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ABSTRACT

We study the convergence of certain classes of complex geometric measures to certain non-
Archimedean measures. This convergence takes place on the non-Archimedean hybrid space
introduced by Boucksom and Jonsson.

Given a family X of complex analytic spaces parametrized by the punctured unit complex
disk, the hybrid space associated to this family is a partial compactification of this family
obtained by filling in the puncture with the Berkovich analytification of X. The topology
of the hybrid space is given by local logarithmic convergence. Furthermore, if each of the
complex analytic spaces in the family carry a natural measure, we can think of these measures
as being supported on the hybrid space, then their weak limit is a measure supported on the
Berkovich space.

First, we study the convergence of volume forms on a degenerating holomorphic family
of log Calabi—Yau varieties, extending a result of Boucksom and Jonsson. More precisely,
let (X, B) be a holomorphic family of sub log canonical, log Calabi-Yau complex varieties
parameterized by the punctured unit disk. Let n be a meromorphic form on X with poles
along B such that the restriction of 7 is a top-dimensional form on each of the fibers. We
show that the (possibly infinite) measures induced by the restriction of |n A 7| to a fiber
weakly converge to a measure on the Berkovich analytification of X \ B as we approach the
puncture. The limit measure is a sum of suitably normalized Lebesgue measures supported
on certain skeletal subsets of the Berkovich space.

Secondly, we prove a folklore conjecture that the Bergman measures along a holomorphic

viii



family of curves parametrized by the punctured unit disk weakly converge to the Zhang
measure on the associated Berkovich space. We also study the convergence of the Bergman

measures to a measure on a metrized curve complex in the sense of Amini and Baker.
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CHAPTER I

Introduction

I.1: Non-archimedean geometry

I1.1.1: Valued fields

Let k be a field. Algebraic geometry is the study of varieties over k, which are spaces defined
by the zero sets polynomials in k. In this section, we briefly discuss how additional structures
on k gives rise to a richer theory.

A multiplicative norm on k is a function | - | : £ — R that satisfies
e |z| =0 if and only if z =0,

o [zy| = |z|lyl, and

e (Triangle inequality) | + y| < |z| + |y|.

A valued field is a field k equipped with a multiplicative norm. Some examples of valued

fields are as follows

e (R,|-|) Real numbers equipped with the usual absolute value

T ifx>0

—x ifx<0



e (C,|-|) Complex numbers equipped with the usual absolute value
|z +iy| = Va? + y?

e (k,|-|o) Any field equipped with the trivial norm.

1 ifz#£0

|5L“|0=
0 ifz=0

e (Q,||p): the rational numbers equipped with the p-adic norm for some prime number

b,

i
pbp_p 9

where we write a rational number in the form p™¢, where m € Z and a, b are integers

that are not divisible by p.

o k((t), the field of formal Laurent series over k equipped with the norm given by the
vanishing order at 0. The field k() is the fraction field of the ring of formal power

series over k and is given by

ai:OforZ'<<O}.

k() = {f =3 ar

1=—00

m

The vanishing order norm is given by |f| = e™™, where m € Z is such that a; = 0 for

all # <m and a,, # 0.

1.1.2: Archimedean fields and complex analytification

A valued field is said to satisfy the Archimedean property if for any non-zero x € k, there
exists an n € N such that

lz+---+x|>1.
—_—

n times

2



Among the examples above, we see that only (R, |-|) and (C, |-|) satisfy the Archimedean

property. We have a characterization of all fields that satisfy the Archimedean property.

Theorem I.1. (Ostrowski) Any Archimedean field is a sub-field of C i.e. if (k,|-]) is an
Archimedean field, then there exists an embedding & C C such that the norm on £ is the

restriction of the usual absolute value on C.

Thus, we see that C is essentially the only Archimedean field. We briefly discuss the ge-
ometry over C. Serre defined the analytification functor which associates a complex analytic
space to a variety over C | ]. The complex analytic space captures the “finer” details of
the geometry (for example, we can look at all holomorphic functions instead of just polyno-
mial functions). The analytification functor acts as a bridge between algebraic geometry and
complex analysis, and opens up the door to using analytic techniques in algebraic geometry.

For example, we get comparisons between algebraic and analytic cohomologies.

1.1.3: Non-Archimedean analytification theories

A valued field that does not satisfy the Archimedean property is called as a non-Archimedean
field. Some examples of non-Archimedean fields are trivially valued fields, p-adic numbers,
and the Laurent series.

It is easy to see that non-Archimedean fields satisfy a stronger version of triangle inequal-

ity, called the ultrametric triangle inequality:

|z + y| < max(|z|,|y|) for all z,y € k.

The ultrametric triangle inequality leads to interesting non-intuitive geometric properties
of non-Archimedean fields — for example, all triangles are isosceles and any interior point of
a disk is also a center of the disk.

One could ask if there is an analytification functor over non-Archimedean fields. How-

ever unlike in the case of complex analytic spaces, there is no pre-existing notion of non-



Archimedean analytic spaces. So such a theory would also have to describe what these
non-Archimedean analytic spaces look like. The exist several such theories, see | | for
a detailed comparison.

The first theory of non-Archimedean theory was due to Tate, which was based on his
work on uniformizing p-adic elliptic curves | |. Tate’s theory of rigid analytic spaces
was constructed by looking at mazimal ideals of affinoid algebras. One drawback of Tate’s
theory is that the underlying topology of a rigid analytic space is totally disconnected. Tate’s
theory also did not work over trivially valued fields.

Raynaud’s theory of formal models described an equivalence class of generic fibers of
formal schemes as an analytic space | |. However, the drawback here is that the analytic
spaces don’t have a single underlying topological space, but instead have a collection of
underlying topological spaces.

Berkovich’s theory of analytic spaces was introduced to counter some of these drawbacks,
which were constructed by looking at the space of valuations on the affinoid algebras | ].
Berkovich analytic spaces contain more points than the rigid analytic spaces, which help
the analytifications be connected and Hausdorff when equivalent properties hold for the
underlying variety. We discuss Berkovich analytic spaces in more detail in the following
section.

Huber’s theory of adic spaces is another theory of analytic spaces obtained by considering
higher rank valuations | ]. Scholze’s theory of perfectoid spaces, which have been of
recent interest in algebraic geometry due to their applications in the mixed characteristic, are
special types of adic spaces [ |. However Huber’s adic spaces have “too many points”

in the sense that the underlying topological spaces are no longer Hausdorft.

I.2: Berkovich spaces

Berkovich constructed an analytification functor which associates an analytic space, X?", to

a variety X over a non-Archimedean field k. The analytic space X?" is a locally ringed space



i.e. it carries the data of a topological space as well as the data of sheaf of analytic functions
on the space.

This functor satisfies the following topological properties:
e X" is Hausdorff if and only if X is separated.

e X is compact if and only if X is proper.

e X is connected if and only if X is connected.

These topological properties of the analytification functor make the Berkovich analytic spaces
ideal in our setting.

We briefly explain the construction of the topological space underlying X®". As a set,
X" consists of all pairs © = (&, | - |), where &, is a (scheme-theoretic) point in X and |- |,
is a multiplicative norm on the residue field k(£,) whose restriction to k is the underlying
non-Archimedean norm on k. Given an open set U C X, a regular function f € O(X), and

a non-negative real number a, open sets in X*" are generated by sets of the form

{r=(& | |.) € X" |& eUand |fl, <a}.

The structure sheaf of analytic functions is given by the affinoid algebras on the affinoid
subdomains of X* — we refer the reader to | | for more details. For the purposes of
this dissertation, we only need to consider the underlying topological structure of X*". We
give an alternate construction of the analytic space over the non-Archimedean field C((t)) in
Section [.3. We also explain the Berkovich affine line in Section 1.2.1.

Berkovich spaces have found numerous applications in various areas of mathematics. For

example:

e The étale cohomology of Berkovich spaces are used in the Langland’s program to

produce Galois representations over local fields | .



e Thullier proved using Berkovich spaces that the homotopy type of the dual complex

of a log resolution of a pair over a perfect field is independent of the chosen resolution

[ J

e Berkovich spaces are closely related to tropical spaces, and a Berkovich space can be

seen as an inverse limit of tropical spaces [ ].

e Berkovich spaces over (C,| - |p) have applications to the field of K-stability. The var-
ious functionals from Kéahler geometry have non-Archimedean analogues and these
non-Archimedean functionals correspond to slope at infinity of these functionals along
geodesic rays. For example, a version of Yau-Tian-Donaldson conjecture can be proven

using these non-Archimedean functionals | , , , , ].

e Berkovich spaces over k((t)) are closely related to degenerations of varieties over k. We

expand on this in Section 1.3.

1.2.1: Berkovich affine line

Let (k,|-|) be an algebraically closed non-Archimedean field. We describe the Berkovich
affine line A,lc’an. The points in A,lg’an correspond to multiplicative seminorms on the algebra
k[T], which restrict to the given norm on k.

Pick a € k and r € R5y. Then, associated to the disk D(a,r) :={z € k| |z — a| < r},

we have a seminorm | - |p, given by the following.

Z CLiTi

i

= max |a;|r".
D(a,r) '

These seminorms correspond to three different types of points in the Berkovich affine line:

e Type 1: When r = 0, these seminorms are given by f(T) — |f(a)|. These points

correspond to the points of the rigid analytic line.



> Type 3 point (no
branching)
Type 4 point ¢——— @ Type 2 point
> corresponding to the

disk D.
Type 1 points ¢——— e / / ° J \l Kb
Q L.

—
D= D (ao,ro)

Figure 1.1: Berkovich Affine Line

e Type 2: When r lies in the value group I' = {]a| | a € k*} C R.o, then these seminorms

correspond to the points in the Berkovich affine line with branching.

e Type 3: When r does not lie in the value group, these seminorms correspond to points

in the Berkovich affine line with no branching.

When k is spherically complete, these are all the types of points in the Berkovich affine
line. If not, there are Type 4 points in the Berkovich space which occur as limits of points

of Type 2 and 3. These points are given by

’f(T)‘ = inf ‘f(T)’D(aiM)v

D(ai,ri)EF

where F is a family of nested disks D(ay,71) D D(az,72) D ... with empty intersection. See
Figure I.1.

As we see from the figure, the Berkovich affine line is a type of infinite graph | ].
It has various graph subsets with vertices given by Type 2 points and edges being the line

segments joining these Type 2 points. Similarly, in higher dimensions, there will be various



polytope-like subsets of the Berkovich space. These “skeletal” subsets will play an important

role in the later sections.

I.3: Berkovich analytification of a degeneration

Let D = {t € C | |t| < 1} denote the complex unit disk, D* = D \ {0} and ¢ denote a
coordinate on D*. Consider a family of compact complex manifolds parametrized by D*
i.e. consider a complex manifold X with a proper smooth map 7 : X — D*. Such a family
is called a degeneration of complex manifolds. Degenerations play a central role in algebraic
geometry, particularly in the study of moduli spaces.

We would like to think of the family X as a variety over C((¢)). To do this, we further as-
sume that X is a projective family i.e. X is a closed subset of P xD* cut out by homogeneous
polynomials whose coefficients are functions that are holomorphic on ID* and meromorphic
on ID. If we denote t as the coordinate on D*, then we can view these coefficients as elements
of C({t). Then, we can think of X as a variety over C((t)), which we denote as X¢). We
denote the Berkovich analytification of X¢(y) as X&) We can understand the topology of
X&l(t)) as an inverse limit of dual complexes of snc models — we explain this below.

A model of X is a normal complex analytic space 2 with a map m : Z — D such
that 7—*(D*) is biholomorphic to X as spaces over D*. Note that existence of a model is
guaranteed if we assume that X is a projective family. The central fiber Zy of a model 2
is the divisor given by 771(0). A model 2 is said to simple normal crossing (snc) if 2" is
regular and the central fiber is a simple normal crossing divisor in 2. Given two models
Z and Z" of X, there is always a bimeromorphic map 2"/ --+ 2" that commutes with the
projection to . We say that 2~ dominates 2" if this bimeromorphic map is holomorphic.
Given two snc models, we can always find a third one that dominates the two. Given a
model 2", we can construct a new model dominating it by performing a blow up along a
smooth subvariety contained in the central fiber.

Let 2" be an snc model and let 2y = ). b,E; be the central fiber, where E; are the



irreducible components of 2y and b; are their respective multiplicities in 23. Then, the
dual complex of 2", denoted A(Z") is a cell complex with vertices vg, in bijection with
irreducible components F;. Each stratum i.e. an irreducible component Y of an intersection

E;,N---NE;, corresponds to a face

Oy = {(ZE(), s ,l‘m) | szkxk = 1}
k=0

Two faces oy, C oy, are glued if an only if Y5 C Y;, and the gluing map is given by setting
the coordinates of the irreducible components not involved in defining Y; to 0.

Given two snc models 2" and 2" of X such that 2" dominates 2", there is a surjective
map of cell complexes 797 9+ A(Z7) = A(Z") (see Section 11.4.2 for more details). We
explain this map in the case when 2" is obtained by blowing up 2~ along smooth subvarieties
contained in the central fiber. If we write 2o = ), b;E;, then Z) = ). b{E: + bexce Bexe,
where E is the strict transforms of F;, F... is the exceptional divisor of the blowup and its
multiplicity bex. depends on the center of the blowup. Thus, we see that A(Z”) contains a

new vertex vg,, . corresponding to Eey.. Now there are two cases:

e If the blowup is along a stratum Y of E;; N--- N E; , then A(Z”) is obtained from

m )

A(Z") by subdividing the face oy using the vertex vg,, . and the map ryv o is in fact

a homeomorphism in this case.

e If the blowup is along a subvariety Z which is not the irreducible component of the
previous form, let Y be the smallest such intersection containing Z. Then, we obtain
A(Z") by forming a cone over the face oy. The apex of the cone corresponds to the
new vertex vg, . and the map rg 2 is obtained by collapsing the cone to oy. The
image of the cone point is determined by the multiplicities of the irreducible component

defining Y.

For example, consider the dual complex of a model £  whose central fiber is given by

Zo = Ey+ Ey+ E5, where the pairwise intersections E; N E; and the intersection EyNE; N E;y

9



are non-empty and irreducible. Then, A(Z") is a triangle an the intersection Ey N Ey; N Ey
corresponds to a triangular face, pairwise intersections F; N E; correspond to the boundary
line segments, and the irreducible components correspond to the vertices. Let Y = Ey N Ej.
Then, blowing up 2" at Y corresponds to subdividing the line segment joining vg, and vg,.
Blowing up £ along a smooth center Z C Y not containing £y N E; N Es corresponds to

adding a new triangle with vertices vg,__, vg,, and vg,. See Figure 1.2.

€|
%
L
& Y%,
v v
Ve
ECKL exc
v

% Ve, & Ve,

Figure 1.2: (Top) Dual complex of a model 2~ with central fiber given by 2y = Eo+ E1 + Es
where the pairwise intersections F; N F; and the intersection Ey N £ N Ey are non-empty
and irreducible. (Bottom left) Dual complex of the model obtained by blowing up 2~ along
Y = EyN E;. (Bottom Right) Dual complex of the model obtained by blowing up 2~ along
a smooth center Ec N EyNEy & Z C Y.

We have the following result relating the dual complexes A(2Z") and the Berkovich ana-

Iytification Xc ).
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Theorem I.2. There exits a homeomorphism of topological spaces
Xeo) = l'&nA(&V’)
where the projective limit is taken over all possible snc models of X.

I.4: Hybrid Space

The hybrid space is a topological space that is “mixture” of a complex analytic and a non-
Archimedean space. As a set,

XM =X X

One of the ways to construct X™P is by first constructing a “smaller” hybrid space 2 ™"

for an snc model 2" of X, which as a set is given by
PALES GIVNES)

The topology on 2™™" can be described locally by using a local “logarithm” map. Let Y be
an irreducible component of E;y N---N E; and let U C 2 be an open set intersecting Y

such that
e UNZy=UN (U;nzo EZk)
e U has coordinates (2o, ..., 2,) such that {z, =0} = E;,, NU for k=0,...,m, and

e the projection to D is given by t = hzgio ... 22 where h is a bounded non-vanishing

function on U.

Then, we define a local logarithm function Log;; : U N X — oy given by

log|z log|z,
LogU(zo,...,zn):< g|0’b - gl |b_ >

b; . ? b,
log|zy® ... zm™ log|zy® ... zm™

11



The topology of 2™™P" is defined is such as way as to ensure that the function (UNX)Uoy —
oy given by Log; U Id,, is continuous. We can the define X := lim 2" hyb * For more
details, see Section II.2.

Berkovich introduced a variant of the hybrid space in | ] as the analytification of X
over a certain Banach ring. Boucksom and Jonsson first introduced this version of hybrid
space in | | inspired by the work of Morgan and Shalen [ ]

A few applications of the hybrid spaces include

e Berkovich used a variant of the hybrid space to describe the weight zero subspace of

the mixed Hodge structure of a degeneration X — D* | .

e Boucksom and Jonsson introduced the hybrid space in | | and they used it to study
the limits of Calabi-Yau measures. Pille-Schneider used the hybrid spaces to study the
limits of Kéhler-Einstein volume forms | |. In this dissertation, we study the limits

of log Calabi-Yau measures and of Bergman measures on Riemann surfaces.

e Kontsevich and Soibelman gave insight into the possible use of Berkovich spaces to
study the Strominger-Yau-Zaslow (SYZ) conjecture in mirror symmetry | ]. They
conjectured that the Gromov-Hausdorff limit of a maximally degenerate Calabi-Yau
family is a skeletal subset of the non-Archimedean space. The Berkovich hybrid spaces
have found applications in the construction of SYZ fibrations and in understanding the

Gromov-Hausdorff limits of degenerations | , , ].

e The hybrid spaces have found applications in both complex and arithmetic dynamics

[Fav17, J

e Chambert-Loir and Ducros have developed a theory of differential forms over Berkovich
spaces | |. Ducros, Hrushovski and Loeser showed that non-Archimedean inte-
grals arise as asymptotics of complex integrals | |. While their approach does
not directly use hybrid spaces, their techniques can be used to show such a convergence

using a hybrid space.

12



I.5: Convergence of measures

Now also suppose that for each t € D* there is a natural measures u; on X;. We would
like to understand the limit of these measures y; as t — 0. To do this, we consider
as a measure on X P (using the pushforward of p; along the inclusion X; < XWP). By
considering the weak limit of the measures y; on the space X™P we can make precise the
notion of convergence of the measures u; to a measure that lives on the Berkovich space

Xgl&t)). We consider two such families of measures in this dissertation

e We extend Boucksom and Jonsson’s result regarding limits of Calabi-Yau measures to

the case of log Calabi-Yau measures.

e We prove that Bergman measures on a family of Riemann surfaces converges to the

Zhang measure.

We describe these two results in the following two subsections.

1.5.1: Log Calabi-Yau measures '

Let Y be an irreducible, normal and compact complex analytic space. Let n be a top-
dimensional meromorphic form on the smooth locus, Y™ of Y, and let D C Y be a (possibly
not reduced or not effective) divisor such that 7 is holomorphic and does not vanish on
Yr&\ D, and has poles (and zeroes) given exactly by D. Then the pair (Y, D) is called log
Calabi-Yau. Any two such forms n and 7’ on Y**8 which have poles given by D will be equal
up to a scalar factor. Let |D| denote the support of D. The form 7 gives rise to a volume
form |n A7 = i™Y)*y A7 on Y™ \ | D], and thus a positive Radon measure on Y™\ |D|.
For a log Calabi-Yau pair (Y, D), this measure is unique up to scaling. Note that locally near
|D| and Y*i"8 it is possible for the mass of this measure to be infinite. When D =0 and Y
is smooth, Y is said to be Calabi-Yau. More generally, we get such a canonical measure if

we assume that Ky + D is Q-Cartier and Ky + D ~g 0. See Section II.3 for details.

!This section has been largely reproduced from | , Section 1] with the publisher’s permission.
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Let X — DD* be a proper flat family of irreducible normal complex analytic spaces. Let
B be a horizontal Q-Weil divisor on X such that Kxp- + B is Q-Cartier and is Q-linearly
equivalent to 0. We don’t need to assume that B is effective. Then, (X}, B;) is log Calabi-
Yau, where B, := B|x,. As above, using a trivializing section 1 of Ox(m(Kxp + B)) for
some sufficiently divisible integer m, we can obtain Radon measures p; on each of the fibers
X8\ | By for |t| < 1 (see Section I1.3 for more details on how to handle the Q-divisor case).
This measure p; remains unchanged if we replace m by mym and n by n®™. Two such
families p; and g obtained by picking 1,1 € H*(X, m(Kx/mp- + B)) differ by a factor of
|h(t)|*/™, where h is a holomorphic function on D*. Our goal is to understand if the measures
e converge as t — 0.

We also assume that (X, B) is projective i.e. X is a closed subset of PV x D* for some N €
N and X and B are cut out by homogeneous polynomials whose coefficients are holomorphic
functions on D* and meromorphic on ). This guarantees that there exists a proper flat

family 2" over D with 2" normal and 2 |p- >~ X, and a Q-Cartier divisor Z on 2" extending

Kx/p+ + B such that Z ~g 0. (Such an 2" is called a model of X).

Secondly, we assume that there exists a section ¢ of Q4 (m%) which extends the section
n of m(Kxp+ + B). In this case, we say that n admits a meromorphic extension. Recall
that two families of measures p; and yu; obtained by picking two trivializing sections n,n" €
HY(X,m(Kxmp- + B)) differ by a factor of |h(t)[*/™, where h is a holomorphic function on
D*. If we also assume that n and 1’ admit meromorphic extensions, then we further get that
h is meromorphic at 0, and thus h(t) ~ Ct* as t — 0 for some « € Z.

In a manner similar to the Boucksom-Jonsson hybrid space, we construct a locally com-

hyb

pact hybrid topological space (X, |B]|)™", which as a set is a disjoint union of X"\ |B| and

(X&é»)an \ [Bl|&{s) (see Section I1.2 for more details). We have the following convergence

theorem for the measures p; on (X, |B|)WP.

Theorem A. Suppose (X, B) is a projective log Calabi-Yau pair over D* and let n €

H°(X,m(Kx/p- + B)) be a generating section that admits a meromorphic extension. Let
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11; be the Radon measure on X' \ |B,| defined by i(mX0) ([, A nlx,)/™. In addition,
assume that the pair (X, B) is sub log canonical in the sense of the minimal model program.
Then, there exists a non-zero measure fiy on (X(Ee(g»)an \ |B|¢(s) and constants d € N and
r € Q such that the measures W‘W converge weakly to g, when viewed measures

on (X, |B|)WP.

In the above theorem, sub log canonical (sometimes just called log canonical in the
literature) is in the sense of the minimal model program i.e. discrep(X, B) > —1 (see | :
Section 2.3]) and we don’t assume that B is effective.

The measure i is easy to describe when (X, B) is log-smooth i.e. when X is smooth and
B has snc support. In this case, the support of y is the locus where a certain weight function
associated to (X, B, ), constructed in | | and | |, is minimized (see also [ D).
The minimizing locus of the weight function is called the essential skeleton in the literature,
and thus we have that the measure i is the Lebesgue measure on the top-dimensional faces
of the essential skeleton of the triple (X, B,n). In general, the support of i is the image of
a skeleton under a birational map (X', B') — (X, B).

If the pair (X, B) is not sub log canonical, then there is no reasonable convergence in this
non-Archimedean setting (see Example 11.9). This is consistent with the observation that
the essential skeleton of (X, B,n) is empty when (X, B) is not sub log canonical.

As an example of Theorem A, we get a convergence result for a torus 7' = (C*)™. We have
a canonical embedding R"™ —» Tg&t» given by sending r € R" to the valuation ) _,. @y 2™ —
max,, {|am,|e~™™}. Consider the constant family 7" x D* and the associated hybrid space

(T'xD*)UT, (- Then by applying Theorem A to a smooth projective toric compactification

1

of T we get that as t — 0, the Haar measure on T' x {t} scaled by a factor of Erloali= )7

converges weakly to the Lebesgue measure on R”. See Examples I1.15 and I1.28 for more
details.
It is enough to prove Theorem A in the case when the pair (X, B) is log-smooth i.e. when

X is regular and B C X is an snc divisor. Indeed, we can then prove Theorem A for a
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general pair (X, B), by taking a log resolution (X', B') — (X, B), and using Theorem A for
(X', B') (see Section I1.4.5 for details). So, for the remainder of this section, we will assume
that the pair (X, B) is log-smooth.

We employ an approach similar to [ |. To prove Theorem A, we first prove Theorem
B below, which shows the convergence on certain skeletal subsets of X¢,) \ [B|g{y). Since
our measures are no longer finite, we would have to allow for the limit measures to be infinite
and this would not be possible if we use Lebesgue measure on a compact simplicial complex.
The solution is to allow our simplices to have unbounded faces. Pick a model 2" such that
2, + B is an snc divisor, where B denotes the component-wise closure of B in 2. A
good candidate for this is A(Z", |B|), the dual intersection complex of a pair, introduced in
[ ][ ][ | in the one-dimensional case and in | ][ | for higher
dimensions.

We briefly explain the construction of A(Z", |B|) here. Let E; denote the irreducible com-
ponents of 2y and let 2 = ZZ]\; b;E;. A connected component Y of (ﬂiel EZ) N (ﬂjeJ §j>
is called a stratum where {E; | i € I} denotes a non-empty collection of irreducible com-
ponents of 2y and {B; | j € J} denotes a possibly empty collection of irreducible com-
ponents of the support of B. Associated to every such stratum Y is a face oy = {(r,s) €
R'ZI‘OHJW Y icr biri = 1} of A(Z7,|BJ). These faces are then glued together via some attaching
maps to get A(Z",|B]). See Section II.1 for more details.

Associated to such a model 27, we construct a hybrid space (27, |B|)"> = (X \ |B|) U
A(Z,|B|), where the topology is given by logarithmic rate of convergence. We prove the

following convergence theorem on this hybrid space.

Theorem B. Let X — D* be a holomorphic family of proper complex manifolds. Let B
be an snc Q-divisor such that Kx/p- + B ~g 0 and the pair (X, B) is sub log canonical.
Let 2 be a regular model of X such that 2( + B is snc and 2 be an snc divisor on 2~
extending Kx/p+ + B such that 2 ~g 0. Let v € H°(2Z,m2Z) be a generating section for

sufficiently divisible m and i, = i X0* (4|, A9|x,)"/™ be the Radon measure induced on
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X; \ |B¢| by ¥. Then, there exists a non-zero measure jio supported on a subcomplex A(Z)

of A(Z,|B|) and explicit constants d € N, ki, € Q such that

Ht
|¢[emin (27log]t] =)

— Mo

converges weakly as measures on (27, |B|)™P.

On each top-dimensional faces of A(Z), o is a suitably normalized Lebesgue measure
while on all other faces of A(Z",|B|), o is zero. For a precise description of pg, see Section
I1.3.

Note that for Theorem B, we don’t need to assume that (X, B) is projective. The
projectivity assumption is needed in Theorem A in order to define Xg(,) and ‘B’?:rf(t))' In this
case, we can view A(Z") and A(2", |B|) as subsets of the Berkovich analytification, X¢{,.
Moreover, A(Z") is a strong deformation retract of Xg,.

In the case when B = 0, Theorem A follows from Theorem B by using the following result.
The collection of A(2") for all snc models 2" is a directed system and X¢j,) ~ Hm A(X)
(See | , Theorem 10], | , Corollary 3.2]).

We prove a similar result (see Theorem I1.16) that

Theorem C. Let (X, B) be a log-smooth pair. Then there exists a canonical homeomor-

phism.

X&) \ [BlEly) ~Im A(Z,|B]).
7

Theorem B and C together prove Theorem A.

As a corollary of Theorem C, we also get the following result. Suppose that U — D*
is a smooth meromorphic family of quasi-projective complex manifolds. Consider an snc
compactification of U C X with snc boundary divisor B. Then, UM = (X, |B|)W> =
Jim 2 (2B |)'¥® is independent of the choice of (X, B). The space U™P can also be seen

as the Berkovich analytification of U with respect to a suitable Banach ring | 11 :
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Appendix]. The hybrid spaces (27, |B|)™" can be thought of as approximations of U™" and

we hope that they will be useful in future applications.

1.5.2: Bergman and Zhang measures

Any compact Riemann surface Y of genus ¢ > 1 carries a canonical measure called the
Bergman measure, defined as follows. Note that there is a positive definite Hermitian metric
on H°(Y,y), the g-dimensional complex vector space of holomorphic 1-forms on Y, given
by

@)= [ on.

Pick an orthonormal basis ¢4, ..., ¢, with respect to the above pairing. Then, the positive
(1,1)-form defined by % Y b A ¢; does not depend on the choice of the orthonormal basis
and the associated measure on Y is called as the Bergman measure on Y. We can also define
the Bergman measure on Y using the pullback of the flat metric from the Jacobian of Y
along the Abel-Jacobi map.

The Bergman measure has many applications. For example, the variation of the Bergman
measure gives rise to a metric on the Teichmiiller space of genus g curves for g > 2 that is
invariant under the action of the mapping class group | ].

Let X be a complex surface with a holomorphic submersion X — ID* with fibers being
compact complex curves of genus at least 1. For t € D*, let y; denote the Bergman measure
on the fiber X;. We would like to understand the convergence of the measures p; on the
hybrid space X™P as ¢t — 0. Since we are working in the case of dimension 1, we call the
dual complex of an snc model 2" as the dual graph and denote it as I'y-. The associated
Berkovich space Xél(l(t» is now an inverse limit of graphs.

The Zhang measure on a metric graph is a weighted sum of Lebesgue measures on edges
and Dirac masses on vertices. It was introduced by Zhang in | ] to define a non-
Archimedean analogue of the Bergman pairing on a Riemann surface. The Zhang measure

has been used in the study of potential theory on the Berkovich projective line | ]. The
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weight of the Zhang measure on an edge is a function involving the length of the edge and
the resistance across the endpoints after removing the the edge from the graph. The weight
of the Zhang measure on a vertex is the genus of the irreducible component associated to it.

The Zhang measures on the dual graphs of all normal crossing models of X are compatible
and thus give rise to a measure on Xgl(l(t)).

There are several reasons to believe that the Zhang measure is the non-Archimedean
analogue of the Bergman measure. Firstly, the Weierstrass points on a Riemann surface
are equidistributed with respect to the Bergman measure | |. It is possible to define
Weierstrass points on a Berkovich curve or on a metric graph and it turns out that they are
equidistributed with respect to the Zhang measure | 1Ll ]. Secondly, recall that
the Bergman measure can be obtained as a pullback of the flat metric from the Jacobian
under the Abel-Jacobi map. Similarly, the Zhang measure can be realized as the pullback
of a certain canonical metric on the tropical Jacobian under the tropical Abel-Jacobi map
[ ]. Thirdly, a version of Kazhdan’s theorem for the Bergman measure on a Riemann
surface is true for the Zhang measure on a metric graph | ].

Indeed, it is a well-known conjecture that the Bergman measure converges to the Zhang
measure in the hybrid space setting. See | , Section 1.1] for an explicit statement. This

conjecture was communicated to us by M. Jonsson, who was informed of it by M. Baker.

We give a positive answer to this conjecture.

Theorem D. The Bergman measure p; on the fiber X; converges weakly to a measure g
on the Berkovich space Xgl(l(t)), where the convergence takes place on the hybrid space X"P.
The measure pi is supported on a subspace of X{ér(‘(t)) that is isomorphic to a metric graph,
and is a weighted sum of Lebesgue measures on edges and Dirac masses on points.

Moreover, if we assume that X has a semistable model, then py is the Zhang measure on

the Berkovich space X((a:r(l(t))

In the above theorem, the existence of a semistable model is asking for a normal crossing

model 2" of X such that 2 is reduced. Such a model always exists after performing a finite
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base change D* — ID* given by t — t".

Amini and Nicolussi have been able to obtain a version of Theorem D using techniques
from Hodge theory [ ].

A key step involved in the proof of Theorem D is to prove the convergence on the “smaller”
hybrid space 2P = X LIT 4, associated to a fixed normal crossing model .2~ of X. See

Section I11.3 for details on the topology of the space 2 WP,

Theorem D’. Suppose that X has semistable reduction and let 2~ be a normal crossing
model of X. On the space 2™™", the measures y, converge weakly to the Zhang measure on

Iy

We are also able to prove a convergence statement on a hybrid space which has the
metrized curve complex in the sense of Amini and Baker | | as the central fiber. The
metrized curve complex associated to a normal crossing model 2 of X is a topological
space obtained by replacing each nodal point in 2 by a line segment. We get 2, from the
associated metrized curve complex by collapsing the line segments. We also get the dual
graph I"y by collapsing the Riemann surfaces in the metrized curve complex to points. We
construct a hybrid space %ggb which is a partial compactification of X with the central fiber

the metrized curve complex associated to 2.

Theorem E. Assume that X has semistable reduction and let 2" be a normal crossing
model of X. Then, there exists a measure ucc on the metrized curve complex associated to

Z such that p,; converges weakly to ucc as t — 0, when seen as measures on %Chéb.

The measure pcc restricted to each Riemann surface of positive genus in the metrized
curve complex is exactly the Bergman measure on that Riemann surface. The measure pcc
places no mass on any genus zero Riemann surface in the metrized curve complex. The
restriction of ucc on an edge is exactly the Zhang measure restricted to the edge. This
shows us that the Dirac masses that show up in the Zhang measure correspond to collapsed

Bergman measures.
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Theorem D’ is closely related to | , Remark 16.4]. The main difference between the
two results is that | | does not involve any Berkovich spaces and the limiting measure
lives on the singular curve 2, while in our case the limiting measure is on the metric graph
I'». Another difference is that de Jong’s result only applies to semistable models of X while
we also deal with the case when the central fiber is not necessarily reduced. The limiting
measure in | , Remark 16.4] is the sum of the Bergman measures on the normalization
of positive genus irreducible components of Z; and some Dirac masses on nodal points. The
mass at a nodal point is equal to the total mass of the corresponding edge in the Zhang
measure. Theorem E serves as a concrete link between the two: the pushforward of pucc to
Zo gives the limiting measure in | , Remark 16.4] while its pushforward to I'y- gives the
Zhang measure. So we recover both Theorem D’ and | , Remark 16.4] from Theorem E
by considering the continuous maps %Chéb — WP and %&yjb — Z.

To prove Theorem D using Theorem D', we just need to show that the convergence given
by Theorem D’ for different models are compatible i.e. if 2, 2" are models of X such
that we have a proper map 2~/ — 2  which restricts to identity on X, then the limiting
measures seen as measures on 'y using 'y~ < 'y~ are the same. Now, using the fact that
Xhb — lim 2 hyb "wve get Theorem D in the case when X has semistable reduction. Since
a semistable reduction always exists after a base change, to prove Theorem D in general, we
only need to understand what happens after a base change.

To prove Theorem D’ on 2" for a normal crossing model 2" of X, we make a careful
choice of elements of H°(2", Q2 p) that restrict to a basis of H(X;, Qx,) for all ¢ and also
to good basis of H 0(%,red,w%,re +)- We also work with 24 instead of Zy because the
dualizing sheaf, ws; ., is better behaved. We express the Bergman measure in terms of
this basis and compute some asymptotics. Our analysis strongly uses the analogy between
one-forms on Riemann surfaces and on metric graphs.

To prove Theorem E, we first construct the metrized curve complex hybrid space %Chéb

for a normal crossing model 2" of X. We then analyze the convergence in a small enough
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o A : D* : . D
(a) A family of genus 4 curves obtained by (b) The minimal normal crossing model of
pinching the dotted lines. the family

Figure I.3: A family of genus 4 curves and its minimal normal crossing model.

neighborhood of each point in the central fiber. For non-nodal points that lie on an irreducible
component of 2, or points in the interior of a line segment, this computation is a minor
modification of the computations done to prove Theorem D’. So, we only need to study the
convergence in a neighborhood of a point that is the intersection of an irreducible component
of Zy and a line segment. The proof of this part uses the same kind of analysis, just a more
careful one.

A major difference between the results of | | and this paper is that the limiting
measure in | ] is either always Lebesgue or always atomic, but never a sum of both. For
g = 1, Theorem D recovers the one-dimensional case of the convergence theorem in | ].
See also | , Corollary 4.8] for a related statement.

We would also like to point out that some of the asymptotics that we use to prove
Theorem D" are similar to the ones used by de Jong to prove | , Remark 16.4]. For
example, compare Lemma I11.9 and | , Equation (16.7)]. De Jong’s asymptotics are more
versatile as they involve families 2~ — D™ and are proved using the theory of variation of
mixed Hodge structures. We don’t use any variation of mixed Hodge structures and prove

these asymptotics for m = 1 by explicit computations.
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0 t

Figure 1.4: The hybrid space associated to the family in Figure [.3a. The support of the
Zhang measure is shown in red.

Figure 1.5: The Zhang measure on the Berkovich space associated to the family in Figure
[.3a

1.5.3: An example

Let X — D* be a family of compact genus 4 Riemann surfaces given by pinching the dotted
simple closed curves in Figure [.3a. Then, the central fiber of the minimal normal crossing
model, 2", has three irreducible components each of genus one intersecting at 3 nodal points
(see Figure 1.3b). The associated hybrid space is shown in Figure 1.4.

In this case, the dual graph, I'4-, is a triangle with all three vertices of genus one. The
Zhang measure is a sum of a Lebesgue measure on each of edge of mass % and a Dirac mass
on each vertex of mass 1. The central fiber of the hybrid space has a subspace homeomorphic
to 'y

The curve complex hybrid space associated to the minimal normal crossing model is
shown in Figure 1.6. The measure pucc on the metrized curve complex in the sum of the
1

Bergman (Haar) measures on each of the genus 1 curves and Lebesgue measure of mass 3

on each of the edges.
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0 t

Figure [.6: The curve complex hybrid space associated to the family in Figure I.3b.
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CHAPTER 11

Convergence of Log Calabi-Yau Measures '

Structure of the chapter

The chapter is structured as follows. In Section II.1, we recall the construction of the dual
complex A(Z", | B) associated to an snc model 2" of a log smooth pair (X, B) and in Section
I1.2, we construct the hybrid space (27, |B|)™®, associated to a model 2. In Section I1.3,
we prove Theorem B. In Section I1.4, we construct the space (X, |B|)"P, realize it and its

the central fiber as a non-Archimedean space and prove Theorem A.

Notations and Conventions

We use D to denote the (open) unit complex disc, {t € C | |[t| < 1}, and D* =D\ {0}.

We will use X,Y etc to denote families of complex analytic spaces parametrized by D*
and use 2, % etc to denote extensions of these families to . We will use B to denote
horizontal divisors in X and B will denote its component-wise closure in 2. We will denote
the irreducible components of 2y by E;’s and their multiplicities by b;’s. We will denote
the irreducible components of the support of B as B;’s and their multiplicities by /3;’s. The

support of a divisor D will be denoted by |D].

IThis chapter has been largely reproduced from | ] with the publisher’s permission.
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II.1: The dual simplicial complex associated to an snc model

In this section, we recall the definition of a model and the construction of the dual intersection
complex associated to an snc model of a log-smooth pair (X, B). Let X be a holomorphic
flat family of compact complex manifolds parametrized by D* i.e. X is a smooth complex
manifold with a proper smooth map X — D*. Let B be a horizontal snc Q-divisor in X.

Write B = Zj B;B;, where 3; € Q and B; are prime divisors. A model Z of X is a a

normal complex analytic space £~ which is proper and flat over D such that 2 |p« = X. Let
Zo denote the central fiber of 2 i.e. the fiber over 0 € .

We say that (X, B) has removable singularities at the origin if there exists a model 2~ of
X such that the topological closure of |B| in 2" is a divisor in 2. Throughout this chapter,
we will assume that all pairs have removable singularities at the origin. This is automatic if
we assume that (X, B) is projective.

In this section, we don’t need to assume that (X, B) is projective or that the pair (X, B)

is log Calabi-Yau.

II.1.1: Snc models of (X, B)

We say that a model 2 of X is an snc model of (X, B) if 2 is regular and (2 + B)red is
an snc divisor in 2", where B = i ﬁjﬁj denotes the component-wise closure of B in 2.
Let 2y = ), biE;, where E; are the irreducible components of the central fiber.

Since (X, B) has removable singularities at the origin, using Hironaka’s theorem, we
can always find an snc model of (X, B). Thus, the existence of an snc model of (X, B) is
equivalent to (X, B) having removable singularities at the origin.

Given an snc model 2" of (X, B), we can obtain new snc models of (X, B) by blowing

up 4 at any smooth subvariety of 2.

Example II.1. If X = P! x D*, then 2" = P! x D is an snc model of X. The blowup of 2~

at the point (0,0) is also an snc model of X.
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11.1.2: The dual complex

Let 2" be an snc model of (X, B). Let E;, ..., E; for p> 0 denote a non-empty collection
of irreducible components of Zy. Let Bj,...,Bj, for ¢ > 0 denote a (possibly empty)
collection of irreducible components of |B|.

A non-empty connected component Y of E;; N---NE; NBjN-- ﬂgjq is called a stratum
in 2, + B and we write Y Ceonn. comp. Eig M-+ N E;, N Ejl N---N qu.

Note that in our definition of a stratum, we insist that we start with a non-empty collec-
tion of irreducible components of 25. Thus, we do not consider B; or N;B; to be strata of
2, + B, while E; is a stratum of 2( + B. All strata are smooth subvarieties of .25.

Given a stratum Y Ceonn. comp. EipN- - -NE;, ﬂ§j1 n-- -ﬁﬁjq, let b;, denote the multiplicity

of E;, in Zy. Then the face associated to Y is the (open) simplex oy defined as follows.

oy = {(ajo,...,xp,yl...,yq) 6]1%’561 x R, ‘ Zbikxk: 1}.
k

We define the dual complex A(Z,|B|) associated to the snc model 2" of (X, B) to be
the CW complex (with possibly open faces) obtained by gluing the faces oy for all possible
strata Y.

More precisely,

A(%,\BI)=< U ay>/~

Ystrata

where ~ is an equivalence relation generated by the following identification. If Y’ and
Y are strata with Y C Y, then without loss of generality we can write Y’ Ceonn. comp.
Ei,N---NE;,NB;,N---NB;, and Y Ceonn. comp. Fig N--- N Ey, N By, N---N By, for some

p < pand ¢ <gq, and we can identify oy as a subset of oy via

(o, - sy, Y1,y - Yy ) > (Zoy o2, 0,000, 0, 01,2, Yg, 0,0, 0).
—— ——
p—p’ times q—q’ times
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For example, if dim(X;) = 1, then A(2",|B|) is the dual graph of 2; + B with the
vertices associated to | B| as well as the edges with both endpoints in | B| removed. The dual
complex of a pair was introduced in | 11 .

Note that A(Z,|B]) is independent of /;’s and thus only depends on |B].

Given a face o of A(Z,|B|), we denote Y, to be the stratum associated to the face o.

The complex A(Z7) := A(Z7,0) is just the subcomplex of A(Z",|B]) consisting of all

the bounded faces.

Example I1.2 (The dual complex associated to P! x D). Let X = P! x D*, with the
projection map to D*, and B = {0} x D* 4 {oco} x D* is a horizontal divisor in X. Consider
the model 2" = P! x D. Then, the dual complex A(Z",|B|) is homeomorphic to R, with 0
being the vertex opi o), the positive axis being identified with o) and the negative axis

with (o). See Figure IL.1.

U]P”Z{O}

T(0,0) 7(0,0)

Figure I.1: The dual complex A(Z,|B]) for 2 =P' x D and B = {0} x D+ {co} x D

11.1.3: Integral piecewise affine structure on the dual intersection complex

We briefly discuss some results related to the natural integral piecewise affine structure on
A(Z,|B|). The reader can take a look at | I, [ |, [ | and [ , Section 1.3]
for more details. Let o = {(zo,...,2,)| D1 biz; = 1} x RL, be a simplex. Let M, denote
the abelian group of integral affine functions on RPT*4 restricted to o (two such functions
are identified if they are equal on o). Let (M,)r := M, ®z R and let (M, ) be its R-dual.
Denote b, := ged(bo, - - -, by)-

v

Let 1, € M, denote the constant function 1 on o. The evaluation map o — (M)}

realizes o as a simplex of codimension one in (M, )y contained in the affine plane {v|v(1,) =
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—
1}. So, the tangent space of o in (M, )} can be realized as (M, )y, where

Wa = MO’/(Q]-U N Mcr)

— —
and (M, ) is the R-dual of M, ®7 R.

Consider the Lebesgue measure on (M, )y for which the lattice Homy(M,, Z) has covol-
ume 1. This gives rise to a measure on ¢. This is called the normalized Lebesgue measure
A, of 0. The following remark, stated with a typo in | , Remark 1.3], gives an explicit
description of the normalized Lebesgue measure, which will be useful for computations. We

provide a quick proof here for the convenience of the reader.

Proposition I1.3 (] , Remark 1.3]). Let bg,...,b, € Ny and let

o={(xoy. ., Tp,Yy1,...,Yy) € ]Rp+q+1|2bxzzl}

be a simplex. Then, we have a homeomorphism

P
o= {(@1, .. T Y1, yg) € REY Zbia:i <1},
i=1

where we can recover xy by zp = by (1 — P bix;). Under this homeomorphism, the

normalized Lebesgue measure is given by
Ao = bobyt|dey A - Nday, Adyy A -+ A dy,|

Proof. Note that 1,, X1,...,X,, Y1,...,Y, is an R-basis for (M, )r, where X; and Y; denote
projection to the z; and y; coordinates. Let 17, X7,..., Y denote its dual basis. Then,
X{, ..., Y, is a R-basis for the (]\Z)ﬁ and Homz(]\z, Z) is a sub lattice of A = ZX{ +---+
VASS

H
Note that we can view Homy(M,,7Z) as the kernel of the map ¢ : A — Z/byZ given by
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ar X{+- -+ ap X+ Y+ Y = b+ - -+ by +0oZ. The image of ¢ is generated
—
by b, and the size of the image is z% Thus, the index of Homg(M,,Z) in A is Z{'l, and thus

boby dxy A+ Adxy, Adys A -+ Ady,| is the normalized Lebesgue measure on o. O

I1.2: The hybrid space associated to a dual complex

Let X be a holomorphic flat family of compact complex manifolds parametrized by D* i.e.
X is a smooth complex manifold with a proper smooth map X — D*. Let B be a horizontal
snc Q-divisor in X. Write B = > ; B;B;, where 5; € Q and B; are prime divisors. We don’t
need to assume that (X, B) is projective or that (X, B) is log Calabi-Yau. The constructions
in this section only depend on |B] i.e. they are independent of ;’s. Let 2" be an snc model
of (X, B) and write 2y =), b;E;.

In this section, we construct the hybrid space (2, |B|)"P, associated to the snc model
2 of (X, B); this is a topological space over D such that the fiber over D* is isomorphic to
X \ |B| and the central fiber is isomorphic to A(2Z", |B|). This construction closely follows

[ , Section 2.2], where the construction for B = 0 was done.

11.2.1: Local Log function

To construct the hybrid space, we will first construct a Log function on 2" and glue X \ | B]
and A(Z",|B|) using this Log function. To do this, we first construct a local version of the
Log function. Let Y Cconn. comp. Lo N -+ N E, N BiNn---N Fq denote a stratum of 25 + B
(see Section I1.1.2 for the definition of a stratum) and let b; denote the multiplicity of FE; in
Zo. For an open set U C Z" and for local coordinates (z,w,y) on U where z = (2, ..., %),
w = (wy,...,wy) and y = (y1,...,y,), we say that (U, (z,w,y)) is adapted to the stratum Y
if

e The only irreducible components of 25+ B intersecting U are Ey, . .., E,, and By, ..., B,
e UN(EyN---NE,NB;N---NB,)=UNY.
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e We have |z, |w;|, |yx] < 1on U and E;NU = {2 =0} and B; NU = {w; = 0}.

If there exists a choice of coordinates that make U adapted to some stratum of 2( + B, we
say that U is an adapted coordinate chart in 2.
Suppose that (U, (z,w,y)) is a coordinate chart adapted to a stratum Y Ceonn. comp.
EyN---NE,NB;N---N B, Then, we can define Log;, : U\ |2 + B] — oy. Let
bo

fuoi=2"... 2. Then there exists a bounded invertible holomorphic function « on U such

that the projection U — D is given by ¢t = u - fyy. Define

log| 20| log|z,| loglw,] log|wq|>

Logy (2, w,y :z( e , e
o0 ) = a7l Toglful Toglful ™ Tog)fu]

Note that Log;; depends on the choice of the coordinates on an adapted coordinate chart
U, however the following lemma tells us that the difference between two such maps goes off

to 0 for a different choice of coordinates on U.

Remark I1.4 (| , Prop 2.1]). If (U, (z,w,y)) and (U, (2/,w',y’)) are adapted to a stra-

tum Y, then

1
L — L , =0 ——
o8y oy (logml)

as t — 0 uniformly on compact subsets of U N U’ where ¢ denotes the coordinate on D.
Here, we view Log;; and Log;, as maps with image oy C RPT11 and Log;, — Logy =

@, <m> just means that the equality is true coordinate-wise on RPH+4,

11.2.2: Constructing the global Log function

Here, we globalize the Log construction by patching up the local Log functions and to do so,
we will have to find a ‘nice’ open covering of 2 + B. The following construction, as well as
Proposition IL.5 is similar to | , Proposition 2.1], but we provide some more details.
For a non-empty collection {E; | ¢ € I} of the irreducible components of 2, denote
E; = NjerE;. Similarly, for a (possibly empty) collection {B; | j € J} of irreducible

components of B, denote B, = ﬂjejﬁj.
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Following | , Theorem 5.7], we can find tubular neighborhoods Uy ; of Dy ; := E/NBy
and a smooth projection 7 ; : Uy ; — Dy satistying U ;NUp y = Ursp gy In particular,
if Ur y and Up v intersect, then Dy ;N Dy o # 0. Also, note that Uy ; has as many connected
components as D ; and each connected component Uy of Ur; corresponds to a stratum
Y Ceonn. comp. £1 N By.

Pick x € Zy. Suppose that Y, is the smallest stratum containing z. Around z, pick an
open neighborhood U, that is adapted to Y, and lies in Uy,. The union of all such U, for
r € Zy covers Zy. Since 2 is compact, we only need finitely many of these to cover Zj.
Call these open sets Uy, ..., U; and let their corresponding strata be Y7, ..., Y, respectively.
Let x1,...,x; be a partition of unity with respect to Uy,...,U; and let V = Ul/\:1 U,. Then,
V' is a neighborhood of 2.

Proposition IL5. The function Log, : V' \ |25 + B| — A(Z2,|B|) given by Log, =
Zf\zl xaLogy, is well defined. Here, addition in A(2", |B|) means that the sum makes sense
in a face of A(Z,|B]).

Proof. Note that LogUAl and LogUA2 are maps with image oy, and oy, respectively. A
priori, there might not be a face of A(Z",|B|) that contains both oy, and oy, , in which
case there is no way for us to make sense of the sum 25\:1 xaLogp, in A(Z,|B|) at a point
x € V\ |2y + B| where xy, (), X () # 0. To show the well-definedness of the map, we
need to show that such a scenario does not happen.

Pick a point z € V' \ |25 + B|. After a possible re-indexing, suppose x € (U; N --- N
Ua) \ (Uag1 U ---U ;). Then, we would like to define Logy (z) = xi(z)Logy, (z) + - +
Xa(2)Logy, (x). For this to make sense, it is enough to find a face o’ of A(Z", |B]) such that
Oyys...,0y, C o. Note that Uy N---NU, C Uy, N---NUy,. Each connected component
of N3_, Uy, corresponds to a stratum of ()}_, Yx. Let Y’ be the stratum corresponding to
the connected component of ﬂi:l Uy, containing x. Then, ¢’ := oy/ contains oy, for all

A=1,...,a and Logy (x) = x1(x)Logy, (z) + - - - + Xa(x)Logy, (v) makes sense in o”. O
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Proposition I1.6. Let U be an open set adapted to a stratum Y. Then, Log, — Log; =
O<W) locally uniformly as ¢ — 0, where the equality is interpreted as being true

cooridinate-wise on some faces of A(Z",|B|) containing oy .

Proof. We may replace U by U N Uy and assume that U C Uy. It is enough to prove the
result in a small neighborhood of every point z € U N 2.

Suppose z € U N 2y such that x € (UyN---NU,) \ (Ugy1 U---UU;). Then, from the
previous proof, we know that there exists a stratum Y’ such that z € Uy and Log, (z) =
x1(z)Logy, (z) + - -+ + xa(x)Logy, () makes sense in oy+. Since x € Uy N Uy, we get that
Y NY’' # 0. Let Z be the stratum corresponding to the connected component of Uy N Uy~
containing x. Then, oy, 0y, C 0z and we can think of Log;; and Logy as maps with image
contained in o7 C RY. We now need to show that Log;; — Log,, = O(W) coordinate-wise
on oy.

Suppose © € E;, z; = 0 defines E; in U, and 2] = 0 defines F; in U;. Then, z; and 2] differ

loglz;|  log|zj| _ ( 1 )
log|ful  loglfu, | log|t|~!

by the factor of a unit in a neighborhood of z and we get that
in a neighborhood of z.

Suppose = ¢ F; and z, = 0 defines E; in U;. Then, log|z/| is bounded near x and we get
that &5l — O

log|t|

m) in a neighborhood of x.

Using a similar argument for B;’s as well gives us that Log; — Logy, = O(W) in

a neighborhood of x. Repeating the argument for all Uy for £ = 1,...,a, we get that

1
loglt|

Log; — Logy, = O(i=;) in a neighborhood of x.

11.2.3: The hybrid space

The hybrid space of an snc model 2~ of (X, B), as a set, is defined as (27, |B|)™" =
(X \|B|]) UA(Z,|B]). The topology on the hybrid space is defined to be the coarsest one

satisfying the following.
o X\ |B| = (Z,|B|)™" is an open immersion.
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¥ \

(P! x D, {0} x D+ {oco} x D) D

Figure I1.2: The hybrid space (P! x D, {0} x D + {co} x D)™? with the projection to D

e The projection map 7 : (27, |B|)™" — D, given by the projection X \ |B| — D* and

by sending A(Z",|B|) to the origin, is continuous.

e Logyus : (V\ |20+ B))UA(Z,|B|) — A(Z,|B|) defined by Log,, on V' \ |2, + B|

and identity on A(Z", |B|) is continuous.

Note that the hybrid space does not contain |B|. It follows from Proposition I1.6 that
the topology of the hybrid space does not depend on the global log function we pick. Also
note that the fiber of 7 : (X, |B|)™? — D over t € D* is X, \ | By|.

Example I1.7 (Hybrid space of P* x D). The hybrid space (27, |B|)*® for Example 11.2 is
given by C* x D with the identification (re®',0) ~ (re?2 0) for all r € R, ; € [0, 27]. Over
any t € D* the fiber is P! \ {0, 00}, which is topologically a cylinder. Over ¢ = 0, the fiber

is homeomorphic to R. See Figure 11.2.

The hybrid space 2P := (27, 0)"P, constructed in | |, is compact over a compact
neighborhood of the origin. But the hybrid space (27, |B|)™" that we construct is not
always compact over a compact neighborhood of the origin, as can be seen from Example
I1.7. However, the following proposition tells us that it is not too bad. In particular, it

implies that the hybrid space is locally compact.

Proposition I1.8. The map Logyuws : (V' \ |20+ B|) UA(Z, |B])) — A(Z,|B|) is proper
near the central fiber, in the sense that there exists an r > 0 such that for any compact set

K c A(Z,|B|), Logg i, (K) N~ 1(rD) is a compact subset of (2, |B|)™P.

Vhyb
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Proof. By rescaling the coordinate ¢, we may without loss of generality assume that V = 2.
Let V =, Uq such that Logy, = " xaLog, for adapted coordinate charts Us,.

Pick a compact set K C A(2", |BJ). It is enough to show that L = Logyu,, (K)N7 ' (1D)
is compact. Let [J,c, Vi be an open cover of L. Since K C L is compact, there exists a
finite subset A’ C A such that K C |J,., Va. For a point P € A(Z',|B|) C (2, |B|)™", the
sets of the form Logy i, (W) N7~ (4D), where W C A(£,|B]) is an open neighborhood of
Pin A(Z,|B|) and N € N, form basic open neighborhoods of P in (2, |B|)"™P. For every
point P € K, we pick such a neighborhood contained in | J,.,, V. Since finitely many such
neighborhoods cover K, we can pick an r > 0 such that K C (7", Logy,., (W;) N7~ (rD) C
Usear Va. Thus, Logy e (K) Nt (rD) € Uyep Va.

Now it is enough to show that we need finitely many V)’s to cover LNz ({r < [¢t| < 1}).
To do this, it is enough to show that LNx({r < [t| < 3}) is relatively compact in X \ |B|.
Suppose to the contrary that the closure of L in 2 intersects B. Then, there exists a
sequence b, € L with limit b € B. By the assumption V' = 27, b lies in an adapted
coordinate chart U, for some «a. Let U, be adapted to the stratum Y, Cconn. comp. £1., NB Jo-

Asb e U, Uy N B # () and since U, is an adapted coordinate chart, it follows that J, is

non-empty. But this implies that Log; (b,) is an unbounded sequence in oy, , which is a

contradiction.

O
I1.3: Convergence of measure
In this section, we prove Theorem B by imitating the proof of | , Theorem A]. Since

(2°,|B|)"® is not compact, we can no longer use Stone-Weierstrass as done in | ).
Instead, we use Lemma II.11. Let (X, B) be as in the previous section. Further assume that
Kx/p+ + B ~g 0 and that (X, B) is sub log canonical. Here, sub log canonical means that
(X, B) is log canonical in the sense of the minimal model program (i.e. discrep(X, B) > —1)

but we are not necessarily assuming that B is effective.
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Write B = Zj B;B; for irreducible components B; of B. Since (X, B) is log-smooth,
being sub log canonical is equivalent to requiring that §; <1 for all j. Fix an snc model 2
of the pair (X, B). Note that we don’t yet need to assume that X is projective. Let n + 1

denote the complex dimension of X i.e. each of the fibers X; has dimension n.

I1.3.1: The subcomplex A(2) of A(Z,|B|)

Suppose Z is a Q-divisor on 2  that extends Ky + B such that 4 ~g 0. Denote
K i%g/m =Ko mp— Zo+ (Z0)rea- Then, 2 differs from K ;g/D + B by only divisors supported
in Zo. Recall that we write 2y = >, b;E;, where E; are the irreducible components of Zj.
Thus, we can write 4 = Kg}g/m) - > aE + Zj B;B; for some a; € Q. Let k; = 3 and
Kmin = MiN;K;.

Define the subcomplex A(2) C A(Z,|B]) as follows. If Y Ceonn. comp. Er N By is a
stratum, then oy € A(Z) if k; = ki for all ¢ € I and if §; = 1 for all j € J. In the
case when dim(X;) = 1, this just means that we pick the subgraph generated by vertices
corresponding to irreducible components with minimal x-value and the rays corresponding
to intersections E; N Ej with k; = mingky, and §8; = 1.

For a stratum Y Ceonn. comp. E;NBy, define b, = ged(b;)icr and let Ay, be the normalized

Lebesgue measure on oy (see Section 11.1.3). Define d := dim(A(2)), the maximum of the

dimensions of the faces of A(2).

I1.3.2: The residual measure

Let m be a sufficiently divisible integer. Given a section ¥ € H°(Z,m%) and a stratum
Y Ceonn. comp. E1N B, we can get a section Resy () € HO(Y, (D= s B =Y Ely)-
Suppose that zp = 0,...,2, = 0,w; = 0,...,w, = 0 define Y locally. Thinking of 1 as
a relative m-canonical section, we can write ¢ = f (% AREEWAN dz% A 6%1 AN % A ¢> o
locally for some local meromorphic function f. Then, Resy (v)) := f - ¢|3™.

Note that dim(Y) = n —p—q and |Resy (¥)|>™ gives rise to a (n —p — ¢, n — p — q)-form
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on Y\ (Uiygs Eily U Uj|Y¢Bj Bjly). Thus, [Resy()|?™ gives rise to a positive measure
onY.

11.3.3: The Convergence Theorem

Let m be sufficiently divisible integer. Let n € H(X, m(K x/p-+ B)) be a generating section
and suppose there exists a generating section v € H°(2,m%2) that extends 7. Let 1
denote the restriction ¢|x, for t # 0. If ¢y = o+ (dxy A -+ A dx,)®™ on a local chart, then

i (1hy A )™ given locally by
i (P A)Y™ = o™ (iday A dTy) A - (idx, A dT)

is a well-defined positive continuous volume form on X; \ |By|.

Define a measure
"

 [t[2rmi (27log t] 1)

M d (¢t A E)l/m

on X; \ |B|, and a measure

o = ( | R, <w>|2/m) b,

0 Crace A(Z),dim(0)=d

on A(Z',|B|), where Y, denotes the stratum associated to the face 0. We will see in the
proof of Lemma II.10 that the measure |Resy, (1/)|*™ is a finite measure on Y, and thus

Iy, [Resy, (¥)[*/™ is well defined .

Example I1.9. This example illustrates the importance of the sub log canonical assumption.
For simplicity, assume that X has relative dimension 1. Let Fy be an irreducible component
of Zy and let By be an irreducible component of |B| occurring with multiplicity 5y > 1.
Let 0 ~ Rs¢ be the face corresponding to Ey N By. Let 2z and w denote the functions that
define Ey and B in an open neighborhood U of Ey N By such that |z|, |w| < 1 on U. We

may assume that t = 2%
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We have Log : (U \ (Eo + By)) — Rsg given by (z,w) lﬁf’gﬁ'l. Suppose we had that
(Logy )« (a(t) ) weakly converged to a measure 9 on Rs( for some positive scaling function
a(t). By scaling by a suitable power of |t|, we may assume that pu, = i|w| 2?dw A dw. Pick

a compactly supported continuous function f on Rso. Then,

1
/(foLogU)d,ut:/ f<0g|w|)i|w|‘250dw/\dw
Uy U log|t|

Making a change of variable w = [t|“e%, we get

2w o
f oLogy)du; = —/ f(w)[t|72Bo=Dugy,
], @ Lol = i | st

If we pick a function f that is close to the indicator function of [0, N], then a(t) fUt(f o

alt)  |t]—2(Bo—1N
Logy)du: = O<1og\(t|)—1 | ‘10g|t|_1

) as t — 0. If we require that this expression converge for all
values of N as t — 0, then it is easy to see that this is only possible if pq is the zero measure
and ﬁ is growing super-polynomially as ¢t — 0. Thus, we see that the convergence in this

hybrid space setting is not very interesting if don’t assume that (X, B) is sub log canonical.

To prove Theorem B, we first prove a local version for functions that are pulled-back

from a face oy via a local Log map.

Lemma I1.10. Let (U, (z,w,y)) be a coordinate chart adapted to a stratum Y of Zg. Let f
be a compactly-supported continuous (real-valued) function on oy and let y be a compactly
supported continuous function on U. If a maximal face of A(Z2) is contained in oy, let oy
denote this (unique) maximal face and let Y’ be the stratum associated to oy-.

If a maximal face of A(Z2) is contained in oy, then

/ (f o Logy ) xdpe — (/ X|ReSY/(¢)’2/m)/ Fbay Aoy
UnNnXy Y’/ Tyt

as t — 0. If oy does not contain a maximal face of A(Z), then the above limit is 0.
Proof. By replacing 9 by 9 — kpinZo and 1 by t™Fming) we may assume that rp;, = 0.
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Suppose Y = EyN---NE,N BiN---N Eq locally. The proof for the case ¢ = 0 can be
found in | , Lemma 3.5]. The new estimate we need is Equation (11.3.2). Let (z,w,y) be
coordinates on U such that E; = {z; = 0} and B; = {w; = 0} on U. To simplify notation,

denote 2% := z3° ... z," and w? = wfl . .wgq. Then, we can write 1 locally in U as

Xm ®@m
¢®<%) :u-gma-w_mﬁ-(%/\-~~/\%/\dw1/\---/\dwq/\dg>

20 Zp
Xm
w-zme . ™8 /gy dz, dw; dw, AN
= — — AN AN — AN Ady Q[ —
by 21 Zp Wy W, M t
t

for some invertible function v on U. Here, the second equality follows from % =>", b4z

z; °

Thus, we have the following expression for 1),.

XM
ma. ™0 1 dz, d d
(113.1) gy = 2L <ﬁA ../\ﬁ/\ﬂ.../\ﬂAdy)
0 Z1 Zp w1 Wyq - X,
and
" (Y APV = i e T <|d21 Ndz| A A |d£AdE|>
b2 ETRRNENE T

For t € D*, denote by Log, : (X;NU)\ |B|) = oy x Y the map given by Log,(z,w,y) =

(LOgU(Zﬂ w)v y)

We now apply a change of variables using log-polar coordinates. Let u; = b; loglzil 5pq

log]t|
v; = l‘ffg“"jj"l, (R, u) =30 g ki, (U, =B+ 1) == > 7 vj(=F; +1). Then, we can write
[ (o Log ) -
XU

C'(log|t|~H)rre / [t Pl tem B ) / SPruwy | dudvldyl?,
JPXR;)XY Log?l(u,v,y)

where ¢ = foLog, pruvy is the Haar measure on the torsor Log; ' (u, v, y) for the (possibly
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disconnected) Lie-group {(fy, ..., 0,) € (S1)PH e ... e% =1} x (S1)? and C is a constant.
First, let us try to figure out the order of magnitude of the expression on the right-hand

side. After re-indexing, assume that ko = min’_;x;. Note that

2K
/|t|2<“’“>du:0 e
: (oglil ) Fret )

and for a fixed N such that supp(f) C {dF_,u; =1} x [0, N9,

q 1
11.3.2 / t|2a= (2D gy — O < : ) :
( ) 0N i (10g|t|—1)#{alﬁj<1}

Thus, we see that

B |t|2f<,()
Lth (f o LogU)Xdut =0 ((logm1)dpQ+#{i|’%>no}+#{j|ﬁj<1} '

Note that the right hand side in the above expression goes off to 0, unless kK, = 0 and
d = #{i|lk; = 0} + #{j|B; = 1}. This corresponds exactly to the case when there exists a
face oy, C oy such that oy, C A(Z2) and oy has dimension d.

After a possible re-indexing, assume that kg = --- = Ky = 0 and x; > 0 for all 7 > p/,
and fy = - =, =1land ; < 1forall j > ¢, and p' + ¢ = d. Then, Y’ Ceonn. comp.
Eon---NEyNBiN---NBy.

In this case, the Poincaré residue of ¢ at Y’ is given by

|ResY/ (¢)|2/m = |U|2/m|2p/+1|2a"/Jrl e ’Zp|2ap|wq’+1|2(1_6q/+l) S |wCI|2(1_BQ)'
2
) de’tl A.../\%/\—dwq'+1 /\-~~A%/\d3/ :
Zp’—‘,—l Zp wa+1 wq =

Note that |Resy:(¢)[¥™ is a finite measure on Y as a;, (1 — 3;) > 0 for all i > p’ and
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j > ¢'. Using the expression of ¢, in Equation (I1.3.1), we can write

2
ldzl/\ dzy /\dwl/\.../\dwq'

A [Resy (4)[2™.
0 Zl Zp’ wl wq/

Zn2(¢t Atp) =

Make a change of variables z; = [t|[“ie® for 1 < i < p/ and w; = [t|%e™i for 1 < j < ¢.

Writing 2" = (2p41,...,2p) and W' = (wy41,...,w,), we can view (2',w’,y) as coordinates

on Y'NU. Let ¢ = {(u,v) € REY 7, bju; < 1}. Write

S::{(uvz wiy)eax (Y NU)

- blog|=|
sz w; + Z toal gl}

i=1 i=p’+1

and let 1g denote its indicator function. Applying the change of variables, we get

1 1d dz, d dw, |
—/ (f o Logy)x _ﬁ/\.../\ “p /\ﬂ/\.../\ W
(27log|t))? Junx, by =1 2y wy Wy

| / :

) fx- Lsdu dv df d9 [Resy: ()™,
bg(zﬂ')d 5><[O,27r}P/+‘1,X(Y’mU){ B bo tZ/H 1}

20|29 = i= 1% @

A |Resy (¢))™

The integral on the right hand side is taken over & x [0,27]"+7 x (Y' N U), where we
view (u,v) € 7, 6; € [0,27] for 1 < <p', ¥, € [0,27] for 1 < j < ¢ and (2',v',y) €e Y'NU.
Let us analyze the pointwise limit of each of the factors appearing in the right hand side

of the previous expression. We have that

4 p o
bilog|z;|  loglz/|  log|w|
f 1— blul - , U, , U, — f 1— biui,U,Q,U,Q
; Z log|t| log|t| log|t| 221

i=p’+1

pointwise on ¢ X (Y'NU) as t — 0.

As for x, note that zy — 0 as t — 0 for a fixed (u,v,2',w',y) € ¢ x (Y NU). So,
X (20, [t]"e, 2, [t e w', y) — x(0,2',0,', y)

ast — 0.
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It is easy to check that 1¢ — 1 a.e on ¢ x (Y NU) as t — 0, and from our analysis

1 Noyr

in Proposition 1.3, we have that b;; Aov, = %dudv under the homeomorphism oy — &

. .. 1 -
given by (ug,...,Uy,v1,...,0y) = (U1,...,Uy,V1,...,0y). The remaining factor of B s

taken care of by the fact that the number of solutions zy to the equation zgo = ¢ 5 18
i=1%i

exactly bg.

Using Lebesgue’s dominated convergence theorem, we have the result. O

The following lemma helps to ‘glue’ to the result of the previous lemma to obtain a global

verslon.
Lemma II.11. Let L be a compact subset of (27, |B|)™". Then, limsup,_,, [y, dp: < oc.

Proof. Consider a global log function Log, on Z". Without loss of generality, assume that

V = 2. We may further rescale ¢ to assume that {Log;}llyb(K) N7 (AD)} kcopa,iB)

forms a compact exhaustion of (27, |B|)"" N 7~!(iD) (see Proposition 11.8). So, we may

enlarge L to assume that L = Log; 4, (K) N7~ (3D) for some compact K C A(Z", |B]).

We wish to show that lim sup,_,, th 1x o Logydu, < co. Let V = .., U; for adapted

il

coordinate charts U; and let {x;}:c; be a partition of unity on {U;};c; such that Log, =

> i XiLogy,. Tt is enough to show that limsup,_,q [;; -y, Xi(1x © Logy)du; < oo for all i.
Since Logy, — Logy, = O(log‘%) on the support of x;, we can find a compactly supported

continuous function f on A(Z",|B|) such that foLog, > 1k oLogy on (U;\ (Zo+|B|))N

supp(X).
Then,
lir?jélp /U . Xi(1x o Logy)dp; < lim s, Xi(f o Logy,)dp,
and the right hand side exists and is finite by Lemma II.10. [

We now prove the statement of Theorem B for functions that are pulled back from

compactly-supported continuous functions on A(Z2", |B|) via a global Log map.

Lemma II.12. Let f be a continuous compactly supported function on A(2Z",|B|) and let

Logy, be a global log function on 2. Then, th(f o Logy )du, — fA(% B)) fdug ast — 0.
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Proof. Let V' = J,c; U; and let x; be a partition of unity on U; so that Logy, = >, x;Logy. .

el
Let Y; be the stratum associated to U;.
Then, we can write th(foLogV)dut => fUth Xi(foLogy )du,. It follows from Lemma

IT.11 and from Proposition I1.6 that

(11.3.3) lim

t—0

/ Xi(f o Logy )du; — / Xi(fo LogUi)dut‘ = 0.
U;NX¢ U;NX¢

If oy, contains a maximal face oys of A(Z), it follows from Lemma II.10 that

t—0

lim Xi(f © LOgUi)th = (/ Xz‘|ReSY'(¢)|2/m) / fb;i/)\ay/
U;NX¢ Y’/ Ty

If oy, does not contain a maximal face of A(Z), then the above limit is 0. Note that
any oy, contains at most one maximal face oy of A(Z) and this happens if and only if Y’

intersects U;. Thus, for all 2 € I, we have

(I1.3.4) 2leg% Xi(f o Logy. )dpu, = Z (/a Xi|Resy, (¢)|2/m) (/U fb;l/\g) :

UinX, oCA(2),dim(0)=d
Combining Equations (I1.3.3) and (II.3.4), we are done. O
Now, we are ready to prove Theorem B.

Proof of Theorem B. Let f be a continuous compactly supported function on (27, |B|)™".
Fix a global log function Log; and let y be a continuous function on (2, |B|)™P? that is 1
in a neighborhood of A(Zy, B) and is supported in Wﬁl(%ﬁ). By replacing f by (f|a2 5| ©
Logyu) - X — f, we may assume that f|az 5 = 0.

Let K = supp(f) and pick € > 0. Since f is continuous and compactly supported, there
exists tg < 1such that | f| < eonn'(toD). Then, limsup, ,o| [y, fdue| < elimsup, o [rry, e,

which goes to 0 as € — 0 by Lemma II.11. O]
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Remark I1.13 (Independence of m). Note that Theorem B seems to involve the choice of
a sufficiently divisible integer m. However, it is easy to see that both the measures u; and

1o remain invariant if we replace m by km for some positive integer k.

Example I1.14 (Convergence of Haar measure on (P!, 0+00)™P). In the setting of Example
I1.7, let u1; denote the Haar measure on (P'\ {0, 00}) x {t}. Then, W“t weakly converges

to the Lebesgue measure on R ~ A(.2",|B|) as measures on the hybrid space (P!, 0+ 0o)tP.
More generally, we can prove a similar result for toric varieties.

Example II.15 (Convergence for the Haar measure on a torus). Let N be a free abelian
group of rank n. Let M = Homgy(N,Z) and T' = Spec (C[M]) be the associated torus. Let
Y be a smooth projective toric compactification of T" i.e. a smooth projective toric variety
associated to a regular fan in Ny (For example, Y = P"). Let w be a torus invariant
meromorphic n-form on Y. Note that there is a canonical choice of such an w up to a sign
and w has poles of order one along all boundary divisors. Let D be the reduced divisor
given by the sum of the boundary divisors. Then, Ky + D is linearly equivalent to 0 and
w € H°(Ky + D) is a trivializing section.

Consider the constant family Y x D* over . Then (Y x D*, D x D*) is log smooth and
consider the projective snc model % =Y x D of (Y x D*, D x D*). Then, A(#,D x D*)
is canonically isomorphic to Ng, with the faces given by the cones in the fan defining Y.
Thus we have a hybrid space given by (%, D x D*)WP = (T x D*) U Ng. We also get a
top-dimensional meromorphic form 1 on Y x ID* whose restriction to each fiber gives the
measure w. Let u; denote the measure given by %ﬁ% on the fiber T x {t}.

Applying Theorem B to this setting, we get that the measures p; converge to the Lebesgue
measure on each of the cones. The Lebesgue measures on each of the cones is exactly the

Lebesgue measure on Ny (normalized such that the lattice N has unit covolume) restricted

to that cone. Thus, u; converges weakly to the Lebesgue measure on Ng as t — 0.
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I1.4: Convergence on the limit hybrid model

Let (X, B) be a log-smooth pair over D* with removable singularities at the origin (i.e. there
exists an snc model of (X, B)). The choice of a hybrid space (2, |B|)"™" depends on the
choice of an snc model 2" of (X, B). We construct a canonical hybrid space (X, |B|)™"
that does not depend on a choice of a model. Such a space is obtained by an inverse limit
(X, |B|)b = L (2B |)b¥® Theorem I1.16 implies that this definition matches with the
definition in the introduction when (X, B) is a projective over D*. We also explain how the
space (X, |B|)™P can itself be viewed as a Berkovich analytic space when (X, B) is projective

over D*.

I1.4.1: The limit hybrid model

Given two models 27, 2" of (X, B), there is always a bimeromorphic map 2~ --» 2
induced by the given isomorphism with X over D*. We say that 2" dominates 2~ when this
bimeromorphic map extends to a morphism. More precisely, we say that 2" dominates 2~

if we have a proper holomorphic map 2" — 2" which is compatible with the isomorphisms

2 |p

* =

When 2" and 27 are snc models of (X, B) such that 2" dominates 2~ via a map
m: 2 — 42, we also have an integral affine map m, : A(Z”,|B|) — A(Z7,|B|) and also a
continuous surjective map (27, |B|)"? — (27, |B|)"? as in Section 4.2 and Section 4.8 of
[ ]. If oy is a face of A(Z7,|B|), associated to a stratum Y’ of 2/, let Y be the smallest
stratum that contains m(Y”). Then, m.(0y/) C oy. We describe these maps in detail in the
projective case in the following subsection.

The collection of all snc models of (X, B) is a directed system. See | , Lemma 4.1]
for more details. We can then define (X, |B])"P := hm (2, |B|)b¥P. Tt is easy to see that
we have a projection map (X, |B|)"™> — D such that #=1(D*) ~ X \ |B|, and the central

fiber, (X, |B|)"",, is Hm . A(Z,|B|). Here the inverse limit runs over all snc models 2~ of
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(X, B), and the inverse limit is taken in the category of topological spaces. Theorem I1.16
tells us why this definition of (X, |B|)"™® matches with the one in the introduction when
(X, B) is projective.

Suppose now that (X, B) is projective over D*, i.e. we can view X as a closed subset
of PV x D* for some N such that X and B are cut out by polynomials whose coefficients
are holomorphic on D* and meromorphic on D. Thus, we can view the coefficients of the
defining equations as elements of C((t)). Using the same defining equations in Pg((t)), we get
varieties X¢() and By over Spec C({t). A projective snc model 2" of (X, B) gives rise
to an snc model Z¢py over Spec C[[t]] whose generic fiber is X¢ () and special fiber is 25,
and 2o + % is an snc divisor in Z¢py. Then, we can define A(Z¢qy), Begy)) similar to
the construction in Section II.1.2, and we have a canonical identification A(Z¢qy), Begy)) =
A(Z,|B)).

The following theorem, analogous to | , Theorem 10] | , Cor 3.2], realizes the

central fiber (X, |B|)™®, as a non-Archimedean space.

Theorem I1.16. Let (X, B) be a projective log-smooth pair over D*. We have an isomor-
phism X&{,, \ |Blg(,) = Hm A(Z,|B|) where (1)* denotes the Berkovich analytification
with respect to the t-adic norm on C(()) and, the inverse limit is taken over all projective

snc models (£, B) of (X, B).

We will prove the above theorem in the following subsection, after setting up some pre-

liminaries.

11.4.2: The central fiber of the limit hybrid model as a non-Archimedean space

In this section, we will work over the field C({t)) instead of D*. So, let X be a smooth
projective variety over the discretely valued field K = C((t)), B be an snc divisor on X and,
Z be a smooth projective integral scheme over R = C[[t]] along with a specified isomorphism
Xk ~ X such that 2" is an snc model of (X, B) (that is, 2( + B is a snc divisor in .Z").

Then, A(Z,|B|) is the dual intersection complex defined similar to the construction in
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Section I1.1.2. We also have a CW complex A(Z") := A(Z",0), which can be viewed as a
subcomplex of A(Z",|B]).

Let X® and |B|* denote the Berkovich analytification of X and |B|, respectively, with
respect to the t-adic norm on K. We recall a few definitions related to the Berkovich
analytification that will be useful in this section. Recall that points in X®" correspond to
valuations on the residue field at (scheme) points of X that extend the valuation on C((t)).
This gives us a continuous map ker : X*" — X which sends a valuation to the underlying
point i.e a point € X*" is a valuation on the residue field of its kernel ker(z) € X. We
also have a map redy : X** — 2, defined as follows.

Let x € X and let k(ker(z)) denote the residue field at ker(z). Then z is a valuation on
k(ker(z)). Let k(ker(z))° denote the valuation ring in k(ker(z)) with respect to the valuation
x. By the valuative criteria of properness, the map Spec (k(ker(z))) — X lifts to a unique
map Spec (k(ker(z))°) — £ . The image of the closed point of Spec (k(ker(x))°) is denoted
as redy (z) and is called the center of the valuation . The map redy : X** — 2 is
anti-continuous in the sense that the inverse image of an open set is closed.

We have an inclusion iy @ A(Z) — X and a retraction ry : X* — A(Z) as
constructed in | ]. We would like to do a similar construction for A(Z",|B]|) and
X\ B[,

Let 2" be a snc model of (X, B). Then, we have an inclusion map i(4 g : A(Z, |B|) =
X2\ | B2 which is given as follows. Let Y Ceonn. comp. FoN---NE,N By N---N B, denote
a stratum of ;. Pick a point (rq,...,7p,51,...,5,) € oy. Let z; and w; locally define E;
and Ej near Y for 0 < ¢ < pand 1 < j < ¢. Then, we have an isomorphism O/x; ~
Cll20, - -, 2p, Wi, . - ., wy]]. Pulling back the valuation defined by v(3-,cypi1 gene Ca,p2 w’) =
min, ,zo{c-r+03-5}, we get an element of X*"\ | B|*". It is clear that i 4 |p)) is injective, and
it follows from | , Proposition 3.1.4] that (4 p) is continuous. We will often identify
A(Z,|B|) with its image under i(4 |p).

We also have a continuous retraction map r(o g : X**\ |B[* — A(Z",|B|), which is a

47



left inverse to the map i(4 ), defined as follows. Pick z € X**\|B|* and let red »-(x) be the
center of the valuation z. Pick the smallest stratum Y Cconn. comp. £oM- - -ﬂEpﬂ§1 n-- ‘ﬂgq

containing red y-(x). Then, we define

T B (@) = (Va(Eo), - - -, va(Ep), Ve(B1),...,vx(By))

in oy.

To see why 74 |p)) is continuous, recall that the map X*" — %2, taking any valuation to
its center is anti-continuous (i.e. the inverse image of a closed set is open). For any stratum
Y Ceonn. comp. EoN---NE, NB;N--- ﬂgq of 2y, the subset 7‘(}7‘3‘)(03/) C X\ |B|*™ is
a closed set as it corresponds to a subset of X®" whose center lies on an open set of 2.

Therefore, it is enough to prove that r(4 g, -1

1 . .
: is contin for
L (ov) 7 ) (0y) = oy is continuous fo

all possible strata Y. But this is clear from the description of the map above.
We also have a continuous retraction map ¢4 : A(Z7,|B|) — A(Z"), which we obtain

from the composition.

i(2,|B)

A(Z,|B|) ——=5 X\ |B]™ — X™ 225 A(Z).

Explicitly, if Y Ceonn. comp. Eo N+ N E,N By N---N By, let Y’ Ceonn. comp. £o N+ N E, be

the stratum containing Y. Then, ¢4 (0y) C oy and

G (T0y . TpyS15. -, 8q) = (T0y .., Tp).

If 2" and 2" are two snc models of (X, B) such that 2" dominates 2, then there is a

surjective map v 9 g : A(Z”,|B|) = A(Z",|B|) given by

i ,|B)) T(%,|B])

Xan \ |B’an

A(27,1Bl) A(Z,|BJ).
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The surjectivity of the map follows from | , Proposition 3.17 |.

We have an explicit description of 74 4| similar to | , Section 4.2] as follows. Let
p: X' — 2 denote the proper map between 2 and 27, let Y’ Ceonn. comp. EHN -+ N E;, N
BiN--- ﬂﬁq/ be a stratum of Z, and let Y Ceonn. comp. Eo N --- N E, NBy--- ﬂﬁq be the
stratum of 2j containing the image of Y. Note that ¢’ < q. Let E!, B; be locally defined
by z; = 0 and wj = 0 near Y’ and let E; and B, be locally defined by 2, = 0 and w; = 0
near Y. Then, we can write p*(z;) = u; - ilzo(z,’g)c@k and p*w; = vj - wj - Hilzo(z,’c)df’k for

units u;, v; € Oy yr and for some ¢; i, dj, € N. Then, 47 4 p|(0y/) C oy and is given by

p/
o /
r, = Ci kT,
k=0
and
p/
0 o
Sj=s8; + E d; Ty
k=0

Proposition I1.17. We have a commutative diagram

A2, |B|) 225 A(27)

l"‘%h%wl f%/,%

A2, |B]) = A(Z)
which gives rise to a continuous map ¢ : lim . A(Z,|B|) — lim A(Z).

Proof. To see that the diagram commutes, it enough to use the fact that 1y 9 0rg =14
[ , Proposition 3.1.7] and show that ¢4 o rwe gy = re on X**\ |B|*. Pick v €
X\ | B2, Let Y Ceonn. comp. EoN-+-NE,NB1N---NB, be the minimal stratum of 25+ B

containing the center of v. Then,

in Oy.
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Let Y/ Ceonn. comp. £o M-+ N E, be the stratum containing Y. Then, Y’ is the minimal
stratum in %2, containing the center of v and r4 (v) = (v(Ep),...,v(E,)) in oy:. It follows

from the description of ¢4 that ¢4 (12 5)(V)) =12 (V) O

Proposition II.18. If 2" is a blowup of 2" along a stratum Y Cconn. comp. Lo M-+ N E, N
BiN---N By, then ry o 5 A(Z7,|B|) = A(Z,|B|) is a homeomorphism obtained by a

subdivision.

Proof. This follows from a local blowup computation. Let £’ denote the exceptional divisor
in 2. Then, the maximal strata of 2" that map down to Y are of the form E' N E; N
ﬁ ﬂ---ﬂﬁ and E'OEOH---HEPOEJ, where I and J denote subsets of {0,...,p} and
{1,...,q} of size p and (¢ — 1) respectively and E; and gj denote the strict transforms of
E; and Ej.

First, let’s compute the image of op in A(Z",|B|). Note that divy/(t) = >, biE; +

(=P o bi)E'. Let v denote the divisorial valuation corresponding to og. Then,

_ 1 1
’ EZ = / E@ E/ == 4 El = =
Vg ( ) VE ( + ) Ve ( ) ordg (t) f:() b;

L_ forall j =1,...,¢q. Thus, the image of op

for all i = 0,...,p. Similarly, vg/(B;) = S
1=0 "1

in A(Z,|B|) is ﬁ(l, ..., 1) Eoy.
It is easy to check that the A(Z”,|B|) — A(Z,|B|) is a subdivision obtained by adding
the vertex o to oy. For example, let’s compute the image of oy for Y = E' N El N---N

E,NB;N---N B,. Note that

p p
O'y/:{($0,...,$p,y1,...,yq)‘ <sz>$0+2bzl’l:1}
i=0 i=1

Suppose v is a valuation represented by (zo,...,Zp,Y1,-..,Y,) € oyr. Then, v(E) =
v(Ey + E') = v(E') =z and v(E;) = v(E; + E') = x; + ¢ for i = 1,...,p. Similarly,

v(B;)=yj+axofor j=1,...,q.
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Thus, we see that 747 4 p||o,, s given by

($07---»$p;?/1,-~-7yq)'_> (anxl_’_'TO;"'a:L‘p—I—manl+x07"'7yq+m0)

O

In general, the map A(Z”) — A(Z") is not a homeomorphism, as illustrated by the

following example.

Example I1.19 (Blowup of P! x D). Let the notation be the same as in Example I1.2.
Let By = P! x {0}, B; = {0} x D, By = {0} x D. Let 2" denote the blowup of 2 at
FEyN By and let 2" denote the blowup of 2~ at some point in £, that is different from
0 and co. Then A(Z”,|B]) is obtained from A(Z",|B|) by adding a vertex along the ray
EyN By and A(Z™",|B|) is obtained from A(Z,|B|) by adding an extra vertex and joining
it to og,. The retraction 74 4 15 + A(Z”,|B|) = A(Z,|B|) is an isomorphism, while
ravap: AZ",|B|l) = A(Z, |B]) is given by collapsing the newly added edge and vertex

to OFy-

- ~_
(a) (b)

Figure 11.3: The dual complex of the (P! x D, {0} x D + {co} x D) after blowing up after
(a) blowing up at (0,0), and (b) blowing up at (1,0)

Lemma I1.20. Let 2" be a snc model of (X, B) and let K C A(Z",|B|) be a compact set.
Then there exists a snc model 2” of (X, B) dominating 2" such that 3, ,- () C A(ZY).

Proof. For a valuation v € X" and a divisor D C 2" not contained in {ker v}, set v(D) :=
v(f), where f defines D in an open neighborhood of the redy (v). We identify A(Z, |B|)
with its image under i(4|p)) and think of points in A(Z", |B|) as valuations.

Since it is enough to prove the result for some small enough compact neighborhoods of

all points in K, we may assume without loss of generality that there exists an irreducible
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component E of 25 and an € > 0 such that v(E) > e for all v € K. Let By,..., B, be the
irreducible components of | B| containing the centers of all v € K. It is enough to show that
there exists an snc model 2~ of (X, B) such that redy(¢') is not contained in the closures
of Bi,...,B, in 2" for all v/ € A(Z",|B|) such that 74 4 (') € K. Note that if ¢ = 0,
we are done. We will prove the result by induction on gq.

Pick N > 0 large enough so that Nv(E) > v(B;) for all v € K. Let Zp and Iy, be
the ideal sheaf defining E and B, respectively. Let 2 be the blowup of 2" along the ideal
sheaf TN + T3, Then, 2 is a model of X although it may not necessarily be regular. Pick
v € K and let U be an affine open neighborhood of redy (v). If E is defined by z = 0
and Bj is defined by w; = 0 on U, then U = Spec Ogr(U)[%] is a chart of the blowup.
Let 2 be a resolution of singularities of 2" such that 2 is a snc model for (X, B). Pick
v e A(Z7,|B|) such that 74 4 (V) = v. Then, y’(%) = V(%) > 0. Thus, the center of
V' in 2 is contained in U. But U misses the strict transform of By, and thus the center of
V' in 2" is not contained in B;. Thus, the irreducible components of B in 2" containing
the centers of any valuations v/ € 7’&}1,’%."3'([() can only be B, ..., B,. Thus we are done

by induction. O

To simplify the discussion, for the remainder of this subsection we will identify A(.Z", | B])

with its image under (o |p)).

Corollary IL.21. Let v € lim A(Z,|B]) be defined by a sequence of valuations vy €
A(Z,|B]) for each snc model 2" of (X, B). Then, given a snc model 2" of (X, B), there
exists a snc model 2" of (X, B) dominating 2 such that the center of vy~ in 2" does not

intersect |B].

Proof. This easily follows Lemma I1.20. Once we find a model 2" of 2" such that red o (v4)
is not contained in the closure of | B|, we can further blowup to assume that the two become

disjoint. O
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Proposition I1.22. The map ¢ : lim . AZ,|B|) — lim A(Z") is open and injective,
where 2" ranges over all snc models 2~ of (X, B).

Proof. Let v,1" be two distinct elements in Jim A(Z,|B]) defined by sequences vy, V), €
A(Z,|B|) respectively. Once again, we identify the elements of A(Z", |B|) with its image
under i(2 gy and think of them as valuations. Let 2" be an snc model of (X, B) such that
vy # vy in A(Z7,|B]). From Corollary I1.21, we can find a model 2" such that ¢4+ (vg) =
vor and ¢o (V) = V. Note that vy # vy, as vy o7 5|(Va) # T2 20 18|(Vy). Thus, ¢
is injective.

To see that ¢ is open, it is enough to show that given an snc model ¢ of (X, B) and an
open set U C A(¥, B)

o({v e T%HA(«% |B|)|va € U})

is an open set. We may further assume that U is small enough and has compact closure.
Using Lemma I1.21, we can find a model & such that U’ := 1y, 5(U) C A(#”). Then, it

is easy to check that

o({v € im A(2,|B))|vy € U}) = {v € lim A(Z)|var € U'}.
s Z

[

To prove Theorem I1.16, we exploit the isomorphism X2 = Hm A(Z) (see | :
Theorem 10], | , Cor. 3.2]).

Remark I1.23. The homeomorphism X = m A(Z) in | , Theorem 10] is stated

when the inverse limit runs over all snc models 2 of X. However, we may as well take the

inverse limit over all snc models 2" of (X, B) because such models form a cofinal system.

Proof of Theorem I1.16. We obtain a map r(x, g : X** \ |B|** — Jm A(Z,|B|) by con-

sidering the inverse limit over the retraction map 74 g : X** \ |B|* — A(Z",|B|).
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Observe that we have the following commutative diagram where the bottom map is a

homeomorphism.

X\ B 2 1im A2, B))
| I
X = lim , A(Z)

Therefore, it is enough to show that the image of | B|*" in lim A(Z") does not intersect
with the image of ¢. Let v be an element of lim A(Z,|B]|) defined by a sequence vy €
A(Z,|B|). Let v == ry'(¢(v)). Without loss of generality, assume to the contrary that
v € B

Using Corollary 11.21, we can find a model 2 such that the center of vy in 2" does not
intersect |B|. Then, ¢4 (va) = va. We also have that 79 (v1) = ¢o(ve) = vy and the
center of v; in 2 is contained in the center of vy in 2. But the center of v; is contained

in the closure of B;, which is a contradiction. O

11.4.3: The limit hybrid space as a Berkovich analytic space

Let (X, B) be a log-smooth pair of projective varieties over ID*. In this section, for any
0 <7 <1, we realize (X, |B|)™® := (X,|B|)""|5 as the analytification of a scheme over a
Banach ring, A,.

Asin | ], consider the Banach ring

A, = {Zcz-ti €C(®) | ci € Cand > [leifwypr < oo} :

i 1EL

where ||¢;||nyn = max{|c;|, 1} if ¢; # 0 and ||0||nyn, = 0. Then, its Berkovich spectrum M (A4, )
is homeomorphic to rD. For more details, see | 1 [ , Appendix 1]. Note that any
function that is holomorphic in open neighborhood of rD \ {0} and meromorphic at 0 gives
an element of A,.

Given a projective family X — D*, we can think of X as a finite type scheme over
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Spec A, because the coefficients of the homogeneous equations cutting out X in PV x D*
can be viewed as elements of A,. We denote this scheme as X4,. Similarly, we get |B|4, C
X4,.. Let (O)A" denote the Berkovich analytification functor on the category of finite type
schemes over Spec A,. The map X4, \ |B|a, — Spec A, gives rise to the canonical map
XA4"\ |BI3® — M(A,) ~ rD. The following proposition tells us how this analytic space is
related to (X, |B|)™P.

Proposition 11.24. We have a homeomorphism X4\ |BJ3* = (X, |B|)™® as spaces over

riD.

Proof. Let m, : (Xa, \|B|a,) — rD =~ M(A,) be the canonical projection map. From | :

Lemma A.6] we have the following homeomorphisms:

' (rD7) = (X \ |B|)|,5 and 7, (0) = (X&) \ IBl&y).

Moreover, the first homeomorphism is compatible with the projections to D"

The above homeomorphisms let us define a bijection X4 \ |B[3™ — (X, |B|)™". It re-
mains to check that this map is continuous. To do this, first note that we have an embedding
(X, B)wb s X where XWP = lim 2" hyb " oiven by the canonical inclusion over D* and
by Proposition II.17 over the central fiber. We also have a homeomorphism X4 — XM as
topological spaces over rD | , Proposition 4.12]. It is straightforward to check that the

following diagram of topological spaces over rD commutes.

n An
XA\ Bl —— (X, B]);®

I /

Xﬁn =~ X}fyb
Since the map at the bottom is a homeomorphism, the vertical maps are open immersions,
and the top map is a bijection, the top map is also a homeomorphism. O

Now, we can define the hybrid space associated to a (not necessarily log-smooth) projec-
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tive pair (X, B) over D* as (X, |B|)™b := ligoqd(Xreg \ |B])A". Proposition I1.24 tells us

that this matches with our previous definition when (X, B) is log-smooth.

11.4.4: Convergence on the limit hybrid model

Let (X, B) be a projective log-smooth pair of varieties over D*. The convergence described
in Theorem B depends on the choice of a model (27, B) of (X, B). We would like to remedy
this by describing the convergence on (X, |B|)™P = Jim 2 (2 |B|)™P | which is independent
of the choice of a model.

Suppose we have two models 2" and 2" of (X, B) with 2" dominating 2" via p: Z" —
2. Suppose that we have a Q-Cartier divisor 4 on 2 extending Kx,p-+ B and a generating
section ¢ € H(Z,m2) extending n € H*(X, m(Kx/p-+B)). Then, we can get a Q-Cartier
divisor ' = p*% on 2" extending Kx/p- + B and a section ¢ = p*¢ extending 7. Applying
Theorem B to both 2" and 27, we get measures pi and i on A(Z,|B|) and A(Z7,|B|)
respectively which are the limits of p; on (27, |B|)™® and (27, |B|)™" respectively. Since
the pushforward of Radon measures commutes with weak limits, we have that pg is just
the push-forward of the measure ugyl under the map rz 4 p|.

Thus, we get a compatible system of measure ,ub%v on all models 2" dominating a fixed
model 2. This gives rise to a measure on s on (X, |B|)e¥", and thus we get the following

convergence theorem.

Theorem II1.25. Let (X, B) be a projective log-smooth pair over D*. Suppose that K x/p- +
B ~g 0 and let n € H°(X, m(Kx/p++ B)) admit a meromorphic extension (i.e. there exists a
model 2 of (X, B), a Q-Cartier divisor Z extending K x/p-+B and ¢ € H*(2Z",mZ) extend-

i (me AT/
[¢[2Fmin (2rloglt]~1)7

ing 7). Then, there exists Ky, € Q and d € N such that the measure p; =
converges weakly to a measure ug on (X, |B|)™P.

Moreover if we fix an snc model 27, a Q-Cartier divisor 2 and a section v € H*(2",m9)
extending 7, then g is supported on A(Z) C A(Z',[B|) C X¢) \ [Bl&(y), and d, fmin and

1o have the same description as in Section 11.3.3.
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Example I1.26. Following up Example I1.14, we see that the Haar measures on P! converges
to the Lebesgue measure on R, which can be thought of as the unique line joining the type 1
points corresponding 0 and oo in (IP’}C((t)))an. More generally, we could take B; to be given by
p(t) + q(t) for distinct functions p, g which are meromorphic on D and holomorphic on D*.
Then, there exists an isomorphism of pairs (P! x D*, {(p(t),t)} + {(q(t),t)}) = (P! x D*, [0] x
D* + [oo] x D*). This extends to an isomorphism (P(lc((t»)an \ {p,q} ~ (IP’}C(@)))Em \ {0, 00},
where p, ¢ denote the type 1 points corresponding to p(t) and ¢(t). Thus, as t — 0, the Haar

measure on P!\ {p(t),q(t)} converges to the Lebesgue measure on the unique line joining
the points p and ¢ in (Pg,))™ \ {P. ¢}-

Example I1.27. Similar to the above example, let X = P! x D* denote the constant family.
Let B = {z?+a;z+ay = 0} C P! x D*, where z denotes the coordinate on P! and a;, ay are
functions that are meromorphic on D and holomorphic on . Then, (X, B) is log Calabi-Yau.
Also assume that the polynomial 2% + a1z 4 as € C((¢))[2] is irreducible.

Fix a square root u = v/t and consider the field extension C((t)) — C((«)). This corresponds
to a degree two map ID* — D* given by u — u?.

The polynomial 2% + a2 + ay € C((t))[2] splits into factors (z — p)(z — q) in C(w)[z]. By
the previous example, as u — 0, the Haar measure on P\ {p(u),q(u)} converges to the
Lebesgue measure on the line joining p and ¢ in (P& ((w))™ \ {p,¢}. Call this measure fip.
We have & map (B3()™ \ {p.q} — (BLy)™ \ [B]™

To understand the convergence of the Haar measure on P! \ | By, note that P* \ |B| ~
P\ {p(u),q(u)}. Thus, ast — 0 the Haar measure on P'\ | B;| converges to the pushforward
of 19 to (P(lC((t))>an \ | BJ*™.

Example I1.28. Following up Example 11.15, we get that the (scaled) Haar measure on
the constant family of tori T" = N ® C* converges to the Lebesgue measure on R". For
any smooth projective toric compactification Y of T" with boundary divisor D, the image of
A(Y,D) C T¢{) coincides with the image of Np — T¢j,) given by sending dYon;®r; € Ny

to the seminorm | Zj a;x™ | = max;{|a;le” Eiri(mjna)}
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I1.4.5: Convergence for general sub log canonical pairs (X, B)

In this subsection, we drop the assumption that (X, B) is log-smooth and prove Theorem A
in general.

Suppose that (X, B) is a projective pair over D* such that (X, B) is a sub log canonical
and log Calabi-Yau pair. Here, sub log canonical means that (X, B) is log canonical in the
sense of the minimal model program (i.e. discrep(X, B) > —1) but we are not necessarily
assuming that B is effective. Let n € H°(X,m(Kxp+- + B)) be a generating section that
admits a meromorphic extension.

Let m : (Y, B') — (X, B) be a log resolution of singularities. Here, B’ is the divisor
supported on the exceptional locus and the preimage of B such that Ky /p-+B" = m* (K x/p-+
B) ~q 0. Moreover, 7 gives an isomorphism Y \ |B’| >~ X™&\ |B|.

Since (X, B) is sub log canonical, all the coefficients that show up in B’ are at most
1. Thus, the pair (Y, B’) is log-smooth, sub log canonical and log Calabi-Yau. Let n/ €

H°(Y, m(Kyp- + B')) denote the section ' = 7*(n). Applying Theorem B to Y, we get that
S
i ()

there exist Kmin € Q,d € Ny such the measures u; = Grloglil Ty i

converge weakly to a
measure i, on the space (Y, B)"P for any 0 < r < 1.

Note that the map 74" : (Y \ |B|)4* — (X" \ |B|)4" is a homeomorphism as the
restriction of 7 to Y\ |B’| is an isomorphism. Taking hﬂoggv we get a homeomorphism
(Y, |B'|)wP ~ (X, |B|)™P. Then, it follows from the change of variables formula that p; :=

2
n A7) /™ . .
(™) (1) = (szlogmt*l?)]‘ti)\ T Since the pushforward of Radon measures under a continuous

map commutes with weak limits, it follows that p; — (74"). (1)), which finishes the proof of

Theorem A.
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CHAPTER III
Convergence of Bergman Measures Towards the Zhang

Measure

I11.1: Introduction

Structure of the chapter

In Section II1.2, we discuss some preliminaries. In Section II1.3, we recall the construction of
the hybrid space. In Section II1.4, we recall some properties of the dualizing sheaf of curves
with at worst simple nodal singularities. In Section III.5, we compute some asymptotics
related to the Bergman measure. In Section II1.6, we prove Theorems D’ and D. The key
technical result in this section is Lemma I11.12. In Section I11.7, we work out the convergence

on the metrized curve complex hybrid space, proving Theorem E.

I11.2: Preliminaries

I11.2.1: Curves and models

Throughout this chapter, a family of curves X over D* of genus g > 1 refers to a complex
manifold X of dimension 2 such that we have a smooth projective holomorphic map X — D*
with fibers being connected smooth complex projective curves of genus g. We also assume
that the family is meromorphic at 0 i.e. there exists a projective flat family 2~ — D extending

X — D* with 2" normal and having a non-empty fiber over 0.
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A model & of X is a flat projective holomorphic family 2~ — D such that 2

p* 1S
biholomorphic to X as spaces over D*. We say that 2 is a reqular model of X if 2 is
regular. The fiber over 0, %y, is called the special fiber. Let Z(,ea denote the reduced
induced structure on 2.

We say that 2" is a normal crossing model (abbreviated as nc model) of X if 2 is

regular and 2 eq 1S @ normal crossing divisor.

I11.2.2: Semistable reduction and minimal nc models

We refer the reader to | ] for a detailed introduction to models over a DVR. We
summarize some of the results that we will use.

For any model 2" of X, we always have that 2 is connected | , Corollary 8.3.6].

A family of curves X is said to have semistable reduction if there exists an nc model 2~
of X with reduced special fiber i.e. Zy = Zyrea and such an 2 is called a semistable model
of X.

A family of curves X of genus g > 1 always has semistable reduction after performing a
finite base change D* — D* given by u + t". This follows from | , Corollary 2.7] in the
case when g > 2. See | , Tag OCDN] for a general statement.

A family of curves X of genus g > 1 always has a minimal nc model i.e. there exists

an nc model 2, of X such that for any nc model 2" of X, there is a proper morphism

2 — Zmin- Such a model is unique up to a unique isomorphism. See | , Theorem
2.5.1) or | , Tag 0C6B] for details.
When X has semistable reduction, the minimal nc model is also semistable | , Tag

0CDG]. In addition, the special fiber of the minimal nc model has no non-singular rational

component that meets the rest of the component in only one point.
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111.2.3: Blowups and getting new models from old ones

Given two models 2" and 27 of X, we say that 2" dominates 2 and write 2" > 2" if

we have a proper holomorphic map 2 — 2" such that its restriction to 2’

D+ commutes
with the isomorphism to X.

If 2, 2" are two nc models of X such that 2”7 > 2", then 2" is obtained from 2" by
a sequence of blowups at closed points in the special fiber [ , Theorem 1.15].

If 2" is an nc model of X, we can get a new nc model 2" dominating 2" by blowing
up 2 at a closed point in 2. Given two models 2" and 2" of X, there always exists a
model 27 such that 277 > 2", " > 2", and 2" is obtained from both 2" and 2" by

a sequence of blowups in the special fiber | , Proposition 4.2].

111.2.4: Dual graph associated to a model

Let 2" — D be an nc model of X. The dual graph T4 associated to 2~ a connected metric
graph . The vertices of "y correspond to the irreducible components of 2. If P is a node
in 2, that lies in the intersection of the components E, and £}, then we add an edge e,
between the vertices vg, and vg,. Let V(I'y) and E(I'y ) denote the vertex and edge set
of the dual graph respectively. Note that 'y~ might have loop edges and multiple edges
between a pair of vertices.

We define a length on each edge i.e. we have a function [ : E(I'y) — Q¢ defined
as follows. Let z,w be the (analytic) local equations defining the irreducible components
containing a node P. Then, locally near P, the map 2 — D is given by (z,w) — z%w?,
where a and b are the respective multiplicities of the irreducible components. We define the
length of ep to be ﬁ

It is also useful to keep track of the genus of the irreducible components. So our metric

graph also comes with the data of a genus function g : V(I'y) — N given by taking the

value of the genus of the normalization of an irreducible component at every vertex. We also
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define the genus of I' 5~ to be its first Betti number i.e.

9gTa) = [ET )| = [V(T2)| + 1.

Note that if 2" is a semistable model of X, all the edges in the dual graph I' - would
have length 1. For more details about the dual metric graphs, refer to | I, [ | and
[BPRI6].

Let Z” be obtained by blowing up 2" at a closed point in Z5. Then, I'y- and I"y~ are

related as follows.

e If 27 is obtained by blowing up a smooth point on an irreducible component Ey C 2y
of multiplicity a, then I' - is obtained from I' - by adding a new vertex vg correspond-
ing to the exceptional divisor of the blowup and adding an edge of length a% between

vgp and vg,. The genus function is extended to one on 'y~ by defining it to be 0 on

VE.

e If 2 is obtained by blowing up a node P = E; N E, for (possibly same) irreducible

components i, Fy C Zp, then 'y is obtained from I'y by subdividing the edge

ep into edges of lengths ot and L % by adding a vertex vg corresponding to the

1
a+b) (a+b

exceptional divisor. This makes sense as

1 1 1

& aatrd)  @ron

The genus function is extended to 'y~ by defining it to be 0 on vg.

In both the cases, we see that we have an inclusion I'y- < 'y~ as well as a retraction
'y — Ty, and thus 'y~ is a deformation retract of I'y-. They both also have the ‘same’
genus function.

More generally, given two nc models 2 and 2", they can both be dominated by a

common model 2" obtained by a sequence of blowups from both 2" and 2. Thus, we see
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that g(I's-) = g(I's) and Zyev(rg) g(v) = Zvev(r%,) g(v). Let ¢’ = g(I'»).
The following remark is a consequence of the invariance of the genus functions under

blowups.

Remark III.1. Suppose that X has a semistable model and let 2" be an nc model of
X. Then, any irreducible component E C 2, whose normalization has positive genus, has

multiplicity 1.

Remark III.2 (The two choices of the length function). There are two possible ways of
assigning lengths that we can assign to a node P given by the intersection of two irreducible
components of 2y with multiplicities a and b respectively. One way is to define the lengths

as above, by setting

ll(ep) = —.

ab
Yet another way is to define the length by
1
l = —.
2(er) lem(a, b)

Both these lengths are compatible with respect to blowups. This follows from the fact that

1 1 1
lem(a,b)  lem(a,a + b) - lem(a +b,b)

See | | for comparisons between the two metrics. The advantage of using the first length
function is that it makes our computations easier and the advantage of using the second one
is that it is well-behaved with respect to ground field extensions.

In our case, it turns out that we could have chosen either one of the above metrics and it
would not matter. The reason for this is that if we assume that X has a semistable model,
the two notions of length can only differ on bridge edges of the dual graphs associated to
any model. Since our aim is to compute the Zhang measure on the dual graph using the

length function, it is enough to realize that Zhang measure remains invariant under change
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of length of any bridge edge.

I11.2.5: The Zhang measure on the dual graph

Let I" be a metric graph along with a genus function g : V/(I') — N. Let [, denote the length
of an edge e. Let §, denote the unit Dirac measure at a vertex v and let dz|. denote the
Lebesgue measure on an edge e normalized such that fe dx|. = l.. We can also view IT" as
an resistor network with the resistance of each edge being [.. Let r. denote the resistance
between the endpoints of the edge e in the in the resistor network obtained by removing the
interior of the edge e from the graph I'. For the precise definition of r., see | , Section 3]
(The precise definition of r, is not very important for this chapter as we will use a different
characterization of the Zhang measure in the proof; see Proposition I11.5).

The Zhang measure on I' is a measure and is given as follows.

pan= Y 9W)s+ Y %

veV(T) ecE(T)

When e is a bridge edge i.e. removing e from I" disconnects I, then r, := co and lgim = 0.
Thus, the Zhang measure places no mass on bridge edges. For more details, see [ ].
Note that our definition differs from Zhang’s original definition by a factor of g. This is done
so that so that the total mass of Zhang measure is now equal to g = 3 _ 9(v) +g(I'). For
an interpretation of —— in terms of spanning trees and electrical networks, refer to | ,

le+re

Section 6].
Remark III.3. Note that the Zhang measure is invariant under the following operations.

e [f we subdivide an edge of length [ into two edges of lengths [y, —1;, the Zhang measure

does not change.

e If we introduce a new vertex v’ and add a new edge e between v’ and an existing vertex
v, the Zhang measure on the new graph is the same as the one on the old graph as the

edge e would be a bridge and would not alter any of the resistances in the old graph.
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e If we multiply all the lengths by a fixed factor N € R, , the Zhang measure does not
change. This is because the resistance is linear as a function of edge lengths and thus

the quantity lei—w remains unchanged.

The first two operations correspond to altering an nc model by blowups and the third

operation corresponds to ground field extension.

II1.2.6: Bergman measure on a complex curve

Let Y be a complex curve of genus ¢ > 1. Then there exists a natural Hermitian metric on

HO(Y,Qy) given by
(I11.2.1) (0,0) > 3/ INT.
2 )y

Let 91,...,9, be an orthonormal basis of H°(Y,{y) with respect to this pairing. Then, we
get a positive (1,1)-form £ >, 9; A Y; on Y. It is easy to verify that this (1,1)-form does
not depend on the choice of the orthonormal basis. This (1, 1)-form gives rise to a measure
on Y which is known as the Bergman measure. Note that the total mass of the Bergman
measure is g. For more details regarding the Bergman measure, see | ] and [ ,

Section 3.3].

I11.2.7: Associated Berkovich space

Let X¢(y be the projective variety cut out by the defining equations of X, where we view
the coefficients of the defining polynomial as elements of C((t)) by looking at the power series
expansion around O.

The collection of all nc models of X forms a directed system. Given a proper morphism
2" — ', we get a retraction map "9+ — I'y. For example, if 2" is obtained by blowing
up £ at a node in %, then this map is an isometry and if 2" is obtained by blowing

up £ at a smooth point P C %, then this map is obtained by collapsing the vertex and
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edge associated to the exceptional divisor and the new node respectively to the vertex on
'y associated to the irreducible component containing P. More generally, see | | for a
description of this map.

Then, we have an homeomorphism | , Theorem 10] | , Corollary 3.2]

nc models 2~

I11.3: The hybrid space

Given an nc model 2~ of X, we can construct the hybrid space 2P given set theoretically
as 2P = X T 5. We recall the topology of the hybrid space in the one dimensional case.

Consider a chart given by an open subset U C 2 such that U N 2y = U N E, where
E is an irreducible component of 2y of multiplicity a and there exist coordinates (z,w) on
U with |z|,|w| < 1 such that the projection to D is given by (z,w) — 2. Following the
terminology of | |, we call such a coordinate chart as being adapted to E. In this case,
we define Log;, : U \ E — vg to be the constant function, where vg € 'y is the vertex
corresponding to £.

Now, let P = E; N E5 be a node where E; and FE, are either two distinct irreducible
components of 2y, or correspond to two different local analytic branches of the same irre-
ducible component. Let the multiplicities of Fy, Fy in 2y be a, b respectively. Now consider
a coordinate chart given by an open set U C 2 such that UN %2y = U N (E, U E,) and
there exist coordinates (z,w) on E with |z|,|w| <1, UNE; ={z=0}, UN Ey, = {w = 0}

b

and the projection to the disk is given by (z,w) — ¢t = z*w”’. Such a coordinate chart is

said to be adapted to the node P = E; N Ey. In this case, we define Log;, : U\ 2y — ep

log|z|
blog|t|’

where we identify ep with [0, ﬁ] with vg, corresponding to 0 and vg,

by (z,w) —

1

corresponding to —

A coordinate chart adapted to either an irreducible component of 25, or to a node in
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2o is called such a coordinate chart as an adapted coordinate chart.

Let V = J, U; be a finite cover of an open neighborhood of Zj by adapted coordinate
charts and let x; be a partition of unity with respect to the cover U;. Then the function
Logy : V' \ Zy — I'y defined by Log,, = >, x;Logy, is well-defined (note that addition in
[y is not well-defined, but it makes sense on an edge using the identification ep ~ [0,l.,]).
Such a function is called a global log function. The following remark is very useful and is

proved using | , Theorem 5.7].

Remark II1.4 (Proposition 2.1, | ). If V and W are open neighborhoods of 2, with

global log functions Logy, and Logy,, then as ¢ — 0

1
Logy, — Logyy = O [ ———
ogy Ogw <log|t]—1>

uniformly on compact sets of VNW .
We define the topology on 2" to be the coarsest topology satisfying
e The map X — 2" is an open immersion.

e The map 2'™" — D given by extending 7 : X — D* and sending I"»- to the origin is

continuous.

e Given a global log function Log,,, the map VUI'y — I'y given by Log, on V and

identity on I'4 is continuous.

It follows from Remark I11.4 that the topology induced on 2™ does not depend on the
choice of the global log function.

We can define X™P to be 1&1 P 2P where 2 runs over all normal crossing models.
Since we have that X&) = @F 2, we get that the central fiber of X™? is homeomorphic
to Xgr(‘(t». In fact, it is possible to see the space X™P as the Berkovich analytification of X

seen as a scheme over a certain Banach ring | 1 [ , Appendix]. See also | .
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ITI1.4: The canonical sheaf on £ eq

If Y is a a smooth projective complex curve, then we define its dualizing sheaf wy as the
sheaf of holomorphic de-Rham differentials €y i.e. wy = €y. This sheaf satisfies Serre

duality i.e. for any line bundle £ and for : = 0,1
H'(Y,L) ~ H(Y,wy ®o, LY)".

In certain more general situations, it is possible to define a sheaf that satisfies similar
duality properties. For example, if Y is a Cohen-Macaulay variety, one can define a dualizing
sheaf wy. | , Section I11.7]

Let 2 be an nc model of X. A simple computation shows that 2,4 is a Cohen-
Macaulay variety and thus it is possible to define wy; .. The sheaf wa; req is in fact a line
bundle. We give a more explicit description of it later in this section.

Let us first calculate dime H°(2",wy;,.,)- Since wy; ., is the dualizing sheaf of 20 eq,

by applying Serre duality we get that

HO(‘%‘7 w%O,red) = H1<<%7red’ O%O,red>v'

—_—— —_——

Let Z0rea denote the normalization of % eq and let p 1 Zgrea — Zorea denote the normal-

ization map. Then, 2y .4 is a possibly disconnected union of curves. By looking at the long

exact sequence induced in cohomology by

0= Ogppeg = Po(O =) = > ) —o,
’ Pe 2y reqa node

it follows that

dime H'(Z05ed;: O2p,00) = 9(La) + Z g9(v).
veV(Q)

If Z is a semistable model of X, then Z¢ = Z(ea and the invariance of the arithmetic
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genus in flat families guarantees that dime H' (25, O4;,) = g. Thus, in this case, we see that
9=902) + 2evr,) 9(v).

More generally, the same holds true for any model 2" as long as we assume that X
has a semistable model. This follows from the fact that g(I's) +>_,cy 1, 9(v) does not
depend on the choice of the nc model. (See Section II1.2.4). In this case, it also follows that

. 0 —=
dimg HO( 20 red, W2; ,00) = -

ITI.4.1: An explicit description of wy; .,

It is possible to give an explicit description of the elements of H 0(%3,@,@) Loore 4): they
correspond to meromorphic 1-forms 1 on %, the normalization of % eq, With at worst
simple poles at the points that lie above the nodes in 2, such that if P’ and P” lie above
the node P, then the residues of ¢ at P’ and P” add up to 0 | , Section IJ.
Let Ey,..., E,, denote the irreducible components of #(eqa. Then, note that %0\7;; =
Ll E, where E is the normalization of F;. When FE; does not have a self-node, then E; = E
Let Pl(i), e ,P,ff) denote the points in E that lie over nodal points in Z,. The above

description gives rise to the following short exact sequence of sheaves on 2 req:

0= way, = Pus @+ +P) = P CP)—0,

PeZy node

where the first map is given by the restrictions ¢ — (4|5, ...,%[g ) and the second map
is given by taking the sum of residues.

We also have a natural inclusion w o = D, wp, — w2;,.q as the sections of w T have

zero residue at all points. Since H( %20 red,w ), the vector space of holomorphic 1-forms

L%/.O,red

—_—

on Zjrea, has dimension Zvev(r) g(v), it follows that the subspace of HO(%,red,w%?re 4

spanned by 1-forms that have no poles has dimension Zvev(r) g(v) =g—g(Ly).
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111.4.2: One-forms on metric graphs

We refer the reader to | , Section 2.1] for a detailed introduction to one-forms on metric
graphs. Let I be a connected metric graph of genus ¢’. Assume that I' is oriented i.e. a

choice of an orientation for each edge of I'. Then we define the space of one-forms on I' as:
Q) =K w:EI) —C ‘ Z w(e) = Z w(e) for all v € V(I)
elet=v ele~=v

It is easy to see that dim¢ (') = ¢’. There exists a positive definite Hermitian pairing

on Q(T') given by

(I1.4.1) (w,w) = Zw(e)w’(e)le.

This Hermitian pairing should be thought of as the analogue of (II1.2.1) for metric graphs.

Proposition III.5 (Theorem 5.10, Theorem 6.4 in | ]). Let wy,...,wy be an orthonor-
mal basis of Q(T") with respect to the Hermitian pairing (I11.4.1). Let r. denote the resistance
between e~ and e’ in the graph obtained by removing the interior of the edge e from T'.

Then,

g 1
E 2 —
i=1 ’CUZ(e)‘ B le + Te .

Proof. Translating to the notation used by [ |, we have that

g 2
1
St = |- [ -
i=1 le Jellr2
Using | , Theorem 5.10], we get that
1 / ' Fle)
le ellL2 B le ’
where F(e) is the Foster coefficient defined by Baker and Faber. Now, | , Theorem 6.4]
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tells us that

111.4.3: Relation between the residues and the dual graph

Let 91, ...,%, be a basis of H*(Z0 red; W2;,.0)- Let ¢’ = g(L'»). Following the discussion in
Section II1.4.1, we may assume that g1, ..., 1, are holomorphic i.e. have zero residues at
all nodal points in 2 yeq.

Note that the residues of 91, ...,1%y at the points in Zj,eq that lie over nodes in 2 red

cannot be arbitrary; they must satisfy the following constraints

e The residue theorem ensures that the sum of the residues of v; is zero on every irre-
ducible component of %2 ,eq for all 1 <7 < ¢'.

—~——

e If P and P” are points in 2 eq that map to a node P in 2y, then the residues of v

at P and P” sum to zero for all 1 <i < ¢'.

Now pick an arbitrary orientation for each of the edges of I" »-. For an edge e, let e~ and e™
denote the initial and the final vertex respectively. For each 1), and a node P € % sed, let cr
denote the residue of 1); at the point that lies over P in the irreducible component associated
to ep. The data of the residues of 1; defines an element w; € Q(T' ) by ©; — (ep — CF).
Conversely, given w € Q(I'y), we can get atp € H 0(3{0“(1, W2 e ) using the residue theorem.
Such an element is uniquely determined up to an element that has no poles on % i.e. up to
an element in the linear span of ¥y 41,...,1,.

Summarizing, we have the following short exact sequence of complex vector spaces.

(I11.4.2) 0= HY(Zoet, w57 ) = HO( L ea, Wi rea) = QL) = 0
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Lemma IIL.6. We can pick a basis 91, .., %, of H*(Z0ed, W2; ,.,) such that

> CPCll, =64

P

forall 1 < j,k < ¢ and
/N Wi Nk = b

3K0,red

forg +1<j,k<g.

Proof. We have a positive definite Hermitian pairing on H°( .2 red, w &/V(T/d) =@, H(E;,wg,)
given by the Hermitian pairing on each direct summand. We pick ¢g41,...,%, to be or-
thonormal with respect to this pairing.

We pick 94, ...,1¢y so that the induced wy,...,wy € Q(I') form an orthonormal basis

with respect to the pairing (I11.4.1). O

It follows immediately from Proposition I11.5 that for a node P € Z; and for the choice
of 1;’s in Lemma II1.6,

gl
SIerf=
i=1 lep +Tep

which is the coefficient of dz|., that shows up in the Zhang measure.

I1I.4.4: Relation between wy; , and the canonical bundle on Z

Let 2 be an nc model of X. Let wg ~ Q%{ denote the canonical line bundle of 2 i.e. the
sheaf of 2-forms on 2". Note that we have an isomorphism €24 /p ~ ws between the sheaf
of relative holomorphic 1-forms and the canonical line bundle. This isomorphism is given by
‘unwedging dt’, where t is the coordinate on .

Note that 2y, Zoea are Cartier divisors on 2" and we can consider the line bundle

L= w%’(_% + tggi)msd) =Wy ®(’)3g Oﬁ?”(_%b + tQf/i),md)-
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Since 2y = div(t) is a principal divisor, we have a canonical isomorphism £ ~ w g (20 red)

For t € D*, note that

L‘Xt = w%”(f%],red)’Xt XwWwylx, = Q%/D’Xt >~ Wy, -

For the central fiber, we can use adjunction formula | , 9.1.37] to conclude that

E ’ Vﬁf/VO,red = w%O (%,red) | %O,red = wdﬁ{o,red N

Lemma IIL.7. Let 2" be a nc model obtained from 2" by a single blowup at a closed point
in Zo. Let qo 1 2§04 = Zo,rea be the map induced by the blowup map ¢ : 27" — 2. Then,

we have an isomorphism obtained by “pulling back differential forms”.
G+ H(Zoxeds W2 oa) = HO (20 reas Wz

Proof. We first describe the map ¢j. To do this, we use a few elementary facts regarding
blowups. Let E denote the exceptional divisor and let b denote its multiplicity in ¢*(Z0.red)-
Note that b is either 1 or 2, depending on whether we blowup at a smooth or at a nodal

point in 2.

¢ (wa) © Ogi(E) = wyr

0" (Zored) = Ziyea + (b—1)E
Using the above facts, we conclude that

¢ (W (Zosea)) = w2 (Z(rea — E+ (b= 1)E).
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Restricting the above equation to 2 4, we get
B (W2 pea) = wary, (b= 2)E).
The following composition is the map ¢; and we claim that it is an isomorphism.
HO (200, 025 10a) = H (20 10 € (W2 ed)) = HO( 2 reas w2y, )

Note that both H%(20 red,w Ziyreq) and H 0(%”@, w v%’,md) are vector spaces of dimension g.
So, it is enough to show that ¢ is injective. Note that any section ¢ € H(Z0 red; W25 ,0)
is determined by all restrictions #|g, for all the irreducible components E; of 2 eq. Also,

QY| = ¥|E,, where E is the strict transform of F;. Thus, 9 is determined by gg¢» and the

map ¢ is injective. ]

Lemma III.8. Suppose that X has semistable reduction. Let 2 be an nc model of X.
Then there exist an r € (0,1) and 2-forms 6y,...,6, € H*(rD,wy (— 25+ Zorea)) such that
01]x,,---,04|x, is a basis of H°(X;, wx,) for all t € rD* and 61]2;, ., - - -, 04| 2;,.q is & basis of

HO(%’ w%O,red)'

Proof. As above, let £ denote the line bundle wy (— 2o + Zo.red)-

First suppose that 2" is a semistable model of X. Then Z(,ea = £y and we have that
dimc HO(%,w%) = dim¢ HO(%,,w%,md) = g = dim¢ HO(Xt,th)

for all t € D* and thus the dimension of H°(.2;, £

2;) for all t € D remains constant. By a
theorem of Grauert | ] (see | , Cor 3.12.19] for an algebraic version), we get that
(L) is a locally free sheaf and its fiber over 0, 7, (L) ), is isomorphic to H°( 2y, wz;,). Now
we pick 6y,...,0, € m.(L) (o) that map to a basis in H(Zy,ws;). Then there exists an 0 <
r<1and@,... ,é; € H°(rD, £) which restrict to a basis 91, ..., 1, of H(Z0red, W2 ,0q)-

Since being linearly independent is an open condition, we may pick a smaller r so that
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61,...,0, remain linearly independent (and hence form a basis) after restricting to X; for
|t| < r. This completes the proof when 2 is a semistable model of X.

Any nc model can be obtained from the minimal nc model by a sequence of blowups at
closed points in the central fiber. By induction, we may reduce to the proof to the case of a
single blowup.

Suppose now that the result is true for a nc model Z"; we would like to prove the result
for a nc model Z” obtained by a single blowup ¢ : 27 — 2 at a closed point in 2. Let
E denote the exceptional divisor of the blowup.

Let 01, ..., 60, be sections of wa, (—Zo + Zorea) in a neighborhood of £ .4 that satisty
the required conditions for the model Z°. We claim that ¢*0y, ..., ¢"0, satisfy the required
conditions for 2"/, where ¢* denotes the usual pullback of differential forms.

Since ¢|x is an isomorphism, it is clear that (¢*6h)|x,,...,(¢"0,)|x, form a basis of
H°(X;,wx,). The fact that <q*‘91)’%’,red> . (q*Hg)\%/’red is also a basis follows by Lemma
IIL.7. O

I11.5: Asymptotics

In this section, we compute some asymptotics to describe the Bergman measure in terms on
61,...,0,. Suppose that X has semistable reduction. We pick an nc model 2" of X. Let
I' =Ty denote its dual graph and let ¢’ = g(I'). Then, we have that g = ¢'+ > .y 9(v).
By Lemma III.8, we can find two-forms 6,,...,6, defined in a neighborhood of 2 such
that their restrictions form a basis of H°(X;,wyx,) and H(Z0 red; wa;,.,) for all t € D*. Let
V; = 03] 2;,,..- After applying a (complex) linear transformation to ¢;’s, we may assume that

the 1); satisfy the conditions in Lemma III.6.

II1.5.1: Relating 0;, 0;; and ¥,

For doing computations, we would like to express 0, := 6;|x, and 1; explicitly in terms of

f; in a local coordinate chart.
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Let U be a coordinate chart adapted to an irreducible component £ C 2 of multiplicity
a. Let (z,w) be coordinates on U such that F = {z = 0} and ¢ = z*. Then, #; must vanish

along E to the order a — 1 and has a power series expansion of the form

0; = Z c%zo‘wﬁdw ANdz.

a>a—1,8eN
Then, 6;, is just obtained by ‘unwedging dt’. To do this, note that dt = az*"'dz and thus

Oir = Z %t%ﬁlwﬁdw.
a>a—1,8€N

Here we think of the coordinates on X; as being given by |w| < 1. Taking the a-th root
of t corresponds to the fact that U N X, is disconnected and has a connected components.
Choosing a connected component corresponds to choosing an a-th root of ¢t. Note that we
will be somewhat sloppy while writing fractional powers of ¢. This should be interpreted as
being true in a small enough chart where the roots are well defined.

Tracing through the isomorphism in Section I11.4.4, we see that ; is obtained from 6;
by getting rid of 2~!dz and then setting z = 0. Thus,

v = cgzl’ﬁwﬁdw

BeN
and we see that lim; ,00;; = %@/Ji, where the limit is taken pointwise as a function of w.
Now consider a coordinate chart U adapted to a node P = E; N Ey. We allow the possi-
bility that F; and Es correspond to two local branches of the same irreducible component.
Let the coordinates on U be (z,w) such that |z|, |w| < 1, Ey = {z =0}, Ey = {w = 0} and
t = 2%’ On X; N U, we can either use the local coordinate z with [¢t|'/? < |2| < 1 or the

|1/ < Jw| < 1. We also have coordinates w on F; N U for |w| < 1 and

coordinate w with |t
coordinates z on E, N U for |z| < 1. Also note that X, NU — {w € D* | |t|'/* < |w| < 1}

is a a-sheeted cover with the fibers corresponding to choosing an a-th root to determine
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z = (ﬁ)l/“. Since ¢; must vanish along £ to order a — 1 and along Es to order b — 1, we

can write

0; = Z c(i?ﬁz“wﬁ dw A dz

«
a>a—1,>b—1
on U. Let us compute 6;; and 9; in the w-coordinates. Using dt = az* tw’dz + bz w’ dw,

we have that
a—a+1

c(i)ﬁ t @ 3
_ Q, —b
0,4 = Z - ( E) w” P dw.

a>a—1,6>b—1

To obtain ¥; on Ej, we need to get rid of 2% *w’ 1d(zw) and set z = 0. This gives us

Y = Z cgillﬂwﬁ_bdw.
B>b—1
Similarly, we can compute 6;; in the z coordinates and can obtain 1; on Fj.
Once again we see that lim; ,00;; = %1/11- for fixed w and lim;_,¢ 0, = %1/%- for fixed z.
From the local description, we also see that v;|g, has a simple pole at P with residue
ngl,bfl and ;| g, has a simple pole at P with residue _ngl,bA' Set C’Z»P = C((zizl,bfl for ease

of notation.

IT1.5.2: Bergman measure in terms of 0;,...,0,

For t € D*, let A(t) be the complex g x g skew-Hermitian matrix with (j, k)-th entries

1 _
A(t)]:k - (ej,h ek,t) - 5/ ej’t A ek,t.

Xt

Then the Bergman measure (as a (1,1)-form) on X; is given by

7 _ N
Mt = 2 Z(A(t))j,liej,t N Ot
i,k

To understand the asymptotics of the Bergman measure, we need to understand the

1

entries of the matrix A(¢)~' as t — 0. We start by understanding the entries of the matrix
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A(t). Similar asymptotics can be found in | , Proposition 4.1] and | , Equation

(16.7)).

Lemma III.9. For a suitable choice of 6;,...,0,, the matrix A is of the form

B C*
¢ F

where B = 2rlog|t|'Z, + O(1) is a ¢’ x ¢’ matrix, C = O(1) and F = I, y + o(1) is a

(9—¢') x (g —¢') matrix as t — 0.

Proof. We pick 01, ...,0, such that 9y,..., 1, satisty the conditions of Lemma III.6.

By using partitions of unity, to understand the asymptotics of | x, Uit N Ok it is enough
to understand the asymptotics of fUﬂ X, 01 N\ % for an adapted coordinate chart U.

Let U be a coordinate chart adapted to an irreducible component £ C %, occurring
with multiplicity a. For all 7, we have that 0, ; — % as t — 0. By shrinking U if needed, we
may further assume that 6;, — % uniformly. Since all the v;’s are bounded on U N £, by
the dominated convergence theorem, we have that [, x, 0it N O — Jong ¥i N Y ast — 0
forall 1 <7,k <g.

If U is a coordinate chart adapted to P = E; N Fs, then we break up the integral as

/ 9]‘715 AN Qki — / 6’]-,,; AN ek’t + / 0‘7'715 VAN Qkﬂg.
UNX; [t]1/20<|z|<1 [t]1/2b<|w|<1

On the set [t|'/? < |w| < 1, using the discussion in Section II1.5.1, we can write

a—a+1

CP C((lz) t a
0;1(w) = ——dw + Z —f (E) w?Cduw.

aw a
a>a—1,6>b—1,
(e,8)#(a—1,—1)

Since [t| < |w[® in the region [¢t|'/?* < |w| < 1, we get

P
¢ dw + O(|w|_1+%)dw.

aw

91‘7,5(11))
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where the O(|w|~1*4) is with respect to |w]| as |w| — 0 uniformly in ¢. Thus,

! 9~7/\(9k7:—/ +O(lw[ %) | dw A dw
2 /Uth 7 2 [¢]1/2b<|w|<1 (a2|w|2

C’PCP 1
/ /||/ ( a’r +O(T_1+a)> "
t|1 2b

where the second O(1) is with respect to r as » — 0 and the factor a appears on the

right-hand side because X; NU — {w € D | [t|/* < |w| < 1} is an a-sheeted cover. So,

. P P
]

C;
— / Hjt A th =T
2 [t]1/2b<|w|<1

Using a similar computation in the z coordinates and using l., = ﬁ shows that

“log|t] ™t + O(1).

. OPC_ —
E/ i N\ Oy =27 loglt] ™t + O(1) = 2rCYCLL loglt] ™! + O(1).
2 XiNU ab !

Summing up, we see that

(I11.5.1) %/X Oja NOry=2m > CPCPll loglt| ™ + O(1).
t nodes P€ 2
By the choice of 6;’s, CI' = 0 for all P and for all i > ¢’ giving the required asymptotics
for the matrix C'. The asymptotics for B follows from ), CJP C’_,flep = Oj-
To get the asymptotics for the matrix £, we need to analyze the O(1)-term in Equation
(IIL5.1). Recall that 6;; — 1¢; as t — 0 for a fixed w in the set {w € D* | [¢|/?* < |w| < 1},

and 1; is bounded on U N E; for all ¢’ <i < g. Thus, as t — 0 we have that

_ 1 _
/ ej,t A ek,t — — ’l/}j A\ wk
[¢]1/2b<|w|<1 a Jung
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Thus, after applying a partition of unity argument, we get that

- 1 .
6.. N0, — _ A U,
/X 00T ;mnlw / ¥y AT

For ¢ +1 < i < g, 9; is holomorphic on % on any irreducible component and therefore
must be zero on any irreducible component with genus 0. Since X has a semistable reduction,
all positive genus irreducible components must occur with multiplicity 1 (see Remark II1.1).

Thus, we further get that

/ Qj,t A ﬁ,t — 77[)]' A %
X %O,red

By the choice of 6;’s, we have that % / o ) Ay, = .k and thus we get the asymptotics
for F. O]

Since F' — I,_, ast — 0, F' is invertible for |¢| small enough. We now apply elementary

row reduction operations to (A,Z,) to obtain the following result.

Corollary II1.10. For a suitable choice of 6,...,0,, the matrix A~ is of the form

A_l B B/ (C/)*
¢’ F
where
1 1
B = O
2rloglt] 7 (aog\trl)?)’
1
C'"=0———
(i)
and
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I11.6: Convergence Theorem

I11.6.1: Convergence on .2 P

In this section, we prove Theorems D’ and D.
Suppose that X has semistable reduction and let 2" is an nc model of X. Let y; denote

the Bergman measure on X;.

—_—

IT1.6.2: Bergman measure on 2 eq

By the Bergman measure on 2.4, we mean the sum of the Bergman measures on all
positive genus connected components of 2 eq. The Bergman measure on 2 eq is given by
the two-form %Zf: g1 ¥; A Let fig denote the pushforward of the Bergman measure on
%,red to %,red

The following lemma gives the contribution of the Dirac mass on the vertices of I'y in

the limiting measure.

Lemma III.11. Consider an open set U C 2 adapted to an irreducible component E
of Zy of multiplicity a, i.e. U N Zy = ENU and there exist coordinates z,w on U with
|z|, Jw| < 1 such that ENU = {z = 0} and the projection U — D is given by (z,w) > 2*
and |z|,|w| < 1 on U. Let x be a compactly supported continuous function on U. Then, as

t— 0,

/ X i — X Ho-
UNXy UNE

Proof. Recall that p, = £ 37, (A(t)); 404 A Oy

If either j < ¢’ or k < ¢/, then A(t)]’; =0 (W), 0;+ is bounded on U and using

Corollary III1.10,

—_— 1
(A —1g. — -
/m" A 030 1 O O<log|tl—1)

and hence goes to 0 as t — 0.
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Therefore, we only need to worry about the terms for which j, k& > ¢’. Recall that
01 — %wi as t — 0. Using a similar computation as in the proof of Lemma II1.9, we get

that

1 . = —
1 — _ . 1 / . . .
lim XHe = a/mEx ( > (lim F7(2)5) 1/)J/\¢k>=

vnx Jrk=g'+1

where F” is the matrix from Corollary II1.10. Since lim;_,o F'(t) =1

1 & —
lim X =/ X |- i Ny |
=0 Junx, ' UNE a Z

i=g'+1

g—g'» We get that

Using Remark I11.1, we get that ¢); = 0 unless a = 1 for g — ¢’ + 1 < i < g. Thus,

g
lim X,th—/ X - Vi NPy |
=0 Junx, UNE Z

i=g'+1
The right-hand side is exactly [, . xJio. O

In the following lemma, the first term on the right-hand side contributes to the Lebesgue

measure in po while the second term contributes to the Dirac mass in py.

Lemma III.12. Let U C 2 be an open set adapted to a node P = E; N Ey in 20 reds
where F4, Fy are irreducible components of 2, with multiplicities a, b respectively. Let y be
a compactly supported function on U and let f be a continuous function on |0, ﬁ] Write the
coordinates in U as z,w with |z|, |w| < 1, Ey = {z = 0}, F; = {w = 0} and the projection
to D given by (z,w) + t = z%w". Let the coordinate on X; N U be w with [¢|'/? < |w| < 1.

Then, as t — 0 we have that

+ 1/a
/ X | foLogy (—b) w || e —
|t]1/2b < |w|<1 w

1/2ab
WP [ a0 [

L is the coefficient of dz|., in the Zhang measure. (See Section I11.2.5 for details.)

leP +T6P

where
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Proof. To analyze the integral in the left-hand side of the lemma, we first note that
/t|1/2b<w<1 X(f o Logy ) = %j;l(MEi /|tl/2b<|w|<1 X(f o Logy)0;4 A Oy
and then analyze each of the terms. To do this, we break them up into three cases.
e (j<dandk>g)or(j>g and k < ¢)
e jk<g
e jk>¢

We will prove that the first case does not contribute at all in the limit, the second case
contributes the first term in right-hand side of the Lemma and the third case contributes
the second term.

For the first case, note that if j < ¢’ and k > ¢/, then (M)J_; =0 (W) Since
t| < |w|® on the region that we are integrating on, we see from the power series expansion

that

)

00 = (2 +0(uwl ™)) dw
Ot = O(Jw|™¢)dw

where the O(|w|~'*4) above are with respect to |w| as |w| — 0 uniformly in ¢. If we do

0

a change of coordinates w = re??, we have that

00 Ay = O(Jw| "% )dw A dw = O(r~*a)drdd

where the last O(r~1*a) is with respect to r as r — 0.

Thus we see that

— 1
Alt ._1/ x(f o Log; )0 A6 :O(—).
EORY SRRl (e
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By symmetry, the same holds when j > ¢’ and k < ¢'.

Now consider the second case when j, k < ¢’. Then,

——1 o 5jk 1
Al = ZrtogT T© (<1og|t|—1>2)

and

3T = 5 (s + 0wl ) o = (4002 ) v,

2 2 \ a?|wl|? a’r

First note that if j # k and j, k < ¢/, then,

A/ —1 . 1 dr
(A(t»j’k Al/2b<|w|<1 X(f ° LogU)ej’t g Hk’t =0 <(10g|t‘_1)2 f‘t|1/2b<T<1 7)

:O<W>—>O ast — 0.
If j < ¢, then,

i

AW [ eLos)t Ty
[¢[1/2 <|w|<1

_ 1 _ / f logr \ |C;|*drdf L0 1 ).
2arlog|t|™ Jiy/2cran alog|t| r log|t|~!

It is enough to figure out the limit of the integral on the right-hand side. To do this,

logr
aloglt|

1/2ab p2rm
o [ [ s
0 0

consider a change of variable u = Then, the integral on the right-hand side becomes

The integrand converges to x(0,0)f(u) pointwise almost everywhere as t — 0. Since the

integrand is bounded, by the dominated convergence theorem, we have that

1

t—0 2

o 1/2ab
A0 [ Moo n T =GP0, [ fdu
[t]1/2b<|w|<1 0
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It follows from Proposition II1.5 that ; iT = ?;1 |C;|?. This gives us the first term
eP EP

on the right-hand side in the lemma.

1 —

For the third case when j, k > ¢', note that A(t),, = O(1) and 0, A0y, = O(Jw|~2+%)dwA
dw. Therefore, we can apply the dominated convergence theorem. The pointwise limit of
the integrand as t — 0 is given by

Y /\%‘

a?

—1 t log|w| — =
Alt);p - X (E,w) - f (alog|t|) Ot N\ Opr — QE%F (0)j7k> - x(0,w) - f(0)

After interchanging the limit and the integral and using the fact that ¢» = 0 unless a = 1

(see Remark I11.1), we get the second term on the right-hand side of the lemma. ]

Corollary III1.13. Let the notation be as in the Lemma III.12. Then, as ¢ — 0

/ X (f o Logy ) py =
UNX;

P ™ o + ) / i+ ) [ i

UNEr

Proof. Note that

/ x(f o Logy ) = / X (f o Logy) +/ X(f o Logy;) pus.
UNX: [t]1/2a <|z|<1

[t]1/2b<|w|<1
Applying the previous lemma for both the terms on the right-hand side, we are done. n

Corollary II1.14. Let V = | J, U; be a neighborhood of 2 where U; are adapted coordinate
charts. Let x; be a partition of unity with respect to the cover U;. Let Logy, = >, x;Logy,

be a global log function on V. Let f be a continuous function on I". Then, as t — 0,

/Xt(fOLOgv)Mt - /FfMZh-
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Proof. Note that
/ (f o Logy ) = Z/ Xi(f o Logy )
Xt i iNXt

Since Log,, — Log;; = O (W), ast — 0,

/ X(foLogV—foLogUi)pdt — 0.
U;NX¢

Therefore, the limit we are interested in is the same as the limit of

> / Xi(f © Logy, )i
i U;NXy

The result just follows from the using the previous two lemmas and using that || 1 Ho =

g(E) for all irreducible components E of Zj. O
The following Corollary is equivalent to Theorem D’.

Corollary III.15. Let i be a continuous function on 2™, Then, [hu, — [ huz, as

t — 0.

Proof. Let f = h|r and let h = f o Logy,. By the previous lemma, the result is true for h
ie. fﬁ,ut — [ fue as t — 0. Thus, it is enough to show that [(h — Ry — 0 as t — 0. Pick
¢>0. Since h —h = 0 on I and since h — h is continuous on 2P there exists 0 < r < 1
such that |h — h| < e on all 7' (rD). Thus, | [(h — k)| < eg for all [t] < r. Letting € — 0,

we get that [(h— h)u, — 0 as t — 0. O

I11.6.3: Extending the convergence to X"

The convergence theorem on 2P has the drawback that it depends on the choice of a
normal crossing model. To remedy this, we consider the convergence on X™". Recall that

Xhvb — lim 2 hyb and does not depend on the choice of an nc model of X. We would like
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to extend the convergence to X™" by patching the convergence results for 2™ for all nc
models 2" of X.

To do this, note that we have a canonical measure, po x on Xgi () L m [y induced by
the Zhang measure on all the I"y-’s. This follows from the fact that if 27 > 2  and we
consider the retraction I'y — Iy, then the pushforward of the Zhang measure on I' 5~ to
Iy is the same as the Zhang measure on I'y. The compatibility of these measures thus

prove Theorem D in the case when X has a semistable reduction.

I11.6.4: Ground field extension

Now we need to treat the general case of the Theorem D i.e. the case when X does not
necessarily have semistable reduction. To do this, note that after performing a base change
by D* — D* given by u +— ™, X will have semistable reduction (see Section I11.2.2). So, we
only need to understand what happens after we perform such a base change.

So consider the map D* — D* given by u + u”. Let Y be the base change of X along

this map i.e. we have a Cartesian diagram

Yy — X
I
D* w=vly u—u", D*

At the level of varieties, this corresponds to doing a base field extension C(()) — C((u)) and
Ye(w) = X Xc@) Spec C((w)). Thus, we have a surjective map Y& ((w)) — Xg&{,). This map
is compatible with Y — X in the sense that the map Y"» — X"P is continuous. We would
like to relate the convergence of Bergman measures on X; to the convergence of Bergman
measures on Y.

Note that if X has a semistable model, then so does Y. To see this, pick the minimal nc
model of 2 and base change it to get a model Y of Y. The model 7 is not regular, but

can be made regular after blowing up at each singular point |%] times to get a model %

of Y. Then % is the minimal nc model of Y. It is easy to see that under the base change
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operation, ['5 is obtained by scaling the lengths of all edges in I"y- by a factor of n. Thus,
we see that the Zhang measure on I'y is compatible with the Zhang measure on I"y if assume
that X has a semistable reduction. Similarly, the Zhang measures on Y#"((w)) and X¢,) are
compatible if we assume that X has a semistable reduction.

Note that this not necessarily true if X does not have semistable reduction. Starting with
X, we can always perform a suitable base change so that Y has semistable reduction. Let
% and 2 be nc models of Y and X respectively. Then, we have a map Y@ () — X¢(y),
which gives rise to a local isometry I'ss — I'y. Let p9 be the Zhang measure on Y&"((w).
Since the map p : YWP — X™P i5 continuous, we get that the Bergman measure j; on X;

converge to the pushforward measure p.(p) supported on the image of I'y in Xg(l(t)), thus

completing the proof of Theorem D.

I11.7: Metrized curve complex hybrid space

In this section, we prove Theorem E. To do this, we first construct the metrized curve
complex hybrid space. Let X — D* be a family of curves with semistable reduction. Let 2~
be an nc model of X.

IT1.7.1: Metrized curve complexes

The metrized curve compler, Acc(Z") , associated to 2~ is a topological space which is

obtained from 2 ,eq by adding line segments joining the points that lie over the same nodal

point. More precisely,

Do) = | Zowa || 0.1]]/ ~.

e€E(T o)

where P’ ~ 0 and P" ~ [, for P, P" € /%E;; that lie over a node P and 0,[., € [0,l.,]. We

call the image of an irreducible component of Z(,eq as a curve in Acc(2") and the image
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of [0,1] as an edge in Acc(Z).

We have a continuous map Acc(2) — Zorea Obtained by collapsing all the edges of
Acc(Z) to the associated nodes. We also have a continuous map Acc(Z°) — 'y obtained
by collapsing the curves to the associated vertices.

We define a measure pucc on Acc(27) as follows. Let fip denote the Bergman measure

P

on the positive genus components of 2y yeq-

fiee = fo + Z 6+T€
EEE(F%

where is the coefficient that shows up in the Zhang measure(see Section I11.2.5) and

le+ Te

dzx|. is Lebesgue measure on the edge e normalized to have length ..

We say that a point Q € Acc(2)
e is in the interior of a curve if it lies on a curve but not on an edge.
e is in the interior of an edge if it lies on an edge but not on a curve.

e is an intersection point if lies on a curve as well as an edge.

I11.7.2: Curve complex hybrid space

We define the curve complex hybrid space, élé , which as a set is given by

AP = X U Ace(Z).

We declare the topology on 2" to be the weakest topology satisfying the following.
o X — Céb is an open immersion.
o Zod Wby 2 given by collapsing all edges in Acc(Z) is a continuous map.

o 2. hyb — 2P given by collapsing all curves in Agc(2) to points is a continuous

map.
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We now describe a neighborhood basis of a point @ € Agc(Z).

e If () is an interior point of a curve, then an adapted coordinate chart centered at ()

gives a neighborhood basis of Q.

e If () is an interior point of an edge, let P denote the node associated to the edge
containing (). Let U be an adapted neighborhood chart around P. Let o, € ep =~

0,1.,] such that o < Q < . If we view (o, 3) C [0,l.,], then,

{r e U\ Zo | Logy(x) € (o, B)} U (e, )

is a neighborhood of ). As we vary U, a and 3, we get a neighborhood basis of Q).

e If () is an intersection point, let P denote the node associated to the edge containing
Q. Let U be an adapted coordinate chart centered at P with coordinates z,w with
|z], |lw| < 1 such that the projection 2~ — D is given by (z,w) — 2%w’. Let E;NU =
{# =0} and E; NU = {w = 0}, where E, Ey are irreducible components of Z{ yeq-

WLOG, assume that E is the irreducible component of 2,4 containing ). We

identify ep ~ [0, ﬁ] with vg, identified with 0. Pick 0 < e < Then,

1
2ab”

log|w|

{cwer\a

U(ELNU)UI0
alog|t! <6} ( 1 ) [76)

is a neighborhood of (). Varying U and ¢, we get a neighborhood basis of Q).

111.7.3: Convergence of Bergman measures

To show that the Bergman measures p; on X; converge to picc on Acc(Z7), we can use
a partition of unity argument to reduce the problem to studying the convergence on a
neighborhood of each point in Acc(Z).

Consider a point ) and consider a neighborhood V' of ) as described at the end of

Section II1.7.2. We need to show that the measures p; on X; NV converges weakly to pcc
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on Acc(Z)NV.

If @ is an interior point of a curve, then this computation has been worked out in Lemma
[I1.11. If @ is an interior point of an edge, then a minor modification of Lemma II1.12
yields the result. So, it remains to prove the result in the result in the case when @ is an

intersection point.

Lemma II1.16. Let @ be an intersection point in Agc(27) and let V' be a neighbourhood
of ) in %ggb mentioned at the end of Section II1.7.2. Let f be a continuous compactly

supported function on V. Then, as t — 0,

| e fuce:
VNXt VﬂAcc(%)

Proof. Let f be a compactly supported continuous function on V. Let fo = flvrace(2)-

Note that V N Acc(Z27) is homeomorphic to a half-dumbbell
D = {(w,v) € D x [0,¢€) | Either w =0 or v =0} C D x [0, ¢€).

Let r: D x [0,€) — D be a strong deformation retract.

Consider the compactly supported continuous function A : V' — R defined by

- log|wl|
h(z,w) = fo (T (w, m>>

for (z,w) € VN X and by

for x € Acc(:%')

We first prove that

/ hpy — Jokce-
VX VNAcc(Z)
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To see this, recall the following facts from Sections II1.5 and II1.6:

. g
7 _— N
e =3 Z A()™Y 1050 N Ore,

Jk=1

where

—_— - 1
A(t)_lj,kej,t NOpy =0 (W)

when either j < ¢ and k > ¢ or j > ¢ and k < ¢/,

A(t)ilj,kej,t A\ Hk,t = (CJCk ik dw /\ dw

,1+é —
gt + O(|w] )dw/\dw)

a? |’ll)|2

when j, k < ¢, and

Vi Ay,

a?

A(t)71 1050 AN Ory — 5

when j,k > ¢'.

Thus, if either j < ¢’ and k > ¢’ or j > ¢’ and k < ¢/, then as t — 0,
(ITL.7.1) A(t)—ljvk/ hO;; A Oy — 0.
VnX;

We also get that

g g -
> A(t)—ljk/ hO0 A Oy = Y / (nmh(i,w»Mﬁ.
" Jvnx, ung; \!70 W a

Jk=g'+1 Jj=g'+1

Note that limy o h(£, w) = limy o fo(r(w, 5851)) = fo(r(w,0)) = fo(w,0). Note that

1 = 0 unless a = 1 (see Remark III.1). Also, recall that j = %Z?ZQ,H ¥; Ab;. Thus,

h&it/\%%/fo,%.

(I11.7.2) : Xg: ORM /

jik=g'+1 VX
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Now, it remains to consider the limit of

- Z A(t / hO;i A Ors
NnXy

]kl

as t — 0. But this is the same as the limit of
g 2 — g’ 2 —
C; dw Nd C; dw Nd
P el B TR SO < ee O
2 matloglt| T Jyew, WP 2% 2nalogll T Jsupey T
as t — 0. The factor a appears on the right-hand side since
VX, —{web||t|* < |w| <1}

is an a-sheeted cover. Consider a change of variables u = i?flgi‘”th and 0 = arg(w). Then, the

above integral is the same as

2 2
C | / / (|t|au o |t’a'u, Z@) d@du

1

Note that

t—0

lim h <|t|% |t|a“e”9) = lim fo (r (|t[*"¢”, u)) = fo(r(0,u)) = fo(0,u)

almost everywhere for u € [0, ¢]. Also recall that Zg vt G357 =

. +T . Thus, we get that

~.

gl
— 1 €
(I11.7.3) Alt)1 / M0 N Ore = 7——— / Jode.
— VX, ep T Tep Jo

\)
b

Using Equations (II1.7.1), (II1.7.2) and (II1.7.3), we get that

/ hpe — Jorce-
VX VNAcc(Z)
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To show that fVth fe — fVmAcc(foV) forcc, note that h — f is a compactly supported
continuous function on V' such that (h — f)|acc(2y) = 0. Thus, given € > 0, there exists an

to such that |h — f| < € on V N X, for [¢t| < |tg|. Thus,

/ fue — / hi| < € g.

VNnX; VX,

Taking € — 0, we get that
lim Jue = lim hpiy = / Jokce-
=0 Jynx, =0 Jvnx, VNAce(2)
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