critical value

cvle := — Exp(2a)/4. The Green’s function for f, is defined by

1
Gl (2) = lim — log™ f2(2).

n—oo 21

We can alternatively define the filled Julia set of f, by
K(fa) = (G™)7(0),
We also define
K(fo) == {z € C: Gl (z) < GT(cvl)/2}.

The Green’s function is continuous, harmonic on C\ K (f,), depends continuously on A, and
satisfies

G (fa(2)) = 2G™(2).

For all g > 0, let us denote
H, :={z—iyeC:y> g}

Proposition V.1. For any a with G'(cv™)/2 = 2ng > 0, there exists a unique analytic
COVETIng map

Pl H, — C\ K(fa)
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Figure V.1: The log-Mandelbrot set M.

such that
1. Yl (w) = Yl (w') if and only if w = w' mod 1,
2. 1o (2w) = fa 0 Pl (w),

3. Gl oyple(w) = =27 Imw, and

4 yfe (w)

© Txp(w) — 1 when Imw — —o0.

We will call o'« the Bdéttcher parameter for f,. For any # € R, we will call the image
under ¥’ of the vertical line Rew = 6 the external ray of f, at angle 6; we will say that the
ray lands at a point z if

Yl (w) — 2

when w € H tends to 6. We will say that a parameter o € C is parabolic if f, has a parabolic

periodic cycle.

Proposition V.2. If a is parabolic, then every external ray of fo lands. Moreover, there is
rational angle 6 such
pra (w) c Pfa

rep

for all w € H sufficiently close to 6.

The log-Mandelbrot set M is defined to be the set of all a € C such that G (cvl*) = 0,

or alternatively the set of all a so that K(f,) is connected.

Proposition V.3. There is a unique analytic isomorphism

U:H— C\M,
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211

satisfying 2V (w) — w — % +
cvfe = fe (w).

when Imw — —oo and such that if V(w) = «, then

For any # € R we define the parameter ray at angle 6 to be the image under ¥ of the
vertical line Rew = #. We will say that the parameter ray at angle 6 lands at a parameter
a if

U(w) = «

when w € H tends to 6.

Proposition V.4. For any parabolic o € C, there are exactly two angles 0, < 01 such that

the corresponding parameter rays land at .

For any parabolic parameter «, it follows from proposition V.4 that the closure of the two
parameter rays which land at « cuts the plane into two connected components, the parabolic
wake of o, which we denote by Wake(«), is the connected component which avoids the upper

half-plane —H. The a-limb of M is defined to be
L, = M N Wake(a),

or equivalently £, is the unique component of M \ {a} which is compactly contained in C.

The PLY-inequality, developed independently by Pommerenke [Pom86], Levin [Lev91],
and Yoccoz [Hub93], bounds the geometry of the limbs of M. For any set X C C, we denote
by Diam X the Euclidean diameter of X.

Theorem V.5 (PLY inequality). For any p/q € Q,

Diam £/, < 1(7%2.

Actually, the PLY inequality is even more powerful: it gives a bound on the diameter of
every limb in M, but it is difficult to directly relate the diameter to combinatorial data in
general.

In [Mil94], Milnor conjectured that the O(1/q) bound in the PLY-inequality could be
improved to O(1/¢?). Such a bound was first verified in [Kap21] for the limbs £/, with
q > 2. For the rest of this chapter, we will generalize the argument in [Kap21| and prove the

following theorem:

Theorem V.6. For any integer M > 0, there exists a constant C > 0 such that for all
p/q € Qu,

) C
Diam Ep/q < ?
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Similarly to the PLY-inequality, our argument will allow us to control the diameter of
many other limbs of M, but it is difficult to explicitly relate the bounds to combinatorial

data. The precise statement of the bound we prove is given in theorem V.7 below.

V.2: Satellite towers

We define a satellite tower to be a strictly parabolic tower T = (f,))_, such that f; € Quad
and f,, has a parabolic fixed point at either 0 or co for all 1 < n < N. Our goal for the

remainder of this chapter is to prove the following:

Theorem V.7. For any satellite tower T of height N > 1 there exists a constant C > 0

such that if f, converges to T in @N with combinatorics (k,)N-1', then

C

Diam La < W

when f, is sufficiently close to T .
First let us show that theorem V.7 implies theorem V.6.

Proof of theorem V.6 assuming theorem V.7. Let us fix some M > 0 and assume that theo-
rem V.6 does not hold. Thus there is a sequence (p;/q;)o>, in Qp such that

(V.2.1) Diam £,,, /g, > .
q;

For all j, let (apm.;, €m.;)M_, be the modified continued fraction for p;/¢;. Up to a subsequence,
for every 1 < m < M there exists some a,, € Z-; U {oo} and ¢, € {£1} such that
Qpm,j — G, a0d &, j — €, When j — oo. Thus there exists some 0 < ky < M and integers
0=mp<mg <- -+ < my+1 = M+ 1 such that a,, = oo if and only if m = my, for some
1 <k <ky Forany 1 <m < M which is not equal to my for some 1 < k < kg, we have
U, j = O and &, ; = €; for all j sufficiently large.

For all 0 < k < ko, let 0 := pr/qx be the rational number whose modified continued frac-

mk+171
m=my+1>

We also define 6y ; := p_j/qx,; to be the rational number whose modified continued fraction

tion is given by (am,, €m) recalling that 0/1 has empty continued fraction expansion.

is given by (am,;, 6m,j)%:mk+1. As apj = ap, for all my, +1 < m < my4q and ap, ., ; — +00
for 1 <k < ky, it follows that 0 ; — 0y for all 1 < k < ky.. Moreover,

Emprr - S(0k) >

Uy, + Okt

6k‘,j = K, <
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for all 0 < k < ko by (IL.1.2).

By theorem V.7 and corollary II.2, to reach a contradiction it suffices to show that
hyj = fp,/q; cONVerges in @ko with combinatorics (a,,, ;)i to some height k41 satellite
tower when 7 — oo. Indeed, combined with corollary I1.2 this would imply that there is a

constant C > 0 such that

C

ko 2
k=1 Cmy,j

(e (L)

c & mgp1—mg—1~ 2
= ((2/3)2Mq§-> (,Ef‘*/ K q’“)

4MC Hk qu
< —q]

Diam Ep]. Ja; <

for all large j, which contradicts (V.2.1).
Setting f1 = fs,, the convergence of p;/q; = &y, to dy implies that hy; := f; converges
to fi in ml when j — oco. If kg = 0 then we are done, so we assume that ky > 0. As
1;(0) = Exp(do;) and a,,, ; — +00, hy ; is a positively or negatively implosive perturbation
of fi depending on whether ¢,,, - &(dy) is positive or negative respectively. Setting ho ; :=

Ry hij, it follows that

5;(0)  ifen, - 6(d) = +1 or

EXp(—éLj) =
By (00)  if e, - (8) = —1.

Setting fo to be the top parabolic renormalization of f; with a —d;-parabolic fixed point at
0 or oo depending on whether ¢,,, - &(dy) is positive or negative respectively, it follows that

hy j converges to (fi, f2) in mz with combinatorics a,,, ; when j — co. Repeating this

argument inductively completes the proof. O]
For any sequence of integers x = (k,)"_,, we denote
|k| == min |k,
1<n<N

and

N
]l == T T Menl-
n=1
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If k is the empty sequence, then we will instead define |k| = oo and ||k| = 1. To begin

proving theorem V.7, we first make the following observation.

Proposition V.8. Fiz N > 1 and let T = {(f.)"_, be a finite height satellite tower. If
k= (k,)N7! is a (possibly empty) sequence of integers with |k| sufficiently large, then there

exists a univalent function ! : D — C satisfying:

1. For all o € D, the function

hl o= Ry .0 oRy) fur(w)

is defined.

2. If fy has a pn/qn-parabolic fixed point at 0 or oo for some py/qn € (—1/2,1/2], then
either

(RT.)(0) = eXtonsan (@) op (BT ) (00) = emittn an (@)
respectively.
3. There exists a constant C' > 0 which does not depend on K such that

Cls —t
\uz<s>—uz<t>\<ﬁ

for all s,t € D.

For any k > 0, if §; is sufficiently close to T in @N, then there ezists some k with |k| > k

and o € D such that t = Expou! (a).

Proof. In the case where N = 1, k is automatically the empty sequence and we can define
W := fip, /a1, Where fi has a py/qi-parabolic fixed point at 0 and py/q € (—1/2,1/2].

So now we assume that N > 1, um is defined on D, and ky > 0. If fy has a py/qn-
parabolic fixed point at 0 for some py/qy € (—1/2,1/2], then we can define

T 7] 1
fh, () = pup,,
" (kN + C{rN - Mpzv/tm@‘))

for all & € D when |x| is sufficiently large. In this case, all of the desired properties follow
automatically. If instead fy has a py/qy-parabolic fixed point at oo for some py/qn €

(—1/2,1/2], then we have some increased difficulty as we want to define u7 so that

;
pl(a) = pll! (o),
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where
, 1
h‘LTJ /7f1\771
kn +c e + Hpy /an ()

As v converges to N1 when h — fn—1 and the equation

;L 1
kn 4 ¢ 4 e an (@)

o

has a unique solution o/ for any o € D when ky > 0 is large, we can produce the desired
function p7 by Rouché’s theorem. If instead —ky > 0 is large, the we can similarly produce
u! by considering negatively implosive perturbations. The proposition therefore follows by

induction on N. O

We will call the collection of maps hza the renormalized quadratic perturbations of T.
Let us now fix some finite height satellite tower 7 = (f,)2_; and sequence of integers
Kk = (ko)X= Without loss of generality we assume that fy has a p/g-parabolic fixed point
at 0 for some rational p/q € (—1/2,1/2] and ky > 0, the other cases can be handled similarly.

Fixing some « € D, to simplify notation, we assume that |x| is large and denote

f=fv,h =T, and h =h] .
Thus h is semi-conjugate to h by nﬁ;f . It is important to remember that both h and h
depend on x and « even though we suppress this fact in our notation; we similarly consider
several other objects in this section which are assumed to depend on x and « unless stated
otherwise.

We will say that a map £ : C — C is Q-linear if
&(z)=az+0

for some rational a > 0 and rational b; so £ preserves both H and Q and sends vertical or
horizontal lines to vertical or horizontal lines respectively.
We will now assume that there exists a Q-linear map &, = fOT ., and rational zy > 0, A > 2

which all do not depend on « such that

1. Setting
Xo=X]y:={z—iy:|z| <ao, A7 < |y| <A}

and X,,, = A" X, for all integers m, if |x| is sufficiently large and « is sufficiently small
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then the map

(V.2.2) o = 7732? S Yﬁﬁ o &

is defined on U%:o X, and satisfies

(V.2.3) h? o o(w) = o(Aw)
wherever both sides of the equation are defined.

2. There exists a compact subset of Pfe’g which does not depend on k or o and which
avoids U7 such that any neighborhood of that compact set contains the image under

Yo of UNM_(Xn) when || is sufficiently large and «a is sufficiently small.

We will say that the renormalized quadratic perturbations of 7 have external rays when the
above conditions are satisfied. We will call any image under 1), of a vertical line an external
ray of h. If T has height 1, so h = h and f are polynomials, then these external rays are
exactly external rays of of h. Our strategy in proving theorem V.7 is to use the geometry of
bubble rays for Lavaurs maps of f to control the geometry of the external rays of h and lift
this control to parameter space. By propositions 11.14 and IV.9, the fact that 7T is a satellite
tower implies that f has Jordan basin; so we can apply all the results in the previous chapter

to the Lavaurs maps of f.

oo

Given a sequence (z;)52,, we will call any limit of a subsequence of z; when j — 0o a

subsequential limit of the sequence.

Proposition V.9. Set d = 1 and © = (0). For any 6 € C, M € 7Z, and sufficiently large
s >0, if h is sufficiently close to f and if n — 1/« is sufficiently close to 0, then either we
can univalently extend Vg to UZL_:AL:[ X or there exists an integer M’ > M and k > 0 such
that

e € hF o e (Xn_ar).

The former case holds if M > 0 is sufficiently large.
If Ye is defined on U;_:Af Xpmoand s < m, <n— M is an integer which depends on n,
then any subsequential limit X of 1e(X,,) when h — f, n—1/a — 0, and n — oo satisfies

Eru gl if n —m, < O(1),
X C Py, \NKP  if my <O(1),

{zé“} if m, — 400 and n — m,, — —oo.
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Figure V.2: The extension of ¢y in proposition V.9

If M > 0 s sufficiently large or if Ls is d-nonescaping, then additionally

X C BY

if n —m, < O(1).

Proof. For simplicity, we assume without loss of generality that s = 0. Recall that h'(0) =
e?mitn/a(@) 5o if b is sufficiently close to f and if n — 1 /a is sufficiently close to 0 for some
integer n > 0 and § € C, then h is a positive implosive perturbation of f. By definition,
Yep Which avoids U J such that any neighborhood of Y; contains
1o(Xo) C PP when h is sufficiently close to f. Let My > 0 be sufficiently large so that

there is a compact set Yy C P

TM0—5 o d)gfep(yb) - ¢£tt(P£f)'
Thus if & is sufficiently close to f and if n — 1/« is sufficiently close to J, then

T o d)Z{g{ © ¢0(X0> = Tn—m—n+1/a ° ¢7}}éjzi © wO(XO) C QSZ{%{(P}LJ)

83



for all 0 < m < n — My. We can therefore define

Yo(w) = <¢Z;5{>71 ol o ¢Z£{ 0 (A" w)

on X,, for all 0 < m < n— My, which gives an analytic extension of ¢g. If 1y(X,,) is defined
and does not contain cv” for some integer m, then there exists a unique branch of h=7 defined
on 9y(X,,) whose image contains 1o(A~"™ - (—3i/4)); using this branch we can define 1 on
Xna1. By induction on m, this completes the proof of the first part of the proposition.
Now let us suppose that 1y is defined on U::‘SI X, for some M. For all m > 0, let Y,
be any subsequential limit of m when h — f. By the definition of the external rays,
Y,, C PLI\ U({ for all integers m > 0. For all integers m > M, let Y ,,, be the subsequential

rep

limit of (X, ). If m > My, then

wO(anm) = (¢ﬁé£)il © Tn—m—”+1/a © ¢Z£{(X0)’

soY C Pj;f and Ls(Yy) = f’“fk (Y5), s0 Yoo C % N Pfttf If m < My, then we can choose

the subsequential limits so that

fMO_m(Yoo,m) - Yoo,Moa

50 Yeom C E{“ U JlL o If Ls is 1-nonescaping, then the components of ElL“ have pairwise

disjoint closures; as any subsequential limit of ¢0(U?;:1 M, Xj) 1s connected it follows that

Yoom C BOL‘S. If m,, is an integer which depends on n such that m,, — 400 and n—m,, — —o0,
then it follows from the above that any subsequential limit of (X, ) is contained in Pf but
does not contain any points in the domain of gbf:tt or gb{fep, hence the limit must be contained
in {0}. O

We now assume that for any choice of petals near f and any 6 € A/, when o € AT/Q is
sufficiently close to 0 and h is sufficiently close to f there exists a Jordan domain Peh ' such

that:
1. P = phi,
2. if 6 is not basic, then h? restricts to an analytic isomorphism from P(;L 1o P;J’rfl;
3. if @ ~ @, then P}/ = Pl
4. P(,h’f — Pef’f when o« — 0 and h — f.

We will say that the renormalized quadratic perturbations of 7 have pre-petals when the

above conditions are satisfied. If h and f are polynomials, then every pre-petal of f is
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compactly contained in Dom(f) and the local uniform convergence of h to f implies the
existence of Peh I for any 0 € A/ when h is sufficiently close to f. For general f, we are
guaranteed that p! | is compactly contained in C*, so P(,f is compactly contained in Dom(f)
for any 6 € A non equivalent to 0 or —1. Thus to ensure that the renormalized quadratic
approximations of 7 have pre-petals, it suffices to show that Pf’lf exists when A is close to
f.

We recall that for any enriched angle © of depth d > 1 which is off-critical for L = Lf;
for some § € C, there is some 6 € A and integer k such that L¢ o f*¥ is univalent on a

neighborhood of z§ and maps 2§ to zg . Thus if h is sufficiently close to f and n — 1/« is

sufficiently close to § — ¢/, then there exists a Jordan domain P2 on which hdna+tki)+ka
restricts to an analytic isomorphism onto a sub-petal of Pg’L to Pgh 2 Moreover, we have the

convergence
Py* — PE and C\ Py" — C\ P§

when h — fandn—1/a — 6 — ci. Using the corresponding branch of h=4matm=k for any
large s > 0 we can define the analytic function ng’L X, = C by

7\pg,L — h—d(nq—l—k)—m o wg,f

when h is sufficiently close to f and n—1/« is sufficiently close to § —ci. We will call zz;gL the
external coordinate for h relative to L at enriched angle ©. The following two propositions

follow immediately from these definitions.

Proposition V.10. Fiz an enriched angle © which is off-critical for Ls for some § € C.
For any sufficiently large s > 0, if h is sufficiently close to f and n—1/a is sufficiently close
to 6 — ci, then

h,L h,L
hiotg™ =gty

on Xs. If © has height d > 1, then for any sufficiently large integer t > 0

h(n—t)Q+m o ’ngf _ @Z)lﬁéﬁ—t

on X,.

Proposition V.11. For any 6 € C, proposition V.9 holds for any d > 1 and enriched angle
© of depth d which is off-critical for Ls.

For any negative 6 € A with |0| sufficiently large, proposition I1.9 implies that
f
PHf - kar(Prfep)‘
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Hence Pgh e hki(Ph’f ) when hy is sufficiently close to f and « is sufficiently close to 0. We
will say that X C H is above or below X' C H if for all w € X there exists some t > 0 so
that w — it € X’ or w + it € X' respectively. For the rest of this section we will assume
that for any integer s > 0, if # < 0 lies in A/ with || sufficiently large, then there exists a
Q-linear map & = &, T which does not depend on « or s such that if a € AT/Q is sufficiently

close to 0 and |k| is sufficiently large, then:
1. &(Xs) is above X.

2. qu  can be univalently extended to the set

(V.2.4) {w € H : w is above X, and below &(Xj5)}.

3. On X,
hquowg’f S g’f o &.

4. there is a compact subset of Prfep which does not depend on & or a and avoids U7 such

that any neighborhood of that compact set contains the image under @Z)g J of the set

(V.2.4) whenever a € AT/Q is sufficiently small and A is sufficiently close to f.

We will say that the renormalized quadratic perturbations of 7 have compatible external
rays and pre-petals when the above conditions hold. If 7 has height 1, then these conditions

are automatically satisfied.

Proposition V.12. For every enriched angle © of depth d > 1, there exists a Q-linear map
o = 557 which does not depend on « such that if © is off-critical for Ls for some § € C,
s > 0 is sufficiently large, h is sufficiently close to f, and if n — 1/« is sufficiently close to
0, then

1. &o(Xs)/A™ is above X

2. There exists some minimal g > 0 which depends on h such that ¥ e| can be univalently

extended to
(V.2.5) {w e H : w is above X, and w + ig is below {o(Xs)/A\"}.

Either g = 0 or cv™ belongs to the forward orbit under h of the image of the set (V.2.5)
under \Y|g|.
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3. If g =0, then there exists some enriched angle ©" of depth d such that

Yo (w) = Yo (fo(w)/A")
on Xs. If Ls is (d — 1)-nonescaping, then ©' ~ ©.

Proof. The argument is identical to the proof of propositions V.9 and V.11. O

V.2.1: Virtually parabolic Lavaurs maps

Let us now fix some p'/q’ € Q so that the Lavaurs map L = L,/ has a virtually parabolic
fixed point. To simplify our notation we will assume that ci = 0, the case where cf; =1
can be handled similarly. Let O, = (04)3>, be the parabolic enriched angle for L, and for
all D > 1 set ©p = (65)7_,. We also denote £’ := k & (n) for some positive integer n, and
denote

n' = (ng+ kL )q' +mq

where m is the integer in proposition IV.8. So
W — L7 o fma

locally uniformly on K;_l when h — f and n — 1/a — p'/q¢’ by theorem I1.27.
By proposition IV.11, there exists some dy > 0 such that Bg, C PTLep for all d >
1+ (do — 1)¢’. Additionally,

Lq/ o fmq(BGd) = Bed_q/
for all d > ¢'. Proposition V.10 therefore implies that there is an integer s > 0 so that
" o ¢®d+q/ = e, (w)

on X, for any 1 < d < doq’ + 1 when h is sufficiently close to f and n — 1/« is sufficiently
close to p'/q’. For all 1 < d < (dy+ 1)¢’, we denote

S0, (W) = &o,(w/A"),

SO

¢6d+1 = ¢@d © ggd+1

on X, by proposition V.12. Repeated application of proposition V.12 implies that for all
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0 <d < dy, the set
$6uay © 77 © g@1+(al+1>q’ (X)

is above X, ¢@1+qu can be vertically extended between 5(52+d J0-::0 %mdﬂ (Xs) and X,
q

)’
and

* *
= le) QO-++0
w®1+(d+1)q’ wel-&-dq’ £®2+dq’ S61+(d+1)q/

on X, when h is sufficiently close to f and n — 1/« is sufficiently close to p’/¢'.

Proposition V.13. For all 0 < d < d,

Sgz>+czq’ °rre fgl+(d+1)lf - 582 oo Séuq"

Proof. When d = 0 the proposition holds automatically, so we assume that d > 0 and that

the proposition holds for smaller values of d. As

* *
le) QOQ+++0 —
¢@1+(d71)q’ §®2+(d—1)q/ §®1+dq’ ¢91+dq’
_
=h" oo, iy
n’ * *
= o o 0---0
h ¢91+dq’ gedq’+2 g®1+(d+1)q’

* *
== O O-+«++-0
¢91+(d71>q’ §9dq'+2 561+(d+1)q’ ’

the inductive hypothesis implies that

* * _ * R * — * . *
£@dq,+2 o---0 561+(d+1)q, - g6(5171>q/+2 © © §61+dq’ 5'92 © © §®1+q/ :

Let a > 0 and b be the rational numbers which depend only on " and which satisfy

€5, 0+ ogglﬂ,(w) =aw + b,

SO

w—>b o w—>b
@Z’@quf ( a ) =h o¢@1+(d+1)q’ (T)

’ w—>b
=h"ove,,,, © o, 00 &gwq’ ( )

a
— " o 1/1@1+dq,(w)
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on aXs+bforall0<d<dy Weset X, =X :=a'and {o_ v = o (w) :=w+ L s0

1—a’

—h wH+—b b
g@oo (’LU) _ _ a_lw + _ 69(,0()\/71])
a a l1—a

and

b
a§@m+b:a(w—|—
1—a

) +b=aw + % = o (w/\).

Proposition V.14. If |r'| is sufficiently large and n — 1/« is sufficiently close to p'/q’, then

there exists some xy > 0 which depends only on k' such that:

1. Setting
X = (NP @ — i) [o] < o, (V) <y < V)

for all integers j, o (X]) is above Xy and wgd . can be univalently extended to the set
{w e H : w is above Xy and below &g, }

foralll <d<dy+1.

2. For all 0 < d < dy,

h o ¢@1+dq/ o fo..(w) = wel-&-dq’ 0 o, (A - w)
and
V6, a1y © 0 (W) = Vo, ., © oo (w/XN)

wherever both sides of the equations are defined.

3. There is a compact subset of FN’TLEP which avoids U such that any neighborhood of that

compact set contains w@1+doq, oo (X)) whenever |k'| is sufficiently large and n — 1/«

is sufficiently close to p'/q'.

Proof. By construction,

5@00 (w) —b

a

W o ve,, ., © o (W) = Ve, ,, ( > = 10,4 © €on (NW)
on &5' (aX, +b) = for all 0 < d < dj Similarly,

V014 (i1 © 0m (W) = Vo, 085,008, 08on (W) =16, ,,. ° o (W/X)
on &5 (Xy).
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Lemma V.15. When n — oo,
|log a + nq'log \| < O(1) and |A"b] < O(1).
Proof. For all 2 <d < ¢ +1, set
6,0 0&5, (w) = agw + by,

so a = ag41 and b = by 1. Setting a; = 1 and b; = 0, it follows that

aqw + by = éed(ad_l)\wn + ba-1)

forall 2 < d < ¢ + 1. As g, does not depend on n, it follows from a straightforward

induction on d that
llog ag + ng'log A < O(1) and |A\"by| < O(1)

forall2<d<q + 1. O

As s > 0 and the above lemma implies that we can pick x;, > 0 which depends on n and

does not depend on « and which is small enough so that X7 is below

1—a

oL (alaX, +b) +b) = <(X)2 (Xs _ ! )> ~ (V) 2(X,)

and above &5 (Xg) ~ X,. Thus Ve, can be vertically extended between {o_ (Xp) and
Xp for all 0 < d < dy. It follows from proposition V.11 that the image under w@Hqu, oég

[e)

of X{ is contained in any neighborhood of
1+(do+1)q’
B ~ pL
U B@d C Prep
d=l+(d0—l)q’

when «’ is sufficiently large and n — 1/« is sufficiently close to p’/q’, which completes the

proof. O

Let us now set fny1:= Ry g fnv and 7' =T ® (fy41), so T' is also a satellite tower. As

an immediate consequence of proposition V.14, we have the following:

Corollary V.16. The renormalized quadratic perturbations of T’ have external rays.
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Proof. When |k| and n is sufficiently large, for all o/ € D sufficiently close to 0 and

1
0= —-
n = fy /g ()
we can set ,
hz’ o ’Tl hmTouT
" = e oo, 0 o
O
Additionally, we can show the following:
Proposition V.17. The renormalized quadratic perturbations of T have pre-petals.
Proof. Tt follows from corollary IV.14 that 2 T is the unique point in Ug N+ not contained

in the domain of fy,i. Thus zL, is the only point in U_OL which belongs to U({ and which is

not ¢’-nonescaping. Moreover, zX, is ¢-asymptotic as

f]q\;+1(2{1\1]+1) = Z(JJCN+1 =0

implies that

LY o fma(zl )y =2k =o.

Thus there exists an enriched angle © of depth ¢’ + 1 so that z%, = 2§.

Let us recall that IS_LLM is by definition the unique component of (L9 o f™4)~*(PL ) which
has 2%, on its boundary and which is contained in UZ. For simplicity, let us assume that PL,
is contained in P/, and LY o f™ restricts to any analytic isomorphism from P& i tO P/,; the
general case will hold by similar argument and applying a homotopy. Thus there is a unique
component of (LY o f™4)~*(PL ) which is contained in P& 4, and this component has z§
on its boundary. A straightforward induction on ¢’ implies that the restriction of L? o f™4
to the intersection of K 5 and a neighborhood of z§ is injective, so the above component

must be ]5—L1,att- If we similarly assume that PZ is contained in P | then we can conclude

rep rep)’

is the unique component of (LY o f™)~1(PL ) which is

by similar argument that P* rep

1,rep
contained in Pg ;.
Let us denote g = Ryh. Repeating the argument in the proof of proposition 11.34, we

can find petals P/ ¢ P™f such that

it (P™T) = PoTves,
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Setting ]511’1]0 to be the unique component of A~ (P™/) contained in Pg’f, we can set
7f hy ~h7
PIN = Watf(P—1f>-

Thus g9 (P? 1f Nt1) = p9In+1and it follows from the construction that P9/N+1 converges to

PIN+1:IN+1 when |/§/| — oo and g — fyi1- -

Corollary V.18. The renormalized quadratic perturbations of T’ have compatible external

rays and pre-petals.

Proof. This follows from corollary V.16 and proposition V.17 as we can pull-back ¥g_ by

iterates of L and f? and project down by 772,;{ . Part (2) of proposition IV.11 ensures com-

patibility. ]
It follows from corollary V.18 and induction on height that the renormalized quadratic

perturbations of any satellite tower have compatible external rays and pre-petals.

V.2.2: Parameter rays

Using the external rays for quadratic perturbations of 7 above, we will now produce rays in

parameter space.

Proposition V.19. For any sufficiently large C' > 0 there exists an integer ng > 0 such

that if |k| is sufficiently large, then there exists a Q-linear map =, satisfying:

1. The map
U, = () 1oTVoz,
is defined on \J,_,, Xn-

2. For alln > ng and w € X, « = V. (w) is the unique choice of a such that

(a) Yi(w) can be univalently extended to a neighborhood of the set

{z € H: z is above X, and below w},

(b) cvh = Yh(w), and
(c)
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Proof. 1t follows from the definition of the external rays for A that there is a compact set

Y ¢ P/

J,, which does not depend on x and which contains 1 (X,) when |s| is sufficiently

large and « is sufficiently close to 0. As cv” and ¥ depend holomorphically on «, proposition
I1.39 implies that there exists some ny > 0 and C' > 0 which do not depend on & such that
if |k|, wo € Xo, and if n > ny, then there exists o € D such that

ot (co™) +n = ¢l o Yl (wp)

and
1
a__
n

- C
n2’

Repeating the argument used in the proof of proposition V.9, we can analytically extend
to a neighborhood V' of [wy /A", wp] and cv” = 1 (wy/A™). Moreover, as the image under )}
of V can only get close to 0 inside P, it follows from proposition II1.9 that there exists a
map zﬁ such that

Mot 0% = f

on V and ¥ (wo/A\") = cvt. As
Mait 00 =1 =1 V" 0 &

on Xy, it follows from the definition of the attracting elevators that there exist integers
4,7 > 0 such that
Woi=hoyhod.

Thus there exists a Q-linear map & such that
v=ylot.

Hence ] (o) = W o E(wy/\"). Tt follows from the above construction that ¢ depend contin-
uously on «, which in turn depends continuously on wy. As the set of all Q-linear maps
is discrete the map é does not actually depend on wy. The map =, := é has the desired

properties. O

As U is defined on all of H and p7 is defined on D, if U, is defined at some wy € H then
we can analytically extend ¥, to a neighborhood of wy. Moreover, if & = W, (w) for some w
close to wy, then the uniqueness of analytic continuation guarantees that ¢{(w) is defined

and equal to co™.
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Proposition V.20. For any 0 € A’ with —0 sufficiently large, integer s > 0, and sufficiently
large C' > 0, there exists some ngg > 0 such that if |k| is sufficiently large and n > ng g, then

W, can be analytically extended to the set
{\"w : w is above Xo and below &(X)}-

For any w in the above set, a = W, (w) is the unique choice of a such that Y} can be

analytically extended to the set
{w e H : w is above Xy and below w},

cv = Yi(w), and
1

o — —
n

- C
n?’

Proof. The argument is identical to that of proposition V.19, using the compatibility of

external rays and pre-petals. ]

A key part of our proof of theorem V.7 will be understanding extensions of ¥, specifically
how some parameter rays land. Instead of extending ¥, and showing that some rays land,
we will work backwards: we will produce alternative rays in parameter space which land and

then show that these are extensions of W,.

Proposition V.21. There exists di > 0 and C" > 0 such that if |k'| is sufficiently large,

then there exists a Q-linear map = satisfying:

1. The map
U= (u ) oVoZ,

is defined on \Jg—,, X7

2. If a = U (w) for some w, then vy can be univalently extended to a neighborhood the
set
{z € H: z is above X, and below w}

and cv = Pl o fo (w).
3. For alld > dy and w € X,

1 - o
n—p/q| dn*
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4. Any subsequential limit of
1

T (- )

n —

when |K'| = 00 is contained in
Be, .\ Ze, -

Proof. Our argument is similar to the proof of proposition V.19. As O, is basic, it follows

from proposition V.14 that there exists a compact set Y C pfep which contains

Yo, © Con (X() = 10 0 Lo, (X5/ (X))

when |x/| large and n — 1/« is close to p'/q’. We can apply proposition 11.39 and conclude
that there exists an integer d; > 0 and constant C' > 0 such that if |+'| is sufficiently large
then for any wy € X and d > d; there exists some o’ € D such that

Gl (") + d — do = gl 0 Ul o o (wo/(N)™)

and
o 1 - C
d d?
when d > d;, where
1
0= —.
n — Uy fq ()
Thus 1 (O/) . // / 9la/ C'
o _ Hp' /g P'/a ' o'l
n—1p/q (n— pyye(@))n—=p /)| (¢)?n—1)>  dn?

for some constant C’ which does not depend on &’ or d by proposition II.5. By the same

argument used in the proof of proposition V.9, we can vertically extend ¢} between a neigh-

borhood of wy/(N)? and X, and
cv" = g 0 o (wo/(N)).

Similarly to the proof of proposition V.19, the image under z/zgdo o e, of this neighborhood
can get close to 0 only inside P/ or P™L which implies by proposition II1.9 that there is

some Q-linear map ¢ which does not depend on wy and which satisfies

vl = g o € (wo/(N)D),
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hence
a = (p[)™ o Wog(wo/(X)?).
We define =, := €.
For any wy € X and a = Z(wyp), it follows from the above that
1

n— —
(07

. i < C”
|l

‘ 1

n

for some C” > 0 which does not depend on &', so every subsequential limit § of n — 1/«
belongs to Der. As

el = ¢g oo, (wy) = del o 5@@((}\/)d1w0)’
if wy = —(\)~%4, then proposition V.11 implies that
L L
el € Be‘; \Z@‘;l,

SO(SEB@dl\Z@dI. ]

Just as for U, we can analytically extend ¥,/ to a larger domain when the corresponding

image is contained in D.

Proposition V.22. For any sufficiently large integer s > 0 and any integer 1 < d < diq, if

|k'| is sufficiently large then W, can be univalently extended to
(V.2.6) {fweH:wis below X, and above X(g_1yn+s}-

If my, > s is an integer and if wy, belongs to the intersection of Xa—1yn+m, with (V.2.6),

then any subsequential limit 6 of n — % satisfies

v,

Bo, \ {Ze,} if [n —ma| <O(1)
014 Be, , \{Ze,,} iflma| <O(1)
{Ze,} if m,, = 400 and m, —n — —oo.

Consequently, if s > 0 s sufficiently large then there exists a constant C' > 0 such that

C

(V.2.7) Vo (w) = —| < —

1
n

for all w belonging to (V.2.6).
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Proof. Fixing some d and s, we denote by V' the set (V.2.6) and assume that U,, is defined
on V. We will further assume that there exists some integer s,, wy € V N Xy, , and
6 € Bo, \ {Z6,} such that |s,| < O(1) and n — m — dp when |K/| = co. We note that
the latter assumption follows from proposition V.21 when d = dyq’.

Let m,, > 0 be an integer which depends on n and choose some w € V N X(g_1)n4m,. We
set d = d'q’ — 1’ for integers ' > 1 and 0 < ' < ¢. Setting a = ¥,,(w), it follows from
proposition V.21 that

!

" = 0 o (W) = Yo, © o (V) w) = e, , 085,008, oo (N)!

w).
As o, does not depend on n and | log N /M| < O(1) when n — oo, it follows that
6,008, © o (V) w) m ATy = X1y,

In particular, our definition of V' and X|| ensures that there is some integer m/, with |m/ | <
O(1) so that

w = €5, 008, 0o (V) W) € Xy,

L ) and let 9 € C be a subsequential limit

Let Q2 be a subsequential limit of the set n — T Qo]

1
Vo (w)

First we consider the case where |m, —n| < O(1). If § € K41, then proposition
V.11 implies that cv/, which is the limit of co" = vg, ,(w'), is contained Ef‘s U JdL‘s7 SO

0 € & U Jy. If instead 6 = Zg,, so Oy is off-critical for Ls, then the same argument implies

of n — when || — 0.

that cvf € EX* U JY which is a contradiction. Thus Q must avoid Ze, and can intersect
Ka-1 only in £, U Jy. As §y € Be,, §2 is connected, and the components of £; have pairwise

disjoint closures, we can conclude that
00 C Be, \ {Ze,}-

Now let us consider the case where m,, — +o0o and m,, —n — —oo. If § is sufficiently
close to Zg,, so Oy is off-critical for L, then proposition V.11 implies that cvf = zgd. So in
particular § = Zg,. A similar argument shows that § cannot be contained in Kgq_;. As €2 is

connected, it follows from the above that 2 C Bg,, so in particular
0= Zo,.

Now let us consider the case where |m,| < O(1). It follows from the above that for any
neighborhood U of Zg,, there exists some S > 0 such that if m,, > S then 6 € U; indeed
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otherwise we could choose m,, so that m,, = +oo0, m,, —n — —o0, and § # Zgo,. If U is
sufficiently small, then Oy is off-critical for Ls and we can again apply proposition V.11 and
similarly conclude that 6§ € Bg, , \ Ze,_,-

The proposition therefore follows by induction on d, with one technical detail. We had to
assume that W, is defined on V', which is not immediately implied by induction. However,
if U, is not defined on all of V', then there must be some w € V which is mapped to 9D.
But if n is sufficiently large then this contradicts (V.2.7). O

Corollary V.23. If |r'| is sufficiently large, then ¥, = U, o&g__.

Proof. Fix some large so > 0, w € X1, N &g (Xnts,), and set @ = W,y (w). Thus

vl = w(})‘ oo (w)

and ‘a — %‘ < %2 for some constant C' > 0 by proposition V.21. The uniqueness in V.20
implies that if || is sufficiently large, then o = W,; 0 o (w). As this holds for an open set,

the analytic extension holds over the whole connected domain. O

Let us set !, := k@ (n +2) and £ := kK ® (n — 2). We define €2, to be the set formed

by the union of the interval

1 1
n+2—p’/q”n—2—p’/q’ )

the curves
\I/n;(_l(oy )\_n—s)) and \IJHL(_Z(O, )\—n—s))

for some large s > 0, and the curve

\iji([g@oo,ﬁg_ (_i/\—n—s)7 é@oo,/f'_ (_i/\—n—s)])'

Proposition V.24. If k' is sufficiently large, then Q. is a Jordan curve. There exists a

constant C' > 0 which does not depend on k' such that

1
n—p/q

C

sup —.
n2

OLEQHI

o —

Proof. It follows from proposition V.21 and corollary V.23 that €1 is a Jordan curve. The
existence of a constant C' > 0 follows from propositions V.19, V.20, and V.21. m

Equipped with proposition V.24, we are now ready to prove theorem V.7.
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Proof of theorem V.7. Taking T and T as described in this section, we note that if §, con-
verges to T in Quad, with combinatorics x, then proposition V.8 implies that that there
exists a; € D such that t = u/ (o). If §, additionally converges to 7’ in Quad, with

combinatorics ', then n + ci —1/oy — 0. If oy € —H, s0

eQﬂ—i'uPN/‘IN (at) <1

|(hia,) (0)] =

)

then it follows from the same argument as in proposition I1.33 that f; has an attracting
periodic cycle. As ¢ € {0,1}, it follows from the definition of Q7 that if n 4 ¢} — 1/a is
sufficiently close to p’/¢’, then a belongs to either —H or QZ—/. Hence o4 € QZ’. Thus

Q= pul (2])

is a Jordan curve by proposition V.24 with ¢ on its boundary. As there exists parameters in
L, close to t which do not have an attracting periodic cycle, it follows from the above that
if f; is sufficiently close to T then (u])~!(L;) must contain points not in —H. Thus £; is

contained in the bounded component of the complement of €. Thus

sup |A —t| < sup | — ¢
AEL AeQ

< sup | (@) = ] (o)

aeQ]

Cla — a4

< sup
acor |5l

C'lo — =77

n—p'/q

< sup
aeor sl

Cf//
— n?||s|?
C//

G

for some constants C, C’, C"” > 0 which do not depend on ' by propositions V.8 and V.24,
provided |+/| is sufficiently large. ]

V.3: Generalizing theorem V.7

While theorem V.7 is limited to the satellite towers, this restriction is only mildly required
in the proof. The same argument can be used to prove a version of theorem V.7 for any
quadratic strictly parabolic tower 7 = (f,)N | of finite height with data (3,)Y-;' which

n=1
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satisfies the following three conditions:
1. For all 1 <n < N, there exists ¢ arbitrarily close to d,, so that Rsf, ¢ FP,
2. For all 1 <n < N, f, has Jordan basin.

3. For all 1 <n < N, there exists a bubble ray of L(J;Z whose image under 7]5& 5, lands at

a parabolic periodic point of f,,; insider Pf[;“.

These conditions are automatically satisfied for satellite towers, and we can ask what other
quadratic parabolic towers also satisfy these conditions. We conjecture that the first two
conditions above are satisfied by all quadratic strictly parabolic tower. More care needs to be
taken in the third case; if the parabolic cycle of f,, .1 is not inside Domg( f,41), S0 Eg: is not
infinitely non-escaping, then we would need to introduce an alternative definition of escaping
sets and bubble rays for the Lavaurs maps of f,,. Nonetheless, the same type of analysis
should be possible, so we conjecture that the restriction to satellite towers in theorem V.7

can be removed:

Conjecture V.25. For any quadratic parabolic tower T of height N > 1, there exists a

constant C' > 0 such that if f, converges to T in wzv with combinatorics (k,)"_!, then

C

Diam £, < W

when f,, is sufficiently close to T .

The above conjecture still requires that the height of the parabolic tower is finite, we can
similarly ask what happens when the height is infinite. As shown by propositions 11.20 and
I1.21, for some infinite height quadratic parabolic towers (f,,)5°; the sequence of maps may
converge towards a limit function f,,. As the constant C'in proposition V.7 is determined by
the geometry of parameter spaces of Lavaurs maps, the convergence of f, to f, may allow

some control of the diameter of limbs in this infinite tower case.
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