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Abstract 

This report presents an open-source tool (C-NARS/P) created to classify narratives in survey data using 

pre-trained language models. Unlike conventional machine learning methods, pre-trained language models 

such as BERT can utilize context of words in text to make accurate predictions. In this report, technical 

details of functions and parameter setups for implementing pre-trained language models for classification 

are provided with screenshots of the code file to guide users for validation and improvement of the 

implementation. C-NARS/P can be modified for a wide range of text classification tasks with ease.   
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Background 

This project uses machine learning to automate the classification of occupation types depicted in narrative 

responses in longitudinal survey data. Typical machine learning approaches use manual classifications of a 

subset of the data (labeled data) to automate classification of the remainder of the data. To do this, they 

perform several tasks: (1) pre-processing the raw data, (2) training candidate machine learning models, (3) 

developing and validation of the candidate models, and (4) testing and implementation of the optimal model. 

These tasks are common procedures conducted in previous studies in predicting occupational or 

demographic classes using text data (Boselli et al, 2018; Ikudo et al, 2019; Lampos et al., 2016; Mac Kim 

et al., 2017; Preoţiuc-Pietro, Lampos, and Aletras, 2015; Preoţiuc-Pietro and Ungar, 2018).  

 
1 jabramow@umich.edu; Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, 

MI USA 
2 jkim682@illinois.edu; School of Information Sciences, University of Illinois at Urbana-Champaign, IL USA 
3 jinseokk@umich.edu; Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, 

MI USA 
4 School of Information, University of Michigan, Ann Arbor, MI USA 



2 
 

In our previous study (MRDRC UM21-4 “What We Talk about When We Talk about Self-Employment: 

Examining Self-Employment and the Transition to Retirement among Older Adults in the United States”), 

we implemented these machine learning approaches to classify occupation types in the Health and 

Retirement Study data. Our approach first pre-processed all words in the industry and occupation and 

employer name narratives in the data. This pre-processing included cleaning, standardization, stop-word 

removal, and stemming which are typical procedures in natural language processing (Berry and Castellanos, 

2004). Then, the approach transformed the pre-processed words into a vector (list) of word tokens. Next, 

to train candidate machine learning models, the vectors of tokens were fed into various machine learning 

algorithms including Logistic Regression, Naïve Bayes, Random Forests, Gradient Boosted Trees, and 

Support Vector Machine to learn frequencies and combinations of tokens that best associate each narrative 

to one of the classes using a subset of the data that have been manually coded. To develop and validate the 

candidate models, the approach identified the best performing combinations of feature weights and 

increases generalizability of the machine learning models by implementing various modifications of 

parameters and data on another subset of the manually coded data. Finally, testing and implementation of 

the optimal classification model identified from this training and development and validation were applied 

to the remainder of the unclassified narratives to assign each narrative one of the occupation classes. We 

created a code file named ‘C-NARS’ (Classification of Narratives in Survey Data) that implements the 

machine learning procedure (Abramowitz and Kim, 2021). 

Although the implementation of existing machine learning methods provided us with valuable insights into 

occupation type distributions and changes over time, the prediction models also produced ambiguous results 

for a substantial number of instances, which had to be manually labeled by human coders. To improve our 

prediction models, we use BERT in our new project.  

BERT (Bidirectional Encoder Representations from Transformers) can classify text using a technique called 

fine-tuning (Devlin et al., 2019). Fine-tuning is a process of adapting a pre-trained language model to a 

specific task by training it on task-specific labeled data. The general approach to fine-tune BERT for text 

classification involves: 

(1) Preprocessing: The input text is tokenized, and special tokens such as [CLS] and [SEP] are 

added to the beginning and end of the input text, respectively. This step is different from 

preprocessing steps for conventional machine learning where a series of data pre-processing steps 

such as tokenization, stemming, stop-word removal, and POS (part of speech tagging) is conducted 

by heuristics or algorithms specifically determined by users for tasks. 

(2) Embedding: The tokenized input text is passed through BERT's pre-trained neural network, 

which generates contextualized word embeddings for each token. 

(3) Classification Head: A classification head is added on top of BERT's neural network to perform 

the actual classification task. This can be a simple linear layer or a more complex neural network 

architecture. 

(4) Fine-tuning: The entire model (pre-trained BERT plus classification head) is trained on the task-

specific labeled data. During this training process, the weights of both BERT and the classification 

head are updated to optimize classification performance. 

(5) Prediction: Once the model is trained, it can be used to predict the class label of new, unseen 

input text by passing it through the pre-processing and embedding steps, and then through the 

trained classification head. 
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BERT has achieved state-of-the-art performance on a wide range of text classification tasks, including 

sentiment analysis, question answering, and natural language inference (Koroteev, 2021). The ability to 

fine-tune a pre-trained language model like BERT on a specific classification task has made it a powerful 

tool in the field of natural language processing. 

 

Technical Details 

This project produces a code file with a file extension ‘.ipynb’ (CNARSP_v1.ipynb) and implements the 

machine learning procedure described subsequently. The code is written in a script language (‘python’ 

version 3.6.5 or above) using open-source machine learning (‘scikit-learn’) and Natural Language 

Processing (‘Transformers’) packages and the pre-trained language model BERT (BERT-base). The code 

set is named ‘CNARS/P’ (Classification of Narratives in Survey Data with Pre-trained language models) 

and will be shared on a public code repository (https://github.com/TEEDLab/CNARSP) for validation, 

reuse, and improvement by researchers. 

Input File 

The code set accepts two input data sets – training data and test (target) data - in a csv file format. Figure 1 

shows a partial preview of the input data used for the project. Each input data set consists of three columns: 

Project id, Narrative (or Text), and Class. In the figure, project id and narrative information are blinded as 

the data sets used for this project contain IRB-protected information. 

(1) Project id: this is a series of numbers or alphanumeric characters used to refer to a unique 

instance (case).  

(2) Narrative: in this column, a textual narrative of job description is recorded. 

(3) Class: One of occupational classes. During implementation, class names in any text string 

format will be converted into integers (0, 1, 2, …). 

 

Figure 1: Example of Input Data for C-NARS/P 
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Implementation of Prediction 

1. Setup 

1-1. Install Packages and Load Libraries 

The implementation of BERT requires installation of transformers, PyTorch and imblearn. Below is a 

screenshot of packages and tools that need to be installed. 

 

Below is a list of libraries and modules required to implement the entire prediction procedure. 

 

 

This code displays output in plots. Accordingly, configuration of plot format and color scheme is necessary. 

 

 

1-2. Check GPU for Training 
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BERT requires a GPU for implementation. We used an NVIDIA GPU (Model: Quadro RTX 4000). Using 

a GPU requires CUDA for proper configuration in computing hardware. The code below shows steps and 

example outputs for checking the configuration of the GPU on the local machine we used for our project. 

 

Before running the process, it is necessary to check GPU memory and utilization. For this step, by running 

‘!nvidia-smi’, a comprehensive report will be displayed as shown below. 
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One issue with using a GPU is that it often needs to be cleaned of memory before running another iteration 

of implementation. This can be easily done by clearing the occupied memory as follows: 

 

2. Load Data 

Below is a function loading data from a local directory in a system or a stand-alone machine. After loading 

the data, the function displays information about the data such as number of rows and columns as well as 

missing values. Note that the function is customized for the data in this project. As a result, some code may 

be unnecessary for other data. Only the first few lines are captured in the figure shown below for illustration 

purposes. 

 

 

3. Data Processing 

3-1. Check distribution of Token Length 

The maximum input token length in BERT is 512. This means that any sequence longer than 512 tokens 

will be truncated. BERT's input consists of tokenized text, which is then processed by its neural network 
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architecture to generate contextualized representations of the input. The 512 token limit is a constraint 

imposed by the architecture and the available memory resources. The longer the token length, the more 

computing resources are needed. Given resource constraints, we set a limit (first 150 or less) to the number 

of tokens to be used for prediction. The function below checks the distribution of token lengths in the loaded 

data and displays it. 

 

 

3-2. Create a PyTorch Dataset 

We use PyTorch to run BERT on a local system. PyTorch is an open-source machine learning framework 

that was developed primarily by Facebook's AI research team. It is designed to provide a flexible and 

efficient platform for building and training machine learning models. One of the key benefits of PyTorch is 

its ease of use and flexibility. It provides a simple and intuitive interface for building and training models, 

making it easy for researchers and developers to experiment with different architectures and algorithms. 

Additionally, PyTorch supports both CPU and GPU acceleration, making it ideal for training large-scale 

models. This is why we used PyTorch for implementing BERT. The function below shows how we 

converted loaded data into the PyTorch dataset format. 
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3-3. Sampling 

This function was created to address any class imbalance problem in the loaded data. Class imbalance in 

machine learning occurs when the number of instances in one class is significantly lower than the number 

of instances in another class. This can occur in binary classification problems, where one class is rare 

compared to the other, or in multi-class problems, where one or more classes have very few examples. 

Addressing class imbalance properly is important because it can lead to biased models that have poor 

performance for the minority class. When a model is trained on a dataset with imbalanced classes, it tends 

to predict the majority class more frequently than the minority class, leading to lower precision, recall, and 

F1 scores for the minority class. This can be a problem in many real-world applications where the minority 

class is often the one of interest, such as fraud detection, medical diagnosis, and rare event prediction.  

There are several techniques that can be used to address class imbalance in machine learning, including: 

resampling (either over-sampling the minority class or under-sampling the majority class to balance the 

dataset), cost-sensitive learning (assigning higher misclassification costs to the minority class during model 

training), synthetic data generation (generating synthetic data for the minority class to increase the number 

of instances in that class), and ensemble methods (combining multiple models to improve the prediction 

performance on the minority class). For our project, we created a function for resampling. Although we 

ultimately did not use any of them, this function can be helpful for users who want to test how resampling 

affects machine learning performance in their projects. 
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3-4. Create a Data Loader and Classifier 

These steps enable BERT to read loaded data and conduct prediction. Here, we relied on forward attention 

in BERT for prediction. The forward attention mechanism in BERT allows each token to attend to all the 

tokens that come before it in the input sequence. During the forward attention process in BERT, each token 

in the input sequence is transformed into a query vector, a key vector, and a value vector. The query vector 

is used to attend to the key vectors of all the tokens that come before it, and the attention weights are 

computed using a dot product between the query and key vectors. The resulting attention weights are then 

used to weigh the value vectors of the previous tokens, which are combined to generate the final 

contextualized embedding for the current token. For example, if we want BERT to predict if a given 

sentence, “I hate python. I spend many hours debugging a code file in python,” refers to a snake or a 

programming language, BERT’s forward attention will create contextualized embeddings for the sentence 

(‘python’ is associated with ‘debugging,’ ‘code,’ ‘file’, etc.) and use them to predict what label (Snake or 

Programming Language) is likely to follow the sentence. By attending to the tokens that come before it, the 

forward attention mechanism in BERT enables the model to capture important context and dependencies 

between words in the input sequence, which is crucial for many natural language processing tasks, such as 

text classification, question answering, and language generation.  
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4. Training and Validation 

4-1. Training 

Training in classification using BERT refers to the process of adapting the pre-trained BERT model to a 

specific classification task by fine-tuning it on task-specific labeled data. During training, the BERT model 

is first initialized with pre-trained weights learned from a large corpus of text. The model is then fine-tuned 

on a smaller labeled dataset for a specific classification task. During the training for our project, cross-

entropy loss was used as a loss function.  

Cross-entropy loss is a widely used loss function in deep learning for classification tasks and is commonly 

used for training neural networks on large, labeled datasets. It is used to measure the difference between 

the predicted probability distribution over the possible classes and the true probability distribution (i.e., 

one-hot encoded labels) for the training examples. The cross-entropy loss function is defined as follows:  

L(y, ŷ) = -∑i yi log(ŷi) 

where y is the true label, ŷ is the predicted probability distribution over the possible labels, and i is the index 

of the class. The cross-entropy loss penalizes the model more heavily for incorrect predictions that have 

high confidence, and less for incorrect predictions that have low confidence. During BERT training for 

classification tasks, the goal is to minimize the value of the cross-entropy loss function by adjusting the 

weights of the neural network. This is typically done using an optimization algorithm such as stochastic 

gradient descent (SGD) or Adam. Below is the screenshot of the function for training that includes the 

implementation of the loss function. 
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4-2. Validation 

Evaluation on validation data is required for classification using BERT because it helps to prevent 

overfitting and provides a way to tune hyperparameters for the model. During BERT training, the model is 

optimized to minimize the loss function on the training data. However, the model's true performance on 

unseen data is unknown. Therefore, it is essential to evaluate the model's performance on a separate 

validation dataset that the model has not seen during training. Evaluation on the validation dataset allows 

us to monitor the model's performance during training and to detect if the model is overfitting to the training 

data. Overfitting occurs when the model becomes too specialized to the training data and fails to generalize 

well to new, unseen data. By monitoring the model's performance on the validation set during training, we 

can adjust the model's hyperparameters to prevent overfitting and improve its generalization performance. 

A function for validation is implemented in our implementation as shown in the code screen-captured below.  
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4-3. Training Loop 

In classification using BERT, training is usually conducted multiple times and each iteration of training is 

called an ‘epoch.’ Formally, an epoch in BERT-based machine learning tasks refers to one complete iteration 

of the training data through the neural network. During an epoch, the model is trained on the entire training 

dataset, with the training examples passed through the network in batches. One epoch is completed when 

all the training examples have been passed through the network once. The number of epochs is a 

hyperparameter that is typically set before training and determines how many times the entire training 

dataset will be passed through the network during training. Increasing the number of epochs may improve 

the model's accuracy, but it can also increase the risk of overfitting, where the model becomes too 

specialized to the training data and performs poorly on unseen data. We set the number of epochs at 4 

following the recommendations of the developers of BERT. During each epoch, the weights of the neural 

network are updated based on the optimization algorithm and the loss function, which is detailed above. 

The screenshot below shows part of the function for iterating training and displaying validation results. 
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5. Prediction and Evaluation 

5-1. Prediction 

The code shown below provides predictions by prediction models learned during training iterations. An 

important note is that during prediction, a softmax function was used in our project.  

The softmax function is defined as follows: 

softmax(z_i) = e^(z_i) / (sum_j e^(z_j)) 

where z_i is the raw output value (logit) for class i, and the denominator is the sum of the exponential values 

of all logits for all possible classes. The softmax function maps the logits to a probability distribution that 

sums to one, with each class having a probability value between 0 and 1. In BERT-based classification, the 

softmax function is used to convert the logits into a probability distribution over the possible classes, which 

allows the model to make a prediction for the most likely class for a given input. The predicted class is the 

one with the highest probability value in the probability distribution. 
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5-2. Evaluation 

Prediction results are evaluated on test data that is set aside from the labeled data. The accuracy of prediction 

is measured in the form of a confusion matrix. In classification, a confusion matrix is a table that 

summarizes the performance of a classification model by comparing the predicted labels to the actual labels 

for a set of data. Below is an example confusion matrix for a binary classification problem, where the model 

is predicting whether a text refers to ‘manager’ (positive class) or not (negative class): 

 Predicted Positive Predicted Negative 

Actual Positive True Positive (TP) False Negative (FN) 

Actual Negative False Positive (FP) True Negative (TN) 

 

The rows of the matrix represent the actual labels, and the columns represent the predicted labels. The four 

quadrants of the matrix correspond to the following:  

True Positive (TP): The number of positive examples that were correctly classified as positive by 

the model. 

True Negative (TN): The number of negative examples that were correctly classified as negative 

by the model. 
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False Positive (FP): The number of negative examples that were incorrectly classified as positive 

by the model. 

False Negative (FN): The number of positive examples that were incorrectly classified as negative 

by the model. 

From the confusion matrix, we can calculate precision and recall measuring the accuracy of prediction.  

Precision is a measure of the accuracy of positive predictions. It is the ratio of true positives to the total 

number of positive predictions made by the classifier. It is calculated as: 

precision = TP / (TP + FP) 

Recall is a measure of the completeness of positive predictions. It is the ratio of true positives to the total 

number of actual positive examples in the data. It is calculated as: 

recall = TP / (TP + FN) 

In general, precision measures how well the classifier can correctly identify positive examples, while recall 

measures how well it is able to capture all positive examples in the data. 

Below is the screenshot of the code for generating a confusion matrix as well as estimating  precision and 

recall from prediction results. Note that precision and recall are calculated from functions 

(confusion_matrix and classification_report) innate in the sklearn package (see 1-1. Install Packages and 

Load Libraries). 

 

 

5-3. Prediction Probability 

In most classification tasks, prediction results are provided in the format of class name (technically, integers 

representing classes). In our project, however, prediction results are provided in the format of probability 

score. This output format was deliberately chosen because we wanted prediction results with certain levels 

of uncertainty to be passed to manual inspection for high accuracy. Many machine learning models are 

designed to produce probability scores for prediction but set up to convert the scores into binary classes if 

the probability score is 0.5 or above (positive; 1; yes, etc.; otherwise, negative; 0; no, etc.). We tweaked the 
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output format of results by prediction model so a probability score for each predicted instance is provided 

in a float number. The code snippet below shows the function for this job. 

 

 

6. Main Function 

The functions listed above implement specific jobs that form building blocks of the entire BERT 

implementation. A main function is needed to integrate these functions, so they are implemented organically. 

Below is the screenshot of the main function. 

 

 

The main function consists of two parts. First, it will run a typical training procedure to test if a parameter 

‘test_unlabel_on’ is turned off. If it is, the function will implement training and test using the labeled data. 

This option is turned on when users need to evaluate prediction performance of a model. Second, if the 
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parameter is turned on, it will run the prediction task for unlabeled text instances. This applies to a real-

world scenario where users want to train a prediction model and predict labels for unlabeled data. The 

trained model’s performance is evaluated on labeled data with ‘test_unlabel_on’ turned off. These two parts 

are not independent: The second part relies on the first part. 

As such, to implement the main function, we need two functions of implementation with ‘test_unlabel_on’ 

turned on or off. Below is part of the code for the case with ‘test_unlabel_on’ turned on. It consists of nine 

steps: (1) Data Loading, (2) Train and Test Splitting, (3) PyTorch Data Formatting, (4) Sampling, if needed, 

(5) Loading Auto-tokenizer, (6) Model Training, (7) Evaluating Model Performance, and (9) Probability 

Prediction. Each step is implemented by a function described above except Loading Auto-tokenizer. 

In BERT, an auto-tokenizer is a built-in tokenizer that automatically converts raw input text into tokens that 

can be understood by the BERT model. The auto-tokenizer is based on WordPiece tokenization, which is a 

subword tokenization algorithm. It splits words into smaller subwords and then represents them as tokens. 

This allows the model to handle out-of-vocabulary words and capture the meaning of the subwords. The 

auto tokenizer also conducts special token addition. Here, special tokens refer to strings [CLS] 

(classification token) and [SEP] (separator token) which are added to the beginning and end of the input, 

respectively, to help the model distinguish between different parts of the input. 

 

The implementation of the case with ‘test_label_on’ turned off is different. It consists of five steps: (1) Data 

Loading (here the data refer to unlabeled data to predict labels for), (2) Loading Best Trained Model (this 

model is generated from the case with ‘test_label_on’ turned on), (3) Prediction, (4) Evaluating Model 

Performance, and (5) Probability Prediction. Below is part of the code for implementation. 
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7. Parameter Setting 

The functions listed above are the core components of the code file that implements BERT-based prediction 

of text data. Several auxiliary functions (especially, displaying results in plots) are not shown in this report 

as they do not greatly affect the functionality of the code. Before implementing the code, users are required 

to provide information into the code for proper implementation. Below is the screenshot of the code that 

contains information about parameters users need to set before implementing the code. It shows the names 

and parameters used for a mock-up dataset. Note that parameter names are lowercased or uppercased 

following common programming practices. 

(1) input_filename: Name of the input file. The file format is supposed to be csv with each column 

separated by commas. The input file format can be easily modified by changing data import 

parameters in 2. Load Data. 

(2) column_name: This column asks users to specify which column(s) in the input data will be used 

as input. In our project, we named as ‘text’ the column that contains text strings to be fed into the 

machine learning process. 

(3) test_filename: This is the name of the file to test. The value for this parameters should be 

provided in a text string format in parentheses if ‘test_unlabel_on’ is 1 (turned on). Otherwise, set 

the value as None. 

(4) num_class: This specifies how many classes are to be predicted during implementation. 

(5) sampling_on: 0 for no sampling; 1 for sampling 
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(6) sampling_type: Use when sampling_on = 1. ‘over’ denotes oversampling, while ‘under’ denotes 

undersampling.  

(7) pretrained_model_name: We used ‘bert-base-cased’ for this project. Pretrained models can be 

downloaded from the websites for each model. Each model is updated according to its developer’s 

schedule. New models based on BERT are being developed to customize BERT to specialized 

Natural Language Processing tasks (Lee et al., 2020; Liu et al., 2019).  

For example, SciBERT is a pre-trained language model that is specifically designed for scientific 

text (Beltagy et al., 2019). It was developed by the Allen Institute for Artificial Intelligence (AI2) 

in collaboration with the University of Washington and the Paul G. Allen School of Computer 

Science & Engineering. SciBERT is based on the BERT (Bidirectional Encoder Representations 

from Transformers) architecture and is pre-trained on a large corpus of scientific documents, 

including papers from the fields of computer science, physics, and biology. The pre-training is done 

using a masked language modeling (MLM) task, where the model is trained to predict masked 

words within a sentence. The unique aspect of SciBERT is that it is trained on scientific text, which 

is often more technical and domain-specific than general language. This allows it to capture 

scientific context and knowledge that may be missed by general language models. SciBERT has 

been shown to outperform general language models on a variety of scientific NLP tasks, such as 

named entity recognition, relation extraction, and sentence classification. It has also been used in 

several research projects in the fields of biomedical informatics, chemistry, and computer science.  

For our project, we used the original BERT model developed by Google Research. This BERT 

model has been used as baseline in many studies and shown to produce stable performance. 

However, if there is a new BERT model specialized in a Natural Language Processing task similar 

to ours, it would be worth testing the new one to see if any substantial improvements in prediction 

are possible. 

(8) internet_on: 1 for downloading via the Internet connection; 0 for loading the model locally 

Machines that implement BERT are typically connected to the Internet because BERT models are 

deposited on servers maintained and updated by each model’s developers. In cases where the 

Internet connection is unavailable, users need to download models to the local system or transfer 

them using portable drives. The size of the BERT base model we used is about 423MB. 

(9) modelname_string: name of the model 

Pretrained_model_folder: name of the folder where the model is located. 

(10) MAX_LEN: Maximum length of an input text instance 

As detailed in 3-1. Check distribution of Token Length, the maximum input token length in BERT 

is 512. This means that any sequence longer than 512 tokens will be truncated. We set a limit (first 

150 or less) to the number of tokens to be used for prediction. 

(11) BATCH_SIZE: 16 or 32 

In BERT, the batch size refers to the number of input sequences that are processed in parallel during 

training. During training, the BERT model receives input sequences in batches of fixed size. The 

batch size can be specified by the user and is usually chosen based on the available computing 

resources (e.g., GPU memory) and the size of the dataset. The batch size affects the training speed 

and the memory requirements of the model. A larger batch size can result in faster training since 



20 
 

the model processes more input sequences in parallel, but it may also require more memory. On the 

other hand, a smaller batch size can reduce the memory requirements, but it may result in slower 

training. The batch size can also affect the quality of the model. A smaller batch size can result in 

more noisy gradients, which can lead to slower convergence and lower accuracy. On the other hand, 

a larger batch size can result in more stable gradients, which can lead to faster convergence and 

higher accuracy. The choice of batch size in BERT depends on various factors, including the 

available computing resources, the size of the dataset, and the desired training speed and accuracy. 

In our project, we chose 16 based on suggestions from the developers of BERT. 

(12) EPOCHS: 2, 3, or 4 

 In 4-4. Training Loop, the meaning of an epoch in BERT-based machine learning was explained. 

We chose ‘4’ following suggestions from the BERT developers. 

(13) LEARNING_RATE: 5e-5, 3e-5, or 2e-5 

In machine learning and deep learning, the learning rate is a hyperparameter that controls the step 

size at which a model's parameters are updated during training. The learning rate determines how 

quickly the model learns from the training data. A higher learning rate means that the model updates 

its parameters more aggressively, which can result in faster convergence but may also cause the 

model to overshoot the optimal solution. Conversely, a lower learning rate means that the model 

updates its parameters more gradually, which can result in slower convergence but may also 

produce more stable and accurate results. In BERT, the learning rate is typically set using a 

technique called "learning rate scheduling," which involves gradually decreasing the learning rate 

over time as the model converges. This allows the model to make larger updates to its parameters 

in the early stages of training when it is still far from convergence and smaller updates later when 

it is closer to the optimal solution. The optimal learning rate for a BERT model depends on various 

factors, including the size of the dataset, the complexity of the task, and the available computing 

resources. We used ‘5e-5’ following the recommendations from the BERT developers. 

(14) eval_on: 0 for no; 1 for yes. If eval_on = 1, a confusion matrix and a classification report are 

generated. 

(15) proba_on: 0 for no; 1 for yes. 

(16) output filename suffix: This assigns a text string at the end of an output file’s name 
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8. Running Code 

Once the parameters are set, the code is ready to run. On a Jupyter Notebook environment, users can simply 

click the ‘Run’ button in a Jupyter Notebook to implement the BERT-based prediction. On a command 

prompt, users can type ‘python’ (or ‘python3’ depending on OS) in combination with the code file name 

and press ‘Enter’ to run the code. 

Output File 

Once the implementation of the code is completed, an output file with a CSV file extension is created and 

saved in the folder where the code set is located. Figure 2 shows part of the output file as an example. 
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Figure 2: Example of Output File 

 

In the file, an instance (row) is assigned probability scores to refer to each of three classes (‘1,’ ‘2,’ and ‘3’) 

and a label (‘pred’ column) decided by a machine learning model. As the code set run for this example case 

does not include labels for test data, actual labels (‘act’ column) are not shown. In the example file, the first 

instance (Row #2) is assigned ‘3’ for a label because its probability score for the class ‘3’ is 0.981881. Using 

the probability scores assigned to instances, this project filters instances that are highly likely to refer to a 

specific class.  

 

 

 

 

 

 

 

 

 

 

 



23 
 

References 

Abramowitz, J., & Kim, J. (2021). C-NARS: An Open-Source Tool for Classification of Narratives in 

Survey Data. Technical Report, Survey Research Center, University of Michigan. 

Beltagy, I., Cohan, A., & Lo, K. (2019). SciBERT: Pretrained contextualized embeddings for scientific 

text. arXiv preprint arXiv:1903.10676.  

Berry, Michael W., & Castellanos, Malu (2004). Survey of text mining. Computing Reviews, 45(9), 548. 

Boselli, Roberto, Cesarini, Mirko, Mercorio, Fabio, & Mezzanzanica, Mario (2018). Classifying online 

job advertisements through machine learning. Future Generation Computer Systems, 86, 319-328. 

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional 

Transformers for Language Understanding.  

Ikudo, Akina, Lane, Julia I., Staudt, Joseph, & Weinberg, Bruce A. (2019). Occupational classifications: A 

machine learning approach. Journal of Economic and Social Measurement, 44(2-3), 57-87. 

Koroteev, M. (2021). BERT: a review of applications in natural language processing and understanding. 

arXiv preprint arXiv:2103.11943.  

Lampos, Vasileios, Aletras, Nikolaos, Geyti, Jens K., Zou, Bin, & Cox, Ingemar J. (2016). Inferring the 

socioeconomic status of social media users based on behaviour and language. Paper presented at 

the European conference on information retrieval. 

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2020). BioBERT: a pre-trained 

biomedical language representation model for biomedical text mining. Bioinformatics, 36(4), 

1234-1240.  

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., . . . Stoyanov, V. (2019). Roberta: A robustly 

optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.  

Mac Kim, Sunghwan, Xu, Qiongkai, Qu, Lizhen, Wan, Stephen, & Paris, Cécile. (2017). Demographic 

inference on twitter using recursive neural networks. Paper presented at the Proceedings of the 

55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 

Preoţiuc-Pietro, Daniel, Lampos, Vasileios, & Aletras, Nikolaos. (2015). An analysis of the user 

occupational class through Twitter content. Paper presented at the Proceedings of the 53rd Annual 

Meeting of the Association for Computational Linguistics and the 7th International Joint 

Conference on Natural Language Processing (Volume 1: Long Papers). 

Preoţiuc-Pietro, Daniel, & Ungar, Lyle. (2018). User-level race and ethnicity predictors from twitter text. 

Paper presented at the Proceedings of the 27th International Conference on Computational 

Linguistics. 

 

 

 

 


