
X

Leonardo van der Laat



Magma fizz: tremor during the Kı̄lauea summit reservoir decompression

Leonardo van der Laata,∗, Zack Spicaa, Corentin Caudronb, Társilo Gironac
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Abstract

Typical eruptions at Kı̄lauea volcano involve the evacuation of magma from the summit reservoir towards the East
Rift Zone. The reservoir drainage provokes the summit deflation, and in extreme occasions, such as in 2018, the
summit caldera collapse. Systematically, summit deflation episodes have been accompanied by seismic tremor, often
with a particular multichromatic spectral signature characterized by frequency gliding. In 2018, this type of continuous
tremor accompanied the steady subsidence stage, whereas discrete earthquakes dominated the collapse stage. In this
work, we seek to understand the source mechanism of the deflation-accompanying tremor of 2018. In order to locate
the seismic source, we developed a novel machine-learning-based algorithm as an alternative to the amplitude source
location technique. Provided with a large high-quality data set, our method outperforms the traditional technique,
and therefore can potentially yield more accurate tremor locations. The tremor source was located 1 km below the
eastern perimeter of the Halema‘uma‘u crater, which coincides with the position of the summit magma reservoir,
as determined in many other studies. Additionally, we detected infrasonic tremor, which originated at the summit
active vent. Our analysis suggests that both seismic and infrasonic tremor sources were primordially driven by gas
exsolution due to the decompression of the magma. We modeled the infrasonic source as a Helmholtz resonance
generated in the void portion of the conduit due to the degassing at the atmospheric level. On the other hand, we
modeled the seismic source as pressure oscillations driven by gas porous flow at the top of the reservoir. In this
model, gas accumulates temporarily in many gas pockets between the magma and the roof. Each gas pocket, coupled
with the rock immediately above it, acts as a single resonator generating one of the multiple spectral peaks. We
inverted the tremor signal in order to estimate source parameters, namely, the gas mass flux rate and the thickness
of the gas pockets. Our modeling shows that the gas flux was responsible for the tremor amplitude modulations,
whereas the gas pocket thickness controlled the frequency variations. This source was periodically interrupted by
the first small collapse events, generating a step-like pattern in amplitude and frequency gliding. Beyond a critical
point of depressurization, the magma cannot contribute anymore to the tremor oscillations via decompression-driven
degassing, neither support the roof above it, resulting in rock failure, i.e., earthquakes and collapse events. This work
advances our understanding of magma-degassing dynamics and provides novel seismological techniques for volcano
monitoring.
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1. Introduction

1.1. Kı̄lauea volcano and summit deflation tremor
Kı̄lauea, in the Big Island of Hawai‘i (Figure 1), is a widespread basaltic volcano with a plumbing system that

is supplied with mantle-derived magma (Neal et al., 2019). Magma enters the shallow reservoir below the summit
caldera, and then is distributed along the East Rift Zone (ERZ, Figure 1b). Typical eruptions at Kı̄lauea are char-
acterized by summit deflation and magma extrusion at the ERZ, which suggests the evacuation of magma from the
summit reservoir towards the east. Systematically, elevated seismic tremor has accompanied the summit deflation; for
example in 1955 (Macdonald and Eaton, 1964), 1977 (Julian, 1994), 2007 (Poland et al., 2009; Unglert and Jellinek,
2015), 2011 (Supplementary Fig. S2) (Unglert and Jellinek, 2015), and 2018 (Soubestre et al., 2021). The duration of
these tremor episodes is in the scale of days to weeks and they start immediately after the subsidence signal.

Understanding the processes that generate tremor is an important goal in physical volcanology, since this signal
can be a useful precursor to eruptive activity. Although tremor has been successfully used to forecast eruptions (e.g.,
De la Cruz-Reyna and Reyes-Dávila, 2001; Dempsey et al., 2020; Ardid et al., 2022), current models are empirical
and lack a theoretical physical basis. Thus, there is a need to understand the link between tremor and processes that
trigger eruptions.

With no consensus, previous studies have proposed different models to explain the source of Kı̄lauea summit
deflation tremor, such as: magma flow through constricted channels (Julian, 1994); driven oscillations of bubble
clouds near the top of the shallow summit reservoir (Unglert and Jellinek, 2015); jerky motions of a cylindrical rock
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piston (Soubestre et al., 2021); and resonance of a bubbly magma-filled crack (Soubestre et al., 2021). In this study,
we seek to contribute to the understanding of the source of the Kı̄lauea summit deflation tremor, specifically during
the 2018 eruption.

The 2018 eruption is of particular importance since the summit caldera collapsed due to the evacuation of magma
from the summit reservoir (Anderson et al., 2019). In addition, a dike opened from the ERZ, specifically near the
Pu‘u ‘O‘ō cone, where eruptions have occurred since the 1980’s. This dike led further down east towards the Lower
East Rift Zone (LERZ), resulting in a magma eruption located approximately 40 km east of the summit (Neal et al.,
2019). This event is one of the few well-documented caldera-forming eruptions at a basaltic system, as the volcano
benefits from one of the most comprehensive monitoring systems on Earth. Hence, this scenario represents a great
opportunity to study seismoacoustic volcanic processes. In what follows, we focus on the processes taking place at
the summit area.

1.2. Phases of the 2018 summit caldera collapse and associated seismicity
The 2018 collapse of the Kı̄lauea summit caldera can be understood as the succession of 5 distinct phases (Fig-

ure 2a). Phase 1 (April 1st - May 2) is the pre-collapse inflation stage, in which the lava lake attained its maximum
elevation since it first appeared in 2008 (Supplementary Fig. S2a) and a rapid inflationary signal was detected (Patrick
et al., 2020). Previous studies showed that summit deformation and the lava lake elevation are directly correlated
(Patrick et al., 2015; Anderson and Poland, 2016), and that radial tilt is dominated by the reservoir pressure (An-
derson et al., 2019). Additionally, weak tremor with frequencies between 0.4 and 1 Hz occurred during this phase
(Figure 2b). This tremor lasted for years (Supplementary Fig. S1) and was driven by spattering activity at the lava
surface (Patrick et al., 2016).

Phase 2 (May 2 - 17) was marked by the drainage of the lava lake and subsidence of the summit Figure 2b (An-
derson et al., 2019). Three days after the magma evacuation started, an M6.9 detachment earthquake occurred at the
volcano’s south flank (Figure 1b, Figure 2b), and lava lake drainage and summit deflation accelerated immediately
after (Anderson et al., 2019) (Figure 2b). During this phase, both infrasonic and seismic tremor were recorded (Fig-
ure 2b). In the past, infrasonic tremor at the Overlook vent (Figure 1) was associated with an increased degassing at
the surface of the lava lake (Patrick et al., 2011; Fee et al., 2010). The seismic tremor after the M6.9 earthquake was
strong and multichromatic, i.e., showed many prominent spectral peaks, with frequencies between 0.3 and 5 Hz (Fig-
ure 2c). Its amplitude was correlated to the deflation process: as radial tilt decreased almost linearly, tremor amplitude
increased (Figure 2b). Tremor reached its maximum amplitude on May 14 when the deflation slowed down. The
explosive activity at the Overlook vent started on May 10 and declined by the end of the month (Neal et al., 2019).
During Phase 2, the explosion plumes reached ∼2000 m above the summit (Neal et al., 2019). These explosions were
probably triggered by the rock-fall impacts on the lava lake surface (Anderson et al., 2019), as previously documented
by Orr et al. (2013).

Phase 3 (May 17 - 27) is defined by the first small collapse events. These events can be identified by the sudden
increases in radial tilt (Anderson and Johanson, 2022) and decreases in tremor amplitude (Figure 2b). Although the
overall multichromatic tremor amplitude decreased in Phase 3, its relationship with radial tilt is still inverse. In Phase
3, the explosive activity became more intense, with plumes reaching ∼8100 m (Neal et al., 2019). In this case, the
explosion trigger might have been rather related to the collapse of the rock overlying the magma reservoir (Neal et al.,
2019).

In Phase 4 (May 27 - August 6), broad-scale collapse events started to occur, the explosive activity at the Overlook
vent stopped, and the number of earthquakes increased. The earthquakes occurred in swarms of thousands of events
between consecutive collapse events (Shelly and Thelen, 2019). The comparison of the relative seismic amplitude
measurement (RSAM) and earthquake count curves in Figure 2a suggests that the seismicity during Phase 4 was
dominated by earthquakes, with little or no tremor.

Phase 5, starting on August 6, is defined by the end of the eruption and the caldera collapse (Neal et al., 2019).
The stabilization of the caldera is reflected by the sudden decrease in the number of earthquakes (Figure 2a). Also,
RSAM dropped below the tremor background level recorded in Phase 1 (Figure 2a), which was associated with the
spattering activity at the lava lake.

In this study, we focus on the seismic tremor recorded in Phases 2 and 3. Secondarily, we complement our
investigation with the analysis of infrasonic tremor. For simplicity, we refer to seismic tremor simply as tremor, but
for the infrasound signal, we use the infrasonic qualifying.
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Figure 1: Map of Kı̄lauea volcano and the summit caldera. (a) Summit caldera area. Yellow triangles indicate seismic stations. CPKD, KNHD,
MITD and OTLD were equipped with single vertical-component short-period sensors, AHUD and RSDD with three-component short period
sensors and all other stations with three-component broad-band sensors. The blue inverted triangle is the UWD tiltmeter which is co-located with
the UWE seismic station. The purple inverted triangle is the infrasound array NPT. The pre-collapse Overlook vent is shown with a red line. The
red dashed line shows the post-collapse crater. The origin of the Cartesian coordinates corresponds to the position of the Overlook vent. The dashed
rectangle shows the zoomed area in Figure 3 and Figure 5. (b) Main features of Kı̄lauea volcano: summit caldera, Pu‘U ‘Ō‘ō cone, ERZ, and the
LERZ, where the 2018 eruption took place (lava flows represented in red). The area of the map in (a) is represented by the dashed line rectangle.
The red star indicates the M 6.9 detachment earthquake of May 4, 2018. The topography from U.S. Geological Survey (2017) is shown with a
shaded relief.

1.3. Research questions

We revisit the tremor that accompanied summit deflation and explosive activity at Kı̄lauea volcano during the
2018 eruption, with a novel workflow to address the following questions: Where was the tremor source located
beneath Kı̄lauea? What was the underlying process generating tremor? What changes in the source can explain the
evolving characteristics of this type of tremor? Why did seismicity transition from continuous tremor to discrete
events by the end of Phase 3? Since tremor and the explosive activity co-occurred in the same Phases 2 and 3, what
was the connection between the two mechanisms, if any?

Since tremor exhibits emergent onsets and a long duration, classical arrival time techniques are unsuitable for
source location. The tremor source location problem has been tackled for decades using small-aperture array methods
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Figure 2: Seismicity and phases of the caldera collapse. (a) The RSAM for UWE vertical component, filtered between 0.5 and 10 Hz. was
obtained , and computing root-mean-square amplitudes for 15-min moving window with 50% overlap. The RSAM curve was smoothed by taking
the median on a 12-hour moving window. Earthquake count every 6 h from the USGS catalog. Lava lake elevation (Patrick et al., 2019) is shown
in red. (b) Phases 2 and 3. The RSAM curve was smoothed with a shorter 4-hour moving window. Radial tilt data from the UWD are shown as
black dots. The phases of the caldera collapse are represented with different colors in the background of plots (a) and (b). The M 6.9 detachment
earthquake is indicated with a red star. The first small collapses are indicated with vertical lines. (c) Spectrogram for the vertical component of the
UWE seismic station. The spectral amplitude was normalized with respect to the maximum amplitude at each 30-min long time frame. The gray
vertical band in (a) and (b) represents the episode of infrasonic tremor.
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(e.g., Almendros et al., 2001), amplitude decay techniques (e.g., Taisne et al., 2011; Ichihara and Matsumoto, 2017)
or cross-correlation methods (e.g., Ballmer et al., 2013; Donaldson et al., 2017). In particular, Soubestre et al. (2021)
located the Kı̄lauea summit tremor from the 2018 event using a cross-correlation method based on the first eigenvector
of the network covariance matrix (Soubestre et al., 2019). In this method, the seismic amplitude information is
disregarded since the signal is whitened during pre-processing (Seydoux et al., 2016). We propose to use the seismic
amplitude information to locate this sequence of tremor. Instead of using the traditional amplitude source location
(ASL) technique, we developed a novel machine-learning (ML) based method that takes advantage of the currently
available wealth of data, i.e., event catalogs.

Our tremor location results and other observations suggest a source model for tremor from Phases 2 and 3. We
propose that permeable gas flow due to magma decompression-driven degassing was the primordial cause of tremor.
By performing tremor inversion, we estimate the source properties and provide numerical proof of the conceptual
model using the mechanistic approach proposed by Girona et al. (2019). Additionally, we compare our results with
independent modeling of gas exsolution due to reservoir decompression. To gain further insight into the degassing
dynamics at the Kı̄lauea summit, we complement our analysis with the detection and modeling of infrasonic tremor.

2. Machine-Learning-based tremor location

Due to its lack of clear impulsive wave arrivals, volcanic tremor cannot be located using classical arrival time
inversion techniques. Alternatively, researchers often solve this inverse problem using the ASL method. ASL is
popular in volcanology and has been used in volcanic contexts to locate different types of events, especially those
that produce a tremor-like continuous signal, such as: pyroclastic flows (e.g., Jolly et al., 2002), rock falls (e.g.,
Battaglia and Aki, 2003), eruption of basaltic material (e.g., Battaglia et al., 2005), lahars (e.g., Kumagai et al., 2009),
migrations and ascents of magma (e.g., Taisne et al., 2011), convection cycles in lava lakes (e.g., Jones et al., 2006),
and active lava fountains (Walsh et al., 2017).

The ASL method relies on the seismic attenuation model. In a homogeneous half-space, we can calculate the
amplitude Acalc

i that is expected to be recorded at a station i, i ∈ {1, 2, . . . ,N}, and for a hypocentral distance di, with
the function h:

Acalc
i = h(di) = S iA0

exp (−Bdi)
dαi

, B =
π f

cQ f
; (1)

where A0 is the amplitude at the source, f is the frequency, c is the wave group velocity, Q f is the quality factor of the
medium of propagation, and S i is the correction factor for site amplification effects. α is 1 for body waves and 0.5 for
surface waves. The medium is simplified to a constant velocity half-space, and the radiation pattern of the waves is
assumed to be isotropic.

In a 1-dimensional space, the inverse problem is solved by determining the estimate d̂i that minimizes the objective
function:

L = ∥Aobs
i − h(d̂i)∥22. (2)

In our alternative ML approach, provided a set of n observed (dobs
i , Aobs

i ) pairs, obtained for discrete earthquakes, we
estimate a function ĥ that minimizes the objective function:

L = ∥dobs
i − ĥ(Aobs

i )∥22. (3)

In this case, the estimated mapping function ĥ does not depend on the attenuation model Equation 1, but it is derived
directly from the data, i.e., an earthquake data set. Then, under the assumption that earthquake and tremor waves
share similar amplitude decay functions, this map can predict the tremor location.

We propose that the ĥ function can be estimated via feature engineering and linear regression, i.e.:

dobs
i = ĥ(Aobs

i ) = w0 +

M∑
j

w jϕ j(Ai) + ϵ; (4)
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where w0 is the intercept or bias, w j is the weight or coefficient for each j feature, which is obtained by transforming
Ai with the ϕ j function ( j ∈ {1, 2, . . . ,M}), and ϵ is the misfit between the prediction and the observation. For one
earthquake and many stations, using matrix notation, Equation 4 becomes:

d = Xw + ϵ (5)

where d is the vector of N hypocentral distances, X is a N × M + 1 feature matrix, and w is the vector of M +
1 coefficients. As proof of concept, we first solved the 1-dimensional problem via ordinary least squares linear
regression with both theoretical and real data (Supplementary Fig. S4). In the three-dimensional space, instead of
solving for each hypocentral distance in the network, we obtain the absolute location of the earthquake:

Y = XW + E; (6)

where Y is the three-dimensional matrix with Cartesian coordinates of the earthquake hypocenter, X is the N ×M + 1
feature matrix, W is a M + 1 × 3 matrix of coefficients, and E is the three-dimensional misfit.

Concisely, our ML-ASL method follows 3 fundamental steps: 1) feature extraction and engineering; 2) model
training; and 3) prediction of new locations. Additionally, we performed synthetic tests in order to assess the uncer-
tainties and limits of the model, as detailed in Appendix A and supplementary materials (Figs Sx).

During the Kı̄lauea summit caldera collapse, around 44,000 earthquakes were detected and located with high
precision (Shelly and Thelen, 2019). This wealth of data represents an opportunity to explore the idea of solving the
tremor location problem following an ML approach. When hypothesizing that tremor during Phases 2 and 3 originates
under the Overlook vent at a depth of 1 km (Figure 1), the amplitude decay for tremor is very similar to that of the
earthquakes of the catalog from Shelly and Thelen (2019) (Supplementary Fig. S3a & b), which supports our previous
assumption.

3. Results

3.1. Feature extraction, engineering, and selection

The root mean square (RMS) amplitude values extracted from the earthquake records (20-s window from the
origin time) show the expected exponential decay with respect to distance and magnitude (Supplementary Fig. S7).
This is an important requisite to derive an ML model of amplitude decay. After training many models with all possible
combinations of several transformations, we determined that the best-performing model was trained with the following
features: the square root and the Lambert function of the amplitude ratios between all pairs of stations (Supplementary
Fig. S8). This model was selected for tremor location and consisted of 9048 features.

3.2. Synthetic tests

As a proof of concept, we trained a model with synthetic amplitude data generated for the earthquake catalog
using the theoretical attenuation law (Equation 1). After training, we relocated a reserved test set. The mean test error
is 54 m. At this scale, the relocation data looks identical to the ground-truth values (Supplementary Fig. S9). This
result demonstrates that, if the natural attenuation behaved in accord with the simple 1-layer model, our method would
do an excellent job at relocating the events.

To determine the spatial limits of our model, we relocated every point in a 100-m spacing grid around the caldera,
using the model trained with synthetic amplitudes. Then we computed the misfit between the predicted and the real
locations (Supplementary Fig. S10). The distribution of the misfit depends on both the network configuration and the
spatial extent and distribution of the earthquakes used for training. We observe that the misfits remain smaller than
500 m in the area of interest (dashed line rectangles in Supplementary Fig. S10). This means that, when relocating
new events occurring in this area, if the attenuation was to behave according to the theoretical model, we could expect
uncertainties smaller than this value.

7



3.3. Model performance
After training our model with real amplitude data, we relocated the reserved test set (30%) and the complete

set. We computed the misfits for each Cartesian coordinate and the three-dimensional misfit, i.e., Euclidean distance
between the real location and the predicted location. The distributions of the single coordinate misfits are centered
around ∼0 m (Supplementary Fig. S11), which indicates that there is no significant trend or bias in the model. The
standard deviations are around 500 m for each coordinate. The mean test misfit error is 541 m, and the total misfit
error is 494 m.

Additionally, we relocated the test set using the traditional ASL method in order to further assess the performance
of our model. Both methods are able to relocate the seismicity in the expected general area of interest (Figure 3).
Nevertheless, the results for the traditional ASL are widely dispersed (Figure 3b, e), whereas our ML-ASL method
provides higher accuracy and precision (Figure 3c, f). With our alternative model, the structures of the seismicity are
defined in much more detail than with the ASL method. The median misfit of the ML-ASL model (352 m) is almost
three times smaller than the median misfit of the traditional ASL (1017 m).
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Figure 3: Comparison of classical amplitude source location (ASL) and machine-learning-based amplitude source location (ML-ASL) results. (a),
(b) and (c): map view of the summit caldera; (d), (e) and (f): east-west profile section view. The left panel shows the test set portion (30%) of
the earthquake catalog from Shelly and Thelen (2019). The center panel shows the ASL results. The right panel shows the results from ML-ASL
method. In the center and right panels, the location of each event is color coded with respect to the misfit of each model. Seismic stations are
represented as triangles. The dashed lines in the top panels indicate the Cartesian northing where the topographic profile at the bottom was taken.
The topography from U.S. Geological Survey (2017) is shown with a shaded relief (top panels) and topographic profile sections (bottom panels).
The origin of the horizontal Cartesian coordinates corresponds to the position of the Overlook vent.

3.4. Tremor location
We located tremor from Phases 2 and 3 using the ML-ASL method. For each phase, the amplitude and amplitude-

ratio spatial distributions are consistent in time (Figure 4a, b). Sources from both phases are located around 1 km
below the eastern perimeter of the Halema‘uma‘u crater (Figure 5). The center of mass of the locations from Phase 3
is located slightly deeper and to the NW with respect to Phase 2 (Figure 5). The spread of the locations for Phase 2 is
smaller than Phase 3. Phase 2 tremor has consistent locations trough time, whereas Phase 3 tremor has a larger spread
in the data and some temporal fluctuations (Figure 4c, d, and e).
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Figure 4: Tremor source location time series. (a): Seismic amplitude for each station. Each point is color coded with respect to the source-
station distance as determined by our model. (b): Seismic amplitude ratios for each pair of stations. Each point is color coded with respect to the
source-station distance ratio as determined by our model. (c), (d) and (e): Tremor source location, east, north, and vertical Cartesian coordinates,
respectively. The pink area represents the range between the 10% and 90% quantiles in a 1-day moving window. The origin of the horizontal
Cartesian coordinates corresponds to the position of the Overlook vent.
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Figure 5: Tremor source location results. (a) and (b): Map view of the summit caldera region. (d) and (e): West-east cross-section. In each panel,
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The tremor from Phase 1, which originated at the surface due to the spattering activity of the lava lake in the
Overlook vent, has very low amplitudes (Figure 2b). The intensity of this tremor is at the same level as the microseis-
mic noise (Supplementary Fig. S5), and can be easily contaminated from foreign sources, especially the seismicity
associated with the dike propagation at the ERZ (Supplementary Fig. S13) (Lengliné et al., 2021). The location of
this tremor would require special treatment, and it is beyond the scope of this work. Instead, we refer to the analysis
carried out by Patrick et al. (2016) and the location performed by Donaldson et al. (2017).

4. Discussion

In this section, we discuss the questions posed in Section 1.1. First, in Section 4.1, we compare our seismic
tremor source location results with other geophysical studies carried out at the Kı̄lauea summit caldera area in order to
understand the source position in the context of the magma plumbing system. Then, in Section 4.2, we discuss different
models from previous studies for this type of tremor and provide a conceptual model based on our observations
and analysis. In Section 4.3, we present our results for tremor modeling via inversion and independent magma
decompression modeling in order to understand the properties of the source and its evolution. In Section 4.4, we
address the potential connection between the tremor source and the explosions mechanism.

4.1. Tremor source located at the top of the magma reservoir

In this section, we put our tremor location results in the context of the current geophysical knowledge of the
shallow structure and magma plumbing system at the Kı̄lauea summit. Several geodetic models unanimously point
to a source of deformation, i.e., magma reservoir, whose center is located east of the Halema‘uma‘u crater, at depths
between 1.5 and 2.2 km (Poland et al., 2009; Baker and Amelung, 2012; Bagnardi et al., 2014; Anderson et al., 2019;
Wang et al., 2021). Considering a radius of about 1 km for this source, our tremor source position coincides with the
roof of the reservoir.
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Using full-waveform inversion techniques, previous studies have located VLP events in a similar position as the
one yielded by our tremor analysis, i.e., ∼1 km below the eastern perimeter of the Halema‘uma‘u crater (Chouet
et al., 2010; Chouet and Dawson, 2013, 2011; Liang and Dunham, 2020; Liang et al., 2020). Although the underlying
geophysical forward models used in those studies vary in their mechanisms and the involved geometries (e.g., dike
system or spherical reservoir), there is consensus about the source position.

We compared the earthquake locations during the collapse stage (Shelly and Thelen, 2019) to our tremor locations
results in Supplementary Movie S3. The tremor locations are tightly clustered inside the ring-like structure of the
earthquakes. Although enclosed by earthquakes, the tremor source region occupies a space that is almost void of
earthquake locations. In volcanic contexts, it is often thought that volcano-tectonic earthquakes occur at rock faults at
the periphery of the magma (e.g. Roman and Cashman, 2006; White and McCausland, 2016). Thus, our observations
suggest that, while earthquakes occurred at faults surrounding the reservoir in response to its decompression (Shelly
and Thelen, 2019), tremor originated at the magma reservoir itself, specifically, at the top of the reservoir (Figure 6a).

4.2. Tremor model concept and previous studies

As introduced in Section 1.1, summit deflation processes at Kı̄lauea have been systematically accompanied by
seismic tremor. Furthermore, this type of tremor shows a particular spectral signature. Some studies described it
as harmonic, with dominant periods around 1 s (Macdonald and Eaton, 1964; Julian, 1994). Spectral analysis of
recent events from 2007, 2011, and 2018 reveal a common multichromatic spectral signature characterized by slow
(hours to days) frequency gliding (Unglert and Jellinek, 2015; Soubestre et al., 2021), as observed in Figure 2c. These
characteristics can be perceived as a continuous fizzing sound with decreasing pitches, when reproducing the seismic
records at human-audible frequencies; whereas earthquakes, such as the M 6.9 detachment event or the swarms of
Phase 4, are heard as pop sounds (Supplementary Movie S1). The spectral peaks of this tremor are not evenly spaced
(Figure 2b) and vary independently of each other in time and frequency. Thus, this signal cannot be classified as a
typical harmonic tremor as observed in volcanoes such as Semeru (Schlindwein et al., 1995), Arenal (Lesage et al.,
2006), and Turrialba (van der Laat et al., 2022), among many others. Accordingly, source mechanisms for these two
distinct classes of tremor might be different. Therefore, for this case, we prefer the term multichromatic.

Previous studies have proposed diverse models to explain the mechanism generating tremor in this context. Mac-
donald and Eaton (1964) suggested that the summit tremor recorded in March 1955 was likely generated at moderate
depth by the withdrawal of magma stored beneath the summit. Similarly, Julian (1994) proposed that the summit
tremor episodes in March 1955 and September 1977 might be associated with magma flow as it evacuates the summit
reservoir.

Based on spectral observations of the 2007 and 2011 events, Unglert and Jellinek (2015) attributed the origin
of this tremor to evolving magma-bubble dynamics, such as driven oscillations of bubble clouds near the top of the
shallow summit reservoir (∼1 km deep). The authors associated the frequency gliding with changes in the geometry
of the bubble cloud in response to the magma flow.

In 2018, tremor accompanied the steady subsidence (Phase 2) and the first small collapse events (Phase 3). Both
phases share similar tremor characteristics: 1. amplitude increase in correlation to the decompression (inverse tilt,
Figure 2b); and 2. multichromatic downward frequency gliding (Figure 2c). The most important difference between
the two signals is that the amplitude increase and the frequency gliding in Phase 3 were interrupted by the collapses.
Thus, we can think of two possible scenarios: 1. both phases of tremor share a common source that was periodically
interrupted by the collapse events in Phase 3; or 2. two different sources for each phase.

Based on tremor location and spectral analysis, Soubestre et al. (2021) favored a scenario with two different
sources. For Phase 2, the authors proposed that the observed signal corresponds to swarms of periodic earthquakes
induced by the jerky motions (stick-slip) of a cylindrical rock piston progressively intruding into the depleting shallow
hydrothermal system. The succession of earthquakes would act according to the Dirac comb effect, in which the
frequencies fn of the resulting tremor spectral peaks are integer multiples of the inverse of the recurrence period τ,
i.e., fn = n/τ. In their modeling, the authors arbitrarily limited the number of inverted frequencies so that they were
all related to the same τ at each time frame (e.g., for τ = 2.22, f1 = 0.45 Hz, f2 = 0.9 Hz and f3 = 1.35 Hz; Figure
9 in Soubestre et al. (2021)), while disregarding other prominent peaks that do not fit this model. Nevertheless, it is
clear that, even if this tremor is multichromatic in nature, these peaks are not evenly spaced and do not glide in concert
(Figure 2c). In addition, the increasing amplitude trend of this tremor (Figure 2b) was not addressed by the authors.
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Figure 6: Conceptual interpretation model. (a) West-east cross-section of the Kilauea summit caldera and the source of tremor. The thick black
and red lines show the topography east-west profile before and after the collapse, respectively. (b) Conceptual model for tremor source of Phases
2 and 3. h is depth of the upper boundary of the resonator. ρ is the mean density of the rock above the resonator. Pex is the external pressure at
depth h. L is the thickness of the permeable cap. Q0 is the total gas flux rate, which is the sum of the fluxes Q0,n for n resonators. D1-D3 are the
thicknesses of different gas pockets. (c) Cycles of tremor during Phase 3. Tremor fluctuations amplitude (RSAM) and frequency ( f ), are explained
by changes in Q0 and D under the influence of the collapse events. (d) Conceptual Mohr-Coulomb stresses diagram that illustrates the transition
between seismicity regimes. The colors for Phases 2-4 are the same as in Figure 2a and b. σ1 and σ3 are the maximum and minimum principal
stresses, respectively.
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In their model, between May 7 and 14: (1) the slip distance decreases between the start and the end of Phase 2, from
0.09 mm to 0.05 mm; (2) the velocity of the earthquakes decreases from ∼0.12 mm/s to ∼0.07 mm/s; and (3) the
recurrence time τ increases from 1.02 s to 4.06 s. From such a model, it is unclear how the amplitude of the resulting
tremor would decrease, instead of increasing as observed (Figure 2b).

For Phase 3, Soubestre et al. (2021) proposed a different model. The authors suggest that tremor originated due
to collapse-triggered resonances of a bubbly magma-filled crack (Chouet, 1986). In their model, the progressive
amplitude increase after each collapse (Figure 2b) was not addressed. If the collapses were triggering the resonances,
it would be expected that the amplitude decreased after the excitation, contrary to what is observed (Figure 2b). In
this model, the frequency gliding is explained by changes in the gas volume fraction in the crack. Each collapse
would have the effect of recompressing the magma, and forcing the gas back into the melt, gradually decreasing the
gas fraction. In turn, this evolution of the gas fraction would have been responsible for the decrease in the resonance
frequencies. In order to explain the sudden increase in frequency with each collapse, the authors recur to a systematic
increase in the mode of resonance. While the authors suggest that the excitation of different modes might be related
to the differences in the location of the collapses, the incremental character of the mode evolution remains unclear.

Based on our location results, the volcanic context, and the recent discussion, we favor a scenario in which both
phases of tremor correspond to the same source, which was periodically interrupted by the collapses in Phase 3. The
correlation between the decompression (inverse tilt) and the tremor amplitude (Figure 2b), suggests that the primordial
cause of tremor was volatile exsolution caused by decompression of the summit magma reservoir (Johnson, 1992;
Poland et al., 2009; Unglert and Jellinek, 2015). Our location results point to a source near the roof of the reservoir,
as discussed in Section 4.1. Thus, we propose that the exsolved gas temporarily accumulated in this region, forming
a layer of foam (Jaupart and Vergniolle, 1989) (Figure 6a). Then, gas from this layer would have flowed through the
permeable rock of the reservoir roof, generating pressure oscillations observed as tremor (Girona et al., 2019).

This mechanism of tremor generation would have vanished by the end of Phase 3, as we observe a transition from
a tremor-dominated to an earthquake-dominated regime (Figure 2a). This observation can be understood from the
Mohr-Coloumb stresses point of view (Figure 6d). As the magma evacuates and decompresses, the effective stress
on the overlying rock decreases, while the gas exsolution triggers tremor. This process continues until the magma
becomes relaxed enough to stop supporting the rock, and to decrease the vigor of the exsolution (cessation of tremor).
At this critical pressure (Anderson et al., 2019), the shear stress in the rock is sufficiently high to cause rock failure,
which is reflected by discrete earthquakes and large collapse VLP events.

In order to support our conceptual model for the tremor source, we inverted the tremor signal using the forward
model from Girona et al. (2019) as discussed in the following Section 4.3.

4.3. Tremor inversion

We invert tremor from Phases 2 and 3 following Girona et al. (2019), assuming that tremor is generated by pressure
oscillations beneath a permeable cap. The oscillations are the result of three concurrent processes: (1) the random
supply of volatiles; (2) the temporary accumulation of a gas pocket beneath the cap; and (3) the porous flow of gases
through the permeable cap (Figure 6b). The resonator, consisting of the gas pocket and the cap, has a natural frequency
of resonance fnat.

Girona et al. (2019) showed that if the gas pocket thickness D is lower than a critical value Dcrit, the amplitude
spectrum is monochromatic; i.e., it shows a peak corresponding to fnat. Conversely, if D > Dcrit, the pressure
amplitude spectrum follows a power law distribution. In our case, the observed tremor shows multiple spectral peaks
that are independent of each other in time and frequency (Figure 2c). Thus, we consider that each peak is generated
by a single resonator (Figure 6b). The resulting signal is the sum of many concurrent pressure oscillations. In our
inversion, we limit the number of resonators that could contribute to the generated synthetic tremor, based on the
number of the most prominent spectral peaks observed in the tremor signal.

Several scenarios for a system of resonators could be proposed. In the scenario that we favor, the gas pockets could
be at a similar depth situated between the magma and the reservoir roof, as depicted in Figure 6b, but accumulate in
pockets of different thicknesses due to the irregularities of the roof surface and/or the differences in the degassing rate
across the reservoir.

We performed a non-sequential inversion, i.e., each time frame was inverted independently, using the genetic
algorithm. In order to decrease the parameter space, we fixed the parameters that are not expected to vary significantly
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in time, such as the source position, the properties of the gas, the properties of the permeable cap, and the properties
of the medium of propagation. Instead, we invert for the source parameters that are expected to vary the most and
modulate the tremor amplitude and spectral characteristics (Girona et al., 2019): gas flux rate Q0,n and the gas pockets
thickness Dn for each resonator n.

In order to constrain the fixed parameters, we conducted a parametric analysis. A detailed explanation of the
tremor inversion and parametric analysis can be found in Appendix B. The values of the parameters used for the final
inversion can be consulted in Table B.1. To estimate the uncertainty of our model, we repeated the experiment 1000
times. We report mean values for the estimated parameters and the range between the 5% and 95% percentiles.

Our models can reproduce the most prominent spectral features and amplitude variations (Figure 7). Each n
resonator has a different gas mass flux Q0,n at any given point. We observe an inverse relationship between Q0,n and
fnat (Supplementary Fig. S18). The total values of Q0 fluctuate between a few kg/s up to 700 kg/s. The interval of
confidence of our estimation is smaller than the temporal variations, and ∼11% of the median estimate (Supplementary
Fig. S17). The estimated Q0 follows a similar trend as the seismic amplitude (Figure 8b), with the exception of the
time period between May 9 and May 11, where we observe a decrease in the flux rate. This coincides with the
disappearance of the lower frequency peak (< 1 Hz) on May 9 (Figure 7a & b).

We also compared the estimated gas flux from the tremor inversion with an independent model based on the
decompression of the magma reservoir (Figure 8b). Given a reservoir decompression sequence, and a starting magma
composition, we can model the degassing history, i.e., a series of volatile concentrations in the liquid and fluid that a
magma will follow during decompression (Dixon, 1997). As Anderson et al. (2019) showed, the summit radial tilt is
a proxy of the reservoir pressure. We used the relationship established by the authors to estimate the pressure of the
reservoir (Figure 8a), and based on that, we modeled the degassing path. We only considered the steady subsidence
in Phase 2, since the collapses in Phase 3 re-compressed the reservoir. A detailed explanation of our modeling can
be found in Appendix C. For comparison with our tremor model Q0 estimate, we refer to the decompression-derived
flux rate as QD.

Both models for the gas flux show a similar range of values. Nevertheless, before May 13, Q0 is smaller than
QD. Also, since tremor started four days after the decompression, there is a corresponding delay between the two
estimates. However, by May 13, Q0 reached similar values (∼700 kg/s) as QD. Also, the decrease and increase that
occurred between May 14 and 17, match in both models, although with a slight delay for the tremor model.

The difference between the two mass flux estimates indicates that some degassing is not accounted for by the
tremor model. This could correspond to passive degassing, in particular, through the conduit out to the surface. The
detected infrasonic tremor is evidence of this degassing in the vent (Fee et al., 2010). On the other hand, the delay
between the two estimates may reflect the time interval between the exsolution and tremor generation. This time
interval must take into account the rising time of the bubbles in the magma and the residence time of the gas in the
foam layer before the transmission through the permeable cap.

The estimated values for the gas pocket thickness D are between around ∼0.5 mm to up to a ∼20 cm (Figure 9).
The interval of confidence of our estimation is smaller than the temporal variations and ∼5% of the median estimate
(Supplementary Fig. S17). We observe an inverse relationship between the frequency of the spectral peak and the
gas pocket thickness D. The observed downward frequency gliding is explained by the increase in the gas pocket
thickness (Figure 9). We observe some linear clusters of increasing D, both during Phases 2 and 3.

This model explains both cycles of tremor amplitude and frequency gliding. The tremor amplitude cycles during
Phase 3 are explained by Q0 variations (Figure 8b). We interpret that with each collapse event, the magma is suddenly
recompressed, which causes the exsolution to stop (t3 in Figure 6c). After each collapse, the evacuation and decom-
pression process continues, allowing for the gradual gas exsolution and tremor generation (t1 and 2 in Figure 6c). On
the other hand, the cyclic downward frequency gliding is explained by the expansion of the gas pockets, which, with
each collapse can be recompressed (Figure 6c) or ascend through the conduit and contribute to the explosions. Our
modeling is consistent with interpretations from Shelly and Thelen (2019) and Hotovec-Ellis et al. (2022), who at-
tributed their observations, i.e., cyclic swarms of earthquakes and oscillations of seismic velocity, respectively, to the
gradual decompression of the reservoir, followed by a sudden recompression caused by a collapse event. In the next
section, we discuss the implications that this model could have for explosive activity. In particular, the plausibility of
generating explosions via foam collapse as suggested by Jaupart and Vergniolle (1989).
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Figure 7: Observed and simulated tremor for Phases 2 and 3 at station UWE. (a): Observed spectrogram. (b): Synthetic spectrogram for the
best-fit model. The spectrograms are normalized with respect to the maximum amplitude within each frame. (c): Average spectral amplitude for
the observed (black line) and synthetic data (red line).

4.4. Connection between tremor and explosive activity
We approach the co-occurrence of tremor and explosive activity in Phases 2 and 3, and discuss the potential

connection between the two involved mechanisms. As expected from the model of Jaupart and Vergniolle (1989),
if the foam layer at the top of the reservoir grows too large it collapses into a large gas pocket which rises through
the conduit, and generates an explosion at the surface. In this section, we discuss the plausibility of this type of
“bottom-up” process taking place during the 2018 event.

The explosion on May 9, which terminated the thermal camera’s image stream (Supplementary Movie S2), oc-
curred at the same time as the tremor’s lowest frequency peak stopped (0.5 Hz, Figure 2c and Supplementary Fig.
S22). On the contrary, higher frequency peaks (1-5 Hz) continued after the explosion. These observations could be
interpreted following (Jaupart and Vergniolle, 1989). The explosion on May 9, could be due to the collapse of the
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Figure 8: Gas flux rate models. (a) Radial tilt (black dots) at UWD and tilt-derived magma reservoir pressure model Anderson et al. (2019) (red
line). (b) Normalized RSAM (green line) and gas flux models. For the gas flux derived from the decompression model (orange line), we use a
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km3, as estimated by Anderson et al. (2019). The gas flux derived from the tremor inversion for station UWE. The tremor experiment was repeated
1000 times; we show the median and 95% confidence interval of the results.

largest gas pocket associated with the tremor’s lowest frequency peak. According to our results, this gas pocket had
a thickness at a depth of ∼15 cm (Figure 9). This could have been the critical thickness at which the foam collapses,
which, for a basaltic reservoir, can vary between 4 cm and 40 m (Jaupart and Vergniolle, 1989). Since the other gas
pockets had smaller thicknesses, they would have persisted independently.

The seismic signal associated with the explosion is composed of two phases: a first low-amplitude, short-period
(SP) phase is followed by a very-long-period (VLP) phase of high amplitude (Supplementary Fig. S23). In the
infrasonic signal, only the VLP phase is present. Considering the collapsing foam model, the first SP phase in the
seismic records could be associated with the foam collapse and its ascent through the pipe, whereas the VLP phase
could be associated with the explosion at the surface of the lava column. Nevertheless, the delay between the SP and
the VLP phases is too short (∆t ≈ 13 s) to account for the travel time through a long pipe. According to Vergniolle
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Figure 9: Gas pocket thickness estimates from the tremor inversion for station UWE. (a): Spectrogram for station UWE (b): Gas pocket thickness.
Each point corresponds to an individual resonator at a given time frame. The dots are color-coded with respect to the natural frequency of the
resonator. Note that the vertical axis (b) is inverted in order to highlight the inverse relationship between the gas pocket thickness and the natural
frequency of the resonator. The thin vertical lines (b) represent the collapse events. The 95% confidence interval derived from 1000 experiments is
too small to be represented in this figure, around 5% of the median value (Supplementary Fig. S17).

and Jaupart (1990), the ascent velocity vs of a gas slug is given by vs = 0.345
√

gD, where D is the diameter of the
conduit. For realistic values of D between 100 and 300 m, vs ≈ 11-18 m/s, and with ∆t ≈ 13 s, the height of the
pipe would be ∼140-240 m. This height would be more than three times smaller than the one that is derived from our
tremor location and the lava lake elevation measurements (∼750 m).

Another more likely possibility is that this explosion was not triggered at depth, but at the surface by a rock-fall
on the lava surface. This type of process was observed during the explosion of May 4, 2018 at 21:00 (Supplementary
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Movie S2), and was thoroughly documented by Orr et al. (2013) for the Kı̄lauea eruption of 2011. For that eruption,
the authors reported a similar composite seismic signal for hundreds of rock-fall/explosion events. The SP phase was
coincident with the main body of rock striking the lava lake surface, whereas the ash emission and outgassing that
followed this impact corresponded to the onset of the VLP phase (Orr et al., 2013). The sudden disappearance of the
tremor’s lowest frequency peak after the explosion can be explained with a “top-down” mechanism. Following Patrick
et al. (2011), we consider that the transfer of a rockfall’s momentum to the lava column during impact, likely induced
a pressure transient that transmitted through the conduit and eventually reached the reservoir, causing the collapse of
the larger gas pocket associated with the tremor lower frequency peak.

In analogy, at a larger scale, the first small collapse events that occurred during Phase 3, could have had a similar
effect on the reservoir than the rockfall impacts on the lava surface. For example, after the first collapse on May 17, we
observe the cessation of the frequency peak at ∼0.7 Hz. With each collapse event, the gas on the top of the reservoir
could go back into solution (e.g., Soubestre et al., 2021), re-compress, and/or escape to the surface, contributing to
the explosions. The explosive activity in Phase 3 grew in intensity: in Phase 2 the explosion plumes attained ∼2000
m of height, whereas in Phase 3 they reached ∼8100 m (Neal et al., 2019). Additionally, summit SO2 emission rates
increased by two to three times and peaked during this stage of explosive activity (Kern et al., 2020), indicating a
strong magmatic component. Thus, it can be interpreted that the gas at the top of the reservoir was forced to escape
towards the surface under the influence of the collapses.

In Phase 4, even if the collapses became much larger (Anderson et al., 2019), the explosive activity ceased (Neal
et al., 2019). Thus, we interpret that the gas content and the exsolution rate had decreased enough by then so that the
impact of the collapses could not trigger the explosions anymore. This highlights the magma degassing as a necessary
precondition for explosive activity.

5. Conclusions

We provided a new method for locating sources of tremor. The method relies on an amplitude decay model
extracted from high-quality earthquake data using ML. To the best of our knowledge, this is the first time this method-
ology has been applied. We showed that our method is more accurate than the traditional amplitude source location
method. This method can be applied at other instrumented volcanoes where a comprehensive seismic catalog has
been recorded. This requirement is usually met at volcano observatories, where routine monitoring tasks include
earthquake location.

We applied our method to the Kı̄lauea summit deflation tremor during the 2018 eruption and caldera collapse. Our
results point to a source located ∼1 km below the eastern perimeter of the Halema‘uma‘u crater. Based on this result,
which coincides with other geophysical studies, we consider that the source of this tremor was located at the top of
the shallow magma reservoir. Additionally, the correlation between reservoir decompression and tremor amplitude
suggests that the tremor source was associated with volatile exsolution caused by magma depressurization.

We provided a tremor model in which the exsolved gas, after accumulating at the top of the reservoir in a series
of gas pockets, flows through permeable rocks of the roof generating pressure oscillations. In our model, the multi-
chromatic character of the signal is explained by a system of resonators, in which each resonator is responsible for a
single major spectral peak. Fluctuations in the gas mass flux rate explain the tremor amplitude variations, whereas the
thickness of the gas pockets controls the frequency gliding.

We complemented our results of seismic tremor with an analysis of the infrasound signal, to assess the connection
between the processes at depth with the atmosphere. At the surface, the decompression-driven degassing manifested
as infrasonic tremor, by generating a resonance at the void section of the Overlook vent. Additionally, we concluded
that the explosions triggered by the impact of rock falls on the surface of the lava lake, likely influenced the processes
taking place at the reservoir.

After a period of mostly steady subsidence, by recompressing the magma, the first small collapses periodically
interrupted the generation of tremor, resulting in a cyclic character of its variations. Beyond a critical point, the
relaxation of magma caused the cessation of tremor and explosive activity, while clearing the way for the large
collapses to happen.

An important goal of physical volcanology is to understand the mechanisms responsible for the monitoring signals
observed during episodes of volcanic unrest. Therefore, we developed a novel tool for the location of the source of
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volcanic tremor. Additionally, we provided a viable mechanism to explain the Kı̄lauea summit tremor during phases
of deflation and eruptive activity. In the future, we will focus our research on applying our tremor location methods
to other volcanoes with different network configurations and seismic catalogs; and applying our tremor inversion
technique to other volcanic scenarios.
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Appendix A. Machine-learning amplitude source location

Appendix A.1. Feature extraction, engineering, and selection
We extracted the RMS of the seismic amplitudes recorded in the seismic stations shown in Figure 1a. We assumed

that the waves from earthquakes and tremor share the same amplitude decay. Theoretically, this depends on the type
of wave (body or shallow). We took the whole waveform of the earthquake, including P, S, and surface waves in
order to approximate a general amplitude decay function during the learning stage. For earthquakes, we used a 20-
second window from the origin time. For tremor, we used a 15-minute moving window with 50% overlap to avoid
the influence of discrete earthquakes. We first remove the trend and instrument response and decimate the signal by
a factor of 2 to obtain a 50 Hz sampling rate. Then, we filtered the signal in 4 narrow frequency bands (0.38-1.2 Hz,
1.2-2.3 Hz, 2.3-3.4 Hz, and 3.4-4.5 Hz) using an order 2 Butterworth filter. We recorded one RMS amplitude value for
each frequency band and in each channel of the network. The selected frequency range (0.38-4.5 Hz) corresponds to
the overlapping band between earthquakes and tremor (Supplementary Fig. S5). The lower frequency cut-off allowed
to filter out the microseism bands (Supplementary Fig. S5).

In the traditional ASL method, it is advised to compute the amplitude ratios between all pairs of stations, since this
procedure removes the influence of the source amplitude A0 (Taisne et al., 2011). Also, the amplitude ratios provide
more information about how the amplitude is distributed in the network to the model. Thus, we computed the ratios
of the RMS amplitudes measured in the same frequency band for all pairs of channels of the same component (east,
north, or vertical).
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Then, we computed three transformations of the amplitude ratios: the square root, the natural logarithm, and the
real part of the Lambert W function. These transformations were selected based on the physical knowledge. When
solving Equation 1 for the source-receiver distance di, we observe that di is dependent of the real part of the Lambert
W function and the natural logarithm of the amplitude:

di(Ai) =
α

B
Re

[
W

(
B
α

exp
( ln(A0/Ai)

α

))]
(A.1)

The square root was selected via experimentation since it yielded positive results.
In order to select the best set of features, we trained and tested several models with all possible combinations of

the transformations, including the unaltered amplitude ratio. Then, we selected the combination of transformations
that yielded the lower test errors. This selection process allowed to simplify the model, decrease the computation time
and increase the quality of the model.

Appendix A.2. Model training and testing

The data set for training and testing corresponds to the earthquake catalog from Shelly and Thelen (2019). During
training, we only considered events with magnitudes between 1.1 and 4. This is the magnitude range where the
Gutenberg-Richter Law was best fitted (Supplementary Fig. S6). Below the lower cutoff magnitude value we expect
a decrease in the level of detection, i.e. we would observe lower signal-to-noise ratios (SNR). Using low SNR data
could diminish the performance of our model. The filtered catalog contained 22,719 events. We divided the data set
as follows: 70% (15,904 events) for training, and 30% (6,815 events) for testing.

The models were trained using linear least squares with L2 regularization, a.k.a. ridge regression. This algorithm
minimizes the objective function:

L =
(
∥Y − Xw∥22 + α∥w∥

2
2

)
(A.2)

where, X is the feature matrix, Y is the target vector, w is the vector of coefficients of the model, and the hyper-
parameter α controls the severity of the regularization. With a high α, a model becomes more robust to co-linearity.
In order to estimate the best α, we used the leave-one-out (LOO) cross-validation with α ∈ {1, 101, 102, 103, 104}.

The L2 regularizer assumes that all features are centered around 0 and vary in the same order of magnitude. Thus,
we standardized the training, test, and new predictions data sets. First, we computed the training data set features
means, and variances. Then, for each data set, we removed the mean and divided by the variance.

The test error was defined as the Euclidean distance, in meters, between the true and the predicted locations of
the test set. We also computed the error in each of the Cartesian coordinates independently, in order to determine if
there was any spatial bias in the model. Lastly, the final model for tremor location was trained with the whole data
set. We also computed the “total error”, which corresponds to the mean misfit of the final model for all events, both
in the training and test sets. For data standardization, training, and cross-validation we used the SciKit-Learn Python
package Pedregosa et al. (2011).

Appendix A.3. Synthetic tests

In order to validate our method and obtain a measure of uncertainty, we trained a model with synthetic amplitude
data. We took the catalog of events and computed synthetic amplitude data for each receiver using the attenuation
model (Equation 1), with di as imposed by the catalog locations, Q = 50, f = 2 Hz, c = 2309 m/s and α = 0.5. For the
source amplitude A0 we assigned the exponent of the magnitude. Then, we engineered the features and trained a model
as previously described. After that, for each point in a 3-dimensional grid, we simulated the expected amplitudes in
the seismic network. The grid covers the area of the seismic network (Figure 1) and extends down to 10 km deep.
We used a 100-m spacing between consecutive points. We located each source with the model trained on synthetic
amplitude data and computed the misfits.
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Appendix A.4. Traditional amplitude source location

In order to estimate the performance of our method, we compare the results to those of the traditional ASL method.
For this method, it is required to correct site amplification effects. To determine the correction factors we follow a
similar methodology to that applied by Eibl et al. (2017). We used the catalog from (Shelly and Thelen, 2019). The
RMS amplitudes (3.4-4.5 Hz) were normalized and sorted with respect to the hypocentral distance. We took the
median amplitude in a 100 m-window along the source-receiver distance in order to decrease the dispersion of the
data. The data distribution was then fitted with the attenuation model (Equation 1) using non-linear least squares
optimization (Supplementary Fig. S12). The parameters of the model were allowed to vary as follows: Q f ∈ 1 − 200,
A0 > 1 and c ∈ 1500 − 3500 m/s. We fixed α = 1 and f = 4 Hz. Finally, we calculated the site correction factors for
each station by dividing the observed amplitudes by the amplitude expected from the best-fit model (Supplementary
Table S1).

In order to directly compare the results of the ASL and ML-ASL methods we used the ASL method to relocate
the test set used during the learning stage of the ML-ASL model. The location method was implemented as done
by Taisne et al. (2011). We used a rectangular grid with a spacing of 100 m between consecutive points. The grid
comprises an area determined by the minimum and maximum latitudes and longitudes in the seismic network and
extends vertically from 0.8 km above sea level down to 3.5 km below sea level.

Appendix B. Tremor model

Appendix B.1. Inversion method

For the tremor inversion, the seismic records from the vertical component were pre-processed as follows. First,
we detrended, filtered between 0.38 and 6.2 Hz (to avoid long-period oceanic noise contamination), decimated to a
12.5 Hz sampling rate, and corrected the instrument response of the data. We divided the data into 1-hour windows
and 120 30-s sub-windows. For each sub-window, we computed the fast Fourier transform (FFT) amplitude spectrum
and then took the 1-hour median spectrum over the sub-windows.

We generated synthetic velocity seismograms using the forward model from Girona et al. (2019). Since this tremor
is multichromatic, we consider that each spectral peak corresponds to a single resonator. Together, many resonators
in a system generate the resulting multichromatic tremor. Although, the studied tremor signal shows many spectral
peaks, the number of the most prominent is less than five. Thus, in order to reduce the model complexity, we fix the
maximum number of sub-resonators to be simulated to 5.

Before computing the misfit, both observed and synthetic spectra were smoothed with a Gaussian filter with a
standard deviation for the Gaussian kernel equal to 1. The misfit (χ) between the observed spectrum (p) and synthetic
spectrum (q) was calculated as:

χ(p,q) =
√

(d cos a)2 + (d sin a)2 (B.1)

with d, the Euclidean distance between the spectra:

d(p,q) =

√√√ N∑
i=1

(pi − qi)2 (B.2)

and a, the spectral angle:

a(p,q) = cos−1


∑N

i=1 piqi√∑N
i=1(pi)2

√∑N
i=1(qi)2

 (B.3)

N is the number of samples in the spectra. The spectral angle a provides a measure of the similarity of the shape
between the spectra regardless of their absolute amplitudes. Weighting a with d (Equation B.1) ensures fitting both
amplitude and frequency distribution.

The potential solutions of the inversion were constrained by restricting the natural frequency of the resonators to a
narrow range (±0.025 Hz) around the frequencies of the most prominent peaks. The prominence of a peak is defined
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as the normalized vertical distance between the peak and its lowest contour line. We only considered peaks with a
prominence larger than 0.2.

For the inversion, we used the implementation of Blank and Deb (2020) of the genetic algorithm. We started with
a population of 100 individuals and iterated through 300 generations. At the end of each iteration, we selected the
best individuals to be the new parents using the tournament selection. Then we generated a new offspring population
of 30 individuals through simulated binary crossover (SBX) and mutated them using polynomial mutation. Since no
solution is known a priori, and in order to maintain the diversity, we set the SBX and mutation parameters to 1.

In order to obtain the uncertainty of the model, we repeated the experiment 1000 times, then averaged the results.
We utilized the standard deviation derived from multiple evaluations to determine the performance and reliability of
the model.

Appendix B.2. Model parameters

We allowed the mean gas flux (Q0) and thickness of the gas pocket (D) to vary, while the rest of the parameters
were fixed. The quality factor of the wave propagation medium was chosen (Q f = 50) based on Koyanagi et al. (1995)
and the density of the medium was fixed to a typical value for basaltic rocks (ρs = 2800 kg/m3). We fixed the source
position based on our tremor location results Table B.1. We assumed a CO2-rich magma composition with 0.3 wt%
H2O and 0.65 wt% CO2 (Gerlach and Graeber, 1985), which yields a molecular weight of 36 g/mol.

Table B.1: Tremor simulation parameters
Parameter Description Value Unit
τ Duration of the synthetic seismogram 30 s
x Cartesian easting 712 m
y Cartesian northing 250 m
z Elevation 300 m a.s.l.
µg Gas viscosity 1 × 10−5 Pa · s
T Gas temperature 1,273 K
M Gas molecular weight 0.036 kg/mol
Rg Ideal gas constant 8.3145 J/K/mol
N Number of impulses 60 per minute
Q0 Mean gas flux [0.1 — 3,000] kg/s
R Resonator radius 40 m
D Gas pocket thickness [0.0 — 4.0] m
L Cap thickness 30 m
κ Cap permeability 1 × 10−10 m2

φ Cap porosity 0.01 %
Pex External pressure 21.9 MPa
ρs Medium density 2,800 kg/m3

Q f Quality factor 50

The resonators share a common permeable cap with effective thickness L (Figure 6b), which could correspond to
the thermal boundary layer surrounding the magma body. For simplicity, since the thickness D of the gas pocket is
much smaller than L (around 1 to 3 orders of magnitude), we consider a constant L for all resonators. From our tremor
location, and the reservoir model from Anderson et al. (2019), this cap is buried at a depth of ∼800 m. With a rock
density ρs of 2800 kg/m3, the external pressure at the top of the cap, is around Pex = 21.95 MPa. For L in the order of
a few meters to tens of meters, the pressure drop along the cap is small compared to Pex (∼3%), which is a necessary
condition to obtain the approximated analytical equation in Girona et al. (2019).

In order to constrain the values of the permeable cap parameters properties, we first investigated the effect of
the parameters on the natural frequency fnat of the resonator. We computed fnat using equation 26 in Girona et al.
(2019) for different values of the cap properties (thickness L, permeability κ and porosity φ), and varying values of D
(Supplementary Fig. S14). In order to obtain values of fnat in the range of the observed tremor (0.3 - 4 Hz), it was
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determined that L must be in the range between 5 and 30 m (Supplementary Fig. S14), and φ between 0.01 and 0.1%.
These results are similar for different values of the mean gas flux Q0 (1 - 700 kg/s, Supplementary Fig. S14).

Additionally, we inverted several models for different values of the parameters investigated (Supplementary Fig.
S15, Supplementary Fig. S16). Very thin permeable caps (L ≤ 15 m), or a cap porosity of 0.1 % yield values
of gas mean flux Q0 which are significantly larger than the expected gas flux from the reservoir decompression
(Appendix Appendix C, Supplementary Fig. S19). The permeability κ has no significant effect on the models
(Supplementary Fig. S15b and Supplementary Fig. S16b). Based on these results, we fixed these parameters as
shown in Table B.1.

Appendix C. Gas flux determination based on the reservoir decompression

During Phase 2, radial tilt was directly correlated to the magma reservoir pressure (Anderson et al., 2019). We
used the scaling factor at station UWD (0.078 ± 0.006 MPa per microradian of radial tilt) established by Anderson
et al. (2019) to obtain the reservoir pressure time series (Figure 8a). Tilt data came from Johanson and Miklius (2019).
We considered data from the start of the deflation on May 1st, 2018, to the first collapse on May 17, 2018. After that
date, the compression induced by the collapses complicates the analysis since the amount of resorption that occurred
is unknown.

First, we rotated the north and east components to obtain the radial component with respect to the source of
deformation, i.e., the reservoir, at a backazimuth of 136°. Then, we corrected the tectonic offset caused by the M
6.9 detachment earthquake on May 5. After scaling tilt to obtain pressure, assuming an initial pressure of 45 MPa
(Anderson et al., 2019), we downsampled the time series from 1-minute to 1-hour period and smoothed the data by
taking the median in a centered 1-day-long moving window (red line in Figure 8a).

Next, considering the pressure variation and a typical basaltic magma composition with 50.3 wt% SiO2 (Thorn-
ber et al., 2003), we calculated the degassing path using the exsolution model of Dixon (1997) as implemented by
Iacovino et al. (2021) following Newman and Lowenstern (2002). In the open-system degassing model, the magma
is depressurized along a series of steps. At each step, the melt composition and vapor compositions are re-calculated
until they are in equilibrium with the vapor exsolved during that step (Newman and Lowenstern, 2002).

With regards to the volatile budget of the starting magma composition, we considered two end-member scenarios
based on Gerlach and Graeber (1985) modeling for the Kı̄lauea summit reservoir: a CO2-rich magma with 0.3 wt%
H2O and 0.65 wt% CO2 and CO2-poor magma with 0.27 wt% H2O and 0.02 wt% CO2 (Supplementary Fig. S19).
The variation between these two compositions depends on the amount of exsolution that occurred in the reservoir
since the time of supply (Gerlach and Graeber, 1985; Gerlach, 1986).

The fluid proportion was converted to mass by multiplying by ρ and V . Those values were taken from Anderson
and Poland (2016) and Anderson et al. (2019), respectively. We consider two end-member scenarios based on the
range of the estimates: 1. ρ = 2550 kg/m3 and V = 2.5 km3, and; 2. ρ = 2650 kg/m3 and V = 7.2 km3. Finally, the
gas flux rate QD was obtained by differentiating the mass with respect to time.

Appendix D. Infrasonic tremor

Appendix D.1. Detection

We analyzed data from the array of infrasound sensors NPT (Figure 1). The available time period for this data,
May 4-25, 2018, covers most of Phases 2 and 3 (Figure 2). To increase the signal-to-noise ratio of the infrasound
records we used two techniques. First, we estimated the magnitude squared coherence (Cxy) between sensors 1 and 2
of the array, which are 52 m apart. For two discrete-time signals x and y, the coherence is defined as:

Cxy( f ) =

∣∣∣(S xy( f ))
∣∣∣2

S xx( f ) S yy( f )
(D.1)

where S xx( f ) and S yy( f ) are the power spectral density estimates of x and y, respectively, and S xy( f ) is the
cross-spectral density estimate of the two signals (Welch, 1967). We computed Cxy for every 1-hour window, and
downsampled the data by taking the mean of each 0.01 Hz bin between 0.01 and 8 Hz.
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Secondly, we used the least trimmed squares (LTS) algorithm, which computes the cross-correlation function and
lag times between all pairs of sensors (Bishop et al., 2020). The main purpose of the LTS algorithm is to determine
the sound velocity and backazimuth of the source of the infrasonic signal. In this algorithm, the median of the cross-
correlation maxima is used as a coherence metric of the potential signal. In our processing, we first filtered the signal
between 0.1 and 5 Hz, and then ran the LTS algorithm for a 30 s-moving window with 50% of overlap.

In order to further assess the correlation of the activity at the Overlook vent with the infrasound data, we synchro-
nized the LTS results with the time-lapse movie of the thermal camera (Anderson et al., 2019); the sped-up sound
reproduction of the beamformed infrasound recordings; and the relative seismic and infrasound amplitude measure-
ments. The beamformed infrasound data was obtained by stacking the traces from all sensors, after removing the
travel-time differences, based on an assumed acoustic plane wave arriving from the Overlook vent.

We detected coherent infrasonic signals coming from the direction of the Overlook vent (Figure 1) (∼180° backaz-
imuth, Supplementary Fig. S20). Between May 5 and 8, the signal was weak and intermittent, with frequencies above
1 Hz (Supplementary Fig. S20a). Starting on May 7 at 11:00 (UTC), a weak low-frequency (∼0.5 Hz) signal was
detected. This signal gained strength by May 8 at 01:00 (UTC), and was characterized by a broadband spectral peak
at ∼0.5 Hz and other higher frequency peaks (1-5 Hz, Supplementary Fig. S20b). On May 10, this signal disappeared
suddenly.

The synchronization of the thermal camera images and the infrasound analysis results (Supplementary Movie
S2) reveals that shorter signals detected between May 5 and 8 correspond to explosions, such as the one shown
in Supplementary Fig. S20e. After an explosion on May 7 at 08:10 (UTC), the lava became profusely bubbly
(Supplementary Fig. S20f). This type of degassing activity continued for the rest of the thermal camera recording,
which ended on May 9 at 18:20 (UTC). This activity timely coincided with the detected continuous infrasonic tremor
(May 7-11, Supplementary Movie S2).

Appendix D.2. Helmholtz resonance
The infrasonic tremor, detected between May 7 and 10, 2018 (Supplementary Fig. S20), coincided with a profuse

bubbling activity in the lava lake (Supplementary Movie S2), which at that moment had drained significantly, leaving
behind a void pipe of around 250 m in length (Supplementary Fig. S20a). Based on these observations and following
Fee et al. (2010), we consider that the degassing at the lava surface established pressure oscillations at the pipe,
generating a Helmholtz resonance (Figure 6a).

The Helmholtz resonator consists of a cavity with an opening or neck with length L. A typical example of a
Helmholtz resonance is when air is blown into a bottle creating a tonal sound. In our magmatic vent case, as gas is
being pushed out from the lava surface, the pressure in the cavity decreases. The pressure gradient causes a pull of the
air in the neck (i.e., rim of the vent) back into the cavity, generating standing waves.

The frequency f of the Helmholtz resonance is given by:

f =
c

2π

√
S n

VL′
, (D.2)

where c is the speed of sound, S n is the surface area of the resonator neck, V is the volume of the resonator cavity,
and L′ = L + ∆L is the effective length of the neck, which accounts for the extra volume of air that is displaced in the
neck. A correction factor c f to obtain the effective length, depends on the geometry of the resonator, specifically the
ratio ξ between the section plane of the neck (S n) and the section plane of cavity (S c), ξ = S n/S c (Catapane et al.,
2022). The effective length is given by L′ = L(1 + c f ξ).

Furthermore, the quality factor of the resonance Q is given by:

Q = 2π

√
V

(
L′

S n

)3

. (D.3)

The volume of the cavity (i.e., the pipe) can be realistically approximated as a cylinder (V = πr2
c h), with radius rc

and height h. Equation D.2 and Equation D.3 then become:

f =
c
2

√
S n

π3r2
c hL′
, (D.4)
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and:

Q = 2

√
π3r2

c h
(

L′

S n

)3

. (D.5)

We solved Equation D.4 and Equation D.5 together for the cavity radius rc and the equivalent length of the neck
L′. The other parameters ( f , Q, S n, c, h) were estimated as described in Table D.2. We measured f and Q in a
5-minute moving window with a 30 s-step and obtained rc and L′ for each window.

Table D.2: Helmholtz resonator model parameters
Parameter Value Reference/Determination
f 0.47 ± 0.053 Hz From the infrasound records. Center frequency of the lowest and most

prominent spectral peak (median ± standard deviation).
Q 1.02 ± 0.25 From the infrasound records, ratio of the center frequency to the fre-

quency band where the energy reaches half of its value (median ± stan-
dard deviation).

S n π × 125 m × 90 m As an ellipse, from visual observation of satellite image.
c 468 m s−1 For a gas mixture at ∼200◦C (Kumagai and Chouet, 2000)
h 290-360 m Linear increase of empty section of the pipe from the lake elevation

data (Patrick et al., 2022).

Our modeling yielded L′ = 37 ± 7 m and rc = 154 ± 24 m. Although the actual length L of the neck depends
on an unknown correction factor, its upper limit is defined by the effective length (i.e. L < 37 m). Our estimated rc

is consistent with the three-dimensional photogrammetric model of the crater by Patrick et al. (2022). The expected
change of frequency from the cavity growth, due to the drainage of the lava, is not significant (0.5 − 0.45 Hz = 0.05
Hz), and it would be difficult to observe since the width of the peak (0.46 ± 0.122 Hz) is much larger (Supplementary
Fig. S20a). The lower-amplitude, higher-frequency peaks could be modeled following Fee et al. (2010), but it is out
of the scope of this work.

Appendix E. Supplementary data

Supplementary data to this article can be found online at https://www.overleaf.com/3141127523ymfrnvdmfjph
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Shelly, D.R., Thelen, W.A., 2019. Anatomy of a Caldera Collapse: Kīlauea 2018 Summit Seismicity Sequence in High Resolution. Geophysical

Research Letters 46. doi:10.1029/2019GL085636.
Soubestre, J., Chouet, B., Dawson, P., 2021. Sources of Volcanic Tremor Associated With the Summit Caldera Collapse During the 2018 East Rift
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