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Abstract 

Synonymous mutations have long been considered neutral, but there is accumulating 

evidence that they influence many biological processes, ranging from transcription to translation, 

except that they do not alter amino acid sequences. In this thesis, I directly tested the neutral 

assumption of synonymous mutations by measuring the fitness effects of more than 8,000 

mutations, including 1,866 synonymous ones, in 21 genes in the budding yeast Saccharomyces 

cerevisiae. I found that synonymous and nonsynonymous mutations have similar distributions of 

fitness effects and that most synonymous and nonsynonymous mutations are non-neutral. Both 

types of mutations can influence the mRNA level and thereby affect fitness. Nonsynonymous 

mutations have larger across-environment fitness variations than synonymous mutations. As a 

result, nonsynonymous mutations are more likely to be purged in fluctuating environments, 

which may explain why the nonsynonymous to synonymous substitution rate ratio (dN/dS) 

between species is below 1 for almost all genes. To confirm that the fitness effects observed are 

not artifacts, I performed whole-genome sequencing of the progenitor strain, gene deletion 

strains, wild-type control strains, and on average ~28 mutants per gene. I found no off-target 

genome editing but observed secondary mutations in some mutants. Notwithstanding, all results 

were verified in the subset of genes with negligible effects of secondary mutations. To study 

whether the fitness effect of a synonymous mutation depends on the presence/absence of other 

mutations in the gene, I studied intragenic epistasis between mutations by using double mutants 

created in my experiments. I found that synonymous mutations can genetically interact with 



 xv 

synonymous mutations and nonsynonymous mutations and that 8.5% to 26.1% of instances of 

epistasis vary significantly between two environments. I also found that epistasis between 

nonsynonymous mutations is more variable than that between synonymous mutations across the 

four environments examined. Together, these studies deepen our understanding of the fitness and 

epistatic effects of synonymous mutations and demand a reconsideration of many previous 

conclusions dependent on the neutral assumption of synonymous mutations. 
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Chapter 1 Introduction 

The discovery of the non-neutrality of synonymous mutations 

In the 1960s, when the genetic code was deciphered, it was found that 18 amino acids 

were each encoded by multiple codons. These different codons that code for the same amino acid 

were named synonymous codons. Consequently, nucleotide mutational changes between 

synonymous codons were called synonymous mutations or silent mutations. By contrast, 

nucleotide mutations that alter the encoded amino acids were called nonsynonymous mutations 

or missense mutations.  

Also in the 1960s, a new evolutionary theory—the neutral theory—was developed 

(Kimura, 1968; Kimura, 1983; King & Jukes, 1969). The neutral theory asserts that most 

nucleotide differences between species result from random fixations of neutral mutations and 

most intraspecific polymorphisms are also neutral. Because synonymous mutations do not 

change amino acid sequences, these mutations were assumed neutral. As a result, evolutionists 

regard synonymous changes as neutral markers in evolution and this concept is behind many 

evolutionary methods and analyses. For example, widely used methods for detecting natural 

selection such as the McDonald-Kreitman test (McDonald & Kreitman, 1991) and dN/dS test 

(Kimura, 1983) use the frequencies of synonymous changes as the neutral baseline. Effective 

population size (Ne) is an important concept in population genetics and conservation biology; 

synonymous polymorphisms are used for estimating Ne because these polymorphisms are 

believed to be neutral (Gillespie, 2004). 
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However, in the 1970s, the first evidence that synonymous mutations are not all neutral 

was discovered. At that time, some genes were sequenced and it was found that some codons 

were used more frequently than their synonymous codons (Grantham et al., 1980). This 

phenomenon is called codon usage bias (CUB) and this pattern is more profound for highly 

expressed genes. Consequently, synonymous codons more prevalently used in highly expressed 

genes were named “preferred codons” while less-used ones were named “unpreferred codons” 

(Grantham et al., 1981). The positive correlation between CUB and gene expression level 

suggested that synonymous mutations might affect translation (Sharp & Li, 1986). Subsequent 

research has provided mounting evidence supporting this idea, with studies showing that 

synonymous mutations can impact various aspects of translation, including initiation (Kudla et 

al., 2009), efficiency (Ikemura, 1981), accuracy (Akashi, 1994), and co-translational protein 

folding (Buhr et al., 2016). Besides the impact on translation, synonymous mutations have also 

been reported to participate in transcription (Stergachis et al., 2013; Zhou et al., 2016) and pre-

mRNA splicing (Chamary et al., 2006). Thanks to the advancements in molecular biology tools 

and sequencing techniques, scientists can now measure the fitness effects of synonymous 

mutations with greater precision. Surprisingly, many studies have shown that these assumed 

neutral mutations are, in fact, non-neutral in both bacteria (Kristofich et al., 2018; Lind et al., 

2010) and eukaryotes (Sharon et al., 2018). 
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Biological processes affected by synonymous mutations 

Transcription initiation 

Stergachis et al. (Stergachis et al., 2013) found that ~15% of human codons not only 

encode amino acids but also specify transcription factor (TF) binding sites, so named these 

codons ‘duons’. Synonymous mutations in the duons may alter TF binding.  

Zhou et al. performed codon optimization of eight Neurospora genes, two heterologous 

reporter genes, firefly luciferase, and S. cerevisae I-sel gene based on the Neurospora codon 

usage (Zhou et al., 2016). Then, these codon-optimized genes were inserted into a Neurospora 

crassa chromosomal locus. Codon optimization increased the mRNA abundance of these genes 

by promoting enrichment of RNA polymerase II. 

Pre-mRNA splicing  

Synonymous mutations near introns can affect mRNA splicing (Chamary et al., 2006). 

For example, SMN2 and SMN1 are two paralogous genes in the human genome. SMN2 has an 

almost identical sequence as SMN1 but has a synonymous difference in Exon 7. Because of this 

synonymous difference, 80% of SMN2 mRNA skips Exon 7 and produces truncated, unstable 

protein products (Pagani & Baralle, 2004). 

mRNA folding and stability 

 Synonymous mutations change mRNA sequences and potentially their folding. Park et al. 

found that natural selection for mRNA folding is stronger in more highly expressed genes and 

that random mutations are more likely to decrease mRNA folding in highly than lowly expressed 

genes (Park et al., 2013). It was found that changes in mRNA folding can influence the 

functional mRNA half-life and protein concentration (Mauger et al. 2019) as well as the 

translational elongation speed and accuracy (Yang et al., 2014). 
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 Presnyak et al. found that using preferred codons alone increases the mRNA stability and 

thereby increases the mRNA level (Presnyak et al., 2015). Later, the same group (Buschauer et 

al., 2020) found that unpreferred codons are associated with less abundant tRNA molecules, 

which slows down the ribosomal translation process. The Ccr4-Not pathway monitors this delay 

and degrades the mRNAs occupied by slow ribosomes. 

 Translational initiation 

Kudla et al. built a mutant library by randomizing the synonymous codons of the GFP 

gene (Kudla et al., 2009). The protein expression level of GFP varied by ~250 fold among the 

variants. Surprisingly, they found that the mRNA folding near the translation initiation site 

explains one half of the expression variation. Synonymous mutations in the first 30 coding 

nucleotides can change the mRNA folding and ribosomal binding so may alter the translation 

initiation.   

Translational efficiency 

 In a genome, the cognate tRNA gene copy number varies among the synonymous codons 

of an amino acid. Preferred codons are associated with high-gene-copy-number cognate tRNAs. 

In the translation process, the waiting time for an abundant tRNA is shorter than that for a rare 

tRNA. So, preferred codons are predicted to be translated faster than unpreferred codons 

(Ikemura, 1981). Ribo-seq (Ingolia et al., 2011) could sequence mRNA segments protected by 

ribosomes. So, efficiently translated codons are less likely than inefficiently translated codons to 

be captured in ribo-seq. This pattern was observed and indicated that preferred codons are indeed 

translated more efficiently (Hussmann et al., 2015; Weinberg et al., 2016). 

Translational accuracy 
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 The first evidence supporting the hypothesis that preferred codons are translated more 

accurately than unpreferred codons was from a comparative analysis published in 1994 (Akashi, 

1994). Akashi compared the amino acid sequences of 38 genes between Drosophila 

melanogaster and D. virilis or D. pseudoobscura. He found that, for a given amino acid, 

conserved residues are more likely than unconserved ones to be encoded by preferred codons. 

Because conserved residues are important for protein functions, translational errors must be less 

tolerable.  Therefore, Akashi concluded that preferred codons are translated more accurately. 

 With the advancement of proteomics, Sun and Zhang analyzed proteome-wide 

mistranslation events in E. coli, reporting that preferred codons are translated more accurately 

than unpreferred ones (Sun & Zhang, 2022).  

Co-translational protein folding 

 Synonymous mutations can change the translation dynamics and alter protein folding 

during translation (Buhr et al., 2016). Synonymous mutations in the chloramphenicol 

acetyltransferase (CAT) gene alter the co-translational protein folding via changing the 

translational elongation speed, leading to enhanced protein degradation in vivo and dramatically 

lowered E. coli fitness (Walsh et al., 2020). 
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Experimental evidence of the non-neutrality of synonymous mutations from past 

systematic studies 

 Because synonymous mutations have been found to influence many biological processes, 

the assumption that synonymous mutations are neutral is questionable. To directly test this in a 

systematic way, several authors made synonymous mutations in a genome and measured their 

fitness effects. 

 In 2010, Lind et al. (Lind et al., 2010) did mutagenesis in two ribosomal protein genes in 

the bacterium Salmonella typhimurium. They created 38 synonymous mutants and 88 

nonsynonymous mutants. Each mutant carries only one mutation in the genome. The fitness 

effects of these mutations were measured in LB and M9 glucose minimum media. In both media, 

the fitness distributions of synonymous and nonsynonymous mutants are quite similar. In LB 

medium, the average growth rate of nonsynonymous mutants relative to the wild type was 0.94, 

while the average relative growth rate of synonymous mutants was 0.92. In the M9 glucose 

minimum medium, the average relative growth rates were 0.95 for both synonymous and 

nonsynonymous mutants. 

 With the development of CRISPR/Cas9 genome editing, larger-scale mutagenesis 

became possible. Sharon et al. (Sharon et al., 2018) compared the genomes of the BY strain of S. 

cerevisiae and a vineyard strain (RM) of S. cerevisiae. They identified genomic differences 

between these two strains, individually replaced the alleles in the BY strain with the 

corresponding alleles of the RM strain, and measured the fitness effects of these replacements 

using a sequencing-based method. They found similar fractions of synonymous and 

nonsynonymous replacements with significant fitness effects. 
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Potential impacts of the non-neutrality of synonymous mutations on evolutionary biology 

 Synonymous mutations have long been assumed to be neutral markers in population 

genetic and evolutionary studies and in conservation biology. Invalidation of this assumption 

would have broad impacts. Here, I will mainly focus on the effective population size estimation 

and tests of natural selection. 

 Effective population size (Ne) is the size of an idealized population that would have the 

same effect of random sampling on gene frequency as in the actual population. Ne influences the 

effectiveness of selection relative to genetic drift so is important in conservation biology. Ne is 

usually calculated by dividing the genetic diversity (π) by 2μ (haploids) or 4μ (diploids), where μ 

is the neutral mutation rate. Genetic diversity is usually estimated based on the synonymous 

variants with the presumption that they are neutral in evolution. If many synonymous mutations 

are not neutral, genetic diversity is reduced and thereby Ne is underestimated. 

 In tests of natural selection, the frequency of synonymous variants is usually regarded as 

the neutral baseline. In the dN/dS test (Kimura, 1983), dN is the number of nonsynonymous 

substitutions per nonsynonymous site and dS is the number of synonymous substitutions per 

synonymous site. If many synonymous mutations are non-neutral, dS is lower than the neutral 

expectation so dN/dS is inflated. In the McDonald-Kreitman test (McDonald & Kreitman, 1991), 

the amount of variation within species (polymorphism) is compared with the variation between 

species (divergence). Synonymous polymorphisms and substitutions are used as neutral 

baselines. If many synonymous mutations are non-neutral, the results of the McDonald-Kreitman 

test are confounded because synonymous polymorphisms and substitutions no longer reflect the 

neutral baselines. 
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Epistasis (G×G) and variation in epistasis across environments (G×G×E) 

 In the systematic study of the fitness effects of synonymous and nonsynonymous 

mutations, we study one mutation at a time. To have a more comprehensive understanding of the 

mutational effect, we need to take epistasis (G×G) into consideration.  

 ‘Epistasis’ was first coined by William Bateson in 1909 to describe the interaction of 

mutations in influencing the phenotype (Bateson, 1909). Among various definitions of epistasis, 

the most commonly used one is ε = fAB − fA fB, where fAB is the fitness of a double mutant and fA 

and fB are the fitness of the two corresponding single mutants. With the advent of next-generation 

sequencing and other technologies, systematic quantifications of epistasis became possible. 

Intragenic epistasis between mutations was measured for the whole gene (Li et al., 2016; Puchta 

et al., 2016) or one segment of a gene (Olson et al., 2014). Intergenic epistasis was measured by 

large-scale gene knockout experiments (Costanzo et al., 2010). 

 It is known that epistasis varies across environments (G×G×E). In a systematic multi-

environment fitness landscape study (Li & Zhang, 2018), it was found that 5.1% to 48.7% of 

epistatic interactions are significantly different between any two of the four environments 

examined but epistasis in one environment can be predicted from the fitness data collected in 

another environment. 
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Thesis overview 

 In Chapter 2, I created mutant libraries of 21 yeast genes, consisting of more than 8000 

mutants (including 1866 synonymous mutants). I first measured the fitness effects of mutations 

in YPD and found most synonymous and nonsynonymous mutations to be non-neutral. I then 

experimentally measured the mRNA level of each mutant and compared it with the wild-type 

gene expression level, finding that both synonymous and nonsynonymous mutations can change 

the mRNA abundance and that using preferred codons increases  the mRNA level. Because the 

distribution of the fitness effects of mutations is similar for synonymous and nonsynonymous 

mutations, it is difficult to explain dN/dS << 1 for most genes in almost all species. I proposed 

that nonsynonymous mutants have more variable fitness than synonymous mutants across 

environments, so nonsynonymous mutants are more likely to have low fitness in some 

environments and be purged in evolution when the environment fluctuates. As a result, 

nonsynonymous mutations are less likely to get fixed than synonymous mutations. I 

experimentally verified this hypothesis by measuring the fitness effects of mutations in three 

additional environments. 

 In Chapter 3, I sequenced the genomes of the BY4742 progenitor strain, wild-type 

control strain used the competition, 21 gene knockout strains, and ~28 mutant strains per gene. I 

found that in the genes with negligible effects of secondary mutations, the conclusions from 

Chapter 2 hold. 

 In Chapter 4, I took advantage of the double mutants produced by oligo synthesis errors 

and estimated intragenic epistasis between mutations in four environments. I found that 

synonymous mutations have pervasive epistatic interactions with synonymous or 

nonsynonymous mutations. I also found that 8.5% to 26.1% of epistatic interactions vary 
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significantly across environments. Furthermore, I found that epistasis between nonsynonymous 

mutations is more variable than that between synonymous mutations across environments. 

Epistasis between nonsynonymous mutations involves the interaction between protein sequence 

changes which synonymous mutations do not cause, so this adds to the complexity and 

variability of epistasis between nonsynonymous mutations. 
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Chapter 2 Most Synonymous Mutations in 21 Representative Yeast Genes are Strongly 

Nonneutral 

2.1 Abstract 

Synonymous mutations in protein-coding genes do not alter protein sequences so are 

generally presumed neutral or nearly so (Graur et al., 2016; Kimura, 1968; King & Jukes, 1969; 

Li, 1997; Nei & Kumar, 2000).  To experimentally verify this presumption, we constructed 8,341 

yeast mutants each carrying a synonymous, nonsynonymous, or nonsense mutation in one of 21 

endogenous genes with diverse functions and expression levels, and measured their fitness 

relative to the wild-type in a rich medium.  Surprisingly, three-quarters of synonymous mutations 

reduce the fitness significantly, and the distribution of fitness effects is overall similar albeit 

nonidentical between synonymous and nonsynonymous mutations.  We find that both 

synonymous and nonsynonymous mutations frequently disturb the mutated gene’s mRNA level 

and that the extent of the disturbance partially predicts the fitness effect.  Investigations in 

additional environments reveal greater across-environment fitness variations for nonsynonymous 

than synonymous mutants despite their similar fitness distributions in each environment, 

suggesting a smaller proportion of nonsynonymous than synonymous mutants that are always 

non-deleterious in a changing environment to permit fixation, potentially explaining substantially 

lower nonsynonymous than synonymous substitution rates commonly observed.  The strong non-

neutrality of most synonymous mutations, if true in diverse organisms, would require 

reexamining numerous biological conclusions about mutation, selection, effective population 
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size, divergence time, and disease mechanism that rely on the neutral assumption of synonymous 

mutations. 
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2.2 Introduction 

 The cracking of the genetic code in the 1960s revealed that between a quarter and a third 

of single nucleotide mutations in protein-coding genes do not alter protein sequences (Kimura, 

1968; King & Jukes, 1969).  Although these synonymous mutations are not strictly neutral 

because they could influence many processes (Chamary et al., 2006; Hershberg & Petrov, 2008; 

Plotkin & Kudla, 2011) such as transcription factor (TF) binding (Stergachis et al., 2013), 

transcription (Zhou et al., 2016), pre-mRNA splicing (Chamary et al., 2006), mRNA folding 

(Park et al., 2013) and stability (Chen et al., 2017; Presnyak et al., 2015), translational initiation 

(Kudla et al., 2009), efficiency (Frumkin et al., 2018; Qian, Yang, et al., 2012) , and accuracy 

(Akashi, 1994; Drummond & Wilke, 2008), and co-translational protein folding (Buhr et al., 

2016; Walsh et al., 2020), the vast majority of them are presumed to be at least nearly neutral 

(Graur et al., 2016; Kimura, 1968; King & Jukes, 1969; Li, 1997; Nei & Kumar, 2000), 

contrasting nonsynonymous mutations, which alter protein sequences and frequently the fitness 

(Graur et al., 2016; Li, 1997; Nei & Kumar, 2000).  The (near) neutrality of synonymous 

mutations is widely assumed in inferring mutation rate, pattern, and mechanism, testing natural 

selection, estimating effective population sizes (Ne) and neutral genetic diversities commonly 

considered in conservation policymaking in addition to population and evolutionary biology, and 

dating evolutionary events such as population or species divergences and gene or genome 

duplication (Graur et al., 2016; Li, 1997; Nei & Kumar, 2000).  This assumption also diverts the 

mechanistic study of disease from synonymous mutations (Gilissen et al., 2012).   

Nevertheless, synonymous mutations affecting the fitness by >1% are known (Agashe et 

al., 2013; Frumkin et al., 2018; Kristofich et al., 2018; Lebeuf-Taylor et al., 2019; Walsh et al., 

2020).  Some even reported comparable fitness effects of synonymous and nonsynonymous 
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mutations (Lind et al., 2010; Sharon et al., 2018; She & Jarosz, 2018).  These reports, however, 

were based on either relatively few genes and mutations (Lind et al., 2010) or many natural 

polymorphisms (Sharon et al., 2018; She & Jarosz, 2018) that may not represent random 

mutations. Here we test the (near) neutrality of synonymous mutations by measuring the fitness 

effects of thousands of coding mutations in 21 genes in the budding yeast Saccharomyces 

cerevisiae.  
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2.3 Result  

2.3.1 Quantifying mutational fitness effects 

The 21 chosen genes participate in diverse biological processes such as metabolism, 

chromatin remodeling, transcription, translation, and cell wall synthesis (Table 2-1) and vary by 

1000 times in their expression levels (Fig. 2-1a).  These genes are nonessential but their 

deletions lower the fitness by discernable amounts(Qian, Ma, et al., 2012) such that the 

mutational fitness effects are quantifiable.  In each gene, we picked an approximately 150-

nucleotide coding sequence and chemically synthesized all 450 possible variants that deviate 

from the wild-type by a point mutation (Fig. 2-1b).  The wild-type sequence at its native 

genomic location was replaced by the variant sequences using CRISPR/Cas9 genome editing of 

a haploid strain, followed by confirmation of the respiratory function of the mutant library (Fig. 

A-1).  All mutants of a gene, together with a wild-type control that went through the same 

CRISPR/Cas9 editing (Fig. A-2), were competed en masse in a rich medium (YPD) at 30°C, 

with no diploidization observed (Fig. S3).  Four separate competitions were performed using a 

common starting population (T0), and the focal gene was respectively amplified from T0 and the 

four replicate populations at 12 (T12) and 48 (T48) hrs, followed by 250-nucleotide paired-end 

Illumina sequencing (Fig. 2-1b).  The sequences informed genotypes and allowed tabulating 

genotype frequencies in each population(Li et al., 2016).   

For the 21 genes, we identified a total of 8,341 variants with read counts ≥50 at T0, 

including 1,866 synonymous, 6,306 nonsynonymous, and 169 nonsense mutants, respectively.  

The observed relative numbers of synonymous and nonsynonymous mutants reflect those 

designed (Fig. A-4).  Changes in genotype frequencies between T0 and T48 (or T12) were used to 

estimate the fitness of each mutant relative to the wild-type. The fitness estimates were highly 
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correlated between replicates, with a mean Pearson’s r of 0.92 (Fig. 2-1c, Fig. A-5).  Fitness 

estimates from the en masse competitions agreed well with those measured from monoculture 

growths for 24 reconstructed synonymous and nonsynonymous mutants (Fig. 1-1d).   

 

2.3.2 Comparing mutational fitness effects 

The median fitness of the 169 nonsense mutants is 0.940 (Fig. A-6).  As expected, the 

corresponding value for the 6,306 nonsynonymous mutants is much higher, reaching 0.988 (Fig. 

2-2a).  Surprisingly, the median fitness of the 1,866 synonymous mutants is 0.989, much closer 

to that of nonsynonymous mutants than to the neutral expectation of 1; the same trend holds for 

mean fitness (Fig. 2-2a).  While the fitness distributions look similar for synonymous and 

nonsynonymous mutants (Fig. 2-2a), they are statistically distinct due to a higher density of 

nonsynonymous than synonymous mutants in the fitness range of 0.91-0.97 but the reverse in the 

range of 0.97-0.99 (Fig. 2-2b, Fig. A-7).  A significant fitness difference was observed between 

synonymous and nonsynonymous mutants in only five of the 21 genes, with all five exhibiting 

higher fitness for synonymous than nonsynonymous mutants (Fig. 2-2c, Fig. A-8).  Even in these 

five genes, however, the median fitness of synonymous mutants is much closer to that of 

nonsynonymous mutants than to 1 (Fig. 2-2c).  

Classifying each mutant into one of three bins based on whether its fitness is significantly 

below 1 (nominal P < 0.05, t-test), above 1, or neither, we found similar distributions for 

synonymous and nonsynonymous mutants (Fig. 2-2d).  Among synonymous mutations, 75.9% 

are significantly deleterious while 1.3% are significantly beneficial.  The corresponding values 

are 75.8% and 1.6% for nonsynonymous mutations.  Slightly lower values were obtained at the 

false discovery rate (FDR) of 0.05 (Fig. 1-2d legend).  The smallest absolute fitness effect found 



 20 

significant in our study is 0.001, orders of magnitude greater than the sensitivity (10-7) of natural 

selection in yeast (Chen & Zhang, 2021) (see Methods).  Hence, all mutations with significant 

fitness effects are strongly nonneutral.  Mutant fitness is lower when the mutation is unobserved 

in the genomes of related yeast species than when it is observed (Fig. 2-2e, Fig. A-9), indicating 

that our laboratory fitness estimates are evolutionarily relevant. 

 

2.3.3 Mechanisms of mutational fitness effects  

Because synonymous codon usage bias is stronger in more highly expressed genes 

probably due to translational selection (Hershberg & Petrov, 2008), synonymous mutations from 

the wild-type are thought to be more deleterious in more highly expressed genes (Plotkin & 

Kudla, 2011). However, we did not detect a significant negative correlation between the 

expression level of a gene and the mean fitness of its synonymous mutants (Fig. 2-3).  Because 

synonymous mutations in a gene can alter its mRNA level (Chen et al., 2017; Presnyak et al., 

2015; Zhou et al., 2016), which could affect fitness (Keren et al., 2016), we measured the relative 

expression level (REL) of the mutated gene in each mutant in four replicates by dividing its 

mRNA level by that of the wild-type.  Briefly, from a population of cells including the wild-type 

and all mutants of a gene, we amplified and sequenced the DNAs of the focal gene as well as the 

cDNAs made from the mRNAs of the focal gene (Fig. 1-4a).  REL is the number of cDNA-

derived sequencing reads divided by the number of DNA-derived reads for a mutant, relative to 

that for the wild-type.   

We obtained mutant RELs for 20 of the 21 genes. Mutant RELs are highly correlated 

between replicates (Fig. A-10), confirming the quality of the expression estimates.  REL deviates 

significantly from 1 (nominal P < 0.05, t-test) in 53.8% of synonymous and 55.0% of 
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nonsynonymous mutants (39.7% and 39.6% at FDR <0.05, respectively), indicating that both 

synonymous and nonsynonymous mutations frequently alter the mRNA level.  The REL 

distribution is not significantly different between synonymous and nonsynonymous mutants 

(Fig. A-11; see Fig. A-12 for individual genes) and is more or less symmetrical around 1 (Fig. 2-

4b).  By contrast, the mean REL is only 0.301 for nonsense mutants (Fig. A-13), likely owing to 

nonsense-mediated mRNA decay (Chang et al., 2007).   

Because reducing REL from 1 to 0, equivalent to gene deletion, has different fitness 

effects for different genes (Qian, Yang, et al., 2012), we rescaled mutant fitness F to f = (F-

F0)/(1-F0), where F0 is the fitness of the strain lacking the focal gene.  Consequently, 1-f 

measures the fitness effect of a mutation relative to that of deleting the focal gene, permitting 

analyzing the relationship between REL and fitness across mutants of different genes.  REL and 

rescaled fitness are significantly positively correlated for both synonymous and nonsynonymous 

mutants under REL <1, but the correlation is much weakened under REL >1 (Fig. 2-4c).  These 

observations suggest that influencing the mRNA level is likely a general mechanism underlying 

the fitness effects of coding mutations and that expression reduction from the wild-type level 

typically imposes a stronger fitness effect than the opposite (see Methods).   

To understand how coding mutations impact the mRNA level, we identified TF-binding 

sites in the mutated region of each gene (Monteiro et al., 2020), but mutations within and outside 

TF-binding sites do not show significantly different magnitudes of expression effects (Fig. A-

14).   

Previous manipulative experiments showed that increasing the codon adaptation index 

(CAI) (Sharp & Li, 1987) of a gene through synonymous mutations can boost its mRNA level by 

slowing mRNA degradation (Chen et al., 2017; Presnyak et al., 2015; Radhakrishnan et al., 
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2016) and perhaps enhancing transcription (Zhou et al., 2016).  Because nonsynonymous 

mutations can also alter CAI, we computed the relative CAI (rCAI) of each mutant gene by 

dividing its CAI by that of the wild-type.  Indeed, a significant positive correlation exists 

between rCAI and REL among synonymous mutants as well as among nonsynonymous mutants 

(Fig. 2-4d).  The same is true between rCAI and rescaled fitness, especially under rCAI <1 (Fig. 

A-15). 

Due to the increased prevalence of preferred codons in more highly expressed genes 

(Hershberg & Petrov, 2008), synonymous mutations decreasing CAI (Fig. 2-5a) and lowering the 

mRNA level (Fig. 1-5b) are both more abundant in more highly expressed genes.  Similar trends 

are seen for nonsynonymous mutations (Fig. 2-6a, Fig. 2-6b), because a random 

nonsynonymous mutation from a preferred codon of an amino acid will likely arrive at a less 

preferred codon of another amino acid.  Consequently, synonymous (Fig. 2-5c) and 

nonsynonymous (Fig. 2-6c) mutants of more highly expressed genes have lower mean rescaled 

fitness.   

 Because of the demand for mRNA folding strength (MFS) (Park et al., 2013), which is at 

least in part related to translational accuracy(Yang et al., 2014) and co-translational protein 

folding(Faure et al., 2016), a change in MFS caused by a coding mutation may affect 

fitness(Lind et al., 2010).  Indeed, we found a significant positive correlation between the 

relative MFS of a mutant and its rescaled fitness among mutants with reduced MFS (Fig. A-16), 

although the correlation is substantially weaker than that between REL and rescaled fitness (Fig. 

2-4c), suggesting that coding mutations’ fitness effects are likely conferred more by their 

influences of the mRNA level than those of the mRNA folding strength.   
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2.3.4 Fitness effects across environments  

Interspecific comparisons have shown that the nonsynonymous to synonymous 

substitution rate ratio (dN/dS) is substantially below 1 for most genes in almost all organisms 

(Graur et al., 2016; Li, 1997; Nei & Kumar, 2000) including yeast (Goncalves et al., 2011), 

indicating that the probability of fixation of nonsynonymous mutations is generally much lower 

than that of synonymous mutations in long-term evolution, seemingly at odds with their similar 

distributions of fitness effects (DFEs) observed here.  One possible explanation is that the two 

DFEs are highly dissimilar in the range of absolute fitness effects undetectable by our method, 

which is generally below 5×10-3. For example, when beneficial mutations are ignored as in the 

neutral theory (Kimura, 1983), if the fraction of nonsynonymous mutations with deleterious 

fitness effects smaller than the sensitivity of natural selection in yeast (10-7) is 10% of the 

corresponding fraction of synonymous mutations, a dN/dS of ~0.1 will result.  This hypothesis is, 

however, difficult to test because of the much lower sensitivity of experiments than natural 

selection.   

We wondered whether the low dN/dS can also be caused by a difference between 

synonymous and nonsynonymous mutants in their fitness variation among environments 

(Gillespie, 1975; Lewontin & Cohen, 1969). Considering this variation is relevant because the 

fixation of a neutral mutation takes on average 4Ne generations (Kimura & Ohta, 1969), during 

which the environment is highly likely to have changed many times. In addition to influencing 

the mRNA level and/or mRNA folding strength that can exert a fitness effect, nonsynonymous 

mutations also alter the protein sequence and potentially function, which synonymous mutations 

do not.  Because each of the molecular phenotypic effects could be environment-dependent, 

nonsynonymous mutants may naturally have a larger across-environment fitness variance than 
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synonymous mutants, especially given recent reports that amino acid substitutions often show 

environment-specific fitness effects (Chen & Zhang, 2020; Dandage et al., 2018; Flynn et al., 

2020). Under the most extreme scenario, the fraction of deleterious mutations is identical 

between synonymous and nonsynonymous mutations in each environment, but the specific 

deleterious mutations vary across environments for nonsynonymous but not synonymous 

mutations.  Consequently, when the environment of a population fluctuates within the typical 

fixation time, some synonymous mutations are never deleterious so may be fixed, while virtually 

every nonsynonymous mutation is deleterious under some environments so cannot be fixed, 

resulting in dN/dS <<1. We quantitatively investigated this model using computer simulation.  

Assuming the YPD-based DFEs in each environment, we varied the fitness of a mutant among 

environments with the coefficient of variation (CV) greater for nonsynonymous than 

synonymous mutants. A mutant is selectively purged if its fitness is lower than a preset cutoff 

(e.g., 0.99 given the fitness estimation error in our experiments) in any environment, and dN/dS is 

inferred from the fraction of nonsynonymous mutants unpurged relative to that of synonymous 

mutants unpurged.  As predicted, dN/dS drops precipitously with the number of different 

environments experienced by the population (Fig. 2-7a, Fig. A-17). 

 To verify the key assumption on CV in the above model, we measured the DFEs of the 

same yeast synonymous and nonsynonymous mutations in three additional environments that 

differ in nutrient and stress, with three biological replicates per environment (Fig. A-18 – A-23).  

As in YPD, in each of these three environments, the median fitness of synonymous mutants is 

much closer to that of nonsynonymous mutants than to 1 (Fig. 2-7b-d) and 52.9-62.2% of 

synonymous mutants are significantly nonneutral (Fig. A-24).  These fractions are lower than 

that in YPD likely because of the reduced sensitivity of our fitness measurement caused by the 
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use of fewer replicates (see Methods).  For each mutant, we computed its CV in fitness across the 

four environments.  Indeed, CV is significantly greater for nonsynonymous than synonymous 

mutants with (P <10-5) or without (Fig. 2-7e) the control of the mean fitness in the four 

environments (see Methods).  Additionally, the fraction of neutral mutations in one environment 

that become deleterious in any of the other three environments is greater for nonsynonymous 

than synonymous mutations (Fig. A-25).  We then used the empirical DFEs and fitness 

estimation errors in the four environments to estimate the expected dN/dS after purging mutants 

whose fitness is lower than a cutoff in any of the environments.  Indeed, comparing the four 

populations respectively staying in one of the four constant environments with the fifth 

population whose environment fluctuates among the four conditions (see Methods), we found 

that, in terms of dN/dS, the fifth population is either significantly lower than or is not statistically 

distinguishable from the lowest of the first four (Fig. 2-7f).  It is expected from the simulation 

result (Fig. 2-7a) that dN/dS in the fifth population will further decline as the number of different 

environments experienced rises.  

 

2.4 Discussion 

Our characterization of the DFE of thousands of coding mutations in diverse yeast genes 

under four environments showed that, under any environment, most synonymous mutations are 

strongly nonneutral and that the DFEs of synonymous and nonsynonymous mutations are overall 

similar.  There is no particular reason why our results would be restricted to yeast, but 

confirmations in diverse organisms are required to verify the generality of our findings.  Because 

our experiments were performed in haploids, future studies should assess whether synonymous 

and nonsynonymous mutations also have similar DFEs in the heterozygous state.  
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Our results suggest a general mechanism through which coding mutations affect fitness—

disturbing the mRNA level of the mutated gene, but do not preclude other mechanisms such as 

impacting mRNA folding and translation.  It is currently difficult to demonstrate and quantify the 

causal contributions of a coding mutation’s various molecular phenotypic effects to its fitness 

effect, because this would require the difficult experiment of mimicking each molecular 

phenotypic effect of a coding mutation without disturbing the cell in any other aspect that might 

influence fitness.  For instance, to mimic coding mutations’ influences on the mRNA level of a 

gene, we could use an inducible promoter to drive gene expression and adjust the promoter 

activity by altering the concentration of the inducer in the medium(Azizoglu et al., 2021), but 

this alteration disturbs the medium composition, which could affect fitness more than through the 

inducible promoter.  Additionally, the induction of the promoter may influence the expressions 

of neighboring genes.  Use of tunable degrons, short amino acid sequences that regulate protein 

degradation (Natsume & Kanemaki, 2017), is another method, but degrons may also affect 

fitness by altering protein function or mRNA folding and tuning degrons could disturb the 

medium. 

The mRNA level of a gene has a strong influence on the evolutionary rate of its protein 

sequence, and several mechanisms of this influence have been demonstrated (Wu et al., 2022; 

Zhang & Yang, 2015).  Our finding that the fraction of nonsynonymous mutations reducing the 

mRNA level rises with the mRNA level of the gene (Fig. 2-6b) and the fitness ramification of 

this trend (Fig. 2-6c) suggest an additional mechanism (Fig. 2-8).   

Because many biological conclusions rely on the presumption that synonymous 

mutations are (nearly) neutral (Graur et al., 2016; Li, 1997; Nei & Kumar, 2000), its invalidation 

has broad implications.  For example, many tests infer selection on a gene by comparing its 
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synonymous and nonsynonymous polymorphisms and/or substitutions.  Given that most 

synonymous mutations are deleterious, making the same inference would require assuming that 

synonymous and nonsynonymous mutations are subject to equal selections that are unrelated to 

protein sequence and function.  While seemingly reasonable, this assumption may not always 

hold (Park et al., 2013), so further empirical verifications are needed.  That most synonymous 

mutations are strongly nonneutral means that mutation rate, pattern, and mechanism inferred 

from synonymous polymorphisms or substitutions may have been distorted.  For the same 

reason, Ne inferred from synonymous polymorphisms in natural populations is likely 

substantially underestimated, impacting evolutionary studies and certain conservation-related 

decisions.  Similarly, synonymous substitution-based dating of evolutionary divergences may be 

unjustifiable in some cases.  Our results also imply that synonymous mutations are nearly as 

important as nonsynonymous mutations in causing disease and call for strengthened effort in 

predicting and identifying pathogenic synonymous mutations (Sauna & Kimchi-Sarfaty, 2011).  

Given that gene expression anomaly can cause disease (Lee & Young, 2013), our results further 

suggest the disturbance of the mRNA level as a potentially common disease mechanism of 

coding mutations. 
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2.5 Materials and Methods 

2.5.1 Data source 

 The mRNA expression levels of yeast genes in YPD (Fig. 2-1a) were from Chou et al. 

(Chou et al., 2017).  The fitness values of yeast gene deletion strains under YPD (Table. 2-1) 

were from Qian et al. (Qian, Ma, et al., 2012).  Yeast gene functions (Table. 1-1) were based on 

Saccharomyces Genome Database (https://www.yeastgenome.org/).  

2.5.2 Media 

 Standard media of YPD (1% yeast extract, 2% peptone, and 2% glucose), YPD + 0.375 

mM H2O2, YPE (1% yeast extract, 2% peptone, and 2% ethanol), and YPG (1% yeast extract, 

2% peptone, and 2% glycerol) were used.  Synthetic complete (SC) media contained 0.017% 

yeast nitrogen base without amino acids, 0.5% sulfate, and 2% glucose, with the addition of 

appropriate SC mix or SC drop-out mix.  5-FOA (5-fluoroorotic acid) plates contained 0.017% 

yeast nitrogen base without amino acids, 0.5% sulfate, 2% glucose, SC mix, and 0.15% 5-FOA. 

 

2.5.3 Construction of yeast gene deletion strains 

 We had three primary considerations in choosing the genes for study.  First, because a 

previous study of DFEs of synonymous and nonsynonymous mutations analyzed only two 

ribosomal protein genes (Lind et al., 2010), we wanted to include genes with a larger array of 

functions to complement that study.  Second, knowing that synonymous mutations’ fitness 

effects may depend on the gene expression level (Plotkin & Kudla, 2011), we wanted to choose 

genes with a wide range of expression levels to gain a broad picture.  Third, because our 

experiment involved deleting the gene of choice, we must study nonessential genes.  
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Furthermore, the deletions must alter the fitness by detectable amounts such that the mutational 

fitness effects are quantifiable.  The decision of using a 150-nucleotide region per gene was 

based on the read length of paired-end Illumina sequencing.  The starting site of the 150-

nucleotide region was randomly chosen in the first half of the coding sequence of a gene as long 

as the chosen 150 nucleotides are entirely within the coding region.  Two exceptions were 

RPL39 and RPS7A, where 147 nucleotides and 141 nucleotides were respectively studied 

because of these genes’ short coding sequences.  

For each chosen gene, we used CRISPR/Cas9 to delete from the genome of wild-type 

(BY4742) cells the 150-nucletide target sequence and its 25-nucleotide downstream sequence 

that would be used as a primer binding site to amplify the gene (see Table. A-1 for all primer 

sequences).  In the deletion step, the wild-type sequence was replaced by a 23-nucleotide 

designed sequence (20-nucleotide Cas9 target sequence plus 3-nucleotide PAM site) that would 

be used as the CRISPR/Cas9 recognition site in the mutant sequence insertion step.  The deletion 

was then verified by Sanger sequencing.  

 

2.5.4 Chemical synthesis of gene variants 

 For each gene, we had GENEWIZ (https://www.genewiz.com/en) synthesize in an oligo-

mix format all 450 variants that each deviate from the wild-type by a single point mutation 

(except for RPL39 that had 441 variants and RPS7A that had 423 variants due to their shorter 

sequences).  With the exception of oligos for RPL39 and RPS7A, each oligo has 200 nucleotides, 

including the 150-nucleotide target sequence and its 25-nucleotide upstream and 25-nucleotide 

downstream flanking sequences.  The flanking sequences would serve as primer binding sites for 
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the amplification of the variant sequences.  The guaranteed amount of each oligo was 3 nmol, 

more than enough as the DNA template for polymerase chain reaction (PCR) amplification.   

 

2.5.5 Construction of mutant libraries   

 The pool of the synthesized single-strand variant oligos of each gene was amplified from 

the oligo-mix by PCR.  High-fidelity Q5 polymerase (NEB) was used in all PCR reactions.  The 

PCR-amplified double-stranded mutant sequences were transformed along with a CRISPR/Cas9 

plasmid (pML104-URA3)(Laughery et al., 2015) into the strain with the wild-type gene deleted.  

The Cas9 protein would recognize the aforementioned 23-nucleotide sequence and cause double-

stranded breaks.  The variant sequences were inserted into the genome at the native genomic 

location of the focal gene via homologous recombination repair.  For each gene, over 10,000 

colonies were collected on SC minus uracil plates by washing with sterile water.  The large 

number of colonies collected ensured the inclusion of most mutational variants of each gene.  

The variant cells were then counter-selected on the 5-FOA plates to get rid of the CRISPR/Cas9 

plasmid.  The cells were then stored in 30% glycerol at -80°C. 

 

2.5.6 Construction of the wild-type control 

We amplified the wild-type ASC1 gene from the genome of the haploid strain BY4742 by 

PCR and inserted it into the ΔASC1 cell using CRISPR/Cas9.  Three colonies were picked and 

the insertion was confirmed by Sanger sequencing.  The cells were then counter-selected on 5-

FOA plates to remove the CRISPR/Cas9 plasmid.  These three independently reconstituted wild-

type strains (WT1, WT2, and WT3) were then stored in 30% glycerol at -80°C.  
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 We measured the maximum growth rate of BY4742 and each of the three reconstituted 

wild-type strains using Biotek Gen5TM Microplate Reader.  The cells were first grown overnight.  

About 5000 cells were added into 0.1 mL YPD in a well of a CostarTM 96-well plate, which was 

in continuous shaking at 30°C.  Sixteen replicate growth curves were collected per strain, except 

that one replicate of BY4742 was contaminated so was discarded.  The maximum growth rate 

was calculated following a previous protocol (Warringer et al., 2003).  The maximum growth 

rate was not significantly variable among the four strains (Fig. A-2).  For instance, the maximum 

growth rate of WT1 was not significantly different from that of WT2, WT3, or BY4742 (Fig. A-

2). WT1 was used as the wild-type control in en masse competitions and mutant fitness 

estimation.  Our results would remain virtually the same should the growth rate of WT2 or WT3 

be used in mutant fitness calculation.  

 

2.5.7 En masse competitions in YPD  

 A frozen sample of cells carrying the variants of a gene and a frozen sample of the wild-

type control cells were revived at 30°C in YPD (with shaking at 250 RPM) for 3 hrs.  These cells 

were then mixed in an approximately 1:50 ratio of wild-type control cells to all mutant cells 

combined (i.e., the population should contain about 2% wild-type control cells).  Four replicate 

competitions were then started by dilution of this common starting population into four 14 mL 

Falcon tubes, each containing 6 mL of YPD medium.  Upon dilution, the cell density of the 

starting population was 1×105 cells/mL.  The competition was performed in a shaking incubator 

(250 RPM) at 30°C.  Every 12 hrs, the cell culture was diluted to 1×105 cells/mL by transferring 

to 6 mL fresh YPD.  The competition lasted for 48 hrs.  The population aliquots at 0 (T0), 12 
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(T12), and 48 (T48) hrs were stored in 30% glycerol at -80°C.  We performed a total of 84 

competitions for the 21 genes (4 × 21). 

 

2.5.8 Library preparation and Illumina sequencing 

 Genomic DNA was extracted from population aliquots (MasterpureTM Yeast DNA 

Purification Kit), followed by amplification of gene variants by PCR.  One primer was targeted 

at the 25-nucleotide sequence immediately downstream of the mutated region while the other 

primer was annealed upstream of the mutated region beyond the homologous recombination 

repair sequence.  This design ensured that only those variant sequences that were inserted at the 

native genomic location of the focal gene were amplified.  The primers included Illumina 

sequencing adapter and i5/i7 index sequences.  The amplicons were sequenced by 250-

nucleotide paired-end Illumina sequencing (HiSeq2500).  Paired reads for variant sequences 

were required to be identical to be counted.  To ensure relative accuracy in fitness estimation, we 

considered only those genotypes with at least 50 read pairs in T0. 

 

2.5.9 Sequencing-based fitness estimation  

We estimated the fitness of each mutant relative to the wild-type control by 

(P’MTPWT)/(PMTP’WT)(1/G), where PMT and PWT are the respective frequencies of the mutant and 

wild-type control at the beginning of the competition, P’MT and P’WT are the corresponding 

frequencies at the end of the competition, and G is the number of generations of the wild-type 

control in the competition and equals 7.25 for 12 hrs and 29 for 48 hrs.  In theory, the above 

formula works in an en masse competition under the assumption of no strain-strain interaction, 
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as was confirmed by our computer simulation.  The strong correlation between mutant fitness 

estimated from en masse competition and that estimated from monoculture growth (Fig. 1-1d) 

supports the assumption of no strain-strain interaction.  To estimate G, we first allowed a frozen 

sample of wild-type control cells to revive at 30°C in YPD at 250 RPM for 3 hrs.  We then 

started a monoculture of the wild-type control at 1×105 cells/mL in 6 mL of YPD.  The growth 

continued for 12 hrs in a shaking incubator (250 RPM) at 30°C.  We then estimated G in the 12 

hrs based on the culture’s optical density change.  G in 48 hrs is 4 times G in 12 hrs.  Mutant 

fitness is estimated more accurately with longer competitions.  However, if the fitness of a 

mutant was so low that the strain disappeared in T48, we calculated the fitness using T0 and T12; 

otherwise, we used T0 and T48.  Note that only for 36 mutants were the fitness estimated using T12 

instead of T48.  Based on four biological replicates, we used a t-test to determine if the fitness of 

a mutant deviates from 1 at the nominal P-value of 5%.  The average standard error of the 

estimated mutant fitness was 0.005, considered as the mean detection limit of our fitness 

measurement.  The absolute value of the smallest fitness effect with nominal P < 0.05 was 0.001.  

It has been estimated based on the level of synonymous polymorphism that Ne is approximately 

107 in S. cerevisiae(Chen & Zhang, 2021), suggesting that natural selection can detect a fitness 

effect of 10-7 or greater in yeast.  However, if most synonymous mutations are deleterious, as the 

present study shows, the actual Ne would be greater than 107 and natural selection more sensitive 

than considered in this study.  

 

2.5.10 Verifying the respiratory function of mutants 

Cells from each mutant library were first serially diluted.  Equal numbers of cells were 

then spread on YPD and YPG plates, where respiratory functions were respectively unneeded 



 34 

and needed for cell growth.  We allowed cell growth for two days on YPD and three days on 

YPG, because of faster cell growth with glucose as the carbon source.  Colonies were then 

counted on each plate.  This experiment was repeated three times for the mutant library of each 

gene.  BY4742 was used as a positive control in the respiratory function test.  As a negative 

control, we simultaneously deleted TOM6 and TOM7 from BY4742, because TOM6 and TOM7 

are components of the TOM (translocase of outer membrane) complex that is responsible for 

import of mitochondrially directed proteins and is important for respiration(Honlinger et al., 

1996). 

 

2.5.11 Quantifying ploidy after competition 

One T48 population for each gene was randomly chosen and examined for ploidy.  

Approximately 107 cells were collected, washed with 1.5 mL of water, and fixed by a gentle 

addition of 3.5 mL of 95% ethanol and incubation for 2 hrs at room temperature.  Fixed cells 

were collected by centrifugation for 15 s at 10,000g, followed by resuspension of the pellet in 1 

mL water and transfer to a 1.5-mL microcentrifuge tube.  After a brief centrifugation, we re-

suspended cells in 0.5 mL RNase solution (2 mg/mL RNase A in 50 mM Tris pH 8.0, 15 mM 

NaCl, boiled for 15 min and then cooled to room temperature) and incubated the cells for at least 

2 hrs at 37°C.  We then collected cells from the RNase solution by centrifugation for 15 s at 

10,000g.  Cells were incubated in 0.2 mL protease solution (5 mg/mL pepsin and 4.5 μl/mL 

concentrated HCl in H2O) for 20 min at 37°C and then collected by centrifugation.  Cells were 

re-suspended in 0.5 mL 50 mM Tris pH 7.5, and were either stored at 4°C for a few days or 

analyzed immediately.  For analysis, 50 μl of cell suspension was transferred to 1 mL of 1 μM 

SYTOX Green staining solution.  All samples were analyzed using iQue Screener Plus flow 
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cytometry.  First, we used the forward scatter area and side scatter area with a clustering package 

to remove non-cell particles.  Second, we used forward scatter area and forward scatter height to 

remove doublets.  Third, we plotted DNA content histograms of the distribution of the amount of 

DNA per cell.  We used haploid (BY4742) and diploid (BY4743) yeast cells as controls to 

determine ploidy.  In each of these two control profiles, there are two peaks, respectively 

representing cells in the G1 and G2/M cell-cycle stages (1C and 2C DNA content for haploids 

and 2C and 4C for diploids).  

 

2.5.12 Impact of PCR and sequencing errors 

The following error analysis followed Li et al. (Li et al., 2016).  The error rate for 

Illumina sequencing is 3×10-4 per site per read 

(http://www.illumina.com/documents/products/technotes/technote_Q-Scores.pdf).  Thus, due to 

sequencing error, a genotype is expected to lose U = [1-(1-3×10-4)2×150]M0 read pairs, where M0 

is the true number of read pairs of the genotype and 150 is the sequence length considered.  

Because the fractional loss U/M0 = 0.086 is a constant for all genotypes including the wild-type 

in each sample, the loss of reads due to sequencing error does not affect fitness estimation.  

Sequencing error also causes the genotype to gain on average V = (3×10-4/3)2M1 = 10-8M1 read 

pairs, where M1 is the total number of read pairs for all neighbors of the focal genotype (i.e., the 

genotypes that differ from the focal genotype by one nucleotide).  Thus, the fractional gain of 

read pairs for the genotype is expected to be V/M0 = 10-8M1/M0, which has virtually no impact on 

fitness estimation in our study.  For instance, at T0, M1/M0 is expected to be 50 for the wild-type 

and 11 for any mutant.  Hence, the fractional gain of read pairs is <10-6 for any genotype.   
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We similarly estimated the impact of PCR error.  Q5 DNA polymerase used in PCR has a 

very low error rate of 5.3×10-7 per nucleotide incorporated (Potapov & Ong, 2017).  The PCR 

used in sequencing library preparation had 25 cycles.  Thus, due to PCR error, a genotype is 

expected to lose U = (5.3×10-7×150×25)M0 molecules, where M0 is the true number of DNA 

molecules of the genotype, 150 is the sequence length in nucleotides, and 25 is the number of 

PCR cycles.  Because the fractional loss U/M0 = 0.002 is a constant for all genotypes in each 

sample, the loss of molecules due to PCR error does not affect fitness estimation.  PCR error also 

causes the genotype to gain on average V = (5.3×10-7×25/3)M1 = 4.4×10-6M1 molecules, where 

M1 is the total number of molecules for all neighbors of the focal genotype.  Thus, the fractional 

gain of molecules for the genotype is expected to be V/M0 = 4.4×10-6M1/M0, which has little 

impact on fitness estimation in our study.  As mentioned, at T0, M1/M0 is expected to be 50 for 

the wild-type and 11 for any mutant.  Hence, the fractional gain in the number of molecules is 

2.2×10-4 for the wild-type and 4.9×10-5 for any mutant.  

 

2.5.13 Growth curve-based fitness estimation of reconstructed mutants  

We used maximum growth rates estimated from monoculture growth curves to verify the 

mutant fitness estimated by en masse competition followed by sequencing.  We chose nine 

synonymous mutants of RPL29, RAD6, or RPS7A and 15 nonsynonymous mutants of TSR2, 

RAD6, RPS7A, or BUD23 with relatively large ranges of sequencing-based fitness estimates.  We 

resynthesized these gene variants and remade the corresponding mutant strains.  Using the 

method described earlier for measuring the growths of reconstituted wild-type strains, we 

measured the growth curves of each of these mutants as well as the wild-type control on the 

same 96-well plate, with eight replicates per strain.  The relative fitness of a mutant was 
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calculated by F = 2relative growth rate-1, where the relative growth rate is the maximum growth rate of 

the mutant divided by that of the wild-type control.  The maximum growth rate was calculated 

following a previous protocol (Warringer et al., 2003).  The above formula of F is derived as 

follows.  Let r be the mutant growth rate and R be the wild-type growth rate.  Let T be the wild-

type generation time.  By definition, mutant fitness relative to the wild-type (per generation) is F 

= erT/eRT.  Hence, lnF = (r-R)T.  Because by definition eRT = 2, T = (ln2)/R.  Combining the above 

two equations yielded lnF = (r-R)(ln2)/R = (r/R-1)ln2.  Therefore, F = 2r/R-1 = 2relative growth rate-1.  If 

mutant cells do not divide so that its population growth rate is 0, the mutant fitness relative to the 

WT is 0.5.  If the mutation kills cells in addition to preventing mitosis, the mutant population 

growth rate is negative (i.e., the population shrinks), which would lead to a mutant fitness that is 

lower than 0.5. 

CRISPR/Cas9 could generate off-target mutations.  However, the high fitness correlation 

(Fig. 1d) between two independently constructed sets of 24 mutants suggests that this potential 

off-target effect did not influence our result. 

 

2.5.14 Identifying orthologs of the 21 S. cerevisiae genes in five other yeast species 

 To examine whether a mutation examined in S. cerevisiae is present in the genomes of 

other yeast species, we attempted to identify the orthologs of the 21 genes studied in our 

experiment in S. paradoxus, S. mikatae, S. uvarum, S. castellii, and Candida glabrata, all of 

which diverged from S. cerevisiae after the whole-genome duplication in yeast.  We retrieved 

genomic coding sequence (CDS) data from the NCBI genome assembly database 

(https://www.ncbi.nlm.nih.gov/assembly/) if they are available (S. paradoxus, C. glabrata, and S. 

castellii); otherwise, we retrieved genomic DNA data (S. mikatae and S. uvarum) from the same 
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database.  For species with CDS data, we built a local blast library and performed tblastn using 

protein sequences of the 21 genes from S. cerevisiae as query sequences.  The E-value threshold 

was set at 10-10.  If there was a full-length-query match, the matched subject was recorded as an 

ortholog.  If the query was partially matched to the subject, the subject was inspected manually 

to ensure the orthologous relationship.  For each species and gene, only the hit with the lowest E-

value was examined to prevent the inclusion of paralogs.  For species with genomic DNA data, 

we similarly built a local blast library and performed tblastn under the same E-value threshold.  

If there was a full-length-query match, the matched subject sequence was recorded as an 

ortholog.  If the query was partially matched to the subject (likely due to introns), the matched 

subject sequence was extended 100-2000 bp upstream and downstream to ensure that it included 

all exons of the gene; the exact length of the extension was determined manually based on the 

length of the unmatched part of the query as well as genomic structure.  We then used 

AUGUSTUS(Stanke & Morgenstern, 2005) to predict the coding region of the gene in the 

extended subject sequence, and manually inspected the sequence to ensure the orthologous 

relationship.  We successfully identified almost all orthologs of the 21 genes in the five yeast 

species, except for EST1, for which we only identified an ortholog in S. paradoxus.  We 

therefore excluded EST1 from the downstream analysis.  We also failed to identify the EOS1 

ortholog in S. castellii and IES6 ortholog in S. mikatae, but decided to include these two genes in 

downstream analysis except for the missing species.  The orthologous coding sequences of the 

six yeasts were then aligned using MACSE v2 (Ranwez et al., 2018).  A mutation examined in S. 

cerevisiae is considered observed in the other yeasts if it appears in the genome of any of the 

other five yeasts and if no other nucleotide difference from S. cerevisiae exists in that genome in 

the codon harboring the mutation; otherwise, it is considered unobserved.   
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2.5.15 Estimating the mRNA levels of mutated genes 

A frozen sample of cells carrying the variants of a focal gene and a frozen sample of the 

wild-type control cells were revived at 30°C in YPD with shaking at 250 RPM for 3 hrs.  These 

cells were then mixed in an approximately 1:50 ratio of wild-type control cells to all mutant cells 

combined.  Four replicate cultures were then started by diluting this common starting population 

into four 14 mL Falcon tubes, each containing 6 mL of YPD medium.  The cell density of the 

starting population was 1×105 cells/mL.  When the cells were in the log phase after 12 hrs of 

growth at 30°C in a shaking incubator (250 RPM), we extracted DNA and RNA from the cell 

cultures (MasterpureTM Yeast DNA Purification Kit and RNeasy Mini Kit, respectively).  The 

mRNA of the focal gene was reverse transcribed (SuperScript® III First-Strand Synthesis System 

for RT-PCR) using about 20 nucleotides within the 25-nucleotide sequence immediately 

downstream of the variant sequence as the gene-specific primer.  

We amplified the mutant gene segments by 25 cycles of PCR from genomic DNA and 

cDNA, respectively.  The cDNA libraries of EST1 were not successfully amplified, which may 

be because EST1 has the lowest expression level among the 21 genes studied (Fig. 1-1a).  As 

described earlier, one primer was targeted within the 25-nucleotide sequence downstream of the 

variant sequence while the other primer was upstream of the variant sequence and beyond the 

homologous recombination repair sequence.  There were Illumina-adapter and i5/i7 index 

sequences on the primers.  The amplicons were subjected to 250-nucleotide paired-end Illumina 

sequencing (NovaSeq).  Paired reads for variant gene sequences must be identical to be counted.  

To ensure accuracy in expression estimation, we excluded genotypes with fewer than 50 read 

pairs from the genomic DNA. 



 40 

 The relative mRNA expression level (REL) of a mutant is the number of cDNA-derived 

read pairs divided by the number of DNA-derived read pairs for the mutant, relative to the 

corresponding value of the wild-type control.  We estimated the REL for 7,795 mutants with 

fitness estimates in YPD.  With the four replicates in REL estimation, we used a t-test to 

determine if the REL of a mutant significantly deviates from 1 at a nominal P-value of 5%.  

Virtually identical results were obtained when REL was first log-transformed before the t-test.   

 Following the sequencing and PCR error analyses presented earlier, we estimated the 

impact of reverse transcription errors on REL estimation.  The reverse transcriptase used is a 

version of M-MLV RT, with an error rate of 4×10-5 per nucleotide incorporated 

(https://www.thermofisher.com/us/en/home/life-science/cloning/cloning-learning-

center/invitrogen-school-of-molecular-biology/rt-education/reverse-transcriptase-

attributes.html).  Due to reverse transcription error, a genotype is expected to lose U = (4×10-

5×150)M0 molecules, where M0 is the expected number of cDNA molecules of the genotype and 

150 is the sequence length.  Because the fractional loss U/M0 = 0.006 is a constant for all 

genotypes in each sample, the loss of molecules due to reverse transcription error does not affect 

expression estimation.  Reverse transcription error also causes the genotype to gain on average V 

= 4×10-5/3 M1 = 1.3×10-5M1 molecules, where M1 is the expected total number of cDNA 

molecules for all neighbors of the focal genotype.  Thus, the fractional gain of molecules for the 

genotype is expected to be V/M0 = 1.3×10-5M1/M0, which has little impact on expression 

estimation in our study.  M1/M0 is expected to be about 50 for the wild-type and 11 for mutants 

whose expression levels are comparable with that of the wild-type.  The corresponding fractional 

gains of molecules are 6.5×10-4 and 1.4×10-4, respectively.  Even if a mutant has a REL as low as 

0.1, M1/M0 is 110 and the fractional gain of the number of molecules is 1.4×10-3.  As described, 
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PCR and sequencing errors had virtually no effect.  Hence, the overall error from reverse 

transcription, PCR, and sequencing is negligible in expression estimation. 

 In addition to correlating mutant REL with rescaled fitness (Fig. 1-4c), we used a linear 

mixed model to assess the relative importance of REL and mutation type (synonymous vs. 

nonsynonymous) to rescaled fitness, with gene identity added as a random effect.  We separately 

analyzed mutants with REL <1 and those with REL >1, because of their apparently different 

relationships with rescaled fitness (Fig. 1-4c).  For mutants with REL <1, the fraction of variance 

of rescaled fitness explained by REL is 61.5% (P < 2.2×10-16), while that explained by mutation 

type is only 0.2% (P = 0.0002).  For mutants with REL >1, the fraction of variance of rescaled 

fitness explained by REL is 7.4% (P < 2.2×10-16), while that explained by mutation type is only 

0.4% (P = 1.5×10-7).  These results demonstrate that REL explains a substantially larger fraction 

of variance of rescaled fitness than does mutation type.   

Additionally, after accounting for gene-specific effects using a mixed-effect model, we 

found the positive correlation between the rescaled fitness and REL to remain significant when 

REL <1 (P = 2.3×10-47).  There is a marginally significant negative correlation between the 

rescaled fitness and REL when REL >1 (P = 0.048).  We also attempted to fit a quadratic model 

using log2(REL) as an independent variable and accounted for a random effect of gene identity.  

Indeed, the hypothesis that the fitness peak is at REL = 1 could not be rejected. 

 

2.5.16 Codon adaption index (CAI) 

We computed CAI for the entire coding sequence of each wild-type or mutant gene, using 

previously reported yeast relative synonymous codon usage (RSCU) estimates(Sharp & Li, 
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1987), which are highly correlated with those derived from the 200 most highly expressed genes 

(r = 0.995) (Qian, Yang, et al., 2012).  

 

2.5.17 mRNA folding strength (MFS) 

 The minimum free energy at 30°C was calculated for each wild-type or mutant mRNA 

sequence using RNAfold in ViennaRNA (2.4.17) with default parameters except for the 

temperature(Hofacker et al., 1994).  We define mRNA folding strength (MFS) as the absolute 

value of the minimum free energy. 

 

2.5.18 TF-binding sites 

 TF-binding sites were searched in the wild-type for the 150-nucleotide target sequence 

plus the 20-nucleotide flanking sequence on each side using the database Yeastract(Monteiro et 

al., 2020).   

 

2.5.19 DFE estimation in SC + 37°C, YPD + 0.375mM H2O2, and YPE 

 The experiment followed that in DFE estimation in YPD, except that the competitions 

lasted for 20 generations (cells were transferred 6.5 and 13 generations after the start of the 

competition) and had three replicates per environment.  Sequencing library preparation was 

unsuccessful for mutants of EST1 and PAF1 likely because of primer degradations.  Therefore, 

we acquired the fitness data of mutants of 19 genes in these three additional environments.  The 

fraction of mutants whose fitness is significantly different from 1 is lower here than in YPD, 

likely because of the reduced statistical power due to the lowered number of replications.  
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Indeed, when we randomly sampled three of the four replicates from YPD, the fraction of 

mutants whose fitness is significantly different from 1 (nominal P <0.05) decreased to an 

average of 0.63 and 0.64 for synonymous and nonsynonymous mutants, respectively, similar to 

those observed in these three additional environments (Fig. A-24).  To examine whether the 

difference between synonymous and nonsynonymous mutants in fitness CV across the four 

environments is entirely due to a potential difference in mean fitness, we controlled the mean 

fitness in the four environments when comparing the across-environment fitness CV between 

synonymous and nonsynonymous mutants.  Specifically, we used an identity index of 0 for each 

synonymous mutant and 1 for each nonsynonymous mutant.  The partial Spearman’s correlation 

between the identity index and CV upon the control of the mean fitness in the four environments 

is 0.052 (P = 7.7×10-6).      

 

2.5.20 Simulation of the impact of environmental changes on dN/dS 

Our simulation assumed that the DFEs of synonymous and nonsynonymous mutations 

estimated from YPD hold in each environment, but the fitness effect of a mutation can vary 

across environments.  We respectively constructed cumulative fitness distribution functions 

(CFDFs) of synonymous and nonsynonymous mutants from the corresponding fitness data 

collected in YPD.  We started from all synonymous mutants with fitness measured in YPD, and 

ranked these mutants from low to high by their YPD fitness.  We then added a random noise 

drawn from the normal distribution N(0, σ2) to each fitness value, and ranked the mutants by 

their new fitness values.  Let us assume that, after the addition of noise, the mutant originally 

ranked i now had a rank of j.  We then randomly sampled M synonymous mutants from the 

CFDF and ranked them by their fitness, where M is the number of synonymous mutants with 
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fitness measured in YPD.  We assigned the fitness of the mutant ranked the jth in these M 

sampled mutants to mutant i as its fitness in a new environment.  The above procedure was 

repeated for each environment considered.  Fitness CV among environments was controlled by 

adjusting σ2, with larger σ2 yielding greater CV.  Many σ2 values were tried to achieve a target 

CV (difference between observed and target CV <0.0001).  The same was done for 

nonsynonymous mutants.  We set a higher CV for nonsynonymous than synonymous mutants.  

We set a fitness cutoff (0.98 or 0.99) and assumed that any mutant with fitness below the cutoff 

in any environment was purged.  We then computed dN/dS by the fraction of unpurged 

nonsynonymous mutants divided by the fraction of unpurged synonymous mutants.  Under each 

parameter set, we repeated the simulation 1000 times and reported the mean dN/dS and its 95% 

confidence interval.   

 

2.5.21 Expected dN/dS in the four environments examined  

To predict the expected dN/dS in long-term evolution in each of the four environments 

where DFEs were measured here, we considered all of the synonymous and nonsynonymous 

mutants with fitness measured in the environment.  Because the fitness measures contained 

measurement errors, we added a random error term drawn from the normal distribution N(0, σse2) 

to the measured fitness, where σse is the mutant-specific standard error of the measured fitness 

estimated from the experimental replicates in the environment.  We set a fitness cutoff and 

assumed that any mutant with fitness in the environment below the cutoff was purged.  We then 

computed dN/dS by the fraction of unpurged nonsynonymous mutants divided by the fraction of 

unpurged synonymous mutants.  In an environment that varies among the four individual 

conditions, we assumed that any mutant with fitness below the cutoff in any condition was 
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purged.  Because of random measurement errors considered, we repeated the prediction 1000 

times and presented the 95% confidence interval of the predicted dN/dS. 

 

2.5.22 Data availability 

Sequencing data generated in this study have been deposited into NCBI with the 

Bioproject ID PRJNA750109. Public data used include gene function annotations in the 

Saccharomyces Genome Database (https://www.yeastgenome.org/) and genomic coding 

sequences of S. paradoxus, C. glabrata, and S. castellii and genomic sequences of S. mikatae and 

S. uvarum from the NCBI genome assembly database (https://www.ncbi.nlm.nih.gov/assembly/). 

Source data are provided with this paper.  

2.5.23 Code availability 

Custom code is available at https://github.com/song88180/ Mutational-Fitness-Effects 

and https://doi.org/10.5281/ zenodo.5908478.  
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Figure 2-1.  Estimating the fitness effects of coding mutations in 21 yeast genes.a, The 
mRNA expression levels in YPD of the 21 genes (dots) measured by RPKM (Reads Per 
Kilobase of transcript per Million mapped reads) and their ranks among all yeast genes. b, 
Experimental procedure. WT, wild-type. T0, T12, and T48 respectively refer to 0, 12, and 48 hrs 
after competition. c, Mutant fitness estimated in the first two of four biological replicates. Each 
dot is a mutant (n = 8,341 mutants) and the dotted line indicates the diagonal. Pearson’s 
correlation (r) and its associated P-value are presented. d, Sequencing-based and growth rate-
based fitness estimates are highly correlated. Each dot represents a synonymous (yellow) or 
nonsynonymous (blue) mutant. Mutants used in monoculture growth rate-based fitness 
estimation and those used in en masse competition followed by sequencing-based fitness 
estimation are independently constructed. Error bars show the standard error of the mean. 
Pearson’s correlation r and its associated P-value are presented (r = 0.89 and 0.90 for the 9 
synonymous and 15 nonsynonymous mutants, respectively).  
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Figure 2-2.  Mutant fitness in YPD.Distributions of the fitness of 6,306 nonsynonymous (blue) 
and 1,866 synonymous (yellow) mutants. The two distributions are significantly different (P = 
6.1×10-5, two-tailed Wilcoxon rank-sum test; P = 1.3×10-6, Kolmogorov–Smirnov test). b, 
Cumulative frequency distributions of fitness of nonsynonymous and synonymous mutants. c, 
Fitness distributions of nonsynonymous and synonymous mutants of 21 individual genes shown 
by box plots. Nonsynonymous and synonymous distributions of each gene are compared by a 
two-tailed Wilcoxon rank-sum test followed by FDR correction (*, P < 0.05; ⁑, P < 0.01, ⁂, P < 
0.001). Mutants with fitness <0.9 are not shown (see Fig. A-8 for the complete figure). d, 
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Fractions of nonsynonymous and synonymous mutants with fitness significantly below 1 
(nominal P <0.05), significantly above 1, and neither, respectively. Error bars show one standard 
error. Nonsynonymous and synonymous mutants are not significantly differentially distributed 
among the three bins (two-tailed Fisher’s exact test). Under FDR = 0.05, 72.7% and 1.5% of 
nonsynonymous mutations are significantly deleterious and beneficial, respectively. The 
corresponding values are 72.5% and 1.1% for synonymous mutations. e, Mutant fitness is lower 
when the mutation is not observed than when it is observed in the genomes of five related yeast 
species. There are 5839, 169, 1087, 714 mutants in the four bins, respectively. P-values are from 
two-tailed Wilcoxon rank-sum test. Mutants with fitness <0.95 or >1.025 are not shown (see Fig. 
A-9 for the complete figure). In c and e, each data point is a mutant. The lower and upper edges 
of a box represent the first (qu1) and third (qu3) quartiles, respectively, the horizontal line inside 
the box indicates the median (md), the whiskers extend to the most extreme values inside inner 
fences, md ± 1.5(qu3-qu1), and the dots show outliers.  
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Figure 2-3.  Non-significant negative correlation between the mean fitness of synonymous 
mutants of a gene and the expression level of the gene.Each dot represents a gene. Spearman’s 
correlation ρ and associated P-value are presented.  
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Figure 2-4. Coding mutations alter mRNA level of the mutated gene.   a, High-throughput 
quantification of the mRNA levels of a focal gene in all mutants of the gene. WT, wild-type. 
REL, the mRNA level in a mutant relative to that in the WT, is estimated from the number of 
cDNA-derived sequencing reads divided by the number of DNA-derived reads for the mutant, 
relative to that for the WT. b, Frequency distributions of REL for 5927 nonsynonymous (blue) 
and 1783 synonymous (yellow) mutants, respectively. The two distributions are not significantly 
different (P = 0.11, two-tailed Wilcoxon rank-sum test). c, Correlation between REL and 
rescaled fitness among mutants. The correlation is significantly different between mutants with 
REL <1 and >1 (P <0.0001 for both nonsynonymous and synonymous mutants based on z-test 
after Fisher’s r-to-z transformation). d, Positive correlation between rCAI, the CAI of a mutant 
relative to that of the wild-type, and REL among mutants. For visualization, in c and d, we group 
all mutants into 10 equal-size bins by their X-values and present the mean X- and Y-values of 
each bin (red dot) and the standard error of the mean Y-value (error bar). 
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Figure 2-5. Relationship between the mRNA level of a gene and the effects of synonymous 
mutations in the gene on CAI, expression level, and rescaled fitness.  a, Fraction of mutations 
lowering CAI increases with the expression level of the gene. b, Fraction of mutations lowering 
the expression level increases with the expression level of the gene. c, Mean rescaled fitness of 
mutants declines with the expression level of the gene. Each dot represents a gene. Spearman’s 
correlation (ρ) and associated P-value are presented.  
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Figure 2-6. Relationship between the mRNA level of a gene and the effects of 
nonsynonymous mutations in the gene on CAI, expression level, and rescaled fitness. a, 
Fraction of mutations lowering CAI increases with the expression level of the gene. b, Fraction 
of mutations lowering the expression level increases with the expression level of the gene. c, 
Mean rescaled fitness of mutants declines with the expression level of the gene. Each dot 
represents a gene. Spearman’s correlation (ρ) and associated P-value are presented. Because 
deleting a more highly expressed gene tends to cause a greater fitness reduction56, the present 
finding means that the mean fitness reduction caused by a nonsynonymous mutation should rise 
with the expression level of the gene.   
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Figure 2-7. A higher fitness CV across environments for nonsynonymous than synonymous 
mutants can create dN/dS <<1 despite similar DFEs of synonymous and nonsynonymous 
mutations in each environment. a, Expected dN/dS from 1000 simulations of a population that 
experiences multiple different environments. A mutant is purged if its fitness is below a preset 
cutoff such as 0.98 or 0.99 in any environment. Shaded areas represent 95% confidence intervals. 
b-d, Distributions of nonsynonymous and synonymous mutant fitness are significantly different 
in SC + 37°C (P = 1.8×10-12, two-tailed Wilcoxon rank-sum test; P = 1.5×10-9, Kolmogorov–
Smirnov test; b), YPD + 0.375 mM H2O2 (P = 1.9×10-7 and 7.0×10-8, respectively; c), and YPE 
(P = 9.9×10-5 and 2.9×10-9, respectively; d). e, Box plots showing distributions of fitness CV 
across the four environments for 5,671 nonsynonymous and 1,696 synonymous mutants. Box 
plot symbols follow those in Fig. 2e. The mean CV is 0.0163 for nonsynonymous and 0.0124 for 
synonymous mutants. The two distributions are significantly different (two-tailed Wilcoxon 
rank-sum test). f, Expected dN/dS when the population stays in a constant environment or a 
changing environment. Actual DFEs in the four individual environments are used and various 
fitness cutoffs as in panel a are considered. Fitness measurement error is considered through 
1000 random samples of error per mutant. The mean expected dN/dS and the 95% confidence 
interval of the expected dN/dS are presented. Dots and error bars are slightly shifted horizontally 
to help visualization. * indicates that dN/dS is significantly lower in the fifth population, whose 
environment fluctuates among the four conditions, than in each of the four constant-environment 
populations (P <0.05). For the cutoffs where no * is shown, dN/dS is not significantly different 
between the fifth population and the constant-environment population with the lowest dN/dS. 
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Figure 2-8. A new model explaining the negative correlation between the evolutionary rate 
of a protein and its mRNA level. Compared with nonsynonymous mutations in lowly expressed 
genes, those in highly expressed genes tend to reduce the gene expression level and hence tend to 
be deleterious. As a result, the protein evolutionary rate is negatively correlated with its gene 
expression level. The height of a symbol represents the quantity considered.  
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Table 2- 1. Properties of the 21 genes studied. 

Gene 

name 

Expression level 

(RPKM) 

Fitness of the gene 

deletion strain in 

YPD 

Coding 

sequence 

length 

(bp) 

Region subject to 

mutation (nt.) 

ADA2 35.81 0.70 1305 304 - 453 

ASC1 2647.43 0.75 960 13 - 162 

BFR1 209.76 0.43 1413 376 - 525 

BUD23 37.87 0.57 828 205 - 354 

CCW12 9113.10 0.93 402 84 - 234 

EOS1 43.38 0.58 1101 193 - 342 

EST1 9.94 0.54 2100 238 - 387 

GET1 62.56 0.74 708 201 - 350 

GIM5 49.52 0.62 492 117 - 266 

IES6 57.87 0.39 501 130 - 279 

LSM1 113.24 0.69 519 58 - 207 

PAF1 51.98 0.59 1338 292 - 441 

PRS3 150.72 0.66 963 214 - 263 

RAD6 81.02 0.49 519 70 - 219 

RPL29 3334.86 0.79 180 7 - 156 

RPL39 1023.08 0.65 156 7 - 153 

RPS7A 1557.77 0.74 573 4 - 144 

SNF6 39.46 0.62 999 217 - 266 
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TSR2 65.40 0.57 618 46 - 195 

VMA21 131.56 0.84 234 38 - 187 

VMA7 274.51 0.65 357 52 - 201 
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(Continued) 

 

Gene name 

Observed no. of 

nonsynonymous mutants 

Observed no. of 

synonymous mutants 

Observed no. of 

nonsense mutants  

ADA2 330 92 3 

ASC1 269 104 2 

BFR1 336 90 24 

BUD23 302 100 0 

CCW12 320 114 16 

EOS1 323 99 0 

EST1 298 65 23 

GET1 341 83 26 

GIM5 332 98 1 

IES6 325 102 12 

LSM1 124 26 7 

PAF1 324 105 13 

PRS3 285 93 12 

RAD6 312 94 0 

RPL29 336 93 21 

RPL39 323 82 7 

RPS7A 305 94 1 

SNF6 346 89 1 

TSR2 325 89 0 
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VMA21 309 115 0 

VMA7 141 39 0 
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(Continued) 

 

Gene name Gene function 

ADA2 

Transcription coactivator; component of the ADA and SAGA transcriptional 

adaptor/HAT (histone acetyltransferase) complexes 

ASC1 

G-protein beta subunit and guanine dissociation inhibitor for Gpa2p; ortholog of 

RACK1 that inhibits translation; core component of the small (40S) ribosomal 

subunit; required to prevent frameshifting at ribosomes stalled at repeated CGA 

codons; regulates P-body formation induced by replication stress; represses 

Gcn4p in the absence of amino acid starvation; controls phosphorylation of 

multiple proteins 

BFR1 

Component of mRNP complexes associated with polyribosomes; involved in 

localization of mRNAs to P bodies; implicated in secretion and nuclear 

segregation; multicopy suppressor of BFA (Brefeldin A) sensitivity 

BUD23 

Methyltransferase that methylates residue G1575 of 18S rRNA; required for 

rRNA processing and nuclear export of 40S ribosomal subunits independently of 

methylation activity; functions with DEAH-box RNA helicase Ecm16p 

CCW12 

Cell wall mannoprotein; plays a role in maintenance of newly synthesized areas 

of cell wall 

EOS1 

Protein involved in N-glycosylation; deletion mutation confers sensitivity to 

exidative stress and shows synthetic lethality with mutations in the spindle 

checkpoint genes BUB3 and MAD1; YNL080C is not an essential gene 
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EST1 

TLC1 RNA-associated factor involved in telomere length regulation; 

recruitment subunit of telomerase 

GET1 

Subunit of the GET complex; involved in insertion of proteins into the ER 

membrane 

GIM5 Subunit of the heterohexameric cochaperone prefoldin complex 

IES6 

Component of the INO80 chromatin remodeling complex; critical for INO80 

function; involved in regulation of chromosome segregation and maintenance of 

normal centromeric chromatin structure 

LSM1 

Lsm (Like Sm) protein; forms heteroheptameric complex (with Lsm2p, Lsm3p, 

Lsm4p, Lsm5p, Lsm6p, and Lsm7p) involved in degradation of cytoplasmic 

mRNAs 

PAF1 Component of the Paf1p complex involved in transcription elongation 

PRS3 

5-phospho-ribosyl-1(alpha)-pyrophosphate synthetase; synthesizes PRPP, which 

is required for nucleotide, histidine, and tryptophan biosynthesis 

RAD6 

Ubiquitin-conjugating enzyme (E2); involved in postreplication repair as a 

heterodimer with Rad18p, regulation of K63 polyubiquitination in response to 

oxidative stress, DSBR and checkpoint control as a heterodimer with Bre1p, 

ubiquitin-mediated N-end rule protein degradation as a heterodimer with Ubr1p, 

ERAD with Ubr1p in the absence of canonical ER membrane ligases, and Rpn4p 

turnover as part of proteasome homeostasis, in complex with Ubr2p and Mub1p 

RPL29 Ribosomal 60S subunit protein L29 

RPL39 Ribosomal 60S subunit protein L39 

RPS7A Protein component of the small (40S) ribosomal subunit 
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SNF6 

Subunit of the SWI/SNF chromatin remodeling complex; involved in 

transcriptional regulation; functions interdependently in transcriptional 

activation with Snf2p and Snf5p; relocates to the cytosol under hypoxic 

conditions 

TSR2 Protein with a potential role in pre-RNA processing 

VMA21 

Integral membrane protein required for V-ATPase function; not an actual 

component of the vacuolar H+-ATPase (V-ATPase) complex; diverged ortholog 

of human XMEA (X-linked Myopathy with Excessive Autophagy); functions in 

the assembly of the V-ATPase; localized to the yeast endoplasmic reticulum 

(ER) 

VMA7 

Subunit F of the V1 peripheral membrane domain of V-ATPase; part of the 

electrogenic proton pump found throughout the endomembrane system; required 

for the V1 domain to assemble onto the vacuolar membrane; the V1 peripheral 

membrane domain of vacuolar H+-ATPase (V-ATPase) has eight subunits 
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Chapter 3 Experimental Validation of the Non-neutrality of Synonymous Mutation 

3.1 Abstract 

In Chapter 2, we found that about three-quarters of synonymous mutations in 21 

endogenous yeast genes are nonneutral in YPD. There is a hypothesis that the observation could 

be due to the fitness effects of CRISPR/Cas9 off-target edits or secondary mutations in the 

experiment. To test this hypothesis, we sequenced the genomes of BY4742 progenitor strain, 21 

gene knockout strains, ASC1 wild-type control strain, and 579 mutant strains (on average ~28 per 

gene). By comparing the mutations identified and the potential off-target sites of the gRNAs 

used, we confirmed the lack of any off-target edits. The mutations identified are thus likely to be 

natural spontaneous mutations that occurred in the experiments. We found that such mutations 

are either absent or have negligible fitness effects in the mutants of seven genes studied.  In these 

genes, 61.6% of synonymous mutations are significantly nonneutral in YPD. We further 

confirmed all other observations in Chapter 2 for these seven genes.  
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3.2 Introduction 

We recently constructed 8,341 mutants each carrying a synonymous, nonsynonymous, or 

nonsense mutation in one of 21 Saccharomyces cerevisiae genes (Shen et al., 2022).  We found 

that most synonymous and most nonsynonymous mutants are significantly less fit than the wild-

type control, although nonsynonymous mutations are overall more detrimental than synonymous 

mutations (Shen et al., 2022).  It has been suggested that our observations may have arisen from 

the fitness effects of potential CRISPR/Cas9 off-target edits and/or secondary mutations 

(Kruglyak et al., 2023).  To assess this hypothesis, we sequenced the genomes of relevant strains 

to find potential off-target edits or secondary mutations.  
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3.3 Results  

3.3.1 Identifying off-target edits and secondary mutations in relevant genomes 

To construct mutants in Chapter 2, we performed two rounds of CRISPR/Cas9 genome 

editing (Shen et al., 2022). In the first round, a segment of the wild-type sequence was replaced 

by an artificially designed landing pad (DLP) (Fig. 3-1a). In the second round, the landing pad 

was replaced with variant sequences (Fig. 3-1b). To identify potential off-target edits or 

secondary mutations from the first round of editing, we sequenced the genomes of the BY4742 

progenitor strain and 21 gene knockout strains. To find potential off-target edits or secondary 

mutations which emerged in the second round of editing, we sequenced ~28 randomly picked 

mutants of each gene. Note that, upon the second round of editing, each mutant is made up of 

multiple (~25 on average) independently edited cells in our mutant pool, and the sequencing-

based fitness of the mutant is the average fitness of these cells.  

CRISPR/Cas9 off-target edits are mutations in untargeted regions that bear a high 

sequence similarity to the target region. In our study, gene-deletion gRNAs were designed using 

Benchling (www.benchling.com/crispr) to minimize potential off-target editing. Specifically, 20 

of the 21 gRNAs in the first round of editing were regarded by Benchling as good guides while 

the remaining one approached the cutoff for good guides (Table. 3-1). Benchling could also 

predict potential off-target sites of a gRNA based on sequence similarity (Fig. 3-2). None of the 

identified mutations occurred in the potential off-target sites. The gRNA used in the second 

round of editing is especially good because the Cas9 cutting site was created artificially and 

Benchling predicted no potential off-target sites in the yeast genome. 

The wild-type control used in the competition in our study in Chapter 2 was created by 

replacing the wild-type ASC1 gene with the landing pad, followed by the replacement of the 
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landing pad with the ASC1 wild-type sequence. We found that this wild-type control carried no 

mutations relative to the BY4742 progenitor strain (Table. 3-2, Table. 3-3).  

In 7 genes (ADA2, ASC1, BFR1, EOS1, IES6, RPL39 and TSR2), no more than two 

mutant strains carried secondary mutations when compared with the respective gene knockout 

strains, with typically no more than one secondary mutation per mutant (Table. 3-3). The 

average fitness effect of mutations in protein coding regions is about -0.01 (in the 21 genes 

studied) (Shen et al., 2022) and each mutant genotype consisted of ~25 independently edited 

cells. Hence, if fewer than 10% of cells of a genotype carry a secondary mutation of a mean 

fitness effect of -0.01, the secondary mutations lower the fitness of the genotype by no more than 

0.001, which is much smaller than the mean fitness effect of mutations measured as well as the 

mean standard error of the fitness effect estimates. In other words, this level of error is 

negligible.  

Of the 7 genes examined, the gene knockout strains of BFR1, EOS1, and IES6 each 

harbored 2, 1, and 1 secondary mutations, respectively, while the knockout strains of the other 

four genes had no secondary mutations. We inserted the wild-type sequences into these three 

knockout strains and found their maximum growth rates not significantly different from the wild-

type control previously used in our competition (Fig. 3-3). Hence, the secondary mutations in the 

knockout strains of these three genes have negligible fitness effects in YPD. This is not 

surprising, because the 4 secondary mutations occurred in genes whose individual deletions have 

an average fitness cost of 0.06 (Qian et al., 2012). By contrast, the average fitness cost of 

individual deletions of BFR1, EOS1, and IES6 is 0.53 while the corresponding value for the 21 

genes studied is 0.36 (Qian et al., 2012). 
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3.3.2 The results in Ch. 2 are replicated for the seven genes  

The mean fitness of 2231 nonsynonymous mutants of the aforementioned seven genes is 

0.991 (Fig. 3-4a). The mean fitness of 658 synonymous mutants of these genes is 0.992 (Fig. 3-

4a), which is much closer to that of the nonsynonymous mutants than to the neutral expectation 

of 1.  However, overall, nonsynonymous mutants have significantly lower fitness than 

synonymous mutants (Fig. 3-4b). We classified all mutations into three bins: significantly 

beneficial, significantly deleterious, and neutral (i.e., neither of the above categories) (Fig. 3-4c). 

Among synonymous mutations, 61.6% are significantly deleterious, while 1.4% are significantly 

beneficial.  The corresponding values are 63.0% and 0.9% for nonsynonymous mutations. 

Consistent with our previous finding (Shen et al., 2022), mutant fitness is lower when the 

mutation is unobserved in the genomes of related yeast species than when it is observed (Fig. 3-

4d, Fig. B-1), indicating that our laboratory fitness estimates are evolutionarily relevant. 

In Chapter 2, we found that REL and rescaled fitness are significantly positively 

correlated for both synonymous and nonsynonymous mutants when REL <1 but the correlation is 

much weakened when REL > 1, suggesting that reducing gene expression from the wild-type 

level is more likely to be deleterious than increasing gene expression. This pattern was also 

observed in these seven genes (Fig. 3-5). 

We previously found that the CV of fitness across four environments is significantly 

greater for nonsynonymous than synonymous mutants. We used simulations to show that 

environmental changes could explain dN/dS <<1 (Fig. 2-7).  Using YPD-based fitness effects of 

the mutations of the aforementioned 7 genes, we replicated this result (Fig. 3-6a). Among the 

seven genes, ADA2, ASC1, RPL39, and TSR2 do not carry secondary mutations in the knockout 
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strains so their multi-environment mutant fitness estimates are valid. For these 4 genes, the 

nonsynonymous mutants have larger fitness variances across the four environments than those of 

the synonymous mutants (Fig. 3-6b). dN/dS in the population whose environment fluctuates 

among the four environments is lower than any population which stays in one of the four 

environments (Fig. 3-6c).  
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3.4 Discussion 

 Consistent with previous reports from yeast studies (Jakociunas et al., 2015; Ryan et al., 

2014), we did not find any CRISPR/Cas9 off-target editing in a total of 601 strains, including 21 

knockout strains, 579 mutant strains, and 1 reconstructed wild-type control strain. Although 

CRISPR/Cas9 off-target edits are known in plants and animals, the rate of such edits is low and 

well-designed experiments can avoid off-target edits even in the human genome (Cho et al., 

2014).  The genome is 250 times smaller and the efficiency of non-homologous end-joining 

relative to homologous recombination (a predictor of off-target editing) is drastically lower in 

yeast than in humans, rendering off-target editing trivial in yeast (Jakociunas et al., 2015; Ryan 

et al., 2014).  

Our results showed that secondary mutations can occur during mutant construction. After 

the first editing, the 21 gene knockout strains are known to have low fitness, so secondary 

mutations compensating the deleterious effect of gene deletion would be positively selected. 

However, such mutations are beneficial, so they must become detrimental after the second 

editing via sign epistasis to potentially explain the “lower-than-expected” mutant fitness. After 

the second editing, beneficial secondary mutations would be fewer because the mutant genes 

would be only one mutational step away from the wild-type. Random mutations can occur in the 

experiment such as the growth on the SC-URA plates, counter-selection on 5-FOA plates, 

growth in the YPD liquid medium. The deletions of some genes may increase the mutation rate, 

but none of our 21 genes are among those previously shown to increase the mutation rate upon 

deletion (Huang et al., 2003). The average fitness cost of random mutations is likely to be 

smaller than that of the mutations we created in the 21 genes because the average fitness cost of 

21 gene deletions is 0.36, while the corresponding value of the 4450 (nonessential) gene 
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deletions surveyed (Qian et al., 2012) is only 0.03. Consistent with this prediction, we found the 

secondary mutations in the BFR1, EOS1, and IES6 knockout strains did not have fitness cost 

(Fig. 3-3). 

After characterizing the secondary mutations in the 21 mutant gene pools, we found that 

the number of secondary mutations vary in different pools.  For the genes with non-negligible 

secondary mutations, we can build mutants and the wild-type control simultaneously and 

replicate this process multiple time to create biologically independent libraries for fitness 

quantification. In this way, 1) mutant strains and the wild-type control may all carry the same 

secondary mutations occurred in the first round of genome editing so the effect of secondary 

mutations is cancelled out in one biological replicate and 2) a genotype can be linked with 

different secondary mutations in different biological replicates, but if we take an average of 

mutant fitness from multiple biological replicates, the effect of secondary mutations will be 

cancelled out. This experiment is currently ongoing.  

The conclusions of Chapter 2 are valid for the genes with no or negligible secondary 

mutations. Recent years have seen an increasing number of reports of fitness effects of 

synonymous mutations/polymorphisms from both case studies (Agashe et al., 2013; Frumkin et 

al., 2018; Kristofich et al., 2018; Lebeuf-Taylor et al., 2019; Walsh et al., 2020) and systematic 

analyses (Lind et al., 2010; Sane et al., 2022; Sharon et al., 2018; She & Jarosz, 2018).  These 

findings, along with ours (Shen et al., 2022), suggest that many synonymous mutations are 

strongly non-neutral.  
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3.5 Materials and Methods 

3.5.1 Library construction and genome sequencing 

For each strain, genomic DNA was extracted from around 107 yeast cells using a 

MasterPure Yeast DNA Purification Kit (Lucigen; MPY80200). Sequencing libraries were 

constructed using Nextera DNA Flex Library Prep (Illumina; 20018705). Samples were 

sequenced using an Illumina HiSeq X with a paired-end 150 strategy.  

3.5.2 Mutation identification 

Sequencing reads were aligned to the S. cerevisiae reference genome (v.R64-2-1) using 

the Burrows-Wheeler Aligner with default parameters, and duplicated reads were removed using 

Picard tools (http://broadinstitute.github.io/picard/). SNVs were called using the Genome 

Analysis Toolkit (GATK) platform (McKenna et al., 2010). By comparing the genomes of 

knockout strains and the BY4742 progenitor strain, secondary mutations in the first round of 

editing were identified. By comparing the genomes of mutant strains with those of the respective 

knockout strains, secondary mutations in the second round of editing were identified. 

3.5.3 Construction of BFR1, EOS1, IES6 wildtype strains 

We respectively amplified the wild-type BFR1, EOS1, IES6 gene sequences from the 

genome of the haploid strain BY4742 by PCR and inserted them into the ΔBFR11, ΔEOS1, 

ΔIES6 cells using CRISPR/Cas9. One colony was picked and the insertion was confirmed by 

Sanger sequencing. The cells were then counter-selected on 5-FOA plates to remove the 

CRISPR/Cas9 plasmid.   

We measured the maximum growth rates of the previously used wild-type control strain 

and BFR1, EOS1, IES6 wild-type control strains using Biotek Gen5TM Microplate Reader.  The 
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cells were first grown overnight. About 10,000 cells were added into 0.1 mL YPD in a well of a 

CostarTM 96-well plate and the culture was in continuous shaking at 30°C.  Sixteen replicate 

growth curves were collected per strain, except that one replicate of EOS1 was contaminated so 

was discarded.  The maximum growth rate was calculated following a previous protocol 

(Warringer et al., 2003).   
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Figure 3-1. Two rounds of CRISPR/Cas9 editing. a, a segment of wild-type sequence was 
replaced by an artificially designed landing pad (DLP). b, the landing pad was replaced with 
variant sequences. 
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Figure 3-2. An example of Benchling off-target site prediction (ASC1 deletion gRNA). The 
first row is the target site in ASC1. The second and third rows are two potential off-target sites. 
The red bases in the first column are the mismatched sequences. The Scores are calculated 
following a published method (Hsu et al., 2013) 
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Figure 3-3. The maximum growth rates of four reconstructed wild-type strains. ASC1 WT 
was used as the wild-type control in en masse competitions with mutants. Error bar shows the 
standard error of the mean based on sixteen replicates, except for EOS1 WT, which had 15 
replicates, because one replicate was contaminated and discarded. P-values are from t-tests.  
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Figure 3-4. Mutant fitness in YPD of the 7 genes. a, Distributions of the fitness of 2,231 
nonsynonymous (blue) and 658 synonymous (yellow) mutants. The two distributions are 
significantly different (P = 0.049, two-tailed Wilcoxon rank-sum test; P = 0.007, Kolmogorov–
Smirnov test). b, Cumulative frequency distributions of fitness of nonsynonymous and 
synonymous mutants. c, Fractions of nonsynonymous and synonymous mutants with fitness 
significantly below 1 (nominal P <0.05), significantly above 1, and neither, respectively. Error 
bars show one standard error. Nonsynonymous and synonymous mutants are not significantly 
differentially distributed among the three bins (two-tailed Fisher’s exact test). d, Mutant fitness is 
lower when the mutation is not observed than when it is observed in the genomes of five related 
yeast species. P-values are from two-tailed Wilcoxon rank-sum test. Mutants with fitness <0.95 
or >1.02 are not shown (see Fig. B-1 for the complete figure). In d, each data point is a mutant. 
The lower and upper edges of a box represent the first (qu1) and third (qu3) quartiles, 
respectively, the horizontal line inside the box indicates the median (md), the whiskers extend to 
the most extreme values inside inner fences, md ± 1.5(qu3-qu1), and the dots show outliers. 
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Figure 3-5. The correlations of REL and rescaled mutant fitness of the 7 genes. a, 
Correlation between REL and rescaled fitness among nonsynonymous mutants. b, Correlation 
between REL and rescaled fitness among synonymous mutants. 
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Figure 3-6. A higher fitness CV across environments for nonsynonymous than synonymous 
mutants in the 4 genes can create dN/dS <<1 despite similar DFEs of synonymous and 
nonsynonymous mutations in each environment. a, Expected dN/dS from 1000 simulations of 
a population that experiences multiple different environments. A mutant is purged if its fitness is 
below a preset cutoff such as 0.98 or 0.99 in any environment. Shaded areas represent 95% 
confidence intervals. b, Box plots (blue, nonsynonymous mutants; yellow, synonymous mutants) 
showing distributions of fitness CV across the four environments for 1,247 nonsynonymous and 
367 synonymous mutants. The mean CV is 0.009 for nonsynonymous and 0.006 for synonymous 
mutants. The two distributions are significantly different (two-tailed Wilcoxon rank-sum test). c, 
Expected dN/dS when the population stays in a constant environment or a changing environment. 
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Figure 3-7. Procedure of mutant fitness measurement. A mixture of gene segment variants 
and wildtype sequence was inserted into the corresponding gene knockout strain 
simultaneously. 

  



 85 

Table 3-1. The gRNA sequences and their off-target scores. Off-target scores range from 0 to 

100, and the scores >= 50 are considered to be good guides (https://help.benchling.com/hc/en-

us/articles/9684236710413) 

gRNA targeted gene gRNA sequence template off-target score 
ADA2 TGTTCCAAAAATTCATCTTG 50 
ASC1 GGTACCTTGGAAGGTCACAA 50 
BFR1 AAAGTCTGTTGATGCTGACA 50 
BUD23 GGTCTTAGTAGAGAGCTGGA 50 
CCW12 GATAACGTCATCGACGGTGA 50 
EOS1 TGGCTCGTAAAGCGTTATGC 50 
EST1 TGCTCAAACCATTGGAGTGT 50 
GET1 TTTGTGAAGATGGGCCTGAA 50 
GIM5 TCTGCATCATTATACATCCC 50 
IES6 CAAGAAGACACAAATCAGCG 50 
LSM 1 TACTGAGCTTACAATAGCAG 50 
PAF1 ATATTCGGTGCGTCTCAAGA 50 
PRS3 ATATGCAAGACAAGATAGAA 49 
RAD6 TCCGTCTTCATATGGAGTAT 50 
RPL29 CGCTCACAACCAAACCAGAA 50 
RPL39 AAAACAGACCATTGCCACAA 50 
RPS7A TGAGACAAAATCTTGGCTTG 50 
SNF6 AGTTCTTCAAAAGGTTGGAT 50 
TSR2 ATCCCACTTATAAATAACCA 50 
VMA21 GCTGTTTACTGCAGCGATGG 50 
VMA7 AGAAGGTAAGACTACTAAGG 50 
20-nt Cas9 target sequence 
inserted in the deletion strain ATGCGGGTAGAAGATTACGG 100 
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Table 3-2. Summary of the mutations identified in the gene knockout strains.  

Gene/strain 
name 

# of mutations in 
the knockout 

strain 

# of 
nonsynonymous 

mutations 

# of 
synonymous 

mutations 

# of noncoding 
mutations 

ADA2 0 0 0 0 
ASC1 0 0 0 0 
BFR1 2 1 1 0 
BUD23 0 0 0 0 
CCW12 1 1 0 0 
EOS1 1 1 0 0 
EST1 1 1 0 0 
GET1 1 0 1 0 
GIM5 1 1 0 0 
IES6 1 0 1 0 
LSM1 0 0 0 0 
PAF1 0 0 0 0 
PRS3 2 1 1 0 
RAD6 3 1 2 0 
RPL29 0 0 0 0 
RPL39 0 0 0 0 
RPS7A 1 1 0 0 
SNF6 2 0 1 1 
TSR2 0 0 0 0 
VMA21 0 0 0 0 
VMA7 2 1 1 0 
ASC1 
wildtype 
control 

0 0 0 0 
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Table 3-3. Summary of the mutations identified in the mutant and reconstructed wildtype 
strains. 

Gene/strain 
name 

# of 
mutant 
strains 
sequenced 

# of mutant 
strains 
carrying 
secondary 
mutations 

# of 
nonsynonymous 
mutations 

# of 
synonymous 
mutations 

# of 
noncoding 
mutations 

ADA2 33 0 0 0 0 
ASC1 30 1 0 1 0 
BFR1 20 0 0 0 0 
BUD23 30 12 5 1 6 
CCW12 33 11 9 2 1 
EOS1 24 2 1 0 1 
EST1 24 11 7 0 4 
GET1 24 12 9 0 3 
GIM5 24 11 5 1 5 
IES6 30 1 1 0 0 
LSM1 30 16 12 3 2 
PAF1 29 6 6 0 1 
PRS3 24 8 3 4 1 
RAD6 32 11 12 1 1 
RPL29 30 13 9 3 3 
RPL39 28 2 0 1 1 
RPS7A 24 10 6 2 1 
SNF6 24 8 4 0 4 
TSR2 32 0 0 0 0 
VMA21 30 7 3 1 3 
VMA7 24 13 8 3 2 

ASC1 
wildtype 
control 

1 0 0 0 0 
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Chapter 4 Epistatic Effects of Synonymous Mutations in Yeast Genes  

4.1 Abstract 

Interaction between mutations, or epistasis, can be important to the fitness and evolution of 

organisms. For example, a mutation may have opposite effects in two genetic backgrounds and 

this difference can lead to different evolutionary trajectories. Intragenic epistasis involving 

synonymous mutations have not been systematically studied. I recently reported the distribution 

of fitness effects of more than 8000 single mutations in yeast and found that about three-quarters 

of synonymous mutation are nonneutral. In that study, I intended to chemically synthesize pools 

of oligos each carrying one mutation, but unavoidable errors in the synthesis also created oligos 

carrying multiple mutations. I took advantage of these oligos, the corresponding mutants 

constructed, and the fitness measurements obtained to estimate intragenic epistasis in four 

environments. Notably, I found that synonymous mutations genetically interact with 

synonymous or nonsynonymous mutations, showing 6.4% significantly positive interactions and 

5.9% significantly negative interactions.  My findings further revealed that 8.5% to 26.1% of 

epistatic interactions are significantly different between any two of four environments studied. 

Interestingly, epistasis between nonsynonymous mutations is more variable than that between 

synonymous mutations across the four environments examined.  
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4.2 Introduction 

To understand the fitness effects of mutations comprehensively, we need to take epistasis 

into consideration because mutations can have different effects depending on the genetic 

background (Phillips, 2008). Epistasis can be classified into two categories: positive epistasis, 

where the outcome is better than expected, and negative epistasis, where the outcome is worse 

than expected. These epistatic interactions play a crucial role in shaping evolutionary trajectories 

and make evolution more contingent and less predictable (Domingo et al., 2019; Park et al., 

2022; Starr et al., 2018). Epistasis also facilitates speciation if two isolated populations of a 

species acquire different mutations. Ultimately, the mutations fixed in one population are 

deleterious in another population (Presgraves, 2007). Notably, epistasis is not a fixed 

characteristic; rather, it exhibits variation among different environments (G×G×E interaction).  

This variability in epistasis has been observed across various organisms, including viruses (Lalic 

& Elena, 2013), bacteria (Remold & Lenski, 2004), yeast (Gerke et al., 2010; Li & Zhang, 2018) 

and flies (Zhu et al., 2014).  

Because of the huge genotype space (4n genotypes for a gene with n nucleotides), it is 

difficult to study all possible mutants of a genes. Most systematic studies of genotype-fitness 

mapping investigated the fitness effects of single mutations (Bank et al., 2015; Flynn et al., 2020; 

Hietpas et al., 2013; Hietpas et al., 2011; Mavor et al., 2016; Roscoe et al., 2013; Shen et al., 

2022). The epistasis between mutations of one gene (Li et al., 2016; Li & Zhang, 2018; Puchta et 

al., 2016; Sarkisyan et al., 2016) was less studied, not to mention the study of epistasis 

differences across multiple environments. One genotype-fitness mapping study measured the 

epistasis in multiple environments but they did not study protein-coding genes (Li & Zhang, 
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2018). When we study the intragenic epistasis between two mutations, in addition to studying 

epistasis between nonsynonymous mutations, it is also valuable to study the epistatic interactions 

between two synonymous mutations and epistasis between a synonymous mutation and a 

nonsynonymous mutation, because many synonymous mutations are non-neutral (Shen et al., 

2022). 

Here, we made use of the fitness data of double mutants produced by oligo synthesis 

errors (Shen et al., 2022) and estimated intragenic epistasis of mutations in multiple genes in 

each of four environments. 

  



 91 

4.3 Results 

4.3.1 Characterizing intragenic epistasis in the four environments 

The double mutants were produced through oligo synthesis errors (see Methods) so their 

frequencies are generally lower than the single mutants. To detect more double mutants and 

estimate their fitness more accurately, we sequenced the competition populations of 13 genes 

from the YPD environment using NovaSeq so the sequencing depth was about 6.5 times the 

original sequencing (see Methods). The template switching events in the PCR steps could 

generate double mutants, but they were very rare (see Methods). Of these 13 genes, we observed 

that only up to two mutant strains carried secondary mutations in six genes (ADA2, BFR1, EOS1, 

IES6, RPL39, TSR2) when compared to their respective knockout strains (see Chapter 3). We 

identified a total of 8,263 double mutant variants with read counts ≥ 50 at T0, including 4,797 

double nonsynonymous mutants (NN mutants), 3,058 nonsynonymous-synonymous double 

mutants (NS mutants), and 408 double synonymous mutants (SS mutants) in these 6 genes (Fig. 

4-1). The fitness estimates were moderately correlated between replicates, with a mean Pearson’s 

r of 0.43 (Fig. C-1). The lower fitness correlations observed in double mutants (compared with 

single mutants, Fig. A-5) can be attributed to their production through synthesis errors, leading 

to lower genotype frequencies. The mean fitness of the 8,263 double mutants is 0.978 (Fig. 4-

2a). The corresponding values are 0.977, 0.979 and 0.982 for the NN mutants, NS mutants, and 

SS mutants (Fig. 4-2b-d). These values are lower than both the mean fitness of nonsynonymous 

mutants and that of synonymous mutans (Fig. 1-2a). In addition, the fitness of NN mutants is 

significantly lower than that of NS mutants (P = 0.005, two-tailed Wilcoxon rank-sum test) and 

that of SS mutants (P = 0.02, two-tailed Wilcoxon rank-sum test). We estimated epistasis 

between mutations using the fitness estimates of single mutants and double mutants (Fig. 4-2e-
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h). In YPD, we found substantial epistatic interactions in SS mutants (Fig. 4-2h). The mean 

epistasis is -0.009 for SS mutants, with 5.9% of epistatic interactions being significantly negative 

and 6.4% being significantly positive (Fig. 4-2h). We also found prevalent significant epistatic 

interactions in NN mutants and NS mutants (Fig. 4-2h) and the epistasis distributions of NN, NS, 

SS mutants (Fig. 4-2f-h) are not significantly different between any two groups (P > 0.05, two-

tailed Wilcoxon rank-sum test). The mean epistasis is negative for NN, NS, and SS mutants, but 

the distributions of epistasis were not strongly negatively biased as previously observed in a 

tRNA gene (Li & Zhang, 2018).  

4.3.2 G×G×E interactions are prevalent 

We estimated intragenic epistasis for 4 genes (ADA2, BFR1, RPL39, TSR2) in SC + 

37°C, YPD + 0.375 mM H2O2, and YPE. In addition to being minimally affected by the 

secondary mutations in the mutants, these four genes do not have secondary mutations in their 

knockout strains (see Chapter 3). In SC + 37°C and YPD + 0.375 mM H2O2, the fractions of 

negative epistasis and positive epistasis are similar (Fig. C-2ab), while in YPE (Fig. C-2c), 

epistasis is positively biased.  

We compared the epistasis in any two of the four environments and found that a 

substantial fraction of epistasis varied between environments (Fig. 4-3), revealing prevalent 

G×G×E. The extent of these variations varies across the pairs of environments, with the most 

significant fraction observed between YPD and YPE, reaching an impressive 26.1%. Of 

particular interest is the change of the sign of epistasis between environments.  These fractions 

range from 3.5% to 10.1% among the six environment pairs. On average, 18.1% of NN epistasis 

varied between two of the four environments surveyed (Fig. 4-4). The corresponding values for 
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the NS mutants and SS mutants are 14.7% and 14.1%, respectively (Fig. 4-4). NN mutants 

showed significantly more prevalent G×G×E interaction than NS and SS mutants (Fig. 4-4). In 

Chapter 2, I discovered that nonsynonymous mutations exhibited greater G×E interaction across 

environments compared to synonymous mutants. This is likely due to the fact that 

nonsynonymous mutations not only impact mRNA level and mRNA folding but also lead to 

changes in protein functions which are environment-dependent, so the nonsynonymous 

mutations have fitness effects that are more variable across environments. I now demonstrated 

that epistasis between nonsynonymous mutations also showed more pronounced variability 

across environments compared to that of synonymous mutations. The epistasis between 

nonsynonymous mutations involves the interaction between protein sequence changes which 

synonymous mutations do not cause, so this adds to the complexity and variability of epistasis 

between nonsynonymous mutations. 
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4.4 Discussion 

In summary, by analyzing thousands of double mutants, I found that intragenic epistasis 

between single mutations is prevalent. Besides, synonymous mutations can genetically interact 

with other synonymous mutations or nonsynonymous mutations. In Chapter 2, I found that 

mutant fitness and the mRNA expression level of the gene with the mutation are positively 

correlated. One might expect that fitness epistasis and expression epistasis (see Methods) are 

positively correlated. I tested this hypothesis using the fitness and Relative Expression Level 

(REL) data in YPD but did not find a significant correlation (Fig. C-3), probably due to the 

limited sample size of the 1,070 double mutants of which both the fitness and REL were 

estimated. Future studies should investigate the mechanisms of epistatic effects of synonymous 

mutations. 

I also found widespread G×G×E interaction. Between any two of the four environments 

examined, 8.5% to 26.5% epistatic interactions are significantly different (Fig. 3). Of particular 

interest is that I found that nonsynonymous mutations have more prevalent G×G×E interaction 

than synonymous mutations (Fig. 4). Nonsynonymous mutations change protein sequence in 

addition to altering mRNA level and mRNA folding strength. This not only adds to the 

prevalence of G×E interaction of nonsynonymous mutations but also leads to more pronounced 

G×G×E interaction within nonsynonymous mutations themselves. Because epistasis is crucial in 

evolution, its variation across environments could be especially important for natural 

populations, as most of them experience fluctuating and dynamic environmental conditions.  

In this study, I probed epistasis of intragenic mutations in multiple genes across 

environments. Epistasis of intergenic mutations and its environmental dependence would be an 
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interesting subject for future endeavors. Intergenic epistasis is thought to play important roles in 

the evolution of genetic systems, but our systematic knowledge about intergenic epistasis is 

largely from the data of double gene deletions. Although double gene deletions can provide 

information on gene-gene interactions, they likely provide a biased view, or at most an 

incomplete view, because most mutations are not null mutations. Future endeavors towards 

studying epistasis of intergenic mutations can be highly rewarding. 
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4.5 Materials and Methods 

4.5.1 Double mutant identification and epistasis estimation 

The details of variant construction, competitions, fitness calculations can be found in 

Chapter 2. In the chemical synthesis of oligo pools, the error rate per base is about 0.43% to 

0.73% (https://www.genscript.com/gsfiles/techfiles/Oligo-Pools-design-synthesis-and-research-

applications-slides.pdf). The mutant region of each gene is 150 nucleotides, so there is about 1 

expected error per oligo. This error and the designed mutation form a double mutant genotype.  

To calculate the epistasis between two mutations in each environment, we utilized the 

single mutant fitness and double mutant fitness calculated following the way described in 

Chapter 2. The epistasis is defined as ε = fAB −fA fB , where  fAB is the fitness of the double mutant 

and fA and fB are the fitness of the corresponding single mutants. 

4.5.2 Test of template switching 

Template switching is a process by which two PCR templates combine to form a 

chimeric product. If two single-mutant templates switched, double mutants could be produced. 

To quantify the template switching events, I extracted the genomes of three GET1 single mutants 

(The mutations were at the 46th, 139th, 143rd base in the 150-bp mutant region). I mixed equal 

quantities of three genomes. The mixture was used as the template DNA for 25 cycles of PCR 

(same as the number of PCR cycles used in the library preparations after competitions) to 

amplify the mutant region. The PCR product was sequenced with 250-nucleotide paired-end 

sequencing. Only 0.27% of sequences identified were caused by template switching and no 

template switching between the two mutations at the 139th base and 143rd base was observed. 
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This is expected, given that the probability of observing a template switch involving two 

mutations should increase with the distance between the two mutations. Let us assume that the 

rate of template switch between the 46th site and the 139th (or 143rd) site be a. Hence, (2a/3 + a/3 

+ a/3)/3 = 4a/9 = 0.27%, where 2/3 indicates that 2/3 of the template switches involving the first 

mutant (harboring the mutation at the 46th site) is observable, because switches between the 

molecules of the same genotype are not observed. We estimated that a = 0.6075%. Because the 

average distance between two sites in our mutant pool is 75 bases, shorter than the distances 

between the two mutations tested here (93 or 97 bases), a is likely an overestimate of the 

template switch rate in the actual mutant pool. By contrast, 13% of sequencing reads of GET1 T0 

sample encode double mutants. So, double mutants caused by template switching is < 0.6075% / 

13% = 4.67% of total double mutants. 

4.5.3 Deep sequencing of the competition populations from 13 genes in the YPD 

environment 

We resequenced the competition populations of 13 genes which have the most double 

mutants identified. In Chapter 2, we sequenced the competition populations of 21 genes on 

HiSeq2500. Resequencing was performed on NovaSeq. NovaSeq can generate 400 million read 

pairs in one lane while HiSeq2500 can produce 100 million read pairs in one lane. Consequently, 

the number of sequencing reads per genotype from NovaSeq was about 6.5 times that from 

HiSeq2500. In Results, we used the data from 6 of these 13 genes. 

4.5.4 Expression epistasis estimation 

The Relative Expression Level (REL) of the double mutants were estimated following the 

way described in Chapter 2. The expression epistasis is defined by λ = RELAB - RELARELB, 
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where RELAB is the relative expression of the double mutant, and RELA and RELB are the relative 

expression of the corresponding single mutants.   
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Figure 4-1. Experimental procedure of measuring the fitness of single mutants and double 
mutants. 
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Figure 4-2. Distributions of double mutant fitness and epistasis in YPD for the 6 genes. a-d, 
Distributions of fitness in YPD. e-h, Distributions of epistasis. The percentages not in the 
parentheses are the fractions of negative or positive epistasis based on the face values. The 
percentages in the parentheses are the fractions of significant negative or significant positive 
epistasis (P <0.05, t-test) 
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Figure 4-3. Comparison of epistasis between environments. Each dot is a double mutant. 
Purple dots are the mutants which have significantly different epistasis in the two environments 
compared (nominal P < 0.05, t-test), whereas yellow dots are the rest of the double mutants. The 
percentage in each quadrant shows the number of purple dots in the quadrant divided by the total 
number of dots in the panel. 
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Figure 4-4. Average fraction of mutation pairs that exhibited significant G×G×E for each 
environment pair of NN, NS and SS mutants (nomial P < 0.05, t-test).NN mutants have 
significantly more prevalent G×G×E interactions than NS and SS mutants. P-values above the 
bars are from paired t-tests. 
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Chapter 5 Conclusions  

In this concluding chapter, I will summarize my main findings of each chapter and 

discuss future directions. 

In Chapter 1, I discussed the discovery of the non-neutrality of synonymous mutations, 

biological processes that can be influenced by synonymous mutations, evidence supporting the 

non-neutrality of synonymous mutations from systematic fitness measurements, impacts of the 

non-neutrality of synonymous mutations on evolutionary studies, and epistasis. I also introduced 

the content of Chapters 2, 3, and 4. 

In Chapter 2, I created mutant libraries for 21 genes in yeast. In each gene, I randomly 

chose a 150-nt sequence and chemically synthesized 450 one-mutation-away variants. I replaced 

the wild-type 150-nt sequence with the variant sequences using two rounds of CRISPR/Cas9 

editing and measured the fitness effects of mutations by a sequencing-based method. I estimated 

the fitness of more than 8000 single mutants, including 1866 synonymous mutants. I found that 

the distribution of the fitness effects of synonymous mutations is similar to that of 

nonsynonymous mutations and that most synonymous mutations are nonneutral. I tested whether 

the fitness effects of synonymous mutations are due to their impacts on translation but did not 

find a significant signal. I proposed that synonymous mutations change mRNA level and thereby 

are nonneutral. I assessed this hypothesis by measuring the mRNA level of each mutant gene 

relative to that in the wild type. I found that mutations (either synonymous or nonsynonymous) 

decreasing the expression are likely to be deleterious and there is a significant correlation 

between fitness and expression level. This correlation was not seen in mutations with elevated 
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expression levels. Further, I found the expression level to be positively correlated with the codon 

adaptation index (Sharp & Li, 1987), which can be explained by the mutational effect on 

transcription (Zhou et al., 2016) or mRNA stability (Presnyak et al., 2015). To explain why dN/dS 

<<1 for most genes (Graur et al., 2016; Li, 1997; Nei & Kumar, 2000), I proposed a hypothesis 

that nonsynonymous mutations have larger across-environment fitness variation than 

synonymous mutations, making nonsynonymous mutations more likely than synonymous 

mutations to be purged in fluctuating environments. This hypothesis was supported by a 

simulation. I then measured the fitness effects of mutations in three additional environments. 

Indeed, I found that nonsynonymous mutations have higher fitness variations among the four 

environments than synonymous mutations. A simulation was then conducted to show that, dN/dS 

is lower for a population rotating among the four environments than for a population staying in 

any one of the four environments. 

There is a hypothesis that the fitness effects of synonymous mutations observed in 

Chapter 2 were due to CRISRP/Cas9 off-target editing or/and secondary mutations. I tested this 

hypothesis by sequencing the relevant genomes. In Chapter 3, I performed whole-genome 

sequencing of the BY4742 progenitor strain, wild-type control strain used in the competition, 21 

gene knockout strains, and ~28 mutant strains per gene. I did not find any CRISPR/Cas9 off-

target edits but found some secondary mutations. I identified seven genes with negligible effects 

of secondary mutations and found that all results in Chapter 2 hold for this set of seven genes. 

Future studies on the fitness effects of mutations should be more cautious of potential secondary 

mutations. 

In Chapter 4, I took advantage of the double mutants produced as a result of oligo 

synthesis errors and estimated intragenic epistasis between mutations in the four environments. 
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Apart from the epistasis between nonsynonymous mutations, I found substantial epistatic 

interaction between synonymous mutations. I found that 8.5% to 26.1% of epistatic interactions 

vary significantly between two environments. Nonsynonymous mutations displayed a higher 

prevalence of G×G×E interaction compared to synonymous mutations. 

Below, I discuss the implications and future directions derived from the results in 

Chapters 2 to 4. 

 Synonymous mutations have long been assumed to be neutral markers in population 

genetic estimation and conservation. However, I found that about three-quarters of synonymous 

mutations are non-neutral in 21 representative genes and synonymous mutations genetically 

interact with synonymous or nonsynonymous mutations. The invalidation of the assumption that 

synonymous mutations are neutral has broad impact on evolution. Effective population size (Ne) 

is usually calculated by dividing the genetic diversity (π) by 2μ (haploids) or 4μ (diploids), where 

μ is the neutral mutation rate. Genetic diversity is usually estimated based on the synonymous 

variants with the presumption that they are neutral in evolution. If many synonymous mutations 

are non-neutral, effective population size is underestimated. In conservation biology, effective 

population size is a critical parameter because it provides valuable insights into the genetic health 

of populations, which in turn affects their ability to adapt and survive in changing environments. 

If Ne is underestimated, it could necessitate a reevaluation of various conservation decisions. One 

potential solution to estimating genetic diversity is by considering noncoding variants instead of 

synonymous ones. However, a systemic yeast study revealed that variants affecting fitness are 

enriched in the noncoding regulatory regions (Sharon et al., 2018), complicating the use of these 

regions as neutral markers. Synonymous variants are regarded as neutral polymorphisms or 

substitutions in many selection tests, such as dN/dS test. The presence of non-neutral synonymous 
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mutations leads to the underestimation of the synonymous mutation rate. However, the dN/dS test 

can still be used to detect selection acting on protein sequences because, in addition to altering 

the protein sequence, nonsynonymous mutations affect fitness in the same ways as synonymous 

mutations do. 

In Chapter 2, I measured the fitness effects of single mutations in haploid yeast cells. 

Future studies can assess the mutational effects in heterozygous diploid cells and estimate the 

dominance of synonymous mutations Dominance is one of the most important genetic 

phenomena, discovered by Gregor Mendel in his classic garden pea experiments. Several models 

(Fisher, 1928; Kacser & Burns, 1981; Wright, 1934) have been proposed to explain the cause of 

dominance. Fisher suggested that dominance arises from natural selection for fitter heterozygotes 

(Fisher, 1928). Wright, on the other hand, proposed a physiological theory of dominance 

(Wright, 1934). In support of Wright’s theory, Kacser and Burns’ metabolic control theory 

(Kacser & Burns, 1981) predicts a negative correlation between selection coefficient (s) and 

dominance (h) among mutations of the same enzyme gene. Dominance measured in null mutants 

(Phadnis & Fry, 2005) of different genes is consistent with this prediction, but the prediction is 

actually about different mutations of the same (enzyme) gene. Hence, it is unclear whether the 

prediction is empirically supported. Furthermore, measuring the dominance of coding mutations 

helps understand the mechanisms of their fitness effects, because deleterious coding mutations 

are more likely to be recessive if they lower fitness mainly by reducing their physiological 

functions, but are more likely to be dominant if they reduce fitness mainly by creating 

cytotoxicity. In Chapter 2, I found that synonymous mutations could reduce the mRNA level and 

fitness. Because most genes are haplosufficient (Deutschbauer et al., 2005), such mutations are 

likely to be recessive.  By contrast, nonsynonymous mutations can change the protein sequence 
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and possibly create cytotoxicity. Thus, it is interesting to study whether synonymous mutations 

are more likely to be recessive than nonsynonymous mutations in heterozygotes. 

Our finding that many synonymous mutations are nonneutral in yeast suggests the 

possibility that synonymous mutations can be disease-causing in humans. A review paper (Sauna 

& Kimchi-Sarfaty, 2011) published in 2011 listed more than 30 diseases caused by synonymous 

mutations, and they were found by accident . In a survey (Chen et al., 2010) including the results 

of 2,113 GWAS studies and in a recent exome-sequencing GWAS study (Karczewski et al., 

2022) of nearly 400,000 humans in the UK Biobank, the contribution of synonymous mutations 

to disease is only slightly smaller than nonsynonymous mutations. I want to finish this paragraph 

with a case study (Bartoszewski et al., 2010) of cystic fibrosis. This disease is commonly caused 

by a 3-nt deletion in CFTR. This deletion causes the loss of one amino acid and a synonymous 

change. The loss of the amino acid has long been thought to be responsible for the disease, but 

the synonymous mutation results in a change in the mRNA structure and a decrease in the gene 

expression level. It is likely that the disease is actually caused by the synonymous change. 

I studied intragenic epistasis between two mutations, but epistasis can occur among more 

than two mutations (Li et al., 2016; Puchta et al., 2016; Sarkisyan et al., 2016). To study higher-

order epistasis, we may use the mutant oligo synthesis method that incorporates alternative bases 

(Li et al., 2016; Puchta et al., 2016). However, there are two limitations of this method. First, the 

longest oligos that can be synthesized are 200 nucleotides, but most genes are longer than 200 

bases, so it is difficult to study epistatic interactions in the whole gene. Second, the smallest 

fraction of alternative bases that can be incorporated at a site is 3%. Even if we come up with a 

method to synthesize a long gene, the expected number of mutations in a 1,000-nt gene is at least 
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10, which makes the results complicated to analyze. Considering these two limitations, we may 

first study high-order epistasis in short genes. 
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Appendix A: Supplementary Tables and Figures for Chapter 2 

Table A-1.  Primers used in the study. 

Primer name Sequence (These primers are used to delete the WT sequences) 

ADA2 Confirmation F TGCAGTTGATTAAAGGCGCA 

ADA2 Confirmation R AAATTCTAATCTGCCCGGCA 

ADA2 gRNA F GATCTGTTCCAAAAATTCATCTTGGTTTTAGAGCTAG 

ADA2 gRNA R CTAGCTCTAAAACCAAGATGAATTTTTGGAACA 

ADA2 HR F 

GGCAGGATATTGCTGACCATATAGGCAGCAGAGGCAAA

GAAGAAGTTAAGATGCGGGTAGAAGATTACGGAGG 

ADA2 HR R 

GAATTCTGTTTCAAATTCTAATCTGCCCGGCATAAACCC

CTGTACTTCATCCTCCGTAATCTTCTACCCGCAT 

ASC1 Confirmation F ACTGCTCCTTTGGTTTTCCT 

ASC1 Confirmation R TGTCCCAAGAAGCAGACAAA 

ASC1 gRNA F GATCGGTACCTTGGAAGGTCACAAGTTTTAGAGCTAG 

ASC1 gRNA R CTAGCTCTAAAACTTGTGACCTTCCAAGGTACC 

ASC1 HR F 

AAAATCCTTATAACACACTAAAGTAAATAAAGTGAAAA

ATGGCATCTAACATGCGGGTAGAAGATTACGGAGG 

ASC1 HR R 

GTAAGCACCGTCAGCAGTCAAAGTACAGTCTTGGACAA

TGTGACTGTGACCCTCCGTAATCTTCTACCCGCAT 

BFR1 Confirmation F TGCAGAAGCCAAGCAAAGAA 
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BFR1 Confirmation R AAGGCAGCACGTTTGTTGAA 

BFR1 gRNA F GATCAAAGTCTGTTGATGCTGACAGTTTTAGAGCTAG 

BFR1 gRNA R CTAGCTCTAAAACTGTCAGCATCAACAGACTTT 

BFR1 HR F 

CTGCAGAAGCCAAGCAAAGAATCAATGAGATTGAAGAG

TCTATTGCCTCTATGCGGGTAGAAGATTACGGAGG 

BFR1 HR R 

AGTTTTTGAATGGATATCGTTCAATTTTTGCTGGTTCTCT

TCGAATTGGTCCTCCGTAATCTTCTACCCGCAT 

BUD23 Confirmation F GCGTTGGAGCTTTTGAATCT 

BUD23 Confirmation R AACCTCATCAACCGCTGTTT 

BUD23 gRNA F GATCGGTCTTAGTAGAGAGCTGGAGTTTTAGAGCTAG 

BUD23 gRNA R CTAGCTCTAAAACTCCAGCTCTCTACTAAGACC 

BUD23 HR F 

TGGATATCGGGTGCGGGTCCGGACTGTCTGGGGAGATTT

TGACGCAGGAGATGCGGGTAGAAGATTACGGAGG 

BUD23 HR R 

TGTGTTGAAAAACCTCATCAACCGCTGTTTAGGATCGTT

GTATGAAGTGTCCTCCGTAATCTTCTACCCGCAT 

CCW12 Confirmation F AACGTTACCACTGCTACTGT 

CCW12 Confirmation R TTACAACAACAAAGCAGCGG 

CCW12 gRNA F GATCGATAACGTCATCGACGGTGAGTTTTAGAGCTAG 

CCW12 gRNA R CTAGCTCTAAAACTCACCGTCGATGACGTTATC 

CCW12 HR F 

TCGCCGCTGTCGCTTCTGCCGCTGCTAACGTTACCACTG

CTACTGTCAGCATGCGGGTAGAAGATTACGGAGG 

CCW12 HR R 

TGGAGCAGCAGAGGTGGTGTTCTTTGGAGCTTCAGTAGA

GGTAACTGGAGCCTCCGTAATCTTCTACCCGCAT 
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EOS1 Confirmation F TGAGCGAGCGACCTTTAAAA 

EOS1 Confirmation R ATTCAGACGCTCTTGCTGTA 

EOS1 gRNA F GATCTGGCTCGTAAAGCGTTATGCGTTTTAGAGCTAG 

EOS1 gRNA R CTAGCTCTAAAACGCATAACGCTTTACGAGCCA 

EOS1 HR F 

CCTTATGCAGGGACATATCCCTTTTACCGCCGTTAACTT

ACATCTTCACAATGCGGGTAGAAGATTACGGAGG 

EOS1 HR R 

GCAAAGGAGATATTCAGACGCTCTTGCTGTAGTGAGTGC

GGATAATAGGACCTCCGTAATCTTCTACCCGCAT 

EST1 Confirmation F ATCACGTTCAGATGCTTCCT 

EST1 Confirmation R TTTGCGCATAGGTGTTCGAT 

EST1 gRNA F GATCTGCTCAAACCATTGGAGTGTGTTTTAGAGCTAG 

EST1 gRNA R CTAGCTCTAAAACACACTCCAATGGTTTGAGCA 

EST1 HR F 

AAAATATGTACCATAATAACAATTACGAACGCATAAAT

GATTCCGTGATAATGCGGGTAGAAGATTACGGAGG 

EST1 HR R 

ATTTGAAATAACGGAATTCATATCGTACTTTGCGCATAG

GTGTTCGATGACCTCCGTAATCTTCTACCCGCAT 

GET1 Confirmation F AGGTCAAAGAACGTCACGAA 

GET1 Confirmation R TAACCAGCCTTGAGACCAAA 

GET1 gRNA F GATCTTTGTGAAGATGGGCCTGAAGTTTTAGAGCTAG 

GET1 gRNA R CTAGCTCTAAAACTTCAGGCCCATCTTCACAAA 

GET1 HR F 

GAATTAAAAGAATTCAACAACTCTATCTCCGCGCAGGAT

AATTATGCCAAATGCGGGTAGAAGATTACGGAGG 
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GET1 HR R 

ACACCACTTACAAACGTAGGGAACAAGGTGCTAGTCGA

GGAACTCAACTTCCTCCGTAATCTTCTACCCGCAT 

GIM5 Confirmation F TTCGACCAAGAATTGCAGCA 

GIM5 Confirmation R ATGCTGTCTAATAGCGGCTT 

GIM5 gRNA F GATCTCTGCATCATTATACATCCCGTTTTAGAGCTAG 

GIM5 gRNA R CTAGCTCTAAAACGGGATGTATAATGATGCAGA 

GIM5 HR F 

TTCGACCAAGAATTGCAGCATTTCACACAGTCCTTGCAA

GCATTAACCATATGCGGGTAGAAGATTACGGAGG 

GIM5 HR R 

TTGTTAAGCTTGTCTACTTTCTTTTGGTAAAATGCGATTG

CTGCTTCAGCCCTCCGTAATCTTCTACCCGCAT 

IES6 Confirmation F TGGGCGAACGCAATGAAATT 

IES6 Confirmation R TGCGTTGTGATACCGAATGT 

IES6 gRNA F GATCCAAGAAGACACAAATCAGCGGTTTTAGAGCTAG 

IES6 gRNA R CTAGCTCTAAAACCGCTGATTTGTGTCTTCTTG 

IES6 HR F 

ACGAGAGATTGCTGTTTCTAAGAAGCGTGGGCGAACGC

AATGAAATTGGCATGCGGGTAGAAGATTACGGAGG 

IES6 HR R 

AACATCGCAGTACTTCTTGGCAGGCCTGATAGACGGTGG

CGCTTCCACGCCCTCCGTAATCTTCTACCCGCAT 

LSM1 Confirmation F ACCAACATTTGCTCCGCTTT 

LSM1 Confirmation R TCTCCACGCAATCTTGAAGT 

LSM1 gRNA F GATCTACTGAGCTTACAATAGCAGGTTTTAGAGCTAG 

LSM1 gRNA R CTAGCTCTAAAACCTGCTATTGTAAGCTCAGTA 



 118 

LSM1 HR F 

CAAATAGCAAGGACAGAAATCAGTCCAATCAGGATGCG

AAGCGACAACAGATGCGGGTAGAAGATTACGGAGG 

LSM1 HR R 

GTATTTGTTTTCTTCGCTAAAATATATTCTCTCCACGCAA

TCTTGAAGTACCTCCGTAATCTTCTACCCGCAT 

PAF1 Confirmation F AGGTATGCCGGTTGATTTGA 

PAF1 Confirmation R TTCACCGGATGTTGCCATTT 

PAF1 gRNA F GATCATATTCGGTGCGTCTCAAGAGTTTTAGAGCTAG 

PAF1 gRNA R CTAGCTCTAAAACTCTTGAGACGCACCGAATAT 

PAF1 HR F 

AACTGCTTTACGGCTTTGATAATGTGAAATTGGACAAAG

ATGATCGAATTATGCGGGTAGAAGATTACGGAGG 

PAF1 HR R 

TTGCCATTTGTCCGTCTTATTGAATGTTCCTTCGACCCTA

CTAATTATATCCTCCGTAATCTTCTACCCGCAT 

PRS3 Confirmation F TCATCACGCAAATTGGCTCT 

PRS3 Confirmation R AACTACGCTTGGTTCTGCAT 

PRS3 gRNA F GATCATATGCAAGACAAGATAGAAGTTTTAGAGCTAG 

PRS3 gRNA R CTAGCTCTAAAACTTCTATCTTGTCTTGCATAT 

PRS3 HR F 

TCTTTATCATCACGCAAATTGGCTCTGGTGTCGTGAACG

ATCGTGTTCTAATGCGGGTAGAAGATTACGGAGG 

PRS3 HR R 

ATCTACTGGGACGTCGAAGAACCCTTGAATTTGGGAAG

CATGCAAATCCACCTCCGTAATCTTCTACCCGCAT 

RAD6 Confirmation F AACGTATGAAGGAAGATGCC 

RAD6 Confirmation R TTGCAGCTTCAACGTTTGCT 

RAD6 gRNA F GATCTCCGTCTTCATATGGAGTATGTTTTAGAGCTAG 
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RAD6 gRNA R CTAGCTCTAAAACATACTCCATATGAAGACGGA 

RAD6 HR F 

GAAGGTTGATGAGAGATTTTAAACGTATGAAGGAAGAT

GCCCCACCGGGTATGCGGGTAGAAGATTACGGAGG 

RAD6 HR R 

TGGAGTCCATCTGTTCTGCAAAATATCCAAACAAATTTC

ACCATTTGCATCCTCCGTAATCTTCTACCCGCAT 

RPL29 Confirmation F TCTGCGTACATTCATCGTCT 

RPL29 Confirmation R TGTGGCACATAAGGAGGAAA 

RPL29 gRNA F GATCCGCTCACAACCAAACCAGAAGTTTTAGAGCTAG 

RPL29 gRNA R CTAGCTCTAAAACTTCTGGTTTGGTTGTGAGCG 

RPL29 HR F 

GACCATTCGCAATTTCTGCGTACATTCATCGTCTTCTCCA

GAAAATGGCTATGCGGGTAGAAGATTACGGAGG 

RPL29 HR R 

AATCAGACAAAATAATATGTAAATTTTTAACGTATTATA

ATCTTAAAAAGCCTCCGTAATCTTCTACCCGCAT 

RPL39 Confirmation F TTGGATCCGTGAATGCATCA 

RPL39 Confirmation R AGGGAAGGATGGAAGACAAA 

RPL39 gRNA F GATCAAAACAGACCATTGCCACAAGTTTTAGAGCTAG 

RPL39 gRNA R CTAGCTCTAAAACTTGTGGCAATGGTCTGTTTT 

RPL39 HR F 

TTTACAATTGTACACTTCGTATGTGCACGATATGTTTCCC

TTTTAATTAGATGCGGGTAGAAGATTACGGAGG 

RPL39 HR R 

ATGGAAGACAAATGACAAAAAGTTTGAAGCATAAATAT

GTTCTTCGCTTACCTCCGTAATCTTCTACCCGCAT 

RPS7A Confirmation F ACTGCGTTAGAATCCTGGTA 

RPS7A Confirmation R TCGTCCCGTTCACACTTTTT 
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RPS7A gRNA F GATCTGAGACAAAATCTTGGCTTGGTTTTAGAGCTAG 

RPS7A gRNA R CTAGCTCTAAAACCAAGCCAAGATTTTGTCTCA 

RPS7A HR F 

ATCTTATTTTAAGAAAGCTGAAAGGAAGAAAGATCATC

ACGAACAACATGATGCGGGTAGAAGATTACGGAGG 

RPS7A HR R 

TCTGGTATCGTCCCGTTCACACTTTTTTCCTTTGTTACTC

TCCATTATTCCCTCCGTAATCTTCTACCCGCAT 

SNF6 Confirmation F TTCGCGGAGGAAAACAACTA 

SNF6 Confirmation R AACTCTGCCGCTTGTGTTTT 

SNF6 gRNA F GATCAGTTCTTCAAAAGGTTGGATGTTTTAGAGCTAG 

SNF6 gRNA R CTAGCTCTAAAACATCCAACCTTTTGAAGAACT 

SNF6 HR F 

GCTCCAGTGCCGGCATGAATGGCAGATCGCTTACGTACG

CGCAGCAACAGATGCGGGTAGAAGATTACGGAGG 

SNF6 HR R 

TTGCATGAGATATCTTATTGTTTTTTCACTGAACAATCTG

GACTTCTCAACCTCCGTAATCTTCTACCCGCAT 

TSR2 Confirmation F TTGCAACAGGAAGAAAGGTG 

TSR2 Confirmation R AAGCGGCGTCAACAACTTTT 

TSR2 gRNA F GATCATCCCACTTATAAATAACCAGTTTTAGAGCTAG 

TSR2 gRNA R CTAGCTCTAAAACTGGTTATTTATAAGTGGGAT 

TSR2 HR F 

GAACAATGAGCACACAATATATTGATGAGACAGCATTT

GTTCAGGCTGAGATGCGGGTAGAAGATTACGGAGG 

TSR2 HR R 

GAACAATGAGCACACAATATATTGATGAGACAGCATTT

GTTCAGGCTGAGATGCGGGTAGAAGATTACGGAGG 

VMA21 Confirmation F ATGTTCCTCGTGCGGTGATT 
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VMA21 Confirmation R GGTGCGTTGGAAAAATCAAC 

VMA21 gRNA F GATCGCTGTTTACTGCAGCGATGGGTTTTAGAGCTAG 

VMA21 gRNA R CTAGCTCTAAAACCCATCGCTGCAGTAAACAGC 

VMA21 HR F 

AAAGAATCAAATAATGGCTGTAGATGTTCCTCGTGCGGT

GATTAATAAACGACCTTACAGAGGTAATCGCCGG 

VMA21 HR R 

CAATCAGTCTTCCTTTTTATTACCATCAACTTTGTGATCT

TCAGTATCCTCCGGCGATTACCTCTGTAAGGTC 

VMA7 Confirmation F ACCAACGTGAATTGCAAGCA 

VMA7 Confirmation R AAATAGCAGGGAACGCATTG 

VMA7 gRNA F GATCAGAAGGTAAGACTACTAAGGGTTTTAGAGCTAG 

VMA7 gRNA R CTAGCTCTAAAACCCTTAGTAGTCTTACCTTCT 

VMA7 HR F 

TGGCTGAGAAACGTACTCTTATAGCTGTGATAGCTGACG

AAGATACTACAATGCGGGTAGAAGATTACGGAGG 

VMA7 HR R 

TAAAATAGCAGGGAACGCATTGGTGAAGGAGTCCACTC

TAGCTCTTATGTCCTCCGTAATCTTCTACCCGCAT 
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(Continued) 

Primer name 

Sequence (sequences within parentheses were mutated. The unmutated flanking 

regions were used as the primer binding sites. All oligos were synthesized in a 

pool.) 

ADA2 

CAGCAGAGGCAAAGAAGAAGTTAAG(GAACATTACCTAAAATATTA

TCTGGAAAGCAAATACTATCCAATACCTGATATTACCCAAAATATA

CATGTCCCACAAGATGAATTTTTGGAACAGCGAAGGCATAGAATCG

AGTCCTTCCGGGAGAGGCCGCTAGAGCCTCCAAGAAAG)CCCATGG

CATCGGTTCCTAGCTGCC 

ASC1 

AATAAAGTGAAAAATGGCATCTAAC(GAAGTTTTAGTTTTGAGAGG

TACCTTGGAAGGTCACAACGGTTGGGTCACATCTTTGGCTACTTCT

GCTGGTCAACCAAACCTATTGTTGTCCGCTTCCCGTGATAAGACTTT

GATCTCCTGGAAGTTGACTGGTGACGACCAAAAGTTT)GGTGTCCC

AGTTAGATCTTTCAAGG 

BFR1 

TGAGATTGAAGAGTCTATTGCCTCT(GGTGACCTTTCTTTGGTTCAA

GAAAAACTACTAGTCAAAGAAATGCAATCTTTGAACAAATTGATTA

AGGACTTAGTTAACATCGAGCCAATCAGAAAGTCTGTTGATGCTGA

CAAGGCTAAAATCAATCAATTGAAGGAAGAATTGAAC)GGATTGAA

TCCAAAGGATGTCTCCA 

BUD23 

GTCTGGGGAGATTTTGACGCAGGAG(GGAGACCATGTGTGGTGTGG

TTTGGATATATCGCCCAGCATGCTTGCGACCGGTCTTAGTAGAGAG

CTGGAGGGCGACTTGATGTTGCAGGATATGGGCACCGGGATACCGT
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TCCGGGCGGGCTCGTTTGACGCGGCTATTAGTATCAGT)GCGATCCA

ATGGCTGTGCAATGCGG 

CCW12 

TAACGTTACCACTGCTACTGTCAGC(CAAGAATCTACCACTTTGGTC

ACCATCACTTCTTGTGAAGACCACGTCTGTTCTGAAACTGTCTCCCC

AGCTTTGGTTTCCACCGCTACCGTCACCGTCGATGACGTTATCACTC

AATACACCACCTGGTGCCCATTGACCACTGAAGCC)CCAAAGAACG

GTACTTCTACTGCTG 

EOS1 

ACCGCCGTTAACTTACATCTTCACA(TCTCTGCGGAAGGCTTGGAGA

GTCTCCATGCGCACCAGCATAACGCTTTACGAGCCACAATCACTAA

GAGATGCGTTCACTTATTTCTGGCAAAAACTCAATAGCGCTTACGA

CAATAACTCATCATTTGAAGGAGCTTCGCAAAAGGCT)GTGAATGG

CGACGGTAAGGATTCAC 

EST1 

CGAACGCATAAATGATTCCGTGATA(CCATTGGTTCTGAAACTTTTA

TGGCTTCAAATTCACGAACCTACACTCCAATGGTTTGAGCACTGGT

TCCATGATATCATGCGACTAAGTAACAGAAGAAAGTTCAGAGTTTT

TAGAATTTTTCAAAAAAAAATGATTCAATTTTTCAAA)ATTACACAC

AGGTATTACTATGACA 

GET1 

TCTCCGCGCAGGATAATTATGCCAA(ATGGACTAAGAACAATAGAA

AATTGGACTCGTTAGATAAAGAAATAAATAACTTGAAGGACGAAA

TACAATCAGAAAATAAAGCCTTTCAGGCCCATCTTCACAAACTCAG

GTTATTGGCATTGACGGTGCCATTTTTTGTGTTTAAGAT)TATGTAC

GGCAAGACACCAGTTTAC 



 124 

GIM5 

CACAGTCCTTGCAAGCATTAACCAT(GGCTAAGGGCAAGTTCACAG

AATGTATTGATGATATTAAAACAGTCTCCCAAGCAGGAAATGAAG

GGCAAAAACTACTGGTTCCAGCATCTGCATCATTATACATCCCAGG

TAAGATTGTAGACAATAAGAAATTCATGGTCGACATTGG)TACAGG

ATATTACGTTGAAAAGAGC 

IES6 

CGTGGGCGAACGCAATGAAATTGGC(TTTCCCTCTAGATTCAAGTCG

GCGCATTACAAGAAACCGACAAGAAGACACAAATCAGCGAGGCAG

TTGATCTCGGACGAAAACAAGCGGATCAACGCCTTGTTGACCAAGG

CTAACAAAGCTGCAGAGAGTTCTACTGCTGCTAGGCGA)CTTGTGC

CCAAAGCGACGTACTTTA 

LSM1 

CAATCAGGATGCGAAGCGACAACAG(CAGAATTTCCCAAAGAAGAT

TTCAGAAGGTGAGGCCGATTTATATCTCGACCAGTATAACTTCACT

ACCACCGCTGCTATTGTAAGCTCAGTAGACCGTAAAATCTTCGTTC

TTTTGCGTGATGGAAGAATGCTATTCGGTGTACTAAGA)ACCTTTGA

CCAATATGCAAATTTGA 

PAF1 

GAAATTGGACAAAGATGATCGAATT(TTACTGAGGGACCCTAGAAT

AGATAGACTGACCAAGACTGATATATCAAAGGTTACCTTCTTGAGA

CGCACCGAATATGTCTCCAATACAATTGCAGCCCATGATAACACAT

CGTTGAAAAGGAAAAGGCGCTTGGATGATGGAGATTCG)GATGATG

AAAACCTTGATGTTAATC 

PRS3 

TGGTGTCGTGAACGATCGTGTTCTA(GAACTACTGATCATGATCAAT

GCTTCGAAGACTGCGTCTGCAAGAAGAATCACTGCTATTATTCCAA

ATTTCCCATATGCAAGACAAGATAGAAAGGATAAGTCTCGTGCTCC
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TATTACCGCTAAATTGATGGCCGATATGTTAACAACA)GCCGGGTGT

GATCATGTTATTACTA 

RAD6 

TATGAAGGAAGATGCCCCACCGGGT(GTATCTGCTTCACCATTACCT

GATAACGTCATGGTATGGAACGCCATGATTATCGGGCCAGCCGATA

CTCCATATGAAGACGGAACTTTTAGGTTATTGTTGGAGTTTGATGA

AGAATATCCCAATAAGCCACCGCATGTCAAATTTTTG)AGTGAAAT

GTTTCATCCCAATGTCT 

RPL29 

TCATCGTCTTCTCCAGAAAATGGCT(AAGTCTAAGAACCATACCGCT

CACAACCAAACCAGAAAGGCTCACAGAAACGGTATCAAGAAGCCA

AAGACCTACAAGTACCCTTCTTTGAAAGGTGTTGATCCAAAGTTTA

GAAGAAACCACAAGCATGCCCTACACGGCACTGCTAAG)GCTTTGG

CTGCTGCCAAGAAATAAA 

RPL39 

GCACGATATGTTTCCCTTTTAATTAG(GCTCAAAAGTCTTTCAGAAT

CAAGCAAAAAATGGCTAAGGCTAAGAAGCAAAACAGACCATTGCC

ACAATGGATCAGATTGAGAACCAACAACACTATCCGTTACAACGCT

AAGAGAAGAAACTGGAGAAGAACCAAGATGAACATC)TAAGCGAA

GAACATATTTATGCTTCAA 

RPS7A 

AAAGGAAGAAAGATCATCACGAACAACATG(TCTGCTCCACAAGCC

AAGATTTTGTCTCAAGCTCCAACTGAATTGGAATTACAAGTTGCTC

AAGCTTTCGTTGAATTGGAAAATTCTTCTCCAGAATTGAAAGCTGA

GTTGAGACCTTTGCAATTCAAGTCCATCAGAGAA)GTATGTTATTAA

TTTGAATCTAAACTTAA 
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SNF6 

ATCGCTTACGTACGCGCAGCAACAG(CTTAATAAGCAAAGACAGGA

CTTCGAACGTGTACGACTTAGACCAGAACAGCTCAGCAATATCATA

CATGACGAGAGCGACACGATATCGTTCCGATCCAACCTTTTGAAGA

ACTTTATAAGCTCGAACGACGCATTTAACATGCTGAGT)TTGACCAC

GGTACCGTGCGACAGAA 

VMA21 

GTTCCTCGTGCGGTGATTAATAAAC(TTATGCTGTTTACTGCAGCGA

TGGTGGTACTGCCCGTACTCACTTTTTTCATTATTCAGCAATTTACG

CCAAATACCTTAATTAGTGGAGGTTTAGCTGCTGCAATGGCCAATG

TTGTTCTAATCGTTTACATTGTTGTAGCGTTCCGCG)AGGATACTGA

AGATCACAAAGTTGA 

TSR2 

TGAGACAGCATTTGTTCAGGCTGAG(CAAGGTAAAACCAATCTAAT

GTTCTCTGACGAAAAGCAACAGGCACGTTTTGAGCTCGGTGTTTCC

ATGGTTATTTATAAGTGGGATGCGTTGGATGTTGCCGTAGAAAACA

GTTGGGGTGGTCCAGACTCAGCTGAGAAGAGAGACTGG)ATTACAG

GGATTGTAGTAGACCTTT 

VMA7 

TGTGATAGCTGACGAAGATACTACA(ACTGGTTTATTGTTAGCCGGG

ATTGGACAAATCACTCCTGAAACCCAAGAAAAGAACTTTTTTGTTT

ACCAAGAAGGTAAGACTACTAAGGAGGAAATCACTGACAAGTTTA

ATCACTTTACTGAAGAGAGAGACGATATTGCCATCCTT)CTAATCAA

CCAACATATCGCGGAAA 

  



 127 

(Continued) 

Primer name 

Sequence (Amp F and Amp R were used to amplify the mutant oligos from 

the mutant oligo pool.) 

ADA2 amp F 

GGCAGGATATTGCTGACCATATAGGCAGCAGAGGCAAAGAAGAA

GTTAAG 

ADA2 amp R 

GAATTCTGTTTCAAATTCTAATCTGCCCGGCATAAACCCCTGTAC

TTCATGGCAGCTAGGAACCGATGCCATGGG 

ASC1 amp F 

AAAATCCTTATAACACACTAAAGTAAATAAAGTGAAAAATGGCA

TCTAAC 

ASC1 amp R 

GTAAGCACCGTCAGCAGTCAAAGTACAGTCTTGGACAATGTGAC

TGTGACCCTTGAAAGATCTAACTGGGACACC 

BFR1 amp F 

CTGCAGAAGCCAAGCAAAGAATCAATGAGATTGAAGAGTCTATT

GCCTCT 

BFR1 amp R 

AGTTTTTGAATGGATATCGTTCAATTTTTGCTGGTTCTCTTCGAAT

TGGTTGGAGACATCCTTTGGATTCAATCC 

BUD23 amp F 

TGGATATCGGGTGCGGGTCCGGACTGTCTGGGGAGATTTTGACGC

AGGAG 

BUD23 amp R 

TGTGTTGAAAAACCTCATCAACCGCTGTTTAGGATCGTTGTATGA

AGTGTCCGCATTGCACAGCCATTGGATCGC 

CCW12 amp F 

TCGCCGCTGTCGCTTCTGCCGCTGCTAACGTTACCACTGCTACTGT

CAGC 

CCW12 amp R 

TGGAGCAGCAGAGGTGGTGTTCTTTGGAGCTTCAGTAGAGGTAA

CTGGAGCAGCAGTAGAAGTACCGTTCTTTGG 
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EOS1 amp F 

CCTTATGCAGGGACATATCCCTTTTACCGCCGTTAACTTACATCTT

CACA 

EOS1 amp R 

GCAAAGGAGATATTCAGACGCTCTTGCTGTAGTGAGTGCGGATA

ATAGGAGTGAATCCTTACCGTCGCCATTCAC 

EST1 amp F 

AAAATATGTACCATAATAACAATTACGAACGCATAAATGATTCC

GTGATA 

EST1 amp R 

ATTTGAAATAACGGAATTCATATCGTACTTTGCGCATAGGTGTTC

GATGATGTCATAGTAATACCTGTGTGTAAT 

GET1 amp F 

GAATTAAAAGAATTCAACAACTCTATCTCCGCGCAGGATAATTAT

GCCAA 

GET1 amp R 

ACACCACTTACAAACGTAGGGAACAAGGTGCTAGTCGAGGAACT

CAACTTGTAAACTGGTGTCTTGCCGTACATA 

GIM5 amp F 

TTCGACCAAGAATTGCAGCATTTCACACAGTCCTTGCAAGCATTA

ACCAT 

GIM5 amp R 

TTGTTAAGCTTGTCTACTTTCTTTTGGTAAAATGCGATTGCTGCTT

CAGCGCTCTTTTCAACGTAATATCCTGTA 

IES6 amp F 

ACGAGAGATTGCTGTTTCTAAGAAGCGTGGGCGAACGCAATGAA

ATTGGC 

IES6 amp R 

AACATCGCAGTACTTCTTGGCAGGCCTGATAGACGGTGGCGCTTC

CACGCTAAAGTACGTCGCTTTGGGCACAAG 

LSM1 amp F 

CAAATAGCAAGGACAGAAATCAGTCCAATCAGGATGCGAAGCGA

CAACAG 
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LSM1 amp R 

GTATTTGTTTTCTTCGCTAAAATATATTCTCTCCACGCAATCTTGA

AGTATCAAATTTGCATATTGGTCAAAGGT 

PAF1 amp F 

AACTGCTTTACGGCTTTGATAATGTGAAATTGGACAAAGATGATC

GAATT 

PAF1 amp R 

TTGCCATTTGTCCGTCTTATTGAATGTTCCTTCGACCCTACTAATT

ATATGATTAACATCAAGGTTTTCATCATC 

PRS3 amp F 

TCTTTATCATCACGCAAATTGGCTCTGGTGTCGTGAACGATCGTG

TTCTA 

PRS3 amp R 

ATCTACTGGGACGTCGAAGAACCCTTGAATTTGGGAAGCATGCA

AATCCATAGTAATAACATGATCACACCCGGC 

RAD6 amp F 

GAAGGTTGATGAGAGATTTTAAACGTATGAAGGAAGATGCCCCA

CCGGGT 

RAD6 amp R 

TGGAGTCCATCTGTTCTGCAAAATATCCAAACAAATTTCACCATT

TGCATAGACATTGGGATGAAACATTTCACT 

RPL29 amp F 

GACCATTCGCAATTTCTGCGTACATTCATCGTCTTCTCCAGAAAA

TGGCT 

RPL29 amp R 

AATCAGACAAAATAATATGTAAATTTTTAACGTATTATAATCTTA

AAAAGTTTATTTCTTGGCAGCAGCCAAAGC 

RPL39 amp F 

TTTACAATTGTACACTTCGTATGTGCACGATATGTTTCCCTTTTAA

TTAG 

RPL39 amp R 

TACATATATATTGAGAATAAGGGAAGGATGGAAGACAAATGACA

AAAAGTTTGAAGCATAAATATGTTCTTCGCTTA 
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RPS7A amp F 

ATCTTATTTTAAGAAAGCTGAAAGGAAGAAAGATCATCACGAAC

AACATG 

RPS7A amp R 

TCTGGTATCGTCCCGTTCACACTTTTTTCCTTTGTTACTCTCCATTA

TTCTTAAGTTTAGATTCAAATTAATAACATAC 

SNF6 amp F 

GCTCCAGTGCCGGCATGAATGGCAGATCGCTTACGTACGCGCAG

CAACAG 

SNF6 amp R 

TTGCATGAGATATCTTATTGTTTTTTCACTGAACAATCTGGACTTC

TCAATTCTGTCGCACGGTACCGTGGTCAA 

TSR2 amp F 

GAACAATGAGCACACAATATATTGATGAGACAGCATTTGTTCAG

GCTGAG 

TSR2 amp R 

AAGTAACGTTTCTTCGATTAAAGCGGCGTCAACAACTTTTTCATT

TTTGAAAAGGTCTACTACAATCCCTGTAAT 

VMA21 amp F 

AAAGAATCAAATAATGGCTGTAGATGTTCCTCGTGCGGTGATTAA

TAAAC 

VMA21 amp R 

TTCTCTTCTAGCAACATATACTACTCAATCAGTCTTCCTTTTTATT

ACCATCAACTTTGTGATCTTCAGTATCCT 

VMA7 amp F 

TGGCTGAGAAACGTACTCTTATAGCTGTGATAGCTGACGAAGAT

ACTACA 

VMA7 amp R 

TAAAATAGCAGGGAACGCATTGGTGAAGGAGTCCACTCTAGCTC

TTATGTTTTCCGCGATATGTTGGTTGATTAG 
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(Continued) 

Primer name 

Sequence (these primers were used for gene-specific reverve 

treanscription.) 

ADA2_RT_R AACCCCTGTACTTCATGGCA 

ASC1_RT_R AATGTGACTGTGACCCTTGA 

BFR1_RT_R GGTTGGAGACATCCTTTGGA 

BUD23_RT_R ATCGTTGTATGAAGTGTCCG 

CCW12_RT_R ACTGGAGCAGCAGTAGAAGT 

EOS1_RT_R TGAGTGCGGATAATAGGAGT 

EST1_RT_R AGGTGTTCGATGATGTCATAG 

GET1_RT_R AGTCGAGGAACTCAACTTGT 

GIM5_RT_R TGCTTCAGCGCTCTTTTCAA 

IES6_RT_R TTCCACGCTAAAGTACGTCG 

LSM1_RT_R ATTCTCTCCACGCAATCTTG 

PAF1_RT_R TGAATGTTCCTTCGACCCTA 

PRS3_RT_R ACCCTTGAATTTGGGAAGCATG 

RAD6_RT_R TGTTGGAGTCCATCTGTTCT 

RPL29_RT_R TTCTTGGCAGCAGCCAAAGC 

RPL39_RT_R GAAGCATAAATATGTTCTTCGCTT 

RPS7A_RT_R TTACCACCAGCAACGTCGAT 

SNF6_RT_R TCACTGAACAATCTGGACTTC 

TSR2_RT_R TCTTCGATTAAAGCGGCGTC 

VMA21_RT_R TACCATCAACTTTGTGATCTTC 
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VMA7_RT_R AGGAGTCCACTCTAGCTCTT 
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Fig. A-1. Respiration function of mutant cells. a. Experimental procedure for testing cellular 
respiratory functions. Cells from each of the 21 mutant libraries were spread on YPD and YPG 
plates, followed by colony counting after growth. Respiration is needed for cell growth on YPG 
but not on YPD. b. Mean ratio of YPD colony number to YPG colony number for each mutant 
library, based on three replicates per library. Error bars show the standard error of the mean. The 
negative control is deficient in respiration due to gene deletions (see Methods). 
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Fig. A- 2. The maximum growth rates of three reconstituted wild-type strains and BY4742. 
WT1 was used as the wild-type control in en masse competitions with mutants. Error bar shows 
the standard error of the mean based on eight replicates. P-values are from t-tests. The growth 
rate is not significantly different among the four strains (P = 0.58, one-factor ANOVA test). 
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Fig. A- 3.Ploidy of one T48 population per mutant library assessed by flow cytometry. 
SYTOX Green fluorescence was analyzed using the BL2 detector that measured the output from 
the 488-nm laser (blue). In control flow cytometry profiles, the two peaks respectively represent 
cells in the G1 and G2/M cell-cycle stages (1C and 2C DNA content for haploids while 2C and 
4C for diploids).  
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Fig. A-4. Fractions of synonymous (yellow) and nonsynonymous (blue) mutants among 
designed but unobserved mutants and those among observed mutants. Nonsense mutants are 
not considered. Numbers in the bars are numbers of mutants. The distributions of synonymous 
and nonsynonymous mutants among the unobserved and observed mutant groups are not 
significantly different (P > 0.05, Fisher’s exact test).  
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Fig. A-5. Correlation between every two of the four replicates in estimated mutant fitness 
under YPD at 30°C. The correlation between replicate 1 and replicate 2 is presented in Fig. 1c. 
Each dot is a mutant and the dotted line indicates the diagonal. Pearson’s correlation r and its 
associated P-value are presented. Among-genotype sum of squares explains 93.8% of the total 
sum of squares (one-factor ANOVA). 
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Fig. A-6. Distribution of the fitness of 169 nonsense mutants under YPD at 30°C. The peak 
around 0.94 is caused by 26 nonsense mutants of GET1 that all have fitness of about 0.94. 
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Fig. A-7. Cumulative frequency distributions of log10(mutant fitness) of nonsynonymous 
(blue) and synonymous (yellow) mutants. 
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Fig. A- 8. The full figure of Fig. 2c, including low-fitness mutants that are not shown in Fig. 
2c. 
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Fig. A-9. The full figure of Fig. 1-2e, including low-fitness and high-fitness mutants that are 
not shown in Fig. 1-2e. 
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Fig. A-10. Correlation in mutant REL between replicates.Each dot is a mutant, and the dotted 
line indicates the diagonal. Pearson’s correlation r and its associated P-value are presented.  
Among-genotype sum of squares explains 89.7% of total sum of squares (one-factor ANOVA). 
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Fig. A-11. Cumulative frequency distributions of REL of nonsynonymous and synonymous 
mutants. 
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Fig. A-12. Relative expression level (REL) distributions of nonsynonymous (blue) and 
synonymous (yellow) mutants of 20 individual genes shown by box plots. Nonsynonymous 
and synonymous distributions of each gene are compared by a Wilcoxon rank-sum test, with 
FDR-adjusted P-values indicated as follows: *, P < 0.05; ⁑, P < 0.01, ⁂, P < 0.001. 
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Fig. A-13. Distribution of REL of nonsense mutants. 
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Fig. A-14. Coding mutations within and outside TF-binding sites cause similar absolute 
fractional changes in the mRNA level shown by box plots. a, Nonsynonymous mutations. b, 
Synonymous mutations. P-values are from Wilcoxon rank-sum tests. 
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Fig. A-15. Positive correlation between rCAI and rescaled fitness among nonsynonymous 
and synonymous mutants, respectively. 
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Fig. A-16. Positive correlation between the relative mRNA folding strength (rMFS) of a 
mutant and its rescaled fitness when rMFS is below 1. The rMFS of a mutant is its mRNA 
folding strength (i.e., the absolute value of its minimal folding energy) divided by that of the 
wild-type. In each panel, the correlation is separately computed for mutants with rMFS <1 and 
those with rMFS >1. a, Nonsynonymous mutants. b, Synonymous mutants. Spearman’s 
correlation (ρ) and associated P-value are presented.  
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Fig. A-17. Simulation confirms the outcome of dN/dS <<1 when the number of environments 
increases and the across-environment fitness CV is higher for nonsynonymous than 
synonymous mutants. A mutant is purged if its fitness is lower than a preset cutoff such as 0.98 
or 0.99 in any environment. The shaded area is the 95% confidence interval. a. Results with CV 
= 0.004 for synonymous mutants. b, Results with CV = 0.005 for synonymous mutants. Note 
that, under the fitness cutoff of 0.99, dN/dS starts to increase with the number (m) of 
environments when m is large. Raising m reduces the fraction of synonymous mutations that are 
always neutral (FANS) as well as the fraction of nonsynonymous mutations that are always 
neural (FANN). Because the fitness CV is larger for nonsynonymous than synonymous mutants in 
the simulation, FANN decreases with m more quickly than does FANS when m is small. When m 
is large, FANN is small, making it possible for FANS to decrease with m more quickly than FANN. 
As a result, dN/dS might increase with m when m is large.  
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Fig. A-18. Correlation between every two of the three replicates in estimated mutant fitness 
under SC at 37°C. Each dot is a mutant and the dotted line indicates the diagonal. Pearson’s correlation r and 
its associated P-value are presented. Among-genotype sum of squares explains 96.1% of the total sum of squares 
(one-factor ANOVA). 
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Fig. A-19. Correlation between every two of the three replicates in estimated mutant fitness 
under YPD + 0.375 mM H2O2. Each dot is a mutant and the dotted line indicates the diagonal.  
Pearson’s correlation r and its associated P-value are presented. Among-genotype sum of 
squares explains 94.4% of the total sum of squares (one-factor ANOVA). 
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Fig. A-20. Correlation between every two of the three replicates in estimated mutant fitness 
under YPE. Each dot is a mutant and the dotted line indicates the diagonal. Pearson’s 
correlation r and its associated P-value are presented. a, Correlation between replicates 1 and 2. 
b, Correlation between replicates 1 and 3. c, Correlation between replicates 2 and 3. d, 
Correlation between replicates 1 and 3 after excluding SNF6 mutants. e, Correlation between 
replicates 2 and 3 after excluding SNF6 mutants. These data suggest that the fitness estimates of 
SNF6 mutants in replicate 3 are unreliable, so are unused in fitness estimation. When SNF6 is 
excluded, among-genotype sum of squares explains 91.0% of the total sum of squares (one-
factor ANOVA). 
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Fig. A-21. Fractions of synonymous (yellow) and nonsynonymous (blue) mutants among 
designed but unobserved mutants and those among observed mutants in each of the three 
additional environments tested. Nonsense mutants are not considered. Numbers in the bars are 
numbers of mutants. The distributions of synonymous and nonsynonymous mutants among the 
unobserved and observed mutant groups are not significantly different in each environment (P > 
0.05, Fisher’s exact test).  
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Fig. A-22. Cumulative frequency distributions of fitness of nonsynonymous and 
synonymous mutants in the three additional environments tested. 
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Fig. A-23. Fitness distributions of nonsynonymous (blue) and synonymous (yellow) mutants 
of 19 individual genes shown by box plots in each of the three additional environments 
tested. Nonsynonymous and synonymous distributions for each gene are compared by a 
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Wilcoxon sum-rank test, with the FDR-adjusted P-value indicated as follows: *, P < 0.05; ⁑, P < 
0.01, ⁂, P < 0.001. 
  



 157 

 

Fig. A-24. Fractions of mutants with fitness significantly below 1 (P <0.05), significantly 
above 1, and neither, respectively, in the three additional environments tested. The 
distributional difference between synonymous and nonsynonymous mutants among the three 
bins is tested by Fisher’s exact test, with the P-value indicated. At FDR = 0.05, 40.7% and 0.7% 
of nonsynonymous mutations and 34.8% and 0.5% of synonymous mutations are significantly 
deleterious and beneficial, respectively, in SC+37°C. These values become 35.5%, 1.7%, 31.9% 
and 1.6% in YPD+H2O2, and 47.6%, 1.4%, 45.6%, and 1.0% in YPE. 
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Fig. A-25. Fractions of nonsynonymous (blue) and synonymous (yellow) neutral mutations 
in one environment (indicated on the X-axis) that become deleterious in any of the other 
three environments. The fractions are higher for nonsynonymous than synonymous mutations (P <0.05, paired 
t-test). A mutation is considered deleterious if its fitness is significantly lower than 1 (P <0.05) and neutral if its 
fitness is not significantly different from 1. 
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Appendix B: Supplementary Tables and Figures for Chapter 3 

 

Fig. B-1. The full figure of Fig. 3-3d, including low-fitness and high-fitness mutants that are 
not shown in Fig. 3-3d. 
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Appendix C: Supplementary Tables and Figures for Chapter 4 

 

Fig. C-1.Correlation between every two of the four replicates in estimated double mutant 
fitness under YPD at 30°C. Each dot is a mutant and the dotted line indicates the diagonal. 
Pearson’s correlation r and its associated P-value are presented. 
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Fig. C-2. Distribution of epistasis in the three environments. a, SC + 37°C. b, YPD + 0.375 
mM H2O2. C, YPE. The percentages are the fractions of negative or positive epistasis. 
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Fig. C-3. Correlations between expression epistasis and fitness epistasis in YPD. a, All 
double mutants. b, Double nonsynonymous mutants. c, Double nonsynonymous synonymous 
mutants. d, Double synonymous mutants 
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