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0.  Executive Summary 

This paper presents a study of human driving performance for the targeted geographic area of 

San Francisco.  The goal of the study was to generate a crash rate estimate that could be used 

as a human benchmark representing the crash rate for ridehail drivers driving in a lower-speed 

and dense urban driving environment.   

 

The study represents an unprecedented large-scale naturalistic ridehail data collection effort 

over a 2-year period from 2016 to 2018: a collaboration that took place between General Motors 

(GM), Cruise LLC, the University of Michigan Transportation Research Institute (UMTRI), and 

the Virginia Tech Transportation Institute (VTTI).  

 

The specific Operational Design Domain (ODD) designated in this study is defined as a 

geofenced area covering the entirety of the city of San Francisco excluding select high speed 

roads (e.g., posted speeds of 35 mph or less). 

 

 

Figure 1 – Depiction of the Geofence Area - the city of San Francisco 

 

The study gathered data from drivers renting vehicles from Maven,1 primarily for ridehail driving 

(estimated to be 80% of the total driving activity observed). Accordingly, the safety 

benchmarking approach described here incorporates the unique characteristics of ridehail 

drivers (e.g., predominantly younger male drivers with long driving hours), ridehail driving 

patterns (e.g., trips with origins and destinations, and circuitous routes), and crashes associated 

with lower-speed urban ridehail driving. 

 

 
1 A former subsidiary of GM 



The study leveraged two concurrent naturalistic driving studies that used different methods to 

derive a statistically robust measurement of the human ridehail crash rate in the designated 

ODD. This method combined the precision of instrumented vehicle data collected by VTTI with 

the scale of telematic data collected by GM, enhanced with associated insurance claims and 

analyzed by UMTRI. Notably, mileage collected by a shared UMTRI-VTTI fleet allowed for a 

detailed comparison of the respective crash-detection mechanisms, which enabled production 

of a single combined estimate of the human ridehail crash rate in the designated ODD. 

 

Here is a summary of the data output from each fleet: 

 

 UMTRI Fleet VTTI Fleet Shared Fleet2 

Fleet Size 1,149 vehicles 89 vehicles 59 vehicles 

ODD Miles 
Generated 

5,424,077 miles 415,901 miles 228,213 miles 

Crash Detection 
Method 

1. Data surfaced 
through Event 
Data Record 
(EDR) system  

2. Insurance 
claims 

1. Manual 
reporting with 
kinetic data 
confirmation 

2. Human review 
of events 
detected by 
specialized on-
board 
instruments 

Combined UMTRI and 
VTTI methods 

ODD Crashes 196.19 crashes3 21 crashes 15 crashes  
● 3 detected by 

UMTRI only 
● 7 detected by 

VTTI only 
● 5 detected by 

both 

ODD Crash 
Mileage 

27,647 miles per crash 19,805 miles per crash  

ODD Crash per 
Million Miles 

36.2 crashes per 
million miles 

50.5 crashes per 
million miles 

 

Table 1 – Summary of mileage, methodology, and crash count data across the UMTRI, VTTI, and UMTRI-VTTI 

shared fleets 

 

 
2 The data presented in this column represents a subset in the UMTRI Fleet and VTTI Fleet columns. 
3 Derivation of the fractional output listed here is described in detail in 2.3.3.1 UMTRI Crash Measurement 

Methodology and 3.2.1 UMTRI Crash Count. 



The total mileage of UMTRI Fleet and VTTI Fleet with deduplication of shared fleet miles 

produced a total of 5,611,765 ODD miles observed in this study. 

 

The observed UMTRI and VTTI ODD driving mileage and crash counts were analyzed using a 

Bayesian Fusion statistical model4 to correct for crashes missed by either data collection 

approach.  

 

The output generated a single estimate of the human ridehail crash rate:  

 

1 crash in 15,414.4 ODD driving miles, or 64.9 crashes per million ODD miles. 

1.  Introduction 

1.1  Goals of the Study 

 

A significant challenge in understanding human driving performance within an ODD is that 

different driving environments (e.g., limited access highways vs urban streets) result in different 

crash rates. Thus, it is important to compare crash rates from driving in similar environments 

(road type, time of day, etc.). While publicly available national crash datasets have detail on the 

types of locations of crashes, datasets on vehicle miles traveled do not. Moreover, national 

crash datasets are limited to police-reported crashes, which include only the more damaging or 

injurious crashes. Given these data issues, publicly available national datasets cannot produce 

human crash rate estimates that are appropriate to the urban ridehail driving environment.  

 

This paper presents a study of human driving performance by ridehail drivers operating in San 

Francisco. The goal of the study was to generate a crash rate estimate that could be used as a 

human benchmark representing the crash rate for ridehail drivers driving in a low-speed and 

dense urban driving environment. Moreover, this environment was specifically limited to driving 

in the initial target San Francisco-based ODD of Cruise vehicles to further refine the relevance 

of the estimate. 

1.2 Urban Ridehail Driving 

The study represents an unprecedented large-scale naturalistic ridehail data collection effort 

over a 2-year period from 2016 to 2018: a collaboration that took place between General Motors 

(GM), Cruise LLC, the University of Michigan Transportation Research Institute (UMTRI), and 

the Virginia Tech Transportation Institute (VTTI).  

 
4 To correct for crashes missed by either UMTRI or VTTI, a statistical model was developed by Cruise to 

combine the individual crash detection methods into a single estimate of the human ridehail crash rate. 
This model assumes that crashes follow a Poisson distribution, and divides the observed mileage and 
crash counts into unshared UMTRI crashes, shared crashes, and unshared VTTI crashes. See more in 
3.3.2 Fused Crash Rate. 



 

The study gathered data from drivers who engaged primarily in ridehail (estimated to be 80% of 

total driving activity observed). The majority of drivers rented their vehicles from Maven,5 with 

the remainder using their own vehicles for ridehail. Accordingly, the safety benchmarking 

approach described here incorporates the unique characteristics of ridehail drivers (e.g., 

predominantly younger male drivers with long driving hours), ridehail driving patterns (e.g., trips 

with origins and destinations, and circuitous routes), and crashes associated with lower-speed 

urban ridehail driving. 

1.2.1 Ridehail Driver Demographics 

Ridehail drivers are more likely to be male and/or young compared to the average driver in the 

United States. Although driver demographics of the San Francisco UMTRI fleet was not known, 

aggregate data was available for the larger set of 8,583 Maven drivers across 9 urban areas in 

the United States. Table 2 shows the distribution of driver ages for the broad set of Maven 

drivers, as well as the targeted VTTI San Francisco fleet. 

 

Age Range 20-29 30-39 40-49 50-59 60-69 70+ 

Percent of Maven Drivers 32% 31% 21% 12% 4% 0.5% 

Percent of VTTI-SF Drivers 28% 26% 23% 17% 5% 1% 

Table 2 – Distribution of driver age for an aggregate Maven driver pool (8,583 drivers over 9 urban regions) and the 
observed VTTI San Francisco Fleet 

 

For both the Maven and VTTI fleets, the driver populations skewed towards younger drivers, 

with 63% of Maven drivers and 54% of VTTI drivers under 40 years old. Additionally, the VTTI-

SF fleet consisted of 72% male drivers, which is likely to be representative of the broader 

UMTRI fleet. 

 

Thus, the human ridehail crash rate benchmark established in this study measures the driving 

performance of a specific demographic of ridehail drivers in San Francisco. 

1.2.2 Ridehail Driving Patterns 

When engaged in ridehail driving, human driving patterns (i.e., routes, road types) are often 

determined by their customer’s desired pick-up and drop-off locations. Ridehail routes often 

involve U-turns and other unusual maneuvers to find a safe drop-off point or pick someone up in 

an opposing direction. These routes also tend to include city streets and pass high-traffic areas 

to pick-up or drop-off customers at popular ridehail locations, such as restaurants and 

downtown areas. 

 

The speed distribution for the UMTRI ridehail fleet within the geofenced map area is presented 

below in Figure 2.  

 
5 A former subsidiary of GM 



 

 

Figure 2 – Travel speeds for the Maven fleet within the Geofence Area (excluding stopped time) 

 

This figure shows that human driver travel speeds are quite low, with a median speed of 16.4 

mph. Note that these travel speeds are further reduced when considering the additional ODD 

road type constraints described later in this paper. 

 

Table 3 also provides insight into unique ridehail driving patterns in the form of skewed 

distribution of road types towards surface streets. Only 22.3% of the study fleet’s driving miles 

were on highways (i.e., Motorway or Trunk). 

 

OpenStreetMap Road Type Percent of Fleet Driving 

Motorway 17.8% 

Trunk 4.5% 

Primary 22.4% 

Secondary 16.9% 

Tertiary 12.0% 

Residential 19.3% 

Ramp or Link 7.1% 

Table 3 – Distribution of Maven fleet driving by OpenStreetMap road type 

 



Finally, ridehail drivers tend to have very high weekly mileages compared to the general 

population of drivers. The average weekly mileage in the UMTRI fleet was 689 miles, with 

Maven’s estimate of approximately 80% of miles involving ridehail activities.  

2. Human Ridehail Safety Benchmarking 

Methodology 

2.1 Overview 

The two datasets were used in combination to develop an estimate of the crash rate for human 

ridehail driving. Importantly, the data samples for the two studies were partially overlapping, 

enabling direct comparison of the capabilities and sensitivities of the two data collection 

approaches for detecting crashes of various severities. To support estimating human ridehail 

crash rates, both approaches collected data related to crash counts and miles traveled. A 

detailed comparison of the respective crash data detection mechanisms enabled the production 

of a single estimate of the human ridehail crash rate using a Bayesian Fusion statistical model. 

The results of the study indicate that the combination of UMTRI and VTTI datasets substantially 

mitigated the risk of missing human ridehail crashes in its derivation of the estimate.  

2.2 Operational Design Domain 

 

Figure 3 - Depiction of the Geofence Area - the city of San Francisco 

 

The specific Operational Design Domain (ODD) designated in this study is defined as roads 

within the Geofenced Area of San Francisco illustrated above, with posted speed limits of 35 



mph or less; and also excludes select high-traffic roads, as specified in 2.3.2 Mileage 

Measurement Methodology. 

 

The data collected in this study was filtered to identify mileage and crash counts that took place 

in the specified ODD. While the exact methodology for establishing ODD driving differed 

between UMTRI and VTTI due to the types of data available to the respective studies, the core 

approach was to count miles driven on ODD-eligible roads, which included both trips that were 

entirely within the ODD and trips with only a portion of the miles in the ODD. 

2.3 Comparison of UMTRI and VTTI Methods of Data 

Collection 

2.3.1 Fleet and Data Collection Instrumentation 

2.3.1.1 UMTRI Fleet and Instruments 

The UMTRI San Francisco-based ridehail fleet consisted of 1,149 GM Model Year 2015-2017 

vehicles6 owned by the Maven subsidiary of GM. These Maven vehicles were rented to users, 

primarily (but not entirely) for ridehail activities. A total of 4,464 drivers were observed. The 

UMTRI data collection effort extended from November 2016 to December 2018.  

 

All data addressing miles driven and crashes observed for the UMTRI fleet were collected using 

GM’s telematic-based OnStar data collection capabilities. This included Event Data Recorder 

(EDR) data for crashes with speed greater than or equal to 5 mph. This telematic data was 

supplemented with insurance claims provided by Maven for the study fleet.  

 

During the trips, UMTRI study vehicles reported GPS (latitude, longitude, altitude, heading, 

date, and time), speed, steering wheel angle, and longitudinal acceleration at 1 Hz. This data 

was important for defining ODD driving, measuring distance traveled, and identifying the routes 

traveled. 

 

A set of OnStar “Smart Driver” events – a feature available to all OnStar subscribers – that were 

collected in the UMTRI fleet was defined by certain kinematic triggers intended to indicate 

driving situations predicting crash risk or associated with safety-critical situations. For each 

triggered event location, the speed, acceleration, seat belt status, and odometer data was 

reported. The analysis used the odometer measure as a ground-truth measure for ODD 

distance traveled, which was critical for enhancing the accuracy of mileage estimation. 

 
6 This fleet of Model Year 2015-2017 vehicles did not have the range of advanced driver assistance 

systems (ADAS) that are offered on newer vehicles. As a result, these estimated crash rates do not 
account for the crash avoidance benefits of those safety systems. 



2.3.1.2 VTTI Fleet and Instruments 

The VTTI San Francisco-based ridehail fleet consisted of 61 Maven GM Model Year 2015-2016 

vehicles. In addition, the VTTI fleet included 28 privately-owned Model Year 2008-2018 vehicles 

across a range of Make-Model combinations. As with the Maven vehicles, these vehicles were 

also used primarily for ridehail activities. VTTI fleet data collection ran from November 2016 to 

July 2018, ending five months prior to the end of the UMTRI fleet data collection. 

 

VTTI gathered data via an on-board Data Acquisition System (DAS) installed on the vehicle. 

Additionally, drivers were required to provide informed consent to participate in data collection; 

and, consequently, driving data from unconsenting drivers was not included in this study. 

 

The VTTI DAS collected data continuously and automatically from key-on to key-off, and 

included a cellular modem that was used for periodic DAS health checks.7  

 

The data gathered included GPS (latitude, longitude, altitude, heading, date, time) at 1 Hz; 

acceleration (x, y, z axes) and gyro (x, y, z axes) sensor data at 10 Hz; and range and relative 

speed to detected forward targets via a forward-looking MobileEye camera at 11.5 Hz. 

Additionally, on-board 1080 HD cameras were used to gather video streams of the driver’s face 

at 15 Hz, as well as in views surrounding the vehicle (forward, left, right, rear left, rear right). 

Finally, where possible, the vehicle’s Controller Area Network (CAN) data was used for 

gathering accelerator position, brake pedal activation, and/or speed data.   

2.3.1.3 Shared Fleet 

A fleet subset consisting of 59 vehicles, called the UMTRI-VTTI Shared Fleet, was observed by 

both the UMTRI and VTTI data collection methods. This enabled comparison of the results of 

both mileage-counting systems and crash-identification approaches. This fleet was also critical 

to the Bayesian Fusion estimation method used to establish the singular human ridehail crash 

rate benchmark. 

2.3.2 Mileage Measurement Methodology 

2.3.2.1 UMTRI Mileage Measurement Methodology 

UMTRI data collection included both 1 Hz speed data and periodic odometer data. For the 

overall mileage observed over the entire course of the study, the key-on and key-off odometer 

readings were used. However, for mileages in specific subsets of the data, it was necessary to 

calculate intermediate mileages for partial trips, i.e., if the trip did not wholly take place in the 

ODD. This study considered the odometer readings as the gold standard for mileage, and used 

1 Hz speed data only where necessary to calculate partial mileage. 

 

 
7 In rare cases, severe crash impacts may prevent DAS from saving crash data after the moment 

immediately preceding a crash. 



The UMTRI data collection used OpenStreetMap (OSM) as the base map of roads. This map 

was supplemented with a public dataset of posted speed limits in an effort to fill known gaps in 

the OSM dataset.  

 

The UMTRI dataset filtered the Road Type component of the ODD using the following criteria: 

 

Included Excluded 

Roads with posted speed limit of 35 mph or 
less 

Roads with posted speed limit of more than 
35 mph 

Roads with OSM road type: 
● Primary 
● Secondary 
● Tertiary 
● Residential 

Roads with OSM road type: 
● Motorway 
● Motorway Link 
● Trunk 
● Trunk Link 

 Specific roads labeled as Function Class 2 
roads in other mapping systems 

Table 4 – UMTRI ODD filter of OpenStreetMap map database road types 

 

Travel on roads in the Geofence Area satisfying these criteria were defined as ODD driving in 

the UMTRI dataset. 

 

Three measures of distance within the Geofence Area were used to determine mileage: 

1. Odometer Estimate: Trips exclusively within the Geofence Area had start and end 

odometer values. Trips with transitions in or out of the Geofence Area used an odometer 

gain value to correct distance from integrated speed on portions of the trip not covered 

by actual odometer values. 

2. Mapped Estimate: Sum of estimated distances per trip from integrated speed (speed 

multiplied by time) for driving within the Geofence Area that was map-matched using 

OSM. 

3. Mapped Estimate Filtered for Road Type: Sum of all estimated distances per trip for 

driving on public roads using the road type and posted speed filters. 

 

A correction factor of 0.903 was derived by using 1.67 million miles of travel across 247,294 

trips that were entirely within the Geofence Area. This correction estimate was multiplied with 

the difference between the Odometer Estimate and Mapped Estimate to account for missed 

distance due to integrated speed and mapping errors, and then added to the Mapped Estimate 

Filtered for Road Type, to produce the final calculated mileage within ODD.  

 

The final calculation for mileage estimate was generated as the following: 

 

(Odometer Estimate - Mapped Estimate)(0.903 correction factor) + Mapped Estimate 

Filtered for Road Type = Final UMTRI Mileage 



2.3.2.2 VTTI Mileage Measurement Methodology 

VTTI fleet driving mileages were estimated using CAN speed data when available, and 

otherwise used 1 Hz GPS data. The available speed measure was integrated to estimate 

distance traveled. Mileage was not recorded when the DAS was not recording (e.g., first minute 

of trip, during data downloads, during repairs); nor was it counted for any driving mileage 

associated with non-consenting drivers. 

 

VTTI used the Navteq / Here map database to produce mileage according to the same ODD 

constraints. In the Navteq / Here map database, the road type components were filtered using 

the following criteria: 

 

Included Excluded 

Functional Class 1 and 2 roads Functional Class 3, 4, or 5 roads (i.e., 
connections between higher functional class, 
arterials, neighborhoods, and smaller roads) 
 
Highways and freeways 

Travel speed of 40 mph or less  Travel speed greater than 40 mph 

 Controlled-access roadway or on- / off- ramp 

Table 5 – VTTI ODD filter of Navteq / Here map database road types 

 

Three measures of distance within the Geofence Area were used to determine mileage: 

1. Speed Estimate: 1 Hz vehicle speed integrated (via CAN or GPS) 

2. Mapped Estimate: Integrated speed distance for travel that was map-matched driving 

on public and private areas 

3. Mapped Estimate Filtered for Road Type: Integrated speed distance for travel that 

was map-matched driving filtered by road type. 

 

To account for non-mapped driving, a correction factor was applied to the proportion of 

unmapped driving within the ODD. The correction was based on the proportion of all driving to 

all driving that was mapped (i.e., ratio of Speed Estimate to Mapped Estimate).  

 

The VTTI mileage was derived by multiplying the estimated ODD mileage by the correction 

factor to account for mapping errors. The final calculation for mileage estimate was generated 

as the following: 

 

 (Speed Estimate / Mapped Estimate)(Mapped Estimate Filtered for Road Type)  

 = Final VTTI Mileage 



2.3.2.3  Shared Fleet Mileage Comparison 

Within the shared fleet, the UMTRI fleet reported 228,213 miles and the VTTI fleet reported 

189,415 miles within the ODD. In other words, the VTTI methodology appeared to underreport 

the miles reported by UMTRI methodology, reporting only 83% of the UMTRI mileage. 

Accordingly, all VTTI miles were corrected using this estimate based off of the UMTRI odometry 

reading, as described in detail in 3.1 Human Ridehail Mileage in ODD. 

 

Further investigation indicated this underestimation was likely due to the following aspects of the 

VTTI mileage estimation approach: 

1. The integrated-speed method generally results in lower estimates than an odometer-

based approach 

2. Unconsented miles from VTTI test participants were removed from consideration 

3. The DAS does not always collect data (e.g., at start or end of trip) resulting in mileage 

dropout. 

 

Of these sources of underestimation, unconsented miles in the shared fleet, which were 

estimated to be approximately 4% of the total mileage, were expected to account for only a 

small portion of the discrepancy. Most of the difference in total miles is attributed to DAS 

dropout and underestimation of the integrated-speed method compared to odometer 

measurements. 

2.3.3 Crash Count Methodology 

2.3.3.1 UMTRI Crash Count Methodology 

UMTRI fleet crashes were captured via three streams: 

1. Automatic Advanced Collision Notification (AACN) event data recorder (EDR) events 

2. “Low-level” Event Data Recorder (LLEDR) events not meeting AACN criteria 

3. Insurance Claims 

 

AACN and LLEDR events were captured automatically by the vehicle to create crash event 

records that could be accessed telematically, whereas insurance claim data included crashes of 

all severity levels including those which were not captured by AACN and LLEDR events. 

 

OnStar is automatically notified of AACN crashes, which are severe crashes meeting specific 

criteria such as directionally-specific delta-V8 thresholds and airbag deployment. The resulting 

AACN event reports: 

1. Crash impact severity as measured by delta-V 

2. Crash direction as measured by the Principle Direction of Force, or PDOF 

3. Crash GPS location 

4. Crash date and time 

 
8 Delta-Velocity (more commonly referred to as delta-V) corresponds to the change in velocity that the 

vehicle sensing system experienced during the crash event.   



 

Delta-V is a particularly important measure of crash severity and can be directly linked to injury 

risk. AACN crashes also triggered an EDR event report with some exceptions due to data 

collection limitations. 

 

In this report, crashes triggering either AACN or LLEDR events are collectively referred to as 

Crash Data Record (CDR) events. The CDR data was captured telematically, and the trigger 

threshold was lowered to automatically capture crash events exceeding 5 mph delta-V in any 

crash direction. These crash events triggered an EDR event report, which included delta-V and 

PDOF measures. 

 

CDR events were tracked using counters onboard each vehicle. Tasks within the OnStar 

module monitored these counters every minute, and upon a counter change, pushed the 

counter data to the servers in the GM OnStar back office. Additionally, these counters were sent 

to the back office servers on a weekly basis regardless of counter changes as a further check 

on any counter status changes. Since many of these production vehicles in the study were 

already in the field at the start of data collection, the early counter history established a baseline 

from which new crash events during the study data collection could be identified. 

 

In addition to the automatically-recorded CDR crashes, UMTRI was provided with redacted 

excerpts from insurance claims filed for the study vehicles. These claims, which sometimes 

included empty data fields, provided data on the basic crash type (e.g., struck object crash), the 

date of the crash, and an event narrative. For lower severity crashes, the event narrative was 

the only potential source of crash time and location used for determining whether the crash met 

ODD requirements. The event narrative data was used to categorize the crashes according to 

the accident type coding used in the NHTSA Fatality Analysis Reporting System (FARS)9. 

Insurance claims were often made for relatively minor crash events, and could be initiated by a 

customer or manager. Since these vehicles were not owned by the drivers, it is likely that a 

claim was made for crashes leading to any damage. 

 

Since the three crash data sources (AACN, LLEDR, and insurance claim) could identify the 

same crashes, further efforts were required to identify the locations and times of crashes to 

avoid double-counting crashes, and also to ensure that only crashes within the ODD were 

counted.  

 

AACN records included an automated call to OnStar which included precise GPS location and 

time.  

 

LLEDR events did not include an automated call with crash location, and in some cases, LLEDR 

records did not enable pinpointing the crash location due to imprecise reporting of LLEDR time. 

These cases required exact crash time and location to be determined via crash-related event 

 
9 National Center for Statistics and Analysis. (2022, March). Fatality Analysis Reporting System analytical 

user’s manual, 1975 - 2020 (Report No. HOT HS 813 254). National Highway Traffic Safety 
Administration. 



signals in the kinematic data. In instances where this data was absent, there was uncertainty 

whether the crash took place in the designated ODD. The specifics of how low confidence 

LLEDR crash counts were calculated are specified in 3.2.1 UMTRI Crash Count. 

 

Any insurance claims that were located could be linked to CDR events by identifying crash 

records that occurred close in time. For the remaining CDR events, any insurance narrative 

associated with the same driver was further examined for evidence of similarity of the crash. 

After completing this process, 18 of 23 AACN events (78%) and 60 of 123 LLEDR events (49%) 

in the San Francisco region were associated with an insurance claim.  

 

For crashes detected only through insurance claims (and not associated with CDR events), the 

reported crash date, crash narrative, and city were examined to give an initial estimate of crash 

time and location. Delta-V, which was not included in the insurance claim data, could be inferred 

for these crashes to be less than 5 mph since no LLEDR was recorded by the production-based 

crash sensors. GPS location and vehicle kinematic data could reveal common crash signatures, 

such as excessive deceleration, trips ending on a road shoulder, or long periods of being 

stopped in an intersection or lane, to identify potential crash behavior. A human inspection of 

insurance data could produce a confidence crash location rating (e.g., no confidence, low 

confidence, high confidence) along with other details. Of the insurance-only crashes, only 9% 

could not be located with the available crash narrative. 

2.3.3.2 VTTI Crash Count Methodology 

VTTI identified crashes through two key mechanisms. First, crashes were manually reported 

directly to VTTI, and then confirmed in the kinematic data. Second, potential crashes were 

identified by examining cases where one or more trigger threshold metrics were exceeded, 

which triggered further human video review to verify the crash and assign a VTTI-defined crash 

severity level. These metrics were based on longitudinal deceleration / acceleration, yaw, lateral 

acceleration, or ABS/ESC/TC10 activation data. Crashes meeting VTTI-defined “most severe” 

(Level 1), “police-reportable” (Level 2), or “minor” (Level 3) crash levels were used here for 

crash counting purposes. Crashes less severe than Level 3, e.g., contact with soft poles, curb 

strikes, and potholes, were not counted. 

3. Human Ridehail Benchmark 

3.1 Human Ridehail Mileage in ODD 

During UMTRI fleet data collection from November 2016 to December 2018, over 30 million 

miles of driving were observed in San Francisco. In this study, the data was restricted to driving 

within the Geofence Area and applying the Road Type ODD filter, which reduced the mileage to 

5,424,077 miles. This was the final UMTRI fleet ODD mileage exposure value. This value 

 
10 ABS: Anti-lock Braking System; ESC: Electronic Stability Control; TC: Traction Control 



consisted of 228,213 miles of shared (UMTRI-VTTI) fleet driving and 5,195,864 miles of UMTRI 

non-shared fleet driving unique to the UMTRI dataset. 

 

During VTTI fleet data collection from November 2016 to August 2018, over 2 million miles of 

driving were observed in San Francisco. In this study, the data was restricted to driving within 

the Geofence Area and applying the Road Type ODD filter, which reduced the mileage to 

345,191 miles. The VTTI fleet ODD miles consisted of 189,413 miles of shared fleet driving and 

155,778 miles of VTTI non-shared fleet driving unique to the VTTI dataset. 

 

As indicated in 2.3.2.3 Shared Fleet Mileage Comparison, shared fleet mileages reported by 

VTTI were about 83% of the miles observed by UMTRI (i.e., 189,413 vs 228,213). Since 

odometer-based mileages used by UMTRI were considered the “gold standard” for measuring 

mileage accumulation in this study, a correction factor of 1.20484831 was established as a 

multiplier on VTTI miles in both the UMTRI-VTTI shared and VTTI unshared fleets. After 

applying this mileage correction, VTTI fleet ODD mileage exposure increased to 415,901 miles, 

which consisted of 228,213 miles of shared fleet driving and 187,688 miles of non-shared VTTI 

fleet driving. 

 

The final mileage of the unshared UMTRI fleet (5,195,864 miles), the unshared VTTI fleet 

(187,688 miles), and the shared UMTRI-VTTI fleet (228,213 miles) came out to a collective total 

of 5,611,765 ODD miles. 

3.2 Human Ridehail Crash Count in ODD 

3.2.1  UMTRI Crash Count 

Detailed crash counts for the UMTRI fleet are shown in Table 6. The methodology for deriving 

the final UMTRI mileage (ODD Imputation of Geofence Area with Road Type ODD Filter) is laid 

out in 2.3.2.1 UMTRI Mileage Measurement Methodology. 

 

Driving Area Total High 
Location- 
Confidence 
Crash Data 
Recorder 

Low 
Location- 
Confidence 
Crash Data 
Recorder 

High 
Location- 
Confidence 
Insurance 
Claim Only 

Low 
Location- 
Confidence 
Insurance 
Claim Only 

San 
Francisco 

489 146 13 300 30 

Geofence 
Area 

215 58  157  

Geofence 
Area with 
Road Type 

171 51  120  



Driving Area Total High 
Location- 
Confidence 
Crash Data 
Recorder 

Low 
Location- 
Confidence 
Crash Data 
Recorder 

High 
Location- 
Confidence 
Insurance 
Claim Only 

Low 
Location- 
Confidence 
Insurance 
Claim Only 

ODD Filter 

ODD 
Imputation of 
Geofence 
Area with 
Road Type 
ODD Filter 

196.19 51 5.42 120 19.77 

Table 6 – Breakdown of UMTRI crash counts across Driving Areas 

 

Crashes with high-confidence locations could be clearly classified as taking place inside or 

outside of the designated ODD. Crashes with low-confidence locations, i.e., those belonging to 

the Low Location-Confidence Crash Data Recorder or Low Location-Confidence 

Insurance Claim Only categories, went through a two-stage imputation process for generating 

an estimate of the number of crashes meeting the ODD definition. Details of these calculations 

are shown in Table 7. 

 

Imputation 
Step 

Sub-step CDR 
Crash 
Count 

Insurance 
Claim 
Only 
Count 

Multiplier Imputed 
CDR 
Crash 
Count 

Imputed 
Insurance 
Claim 
Only 
Crash 
Count 

Geofence 
Area 

In San 
Francisco 

0 24 0.834 0.00 20.02 

Not in San 
Francisco 

2 3 0.099 0.20 0.30 

Unknown 
City 

11 3 0.528 5.80 1.58 

Total    6.00 21.90 

Road Type 
ODD Filter 

Assumed 
to be in 
Geofence 
Area 

6.00 21.90 0.903 5.42 19.77 

Table 7 – UMTRI imputation of crash estimates for low confidence crashes 

 



In the first stage, the likelihood that the crashes were located within the Geofence Area was 

evaluated based on the crash location reported in the insurance claim. Based on the high 

location-confidence crashes (combining CDR and insurance-only crashes), it was estimated that 

83.4% of crashes marked as occurring in “San Francisco” actually occurred within the Geofence 

Area; 9.9% of crashes marked as occurring in another city actually occurred within the 

Geofence Area, and 52.8% of crashes with an unknown crash city occurred within the Geofence 

Area. These three estimates were used as multipliers for the observed low-confidence crashes 

with matching characteristics.  

 

The second stage of this imputation process estimated the proportion of these low location-

confidence crashes taking place in the Geofence Area that would pass the Road Type ODD 

filter. Based on an identified set of trips entirely within the Geofence Area, it was estimated that 

approximately 90.3% of driving within the Geofence Area was on a qualifying road type.11  

 

Hence, the UMTRI fleet observed a total of 56.42 CDR crashes and 139.77 insurance-only 

crashes for a total of 196.19 estimated crashes within the designated ODD. Since integer 

valued crashes were not required for the Bayesian Fusion analysis, this fractional estimate of 

the UMTRI fleet crashes was used in the analysis. 

3.2.2  VTTI Crash Count 

 

Unlike the UMTRI fleet, the VTTI on-board DAS-based approach allowed researchers to 

consistently establish high location-confidence crash locations. A total of 21 ODD crashes were 

observed for the VTTI fleet, which consisted of 12 crashes in the UMTRI-VTTI shared fleet,12 

and 9 crashes in the VTTI non-shared fleet. 

3.2.3  Shared Crash Count 

The combination of the crashes detected in the shared fleet, with both VTTI and UMTRI 

contributing unique crashes, indicated that 15 crashes occurred in the shared fleet.  

 

Table 8 shows the number of crashes in the shared fleet that were detected by the UMTRI fleet, 

the VTTI fleet, and the shared UMTRI-VTTI fleet. 

 

 Detected by UMTRI 
Fleet 

Not Detected by 
UMTRI Fleet 

Total 

Detected by VTTI 
Fleet 

5 7 12 

 
11 This estimate excludes trips passing through the Geofence Area boundaries. 
12 Note that this is not the total number of crashes detected in the UMTRI-VTTI shared fleet, but rather 

the number of VTTI-detected crashes in the UMTRI-VTTI shared fleet. 



 Detected by UMTRI 
Fleet 

Not Detected by 
UMTRI Fleet 

Total 

Not Detected by 
VTTI Fleet 

3  3 

Total 8 7 15 

Table 8 – Comparison of crashes detected and not detected by UMTRI and VTTI fleets 

 

Overall, 7 (46.7%) crashes were detected only by VTTI, 3 (20.0%) were detected only by 

UMTRI, and 5 (33.3%) crashes were detected by both UMTRI and VTTI, totalling 15 crashes. A 

more detailed evaluation indicated that the 3 UMTRI-only crashes were all from insurance 

claims, and 2 of those appear to have involved sideswipes, suggesting that lateral impact 

crashes might be less likely to be detected by VTTI’s kinematically-oriented triggers. On the 

other hand, VTTI’s approach was expected to identify more lower-severity crashes, which 

appeared to be the case among the 7 detected only by VTTI. 

 

The number of crashes not detected by either the UMTRI or VTTI fleet is unknown. However, 

the methodology of using three crash detection methods (CDR, insurance claim, and 

instrumented on-board DAS with human review) attempts to minimize the number of undetected 

crashes within the designated ODD. For benchmarking purposes, we assume that all relevant 

crashes were detected. 

3.3 Human Ridehail Crash Rate in ODD 

3.3.1  Individual Crash Rates 

In the UMTRI fleet, 196.19 crashes were estimated to have occurred during the 5,424,077 miles 

of driving in the ODD. This implies an UMTRI fleet ODD crash rate of 27,647 miles per crash, or 

36.2 crashes per million miles. 

 

In the VTTI fleet, 21 crashes were estimated to have occurred during the 415,901 miles of 

driving in the ODD.13 This implies a VTTI ODD crash rate of 19,805 miles per crash, or 50.5 

crashes per million miles. 

 

Within the shared fleet, the 15 crashes and 228,213 miles produced a higher estimated crash 

rate of 15,214 miles per crash, or 65.7 crashes per million miles. This reflected the more 

comprehensive capture of crashes possible when using both the VTTI and UMTRI detection 

methods. 

 
13 Note that throughout this section the corrected VTTI mileages are used, as described in 3.1 Human 

Ridehail Mileage in ODD. 



3.3.2  Fused Crash Rate 

As indicated above, relative to the UMTRI fleet, the VTTI fleet provided substantially less data 

volume (i.e., mileage and crash counts). However, the more detailed VTTI fleet data afforded 

the critical opportunity to identify unique crashes (particularly those of lower severity) that were 

not identified in the UMTRI fleet via insurance claim or CDR data. Similarly, the UMTRI fleet 

identified crashes not identified by VTTI (e.g., where the VTTI trigger approach did not capture 

certain crashes). 

 

Thus, a combination of crashes identified by UMTRI and VTTI mitigated the potential risk of 

missing crashes that took place in the designated ODD. The comparison of crashes captured by 

the shared UMTRI-VTTI fleet played a foundational role in the statistical approach used below.  

 

To correct for crashes missed by either UMTRI or VTTI, a statistical model called the “Bayesian 

Fusion Model” was developed by Cruise to combine the individual crash detection methods into 

a single estimate of the human ridehail crash rate. This model assumes that crashes follow a 

Poisson distribution, and divides the observed mileage and crash counts into three components: 

unshared UMTRI crashes, shared crashes, and unshared VTTI crashes. 

 

These were modeled as three Poisson distributions which, when summed, give the estimated 

crash behavior of the full fleet, as shown below. 

 

  Unshared UMTRI Crashes~Poisson(mumtri𝜆umtri) 

                   Shared Crashes~Poisson(mshared𝜆shared) 

      Unshared VTTI Crashes~Poisson(mvtti𝜆vtti) 

 

In this equation, mw indicates the miles observed in a fleet w (umtri = UMTRI unshared, shared 

= UMTRI-VTTI shared, vtti = VTTI unshared) and 𝜆w is the corresponding crash rate for that 

same fleet. This equation was further simplified by recognizing that the 𝜆w parameters are 

related through crash detection behavior. 

 

Assuming the combination of the UMTRI and VTTI datasets identify all detectable crashes, the 

shared fleet has the true human ridehail crash rate, denoted as 𝜆, while the other two non-

shared fleets have lower observed crash rates depending on their relative detection 

probabilities. This can be reflected by parameterizing the detection probabilities as p = (pumtri , 

pboth , pvtti), with 𝚺 pi = 1, where pboth is the probability that a crash was identified by both UMTRI 

and VTTI, and pumtri and pvtti are the probabilities that crashes were identified only by UMTRI or 

by VTTI, respectively. Under this parametrization, the 𝜆w can be defined in terms of 𝜆 and (pumtri 

, pboth , pvtti) as follows: 

 

     𝜆umtri = 𝜆(pumtri + pboth) 

    𝜆shared = 𝜆(pumtri + pboth + pvtti) = 𝜆 

        𝜆vtti = 𝜆(pvtti + pboth) 



 

Since the number of crashes detected in the shared fleet is known, the rate was further 

differentiated into three components to permit modeling of the detection probabilities for the 

three fleets separately. This is done as shown below: 

 

     𝜆shared_umtri = 𝜆pumtri 

      𝜆shared_both = 𝜆pboth 

       𝜆shared_vtti = 𝜆pvtti 

 

The final Bayesian Fusion model is a mixture of the five Poisson distributions shown below: 

 

      Unshared UMTRI Crashes~Poisson(mumtri𝜆(pumtri + pboth)) 

  Shared UMTRI Only Crashes~Poisson(mshared𝜆pumtri) 

  Shared UMTRI-VTTI Crashes~Poisson(mshared𝜆pboth) 

      Shared VTTI Only Crashes~Poisson(mshared𝜆pvtti) 

          Unshared VTTI Crashes~Poisson(mvttii𝜆(pvtti + pboth)) 

 

This parametrization of the model permits estimation of the overall human ridehail crash rate, 𝜆, 

while still using the full combined dataset, rather than averaging the specific crash rates 

associated with each of the UMTRI- and VTTI-specific data collection methods. Note that the 

shared fleet serves as a lynchpin when using this approach, as the shared fleet provides full 

information about the detection probabilities (p). 

 

Based on the mileage and crash counts reported above for the UMTRI and VTTI fleets, the 

input data for the Bayesian Fusion model is shown in Table 9. 

 

Fleet Miles Crashes 

Unshared UMTRI Fleet 5,195,864 188.19 

Shared Fleet - UMTRI Only Detection 

228,213 

3 

Shared Fleet - UMTRI and VTTI Detection 5 

Shared Fleet - VTTI Only Detection 7 

Unshared VTTI Fleet 187,688 9 

Table 9 – Input data for the Bayesian Fusion model 

 

 A visualization of the sizes and roles of the three fleets is shown in Figure 4.  



 

Figure 4 – Visual representation of the UMTRI, VTTI, and UMTRI-VTTI shared fleets 

 

From this specification, the Bayesian Fusion model was fit, and a point estimate and 95% 

credible interval for 𝜆 (i.e., crash rate) was estimated.14 This produced an estimated human 

ridehail crash rate of 1 crash in 15,414.4 ODD driving miles, with a corresponding 95% credible 

interval ranging between 11,682.1 and 20,477.8 miles.15 This corresponds to an estimated 64.9 

crashes per million miles of driving, with a corresponding 95% credible interval ranging between 

48.8 and 85.6 crashes per million miles of driving. 

3.4 Using the Benchmark 

As noted in the introduction, the challenge for benchmarking driving performance within an ODD 

is that different driving environments (e.g., traffic level, time of day, road type, urban / rural, etc.) 

vary in the level of risk presented to drivers. This means that crash rates can vary even within a 

well-defined region and understanding driving exposure is a critical feature of any crash rate 

comparison.  

 

The benchmark crash rate developed in this study represents the human ridehail driver crash 

rate given the travel demands of customers in San Francisco (and the preferences of the human 

 
14 To account for the fractional (0.19) crash in the UMTRI data, the Bayesian Fusion model was run twice, 

once rounding down to 196 and once rounding up to 197. The final posterior distribution was a weighted 
sampling of these distributions with a sampling ratio of 4 to 1 favoring the 196 count. 
15 Note that this fused rate is similar, but slightly higher, than the raw fused data set (which averages to 

15,214 miles per crash). However, this method provides a much tighter confidence bound, and captures a 
much more diverse set of driving from a greater number of miles. 



ridehail drivers observed). Given that there may be differences in the travel patterns of AVs and 

human drivers, it is appropriate to be aware of those differences and how they affect the 

environment-driven challenges presented when comparing AV and human crash rates. 

4.  Conclusion 

The human ridehail crash rate data collection efforts described in this document are 

unprecedented. It consisted of 5.6 million miles of human ridehail driving data, as well as crash 

circumstance detail available across the UMTRI and VTTI datasets (e.g., automatic crash data 

recording, insurance claims, on-board data acquisition systems with multi-channel video). While 

developing the analysis method was challenging, the approach resulted in a first-of-its-kind 

targeted human-driver benchmark to match a specific ODD and ridehail driving purpose. 
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