Bobo Bai

Multicomponent diffusion in natural silicate melts:
 Toward a universal eigenvector matrix

submitted in partial fulfillment of the requirements for the degree of
Master of Science in Earth and Environmental Sciences
Department of Earth and Environmental Sciences
The University of Michigan

Accepted by:

I hereby grant the University of Michigan, its heirs and assigns, the non-exclusive right to reproduce and distribute single copies of my thesis, in whole or in part, in any format. I represent and warrant to the University of Michigan that the thesis is an original work, does not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis. I understand that I will not receive royalties for any reproduction of this thesis.
\checkmark Permission granted.Permission granted to copy after: \qquadPermission declined.

Earth and Environmental Sciences \checkmark University of Michigan

Abstract

Diffusion is due to thermally activated random motion of particles on the atomic scale and it is one of the two ways of mass transport (the other one is convection). In a multicomponent system, the different components interact with each other. Therefore, the concentration gradient of one component can affect not only its own motion, but also the motion of other components, leading to cross effects. As a result, diffusion in an N-component system is described by an $N-1$ square matrix called diffusion matrix ([D]). Natural silicate melt usually contains 6-10 major components (defined to be more than $1 \mathrm{wt} \%$ oxide), thus diffusion in natural silicate melt is always multicomponent diffusion. Previous studies show that eigenvectors of $[D]$ are roughly independent of temperature, whereas eigenvalues of [D] follow an Arrhenius relation with temperature. In this study, whether the diffusion eigenvectors depend on melt composition was evaluated. MATLAB codes were written to obtain a universal eigenvector matrix by simultaneously fitting concentration profiles from 27 diffusion couple experiments in basaltic melts (Guo and Zhang, 2018, 2020). Using the MATLAB codes, the diffusion profiles of 27 diffusion couple experiments were fitted twice-using mass fraction and mole fractions as concentration, respectively-and two different eigenvector matrices $\left[P_{w}\right]$ and $\left[P_{X}\right]$ were obtained. The eigenvector matrix $\left[P_{w}\right]$ is significantly different from that of Guo and Zhang (2020), and our fitting more rigorously proved that diffusion eigenvectors are independent of temperature. Using both eigenvector matrices, the oxide concentrations were transformed to eigen-component "concentrations", which were plotted as a function of distance. Then, literature diffusion profiles in diffusion couple and mineral dissolution experiments of rhyolitic to andesitic to haplo-basaltic melts were examined in our new eigen-component plots to evaluate whether the profiles are monotonic. If the eigenvector matrix from the 27 experiments is

composition-invariant, then all eigen-component "concentration" plots should be monotonic. Most eigen-component "concentration" plots are monotonic (no obvious uphill diffusion). Only about 3% of the >1000 eigen-component "concentrations" plots display obvious non-monotonic profiles, showing that we are getting close to a universal eigenvector matrix.

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my advisor, Youxue Zhang for his patience, guidance, advice, and encouragement. Without his help, I cannot complete my thesis. He has a pure passion for science and rigorous attitude towards scientific research, for which I greatly admire. I would also like to thank the other faculty reader, Jie (Jackie) Li, for her valuable suggestions and comments that greatly improve my thesis.

I would like to thank Zhengjiu Xu , for her systematic training for different kinds of experiments and measurements. Her meticulous attitude towards experiments has left a deep impression on me. I would also like to thank Owen Neil for his support on Electron Microprobe measurements.

Finally, I would like to thank all my friends and families. Especially I would like to thank my parents, Mingyang Bai and Xinhua Ma for their endless care, encouragement, and continuous support.

Table of Contents

ABSTRACT ii
ACKNOWLEDGEMENT iv
LIST OF FIGURES $v i$
LIST OF TABLES xvii
LIST OF APPENDICES xviii
I. Introduction1
II. Theoretical background 4
2.1 Diffusivity matrices, eigenvectors, and eigenvalues 4
2.2 Eigen-components and eigen-space 5
2.3 Analytical solutions to multicomponent diffusion 6
2.4 Diffusivity matrices when other units of concentration are used 7
III. Methods 10
3.1 Data collection and processing. 10
3.2 Numerical method 11
IV. Results 16
4.1 Fitting diffusion profiles with mass fraction as concentration. 16
4.2 Fitting diffusion profiles with mole fraction as concentration 21
V. Discussion 26
5.1 Comparison to eigenvector matrices from previous studies 26
5.2 Comparison of $\left[P_{w}\right]$ and $\left[P_{X}\right]$ 26
5.3 Verification of the universality of eigenvector matrix 28
5.4 Diffusion mechanism in natural silicate melts 30
VI. Summary and Implications 38
References. 41
Appendices 45

LIST OF FIGURES

Figure Page
4.1. Temperature dependence of eigenvalues listed in Table 4.1 17
4.2. Diffusion profiles of oxide components in $w t \%$ of BS7\&8C 18
4.3. Diffusion profiles of oxide components in $\mathrm{wt} \%$ of BS19\&20C 19
4.4. Diffusion profiles of oxide components in wt $\%$ of BS11\&12A 20
4.5. Temperature dependence of eigenvalues listed in Table 4.3 22
4.6. Diffusion profiles of oxide components in mole $\%$ of BS7\&8C 23
4.7. Diffusion profiles of oxide components in mole $\%$ of BS19\&20C 24
4.8. Diffusion profiles of oxide components in mole $\%$ of BS11\&12A 25
5.1. [P_{w}]-converted concentration profiles of eigen-components of Zhang1989_Exp\#227 32
5.2. [$\left.P_{w}\right]$-converted concentration profiles of eigen-components of Chen2008_Exp\#40 33
5.3. $\left[P_{w}\right]$-converted concentration profiles of eigen-components of Yu2019_Exp\#106 34
5.4. [$\left.P_{X}\right]$-converted concentration profiles of eigen-components of Zhang 1989_Exp\#227 35
5.5. [$\left.P_{X}\right]$-converted concentration profiles of eigen-components of Chen2008_Exp\#40. 36
5.6. $\left[P_{X}\right]$-converted concentration profiles of eigen-components of Yu2019_Exp\#106. 37
6.1. Calculated diffusion profiles resulting from magma mixing between dacite and basalt. 40
C1.1. Diffusion profiles of oxide components in wt \% of BS1\&2C with fits 66
C1.2. Diffusion profiles of oxide components in $\mathrm{wt} \%$ of BS3\& 4 C with fits. 67
C1.3. Diffusion profiles of oxide components in $w t \%$ of BS5\& 6 C with fits 68
C1.4. Diffusion profiles of oxide components in $\mathrm{wt} \%$ of BS7\&8C with fits. 69
C1.5. Diffusion profiles of oxide components in wt $\%$ of BS9\&10C with fits 70
C1.6. Diffusion profiles of oxide components in wt \% of BS11\&12C with fits 71
C1.7. Diffusion profiles of oxide components in $\mathrm{wt} \%$ of $\mathrm{BS} 13 \& 14 \mathrm{C}$ with fits. 72
C1.8. Diffusion profiles of oxide components in wt $\%$ of BS17\&18C with fits. 73
C1.9. Diffusion profiles of oxide components in $\mathrm{wt} \%$ of $\mathrm{BS} 19 \& 20 \mathrm{C}$ with fits. 74
C1.10. Diffusion profiles of oxide components in wt $\%$ of BS1\&2A with fits. 75
C1.11. Diffusion profiles of oxide components in $\mathrm{wt} \%$ of $\mathrm{BS} 3 \& 4 \mathrm{~A}$ with fits. 76
C1.12. Diffusion profiles of oxide components in wt \% of BS5\&6A with fits. 77
C1.13. Diffusion profiles of oxide components in wt $\%$ of BS7\&8A with fits. 78
C1.14. Diffusion profiles of oxide components in $\mathrm{wt} \%$ of BS9\&10A with fits. 79
C1.15. Diffusion profiles of oxide components in wt $\%$ of $\mathrm{BS} 11 \& 12 \mathrm{C}$ with fits 80
C1.16. Diffusion profiles of oxide components in wt \% of BS13\&14A with fits. 81
C1.17. Diffusion profiles of oxide components in wt $\%$ of BS17\&18A with fits. 82
C1.18. Diffusion profiles of oxide components in wt \% of BS19\&20C with fits. 83
C1.19. Diffusion profiles of oxide components in $\mathrm{wt} \%$ of $\mathrm{BS} 1 \& 2 \mathrm{~B}$ with fits. 84
C1.20. Diffusion profiles of oxide components in wt $\%$ of BS3\&4B with fits. 85
C1.21. Diffusion profiles of oxide components in wt $\%$ of BS5\&6B with fits. 86
C1.22. Diffusion profiles of oxide components in $w t \%$ of BS7\&8B with fits 87
C1.23. Diffusion profiles of oxide components in $\mathrm{wt} \%$ of BS9\&10B with fits. 88
C1.24. Diffusion profiles of oxide components in wt $\%$ of $\mathrm{BS} 11 \& 12 \mathrm{~B}$ with fits 89
C1.25. Diffusion profiles of oxide components in wt \% of BS13\&14B with fits. 90
C1.26. Diffusion profiles of oxide components in wt $\%$ of $\mathrm{BS} 17 \& 18 \mathrm{~B}$ with fits. 91
C1.27. Diffusion profiles of oxide components in wt\% of BS19\&20B with fits. 92
C 2.1 . Diffusion profiles of oxide components in mole\% of BS1\&2C with fits. 93
C 2.2 . Diffusion profiles of oxide components in mole\% of BS3\&4C with fits. 94
C 2.3 . Diffusion profiles of oxide components in mole\% of BS5\&6C with fits. 95
C2.4. Diffusion profiles of oxide components in mole\% of BS7\&8C with fits. 96
C2.5. Diffusion profiles of oxide components in mole\% of BS9\& 10C with fits 97
C2.6. Diffusion profiles of oxide components in mole\% of BS11\&12C with fits. 98
C2.7. Diffusion profiles of oxide components in mole\% of BS13\&14C with fits 99
C2.8. Diffusion profiles of oxide components in mole\% of BS17\&18C with fits 100
C2.9. Diffusion profiles of oxide components in mole\% of BS19\&20C with fits. 101
C 2.10 . Diffusion profiles of oxide components in mole $\%$ of BS1\&2A with fits. 102
C2.11. Diffusion profiles of oxide components in mole $\%$ of BS3\&4A with fits. 103
C2.12. Diffusion profiles of oxide components in mole $\%$ of BS5\&6A with fits. 104
C2.13. Diffusion profiles of oxide components in mole $\%$ of BS7\&8A with fits. 105
C2.14. Diffusion profiles of oxide components in mole\% of BS9\&10A with fits. 106
C2.15. Diffusion profiles of oxide components in mole\% of BS11\&12A with fits. 107
C2.16. Diffusion profiles of oxide components in mole $\%$ of BS13\&14A with fits. 108
C2.17. Diffusion profiles of oxide components in mole $\%$ of BS17\&18A with fits. 109
C2.18. Diffusion profiles of oxide components in mole $\%$ of BS19\&20A with fits. 110
C2.19. Diffusion profiles of oxide components in mole $\%$ of BS1\&2B with fits 111
C2.20. Diffusion profiles of oxide components in mole\% of BS3\&4B with fits. 112
C2.21. Diffusion profiles of oxide components in mole\% of BS5\&6B with fits 113
C2.22. Diffusion profiles of oxide components in mole\% of BS7\&8B with fits. 114
C2.23. Diffusion profiles of oxide components in mole\% of BS9\&10B with fits. 115
C2.24. Diffusion profiles of oxide components in mole\% of BS11\&12B with fits 116
C2.25. Diffusion profiles of oxide components in mole $\%$ of BS13\&14B with fits. 117
C2.26. Diffusion profiles of oxide components in mole\% of BS17\&18B with fits. 118
C2.27. Diffusion profiles of oxide components in mole\% of BS19\&20B with fits. 119
D1. Concentration profiles of Zhang1989_Exp\#212 121
D2. Concentration profiles of Zhang1989_Exp\#216 122
D3. Concentration profiles of Zhang1989_Exp\#219 123
D4. Concentration profiles of Zhang1989_Exp\#220. 124
D5. Concentration profiles of Zhang1989_Exp\#222 125
D6. Concentration profiles of Zhang1989_Exp\#223 126
D7. Concentration profiles of Zhang1989_Exp\#225 127
D8. Concentration profiles of Zhang1989_Exp\#226 128
D9. Concentration profiles of Zhang1989_Exp\#227 129
D10. Concentration profiles of Zhang1989_Exp\#228FO 130
D11. Concentration profiles of Zhang1989_Exp\#228OL 131
D12. Concentration profiles of Zhang1989_Exp\#229 132
D13. Concentration profiles of Zhang1989_Exp\#231DI 133
D14. Concentration profiles of Zhang1989_Exp\#231OL 134
D15. Concentration profiles of Zhang1989_Exp\#231SP 135
D16. Concentration profiles of Zhang1989_Exp\#234 136
D17. Concentration profiles of Zhang1989_Exp\#235OL 137
D18. Concentration profiles of Zhang1989_Exp\#236OL 138
D19. Concentration profiles of Zhang1989_Exp\#236RU 139
D20. Concentration profiles of Zhang1989_Exp\#239MID OL 140
D21. Concentration profiles of Zhang1989_Exp\#242 141
D22. Concentration profiles of Zhang1989_Exp\#246 142
D23. Concentration profiles of Zhang1989_Exp\#255DI 143
D24. Concentration profiles of Zhang1989_Exp\#255OL 144
D25. Concentration profiles of Zhang1989_Exp\#256 145
D26. Concentration profiles of Zhang1989_Exp\#259AUG. 146
D27. Concentration profiles of Zhang1989_Exp\#259PL 147
D28. Concentration profiles of Zhang1989_Exp\#260OL 148
D29. Concentration profiles of Zhang1989_Exp\#260SP 149
D30. Concentration profiles of Zhang1989_Exp\#262ENS 150
D31. Concentration profiles of Zhang1989_Exp\#262OL 151
D32. Concentration profiles of Zhang1989_Exp\#263OL 152
D33. Concentration profiles of Zhang1989_Exp\#263SP 153
D34. Concentration profiles of Zhang1989_Exp\#265 154
D35. Concentration profiles of Chen2008_Exp\#15 155
D36. Concentration profiles of Chen2008_Exp\#16 156
D37. Concentration profiles of Chen2008_Exp\#18 157
D38. Concentration profiles of Chen2008_Exp\#20 158
D39. Concentration profiles of Chen2008_Exp\#21 159
D40. Concentration profiles of Chen2008_Exp\#22 160
D41. Concentration profiles of Chen2008_Exp\#23 161
D42. Concentration profiles of Chen2008_Exp\#24 162
D43. Concentration profiles of Chen2008_Exp\#25 163
D44. Concentration profiles of Chen2008_Exp\#26 164
D45. Concentration profiles of Chen2008_Exp\#29 165
D46. Concentration profiles of Chen2008_Exp\#33 166
D47. Concentration profiles of Chen2008_Exp\#34 167
D48. Concentration profiles of Chen2008_Exp\#35 168
D49. Concentration profiles of Chen2008_Exp\#37 169
D50. Concentration profiles of Chen2008 Exp\#38 170
D51. Concentration profiles of Chen2008_Exp\#39 171
D52. Concentration profiles of Chen2008_Exp\#40 172
D53. Concentration profiles of Chen2008_Exp\#41 173
D54. Concentration profiles of Chen2008_Exp\#43 174
D55. Concentration profiles of Chen2008_Exp\#44 175
D56. Concentration profiles of Chen2008_Exp\#45 176
D57. Concentration profiles of Chen2008_Exp\#46 177
D58. Concentration profiles of Chen2009_Exp\#1 178
D59. Concentration profiles of Chen2009_Exp\#5 179
D60. Concentration profiles of Chen2009_Exp\#6 180
D61. Concentration profiles of Chen2009_Exp\#7 181
D62. Concentration profiles of Chen2009_Exp\#8 182
D63. Concentration profiles of Chen2009_Exp\#11 183
D64. Concentration profiles of Chen2009_Exp\#12 184
D65. Concentration profiles of Chen2009_Exp\#14 185
D66. Concentration profiles of Chen2009_Exp\#15 186
D67. Concentration profiles of Yu2016_Exp\#201 187
D68. Concentration profiles of Yu2016_Exp\#202 188
D69. Concentration profiles of Yu2016_Exp\#203 189
D70. Concentration profiles of Yu2016_Exp\#205 190
D71. Concentration profiles of Yu2016_Exp\#207 191
D72. Concentration profiles of Yu2016_Exp\#208 192
D73. Concentration profiles of Yu2016_Exp\#209 193
D74. Concentration profiles of Yu2016_Exp\#221 194
D75. Concentration profiles of Yu2016_Exp\#222 195
D76. Concentration profiles of Yu2016_Exp\#223 196
D77. Concentration profiles of Yu2016_Exp\#227 197
D78. Concentration profiles of Yu2016_Exp\#210 198
D79. Concentration profiles of Yu2016_Exp\#211 199
D80. Concentration profiles of Yu2016_Exp\#212 200
D81. Concentration profiles of Yu2016_Exp\#213 201
D82. Concentration profiles of Yu2016_Exp\#214 202
D83. Concentration profiles of Yu2016_Exp\#215 203
D84. Concentration profiles of Yu2016_Exp\#216 204
D85. Concentration profiles of Yu2016_Exp\#228 205
D86. Concentration profiles of Yu2016_Exp\#233 206
D87. Concentration profiles of Yu2016_Exp\#230 207
D88. Concentration profiles of Yu2016_Exp\#301 208
D89. Concentration profiles of Yu2016_Exp\#302 209
D90. Concentration profiles of Yu2016_Exp\#304 210
D91. Concentration profiles of Yu2019 QzDisBa\#101 211
D92. Concentration profiles of Yu2019_QzDisBa\#102 212
D93. Concentration profiles of Yu2019_QzDisBa\#103 213
D94. Concentration profiles of Yu2019_QzDisBa\#104 214
D95. Concentration profiles of Yu2019_QzDisBa\#107 215
D96. Concentration profiles of Yu2019_QzDisBa\#110 216
D97. Concentration profiles of Yu2019_QzDisBa\#111 217
D98. Concentration profiles of Yu2019_QzDisRh\#103 218
D99. Concentration profiles of Yu2019_QzDisRh\#111 219
D100. Concentration profiles of Yu2019_QzDisRh\#112 220
D101. Concentration profiles of Yu2019_QzDisRh\#115 221
D102. Concentration profiles of Yu2019_QzDisRh\#201 222
D103. Concentration profiles of Yu2019_QzDisRh\#203 223
D104. Concentration profiles of Yu2019_QzDisRh\#105 224
D105. Concentration profiles of Yu2019_QzDisRh\#113 225
D106. Concentration profiles of Yu2019_QzDisRh\#114 226
D107. Concentration profiles of Yu2019_QzDisRh\#102 227
D108. Concentration profiles of Yu2019_QzDisRh\#104 228
D109. Concentration profiles of Yu2019_QzDisRh\#106 229
D110. Concentration profiles of Guo\&Zhang2016_HB2\&4A 230
D111. Concentration profiles of Guo\&Zhang2016_HB3\&4A 231
D112. Concentration profiles of Guo\&Zhang2016_HB5\&6A 232
D113. Concentration profiles of Guo\&Zhang2016_HB5\&7A 233
D114. Concentration profiles of Guo\&Zhang2016_HB7\&8B 234
D115. Concentration profiles of Guo\&Zhang2016_HB9\&10A 235
D116. Concentration profiles of Guo\&Zhang2016_HB11\&12F 236
D117. Concentration profiles of Guo\&Zhang2016_HB15\&16A 237
D118. Concentration profiles of Guo\&Zhang2016_HB17\&18A 238
D119. Concentration profiles of Guo\&Zhang2016_An\&HB4 239
D120. Concentration profiles of Guo\&Zhang2020_BS1\&2C 240
D121. Concentration profiles of Guo\&Zhang2020_BS3\&4C 241
D122. Concentration profiles of Guo\&Zhang2020_BS5\&6C 242
D123. Concentration profiles of Guo\&Zhang2020_BS7\&8C 243
D124. Concentration profiles of Guo\&Zhang2020_BS9\&10C 244
D125. Concentration profiles of Guo\&Zhang2020_BS11\&12C 245
D126. Concentration profiles of Guo\&Zhang2020_BS13\&14C 246
D127. Concentration profiles of Guo\&Zhang2020_BS17\&18C 247
D128. Concentration profiles of Guo\&Zhang2020_BS19\&20C 248
D129. Concentration profiles of Guo\&Zhang2018_BS1\&2A 249
D130. Concentration profiles of Guo\&Zhang2018_BS3\&4A 250
D131. Concentration profiles of Guo\&Zhang2018_BS5\&6A 251
D132. Concentration profiles of Guo\&Zhang2018_BS7\&8A 252
D133. Concentration profiles of Guo\&Zhang2018_BS9\&10A 253
D134. Concentration profiles of Guo\&Zhang2018_BS11\&12A 254
D135. Concentration profiles of Guo\&Zhang2018_BS13\&14A 255
D136. Concentration profiles of Guo\&Zhang2018_BS17\&18A 256
D137. Concentration profiles of Guo\&Zhang2018_BS19\&20A 257
D138. Concentration profiles of Guo\&Zhang2020_BS1\&2B 258
D139. Concentration profiles of Guo\&Zhang2020_BS3\&4B 259
D140. Concentration profiles of Guo\&Zhang2020_BS5\&6B 260
D141. Concentration profiles of Guo\&Zhang2020_BS7\&8B 261
D142. Concentration profiles of Guo\&Zhang2020_BS9\&10B 262
D143. Concentration profiles of Guo\&Zhang2020_BS11\&12B 263
D144. Concentration profiles of Guo\&Zhang2020_BS13\&14B 264
D145. Concentration profiles of Guo\&Zhang2020_BS17\&18B 265
D146. Concentration profiles of of Guo\&Zhang2020_BS19\&20B 266
D147. Concentration profiles of González2017_P050-H0-4 267
D148. Concentration profiles of González2017_P050-H1-4 268
D149. Concentration profiles of González2017_P050-H2-4 269
D150. Concentration profiles of González2017_P100-H0-4 270
D151. Concentration profiles of González2017_P100-H1-4 271
D152. Concentration profiles of González2017_P100-H2-4 272
D153. Concentration profiles of González2017_P300-H0-4 273
D154. Concentration profiles of González2017_P300-H0-1 274
D155. Concentration profiles of González2017_P300-H1-4 275
D156. Concentration profiles of González2017_P300-H2-4 276
D157. Concentration profiles of González2017_P300-H2-1 277
D158. Concentration profiles of González2017_P300-H2-0 278
D159. Concentration profiles of González2017_P500-H2-4 279
D160. Concentration profiles of Wang2020_Pyx3 280
D161. Concentration profiles of Wang2020_Pyx 10 281
D162. Concentration profiles of Wang2020_Pyx11 282
D163. Concentration profiles of Wang2020_Pyx26 283
D164. Concentration profiles of Wang2020_Pyx21 284
D165. Concentration profiles of Wang2020_Pyx27 285
D166. Concentration profiles of Wang2020_Pyx17 286
D167. Concentration profiles of Wang2020_Pyx20 287
D168. Concentration profiles of Wang2020_26W01 288
D169. Concentration profiles of Wang2020_26W02 289

D170. Concentration profiles of Wang2020_JW03 .. 290
D171. Concentration profiles of Wang2020_JW02 .. 291

LIST OF TABLES

Table Page
4.1. Eigenvalues and eigenvector matrix fitted by mass fraction data. 16
4.2. Temperature dependence of eigenvalues listed in Table 4.1 and corresponding activation energies 17
4.3. Eigenvalues and eigenvector matrix fitted by mole fraction data. 21
4.4. Temperature dependence of eigenvalues listed in Table 4.3 and corresponding activation energies. 22
5.1. The constant eigenvector matrix $\left[P_{0}\right]$ obtained by Guo and Zhang (2020) and [P_{w}] obtained in this study 26
5.2. Eigenvector matrix $\left[P_{X}^{*}\right]$ and eigenvector matrix $\left[P_{X}\right]$. 28
5.3. Summary of the $35\left[P_{w}\right]$-converted concentration profiles of eigen-components that showobvious uphill diffusion, along with the corresponding experimental conditions.29
5.4. Summary of the $28\left[P_{X}\right]$-converted concentration profiles of eigen-components that show obvious uphill diffusion, along with the corresponding experimental conditions 30
5.5. The inverse of the eigenvector matrix $\left[P_{X}\right]$ 31

LIST OF APPENDICES

Appendix Page
A. Derivation of an explicit expression of Jacobian matrix 45
B. MATLAB codes for fitting diffusion profiles 52
B1. Main program "BFGS_Main.m" 52
B2. Subroutine "con.m" 58
B3. Subroutine "calculate_J.m" 59
B4. Subroutine "calculate_J7.m" 62
C. Fits for 27 diffusion couple experiments from Guo and Zhang (2018, 2020) 65
C 1 . Fits of diffusion profiles using mass fraction as concentration 66
C 2 . Fits of diffusion profiles using mole fraction as concentration 93
D. Concentration profiles of oxide components and eigen-components 120

I. Introduction

Natural silicate melt usually contains 6-10 major components (defined to be more than 1 $\mathrm{wt} \%$ oxide, e.g., $\left.\mathrm{SiO}_{2}-\mathrm{TiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{FeO}-\mathrm{MgO}-\mathrm{CaO}-\mathrm{Na}_{2} \mathrm{O}-\mathrm{K}_{2} \mathrm{O}\right)$ and diffusion in natural silicate melt is always multicomponent diffusion. In nature, many geological processes involving mass transport are essentially multicomponent diffusion, e.g., magma mixing and contamination (Sato, 1975; Watson, 1982; Koyaguchi, 1985, 1989; Oldenburg et al., 1989), and mineral growth and dissolution (Watson, 1982; Zhang et al., 1989). To quantitatively predict mass transport requires an in-depth understanding of multicomponent diffusion in natural silicate melts.

A classic treatment for diffusion in natural silicate melts is effective binary diffusion (EBD) model (e.g., Cooper, 1968), which treats diffusant i of interest as one component and all other components as one "component" m (stands for mixture). Then the flux of component of interest is assumed to be:

$$
\begin{equation*}
\boldsymbol{J}_{i}=-D_{i m} \nabla C_{i} \tag{1}
\end{equation*}
$$

where \boldsymbol{J}_{i} is the flux of component $i, D_{i m}$ is the effective binary diffusion coefficient (EBDC) and ∇C_{i} is the concentration gradient of component i. Due to its simplicity, the method has been extensively used for monotonic profiles (e.g., Zhang et al., 1989; Chen and Zhang, 2008, 2009). However, the method fails when it comes to uphill diffusion, which is often encountered in natural systems and experiments. In addition, the effective binary diffusion diffusivities depend strongly on thermodynamic condition, melt composition and the direction of diffusion in composition space, which restricts the applications of EBDCs to interdiffusion under a different thermodynamic condition and in melt systems with a different composition (Cooper, 1968; Zhang et al., 1989; Liang et al., 1996; Zhang, 2010; Chen and Zhang, 2008, 2009; Guo and Zhang, 2016, 2018, 2020).

To treat non-monotonic diffusion profiles, Zhang (1993) proposed a modified effective binary diffusion model, which assumes the diffusive flux of a component is proportional to its activity gradient (instead of concentration gradient).

$$
\begin{equation*}
\boldsymbol{J}_{i}=-\frac{\mathcal{D}_{i}}{\gamma_{i}} \nabla a_{i} \tag{2}
\end{equation*}
$$

where $\boldsymbol{J}_{i}, \mathcal{D}_{i}, a_{i}$ and γ_{i} are the flux, activity based EBDC (a.k.a. intrinsic EBDC), activity and activity coefficient of component i, respectively. Even though the model has some values of fitting non-monotonic diffusion profiles, due the complexity of the model and lack of activity data for silicate melts, it has not been widely applied. In addition, both the EBD model and the modified EBD model neglect interactions among diffusants, making it difficult to decipher the diffusion mechanism in natural silicate melts.

To solve diffusion problems in a multicomponent system more rigorously, there is a critical need for a multicomponent treatment (Onsager, 1945; Liang, 2010; Zhang, 2010, 2022), in which the flux of the component i is a linear combination of the concentration gradients of independent components:

$$
\begin{equation*}
\boldsymbol{J}_{i}=-\sum_{j} D_{i j} \nabla C_{j} \tag{3}
\end{equation*}
$$

where \boldsymbol{J}_{i} is the flux of component $i, D_{i j}$ is diffusion coefficient, which characterizes the cross effect of the concentration gradients of the component j on the flux of component i, and ∇C_{j} is the concentration gradient of component j. The $n \times n$ square matrix whose (i, j) entry is $D_{i j}$ is called the diffusivity matrix and denoted by $[D]$. Enormous efforts have been made to determine the diffusivity matrix at desired compositions, e.g., $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{CaO}$ (Sugawara et al., 1977;

Oishi et al., 1982; Liang et al., 1996), $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{MgO}$ (Kress and Ghiorso, 1993; Richter et al., 1998), $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{K}_{2} \mathrm{O}$ (Chakraborty et al., 1995a), $\mathrm{SiO}_{2}-\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{Na}_{2} \mathrm{O}$ (Pablo et al., 2017), $\mathrm{SiO}_{2}-$ $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{MgO}-\mathrm{CaO}$ (Kress and Ghiorso, 1993), $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{Na}_{2} \mathrm{O}-\mathrm{K}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}$ (Mungall et al., 1998),
$\mathrm{SiO}_{2}-\mathrm{TiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{MgO}-\mathrm{CaO}-\mathrm{Na}_{2} \mathrm{O}-\mathrm{K}_{2} \mathrm{O}$ (Guo and Zhang, 2016) and $\mathrm{SiO}_{2}-\mathrm{TiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{FeO}-$ $\mathrm{MgO}-\mathrm{CaO}-\mathrm{Na}_{2} \mathrm{O}-\mathrm{K}_{2} \mathrm{O}$ (Guo and Zhang, 2018, 2020).

Among those studies, Guo and Zhang $(2018,2020)$ conducted numerous experiments to extract diffusivity matrices in an 8-component system $\left(\mathrm{SiO}_{2}-\mathrm{TiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{FeO}-\mathrm{MgO}-\mathrm{CaO}-\mathrm{Na}_{2} \mathrm{O}-\right.$ $\left.\mathrm{K}_{2} \mathrm{O}\right)$ at $1260^{\circ} \mathrm{C}, 1350^{\circ} \mathrm{C}$ and $1500^{\circ} \mathrm{C}$. Their success of using diffusivity matrix to predict mass transport during mineral dissolution shows the validity and utility of multicomponent treatment in diffusion in natural silicate melts. In addition, they found that eigenvectors of $[D]$ are roughly independent of temperature and eigenvalues of $[D]$ follows an Arrhenius relation with temperature. With these observations, we can hence calculate diffusion matrix in basaltic melt at temperatures within the studied range. Furthermore, the calculated diffusion matrix can be used to predict diffusion behavior in magma mixing and mineral dissolution. However, if the diffusion involves a large difference in melt composition (i.e., from basalt to rhyolite), it would be necessary to first assess the compositional effect on the diffusion matrix.

In this study, we focus on an 8-component melt system $\left(\mathrm{SiO}_{2}-\mathrm{TiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{FeO}-\mathrm{MgO}-\mathrm{CaO}-\right.$ $\left.\mathrm{Na}_{2} \mathrm{O}-\mathrm{K}_{2} \mathrm{O}\right)$ and evaluate whether diffusion eigenvectors depend on composition. Diffusion profiles from previous studies (e.g., Guo and Zhang 2018, 2020) were collected and fitted by assuming a constant eigenvector matrix. Then the best two eigenvector matrices-obtained by fitting diffusion profiles using mass fraction and mole fraction as concentration, respectivelywere used to calculate profiles of eigen-components. Finally, the profiles of eigen-components were plotted to check whether they show uphill diffusion features.

II. Theoretical background

2.1 Diffusivity matrices, eigenvectors, and eigenvalues

In an N-component melt system with a barycentric (mass-fixed) frame of reference, without bulk motion, sink and source, there are only $n=N-1$ independent components (Kirkwood et al., 1960; Miller et al., 1986). As a generalization of Fick’s first law (Onsager, 1945), the flux of the component i is a linear combination of the concentration gradients of independent components, i.e.,

$$
\begin{equation*}
\boldsymbol{J}_{i}=-\sum_{j=1}^{n} D_{i j}^{N} \nabla C_{j} \tag{4}
\end{equation*}
$$

Here \boldsymbol{J}_{i} is mass-unit flow. $D_{i j}^{N}$ is the coefficient characterizing the cross effect of the concentration gradient of the component j on the flux of component i, where the superscript N means we choose the $N^{t h}$ component as the dependent component. And C_{j} is the concentration of component j expressed as mass per unit volume, usually with a unit of $\mathrm{g} / \mathrm{cm}^{3}$. Accordingly, the vector form of Fick's first law is given by:

$$
\boldsymbol{J}=\left[\begin{array}{c}
\boldsymbol{J}_{1} \tag{5}\\
\boldsymbol{J}_{2} \\
\vdots \\
\boldsymbol{J}_{n}
\end{array}\right]=\left[\begin{array}{c}
-\sum_{j=1}^{n} D_{1 j}^{N} \nabla C_{j} \\
-\sum_{j=1}^{n} D_{2 j}^{N} \nabla C_{j} \\
\vdots \\
-\sum_{j=1}^{n} D_{n j}^{N} \nabla C_{j}
\end{array}\right]=-\left[\begin{array}{cccc}
D_{11}^{N} & D_{12}^{N} & & D_{1 n}^{N} \\
D_{21}^{N} & D_{22}^{N} & & D_{2 n}^{N} \\
& \vdots & \ddots & \vdots \\
D_{n 1}^{N} & D_{n 2}^{N} & \cdots & D_{n n}^{N}
\end{array}\right] \times \nabla\left[\begin{array}{c}
C_{1} \\
C_{2} \\
\vdots \\
C_{n}
\end{array}\right]=-\left[D^{N}\right] \nabla \boldsymbol{C}
$$

where $\left[D^{N}\right]$ is the diffusivity matrix.
It has been shown that in a thermodynamically stable region $\left[D^{N}\right]$ is positive-definite (e.g., Gupta and Cooper, 1971), namely, having positive eigenvalues, and hence the diagonal terms of [D^{N}] are always positive. However, the off-diagonal terms of [D^{N}] can be either positive or negative, and sometimes has large absolute values, which enables a component to diffuse against its concentration gradient, leading to uphill diffusion. Mathematically, $\left[D^{N}\right]$ can be diagonalized:

$$
\begin{equation*}
\left[D^{N}\right]=[P][\Lambda]\left[P^{-1}\right] \tag{6}
\end{equation*}
$$

where $[P]$ is an $n \times n$ matrix whose columns $\boldsymbol{v}_{\boldsymbol{i}}$ are eigenvectors of $\left[D^{N}\right],\left[P^{-1}\right]$ is the inverse of $[P]$ and $[\Lambda]$ is an $n \times n$ diagonal matrix whose diagonal terms λ_{i} are eigenvalues of $\left[D^{N}\right]$, such that:

$$
\begin{equation*}
\left[D^{N}\right] \boldsymbol{v}_{\boldsymbol{i}}=\lambda_{i} \boldsymbol{v}_{\boldsymbol{i}} \tag{7}
\end{equation*}
$$

The eigenvectors of $\left[D^{N}\right]$ describe interactions among components and are commonly used to infer exchange mechanisms and the eigenvalues of $\left[D^{N}\right]$ characterize the exchange rates in the melt system (Varshneya and Cooper, 1972; Liang et al., 1996; Guo and Zhang, 2016, 2018, 2020).

2.2 Eigen-components and eigen-space

Combining Fick's first law and mass conservation gives Fick's second law:

$$
\begin{equation*}
\frac{\partial \boldsymbol{C}}{\partial t}=\nabla \cdot\left(\left[D^{N}\right] \nabla \boldsymbol{C}\right) \tag{8}
\end{equation*}
$$

where t is time.
Diffusion problems are usually studied in one dimension; thus Eq. (8) is often simplified to the expression:

$$
\begin{equation*}
\frac{\partial \boldsymbol{C}}{\partial t}=\frac{\partial}{\partial x}\left(\left[D^{N}\right] \frac{\partial \boldsymbol{C}}{\partial x}\right) \tag{9}
\end{equation*}
$$

Plugging Eq. (6) into Eq. (9), leads to

$$
\begin{equation*}
\frac{\partial \boldsymbol{C}}{\partial t}=\frac{\partial}{\partial x}\left([P][\Lambda]\left[P^{-1}\right] \frac{\partial \boldsymbol{C}}{\partial x}\right) \tag{10}
\end{equation*}
$$

If eigenvector matrix $[P]$ is independent of melt composition, then Eq. (10) can be converted into the following expression:

$$
\begin{equation*}
\frac{\partial\left[P^{-1}\right] \boldsymbol{C}}{\partial t}=\frac{\partial}{\partial x}\left([\Lambda] \frac{\partial\left[P^{-1}\right] \boldsymbol{C}}{\partial x}\right) \tag{11}
\end{equation*}
$$

Denoting $\left[P^{-1}\right] \boldsymbol{C}$ by \boldsymbol{Z}, namely,

$$
\boldsymbol{Z}=\left[\begin{array}{c}
Z_{1} \tag{12}\\
Z_{2} \\
\vdots \\
Z_{n}
\end{array}\right]=\left[P^{-1}\right]\left[\begin{array}{c}
C_{1} \\
C_{2} \\
\vdots \\
C_{n}
\end{array}\right]=\left[P^{-1}\right] \boldsymbol{C}
$$

then Eq. (11) can be converted into the following equation:

$$
\begin{equation*}
\frac{\partial \boldsymbol{Z}}{\partial t}=\frac{\partial}{\partial x}\left([\Lambda] \frac{\partial \boldsymbol{Z}}{\partial x}\right) \tag{13}
\end{equation*}
$$

Eq. (13) contains n independent equations:

$$
\begin{equation*}
\frac{\partial Z_{i}}{\partial t}=\frac{\partial}{\partial x}\left(\lambda_{i} \frac{\partial Z_{i}}{\partial x}\right) \tag{14}
\end{equation*}
$$

To distinguish \boldsymbol{C} from \boldsymbol{Z}, we name each term C_{i} in \boldsymbol{C} an oxide component and each term Z_{i} in \boldsymbol{Z} an eigen-component. Accordingly, the compositional space composed of Z_{i} is referred to as eigen-space. Note that since λ_{i} is always positive, profiles of eigen-components should always be monotonic as long as the initial concentration profile is monotonic. Since Eq. (14) is obtained based on a constant eigenvector matrix $[P]$, the monotonicity of profiles of eigen-components is a necessary condition of the universality of eigenvector matrix $[P]$.

2.3 Analytical solutions to multicomponent diffusion

For multicomponent diffusion in an infinite diffusion couple, assuming that $\left[D^{N}\right]$ is constant within the studied range and the interface position is at $x=0$, the analytical solution can be easily obtained (Lasaga, 1979; Morgan et al., 2006; Guo and Zhang, 2016):

$$
\begin{equation*}
\boldsymbol{C}=\frac{\boldsymbol{C}_{\boldsymbol{R}}+\boldsymbol{C}_{\boldsymbol{L}}}{2}+[P][E]\left[P^{-1}\right] \frac{\boldsymbol{C}_{\boldsymbol{R}}-\boldsymbol{C}_{\boldsymbol{L}}}{2} \tag{15}
\end{equation*}
$$

where $\boldsymbol{C}_{\boldsymbol{L}}$ and $\boldsymbol{C}_{\boldsymbol{R}}$ are initial melt concentration vectors at $x<0$ and $x>0,[P]$ is eigenvector matrix, $[E]$ is a diagonal matrix whose diagonal terms are:

$$
\begin{equation*}
E_{i i}=\operatorname{erf}\left(\frac{x}{\sqrt{4 \lambda_{i} t}}\right) \tag{16}
\end{equation*}
$$

in which x is distance from the interface and t is time.

2.4 Diffusivity matrices when other units of concentration are used

The diffusivity matrix $\left[D^{N}\right]$ depends on many factors, e.g., thermodynamic state (e.g., Liang and Davis, 2002; Guo and Zhang, 2020), melt composition (e.g., Liang et al., 1996), the choice of the dependent component (e.g., Liang et al., 1996; Guo and Zhang, 2016, 2018, 2020), the choice of reference frame (e.g., Kirkwood et al., 1960; Miller et al., 1986), and the choice of concentration unit. Among them, the effect of choice of concentration unit hasn't been studied. Here we derive how diffusivity matrix varies when cation mole concentration, mass fraction and cation mole fraction are used.

First, one may substitute the vector \boldsymbol{C} of mass concentration $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ by the vector $\widetilde{\boldsymbol{C}}$ of cation molar concentration $\left(\mathrm{mol} / \mathrm{m}^{3}\right)$, using the following expression:

$$
\boldsymbol{C}=\left[\begin{array}{c}
C_{1} \tag{17}\\
C_{2} \\
\vdots \\
C_{n}
\end{array}\right]=\left[\begin{array}{c}
M_{1} \tilde{C}_{1} \\
M_{2} \tilde{C}_{2} \\
\vdots \\
M_{n} \tilde{C}_{n}
\end{array}\right]=\left[M^{N}\right] \widetilde{\boldsymbol{C}}
$$

where \tilde{C}_{i} is molar concentration of the $i^{t h}$ cation and $\left[M^{N}\right]$ is a diagonal matrix with the diagonal term M_{i} as the molar mass of the $i^{\text {th }}$ oxide component, namely,

$$
\left[M^{N}\right]=\left[\begin{array}{llll}
M_{1} & & & \tag{18}\\
& M_{2} & & \\
& & \ddots & \\
& & & M_{n}
\end{array}\right]
$$

Plugging Eq. (17) into Eq. (8), leads to

$$
\begin{equation*}
\frac{\partial \widetilde{\boldsymbol{C}}}{\partial t}=\nabla \cdot\left(\left[M^{N^{-1}}\right]\left[D^{N}\right]\left[M^{N}\right] \nabla \widetilde{\boldsymbol{C}}\right) \tag{19}
\end{equation*}
$$

where $\left[M^{N^{-1}}\right]$ is the inverse of $\left[M^{N}\right]$. We see from Eq. (19) that the diffusivity matrix $\left[\widetilde{D}{ }^{N}\right]$, when cation mole concentration is used, is related to $\left[D^{N}\right]$ by the following expression:

$$
\begin{equation*}
\left[\widetilde{D}^{N}\right]=\left[M^{N^{-1}}\right]\left[D^{N}\right]\left[M^{N}\right] \tag{20}
\end{equation*}
$$

Plugging Eq. (6) into Eq. (20), leads to:

$$
\begin{equation*}
\left[\widetilde{D}^{N}\right]=\left[M^{N^{-1}}\right][P][\Lambda]\left[P^{-1}\right]\left[M^{N}\right]=\left(\left[M^{N^{-1}}\right][P]\right)[\Lambda]\left(\left[M^{N^{-1}}\right][P]\right)^{-1} \tag{21}
\end{equation*}
$$

From Eq. (21) we see that the eigenvector matrix $[\widetilde{P}]$ obtained from $\widetilde{\boldsymbol{C}}$ would be:

$$
\begin{equation*}
[\tilde{P}]=\left[M^{N^{-1}}\right][P] \tag{22}
\end{equation*}
$$

and the eigenvalue matrix obtained from $\widetilde{\boldsymbol{C}}$ should be the same as that of $\left[D^{N}\right]$.
For convenience, concentration data are often expressed as mass fraction or mole fraction. In the former case, the concentration vector is often substituted by the mass fraction vector \boldsymbol{w} using the equation:

$$
\boldsymbol{C}=\left[\begin{array}{c}
C_{1} \tag{23}\\
C_{2} \\
\vdots \\
C_{n}
\end{array}\right]=\left[\begin{array}{c}
\rho w_{1} \\
\rho w_{2} \\
\vdots \\
\rho w_{n}
\end{array}\right]=\rho \boldsymbol{w}
$$

where ρ is the mass density of the melt and w_{i} is the mass fraction of the $i^{t h}$ oxide component. Plugging Eq. (23) into Eq. (8) and assuming ρ doesn't change much within the studied composition range, then we obtain the following expression:

$$
\begin{equation*}
\frac{\partial \boldsymbol{w}}{\partial t}=\nabla \cdot\left(\left[D^{N}\right] \nabla \boldsymbol{w}\right) \tag{24}
\end{equation*}
$$

Eq. (24) shows that the diffusivity matrix $\left[D_{w}^{N}\right]$ obtained from \boldsymbol{w} is the same as $\left[D^{N}\right]$, and hence has the same eigenvector matrix $\left[P_{w}\right]$, namely,

$$
\begin{equation*}
\left[D_{w}^{N}\right]=\left[D^{N}\right] \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[P_{w}\right]=[P] \tag{26}
\end{equation*}
$$

Alternatively, the concentration vector \boldsymbol{C} can be replaced by vector \boldsymbol{X} of cation mole fraction using the expression:

$$
\boldsymbol{C}=\left[\begin{array}{c}
C_{1} \tag{27}\\
C_{2} \\
\vdots \\
C_{n}
\end{array}\right]=\left[\begin{array}{c}
\tilde{\rho} M_{1} X_{1} \\
\tilde{\rho} M_{1} X_{2} \\
\vdots \\
\tilde{\rho} M_{n} X_{n}
\end{array}\right]=\tilde{\rho}\left[M^{N}\right] \boldsymbol{X}
$$

If we assume $\tilde{\rho}$ is nearly constant within the studied composition range, plugging Eq. (27) into Eq. (8) leads to:

$$
\begin{equation*}
\frac{\partial \boldsymbol{X}}{\partial t}=\nabla \cdot\left(\left[M^{N^{-1}}\right]\left[D^{N}\right]\left[M^{N}\right] \nabla \boldsymbol{X}\right) \tag{28}
\end{equation*}
$$

Thus, according to Eq. (28), the diffusivity matrix $\left[D_{X}^{N}\right]$ obtained from \boldsymbol{X} is:

$$
\begin{equation*}
\left[D_{X}^{N}\right]=\left[M^{N^{-1}}\right]\left[D^{N}\right]\left[M^{N}\right] \tag{29}
\end{equation*}
$$

By comparing Eq. (20) and Eq. (29), we see that:

$$
\begin{equation*}
\left[D_{X}^{N}\right]=\left[\widetilde{D}^{N}\right]=\left(\left[M^{N^{-1}}\right][P]\right)[\Lambda]\left(\left[M^{N^{-1}}\right][P]\right)^{-1} \tag{30}
\end{equation*}
$$

Therefore, the eigenvector matrix $\left[P_{X}\right]$ obtained from \boldsymbol{X} would be:

$$
\begin{equation*}
\left[P_{X}\right]=[\tilde{P}]=\left[M^{N^{-1}}\right][P] \tag{31}
\end{equation*}
$$

and the eigenvalue matrix obtained from \boldsymbol{X} should be the same as those of $\left[D^{N}\right]$.

III. Methods

3.1 Data collection and processing

Eigenvectors and eigenvalues in desired melt composition can be obtained by simultaneously fitting diffusion profiles of all oxides from diffusion experiments. Diffusion profiles in the 8 -component melt system $\left(\mathrm{SiO}_{2}-\mathrm{TiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{FeO}-\mathrm{MgO}-\mathrm{CaO}-\mathrm{Na}_{2} \mathrm{O}-\mathrm{K}_{2} \mathrm{O}\right)$ were collected from previous studies (Zhang et al., 1989; Chen and Zhang, 2008, 2009; Yu et al., 2016; Yu et al., 2019; Guo and Zhang, 2016, 2018, 2020; González -Garcia et al., 2017; Wang et al., 2020). The studied melt compositions vary from basaltic melt to rhyolitic melt. The oxide concentrations from those studies were all reported as mass fraction in weight percent (wt $\%$). Original concentration profiles were first plotted to check data quality. Then points that apparently deviate from diffusion trend or show a significant quench effect in mineral dissolution experiments were removed. After that, mass fraction concentrations w_{i} were converted into mole fraction concentrations X_{i} using the expression:

$$
\begin{equation*}
X_{i}=\frac{\frac{w_{i}}{M_{i}}}{\sum_{j=1}^{N} \frac{W_{j}}{M_{j}}} * 100 \text { mole } \% \tag{32}
\end{equation*}
$$

where w_{i} is the mass fraction of component i, X_{i} is the mole fraction of component i, M_{i} is the molar mass of component i on a single cation basis, and N is the total number of components. In our calculation, we replaced SiO_{2} with $\mathrm{SiO}_{2}{ }^{*}=\mathrm{SiO}_{2}-($ total -100$)$ and treated $\mathrm{SiO}_{2}{ }^{*}$ as the dependent component following the studies of Guo and Zhang (2016, 2018, 2020).

Only the experimental data from Guo and Zhang $(2018,2020)$ were incorporated in the fitting process, as those data show small concentration variations (typically less than $3 \mathrm{wt} \%$) across the diffusion profiles. Those data are from diffusion couple experiments in a basaltic melt at three different temperatures, $1260^{\circ} \mathrm{C}, 1350^{\circ} \mathrm{C}$ and $1500^{\circ} \mathrm{C}$. For simplicity of experiment
naming, the three temperatures were represented by the letters C, A and B, respectively. For example, "BS1\&2C" denotes a diffusion couple experiment conducted at $1260^{\circ} \mathrm{C}$. The selected experimental data were fitted using mass fraction as concentration and mole fraction as concentration separately, generating two eigenvector matrices $\left[P_{w}\right]$ and $\left[P_{X}\right]$. After the fitting process, all collected experimental data were used to verify the universality of the extracted eigenvector matrices. Since the monotonicity of profiles of eigen-components is a necessary condition of the universality of eigenvector matrix, a natural next step is to plot profiles of eigencomponents. Concentration vector \boldsymbol{w} (or \boldsymbol{X}) of oxide components was converted into concentration vector \boldsymbol{Z}_{w} (or \boldsymbol{Z}_{X}) of eigen-components using the equation:

$$
\begin{equation*}
\boldsymbol{Z}_{w}=\left[P_{w}^{-1}\right] \boldsymbol{w} \tag{33}
\end{equation*}
$$

or

$$
\begin{equation*}
\boldsymbol{Z}_{X}=\left[P_{X}^{-1}\right] \boldsymbol{X} \tag{34}
\end{equation*}
$$

If profiles of eigen-components are indeed monotonic, then our hypothesis is consistent with experimental data. The hypothesis can be further tested by more experimental data, but there is no straightforward proof of the hypothesis.

3.2 Numerical method

In this part, we do not distinguish between the fitting using mass fraction as concentration and that using mole fraction as concentration, since they are essentially the same in terms of computation. The selected diffusion couple data were fitted using one eigenvector matrix $[P]$ and three sets of eigenvalue matrices $\left[\Lambda^{1260}\right],\left[\Lambda^{1350}\right]$ and $\left[\Lambda^{1500}\right]$ where the superscripts 1260,1350 and 1500 represent temperature in ${ }^{\circ} \mathrm{C}$. To optimize eigenvectors and eigenvalues, we follow the procedure in the studies of Guo and Zhang $(2016,2018,2020)$ to minimize χ^{2} :

$$
\begin{equation*}
\chi^{2}=\frac{1}{2} \sum_{k=1}^{N_{e}} \sum_{j=1}^{N p_{k}} \sum_{i=1}^{N_{c}}\left(\frac{w_{i j k}{ }^{\text {meas }}-w_{i j k}^{\text {calc }}}{\sigma_{i k}}\right)^{2} \tag{35}
\end{equation*}
$$

where N_{c} is the number of components $\left(N_{c}=8\right), N p_{k}$ is the number of points in the $k^{t h}$ experiments, N_{e} is number of experiments incorporated in the fitting process ($N_{e}=27$), $w_{i j k}{ }^{\text {meas }}$ is the measured concentration of oxide i at position j in experiment $k, w_{i j k}{ }^{\text {calc }}$ is the calculated concentration using Eq. (15) and Eq. (16), $\sigma_{i k}$ is $1-\sigma$ error on $w_{i j k}{ }^{\text {meas }}$.

Denoting $\frac{w_{i j k}{ }^{\text {meas }}-w_{i j k} \text { calc }}{\sigma_{i k}}$ in Eq. (35) by $r_{i j k}$ and putting all $r_{i j k}$ in a column vector \boldsymbol{r} in ascending order of (i, j, k) with k as primary index, j as secondary index and i as tertiary index, namely,

$$
\begin{equation*}
r=\left(r_{111}, r_{211}, \ldots, r_{N_{c} 11}, r_{121}, r_{221} \ldots, r_{N_{c} 21}, \ldots, r_{N_{c} N_{p_{1}} 1}, r_{112}, r_{212} \ldots \ldots \ldots r_{N_{c} N_{p_{N_{e}}} N_{e}}\right)^{T} \tag{36}
\end{equation*}
$$

then Eq. (35) can be converted into the expression:

$$
\begin{equation*}
\chi^{2}=\frac{1}{2} r^{T} r \tag{37}
\end{equation*}
$$

Our fitting parameters include 49 elements in the 7×7 eigenvector matrix $[P]$ and 21 eigenvalues in 3 diagonal eigenvalue matrices at three different temperatures. One complexity is that all eigenvalues λ must be positive. However, if we take $\theta=\ln \lambda$, then θ can be any real values. Therefore, θ is treated as the fitting parameter in place of λ. For simplicity, we put our 70 fitting parameters into a column vector β, in which the first 49 elements are the vectorized eigenvector matrix and the remaining 21 elements are θ values, namely,

$$
\begin{equation*}
\beta=\left(P_{11}, P_{21}, \ldots, P_{67}, P_{77}, \theta_{1}^{1260}, \ldots, \theta_{7}^{1260}, \theta_{1}^{1350}, \ldots, \theta_{7}^{1350}, \theta_{1}^{1500}, \ldots, \theta_{7}^{1500}\right)^{T} \tag{38}
\end{equation*}
$$

For the iterative algorithm, we used the Broyden-Fletcher-Goldfarb-Shanno method (independently proposed by Broyden, Fletcher, Goldfarb and Shanno, 1970) with the Armijotype line search and a cautious update (Donghui and Masao, 2001b). The Broyden-Fletcher-Goldfarb-Shanno (BFGS hereafter) method is one of the most popular Quasi-Newton methods
for solving unconstrained nonlinear optimization problems. Conventional Newton method involves the calculation of Hessian matrix [H]-a square matrix of second-order partial derivatives of the loss function-and the inversion of [H], which is very computationally expensive. In addition, to make sure the algorithm converges to a minimum, $[H]$ is required to be positive definite. When the loss function is non-convex, however, the positive definiteness of [H] cannot be guaranteed. In contrast to Newton method, Quasi-Newton methods approximate $[H]$ with a positive definite matrix $[B]$, which is updated iteratively using the information calculated from previous steps. Quasi-Newton methods differ in the way they construct $[B]$, but all of them satisfy the Quasi-Newton condition. Among various Quasi-Newton methods, the BFGS method is currently regarded as the most efficient method (Donghui and Masao, 2001a) and has been widely used to solve unconstrained nonlinear optimization problems.

Generally, consider the unconstrained nonlinear optimization problem: $\min f(\beta), \beta \in$ R^{m}, where $f: R^{m} \rightarrow R$ is a continuously differentiable function (in this study $f=\chi^{2}$ and $m=$ 70). The BFGS method begins with an initial guess for the optimal value β_{0} and an initial symmetric and positive definite matrix $B_{0} \in R^{m \times m}$ and updates β using the expression:

$$
\begin{equation*}
\beta_{k+1}=\beta_{k}+\gamma_{k} p_{k}, \quad k=0,1,2 \ldots \tag{39}
\end{equation*}
$$

where γ_{k} is the step size at step k and p_{k} is the search direction at step k.
The search direction p_{k} is given by the equation:

$$
\begin{equation*}
p_{k}=-B_{k}^{-1} g_{k} \tag{40}
\end{equation*}
$$

where g_{k} is the gradient of f at $\beta=\beta_{k}$, namely,

$$
\begin{equation*}
g_{k}=\nabla f\left(\beta_{k}\right) \tag{41}
\end{equation*}
$$

The step size γ_{k} can be obtained by the backtracking line search which looks for the largest value γ_{k} in the set $\left\{\rho^{i} \mid i=0,1 \ldots\right\}$ that satisfies the inequality:

$$
\begin{equation*}
f\left(\beta_{k}+\gamma_{k} p_{k}\right) \leq f\left(\beta_{k}\right)+\sigma \gamma_{k} g_{k}^{T} p_{k} \tag{42}
\end{equation*}
$$

where ρ and σ are control parameters so that $\rho, \sigma \in(0,1)$.
The original BFGS method updates B_{k} using the following equation:

$$
\begin{equation*}
B_{k+1}=B_{k}-\frac{B_{k} s_{k} s_{k}^{T} B_{k}}{s_{k}^{T} B_{k} s_{k}}+\frac{y_{k} y_{k}^{T}}{y_{k}^{T} s_{k}} \tag{43}
\end{equation*}
$$

where $s_{k}=\beta_{k+1}-\beta_{k}$ and $y_{k}=g_{k+1}-g_{k}$. Eq. (43) conserves the symmetry of the matrix $[B]$ and as long as $y_{k}^{T} s_{k}>0, B_{k+1}$ is also positive definite. However, the backtracking method cannot guarantee that $y_{k}^{T} s_{k}>0$. To make sure B_{k+1} is positive definite, Donghui and Masao (2001b) proposed a cautious update that determines B_{k+1} by the following condition:

$$
B_{k+1}= \begin{cases}B_{k}-\frac{B_{k} s_{k} s_{k}^{T} B_{k}}{s_{k}^{T} B_{k} s_{k}}+\frac{y_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}, & \text { if } \frac{y_{k}^{T} s_{k}}{\left\|s_{k}\right\|^{2}} \geq \varepsilon\left\|g_{k}\right\|^{\alpha} \tag{44}\\ B_{k}, & \text { otherwise }\end{cases}
$$

where ε and α are positive constants.
The inverse of B_{k+1} can be obtained by applying the Sherman-Morrison formula:

$$
\begin{equation*}
B_{k+1}^{-1}=B_{k}^{-1}+\frac{\left(y_{k}^{T} s_{k}+y_{k}^{T} B_{k}^{-1} y_{k}\right)\left(s_{k} s_{k}^{T}\right)}{\left(y_{k}^{T} s_{k}\right)^{2}}-\frac{B_{k}^{-1} y_{k} s_{k}^{T}+s_{k} y_{k}^{T} B_{k}^{-1}}{y_{k}^{T} s_{k}} \tag{45}
\end{equation*}
$$

In practical applications, to avoid any matrix inversion, the inverse of Hessian matrix instead of the Hessian matrix itself is approximated. Denoting B_{k}^{-1} by H_{k}, then Eq. (40) and Eq. (45) become:

$$
\begin{equation*}
p_{k}=-H_{k} g_{k} \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{k+1}=H_{k}+\frac{\left(y_{k}^{T} s_{k}+y_{k}^{T} H_{k} y_{k}\right)\left(s_{k} s_{k}^{T}\right)}{\left(y_{k}^{T} s_{k}\right)^{2}}-\frac{H_{k} y_{k} s_{k}^{T}+s_{k} y_{k}^{T} H_{k}}{y_{k}^{T} s_{k}} \tag{47}
\end{equation*}
$$

respectively. Accordingly, H_{k+1} will be determined using the criteria:

$$
H_{k+1}= \begin{cases}H_{k}+\frac{\left(y_{k}^{T} s_{k}+y_{k}^{T} H_{k} y_{k}\right)\left(s_{k} s_{k}^{T}\right)}{\left(y_{k}^{T} s_{k}\right)^{2}}-\frac{H_{k} y_{k} s_{k}^{T}+s_{k} y_{k}^{T} H_{k}}{y_{k}^{T} s_{k}}, & \text { if } \frac{y_{k}^{T} s_{k}}{\left\|s_{k}\right\|^{2}} \geq \varepsilon\left\|g_{k}\right\|^{\alpha} \tag{48}\\ H_{k+1} & , \text { otherwise }\end{cases}
$$

In general, the BFGS method with a cautious update is summarized as follows:
Step 1: Choose an initial $\beta_{0} \in R^{m}$, an initial inverse Hessian approximation $H_{0} \in R^{m \times m}$, a convergence tolerance $\kappa>0$, constants $\rho, \sigma \in(0,1)$ and $\varepsilon, \alpha>0$. Let $k:=0$;
Step 2: Terminate the iteration if $\left\|g_{k}\right\|^{2}<\kappa$;
Step 3: Compute search direction p_{k} using Eq. (46);
Step 4: Determine step size γ_{k} that that satisfies Eq. (42);
Step 5: Compute β_{k+1} using Eq. (39);
Step 6: Determine H_{k+1} using Eq. (48);
Step 7: Let $k:=k+1$ and go to step 2 ;

In our case of minimizing χ^{2}, the gradient of χ^{2} can be calculated using the equation:

$$
\begin{equation*}
\nabla \chi^{2}=J^{T} r \tag{49}
\end{equation*}
$$

where J is the Jacobian matrix with $J_{i j}$ being:

$$
\begin{equation*}
J_{i j}=\frac{\partial r_{i}}{\partial \beta_{j}} \tag{50}
\end{equation*}
$$

J can be analytically solved in our problem, and the solution is given in Appendix A.
Once the parameters β_{i} are optimized, the 1- σ error on β_{i} can be obtained. The asymptotic standard parameter errors $\boldsymbol{\sigma}$ are given by the equation (Clifford, 1973):

$$
\begin{equation*}
\boldsymbol{\sigma}=\sqrt{\operatorname{diag}\left(\left[J^{T} J\right]^{-1}\right)} \tag{51}
\end{equation*}
$$

And the 1- σ error on β_{i} is given by:

$$
\begin{equation*}
\sigma\left(\beta_{i}\right)=\sigma_{i i} \tag{52}
\end{equation*}
$$

IV. Results

4.1 Fitting diffusion profiles with mass fraction as concentration

Optimized eigenvector matrix $\left[P_{w}\right]$ and eigenvalues obtained by fitting mass fraction data together with the 1- σ errors are shown in Table 4.1. Generally, eigenvalues are listed in ascending order. All features of the diffusion profiles from the diffusion couple experiments are well reproduced by the optimal parameters (e.g., Figs. 4.2-4.4).

Table 4.1. Eigenvalues at different temperatures and eigenvector matrix $\left[P_{w}\right]$ fitted by mass fraction data.

Eigenvalues	$\boldsymbol{\lambda}_{\mathbf{1}}$	$\boldsymbol{\lambda}_{\mathbf{2}}$	$\boldsymbol{\lambda}_{3}$	$\boldsymbol{\lambda}_{4}$	$\boldsymbol{\lambda}_{5}$	$\boldsymbol{\lambda}_{6}$	$\boldsymbol{\lambda}_{7}$
$1260^{\circ} \mathrm{C}$	1.95 ± 0.04	1.98 ± 0.09	3.60 ± 0.11	20.35 ± 0.50	22.16 ± 0.51	27.1 ± 0.44	168.98 ± 1.90
$1350{ }^{\circ} \mathrm{C}$	6.88 ± 0.22	4.72 ± 0.24	13.11 ± 0.38	34.41 ± 0.95	31.47 ± 0.94	47.46 ± 1.03	207.27 ± 3.64
$1500^{\circ} \mathrm{C}$	17.76 ± 0.61	18.5 ± 0.76	37.07 ± 0.88	101.35 ± 1.73	104.2 ± 1.83	147.53 ± 2.41	456.17 ± 9.14
Eigenvectors	$\mathbf{v}_{\mathbf{1}}$	$\mathbf{v}_{\mathbf{2}}$	$\mathbf{v}_{\mathbf{3}}$	$\mathbf{v}_{\mathbf{4}}$	$\mathbf{v}_{\mathbf{5}}$	\mathbf{v}_{6}	\mathbf{v}_{7}
SiO_{2}	-1.45	-0.78	-0.59	0.25	-0.38	-0.04	-0.19
TiO_{2}	$\mathbf{0 . 6 4} \pm 0.04$	-0.08 ± 0.09	-0.34 ± 0.03	$\mathbf{0 . 0 3} \pm 0.01$	-0.06 ± 0.01	$\mathbf{0 . 0 2} \pm 0.01$	-0.01 ± 0.00
$\mathrm{Al}_{2} \mathrm{O}_{3}$	-0.01 ± 0.14	$\mathbf{0 . 9 8} \pm 0.55$	-0.20 ± 0.03	$\mathbf{0 . 0 1} \pm 0.02$	-0.09 ± 0.02	-0.03 ± 0.01	-0.1 ± 0.02
$\mathrm{FeO}^{\mathrm{MgO}}$	$\mathbf{0 . 5 5} \pm 0.03$	-0.07 ± 0.08	$\mathbf{0 . 6 4} \pm 0.02$	-0.56 ± 0.12	$\mathbf{0 . 8 8} \pm 0.1$	-0.63 ± 0.06	-0.39 ± 0.07
CaO	$\mathbf{0 . 2 8} \pm 0.02$	-0.11 ± 0.08	$\mathbf{0 . 4 3} \pm 0.02$	-0.23 ± 0.11	-0.17 ± 0.09	-0.05 ± 0.02	-0.16 ± 0.03
Na 2 O	-0.19 ± 0.01	$\mathbf{0 . 0 9} \pm 0.03$	$\mathbf{0 . 4 3} \pm 0.01$	$\mathbf{0 . 7 6} \pm 0.11$	-0.37 ± 0.09	$\mathbf{0 . 6 9} \pm 0.05$	-0.07 ± 0.01
K 2 O	-0.01 ± 0.01	-0.17 ± 0.01	-0.02 ± 0.02	-0.05 ± 0.02	-0.23 ± 0.01	$\mathbf{0 . 9 0} \pm 0.16$	

Note: λ is in $\mu \mathrm{m}^{2} / \mathrm{s}$. The " SiO_{2} " term in each eigenvector was obtained by taking the inverse of the sum of all elements in that eigenvector. In the eigenvector matrix, all positive elements are shown in bold and errors greater than 0.20 are highlighted in red.

The obtained eigenvalues at different temperatures were fitted by the Arrhenius relation: $\ln \lambda=\ln \lambda_{0}-\frac{E_{a}}{R T}$, where λ_{0} is the pre-exponential factor in $\mu \mathrm{m}^{2} / \mathrm{s}, E_{a}$ is activation energy in $\mathrm{kJ} / \mathrm{mol}, \mathrm{R}$ is the universal gas constant $\left(8.31447 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$, and T is temperature in K . The fitted dependence of λ on temperature is listed in Table 4.2 and plotted in Fig. 4.1. All eigenvalues roughly follow the Arrhenius relation with temperature, but some eigenvalues are close to each other (e.g., λ_{1} and $\lambda_{2} ; \lambda_{4}, \lambda_{5}$ and λ_{6}), a phenomenon defined to be near degeneracy
by Guo and Zhang (2020). Mathematically, an eigenvalue is said to be degenerate if corresponding eigenspace has dimension greater than one. In this case, any vector in that eigenspace will be an eigenvector corresponding to the eigenvalue. The near degeneracy of our eigenvalues means that our eigenvectors may not be well constrained, and hence more constrains are needed to improve our eigenvector matrix.

Table 4.2. Temperature dependence of eigenvalues listed in Table 4.1 and corresponding activation energies.

Eigenvalues	Arrhenius relation	Activation Energy $(\mathrm{kJ} / \mathrm{mol})$
λ_{1}	$\ln \lambda_{1}=16.820-24552 / T$	204
λ_{2}	$\ln \lambda_{2}=17.225-25390 / T$	211
λ_{3}	$\ln \lambda_{3}=18.337-25947 / T$	216
λ_{4}	$\ln \lambda_{4}=14.940-18366 / T$	153
λ_{5}	$\ln \lambda_{5}=14.675-17917 / T$	149
λ_{6}	$\ln \lambda_{6}=15.884-19374 / T$	161
λ_{7}	$\ln \lambda_{7}=12.566-11522 / T$	96

Notes: λ_{i} is in $\mu \mathrm{m}^{2} / \mathrm{s}$ and T is temperature in K .

Figure 4.1. Temperature dependence of eigenvalues listed in Table 4.1. The straight lines are fits by Arrhenius relation.

Figure 4.2. Diffusion profiles of oxide components in wt\% of BS7\&8C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure 4.3. Diffusion profiles of oxide components in wt \% of BS19\&20C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure 4.4. Diffusion profiles of oxide components in wt\% of BS11\&12A (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.1.

4.2 Fitting diffusion profiles with mole fraction as concentration

Optimized eigenvector matrix $\left[P_{X}\right]$ and eigenvalues obtained by fitting mole fraction data together with the 1- σ errors are shown in Table 4.3. Eigenvalues are listed generally in ascending order. All features of the diffusion profiles from the diffusion couple experiments are well reproduced by the optimal parameters (e.g., Figs. 4.6-4.8).

Table 4.3. Eigenvalues at different temperatures and eigenvector matrix $\left[P_{X}\right]$ fitted by mole fraction data.

Eigenvalues	$\boldsymbol{\lambda}_{\mathbf{1}}$	$\boldsymbol{\lambda}_{\mathbf{2}}$	$\boldsymbol{\lambda}_{\mathbf{3}}$	$\boldsymbol{\lambda}_{4}$	$\boldsymbol{\lambda}_{5}$	$\boldsymbol{\lambda}_{\mathbf{6}}$	$\boldsymbol{\lambda}_{7}$
$1260{ }^{\circ} \mathrm{C}$	1.92 ± 0.08	1.95 ± 0.04	3.57 ± 0.10	19.70 ± 0.46	22.12 ± 0.45	27.30 ± 0.45	168.56 ± 1.86
$1350{ }^{\circ} \mathrm{C}$	4.71 ± 0.21	6.99 ± 0.22	13.57 ± 0.38	35.46 ± 0.94	31.27 ± 0.86	48.00 ± 1.02	205.40 ± 3.44
$1500{ }^{\circ} \mathrm{C}$	18.36 ± 0.68	17.39 ± 0.56	37.28 ± 0.87	102.11 ± 1.64	103.63 ± 1.74	148.44 ± 2.37	459.07 ± 8.42
Eigenvectors	$\mathbf{v}_{\mathbf{1}}$	$\mathbf{v}_{\mathbf{2}}$	$\mathbf{v}_{\mathbf{3}}$	$\mathbf{v}_{\mathbf{4}}$	$\mathbf{v}_{\mathbf{5}}$	$\mathbf{v}_{\mathbf{6}}$	$\mathbf{v}_{\mathbf{7}}$
SiO_{2}	0.73	-1.33	-0.55	-0.24	0.29	-0.03	-0.33
TiO_{2}	-0.06 ± 0.06	$\mathbf{0 . 4 7} \pm 0.03$	-0.23 ± 0.02	$\mathbf{0 . 0 2} \pm 0.01$	-0.04 ± 0.01	$\mathbf{0 . 0 1} \pm 0.00$	-0.01 ± 0.01
$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathbf{0 . 9 8} \pm 0.48$	$\mathbf{0 . 1 2} \pm 0.15$	-0.19 ± 0.03	$\mathbf{0 . 0 1} \pm 0.02$	-0.07 ± 0.01	-0.04 ± 0.01	-0.13 ± 0.07
$\mathrm{FeO}^{\mathrm{MgO}}$	-0.07 ± 0.06	$\mathbf{0 . 4 7} \pm 0.02$	$\mathbf{0 . 4 9} \pm 0.02$	-0.28 ± 0.09	$\mathbf{0 . 8 0} \pm 0.08$	-0.47 ± 0.05	-0.22 ± 0.12
CaO	-0.15 ± 0.10	$\mathbf{0 . 4 2} \pm 0.04$	$\mathbf{0 . 5 9} \pm 0.02$	-0.44 ± 0.13	-0.23 ± 0.10	-0.07 ± 0.03	-0.17 ± 0.09
$\mathrm{Na}_{2} \mathrm{O}$	-0.07 ± 0.01	$\mathbf{0 . 4 3} \pm 0.01$	$\mathbf{0 . 4 2} \pm 0.01$	$\mathbf{0 . 8 0} \pm 0.11$	-0.42 ± 0.08	$\mathbf{0 . 7 0} \pm 0.05$	-0.09 ± 0.05
$\mathrm{~K}_{2} \mathrm{O}$	-0.35 ± 0.01	-0.30 ± 0.01	-0.06 ± 0.03	-0.09 ± 0.02	-0.42 ± 0.02	$\mathbf{0 . 9 5} \pm 0.50$	

Note: λ is in $\mu \mathrm{m}^{2} / \mathrm{s}$. The " SiO_{2} " term in each eigenvector was obtained by taking the inverse of the sum of all elements in that eigenvector. In the eigenvector matrix, all positive elements are shown in bold and errors greater than 0.20 are highlighted in red.

As an analogy to Part 4.1, the obtained eigenvalues at different temperatures were also fitted using the Arrhenius relation (see Table 4.4) and then plotted in Fig. 4.5. It can be observed that all eigenvalues listed in Table 4.3 roughly follow the Arrhenius relation with temperature.

However, despite using mole fraction as concentration, the near degeneracies of λ_{1} and λ_{2} and of λ_{4}, λ_{5} and λ_{6} still exist.

Table 4.4. Temperature dependence of eigenvalues listed in Table 4.3 and corresponding activation energies.

Eigenvalues	Arrhenius relation	Activation Energy $(\mathrm{kJ} / \mathrm{mol})$
$\ln \lambda_{1}$	$17.337-25595 / T$	213
$\ln \lambda_{2}$	$16.650-24276 / T$	202
$\ln \lambda_{3}$	$18.420-26065 / T$	217
$\ln \lambda_{4}$	$15.180-18755 / T$	156
$\ln \lambda_{5}$	$14.647-17879 / T$	149
$\ln \lambda_{6}$	$15.880-19353 / T$	161
$\ln \lambda_{7}$	$12.634-11636 / T$	97

Notes: λ_{i} is in $\mu \mathrm{m}^{2} / \mathrm{s}$ and T is temperature in K.

Figure 4.5. Temperature dependence of eigenvalues listed in Table 4.3. The straight lines are fits by Arrhenius relation.

Figure 4.6. Diffusion profiles of oxide components in mole\% of BS7\&8C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure 4.7. Diffusion profiles of oxide components in mole\% of BS19\&20C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure 4.8. Diffusion profiles of oxide components in mole\% of BS11\&12A (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.3.

V. Discussion

5.1 Comparison to eigenvector matrices from previous studies

Guo and Zhang $(2018,2020)$ fit the three sets of diffusion couple data using mass fraction as concentration at different temperatures separately and obtained three similar eigenvector matrices, indicating that the diffusion eigenvectors in basaltic melts do not depend much on temperature. Our fitting results show that one eigenvector matrix with three sets of eigenvalues fit all concentration profiles well, more rigorously demonstrating that the diffusion eigenvectors are invariant with temperature. In addition, Guo and Zhang (2020) have estimated a constant eigenvector matrix (referred to as $\left[P_{0}\right]$ hereafter) by taking the weighted average of eigenvectors at three different temperatures. The $\left[P_{0}\right]$ matrix together with our $\left[P_{w}\right]$ matrix are given in Table 5.1. It is readily seen that two matrices are pretty much similar in terms of $v_{2}, v_{3}, v_{5}, v_{6}$ and v_{7}, but still show apparent differences in v_{1} and v_{4}.

Table 5.1. The constant eigenvector matrix $\left[P_{0}\right]$ obtained by Guo and Zhang (2020) and $\left[P_{w}\right]$ obtained in this study.

$\left[P_{0}\right]$	$\mathbf{v}_{\mathbf{1}}$	$\mathbf{v}_{\mathbf{2}}$	$\mathbf{v}_{\mathbf{3}}$	$\mathbf{v}_{\mathbf{4}}$	$\mathbf{v}_{\mathbf{5}}$	$\mathbf{v}_{\mathbf{6}}$	$\mathbf{v}_{\mathbf{7}}$
TiO_{2}	$\mathbf{0 . 7 6}$	-0.20	-0.18	$\mathbf{0 . 0 2}$	-0.02	-0.02	-0.02
$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathbf{0 . 1 8}$	$\mathbf{0 . 9 7}$	-0.47	$\mathbf{0 . 0 1}$	-0.15	-0.07	-0.10
FeO	$\mathbf{0 . 5 1}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 6 6}$	-0.06	$\mathbf{0 . 8 6}$	-0.41	-0.36
MgO	$\mathbf{0 . 1 7}$	-0.03	$\mathbf{0 . 4 1}$	$\mathbf{0 . 7 1}$	-0.14	-0.32	-0.15
CaO	$\mathbf{0 . 2 2}$	$\mathbf{0 . 1 2}$	$\mathbf{0 . 3 3}$	-0.70	-0.33	$\mathbf{0 . 7 9}$	-0.08
$\mathrm{Na}_{2} \mathrm{O}$	-0.17	-0.04	-0.18	$\mathbf{0 . 0 4}$	-0.12	-0.19	$\mathbf{0 . 9 1}$
$\mathrm{~K}_{2} \mathrm{O}$	-0.13	-0.02	-0.09	$\mathbf{0 . 1 0}$	$\mathbf{0 . 3 2}$	$\mathbf{0 . 2 5}$	$\mathbf{0 . 0 6}$
$\left[P_{w}\right]$	$\mathbf{v}_{\mathbf{1}}$	$\mathbf{v}_{\mathbf{2}}$	$\mathbf{v}_{\mathbf{3}}$	\mathbf{v}_{4}	$\mathbf{v}_{\mathbf{5}}$	$\mathbf{v}_{\mathbf{6}}$	$\mathbf{v}_{\mathbf{7}}$
TiO_{2}	$\mathbf{0 . 6 4}$	-0.08	-0.34	$\mathbf{0 . 0 3}$	-0.06	$\mathbf{0 . 0 2}$	-0.01
$\mathrm{Al}_{2} \mathrm{O}_{3}$	-0.01	$\mathbf{0 . 9 8}$	-0.20	$\mathbf{0 . 0 1}$	-0.09	-0.03	-0.10
$\mathrm{FeO}^{\mathrm{MgO}}$	$\mathbf{0 . 5 5}$	-0.07	$\mathbf{0 . 6 4}$	-0.56	$\mathbf{0 . 8 8}$	-0.63	-0.39
CaO	$\mathbf{0 . 2 8}$	-0.11	$\mathbf{0 . 4 3}$	-0.23	-0.17	-0.05	-0.16
$\mathrm{Na}_{2} \mathrm{O}$	$\mathbf{0 . 3 8}$	$\mathbf{0 . 0 9}$	$\mathbf{0 . 4 3}$	$\mathbf{0 . 7 6}$	-0.37	$\mathbf{0 . 6 9}$	-0.07
$\mathrm{~K}_{2} \mathrm{O}$	-0.19	-0.01	-0.17	-0.02	-0.05	-0.23	$\mathbf{0 . 9 0}$

[^0]
5.2 Comparison of $\left[P_{w}\right]$ and $\left[P_{X}\right]$

The eigenvector matrix $\left[P_{w}\right]$ is obtained based on the assumption that the mass density ρ is roughly constant across the diffusion profiles, whereas the eigenvector matrix $\left[P_{X}\right]$ is obtained based on the assumption that the single cation molar density $\tilde{\rho}$ is roughly constant across the diffusion profiles. Even though theoretically these two conditions cannot be satisfied simultaneously, we see that the experimental data from Guo and Zhang $(2018,2020)$ show small compositional variations across the diffusion profiles and hence we are inclined to neglect both density variations. If both conditions roughly hold, it can be seen from Eq. (26) and Eq. (31) that the two eigenvector matrices should satisfy the equation:

$$
\begin{equation*}
\left[P_{X}\right]=\left[M^{N^{-1}}\right]\left[P_{w}\right] \tag{53}
\end{equation*}
$$

where in our case,

$$
\left[M^{N}\right]=\left[\begin{array}{lllllll}
M_{T i O_{2}} & & & & & & \tag{54}\\
& M_{A l O_{1.5}} & & & & & \\
& & M_{\mathrm{FeO}} & & & & \\
& & & M_{M g O} & & & \\
& & & & M_{C a O} & & \\
& & & & & M_{N a O_{0.5}} & \\
& & & & & & M_{K O_{0.5}}
\end{array}\right]
$$

Using Eqs. (53)-(54) and the eigenvector matrix $\left[P_{w}\right]$ listed in Table 4.1, the matrix $\left[M^{N^{-1}}\right]\left[P_{w}\right]$ was calculated. To make it comparable to the eigenvector matrix $\left[P_{X}\right]$ listed in Table 4.3, each column vector of $\left[M^{N^{-1}}\right]\left[P_{w}\right]$ was normalized so that its 2 -norm equals to 1 . The normalized $\left[M^{N^{-1}}\right]\left[P_{w}\right]$, denoted as $\left[P_{X}^{*}\right]$, as well as $\left[P_{X}\right]$ are given in Table 5.2. We tested whether matrices $\left[P_{X}^{*}\right]$ and $\left[P_{X}\right]$ are different by calculating $T_{i j}=\left(P_{X, i j}^{*}-P_{X, i j}\right) / \sqrt{\sigma_{i j}^{* 2}+\sigma_{i j}^{2}}$. If $\left[P_{X}^{*}\right]$ and $\left[P_{X}\right]$ agree with each other within error, then the absolute values of $T_{i j}$ would be less
than 2 at 95% probability assuming a standard normal distribution. Our calculation shows that all $T_{i j}$ values have an absolute value less than 2 , thus $\left[P_{X}^{*}\right]$ and $\left[P_{X}\right]$ are the same within errors. Nevertheless, it can be clearly seen that some elements in $\left[P_{X}^{*}\right]$ and $\left[P_{X}\right]$ are quite different, e.g., the $(2,2),(3,4)$ and $(4,4)$ entries in both matrices. The discrepancy can be attributed to the two assumptions we made about mass density ρ and molar density $\tilde{\rho}$, both of which cannot be rigorously constant when composition varies across diffusion profiles.

Table 5.2. Eigenvector matrix $\left[P_{X}^{*}\right]$ and eigenvector matrix $\left[P_{X}\right]$.

$\left[P_{X}^{*}\right]$	$\mathbf{v}_{\mathbf{1}}$	$\mathbf{v}_{\mathbf{2}}$	$\mathbf{v}_{\mathbf{3}}$	$\mathbf{v}_{\mathbf{4}}$	$\mathbf{v}_{\mathbf{5}}$	$\mathbf{v}_{\mathbf{6}}$	$\mathbf{v}_{\mathbf{7}}$
TiO_{2}	-0.05 ± 0.06	$\mathbf{0 . 4 9} \pm 0.03$	-0.23 ± 0.02	$\mathbf{0 . 0 2} \pm 0.01$	-0.04 ± 0.01	$\mathbf{0 . 0 1} \pm 0.00$	0.00 ± 0.00
$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathbf{0 . 9 8} \pm 0.55$	-0.01 ± 0.17	-0.21 ± 0.04	$\mathbf{0 . 0 2} \pm 0.03$	-0.11 ± 0.03	-0.03 ± 0.01	-0.07 ± 0.01
FeO	-0.05 ± 0.06	$\mathbf{0 . 4 7} \pm 0.02$	$\mathbf{0 . 4 9} \pm 0.02$	-0.45 ± 0.10	$\mathbf{0 . 7 9} \pm 0.09$	-0.49 ± 0.05	-0.18 ± 0.03
MgO	-0.14 ± 0.1	$\mathbf{0 . 4 2} \pm 0.04$	$\mathbf{0 . 5 8} \pm 0.02$	-0.32 ± 0.15	-0.28 ± 0.14	-0.06 ± 0.03	-0.13 ± 0.02
CaO	$\mathbf{0 . 0 9} \pm 0.02$	$\mathbf{0 . 4 1} \pm 0.01$	$\mathbf{0 . 4 2} \pm 0.01$	$\mathbf{0 . 7 8} \pm 0.11$	-0.42 ± 0.10	$\mathbf{0 . 7 0} \pm 0.05$	-0.04 ± 0.01
$\mathrm{Na}_{2} \mathrm{O}$	-0.01 ± 0.02	-0.38 ± 0.01	-0.30 ± 0.01	-0.04 ± 0.04	-0.10 ± 0.03	-0.42 ± 0.02	$\mathbf{0 . 9 7} \pm 0.17$
$\mathrm{~K}_{2} \mathrm{O}$	-0.03	-0.25	-0.23	-0.31	$\mathbf{0 . 3 2}$	$\mathbf{0 . 3 1}$	$\mathbf{0 . 0 1}$
$\left[P_{X}\right]$	$\mathbf{v}_{\mathbf{1}}$	$\mathbf{v}_{\mathbf{2}}$	$\mathbf{v}_{\mathbf{3}}$	$\mathbf{v}_{\mathbf{4}}$	$\mathbf{v}_{\mathbf{5}}$	$\mathbf{v}_{\mathbf{6}}$	$\mathbf{v}_{\mathbf{7}}$
TiO_{2}	-0.06 ± 0.06	$\mathbf{0 . 4 7} \pm 0.03$	-0.23 ± 0.02	$\mathbf{0 . 0 2} \pm 0.01$	-0.04 ± 0.01	$\mathbf{0 . 0 1} \pm 0.00$	-0.01 ± 0.01
$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathbf{0 . 9 8} \pm 0.48$	$\mathbf{0 . 1 2} \pm 0.15$	-0.19 ± 0.03	$\mathbf{0 . 0 1} \pm 0.02$	-0.07 ± 0.01	-0.04 ± 0.01	-0.13 ± 0.07
FeO	-0.07 ± 0.06	$\mathbf{0 . 4 7} \pm 0.02$	$\mathbf{0 . 4 9} \pm 0.02$	-0.28 ± 0.09	$\mathbf{0 . 8 0} \pm 0.08$	-0.47 ± 0.05	-0.22 ± 0.12
$\mathrm{MgO}^{\mathrm{CaO}}$	-0.15 ± 0.10	$\mathbf{0 . 4 2} \pm 0.04$	$\mathbf{0 . 5 9} \pm 0.02$	-0.44 ± 0.13	-0.23 ± 0.10	-0.07 ± 0.03	-0.17 ± 0.09
CaO^{2}	$\mathbf{0 . 0 7} \pm 0.01$	$\mathbf{0 . 4 3} \pm 0.01$	$\mathbf{0 . 4 2} \pm 0.01$	$\mathbf{0 . 8 0} \pm 0.11$	-0.42 ± 0.08	$\mathbf{0 . 7 0} \pm 0.05$	-0.09 ± 0.05
$\mathrm{Na}_{2} \mathrm{O}$	-0.02 ± 0.01	-0.35 ± 0.01	-0.30 ± 0.01	-0.06 ± 0.03	-0.09 ± 0.02	-0.42 ± 0.02	$\mathbf{0 . 9 5} \pm 0.50$
$\mathrm{~K}_{2} \mathrm{O}$	-0.03	-0.24	-0.23	-0.28	$\mathbf{0 . 3 4}$	$\mathbf{0 . 3 2}$	0.00
N							

Note: All positive elements are shown in bold and errors greater than 0.20 are highlighted in red.

5.3 Verification of the universality of eigenvector matrix

To test our hypothesis that eigenvector matrix is invariant with composition in natural silicate melts, we transformed the oxide concentrations into eigen-component "concentrations" and plotted the profiles of eigen-components as a function of distance using data from earlier diffusion experiments (Zhang et al., 1989; Chen and Zhang, 2008, 2009; Yu et al., 2016; Guo and Zhang, 2016; González -Garcia et al., 2017; Yu et al., 2019; Guo and Zhang, 2018, 2020;

Wang et al., 2020). In total, there are 171 experiments and 1197 concentration profiles. The two eigenvector matrices $\left[P_{w}\right]$ and $\left[P_{X}\right]$ were tested separately. Profiles of eigen-components using mass fraction as concentration were calculated using Eq. (33) to test the universality of $\left[P_{w}\right]$, whereas profiles of eigen-components using mole fraction as concentration were calculated using Eq. (34) to test the universality of $\left[P_{X}\right]$. In the former case, about 3% (35 out of 1197) profiles are non-monotonic (Table 5.3), of which 23% are from crystal dissolution experiments in andesite (Zhang et al., 1989), 20\% are from plagioclase dissolution experiments in basalt (Yu et al., 2016) and 29% are from diffusion couple experiments in haplo-basalt (Guo and Zhang, 2016). In the latter case, roughly 2% (28 out of 1197) profiles are non-monotonic (Table 5.4), of which 32% are from crystal dissolution experiments in andesite (Zhang et al., 1989), 25\% are from diffusion couple experiments in haplo-basalt (Guo and Zhang, 2016) and 18% are from shoshonite-rhyolite diffusion couple experiments (González -Garcia et al., 2017). In both cases, all diffusion profiles of quartz dissolution experiments in basalt and rhyolite are monotonic, even though the compositional variations are large across the profiles. Overall, most profiles (e.g., Figs. 5.1-5.6) are monotonic and show no oblivious uphill diffusion, supporting our hypothesis that the matrix is independent of melt composition.

Table 5.3. Summary of the $35\left[P_{w}\right]$-converted concentration profiles of eigen-components that show obvious uphill diffusion, along with the corresponding experimental conditions. The remaining 1162 profiles of eigen-components are monotonic.

Exp	Melt comp	Type	Z_{1}	Z_{2}	Z_{3}	Z_{4}	Z_{5}	Z_{6}	Z_{7}
Zhang1989_Exp\#225 ${ }^{\text {a }}$	Andesite	DiDisAn	\times						\times
Zhang1989_Exp\#236RU ${ }^{\text {a }}$	Andesite	RuDisAn		\times			\times	\times	\times
Zhang1989_Exp\#259PL ${ }^{\text {a }}$	Andesite	PlDisAn						\times	\times
Chen2008_Exp\#44 ${ }^{\text {b }}$	JDF Basalt	OlDisBa						\times	
Chen2009 Exp\#5 ${ }^{\text {c }}$	JDF Basalt	CpxDisBa							\times
Yu2016_PIDisBa202 ${ }^{\text {d }}$	JDF Basalt	PlDisBa					\times		
Yu2016_PlDisBa210 ${ }^{\text {d }}$	JDF Basalt	PlDisBa					\times		
Yu2016_PIDisBa211 ${ }^{\text {d }}$	JDF Basalt	PlDisBa					\times		
Yu2016_PlDisBa214 ${ }^{\text {d }}$	JDF Basalt	PlDisBa					\times		
Yu2016_PIDisBa216 ${ }^{\text {d }}$	JDF Basalt	PlDisBa					\times		
Yu2016_PIDisBa233 ${ }^{\text {d }}$	JDF Basalt	PlDisBa					\times		
Yu2016_PlDisBa230 ${ }^{\text {d }}$	JDF Basalt	PlDisBa					\times		
Guo2016_HB2\&4A ${ }^{\text {e }}$	Haplobasalt	DC		\times					
Guo2016_HB3\&4A ${ }^{\text {e }}$	Haplobasalt	DC		\times		\times	\times		
Guo2016_HB5\&6A ${ }^{\text {e }}$	Haplobasalt	DC				\times			
Guo2016 HB7\&8B ${ }^{\text {e }}$	Haplobasalt	DC		\times					

Guo2016_HB11\&12F ${ }^{\text {e }}$	Haplobasalt	DC		\times			
Guo2016_HB15\&16A ${ }^{\text {e }}$	Haplobasalt	DC	\times		\times		\times
Guo2020_BS11\&12C ${ }^{\text {f }}$	Basalt	DC			\times		\times
Guo2020_BS17\&18C ${ }^{\text {f }}$	Basalt	DC		\times			
González2017_P050-H0-4 ${ }^{\text {g }}$	Shoshonite \& Rhyolite	DC				\times	
González2017_P300-H0-4 g	Shoshonite \& Rhyolite	DC	\times	\times	\times		
González2017 P300-H2-4 g	Shoshonite \& Rhyolite	DC		\times			

Notes: 1. ${ }^{a}$ Experiments from Zhang et al. (1989); ${ }^{\text {b }}$ Experiments from Chen and Zhang (2008); ${ }^{\text {c Experiments from Chen and }}$ Zhang (2009); ${ }^{\text {d }}$ Experiments from Yu et al. (2016); experiments from Guo and Zhang (2016); ${ }^{\text {e Experiments from Guo and }}$ Zhang (2020); g Experiments from González -Garcia et al. (2017).
2. "OlDisAn" means olivine dissolution in andesite; "DiDisAn" means diopside dissolution in andesite; "QzDisAn" means quartz dissolution in andesite; "RuDisAn" means rutile dissolution in andesite; "PlDisAn" means plagioclase dissolution in andesite; "OlDisBa" means olivine dissolution in basalt; "CpxDisBa" means clinopyroxene dissolution in basalt; "PlDisBa" means plagioclase dissolution in basalt; "DC" means diffusion couple.

Table 5.4. Summary of the $28\left[P_{X}\right]$-converted concentration profiles of eigen-components that show obvious uphill diffusion, along with the corresponding experimental conditions. The remaining 1169 profiles of eigen-components are monotonic.

Exp	Base comp	Type	Z_{1}	Z_{2}	Z_{3}	Z_{4}	Z_{5}	Z_{6}	Z_{7}
Zhang1989_Exp\#220 ${ }^{\text {a }}$	Andesite	OlDisAn							\times
Zhang1989_Exp\#225 ${ }^{\text {a }}$	Andesite	DiDisAn		\times					\times
Zhang1989_Exp\#234 ${ }^{\text {a }}$	Andesite	QzDisAn					\times		
Zhang1989_Exp\#236RU ${ }^{\text {a }}$	Andesite	RuDisAn				\times	\times	\times	
Zhang1989_Exp\#259PL ${ }^{\text {a }}$	Andesite	PlDisAn						\times	\times
Yu2016_PIDisBa202 ${ }^{\text {d }}$	JDF Basalt	PlDisBa					\times		
Yu2016_PIDisBa211 ${ }^{\text {d }}$	JDF Basalt	PlDisBa		\times			\times		
Guo2016_HB3\&4A ${ }^{\text {e }}$	Haplobasalt	DC	\times	\times		\times			
Guo2016_HB5\&6A ${ }^{\text {e }}$	Haplobasalt	DC					\times		
Guo2016_HB7\&8B ${ }^{\text {e }}$	Haplobasalt	DC	\times						
Guo2016_HB15\&16A ${ }^{\text {e }}$	Haplobasalt	DC		\times	\times				
Guo2020_BS11\&12C ${ }^{\text {f }}$	Basalt	DC		\times	\times				
Guo2020_BS17\&18C ${ }^{\text {f }}$	Basalt	DC	\times			\times			
González2017_P050-H0-4 ${ }^{\text {g }}$	Shoshonite \& Rhyolite	DC				\times			
González2017_P300-H0-4	Shoshonite \& Rhyolite	DC	\times	\times	\times				
González2017_P300-H2-4 g	Shoshonite \& Rhyolite	DC	\times						

Note: see notes in Table 5.3.

5.4 Diffusion mechanism in natural silicate melts

Eigenvector matrix characterizes the diffusion mechanism in natural silicate melts.
Previous studies interpreted the diffusion mechanism by directly checking the terms in each eigenvector, with the assumption that the oxide components corresponding to the terms with large absolute values contribute more during diffusion and the oxide components corresponding to the terms with different signs diffuse against each other (e.g., Guo and Zhang, 2018, 2020).

However, we note in Eqs. (33)- (34) that it is the terms in the inverse of the eigenvector matrix that comprise the "stoichiometric" coefficients in the formula of eigen-components expressed by oxide components. Instead, the terms in the eigenvector matrix are basically the "stoichiometric"
coefficients to express oxide components by eigen-components. Furthermore, the way of looking at the components in eigenvectors only works for interpreting the exchange mechanism among eigen-components instead of oxide components. As a result, to truly interpret the exchange mechanism among oxide components, it is necessary to first calculate the inverse of the eigenvector matrix. Furthermore, to better understand the diffusion exchange mechanism in natural silicate melts, the eigenvector matrix $\left[P_{X}\right]$ instead of $\left[P_{w}\right]$ should be used.

Table 5.5. The inverse of the eigenvector matrix $\left[P_{X}\right]$.

	SiO_{2}	TiO_{2}	$\mathrm{AlO}_{1.5}$	FeO	MgO	CaO	$\mathrm{NaO}_{0.5}$	$\mathrm{KO}_{0.5}$
Z_{1}	-1.46	-0.42	$\mathbf{1 . 0 2}$	$\mathbf{0 . 1 3}$	$\mathbf{0 . 1 1}$	$\mathbf{0 . 2 0}$	$\mathbf{0 . 2 1}$	$\mathbf{0 . 2 1}$
Z_{2}	-2.72	$\mathbf{1 . 4 5}$	$\mathbf{0 . 1 4}$	$\mathbf{0 . 3 0}$	$\mathbf{0 . 2 9}$	$\mathbf{0 . 2 8}$	$\mathbf{0 . 1 8}$	$\mathbf{0 . 0 9}$
Z_{3}	-0.54	-1.26	$\mathbf{0 . 0 2}$	$\mathbf{0 . 4 2}$	$\mathbf{0 . 6 1}$	$\mathbf{0 . 5 2}$	$\mathbf{0 . 2 5}$	-0.02
Z_{4}	1.84	-0.18	-0.22	$\mathbf{0 . 2 7}$	-1.08	$\mathbf{0 . 4 2}$	-0.12	-0.93
Z_{5}	-1.32	-0.09	-0.03	$\mathbf{0 . 8 9}$	-0.61	$\mathbf{0 . 2 6}$	$\mathbf{0 . 1 2}$	$\mathbf{0 . 7 8}$
Z_{6}	-2.66	$\mathbf{0 . 0 7}$	$\mathbf{0 . 0 5}$	-0.18	$\mathbf{0 . 3 7}$	$\mathbf{0 . 6 9}$	$\mathbf{0 . 0 9}$	$\mathbf{1 . 5 7}$
Z_{7}	-3.46	$\mathbf{0 . 1 3}$	$\mathbf{0 . 0 8}$	$\mathbf{0 . 2 7}$	$\mathbf{0 . 3 4}$	$\mathbf{0 . 6 3}$	$\mathbf{1 . 2 5}$	$\mathbf{0 . 7 5}$

Note: All positive elements are shown in bold. The " SiO_{2} " term in each row was obtained by the sum of all elements in that row multiplied by -1 .

The inverse of $\left[P_{X}\right]$ was calculated and shown in Table 5.5. We see that the Z_{1} (one of the two slowest diffusing eigen-components) is due to the exchange between $\mathrm{SiO}_{2}+\mathrm{TiO}_{2}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$ + everything else; Z_{2} (the other one of the two slowest diffusing eigen-components) is due to the exchange between SiO_{2} and $\mathrm{TiO}_{2}+$ everything else; Z_{3} (the third slowest diffusing eigencomponent) is mostly due to the exchange between $\mathrm{TiO}_{2}+\mathrm{SiO}_{2}$ and divalent cations; Z_{4} and Z_{5} (the fourth and the third fastest diffusing eigen-components) are mostly due to the exchange between SiO_{2} and $\mathrm{MgO}+\mathrm{K}_{2} \mathrm{O}$, and the exchange between $\mathrm{SiO}_{2}+\mathrm{MgO}$ and $\mathrm{FeO}+\mathrm{K}_{2} \mathrm{O}$, respectively; Z_{6} (the second fastest diffusing eigen-component) are mostly due to the exchange between SiO_{2} and $\mathrm{MgO}+\mathrm{CaO}+\mathrm{K}_{2} \mathrm{O} ; \mathrm{Z}_{7}$ (the fastest diffusing eigen-component) are mostly due to the exchange between SiO_{2} and all alkalis.

Figure 5.1. $\left[\boldsymbol{P}_{\boldsymbol{w}}\right]$-converted concentration profiles of eigen-components of Exp\#227 (Zhang et al., 1989). Exp\#227 is a forsterite dissolution experiment in andesite.

Figure 5.2. $\left[\boldsymbol{P}_{\boldsymbol{w}}\right]$-converted concentration profiles of eigen-components of Exp\#40 (Chen and Zhang, 2008). Exp\#40 is an olivine dissolution experiment in basalt.

Figure 5.3. $\left[\boldsymbol{P}_{\boldsymbol{w}}\right]$-converted concentration profiles of eigen-components of QzDisRh106 (Yu et al., 2019). QzDisRh106 is a quartz dissolution experiment in rhyolite.

Figure 5.4. $\left[\boldsymbol{P}_{\boldsymbol{X}}\right]$-converted concentration profiles of eigen-components of Exp\#227 (Zhang et al., 1989). Exp\#227 is a forsterite dissolution experiment in andesite.

Figure 5.5. $\left[\boldsymbol{P}_{\boldsymbol{X}}\right]$-converted concentration profiles of eigen-components of Exp\#40 (Chen and Zhang, 2008). Exp\#40 is an olivine dissolution experiment in basalt.

Figure 5.6. $\left[\boldsymbol{P}_{\boldsymbol{X}}\right]$-converted concentration profiles of eigen-components of QzDisRh106 (Yu et al., 2019). QzDisRh106 is a quartz dissolution experiment in rhyolite.

VI. Summary and Implications

In this study, we hypothesize that there exists a universal diffusion eigenvector matrix in natural silicate melts. The eigenvector matrix and eigenvalue matrices were obtained by simultaneously fitting diffusion profiles from 27 diffusion couple experiments from previous studies (Guo and Zhang, 2018, 2020). Using both mass fraction as concentration and mole fraction as concentration, we obtained two eigenvector matrices, $\left[P_{w}\right]$ and $\left[P_{X}\right]$, respectively. Both eigenvector matrices were used to examine the "concentration" profiles of eigen components. Most profiles of eigen-components from numerous diffusion experiments including diffusion-couple and mineral-dissolution experiments are monotonic and show no obvious uphill diffusion, supporting that the matrix of eigenvectors is invariable with composition. Finally, diffusion mechanism were interpreted from the eigenvector matrix $\left[P_{X}\right]$.

With the universal eigenvector matrix, investigations, and applications of multicomponent diffusion in natural silicate melts would be greatly simplified in different aspects. Theoretically, the diffusion mechanism in natural silicate melts, which is interpreted from the eigenvector matrix, would also be independent of melt composition. And the eigen-components will also be invariable with melt composition. Experimentally, to accurately extract a diffusivity matrix at selected melt composition typically need at least $\mathrm{N}-1$ experiments for an N -component system (e.g., Trial and Spera, 1994). With an accurate eigenvector matrix, however, only a couple experiment may be needed to extract $\mathrm{N}-1$ unknown eigenvalues. In addition, since the eigencomponents are universal, characterization of the compositional dependence of eigenvalues would be viable.

Multicomponent diffusion is also key to understanding magma mixing processes, in which two or more magmas come into contact and form a new magma with a different composition. In the absence of convection or other fluid dynamic processes, multicomponent diffusion can be the
exclusive mechanism to account for the complicated compositional variations at the interface of two melts (Chakraborty et al., 1995b). With the universal eigenvector matrix, modeling and prediction of melt composition at the diffusive interface will be simplified. Here we give an example to show compositional variations along the diffusive interface of dacite and basalt at $1500^{\circ} \mathrm{C}$. We did the calculation using our universal eigenvector matrix $\left[P_{X}\right]$, and assuming eigenvalues are 2 times smaller than our optimal eigenvalues at $1500^{\circ} \mathrm{C}$ listed in Table 4.3. The calculated profiles are shown in Fig. 6.1. $\mathrm{TiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{FeO}, \mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{O}$ show clear uphill diffusion features. Specifically, $\mathrm{TiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}$, and FeO are depleted at $x \approx-400 \mu m$, but enriched at $x \approx 400 \mu m$, while $\mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{O}$ exhibit complementary patterns. The melt compositions at $x \approx \pm 400 \mu m$ may be captured as inclusions in other melts or early formed crystals. If these melt inclusions reach the surface and are collected as research samples, however, the chemical compositions will be difficult to explain exclusively by a binary mixing model. Therefore, in future studies of magma mixing, the kinetic control of multicomponent diffusion must be considered to explain the potential composition anomalies in melt inclusions.

Figure 6.1. Calculated concentration profiles resulting from magma mixing between dacite and basalt at $1500^{\circ} \mathrm{C}$, using the eigenvector matrix $\left[P_{X}\right]$ and assuming eigenvalues are 2 times smaller than our optimal eigenvalues at $1500^{\circ} \mathrm{C}$ listed in Table 4.3.

References

Broyden, C.G. (1970) The Convergence of a Class of Double-rank Minimization Algorithms. J. Inst. Maths Applies 6, 76-90, 222-231.

Chakraborty, S., Dingwell, D.B., Rubie, D.C. (1995a) Multicomponent diffusion in ternary silicate melts in the system K2O-Al2O3-SiO2: I. Experimental measurements. Geochim. Cosmochim. Acta 59, 255-264.

Chakraborty, S., Dingwell, D.B., Rubie, D.C. (1995b) Multicomponent diffusion in ternary silicate melts in the system K2O-A12O3-SiO2: II. Mechanisms, systematics, and geological applications. Geochim. Cosmochim. Acta 59, 265-277.

Chen, Y., Zhang, Y. (2008) Olivine dissolution in basaltic melt. Geochim. Cosmochim. Acta 72, 47564777.

Chen, Y., Zhang, Y. (2009) Clinopyroxene dissolution in basaltic melt. Geochim. Cosmochim. Acta 73, 5730-5747.

Clifford, A.A. (1973) Multivariate error analysis: a handbook of error propagation and calculation in many-parameter system. Wiley, NY.

Cooper, A.R. (1968) The use and limitations of the concept of an effective binary diffusion coefficient for multi-component diffusion. In: Wachman, J.B., Franklin, A.D. (Eds.), Mass Transport in Oxides. Nat. Bur. Stand. Spec. Publ, pp. 79-84.

Fletcher, R. (1970) A new approach to variable metric algorithms. The Computer Journal 13, 317-322.
Goldfarb, D. (1970) A Family of Variable-Metric Methods Derived by Variational Means. Mathematics of Computation 24, 23-26.

González-Garcia, D., Behrens, H., Petrelli, M., Vetere, F., Morgavi, D., Zhang, C., Perugini, D. (2017) Water-enhanced interdiffusion of major elements between natural shoshonite and high-K rhyolite melts. Chem. Geol. 466, 86-101.

Guo, C., Zhang, Y. (2016) Multicomponent diffusion in silicate melts: $\mathrm{SiO}_{2}-\mathrm{TiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{MgO}-\mathrm{CaO}-$ $\mathrm{Na}_{2} \mathrm{O}-\mathrm{K}_{2} \mathrm{O}$ system. Geochim. Cosmochim. Acta 195, 126-141.

Guo, C., Zhang, Y. (2018) Multicomponent diffusion in basaltic melts at $1350^{\circ} \mathrm{C}$. Geochim. Cosmochim. Acta 228, 190-204.

Guo, C., Zhang, Y. (2020) Multicomponent diffusion in a basaltic melt: Temperature dependence. Chem. Geol. 549, 119700.

Gupta P.K., Cooper A.R. (1971) The [D] matrix for multicomponent diffusion. Physica 54, 39-59.
Kirkwood, J.G. (1960) Flow Equations and Frames of Reference for Isothermal Diffusion in Liquids. J. Chem. Phys. 33, 1505-1513.

Koyaguchi, T. (1985) Magma mixing in a conduit. J. Volcanol. Geotherm. Res. 25, 365-369.
Koyaguchi, T. (1989) Chemical gradient at diffusive interfaces in magma chambers. Contrib. Mineral. Petrol. 103, 143-152.

Kress, V.C., Ghiorso, M.S. (1993) Multicomponent diffusion in $\mathrm{MgO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ and $\mathrm{CaO}-\mathrm{MgO}-\mathrm{Al}_{2} \mathrm{O}_{3}-$ SiO_{2} melts. Geochim. Cosmochim. Acta 57, 4453-4466.

Lasaga, A.C. (1979) Multicomponent exchange and diffusion in silicates. Geochim. Cosmochim. Acta 54, 2709-2715.

Li, D., Fukushima., M. (2001a) A modified BFGS method and its global convergence in nonconvex minimization. J. Comput. Appl. Math. 129, 15-35.

Li, D., Fukushima., M. (2001b) On the global convergence of the BFGS method for nonconvex unconstrained optimization problems. Siam J. Optim. Vol. 11, No. 4, 1054-1064.

Liang, Y., Davis, A.M. (2002) Energetics of multicomponent diffusion in molten $\mathrm{CaO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$. Geochim. Cosmochim. Acta 66, 635-646.

Liang, Y., Richter, F.M., Watson, E.B. (1996) Diffusion in silicate melts, II: multicomponent diffusion in $\mathrm{CaO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ at $1500^{\circ} \mathrm{C}$ and 1 GPa . Geochim. Cosmochim. Acta 60, 5021-5035.

Liang, Y. (2010) Multicomponent diffusion in molten silicates: theory, experiments, and geological application. Rev. Mineral. Geochem. 72, 409-446.

Miller, D.G., Vitagliano, V., Sartorio, R. (1986) Some comments on multicomponent diffusion: Negative main term diffusion coefficients, second law constrains, solvent choices, and reference frame. J. Phys. Chem. 90, 1509-1519.

Morgan, Z.T., Liang, Y., Hess., P.C. (2006) An experimental study of the kinetics of anorthite dissolution in lunar picritic magmas with applications to lunar crustal assimilation processes. Geochim. Cosmochim. Acta 70, 3477-3491.

Mungall, J.E., Romano, C., Dingwell, D.B. (1998) Multicomponent diffusion in the molten system $\mathrm{K}_{2} \mathrm{O}$ $\mathrm{Na}_{2} \mathrm{O}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}-\mathrm{H}_{2} \mathrm{O}$. Am. Mineral. 83, 685-699.

Oldenburg, C.M., Spera, F.J., Yuen, D.A., Sewell, G. (1989) Dynamic mixing in magma bodies: theory, simulations, and implications. J. Geophys. Res. 94, 9215-9236.

Onsager, L. (1945) Theories and problems of liquid diffusion. Ann. New York Acad. Sci. 46, 241-265.
Oishi, Y., Nanba, M., Pask, J. A. (1982) Analysis of liquid-state interdiffusion in the system $\mathrm{CaO}-\mathrm{Al}_{2} \mathrm{O}_{3}-$ SiO_{2} using multiatomic ion models. J. Am. Ceram. Soc. 65, 247-253.

Pablo, H., Schuller, S., Toplis, M.J., Gouillart, E., Mostefaoui, S., Charpetier, T., Roskosz, M. (2017) Multicomponent diffusion in sodium borosilicate glasses. J. Non-Cryst. Sol. 478, 29-40.

Richter, F., Liang, Y., Minarik, W.G. (1998) Multicomponent diffusion and convection in molten MgO$\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$. Geochim. Cosmochim. Acta 62, 1985-1991.

Sato, H. (1975) Diffusion coronas around quartz xenocrysts in andesite and basalt from Tertiary volcanic region in northeastern Shikoku, Japan. Contrib. Mineral. Petrol. 50, 49-64.

Shanno, D.F. (1970) Conditioning of Quasi-Newton Methods for Function Minimization. Mathematics of Computation 24, 647-656.

Sugawara, H., Nagata, K., Goto, K.S. (1977) Interdiffusivities matrix of $\mathrm{CaO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ melt at 1723 K to 1823 K. Metall. Trans. A. 8B, 605-612.

Varshneya, A.K., Cooper, A.R. (1972) Diffusion in the system $\mathrm{K}_{2} \mathrm{O}-\mathrm{SrO}_{-\mathrm{SiO}_{2}}$: III, Interdiffusion coefficients. J. Amer. Ceram. Soc. 55, 312-317.

Wang, C., Cascio, M.L., Liang, Y., Xu., W. (2020) An experimental study of peridotite dissolution in eclogite-derived melts: Implications for styles of melt-rock interaction in lithospheric mantle beneath the North China Craton. Geochim. Cosmochim. Acta 278, 157-176.

Watson, E.B. (1982) Basalt contamination by continental crust: some experiments and models. Contrib. Mineral. Petrol. 80, 73-87.

Yu, Y., Zhang, Y., Chen, Y., Xu, Z. (2016) Kinetics of anorthite dissolution in basaltic melt. Geochim. Cosmochim. Acta 179, 257-274.

Yu, Y., Zhang, Y., Yang, Y. (2019) Kinetics of quartz dissolution in natural silicate melts and dependence of SiO_{2} diffusivity on melt composition. ACS Earth Space Chem. 3, 599-616.

Zhang, Y. (1993) A modified effective binary diffusion model. J. Geophys. Res. 98, 11901-11920.
Zhang, Y. (2010) Diffusion in Minerals and Melts: Theoretical Background. Rev. Mineral. Geochem. 72, 311-408.

Zhang, Y., Walker, D., Lesher, C.E. (1989) Diffusive crystal dissolution. Contrib. Mineral. Petrol. 102, 492-513.

Zhang, Y., Gan, T. (2010) Diffusion in Melts and Magmas. Rev. Mineral. Geochem. 87, 283-337.

Appendix A

Derivation of an explicit expression of Jacobian matrix

The Jacobian matrix, which is defined in Eq. (50), is a key parameter in the fitting process. It determines both the search direction (see Eq. (40)) and the 1- σ error of optimal fitting parameters (see Eq. (51)). The Jacobian matrix can be easily obtained using a "universal" numerical method. One disadvantage of the method is that the calculated matrix may not be accurate. Thus, if there is a high demand for data accuracy and the function is not too complicated, one may try to derive an explicit expression of Jacobian matrix. We see that the Jacobian matrix in our case is essentially the partial derivatives of oxide concentrations with respect to eigenvector matrix and eigenvalues. Thus, once such partial derivatives are explicitly expressed, the Jacobian matrix can be accurately obtained.

In an N-component melt system, choose the $N^{\text {th }}$ oxide component as the dependent component. Let $n=N-1$ and w_{i} be the mass fraction of the $i^{t h}$ oxide component. Then according to mass conservation, we have

$$
\begin{equation*}
w_{N}=100 \%-\sum_{i=1}^{n} w_{i} \tag{A1}
\end{equation*}
$$

Define the concentration vector \boldsymbol{w} as follows:

$$
\boldsymbol{w}=\left(\begin{array}{c}
w_{1} \tag{A2}\\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right)
$$

Assuming a constant diffusivity matrix, the analytical solution to an infinite diffusion couple is given by:

$$
\begin{equation*}
\boldsymbol{w}=\frac{\boldsymbol{w}_{\mathbf{2}}+\boldsymbol{w}_{\mathbf{1}}}{2}+[P] \times[E] \times\left[P^{-1}\right] \times \frac{\boldsymbol{w}_{\mathbf{2}}-\boldsymbol{w}_{\mathbf{1}}}{2} \tag{A3}
\end{equation*}
$$

where $\boldsymbol{w}_{\mathbf{1}}$ and $\boldsymbol{w}_{\mathbf{2}}$ are initial melt concentration vectors at $\boldsymbol{x}<\mathbf{0}$ and $\boldsymbol{x}>\mathbf{0},[P]$ is eigenvector matrix and $[E]$ is a diagonal matrix:

$$
\begin{align*}
& {[E]=\left[\begin{array}{ccc}
\operatorname{erf}\left(\frac{x-x_{0}}{\sqrt{4 e^{\theta_{1 t}}}}\right) & & \\
& \ddots & \\
=\left[\begin{array}{lll}
\operatorname{erf}\left(\frac{x-x_{0}}{\sqrt{4 t}} e^{-\frac{\theta_{1}}{2}}\right) & & \\
& \ddots & \\
& & \operatorname{erf}\left(\frac{x-x_{0}}{\sqrt{4 e^{\theta_{n}}}}\right)
\end{array}\right] \\
& & \\
& & \\
& \left.e^{-\frac{\theta_{n}}{2}}\right)
\end{array}\right]}
\end{align*}
$$

Define $\boldsymbol{\theta}$ vector as follows:

$$
\boldsymbol{\theta}=\left(\begin{array}{c}
\theta_{1} \tag{A5}\\
\vdots \\
\theta_{n}
\end{array}\right)
$$

Now let's derive the partial derivative of \boldsymbol{w} with respect to $[P]$ and $\boldsymbol{\theta}$.
Define \boldsymbol{Y} vector as follows:

$$
\boldsymbol{Y}=\left(\begin{array}{c}
\frac{x-x_{0}}{\sqrt{4 t}} e^{-\frac{\theta_{1}}{2}} \tag{A6}\\
\vdots \\
\frac{x-x_{0}}{\sqrt{4 t}} e^{-\frac{\theta_{n}}{2}}
\end{array}\right)=\frac{x-x_{0}}{\sqrt{4 t}} e^{-\frac{\theta}{2}}
$$

Then $[E]$ matrix can be expressed by \boldsymbol{Y} :

$$
[E]=\operatorname{diag}\left(\begin{array}{c}
\operatorname{erf}\left(\frac{x-x_{0}}{\sqrt{4 t}} e^{-\frac{\theta_{1}}{2}}\right) \tag{A7}\\
\vdots \\
\operatorname{erf}\left(\frac{x-x_{0}}{\sqrt{4 t}} e^{-\frac{\theta_{n}}{2}}\right)
\end{array}\right)=\operatorname{diag}(\operatorname{erf}(\boldsymbol{Y}))
$$

where diag is a function so that $\operatorname{diag}(v)$ returns a square diagonal matrix with the elements of vector v on the main diagonal and $\operatorname{diag}([A])$ returns a column vector of the main diagonal elements of matrix $[A]$.

In Eq. (A3), take the total differential of \boldsymbol{w} :

$$
\begin{align*}
\mathbf{d} \boldsymbol{w}=\mathbf{d}[P] \times[E] \times\left[P^{-1}\right] \times \frac{\boldsymbol{w}_{\mathbf{2}}-\boldsymbol{w}_{\mathbf{1}}}{2}+ & {[P] \times \mathbf{d}[E] \times\left[P^{-1}\right] \times \frac{\boldsymbol{w}_{\mathbf{2}}-\boldsymbol{w}_{\mathbf{1}}}{2} } \tag{A8}\\
& +[P] \times[E] \times \mathbf{d}\left[P^{-1}\right] \times \frac{w_{2}-w_{1}}{2}
\end{align*}
$$

Our next step is to express the total differential of \boldsymbol{w} by the total differential of $[P]$ and $\boldsymbol{\theta}$. There are three terms on the right-hand side (RHS) of Eq. (A8), but only the first term is a desired form. Now let's calculate $\mathbf{d}[E]$ in the second term and $\mathbf{d}\left[P^{-1}\right]$ in the third term on the RHS of Eq. (A8). In the following part, we use the symbol \odot to denote the entry wise product of two vectors (or two matrices) of the same size and use the symbol \otimes to denote Kronecker product of two matrices.

In Eq. (A7), take the total differential of [E]:

$$
\begin{gather*}
\mathbf{d}[E]=\mathbf{d} \operatorname{diag}(\operatorname{erf}(\boldsymbol{Y}))=\operatorname{diag}(\mathbf{d} \operatorname{erf}(\boldsymbol{Y})) \\
=\operatorname{diag}\left(\frac{2}{\sqrt{\pi}} e^{-\boldsymbol{Y} \odot \boldsymbol{Y}} \odot \mathbf{d} \boldsymbol{Y}\right) \\
=\operatorname{diag}\left(\frac{2}{\sqrt{\pi}} e^{-\boldsymbol{Y} \odot \boldsymbol{Y}} \odot \mathbf{d}\left(\frac{x-x_{0}}{\sqrt{4 t}} e^{-\frac{\boldsymbol{\theta}}{2}}\right)\right) \\
=\operatorname{diag}\left(\frac{2}{\sqrt{\pi}} e^{-\boldsymbol{Y} \odot \boldsymbol{Y}} \odot\left(\frac{x-x_{0}}{\sqrt{4 t}} *\left(-\frac{1}{2}\right) * e^{-\frac{\boldsymbol{\theta}}{2}} \odot \mathbf{d} \boldsymbol{\theta}\right)\right) \\
=\operatorname{diag}\left(\frac{-\left(x-x_{0}\right)}{\sqrt{4 \pi t}} e^{-\boldsymbol{Y} \odot \boldsymbol{Y}} \odot e^{-\frac{\boldsymbol{\theta}}{2}} \odot \mathbf{d} \boldsymbol{\theta}\right) \\
=\operatorname{diag}\left(\frac{-\left(x-x_{0}\right)}{\sqrt{4 \pi t}} e^{-\boldsymbol{Y} \odot \boldsymbol{Y}} \odot e^{-\frac{\boldsymbol{\theta}}{2}}\right) \odot \mathbf{d}(\operatorname{diag} \boldsymbol{\theta}) \\
=[d E] \odot \mathbf{d}(\operatorname{diag} \boldsymbol{\theta}) \tag{A9}
\end{gather*}
$$

where the matrix $[d E]$ is defined as:

$$
\begin{equation*}
[d E]=\operatorname{diag}\left(\frac{-\left(x-x_{0}\right)}{\sqrt{4 \pi t}} e^{-Y \odot \boldsymbol{Y}} \odot e^{-\frac{\theta}{2}}\right) \tag{A10}
\end{equation*}
$$

Therefore, the second term on the RHS of Eq. (A8) can be expressed as follows:

$$
\begin{gather*}
{[P] \times \mathbf{d}[E] \times\left[P^{-1}\right] \times \frac{\boldsymbol{w}_{\mathbf{2}}-\boldsymbol{w}_{\mathbf{1}}}{2}} \tag{A11}\\
=[P] \times([d E] \odot \mathbf{d}(\operatorname{diag} \boldsymbol{\theta})) \times\left[P^{-1}\right] \times \frac{\boldsymbol{w}_{2}-\boldsymbol{w}_{\mathbf{1}}}{2}
\end{gather*}
$$

d $\left[P^{-1}\right]$ in the third term on the RHS of Eq. (A8) can be calculated as follows:

$$
\begin{equation*}
\mathbf{d}\left[P^{-1}\right]=-\left[P^{-1}\right] \times \mathbf{d}[P] \times\left[P^{-1}\right] \tag{A12}
\end{equation*}
$$

Plugging Eq. (A11) and Eq. (A12) into Eq. (A8), leads to:

$$
\begin{align*}
\mathbf{d} \boldsymbol{w}=\mathbf{d}[P] \times & {[E] \times\left[P^{-1}\right] \times \frac{\boldsymbol{w}_{\mathbf{2}}-\boldsymbol{w}_{\mathbf{1}}}{2} } \\
& +[P] \times([d E] \odot \mathbf{d}(\operatorname{diag} \boldsymbol{\theta})) \times\left[P^{-1}\right] \times \frac{\boldsymbol{w}_{\mathbf{2}}-\boldsymbol{w}_{\mathbf{1}}}{2} \tag{A13}\\
& \quad[P] \times[E] \times\left[P^{-1}\right] \times \mathbf{d}[P] \times\left[P^{-1}\right] \times \frac{w_{2}-\boldsymbol{w}_{1}}{2}
\end{align*}
$$

Now we have expressed the total differential of \boldsymbol{w} by the total differentials of $[P]$ and diag $\boldsymbol{\theta}$. To make sure that the partial derivative of \boldsymbol{w} with respect with respect to $[P]$ and $\operatorname{diag} \boldsymbol{\theta}$ is a 2dimensional matrix, we need to convert $[P]$ and $\operatorname{diag} \boldsymbol{\theta}$ into 1-dimenal column vectors.

Taking the vectorization of first term on the RHS of Eq. (A13), leads to

$$
\begin{gather*}
\operatorname{vec}\left(\mathbf{d}[P] \times[E] \times\left[P^{-1}\right] \times \frac{\boldsymbol{w}_{\mathbf{2}}-\boldsymbol{w}_{\mathbf{1}}}{2}\right) \\
=\left(\left([E] \times\left[P^{-1}\right] \times \frac{w_{2}-w_{1}}{2}\right)^{\mathrm{T}} \otimes\left[I_{n}\right]\right) \times \operatorname{vec}(\mathbf{d}[P]) \tag{A14}
\end{gather*}
$$

where $\left[I_{n}\right]$ is an n square identity matrix.
Taking the vectorization of second term on the RHS of Eq. (A13), leads to

$$
\begin{gather*}
\operatorname{vec}\left([P] \times([d E] \odot \mathbf{d}(\operatorname{diag} \boldsymbol{\theta})) \times\left[P^{-1}\right] \times \frac{\boldsymbol{w}_{\mathbf{2}}-\boldsymbol{w}_{\mathbf{1}}}{2}\right) \\
=\left(\left(\left[P^{-1}\right] \times \frac{\boldsymbol{w}_{\mathbf{2}}-\boldsymbol{w}_{\mathbf{1}}}{2}\right)^{T} \otimes[P]\right) \times \operatorname{vec}([d E] \odot \mathbf{d}(\operatorname{diag} \boldsymbol{\theta})) \\
=\left(\left(\left[P^{-1}\right] \times \frac{\boldsymbol{w}_{\mathbf{2}}-\boldsymbol{w}_{\mathbf{1}}}{2}\right)^{T} \otimes[P]\right) \times \operatorname{diag}(\operatorname{vec}([d E])) \times \operatorname{vec}(\mathbf{d}(\operatorname{diag} \boldsymbol{\theta})) \tag{A15}
\end{gather*}
$$

And taking the vectorization of last term on the RHS of Eq. (A13), we have

$$
\begin{align*}
& \operatorname{vec}\left(-[P] \times[E] \times\left[P^{-1}\right] \times \mathbf{d}[P] \times\left[P^{-1}\right] \times \frac{\boldsymbol{w}_{\mathbf{2}}-\boldsymbol{w}_{\mathbf{1}}}{2}\right) \\
= & -\left(\left(\left[P^{-1}\right] \times \frac{w_{2}-w_{\mathbf{1}}}{2}\right)^{T} \otimes\left([P] \times[E] \times\left[P^{-1}\right]\right)\right) \times \operatorname{vec}(\mathbf{d}[P]) \tag{A16}
\end{align*}
$$

According to Eqs. (A14) -(A16), the vectorization of $\mathbf{d} \boldsymbol{w}$ is as following:

$$
\begin{gather*}
\operatorname{vec}(\mathbf{d} \boldsymbol{w}) \\
=\left\{\left(\left([E] \times\left[P^{-1}\right] \times \frac{\boldsymbol{w}_{\mathbf{2}}-\boldsymbol{w}_{\mathbf{1}}}{2}\right)^{\mathrm{T}} \otimes\left[I_{n}\right]\right)-\left(\left(\left[P^{-1}\right] \times \frac{\boldsymbol{w}_{2}-\boldsymbol{w}_{\mathbf{1}}}{2}\right)^{T} \otimes\left([P] \times[E] \times\left[P^{-1}\right]\right)\right)\right\} \times \operatorname{vec}(\mathbf{d}[P]) \\
+\left(\left(\left[P^{-1}\right] \times \frac{\boldsymbol{w}_{2}-\boldsymbol{w}_{\mathbf{1}}}{2}\right)^{T} \otimes[P]\right) \times \operatorname{diag}(\operatorname{vec}([d E])) \times \operatorname{vec}(\mathbf{d}(\operatorname{diag} \boldsymbol{\theta})) \tag{A17}
\end{gather*}
$$

Therefore, the partial derivative of \boldsymbol{w} with respect to $[P]$ can be expressed as:

$$
\begin{align*}
{\left[w_{P}\right]=} & \frac{\partial \boldsymbol{w}}{\partial[P]}=\left\{\left(\left([E] \times\left[P^{-1}\right] \times \frac{\boldsymbol{w}_{2}-\boldsymbol{w}_{\mathbf{1}}}{2}\right)^{\mathrm{T}} \otimes\left[I_{n}\right]\right)-\left(\left(\left[P^{-1}\right] \times \frac{\boldsymbol{w}_{2}-\boldsymbol{w}_{\mathbf{1}}}{2}\right)^{T} \otimes\left([P] \times[E] \times\left[P^{-1}\right]\right)\right)\right\}^{T} \\
& =\left(\left([E] \times\left[P^{-1}\right] \times \frac{w_{2}-w_{1}}{2}\right)^{\mathrm{T}} \otimes\left[I_{n}\right]\right)-\left(\left(\left[P^{-1}\right] \times \frac{w_{2}-w_{1}}{2}\right) \otimes\left([P] \times[E] \times\left[P^{-1}\right]\right)^{T}\right) \tag{A18}
\end{align*}
$$

And the partial derivative of \boldsymbol{w} with respect to [diag $\boldsymbol{\theta}]$ can be expressed as:

$$
\begin{gather*}
{\left[w_{\operatorname{diag} \boldsymbol{\theta}}\right]=\frac{\partial \boldsymbol{w}}{\partial[\operatorname{diag} \boldsymbol{\theta}]}=\left\{\left(\left(\left[P^{-1}\right] \times \frac{\boldsymbol{w}_{\mathbf{2}}-\boldsymbol{w}_{\mathbf{1}}}{2}\right)^{T} \otimes[P]\right) \times \operatorname{diag}(\operatorname{vec}([d E]))\right\}^{T}} \\
=\operatorname{diag}(\operatorname{vec}([d E])) \times\left(\left(\left[P^{-1}\right] \times \frac{\boldsymbol{w}_{\mathbf{2}}-\boldsymbol{w}_{\mathbf{1}}}{2}\right) \otimes\left[P^{T}\right]\right) \tag{A19}
\end{gather*}
$$

According to Eq. (A1), we have:

$$
\begin{equation*}
\mathbf{d} w_{N}=-\sum_{i=1}^{n} \mathbf{d} w_{i} \tag{A20}
\end{equation*}
$$

Therefore, the partial derivatives of w_{N} with respect to $[P]$ and [diag $\left.\boldsymbol{\theta}\right]$ are as follows:

$$
\begin{equation*}
\frac{\partial w_{N}}{\partial[P]}=-\sum_{i=1}^{n}\left[w_{P}\right](:, i) \tag{A21}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial w_{N}}{\partial[\operatorname{diag} \boldsymbol{\theta}]}=-\sum_{i}^{n}\left[w_{\operatorname{diag} \theta}\right](:, i) \tag{A22}
\end{equation*}
$$

where $\left[w_{P}\right](:, i)$ is the $i^{\text {th }}$ column of matrix $\left[w_{P}\right]$ and $\left[w_{\operatorname{diag} \theta}\right](:, i)$ is the $i^{\text {th }}$ column of matrix $\left[w_{\mathrm{diag} \theta}\right]$.

If we use the symbol \oslash to express the element-wise division of two vectors of the same size, then the vector of residual difference can be expressed by the formula:

$$
\begin{equation*}
\boldsymbol{r}=\left(\boldsymbol{w}_{\mathbf{0}}-\boldsymbol{w}\right) \oslash \boldsymbol{\sigma} \tag{A23}
\end{equation*}
$$

where $\boldsymbol{w}_{\mathbf{0}}$ is the vector of measured concentrations of n independent oxide components, $\boldsymbol{\sigma}$ is the $1-\sigma$ error on $\boldsymbol{w}_{\mathbf{0}}$.

Then the partial derivatives of \boldsymbol{r} with respect to $[P]$ and $[\operatorname{diag} \boldsymbol{\theta}]$ are given by:

$$
\begin{equation*}
\left[r_{P}\right]=\frac{\partial \boldsymbol{r}}{\partial[P]}=-\frac{\partial \boldsymbol{w}}{\partial[P]} \oslash \boldsymbol{\sigma}=-\left[w_{P}\right] \oslash \boldsymbol{\sigma} \tag{A24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[r_{\operatorname{diag} \theta}\right]=\frac{\partial \boldsymbol{r}}{\partial[\operatorname{diag} \boldsymbol{\theta}]}=-\frac{\partial \boldsymbol{w}}{\partial[\operatorname{diag} \boldsymbol{\theta}]} \oslash \boldsymbol{\sigma}=-\left[w_{\operatorname{diag} \theta}\right] \oslash \boldsymbol{\sigma} \tag{A25}
\end{equation*}
$$

where $\left[w_{P}\right]$ and $\left[w_{\operatorname{diag} \theta}\right]$ can be obtained by Eq. (A18) and Eq. (A19), respectively.

Finally, the partial derivative of the residual difference r_{N} of the $N^{t h}$ components are given by:

$$
\begin{equation*}
\frac{\partial r_{N}}{\partial[P]}=\frac{\partial \frac{\left(w_{0, N}-w_{N}\right)}{\sigma_{N}}}{\partial[P]}=-\frac{1}{\sigma_{N}} \frac{\partial w_{N}}{\partial[P]} \tag{A26}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial r_{N}}{\partial[\operatorname{diag} \boldsymbol{\theta}]}=\frac{\partial \frac{\left(w_{0, N}-w_{N}\right)}{\sigma_{N}}}{\partial[\operatorname{diag} \boldsymbol{\theta}]}=-\frac{1}{\sigma_{N}} \frac{\partial w_{N}}{\partial[\operatorname{diag} \boldsymbol{\theta}]} \tag{A27}
\end{equation*}
$$

where $\frac{\partial w_{N}}{\partial[P]}$ and $\frac{\partial w_{N}}{\partial[\text { diag } \boldsymbol{\theta}]}$ can be obtained by Eq. (A21) and Eq. (A22).
Once all derivatives of all residual differences are calculated, according to Eq. (50), the Jacobian matrix can be obtained.

Appendix B

MATLAB codes for fitting diffusion profiles

B1. Main program "BFGS_Main.m"

$\%$ this program uses the BFGS method to obtain eigenvectors and eigenvalues by simultaneously fitting diffusion profiles.

```
% Input parameters are stored in the files: "Initial_beta.xlsx"
% Input parameters should be a l0\times7 matrix, with the last }7\mathrm{ rows
% being eigenvector matrix and the first 3 rows being eigenvalues.
% Once the program ends, the reduced chi-square is stored as the variable
% "S_DF", fitted parameters are stored as "trans_beta" and the 1-sigma errors
% are sorted as "error_trans_beta".
```

```
close all;
clear all;
start_time = clock();
```


data.temp=1260; \%1260, 1350,1500
data.type= 1; 1:diffusion couple(DC); 2:mineral dissolution(MD)
data.np $=100 ;$ number of points for each exp
data.dist = 1;
\% for DC: data.dist is the location of the interface ; for MD: data.dist is
the growth thickness of the melt
data.time $=1000$; exp duration
data.boundary $=[] ; \% b o u n d a r y ~ c o n d i t i o n ; ~ s i z e:[8,2]$
data.x = []; \% x-coordinate; [np,1]
data.w $=$ []; $\%$ concentration; [np, 8]
data.w_calc = []; \% predicted concentration; [np,8];
data.error=[]; \% error of concentration measured by EMPA

```
%% ------------------------------initialization--------------------------------
T = [1260,1350,1500];%exp temp
% exp duration at different temp
t1 = [1826.0, 1809.6, 1325.5, 1269.2, 950.8, 579.5, 740.0, 577.4, 599.9,...
    335.4, 1981.2, 395.3]; % exp duration at 1260
t2 = [1492.4, 1243.2, 899.0, 974.4, 563.9, 393.6, 522.0, 335.7, 346.3, ...
            298, 1163, 601, 742, 1611, 395, 3087, 121, 2138]; % at 1350
t3 = [276.1, 223.6, 247.8, 213.7, 158.5, 157.1, 154.8, 184.9, 221.4]; % at
1500
t=[t1,t2,t3];
% num of points of each exp
Np1 = [112,121,128,140,97,146,123,128,120,146,54,102];
% number of points of exp at 1260
Np2 = [116,84,100,109,105,101,64,122,123,191,226,183,191,152,136,166,91,160];
% number of points at 1350
```

```
Np3 = [92,124,116,118,120,141,131,141,166];
% number of points at }150
Np=[Np1,Np2,Np3];
Ndm = [12,18,9]; % number of exp at 1260, 1350 and 1500
threshold = [0,12,30]; % no actual meaning, just for reading data
% x0 and L of each exp
% for diffusion couple exp, we have already adjusted x0 to be 0
A1 = [0.158, 0.12, 0.295];
% constant alpha in mineral dissolution exp at 1260
L1 = 2*A1.*sqrt(t1(10:12));
% growth thickness of the melt in mineral dissolution exp at 1260
A2 = [0.5174, 0.5174, 0.5174, 1.1961, 0.9985, 0.9985, 0.9985, 0.9985,
0.9985];
%constant alpha at 1350
L2 = 2*A2.*sqrt(t2(10:18)); % growth thickness of the melt at 1350
L = [zeros (1,9),L1,zeros(1, 9),L2,zeros (1,9)];
Nexp = 39; % total number of exp
%read data
for i=1:3
    T_str = string(T(i));
    realdata = xlsread(strcat(T_str,"_RealData_8Comp.xlsx"));
    realerror = xlsread(strcat(T_str,"_RealError_8Comp.xlsx"));
    realboundary = xlsread(strcat(T_str,"_RealBoundary_8Comp.xlsx"));
    for j=1:Ndm(i)
        j1 = j+threshold(i);
        data(j1).temp = T(i);
        if j<10
            data(j1).type = 1;
        else
            data(j1).type = 2;
            end
            data(j1).np= Np(j1);
            data(j1).dist = L(j1);
            data(j1).time= t(j1);
            data(j1).boundary = realboundary(1:8,(3*j-2):(3*j-1));
            data(j1).x = realdata(1:Np(j1),12*j-11);
            data(j1).w = realdata(1:Np(j1),(12*j-10):(12*j-3));
            data(j1).error=realerror(:,j);
    end
end
% read initial beta
read_b = xlsread("Initial_beta.xlsx");
%% ---------------------Choose data to fit---------------------------------------
data_d =[data(1:9),data(13:21),data(31:39)]; %only DC data
% da\overline{ta d =[data(10:12),data(22:30)];%only MD data}
% data_d = data; %all data
[~,m]=size(data_d); % number of exp involved in fitting
```

$\mathrm{Nc}=7$; $\% 7$ independent components;

```
%% ----------------- claculate degree of freedom-------------------------------
Npoint = 0;
for i = 1:m
    Npoint = Npoint + data_d(i).np;
end
% DF = Nc*Npoint - 49; % only one temperature included
% DF = Nc*Npoint - 56; % two temperatures included
DF = NC*Npoint - 63; % three temperatures included
%% --------------------------initialize error----------------------------------
error = [];
for i = 1:m
    Np_i = data_d(i).np;
    error_i = kron(ones(Np_i,1),data_d(i).error);
    error = [error;error_i];
end
P = read_b(4:10,1:7); % matrix of eigenvector of D
Betal = read_b(1,1:7)';% initial log of eigenvalue at 1260 C
Beta2 = read_b(2,1:7)';% initial log of eigenvalue at 1350 C
Beta3 = read_b(3,1:7)';% initial log of eigenvalue at 1500 C
```


\% x, y1, y2 are used for plotting
$\mathrm{x}=[]$;
y1 = [];
y2 = [];
n_loop1= 0; \% number of outer loops
n^{-}loop $2=0$; \% number of inner loops
beta $=\left[r e s h a p e\left(P, N c^{\wedge} 2,1\right) ; B e t a 1 ; B e t a 2 ; B e t a 3\right] ;$ parameters to be fitted; [70,1]
\% Normalize eigenvectors
Num Max $=[1,2,3,5,3,5,6]$;
\% the positions of the largest terms in each eigenvector; only for DC
\% Num_Max $=[2,2,3,3,3,5,6]$;
\% the positions of the largest terms in each eigenvector; all data
for $i=1: 7$
Max $=$ beta (7*i-7+Num Max(i));
beta(7*i-6:7*i) = beta(7*i-6:7*i) / norm(beta(7*i-6:7*i)) *
(Max/abs (Max));
end
$[\mathrm{n}, \sim]=$ size (beta);
w0=[]; \% initial concentration
for $i=1: m$
transform_w = reshape((data_d(i).w)',[],1);
w0 $=$ [w0; transform_w];
end
w = con(data_d,beta); \%calculate concentration

$S=r^{\prime *} r$; sum of square error

```
S_DF = S/DF/2; % reduced chi-square
J-= calculate_J(data_d,beta); % calculate Jacobian matrix
g = 2*J'*r; %grradient of S
H = eye(70); % H matrix
x = [x;n_loop1];
y1 = [y1;S_DF];
y2 = [y2;n_loop2];
yyaxis left
plot(x,y1,'-b');
xlabel('num of loop1');
ylabel('reduced chi-square');
yyaxis right
plot(x,y2,'-*r');
ylabel('num of loop2');
drawnow;
max1 = 800;
max2 = 50;
sigma = 0.5;
% control parameter used in Armijo-type line search
rho = 0.5;
% control parameter used in Armijo-type line search
n loop1 = 1;
while n_loop1 < max1 && norm(g)/DF/2 > 1E-6
% when n_loop1 exceeds max1 or ||S_DF|| > 1E-6, iteration ends
p = -H*g;
% the BFGS direction obtained by solving the linear equation: p=-H*g
step=1;
n_loop2 = 0;
    % search for proper step using Armijo-type line search.
while n_loop2 < max2
    bet\overline{a}1 = beta + step*p;
    w1 = con(data_d,beta1);
    r1 = (w0-w1).//error;
    S1 = r1'*r1;
    l= S + sigma*step*g'*p; % parameter used in Armijo-type line search
% if Sl<l, the step is OK, otherwise, reduce the step by a factor of rho
    if S1 < l
        break;
    end
    step = rho*step;
    n_loop2 = n_loop2+1;
end
if n_loop2==max2
    fprintf("n_loop2 = %d \n",max2);
    break;
end
s = betal - beta; % increase in beta
% update beta
beta = beta1;
% normalize eigenvectors
for i =1:7
    Max = beta( 7*i - 7 + Num_Max(i));
```

```
        beta(7*i-6:7*i) = beta(7*i-6:7*i) / norm(beta(7*i-6:7*i)) *
( Max/abs(Max));
    end
    % update w,r,S,S_DF,J and y
    w = w1;
    r = r1;
    S = S1;
    S_DF = S/DF/2;
    J = calculate_J(data_d,beta);
    y = 2*J'*r - g;
    % update H matrix to guarantee the positive definiteness of H
    if norm(g)>1
        if (y'*s)/(s'*s)>= 10^-6*norm(g)^0.01
            H = H + (y'*s + y'*H*y)*(s*s')/(y'*s)^2 - (H*Y* 's'+s*y'*H)/(y'*s);
        end
    else
        if (y'*s)/(s'*s)>= 10^-6*norm(g)^3
            H = H + (Y'*S + Y'*H*y)*(S*S')/(y'*S)^2 - (H* Y* S'+S*Y'*H)/(y'*S);
        end
    end
    % update g
    g = 2*J'*r;
    x = [x;n_loop1];
    y1 = [y1;S_DF];
    y2 = [y2;n-loop2];
    yyaxis left
    plot(x,y1,'-b');
    xlabel('num of loop1');
    ylabel('reduced chi-square');
    yyaxis right
    plot(x,y2,'-*r');
    ylabel('num of loop2');
    drawnow;
    n_loop1 = n_loop1 +1;
end
% Normalize eigenvectors
for i =1:7
    Max = beta(7*i-7+Num_Max(i));
    beta(7*i-6:7*i) = bēॅa(7*i-6:7*i) / norm(beta(7*i-6:7*i)) *
( Max/abs(Max));
end
%% -------------------------end of BFGS method---------------------------------------
transform_w = reshape(w, 8, [])';
j=0;
%% store calculated concentration
for i=1:m
    data_d(i).w_calc = transform_w(j+1:j+data_d(i).np,:);
    j = \overline{j}+dat\overline{a_d(i).np;}
end
```

```
%% using obtained beta to predict concentration profiles of all exp
w_predict = con(data,beta);
transform_w = reshape(w_predict,8, [])';
j=0;
for i=1:Nexp
    data(i).w_calc = transform_w(j+1:j+data(i).np,:);
    j = j + dāta(i).np;
end
%% calculate eigenvalues
%trans_beta is a 10 by }7\mathrm{ matrix.
% First row: log of eigenvalues at 1260
% Second row: log of eigenvalues at 1350
% Third row: log of eigenvalues at 1500
% The rest: matrix of eigenvector
trans_beta = zeros(10,7); % change dimensions of beta
trans_beta(1:3,:) = reshape(beta(50:70) ,7,3)'; % calculate lambda of each
exp
trans_beta(4:10,:) = reshape(beta(1:49),7,7);
%% sequence eigenvalues using bubble sort
for i = 1:6
    for j = 1:7-i
            if trans_beta(1,j)>trans_beta(1,j+1)
                store = trans_beta(:,j+1);
                trans_beta(:,j+1)=trans_beta(:,j);
                trans_beta(:,j)= store;
            end
    end
end
%% calculate D matrix at each temperature
D1 = trans_beta(4:10,:)*diag(exp(trans_beta(1,:)))/trans_beta(4:10,:); %1260
D2 = trans_beta(4:10,:)*diag(exp(trans_beta(2,:)))/trans_beta(4:10,:); %1350
D3 = trans_beta(4:10,:)*diag(exp(trans_beta(3,:)))/trans_beta(4:10,:); %1500
%% calculate error of trans_beta
beta(1:49) = reshape(trans_beta(4:10,:),49,1);
beta(50:70)= reshape(trans_beta(1:3,:)',21,1);
J7 = calculate_J7(data_d,beta);
A = J7'*J7;
inv_A = (diag(inv(A))).^0.5;
error_beta = zeros(70,1);
for i- = 0:6
    error_beta(7*i+1:7*i+6)= inv_A(6*i+1:6*i+6);
end
error_beta(50:70) = inv_A(43:63);
error_trans_beta = zeros(10,7);
error_trans_beta(1:3,:) = reshape( error_beta(50:70) , 7,3)';
error_trans_beta(4:10,:) = reshape( error_beta(1:49), 7,7);
elapsed_time = etime(clock(),start_time);
```


B2. Subroutine "con.m"

```
%% Calculate concentration using assumed eigenvector matrix and eigenvalues.
function ww = con(data d,beta)
    [~,m]=size(data_d);
    P = reshape(beta(1:49),7,7);
    ww = [];
    for i=1:m
        w1 = data d(i).boundary(2:8,1);
        w2 = data d(i).boundary(2:8,2);
        %for DC, w1 = w_left, w2 = w_right
        %for MD, w1 = w_interface, w2 = w_initial
        x0 = data d(i).dist;
        t = data_d(i).time;
        if data_d(i).temp == 1260
            Beta = beta(50:56);
        elseif data d(i).temp == 1350
            Beta = beta(57:63);
        else
            Beta = beta(64:70);
        end
        if data_d(i).type==1
            for j=1:data_d(i).np
                x = data_d(i).x(j);
                    Y = (x-x\overline{0})*exp(-Beta/2)/(sqrt(4*t));
                    E = diag( erf(Y) );
                    ww1 = (w2 + w1)/2 +P * E * P^-1*(w2-w1)/2;
                    %concentration of independent components
                    ww2 = 100-sum(ww1,"all");
                    %concentration of the dependent component,i.e.,SiO2
                    ww = [ww;ww2;ww1];
            end
        elseif data_d(i).type==2
            for j=1:data_d(i).np
                            x = data_d(i).x(j);
            Y = (x-x\overline{0})* *exp (-Beta/2) /(sqrt (4*t));
            Y0 = -x0*exp(-Beta/2)/(sqrt(4*t));
            E = diag( erfc(Y)./erfc(YO) );
            ww1 = w2 +P * E *P^-1*(w1-w2);
            %concentration of independent components
            ww2 = 100-sum(ww1,"all");
            %concentration of the dependent component,i.e.,SiO2
            ww = [ww;ww2;ww1];
            end
        end
    end
end
```


B3. Subroutine "calculate_J.m"

\% Calculate and return the derivates of r with respect to P (matrix of eigenvector) and beta (log of eigenvalue)

```
function J=calculate J(data d,beta)
```

 [~,m]=size(data_(̄); \%number of experiments included
 \(\mathrm{P}=\) reshape (beta (1:49),7,7); \% matrix of eigenvector
 num = 0;
 n_start = 0;
 n end \(=0\);
 JT=[];
 for \(i=1: m\)
 w1 = data d(i).boundary \((2: 8,1)\);
 w2 = data_d(i).boundary \((2: 8,2)\);
 \%for DC, w1 = w_left, w2 = w_right
 \%for MD, w1 = w_interface, w \(\overline{2}=w _i n i t i a l\)
 \(x 0=\) data_d(i).dist;
 \(t=\) data \(\bar{d}(i) . t i m e ;\)
 error1 = data_d(i).error(2:8);
 error2 = data_d(i).error(1);
 if data_d(i).temp == 1260
 num = 0;
 Beta \(=\) beta(50:56);
 elseif data d(i).temp == 1350
 num \(=1\);
 Beta \(=\) beta(57:63);
 else
 num = 2;
 Beta \(=\) beta(64:70);
 end
 n_start \(=\) num* \(7+1\);
 n_end \(=(n u m+1) * 7\);
 if data_d(i).type==1 \%for diffusion couple
 for \(j=1: d a t a _d(i) . n p\)
 \(x=\) data_d(i).x(j);
 \(Y=(x-x 0) * \exp (-\operatorname{Beta} / 2) /(\) sqrt \((4 * t))\);
 E = diag(erf(Y)); \% Eq.(7) in "derivation1.pdf"
 \(d E=\operatorname{diag}(-(x-x 0) / \operatorname{sqrt}(4 * p i * t) * \exp (-Y . * Y) . * \exp (-B e t a / 2))\);
 \(\mathrm{wp}=\mathrm{kron}\left(\mathrm{E} * \mathrm{P}^{\wedge}-1^{*}(\mathrm{w} 2-\mathrm{w} 1) / 2\right)\), eye(7))-...
 kron ((\(\left.\mathrm{P}^{\wedge}-1^{*}(\mathrm{w} 2-\mathrm{w} 1) / 2\right)\), (\(\left.\left.\mathrm{P}^{*} \mathrm{E}^{*} \mathrm{P}^{\wedge}-1\right)^{\prime}\right)\);
 \% wp is the partial derivative of concentration of
 \% independent components with respect to \(P\)
 wBeta =diag(reshape (dE,49,1))...
 *kron ((\(\left.\left.\mathrm{P}^{\wedge}-1 *(\mathrm{w} 2-\mathrm{w} 1) / 2\right), \mathrm{P}^{\prime}\right)\);
 \% wBeta is the partial derivative of concentration of
 \% independent components with respect to Beta
 rp1 = -wp/diag(error1);
    ```
        % partial derivative of residue error of independent
        % components with respect with to P
    rBeta1= -wBeta/diag(error1);
    % partial derivative of residue error of independent
    % components with respect with to Beta
    rp2 = sum(wp,2)/error2;
    % partial derivative of residue error of the dependent
    % components with respect with to P
    rBeta2 = sum(wBeta,2)/error2;
    % partial derivative of residue error of the dependent
    % components with respect with to Beta
    rp = [rp2,rp1];
    % partial derivative of residue error of all
    % components with respect with to P
    rBeta3=[rBeta2,rBeta1];%49*8
    % partial derivative of residue error of all
    % components with respect with to Beta
    rBeta=zeros (21,8);
    for k=1:8
        rBeta(n_start:n_end,k)= diag(reshape(rBeta3(:,k),7,7));
    end
    JT =[JT,[rp;rBeta]];
    end
elseif data_d(i).type==2 % for mineral dissolution
for j=1:data_d(i).np
    x= data \overline{d}(i).x(j);
    Y=(x-x0)*exp (-Beta/2)/(sqrt (4*t));
    YO = -x0*exp (-Beta/2)/(sqrt(4*t));
    E = erfc(Y);
    EO = erfc(YO);
    E_ratio = diag (E./EO);
    dE = (x-x0) / (sqrt(4*pi*t))*exp (-Y.*Y).*exp (-Beta/2);
    dE0 = -x0/(sqrt (4*pi*t))*exp (-Y0.*Y0).* *exp (-Beta/2);
    dE_ratio = diag( ( dE.*E0 - dE0.*E )./(E0.^2) );
    wp = kron( (E_ratio*P^-1* (w1-w2)), eye(7))-...
            kron(( }\mp@subsup{P}{}{\wedge}-\mp@subsup{\overline{I}}{}{\star}(w1-w2)),(P*E_ratio* ( P^-1)')
    % wp is the partial derivative of concentration of
    % independent components with respect to P
    wBeta = diag(reshape(dE_ratio, 49,1))...
            *kron (( P^-1* (w1-w2)), P') ;
    % wBeta is the partial derivative of concentration of
    % independent components with respect to Beta
```

```
    rp1 = -wp/diag(error1);
    % partial derivative of residue error of independent
    % components with respect with to P
    rBetal= -wBeta/diag(error1);
    % partial derivative of residue error of independent
    % components with respect with to Beta
    rp2 = sum(wp,2)/error2;
    % partial derivative of residue error of the dependent
    % components with respect with to P
    rBeta2 = sum(wBeta,2)/error2;
    % partial derivative of residue error of the dependent
    % components with respect with to Beta
    rp = [rp2,rp1];
    % partial derivative of residue error of all
    % components with respect with to P
    rBeta3=[rBeta2,rBeta1];%49*8
    % partial derivative of residue error of all
        % components with respect with to Beta
            rBeta=zeros (21,8);
            for k=1:8
            rBeta(n_start:n_end,k)= diag(reshape(rBeta3(:,k),7,7));
            end
            JT =[JT,[rp;rBeta]];
            end
        end
    end
    J = JT';
end
```


B4. Subroutine "calculate_J7.m"

```
% Calculate the derivates of r with respect to P (matrix of eigenvector) and
% beta.
% J7 differs from J in that J7 doesn't return the derivatives
% of r with respect to the 7th terms of each eigenvector. Therefore, J7 is
% only used to calculate the error while assuming that the errors of the 7th
% terms of each eigenvector is zero.
function J=calculate_J7(data_d,beta)
    [~,m]=size(data_d); %number of experiments included
    P = reshape(beta(1:49),7,7); % matrix of eigenvector
    num = 0;
    n_start = 0;
    n_end = 0;
    JT= [];
    for i=1:m
        w1 = data_d(i).boundary (2:8,1);
        w2 = data-d(i).boundary (2:8,2);
        %for DC, w1 = w_left, w2 = w_right
        %for MD, w1 = w_interface, w2 = w_initial
        x0 = data_d(i).dist;
        t = data_d(i).time;
        error1 = data_d(i).error(2:8);
        error2 = data_d(i).error(1);
        if data d(i).temp == 1260
            num = 0;
            Beta = beta(50:56);
        elseif data_d(i).temp == 1350
            num = 1;
            Beta = beta(57:63);
        else
            num = 2;
            Beta = beta(64:70);
        end
    n_start = num*7+1;
    n_end = (num+1)*7;
        if data_d(i).type==1 %for diffusion couple
            for j=1:data_d(i).np
            x= data_\overline{d}(i).x(j);
            Y= (x-x0)*exp(-Beta/2)/(sqrt(4*t));
            E = diag( erf(Y) );
            dE = diag( -(x-x0)/sqrt(4*pi*t) * exp(-Y.*Y).*exp(-Beta/2) );
            wp = kron( (E * P^-1*(w2-w1)/2), eye(7))-...
                    kron((P^-1*(w2-w1)/2),(P*E* P^-1)');
            % wp is the partial derivative of concentration of
            % independent components with respect to P
            wBeta =diag(reshape(dE,49,1))...
```

```
            *kron((P^-1* (w2-w1) /2), P');
    % wBeta is the partial derivative of concentration of
    % independent components with respect to Beta
    rp1 = -wp/diag(error1);
    % partial derivative of residue error of independent
    % components with respect with to P
    rBeta1= -wBeta/diag(error1);
    % partial derivative of residue error of independent
    % components with respect with to Beta
    rp2 = sum(wp,2)/error2;
    % partial derivative of residue error of the dependent
    % components with respect with to P
    rBeta2 = sum(wBeta,2)/error2;
    % partial derivative of residue error of the dependent
    % components with respect with to Beta
    rp = [rp2,rp1];
    % partial derivative of residue error of all
    % components with respect with to P
    rBeta3=[rBeta2,rBeta1];%49*8
    % partial derivative of residue error of all
    % components with respect with to Beta
    rBeta=zeros (21,8);
    for k=1:8
        rBeta(n_start:n_end,k)= diag(reshape(rBeta3(:,k),7,7));
    end
    JT =[JT,[rp;rBeta]];
    end
elseif data_d(i).type==2 % for mineral dissolution
    for j=1:data_d(i).np
    x= data_d
    Y=(x-x0)*exp (-Beta/2)/(sqrt (4*t));
    Y0 = -x0*exp (-Beta/2)/(sqrt(4*t));
    E = erfc(Y);
    EO = erfc(YO);
    E_ratio = diag (E./EO);
    dE = (x-x0) / (sqrt(4*pi*t))*exp (-Y.*Y).**exp (-Beta/2);
    dE0 = -x0/(sqrt(4*pi*t))*exp(-Y0.*Y0).*exp (-Beta/2);
    dE_ratio = diag( ( dE.*EO - dEO.*E )./(EO.^2) );
    wp = kron( (E_ratio*P^-1*(w1-w2)), eye(7)) -...
            kron(( }\mp@subsup{P}{}{\wedge}-1`\mp@code{(w1-w2)),(P*E_ratio* P^-1)');
    % wp is the partial derivativ
    % independent components with respect to P
```

```
        wBeta = diag(reshape(dE_ratio, 49,1))...
            *kron ((P^-1* (w1-w2)), P');
        % wBeta is the partial derivative of concentration of
        % independent components with respect to Beta
        rp1 = -wp/diag(error1);
        % partial derivative of residue error of independent
        % components with respect with to P
        rBetal= -wBeta/diag(error1);
        % partial derivative of residue error of independent
        % components with respect with to Beta
        rp2 = sum(wp, 2)/error2;
        % partial derivative of residue error of the dependent
        % components with respect with to P
        rBeta2 = sum(wBeta,2)/error2;
        % partial derivative of residue error of the dependent
        % components with respect with to Beta
        rp = [rp2,rp1];
        % partial derivative of residue error of all
        % components with respect with to P
        rBeta3=[rBeta2,rBeta1];%49*8
        % partial derivative of residue error of all
        % components with respect with to Beta
        rBeta=zeros (21,8);
        for k=1:8
            rBeta(n_start:n_end,k)= diag(reshape(rBeta3(:,k),7,7));
        end
        JT =[JT,[rp;rBeta]];
        end
        end
    end
    J1 = JT';
    [n,~]=size(J1);
    J=zeros (n,63);
    for i=0:6
        J(:,6*i+1:6*i+6)=J1(:,7*i+1:7*i+6);
    end
    J(:,43:63)=J1(:,50:70);
end
```


Appendix C

Fits for 27 diffusion couple experiments from Guo and Zhang (2018, 2020)
The diffusion profiles of oxide components obtained from 27 diffusion couple experiments conducted by Guo and Zhang $(2018,2020)$ were fitted twice using two different concentration units, namely mass fraction, and mole fraction. The fits in the former case are shown in Appendix C1, and the fits in the latter case are shown in Appendix C2.

C1. Fits of diffusion profiles using mass fraction as concentration

Figure C1.1. Diffusion profiles of oxide components in wt \% of BS1\&2C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.2. Diffusion profiles of oxide components in wt $\%$ of BS3\&4C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.3. Diffusion profiles of oxide components in wt \% of BS5\&6C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.4. Diffusion profiles of oxide components in wt \% of BS7\&8C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.5. Diffusion profiles of oxide components in wt\% of BS9\&10C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.6. Diffusion profiles of oxide components in wt \% of BS11\&12C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.7. Diffusion profiles of oxide components in wt\% of BS13\&14C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.8. Diffusion profiles of oxide components in wt\% of BS17\&18C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.9. Diffusion profiles of oxide components in wt\% of BS19\&20C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.10. Diffusion profiles of oxide components in wt \% of BS1\&2A (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.11. Diffusion profiles of oxide components in wt \% of BS3\&4A (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.12. Diffusion profiles of oxide components in wt\% of BS5\&6A (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.13. Diffusion profiles of oxide components in wt $\%$ of BS7\&8A (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.14. Diffusion profiles of oxide components in wt $\%$ of BS9\&10A (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.15. Diffusion profiles of oxide components in wt $\%$ of BS11\&12C (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.16. Diffusion profiles of oxide components in wt $\%$ of BS13\&14A (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.17. Diffusion profiles of oxide components in wt $\%$ of BS17\&18A (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.18. Diffusion profiles of oxide components in wt\% of BS19\&20C (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.19. Diffusion profiles of oxide components in wt \% of BS1\&2B (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.20. Diffusion profiles of oxide components in wt $\%$ of BS3\&4B (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.21. Diffusion profiles of oxide components in wt\% of BS5\&6B (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.22. Diffusion profiles of oxide components in wt\% of BS7\&8B (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.23. Diffusion profiles of oxide components in wt $\%$ of BS9\&10B (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.24. Diffusion profiles of oxide components in wt $\%$ of BS11\&12B (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.25. Diffusion profiles of oxide components in wt $\%$ of BS13\&14B (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.26. Diffusion profiles of oxide components in wt\% of BS17\&18B (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

Figure C1.27. Diffusion profiles of oxide components in wt\% of BS19\&20B (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.1.

C2. Fits of diffusion profiles using mole fraction as concentration

Figure C2.1. Diffusion profiles of oxide components in mole\% of BS1\&2C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.2. Diffusion profiles of oxide components in mole\% of BS3\&4C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.3. Diffusion profiles of oxide components in mole\% of BS5\&6C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.4. Diffusion profiles of oxide components in mole\% of BS7\&8C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.5. Diffusion profiles of oxide components in mole\% of BS9\&10C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.6. Diffusion profiles of oxide components in mole\% of BS11\&12C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.7. Diffusion profiles of oxide components in mole\% of BS13\&14C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.8. Diffusion profiles of oxide components in mole\% of BS17\&18C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.9. Diffusion profiles of oxide components in mole\% of BS19\&20C (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.10. Diffusion profiles of oxide components in mole\% of BS1\&2A (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.11. Diffusion profiles of oxide components in mole\% of BS3\&4A (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.12. Diffusion profiles of oxide components in mole\% of BS5\&6A (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.13. Diffusion profiles of oxide components in mole\% of BS7\&8A (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.14. Diffusion profiles of oxide components in mole\% of BS9\&10A (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.15. Diffusion profiles of oxide components in mole\% of BS11\&12A (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.16. Diffusion profiles of oxide components in mole\% of BS13\&14A (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.17. Diffusion profiles of oxide components in mole\% of BS17\&18A (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.18. Diffusion profiles of oxide components in mole\% of BS19\&20A (Guo and Zhang, 2018) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.19. Diffusion profiles of oxide components in mole \% of BS1\&2B (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.20. Diffusion profiles of oxide components in mole\% of BS3\&4B (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.21. Diffusion profiles of oxide components in mole\% of BS5\&6B (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.22. Diffusion profiles of oxide components in mole\% of BS7\&8B (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.23. Diffusion profiles of oxide components in mole\% of BS9\&10B (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.24. Diffusion profiles of oxide components in mole\% of BS11\&12B (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.25. Diffusion profiles of oxide components in mole\% of BS13\&14B (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.26. Diffusion profiles of oxide components in mole\% of BS17\&18B (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Figure C2.27. Diffusion profiles of oxide components in mole\% of BS19\&20B (Guo and Zhang, 2020) with fits. The dash curves are fits by the parameters in Table 4.3.

Appendix D

Concentration profiles of oxide components and eigen-components

To facilitate observation, concentration profiles of oxide components in weight percent ($\mathrm{wt} \%$), oxide components in mole percent (mole\%), $\left[P_{w}\right]$-converted eigen-components and $\left[P_{X}\right]-$ converted eigen-components of the same experiment are plotted together. The concentration profiles of 171 experiments, conducted by Zhang et al. (1989), Chen and Zhang (2008, 2009), Yu et al. (2016, 2019), Guo and Zhang (2016, 2018, 2020), González -Garcia et al. (2017), and Wang et al. (2020), are shown in Figs. D1-D171.

Figure D1. Concentration profiles of oxide components in wt $\%$ (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{X}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#212, which is an olivine dissolution experiment in andesite (Zhang et al., 1989).

Figure D2. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $\left[P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#216, which is an olivine dissolution experiment in andesite (Zhang et al., 1989).

Figure D3. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#219, which is an olivine dissolution experiment in andesite (Zhang et al., 1989).

Figure D4. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#220, which is an olivine dissolution experiment in andesite (Zhang et al., 1989). Note that the duration of the experiment is unknown. Therefore, the x-coordinates were calculated based on $x / 2 \sqrt{ } t$, assuming a value of 1 s for t .

Figure D5. Concentration profiles of oxide components in wt $\%$ (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#222, which is an olivine dissolution experiment in andesite (Zhang et al., 1989).

Figure D6. Concentration profiles of oxide components in wt $\%$ (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#223, which is a diopside dissolution experiment in andesite (Zhang et al., 1989).

Figure D7. Concentration profiles of oxide components in wt $\%$ (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#225, which is a diopside dissolution experiment in andesite (Zhang et al., 1989).

Figure D8. Concentration profiles of oxide components in wt $\%$ (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#226, which is a forsterite dissolution experiment in andesite (Zhang et al., 1989).

Figure D9. Concentration profiles of oxide components in wt $\%$ (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#227, which is a forsterite dissolution experiment in andesite (Zhang et al., 1989).

Figure D10. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P x\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#228FO, which is a forsterite dissolution experiment in andesite (Zhang et al., 1989).

Figure D11. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#228OL, which is an olivine dissolution experiment in andesite (Zhang et al., 1989).

Figure D12. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#229, which is an olivine dissolution experiment in andesite (Zhang et al., 1989).

Figure D13. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#231DI, which is a diopside dissolution experiment in andesite (Zhang et al., 1989).

Figure D14. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P x\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#231OL, which is an olivine dissolution experiment in andesite (Zhang et al., 1989).

Figure D15. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#231SP, which is a spinel dissolution experiment in andesite (Zhang et al., 1989).

Figure D16. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#234, which is a quartz dissolution experiment in andesite (Zhang et al., 1989).

Figure D17. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#235OL, which is an olivine dissolution experiment in andesite (Zhang et al., 1989).

Figure D18. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#236OL, which is an olivine dissolution experiment in andesite (Zhang et al., 1989).

Figure D19. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#236RU, which is a rutile dissolution experiment in andesite (Zhang et al., 1989).

Figure D20. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#239MID OL, which is an olivine dissolution experiment in andesite (Zhang et al., 1989).

Figure D21. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#242, which is a diopside dissolution experiment in andesite (Zhang et al., 1989).

Figure D22. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#246, which is an unknow crystal dissolution experiment in andesite (Zhang et al., 1989).

Figure D23. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#255DI, which is a diopside dissolution experiment in andesite (Zhang et al., 1989).

Figure D24. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P x\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#255OL, which is an olivine dissolution experiment in andesite (Zhang et al., 1989).

Figure D25. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#256, which is an olivine dissolution experiment in andesite (Zhang et al., 1989).

Figure D26. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{X}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#259AUG, which is an augite dissolution experiment in andesite (Zhang et al., 1989).

Figure D27. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#259PL, which is a plagioclase dissolution experiment in andesite (Zhang et al., 1989).

Figure D28. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#260OL, which is an olivine dissolution experiment in andesite (Zhang et al., 1989).

Figure D29. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#260SP, which is a spinel dissolution experiment in andesite (Zhang et al., 1989).

Figure D30. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#262ENS, which is an enstatite dissolution experiment in andesite (Zhang et al., 1989).

Figure D31. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#262OL, which is an olivine dissolution experiment in andesite (Zhang et al., 1989).

Figure D32. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P x\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#263OL, which is an olivine dissolution experiment in andesite (Zhang et al., 1989).

Figure D33. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#263SP, which is a spinel dissolution experiment in andesite (Zhang et al., 1989).

Figure D34. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Zhang1989_Exp\#265, which is an olivine dissolution experiment in andesite (Zhang et al., 1989).

Figure D35. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Chen2008_Exp\#15, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D36. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Chen2008_Exp\#16, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D37. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Chen2008_Exp\#18, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D38. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Chen2008_Exp\#20, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D39. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $\left[P_{x}\right]$-converted eigen-components (lower right panel) of Chen2008_Exp\#21, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D40. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Chen2008_Exp\#22, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D41. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Chen2008_Exp\#23, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D42. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Chen2008_Exp\#24, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D43. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Chen2008_Exp\#25, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D44. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $\left[P_{x}\right]$-converted eigen-components (lower right panel) of Chen2008_Exp\#26, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D45. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Chen2008_Exp\#29, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D46. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Chen2008_Exp\#33, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D47. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Chen2008_Exp\#34, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D48. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Chen2008_Exp\#35, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D49. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Chen2008_Exp\#37, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D50. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Chen2008_Exp\#38, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D51. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Chen2008_Exp\#39, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D52. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Chen2008_Exp\#40, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D53. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Chen2008_Exp\#41, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D54. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Chen2008_Exp\#43, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D55. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Chen2008_Exp\#44, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D56. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Chen2008_Exp\#45, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D57. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Chen2008_Exp\#46, which is an olivine dissolution experiment in basalt (Chen and Zhang, 2008).

Figure D58. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Chen2009_Exp\#1, which is a clinopyroxene dissolution experiment in basalt (Chen and Zhang, 2009).

Figure D59. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Chen2009_Exp\#5, which is a clinopyroxene dissolution experiment in basalt (Chen and Zhang, 2009).

Figure D60. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Chen2009_Exp\#6, which is a clinopyroxene dissolution experiment in basalt (Chen and Zhang, 2009).

Figure D61. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P x\right]$-converted eigen-components (lower right panel) of Chen2009_Exp\#7, which is a clinopyroxene dissolution experiment in basalt (Chen and Zhang, 2009).

Figure D62. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Chen2009_Exp\#8, which is a clinopyroxene dissolution experiment in basalt (Chen and Zhang, 2009).

Figure D63. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Chen2009_Exp\#11, which is a clinopyroxene dissolution experiment in basalt (Chen and Zhang, 2009).

Figure D64. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Chen2009_Exp\#12, which is a clinopyroxene dissolution experiment in basalt (Chen and Zhang, 2009).

Figure D65. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $\left[P_{x}\right]$-converted eigen-components (lower right panel) of Chen2009_Exp\#14, which is a clinopyroxene dissolution experiment in basalt (Chen and Zhang, 2009).

Figure D66. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Chen2009_Exp\#15, which is a clinopyroxene dissolution experiment in basalt (Chen and Zhang, 2009).

Figure D67. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Yu2016_Exp\#201, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D68. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2016_Exp\#202, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D69. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2016_Exp\#203, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D70. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Yu2016_Exp\#205, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D71. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2016_Exp\#207, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D72. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Yu2016_Exp\#208, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D73. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2016_Exp\#209, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D74. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2016_Exp\#221, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D75. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2016_Exp\#222, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D76. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2016_Exp\#223, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D77. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2016_Exp\#227, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D78. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Yu2016_Exp\#210, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D79. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P x\right]$-converted eigen-components (lower right panel) of Yu2016_Exp\#211, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D80. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2016_Exp\#212, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D81. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2016_Exp\#213, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D82. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Yu2016_Exp\#214, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D83. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Yu2016_Exp\#215, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D84. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Yu2016_Exp\#216, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D85. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2016_Exp\#228, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D86. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Yu2016_Exp\#233, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D87. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2016_Exp\#230, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D88. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2016_Exp\#301, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

| | |
| :---: | :---: |
| | |

Figure D89. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2016_Exp\#302, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D90. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2016_Exp\#304, which is a plagioclase dissolution experiment in basalt (Yu et al., 2016).

Figure D91. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2019_QzDisBa\#101, which is a quartz dissolution experiment in basalt (Yu et al., 2019).

Figure D92. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2019_QzDisBa\#102, which is a quartz dissolution experiment in basalt (Yu et al., 2019).

Figure D93. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2019_QzDisBa\#103, which is a quartz dissolution experiment in basalt (Yu et al., 2019).

Figure D94. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2019_QzDisBa\#104, which is a quartz dissolution experiment in basalt (Yu et al., 2019).

Figure D95. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2019_QzDisBa\#107, which is a quartz dissolution experiment in basalt (Yu et al., 2019).

Figure D96. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2019_QzDisBa\#110, which is a quartz dissolution experiment in basalt (Yu et al., 2019).

Figure D97. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2019_QzDisBa\#111, which is a quartz dissolution experiment in basalt (Yu et al., 2019).

Figure D98. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Yu2019_QzDisRh\#103, which is a quartz dissolution experiment in rhyolite (Yu et al., 2019).

Figure D99. Concentration profiles of oxide components in wt \% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Yu2019_QzDisRh\#111, which is a quartz dissolution experiment in rhyolite (Yu et al., 2019).

Figure D100. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Yu2019_QzDisRh\#112, which is a quartz dissolution experiment in rhyolite (Yu et al., 2019).

Figure D101. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Yu2019_QzDisRh\#115, which is a quartz dissolution experiment in rhyolite (Yu et al., 2019).

Figure D102. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Yu2019_QzDisRh\#201, which is a quartz dissolution experiment in rhyolite (Yu et al., 2019).

Figure D103. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Yu2019_QzDisRh\#203, which is a quartz dissolution experiment in rhyolite (Yu et al., 2019).

Figure D104. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Yu2019_QzDisRh\#105, which is a quartz dissolution experiment in rhyolite (Yu et al., 2019).

Figure D105. Concentration profiles of oxide components in wt $\%$ (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Yu2019_QzDisRh\#113, which is a quartz dissolution experiment in rhyolite (Yu et al., 2019).

Figure D106. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Yu2019_QzDisRh\#114, which is a quartz dissolution experiment in rhyolite (Yu et al., 2019).

Figure D107. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Yu2019_QzDisRh\#102, which is a quartz dissolution experiment in rhyolite (Yu et al., 2019).

Figure D108. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Yu2019_QzDisRh\#104, which is a quartz dissolution experiment in rhyolite (Yu et al., 2019).

Figure D109. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Yu2019_QzDisRh\#106, which is a quartz dissolution experiment in rhyolite (Yu et al., 2019).

Figure D110. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{X}\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2016_HB2\&4A, which is a diffusion couple experiment in haplo-basalt (Guo and Zhang, 2016).

Figure D111. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2016_HB3\&4A, which is a diffusion couple experiment in haplo-basalt (Guo and Zhang, 2016).

Figure D112. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Guo\&Zhang2016_HB5\&6A, which is a diffusion couple experiment in haplo-basalt (Guo and Zhang, 2016).

Figure D113. Concentration profiles of oxide components in wt $\%$ (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2016_HB5\&7A, which is a diffusion couple experiment in haplo-basalt (Guo and Zhang, 2016).

Figure D114. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Guo\&Zhang2016_HB7\&8B, which is a diffusion couple experiment in haplo-basalt (Guo and Zhang, 2016).

Figure D115. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Guo\&Zhang2016_HB9\&10A, which is a diffusion couple experiment in haplo-basalt (Guo and Zhang, 2016)

Figure D116. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P x\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2016_HB11\&12F, which is a diffusion couple experiment in haplo-basalt (Guo and Zhang, 2016).

Figure D117. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2016_HB15\&16A, which is a diffusion couple experiment in haplo-basalt (Guo and Zhang, 2016).

Figure D118. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P x\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2016_HB17\&18A, which is a diffusion couple experiment in haplo-basalt (Guo and Zhang, 2016).

Figure D119. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2016_An\&HB4, which is an anorthite dissolution experiment in haplo-basalt (Guo and Zhang, 2016).

D120. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P x\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2020_BS1\&2C, which is a diffusion couple experiment in basalt (Guo and Zhang, 2020).

Figure D121. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Guo\&Zhang2020_BS3\&4C, which is a diffusion couple experiment in basalt (Guo and Zhang, 2020).

Figure D122. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P x\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2020_BS5\&6C, which is a diffusion couple experiment in basalt (Guo and Zhang, 2020).

Figure D123. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2020_BS7\&8C, which is a diffusion couple experiment in basalt (Guo and Zhang, 2020).

Figure D124. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Guo\&Zhang2020_BS9\&10C, which is a diffusion couple experiment in basalt (Guo and Zhang, 2020).

Figure D125. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Guo\&Zhang2020_BS11\&12C, which is a diffusion couple experiment in basalt (Guo and Zhang, 2020).

Figure D126. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P x\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2020_BS13\&14C, which is a diffusion couple experiment in basalt (Guo and Zhang, 2020).

Figure D127. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Guo\&Zhang2020_BS17\&18C, which is a diffusion couple experiment in basalt (Guo and Zhang, 2020).

Figure D128. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P x\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2020_BS19\&20C, which is a diffusion couple experiment in basalt (Guo and Zhang, 2020).

Figure D129. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Guo\&Zhang2018_BS1\&2A, which is a diffusion couple experiment in basalt (Guo and Zhang, 2018).

Figure D130. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2018_BS3\&4A, which is a diffusion couple experiment in basalt (Guo and Zhang, 2018).

Figure D131. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2018_BS5\&6A, which is a diffusion couple experiment in basalt (Guo and Zhang, 2018).

Figure D132. Concentration profiles of oxide components in wt $\%$ (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Guo\&Zhang2018_BS7\&8A, which is a diffusion couple experiment in basalt (Guo and Zhang, 2018).

Figure D133. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Guo\&Zhang2018_BS9\&10A, which is a diffusion couple experiment in basalt (Guo and Zhang, 2018).

Figure D134. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2018_BS11\&12A, which is a diffusion couple experiment in basalt (Guo and Zhang, 2018).

Figure D135. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2018_BS13\&14A, which is a diffusion couple experiment in basalt (Guo and Zhang, 2018).

Figure D136. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2018_BS17\&18A, which is a diffusion couple experiment in basalt (Guo and Zhang, 2018).

Figure D137. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P x\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2018_BS19\&20A, which is a diffusion couple experiment in basalt (Guo and Zhang, 2018).

Figure D138. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2020_BS1\&2B, which is a diffusion couple experiment in basalt (Guo and Zhang, 2020).

Figure D139. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2020_BS3\&4B, which is a diffusion couple experiment in basalt (Guo and Zhang, 2020).

Figure D140. Concentration profiles of oxide components in wt $\%$ (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2020_BS5\&6B, which is a diffusion couple experiment in basalt (Guo and Zhang, 2020).

Figure D141. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2020_BS7\&8B, which is a diffusion couple experiment in basalt (Guo and Zhang, 2020).

Figure D142. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P x\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2020_BS9\&10B, which is a diffusion couple experiment in basalt (Guo and Zhang, 2020).

Figure D143. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Guo\&Zhang2020_BS11\&12B, which is a diffusion couple experiment in basalt (Guo and Zhang, 2020).

Figure D144. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Guo\&Zhang2020_BS13\&14B, which is a diffusion couple experiment in basalt (Guo and Zhang, 2020).

Figure D145. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of Guo\&Zhang2020_BS17\&18B, which is a diffusion couple experiment in basalt (Guo and Zhang, 2020).

Figure D146. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $[P x]$-converted eigen-components (lower right panel) of Guo\&Zhang2020_BS19\&20B, which is a diffusion couple experiment in basalt (Guo and Zhang, 2020).

Figure D147. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [P_{X}]-converted eigen-components (lower right panel) of González2017_P050-H0-4, which is a diffusion couple experiment between natural shoshonite and a high-K rhyolite (González Garcia et al., 2017).

Figure D148. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of González2017_P050-H1-4, which is a diffusion couple experiment between natural shoshonite and a high-K rhyolite (González Garcia et al., 2017).

Figure D149. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of González2017_P050-H2-4, which is a diffusion couple experiment between natural shoshonite and a high-K rhyolite (González Garcia et al., 2017).

Figure D150. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [P_{X}]-converted eigen-components (lower right panel) of González2017_P100-H0-4, which is a diffusion couple experiment between natural shoshonite and a high-K rhyolite (González Garcia et al., 2017).

Figure D151. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of González2017_P100-H1-4, which is a diffusion couple experiment between natural shoshonite and a high-K rhyolite (González Garcia et al., 2017).

Figure D152. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [P_{X}]-converted eigen-components (lower right panel) of González2017_P100-H2-4, which is a diffusion couple experiment between natural shoshonite and a high-K rhyolite (González Garcia et al., 2017).

Figure D153. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [P_{X}]-converted eigen-components (lower right panel) of González2017_P300-H0-4, which is a diffusion couple experiment between natural shoshonite and a high-K rhyolite (González Garcia et al., 2017).

Figure D154. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of González2017_P300-H0-1, which is a diffusion couple experiment between natural shoshonite and a high-K rhyolite (González Garcia et al., 2017).

Figure D155. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [P_{X}]-converted eigen-components (lower right panel) of González2017_P300-H1-4, which is a diffusion couple experiment between natural shoshonite and a high-K rhyolite (González Garcia et al., 2017).

Figure D156. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{X}\right]$-converted eigen-components (lower right panel) of González2017_P300-H2-4, which is a diffusion couple experiment between natural shoshonite and a high-K rhyolite (González Garcia et al., 2017).

Figure D157. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [$\left.P_{x}\right]$-converted eigen-components (lower right panel) of González2017_P300-H2-1, which is a diffusion couple experiment between natural shoshonite and a high-K rhyolite (González Garcia et al., 2017).

Figure D158. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [P_{X}]-converted eigen-components (lower right panel) of González2017_P300-H2-0, which is a diffusion couple experiment between natural shoshonite and a high-K rhyolite (González Garcia et al., 2017).

Figure D159. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [P_{X}]-converted eigen-components (lower right panel) of González2017_P500-H2-4, which is a diffusion couple experiment between natural shoshonite and a high-K rhyolite (González Garcia et al., 2017).

Figure D160. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $\left[P_{X}\right]$-converted eigen-components (lower right panel) of Wang2020_Pyx3, which is a lherzolite dissolution experiment in basaltic andesite (Wang et al., 2020).

Figure D161. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [P_{X}]-converted eigen-components (lower right panel) of Wang2020_Pyx10, which is a lherzolite dissolution experiment in basaltic andesite (Wang et al., 2020).

Figure D162. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [P_{X}]-converted eigen-components (lower right panel) of Wang2020_Pyx11, which is a lherzolite dissolution experiment in basaltic andesite (Wang et al., 2020).

Figure D163. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [P_{X}]-converted eigen-components (lower right panel) of Wang2020_Pyx26, which is a lherzolite dissolution experiment in basaltic andesite (Wang et al., 2020).

Figure D164. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [P_{X}]-converted eigen-components (lower right panel) of Wang2020_Pyx21, which is a lherzolite dissolution experiment in basaltic andesite (Wang et al., 2020).

Figure D165. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [P_{X}]-converted eigen-components (lower right panel) of Wang2020_Pyx27, which is a lherzolite dissolution experiment in basaltic andesite (Wang et al., 2020).

Figure D166. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [P_{X}]-converted eigen-components (lower right panel) of Wang2020_Pyx17, which is a lherzolite dissolution experiment in basaltic andesite (Wang et al., 2020).

Figure D167. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [P_{X}]-converted eigen-components (lower right panel) of Wang2020_Pyx20, which is a lherzolite dissolution experiment in basaltic andesite (Wang et al., 2020).

Figure D168. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [P_{X}]-converted eigen-components (lower right panel) of Wang2020_26W01, which is a lherzolite dissolution experiment in basaltic andesite (Wang et al., 2020).

Figure D169. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and [P_{X}]-converted eigen-components (lower right panel) of Wang2020_26W02, which is a lherzolite dissolution experiment in basaltic andesite (Wang et al., 2020).

Figure D170. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $\left[P_{X}\right]$-converted eigen-components (lower right panel) of Wang2020_JW03, which is a lherzolite dissolution experiment in ferro-basalt (Wang et al., 2020).

Figure D171. Concentration profiles of oxide components in wt\% (upper left panel), oxide components in mole\% (lower left panel), $\left[P_{w}\right]$-converted eigen-components (upper right panel), and $\left[P_{X}\right]$-converted eigen-components (lower right panel) of Wang2020_JW02, which is a lherzolite dissolution experiment in ferro-basalt (Wang et al., 2020).

[^0]: Note: All positive elements are shown in bold.

