PARTITIONING OF Mn AND CO BETWEEN # ZnS AND FeS, AS A FUNCTION OF #### TEMPERATURE by George Alexander Reilly A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology) in The University of Michigan 1977 #### Doctoral Committee: Professor P.L. Cloke, Chairman Professor W.C. Bigelow Professor W.C. Kelly Professor D.R. Peacor Associate Professor R. Van der Voo A CONTRACTOR Bed you good and the NOTIFICATION ASSESSMENT 4W4-19497 which there's MADE ALL STREET #### **ACKNOWLEDGMENTS** I wish to acknowledge the interest and supervision of Professor P. L. Cloke throughout the course of the project. Professors W. C. Kelly, D. R. Peacor, W. C. Bigelow and H. N. Pollack were generous in their guidance. Professor W. C. Bigelow, Frank Drogosz, Fred Bleicher and Jon Rosen of the Department of Materials and Metallurgical Engineering, University of Michigan, provided invaluable advice and assistance in electron probe microanalysis. The interest and critical discussions of many fellow students, particularly Alex Brown, Judy Moody, Timothy Kurtz and Paul Goldberg are gratefully acknowledged. The generous financial support provided by the Department of Geology and Mineralogy during my stay at the University of Michigan is sincerely appreciated. Finally, I wish to thank my wife, Emoke Szathmary, for her help, encouragement and understanding. ## TABLE OF CONTENTS | | Page | |--|--| | ACKNOWLEDGMENTS | ii | | LIST OF TABLES | v | | LIST OF ILLUSTRATIONS | vi | | LIST OF APPENDICES | viii | | INTRODUCTION | 1 | | Theory of Partitioning Previous Experimental Studies Partitioning Studies on Natural Sulphide Assemblages Crystallographic and Chemical Considerations Solubilities of Mn and Co in ZnS and FeS2 Substitutional Sites in ZnS and FeS2 Applications of Crystal Field Theory Prediction of Partition Coefficients | 2
8
10
11
11
12
14
18 | | EXPERIMENTAL PROCEDURES | 20 | | Fused Salt Techniques Reagents Preparation and Heating of Charges Run Products Chemical Equilibrium | 20
21
23
24
30 | | ANALYTICAL METHODS | 36 | | Analytical Conditions Correction Procedures Background Correction Deadtime Correction Drift Correction Absorption Correction Fluorescence Correction Atomic Number Correction Combined Correction for Absorption, Fluorescence and Atomic Number Analytical Accuracy Sensitivity | 36
37
37
38
39
39
41
42
44
44
48 | | DISCUSSION OF RESULTS | 49 | |--|--| | Partitioning of Mn Between Sphalerite or Wurtzite and Pyrite Homogeneity of Run Products Distribution of Mn Between Sphalerite or Wurtzite and Pyrite | 49
49
52 | | Variation of $K_{ZnS:FeS_2}^{Mn}$ With Temperature | 62 | | Interaction of MnS and FeS in Sphalerite or Wurtzite. Variation of FeS in Sphalerite or Wurtzite Partitioning of Co Between Sphalerite and Pyrite Homogeneity of Run Products Distribution of Co Between Sphalerite and Pyrite Variation of KCO FeS2:ZnS With Temperature Interaction of CoS and FeS in Sphalerite Variation of FeS in Sphalerite | 64
73
75
76
78
82
83
93 | | CONCLUSIONS | 96 | | APPENDIX | 101 | | REFERENCES | 147 | ## LIST OF TABLES | Tab: | le | Page | |------|--|------| | 1. | Ionic Radii and Electronegativities | 15 | | 2. | Data Relating to Crystal-Field Approach | 17 | | 3. | Test of Correction Procedures of Program Probe 2 on Silicate Problem from Goldstein and Comella (1969 p. 48) | 45 | | 4. | Comparision of Electron Microprobe Atomic Absorption and X-ray Diffraction Data on Some Bolivian Sphalerites | 47 | ## LIST OF ILLUSTRATIONS | Figu | re | Page | |------|--|------| | 1. | T - X projection of a portion of the ZnS-FeS-S system at 1 bar | 3 | | 2. | Mixture of microcrystalline reactant wurtzite and pyrite | 26 | | 3. | Subhedral to euhedral crystals of sphalerite and pyrite | 26 | | 4. | Salt inclusions in sphalerite crystal | 29 | | 5. | Scanning electron beam images of element distribution in sphalerite and pyrite | 32 | | 6. | Scanning electron beam images of element distribution in sphalerite or wurtzite and pyrite | 34 | | 7. | Partitioning of Mn between sphalerite or wurtzite and pyrite - 675°C | 53 | | 8. | Partitioning of Mn between sphalerite or wurtzite and pyrite - 625°C | 54 | | 9. | Partitioning of Mn between sphalerite or wurtzite and pyrite - 575°C | 55 | | 10. | Partitioning of I'm between sphalerite or wurtzite and pyrite - 525°C | 56 | | 11. | Partitioning of Mn between sphalerite or wurtzite and pyrite - 475°C | 57 | | 12. | Partitioning of Mn between sphalerite or wurtzite and pyrite - 420°C | 58 | | 13. | Partitioning of Mn between sphalerite or wurtzite and pyrite - 403°C | 59 | | 14. | Interaction of MmS and FeS in sphalerite or wurtzite - 675°C | 65 | | 15. | Interaction of MnS and FeS in sphalerite or wurtzite - 625°C | 66 | | 16. | Interaction of MnS and FeS in sphalerite or wurtzite - 575°C | 67 | | 17. | Interaction of MnS and FeS in sphalerite or wurtzite - 525°C | 68 | | 18. | wurtzite - 475°C | 69 | |-----|---|----| | 19. | Interaction of MnS and FeS in sphalerite or wurtzite - 420°C | 70 | | 20. | Interaction of MnS and FeS in sphalerite or wurtzite - 403°C | 71 | | 21. | Interaction of MnS and FeS in sphalerite or wurtzite - 305°C | 72 | | 22. | Variation of FeS in MnS-bearing sphalerite or wurtzite with temperature | 74 | | 23. | Partitioning of Co between sphalerite and pyrite - 675°C | 79 | | 24. | Partitioning of Co between sphalerite and pyrite - 625°C | 80 | | 25. | Partitioning of Co between sphalerite and pyrite - 575°C | 81 | | 26. | Interaction of CoS and FeS in sphalerite - 675°C | 84 | | 27. | Interaction of CoS and FeS in sphalerite - 625°C | 85 | | 28. | Interaction of CoS and FeS in sphalerite - 575°C | 86 | | 29. | Interaction of CoS and FeS in sphalerite - 525°C | 87 | | 30. | Interaction of CoS and FeS in sphalerite - 475°C | 88 | | 31. | Interaction of CoS and FeS in sphalerite - 420°C | 89 | | 32. | Interaction of CoS and FeS in sphalerite - 403°C | 90 | | 33. | Interaction of CoS and FeS in sphalerite - 305°C | 91 | | 34. | Variation of FeS in CoS-bearing sphalerite with temperature | 94 | | 35. | Variation of partition coefficients with temperature | 95 | ## LIST OF APPENDICES | Append: | ix | | | | | Page | |---------|----------|----|----|----|------------------------|------| | I | Analyses | of | Mn | in | sphalerite or wurtzite | 101 | | II | Analyses | of | Mn | in | pyrite | 115 | | III | Analyses | of | Со | in | sphalerite | 127 | | IV | Analyses | of | co | in | pyrite | 137 | #### INTRODUCTION In numerous studies (Fleischer, 1955), attempts have been made to interpret conditions of ore formation (e.g., T, P, f_{S2}) from the distribution of trace elements in single sulphide phases. Unfortunately, the concentration of a trace element in any one sulphide mineral is dependent not only on temperature and pressure, but also on the chemical characteristics of the hydrothermal solutions from which the mineral formed. Such solutions, however, are generally not available for study, except in the form of fluid inclusions. It has been shown (Holland, 1956; McIntire, 1963; Kretz, 1961) that the distribution or partitioning of an element between two coexisting minerals, formed in chemical equilibrium, is dependent only on temperature and pressure, provided that the element forms ideal solid solutions in both minerals over the range of concentrations considered. If non-ideal solid solution obtains in one or both of the minerals, the partitioning of the element bears no simple relationship to temperature and pressure. However, if sufficient information is available about the character of such non-ideal behaviour, compensation may be made for this added effect. Recent experimental studies (Bethke and Barton, 1971; Halbig, 1969) indicate that the effect of pressure on partitioning between coexisting sulphides is minimal. On the other hand, Bethke and Barton (1971) and others have demonstrated that the distributions of certain elements among a variety of sulphides may constitute very useful geothermometers. The association of sphalerite and pyrite is common and ubiquitous in ore deposits. Experimental studies by Barton and Toulmin (1966) and others show that equilibrium assemblages of sphalerite and pyrite can be formed over a wide range of temperatures (Fig. 1). Mn and Co are common constituents, normally at the minor to trace level, of both sphalerite and pyrite in ore deposits (Fleischer, 1955). Their concentration levels in both sphalerite and pyrite, coexisting in ore deposits and apparently formed in equilibrium, are often high enough to be accurately measured by standard analytical techniques (e.g., Troshin, 1965; Doe, 1962; Arnold et al, 1962). In this study, an attempt has been made to define experimentally the partitioning of Mn and Co between sphalerite and pyrite over a geologically meaningful range of temperatures, and
to assess the potential of this partitioning in geothermometry. ### Theory of Partitioning The thermodynamic basis for the partitioning of a component between coexisting mineral phases formed in equilibrium has been outlined in considerable detail by Ramberg (1952), Kretz (1961) and McIntire (1963). Consider some element i which forms solid solutions in two mineral phases, A and B, deposited in chemical equilibrium at a specific temperature and pressure. The condition defining this relationship is: $$\mu_{1}^{A} = \mu_{1}^{B} \qquad (1)$$ where μ_{i}^{A} and μ_{i}^{B} are the chemical potentials of i in phase A and B respectively. In general, the relationship between chemical potential and the concentration of element i in phases A and B is: $$\mu_{\mathbf{i}}^{\mathbf{A}} = \mu_{\mathbf{i}}^{\mathbf{A}} + \mathbf{RTInf}_{\mathbf{i}}^{\mathbf{A}} \mathbf{X}_{\mathbf{i}}^{\mathbf{A}}$$ and $$\mu_{i}^{B} = \mu_{i}^{*B} + RTInf_{i}^{B}X_{i}^{B}$$ where μ_{i}^{*} = the chemical potential of the element i in some standard state f_i = the activity coefficient for element i X_i = the mole fraction of element i R = gas constant T = absolute temperature A superscript, A or B, indicates the phase involved. It could now be assumed that the solid solutions of i in the phases A and B are ideal in character, such that $f_i^A = f_i^B = 1$ (Raoult's Law). That is, the activity coefficients for i are independent of the concentration of any element in both phases (Denbigh, 1971, p.270). Alternatively, it could be assumed that below some concentration level of i in each of the phases A and B, ideal solid solution obtains. The activity coefficients f_i^A and f_i^B would then be constants, independent, in those concentration ranges, of composition, but not necessarily equal to one another, nor equal to 1 (Henry's Law). The basic condition is that $f_i^A/f_i^B = \text{constant}$, such that the activities and mole fractions of i are directly related to one another by simple proportionality constants. It is important to note that this discussion applies not only to trace elements, but also to major and minor constituents, since the level of dilution below which the condition of ideal solid solution exists varies from system to system and is not easily predicted on an a priori basis. Under conditions of ideal solid solution: $$\mu_{i}^{A} = \mu_{i}^{*A} + RTlnX_{i}^{A}$$ and $$\mu_{i}^{B} = \mu_{i}^{*B} + RTlnX_{i}^{B}$$ Then, from (1): $$\mu_{\mathbf{i}}^{\mathbf{A}} + RTlnX_{\mathbf{i}}^{A} = \mu_{\mathbf{i}}^{\mathbf{B}} + RTlnX_{\mathbf{i}}^{B}$$ Therefore, by rearranging: $$\ln \frac{X_{\underline{i}}^{A}}{X_{\underline{i}}^{B}} = \frac{\mu_{\underline{i}}^{*B} - \mu_{\underline{i}}^{*A}}{RT}$$ or $$lnK = \frac{\mu^*B - \mu^*A}{RT}$$ (2) where $$K = \frac{X_{i}^{A}}{X_{i}^{B}}$$ This is a statement of the Nernst distribution law. Since $(\mu^*B_i - \mu^*A_i)$ is independent of the concentration of i (but is dependent on T and P), K, the partition coefficient, is independent of the individual values of X_i^A and X_i^B , and is solely a function of temperature and pressure under conditions where each solid solution is ideal. A plot of X_i^A versus X_i^B would result in a straight line through the origin, whose slope would be a function of T and P. The dependence of K on temperature and pressure is found by differentiating (2). At constant pressure: $$\left(\frac{\delta \ln K}{\delta T}\right)_{P} = \frac{\overline{H}_{i}^{A} - \overline{H}_{i}^{B}}{RT^{2}} = \frac{\overline{\Delta H}_{i}}{RT^{2}}$$ (3) where \overline{H}_{i} = partial molar enthalpy for i $\Delta \overline{H}_i$ = molar enthalpy of reaction for i. This is the basic relationship between the partition coefficient, K, and T. Similarly, by differentiating (2) at constant temperature, the relationship between K and P is: $$\left(\frac{\delta \ln K}{\delta P}\right)_{T} = \frac{\overline{V}_{i}^{B} - \overline{V}_{i}^{A}}{RT} = \frac{\overline{\Delta V}_{i}}{RT} \tag{4}$$ where \overline{V}_{i} = partial molar volume for i $\overline{\Delta V}_{i}$ = molar volume of reaction for i. Thus, the partition coefficient, K, is only a function of the temperature and pressure at which phases A and B formed in chemical equilibrium. It is not dependent on the chemical characteristics of the solution from which they were formed. This is a very fortuitous situation in the study of ore deposits since such solutions are not normally available for analysis. It has been found that the influence of pressure on the partition coefficient is quite small in sulphide systems (Bethke and Barton, 1971). Lack of correction for variations in P does not lead to large errors in the estimation of T. Therefore, the effect of P has not been dealt with in this study. The working form of equation (3) is found by integration (assuming $\Delta \overline{H}_i$ is independent of temperature) and is: $$\log K = \frac{-\Delta H_1}{2.303R} (^{1}/_{T}) + C$$ A plot of log K versus 1/T should be a straight line with slope equal to $-\Delta \overline{H}_1/2.303R$. By experimentally determining K for element i over a range of temperatures, the basis for determining the temperature of formation of phases A and B in natural assemblages can be established. It is theoretically possible to develop a host of geothermometers by doing experimental work on suitable mineral pairs and appropriate substituting ions. Alternatively, the concordance of such temperature estimates with each other and concordance with other independent geothermometers (e.g., fluid inclusions) can be used to define conditions of chemical equilibrium in natural assemblages. It should be emphasized that the use of partition coefficients in the geothermometry of natural assemblages is subject to certain restrictions (McIntire, 1963; Ghosh-Dastidar et al, 1970) which are: - (1) the substituting element i follows either Raoult's Law or Henry's Law in both phases A and B, at least below certain levels of dilution. The solubilities of element i are not affected by variations in concentration of other elements present in the two phases. However, correction for effects of this type can be carried out if they are well defined; - (2) the mineral phases were formed in chemical equilibrium; - (3) the distribution of element i in phases A and B has not - been affected by post-depositional events (e.g., metamorphism); - (4) the atoms of element i substitute for atoms in phases A and B in their normal structural sites (i.e., substitution does not take place into interstitial sites in the host), and the substituting and host atoms are of the same charge. ### Previous Experimental Studies The first experimental studies of partitioning between coexisting sulphides were carried out by Bethke and associates (Bethke et al, 1958; Bethke and Barton, 1959; Bethke, personal communication, 1967; Bethke and Barton, 1971). They investigated the distribution of Cd, Mn and Se between sphalerite or wurtzite and galena over the temperature range from 600° to 800°C, and the distribution of Se between galena and chalcopyrite from 390° to 595°C. Mixtures between end members and/or binary solid solutions were reacted dry in evacuated silica glass tubes. The compositions of the resulting phases were analyzed by X-ray diffraction techniques using unit cell versus composition relationships. Cd and Mn were found to be strongly fractionated toward sphalerite or wurtzite relative to galena, and the fractionation sequence of Se was found to be: galena > chalcopyrite > sphalerite. Ideal solid solution relationships apparently obtain in the systems which they considered, at least over the concentration ranges normally found in nature. Pressure effects, calculated from molar volume data, were found to range from +1°C/kilobar at 600°C to -16°C/kilobar at 600°C in these systems, and were judged to be negligible. Yund and Giletti (1964) investigated the partitioning of Zn between pyrite and galena at trace element levels. They synthesized the phases in evacuated silica glass tubes using FeS, Pb or PbS and S as the starting components. Zn⁶⁵ was introduced as a radioactive tracer at two temperatures, 600°C and 700°C. Two experiments were performed at each temperature to test for equilibrium. In one, Zn⁶⁵ was initially present in FeS; in the second, it was initially present in Pb (or PbS). Zn was found to concentrate in galena, with a partition coefficient (Zn in PbS/Zn in FeS₂) ranging from 52 to 303. Equilibrium conditions were apparently obtained. H. D. Wright and several students at the Pennsylvania State University have approached the problem of partitioning in coexisting sulphides by using hydrothermal synthesis and radioactive tracer analytical techniques. They performed a long series of experiments to determine the solubility of a large number of elements, including U, Ag, Sb, Cu, As, Ga, In, Tl, Hg, and Se in galena and sphalerite over a temperature range of about 300° to 600°C (Halbig, 1965; Barnard, 1965; Wright, Barnard and Halbig, 1965; Hutta and Barnard, 1963; Hutta and Wright, 1964). Halbig (Halbig and Wright, 1969; Halbig, 1969) determined the partitioning of Se between sphalerite and galena by performing hydrothermal runs over a temperature range of 300° to 650°C, and dry silica tube runs at temperatures above 700°C at one atmosphere pressure. The relationship between log K and 1/T(°K) was found to be linear for Se. However, Halbig's results are at variance with those of Bethke and Barton (1971). Halbig also determined the effect of pressure on the partition coefficient to be small. #### Partitioning Studies on Natural Sulphide Assemblages The only detailed and systematic study of the distribution oftrace elements between coexisting minerals from sulphide deposits was carried out by Ghosh-Dastidar (Ghosh-Dastidar, Pajari and Trembath, 1970; Ghosh-Dastidar, 1969). The distribution of Co, Ni, Ti, Zn, Bi, Mn, V, Ga, Ge, In, Cd, Tl, Pb, Sn, Cu, Au, Te
and As was determined by spectrochemical methods, in pyrite, pyrrhotite, chalcopyrite, sphalerite and magnetite from six sulphide occurrences in the Canadian Appalachian area, namely: (a) the Gull Pond and Rambler deposits of Newfoundland, and (b) four vein deposits (Oliver, Cameron, South Oliver and Letite) of the Mascarene Peninsula, New Brunswick. Plotting the concentrations of individual trace elements in mineral pairs resulted in distribution patterns ranging from linear through curvilinear to scattered. The majority of the distribution patterns were found to be curvilinear and scattered in character, indicating serious departures from the simple distribution law. Even in cases where the distribution patterns were linear, complexities (possibly due to differences in temperatures of formation of the various deposits) and inconsistencies were noted. The partition coefficient was observed to be dependent on the element concentrations in either of the phases and/or the presence of other trace elements in the phases in a majority of the scattered and curvilinear distribution patterns, indicating the non-applicability of Henry's Law. Ghosh-Dastidar concluded that the presence of induced point imperfections may have been the effective cause of the deviation from Henry's Law in many cases. The importance of Ghosh-Dastidar's study is to point out the possible complexities involved in the application of experimental studies on the partitioning of elements between coexisting sulphides in natural assemblages. Deviations from ideal solution behaviour may in fact be very common even for trace constituents, and the interaction of trace elements must be assessed in order to establish a useful body of experimental data. Similar deviations from ideality have been noted, by Halbig and Wright (1969), by Kretz (1959, 1960, 1961), and by Hall et al, (1971). # Crystallographic and Chemical Considerations Solubilities of Mn and Co in ZnS and FeS2: Kroger (1938; 1939) found that the maximum solubility of MnS in ZnS is about 52 mole per cent at 1180°C and 46 mole per cent at 900°C. More recently, Bethke and Barton (1971) determined that a miscibility gap appears at about 50 mole per cent MnS between manganese-bearing wurtzite and alabandite (MnS). Skinner (1961) pointed out that wurtzite is stabilized relative to sphalerite by high concentrations of MnS. The amount of MnS required to stabilize wurtzite decreases with increasing FeS content in ZnS. Bethke and Barton (1971) found that the limit of sphalerite stability is about 7 mole per cent MnS at 600°C in an iron free phase. The solubility of Mn in FeS₂ is known to be low despite the fact that MnS₂ (hauerite) is isostructural with pyrite. Fleischer (1955) gives the maximum concentration of Mn in pyrite from natural occurrences as 1%. Both experimental studies and studies on natural occurrences (Klemm, 1962, 1965; Straumanis et al, 1964; Springer et al, 1964; Riley, 1965, 1968) show that CoS_2 and FeS_2 may form a complete solid solution series. Hall (1961) determined the maximum solubility of CoS in Cos to be 33 mole per cent at 850°C. The high solubility of FeS (up to 60 mole per cent) in ZnS (Barton and Toulmin, 1966) is well known and constitutes a complicating factor in these experiments. It is possible that variations of FeS in ZnS may have an effect on the concentration of MnS and CoS in ZnS, and thus would also affect partitioning coefficients. This point is discussed fully in a later section. The solubility of Zn in FeS₂ is very low and can be neglected. Substitutional Sites in ZnS and FeS2: Zn⁺² is in four-fold (tetrahedral) coordination in both sphalerite (cubic) and wurtzite (hexagonal). It has been normally assumed, because of the high solubility of Mn, Fe and Co in ZnS, that Mn⁺², Fe⁺² and Co⁺² substitute for Zn⁺² at tetrahedral sites in ZnS. However, ZnS also contains octahedrally coordinated interstitial sites which are not usually occupied. Czamanske and Goff (1973) suggest that occupancy of these sites by metal ions is energetically unfavourable because they are tetrahedrally coordinated in sphalerite and octahedrally coordinated in wurtzite by near-neighbour metal ions. Manning (1967) suggested, on the basis of absorption spectra for sphalerite containing 6.15 weight per cent Fe, that Fe is distributed in sphalerite as Fe⁺² in tetrahedral sites (substitutional) and as Fe⁺³ in octahedral sites (interstitial). He estimated the ratio of Fe^{+2}/Fe^{+3} in the sphalerites studies to be about 10. His findings led to the idea that the Fe⁺²/Fe⁺³ ratio in sphalerite might be useful in determining the oxidation-reduction potential of hydrothermal solutions (paleo- E_h). Mössbauer spectroscopy on iron rich sphalerites, by Marfunin and Mkrtchyan (1967) and Scott (1971), showed that iron in sphalerite occurs as Fe⁺² and is randomly distributed over tetrahedral (substitutional) sites. This conclusion is supported by Cabri's (1969) density measurements of synthetic iron-bearing sphalerites. Octahedral coordination of Co^{+2} in pyrite is confirmed because of the complete solution between CoS_2 and FeS_2 , the isostructural character of CoS_2 (cattierite) and FeS_2 (pyrite), and similar physical properties of the two compounds (Hulliger, 1968). It also seems to be a safe assumption that small amounts of Mn^{+2} are octahedrally coordinated in substitutional sites in pyrite because MnS_2 (hauerite) is isostructural with FeS_2 (pyrite). Application of Crystal Field Theory: A review of the ionic radii and electronegativities (Table 1), for Mn⁺², Co⁺², Fe⁺² and Zn⁺², indicates that the relative solubilities of Mn⁺², Co⁺², and Fe⁺² in ZnS, and of Mn⁺² and Co⁺² in FeS₂ cannot be explained by applying the now classical rules of Goldschmidt and Ringwood. In recent years, geochemists (Burns, 1970; Czamanske and Goff, 1973; Nickel, 1968, 1970) have used a more sophisticated approach, crystal field theory, to explain the differences in geochemical behaviour between transition-metal ions with similar oxidation states and ionic sizes. Elements of the first transition series have varying numbers of electrons distributed in two groups of 3d orbitals, which are: (1) $t_{2g}(d_{xy}, d_{yz})$ and d_{xz} ; (2) $e_g(d_{z^2})$ and d_{z^2} . Each of the 3d orbitals may contain up to 2 spinpaired electrons. t electrons may be thought of as forming lobes about a transition-metal ion which point between cartesian axes. Similarly, e_g orbitals form lobes about the transition metal ion which point along cartesian axes. In an unperturbed state, these orbitals are degenerate (have the same energy). However, anions (ligands) arranged symmetrically about the transition-metal ion, may cause the orbitals to "split" due to repulsive, electrostatic interaction of the outer electrons of the cation and the ligands. That is, the relative energies of the t_{2g} and e_{g} orbitals are dependent on the type, position and symmetry of the coordinating ligands relative to the cation. In addition, the character of this interaction is influenced by the distribution of electrons in the 3d orbitals of the cation (number of electrons, their symmetry, number of spin paired and Table 1: Ionic Radii And Electronegativities | Ion | Ionic | Radii (A) (1) | Electronegativity (2) | |------------------|-------------|-------------------|-----------------------| | | Tetrahedral | <u>Octahedral</u> | | | Mn ⁺² | 0.77 | 0.75(ls) | 1.4 | | | | 0.91(hs) | | | co ⁺² | 0.65(hs) | 0.73(ls) | 3 7 | | ω | U.65(NS) | 0.83(hs) | 1.7 | | | | | | | Fe ⁺² | 0.71(hs) | 0.69(ls) | 1.7 | | | | 0.86(hs) | | | z + 2 | 0.00 | 0.00 | | | Zn^{+2} | 0.68 | 0.83 | 1.5 | ⁽¹⁾ After Whittaker and Muntus (1970). (hs) = high spin configuration of electrons. (ls) = low spin. ⁽²⁾ After Fyfe (1964). unpaired electrons, number of vacant orbitals). In other words, for a certain type of ligand (e.g., S^{-2}), the most stable configuration (e.g., octahedral or tetrahedral) of the ligands about the cation is determined by the energy difference between the t_{2g} and e_{g} orbitals and by the distribution of electrons in the five orbitals of the cation. The crystal field stabilization energy (CFSE) measures the combined effect of these two factors and is a direct measure of the relative stabilities of different ligand symmetries (Table 2). Mn⁺² and Zn⁺² contain 5 and 10 3d electrons respectively. These electrons are spherically distributed about the ions so that S²⁻ ligands are not stabilized in either an octahedral or a tetrahedral configuration (Table 2). The coordination of these two cations is determined by their ionic radius ratios relative to S²⁻. The tetrahedral coordination of Zn⁺² in sphalerite and wurtzite, and the occurrence of Mn⁺² in both MnS (wurtzite structure) and MnS₂ (octahedral coordination) is neatly explained in this way. Substitution of Mn⁺² in ZnS causes strain in the ZnS structure because of its larger ionic radius (Table 1). This explains the limited solid solution of Mn in ZnS and also the stabilization of the wurtzite structure relative to the sphalerite structure by Mn. The CFSE's (Table 2) of both Fe^{+2} and Co^{+2} indicate a small preference to coordinate octahedrally with S^{2-} ligands. However, this does not explain the marked tendency of these two ions to form strongly covalent disulphides. The magnetic properties and bond lengths of FeS_2 and CoS_2 show that Fe^{+2} and Co^{+2} occur in these compounds in low spin configuration (spin pairing in t_{2g}), with t_{2g} electrons available for Table 2: Data Relating to Crystal-Field Approach | Δ(oxide) Kcal mole | | 0 | 0°† | 7.4 | 0 | | |------------------------------|------------------------|-------|------|------|---------|--| | CFSE (oxide) Kal mole | Octahedral Tetrahedral | 0 | 7.9 | 14.8 | 0 | | | CFSE (oxide | Octahedral | 0 | 11.9 | 22.2
| 0 | | | No. of Unpaired
Electrons | Low
Spin | Н | 2 | ო | 0 | | | No. of Ung | High
Spin | Ŋ | # | ო | 0 | | | No of 3d
Electrons | | ស | 9 | 7 | 10 | | | Ion | | Mn +2 | Fe+2 | Co+5 | $^{+2}$ | | After Burns (1970), Table 6.2 Note: CFSE = crystal field stabilization energy for oxide structures A = octahedral-site preference energy for oxide structures The CFSE's quoted here apply in strict sense only to oxide structures. However, their relative magnitudes are also applicable to sulphide structures (Burns, 1970, p.130). extensive π bond formation with S²⁻ (Burns, 1970, p.192). The close similarity of the bonding properties of Co⁺² and Fe⁺² explains the complete solid solution between CoS₂ and FeS₂. Magnetic studies on MnS₂ indicate that Mn⁺² has a high spin configuration. π bond formation is minimal in MnS₂ and its bonding is predominantly ionic (Burns, 1970, p. 190). The marked difference in the facility on Mn⁺² and Fe⁺² to form π bonds explains the low solubility of Mn in FeS₂. The ionic radii (Table 1) of Co⁺² and Fe⁺² are close to that of Zn⁺². Also, the octahedral-site preference energy of both ions is small (Table 2). Therefore, extensive substitution of Co⁺² and Fe⁺² into tetrahedral sites in ZnS is allowed (Czamanske and Goff, 1973). It has been found that bonding in ZnS is 80% ionic and 20% covalent in character (Title, 1965). This suggests that a discussion based on molecular orbital theory (Burns, 1970) would probably not change the conclusions very much. # Prediction of Partition Coefficients An outline of the thermodynamic basis and importance of partition coefficients has already been given. A quantitative estimate of partition coefficients, and their variation with temperature and pressure, could be made using this thermodynamic schema. However, in this case, sufficient thermodynamic data are not available. A combination of crystal field theory and molecular orbital theory can be used for the rough prediction of partitioning in sulphides. Again, quantitative estimates are, at present, impossible. There is, then, no feasible alternative to the experimental determination of partitioning coefficients. #### EXPERIMENTAL PROCEDURES ### Fused Salt Techniques Boorman (1966, 1967) and Schröcke (1958) demonstrated that the reaction rates for zinc and iron sulphides are considerably increased by the addition of suitable eutectic salt mixtures. In a study of the ZnS-FeS-FeS₂ system, Boorman employed the salt systems KCl-LiCl (eutectic at 358°C; 41 mole per cent KCl) and NH₄Cl-LiCl (eutectic at 267°C; 50 mole per cent NH₄ Cl) over a temperature range of 303 to 714°C. He found that apparent equilibrium was attained in four to seven days at temperatures from 600 to 400°C. Fused salt techniques provide other experimental advantages (Boorman, 1966). They allow experimentation over an extended temperature range and the techniques are experimentally simpler than hydrothermal methods of crystal growth. In addition, a large number of metallic sulphides are at least moderately soluble in eutectic salt mixtures such as KCl-LiCl and NH₄Cl-LiCl (Delarue, 1960, 1962). The salt systems mentioned above are chemically inert relative to the ZnS-FeS system, and the salt components are not soluble in the various mineral phases of the ZnS-FeS system to any significant extent. In short, they have a merely catalytic effect. All experimental runs of this study were carried out using fused salt techniques. A KCl-LiCl eutectic mixture was employed for runs at temperatures of 403, 420, 475, 525, 575, 625 and 675°C. A NH₄Cl-LiCl eutectic mixture was employed for runs at a temperature of 305°C. The length of the runs varied from 5 to 47 days. It should be noted that the solubilities of the various sulphides of the study, particularly MnS and CoS_2 , in the fused eutectic salts, as well as the chemical character of such solutions, are unknown (Delarue, 1962). A considerable number of preliminary runs were performed in order to determine the amounts of MnS or CoS_2 which had to be added to the sulphide charges in order to produce ZnS and FeS_2 with detectable amounts of Mn or Co in both phases over a reasonably large concentration range. #### Reagents Pyrite was synthesized from polysulphide solution. A 1.0M solution of Na₂S.9H₂O was prepared to which was added 4 moles of sublimed S. The solution was stirred overnight, and became very dark brown, due to the formation of polysulphides (S₅²⁻?). The solution was filtered to remove a small amount of undissolved S, and then was mixed with a solution containing one mole of FeCl₂. A dark green gelatinous precipitate was formed immediately. The precipitate was heated for one day at 70°C, and for an additional day at 93 to 98°C. The precipitate settled out to a compact powder. The solution was decanted and a 2.0 M solution of NaOH was added to dissolve the native S precipitated at the same time as the pyrite. The solution was again decanted after stirring overnight. The pyrite was washed with distilled water followed by acetone. Subsequently, it was filtered and dried. An X-ray diffraction pattern for this material showed only diffuse peaks characteristic of pyrite. The broad form of the peaks, combined with microscopic examination of the precipitate, indicated the microcrystalline character of the pyrite. Microcrystalline CoS₂ was synthesized in a similar fashion from a polyshulphide solution. 2.0 moles of native S were dissolved in a 1.0 M solution of Na₂S.9H₂O. A 1.0 M solution of CoCl₂.6H₂O was mixed with the polysulphide solution to produce a gelatinous, black precipitate. The precipitate was heated at 90°C for two days to promote recrystallization. It was decanted and a 2.0 M NaOH solution was added to dissolve any excess native S. The precipitate was washed with distilled water, followed by acetone, before filtering and drying. An X-ray diffraction pattern confirmed that the precipitate was microcrystalline CoS₂. A reagent grade, microcrystalline wurtzite (α -ZnS) was used in all runs. Its crystal structure was determined by X-ray diffraction. The synthesis of MnS was effected by the mixing of $Na_2S.9H_2O$ and $MnCl_2.4H_2O$ solutions. A 1.2 M solution of $Na_2S.9H_2O$ was prepared and saturated with H_2S to limit hydrolysis reactions so as to maintain a maximum sulphide ion $(S^2 + HS^-)$ concentration in the aqueous solution, according to the equations: and A 1.0 M MnCl₂. 4 H₂O solution was prepared and saturated with H₂S to reduce any Mn⁺³ ions to Mn⁺². The solutions were mixed slowly with the evolution of H₂S. A bright orange, curdy precipitate was instantly formed. The precipitate was heated at 70°C for two days to drive off residual H₂S and to recrystallize the precipitate. The precipitate settled in one day to a compact powder. It was decanted and washed with distilled water followed by acetone. The precipitate was then filtered and dried. X-ray diffraction methods indicated that the precipitate was β -MnS (wurtzite structure). KCl - LiCl and NH₄Cl - LiCl eutectic salt mixtures were prepared from reagent grade materials by mixing the appropriate eutectic proportions of each component together. The mixtures were then fused, crushed and dehydrated ready for use. # Preparation And Heating Of Charges Microcrystalline ZnS and FeS_2 were mixed thoroughly in the mole ratio of 1:1. Batches of sulphide reactant were prepared in which MnS or CoS_2 was present in amounts of from 0.2 to 40 weight per cent of the total sulphide (ZnS + FeS_2 + MnS or CoS_2). An eutectic salt mixture was added to portions of these batches in a proportion varying from 1:1 to 1:4 (sulphide:eutectic salt mixture). The sulphide-eutectic salt mixture charges were loaded in 6 mm (OD) Pyrex and Vycor tubes. The tubes were evacuated for 20 minutes with gentle heating (to eliminate residual moisture) prior to sealing. The charges were heated in vertical tube furnaces, controlled to $\frac{1}{2}$ 5°C. Runs were performed at eight temperatures, namely: 675, 625, 575, 525, 475, 420, 403 and 305°C. Normally, six charges, representing a range in the amount of MnS or \cos_2 present in the charge, were heated together at each temperature. Run times varied from 5 to 47 days. At the end of each run, the tubes were air quenched. The tubes were broken and the eutectic salt mixture was dissolved away with several washings of distilled water. The remaining run products, a loose assemblage of sulphide crystals, were washed with acetone and then allowed to dry. ## Run Products Figure 2 is an example of the microcrystalline, sulphide reactant material prior to heating. The photograph illustrates that the grain size of the material is considerably less than one micron. Figure 3 shows the remarkable degree of recrystallization of the sulphides caused by heating at 575°C for a period of 21 days in a KCl-LiCl fused salt eutectic mixture. The usually discrete, sulphide crystals were anhedral to euhedral in character, showed very little intergrowth, and were usually in the order of tens of microns in size. Difficulties were encountered with runs of 400°C and below because the grain size of the run products approached one micron in size, the limit of resolution for analysis Figure 2: Mixture of microcrystalline, reactant wurtzite and pyrite. Polished section. Reflected light. In oil. X360. Figure 3: Subhedral to euhedral crystals of sphalerite and pyrite. Reaction product of run 68 at 575°C for 21 days. Unpolished grain mount. Reflected light. In oil. X430. Figure 2 Figure 3 by the electron microprobe. Sphalerite crystals were light amber in colour and tetrahedral in form, with cubic and dodecahedral modifications. The crystals were normally clear of inclusions, but they occasionally contained fine, dusty inclusions of pyrite at their centres, and a few, larger, discrete grains of pyrite (Figure 3). Wurtzite, when present, was tabular in form. Pyrite occurred as pyritohedrons, with
rare inclusions of sphalerite or wurtzite. All run products were checked by X-ray diffractometer methods (Cu - Ka radiation), using smear mounts, for the presence of sphalerite or wurtzite (stabilized by the inclusion of MnS), and for the presence of extra phases. No attempt was made to identify polytypes of ZnS in the run products since in all cases, the grain size was too small for single crystal X-ray diffraction techniques (Scott, 1968; Scott and Barnes, 1972). One interesting sidelight of this study was the formation of salt inclusions, complete with vacuoles, within ZnS crystals (Figure 4). They appear to be entirely analogous to fluid inclusions in such minerals as quartz and calcite (Roedder, 1967). The inclusions were not commonly present, and in fact, were observed only in some abnormally large crystals formed in one run at 575°C. The salt inclusions could theoretically, be used as a means of internal temperature calibration of the runs by determining the filling temperatures of the salt inclusions with a heating stage. Unfortunately, a heating stage capable of reaching 575°C safely was not available and so this idea could not be checked. Figure 4: Salt inclusions in sphalerite crystal, formed at 575°C. Note vacuoles within inclusions. Unpolished grain mount. Reflected light. In oil. X390. Figure 4 All of these are indicative of chemical equilibrium, but only in a the three criteria, chemical homogeneity of the run products is the most important and the most difficult to check. This criterion was tested in two ways. Several electron microprobe scanning images (Figures 5 and 6) were completed of the various run products. In most cases no obvious zonation of the phases was observed. The most common inhomogeneities detected by this method were discrete inclusions of ### Chemical Equilibrium The definition of equilibrium conditions in any experimental environment is difficult. The classical method of ensuring that experimental results represent a condition of chemical equilibrium is by approaching equilibrium from two different and independent directions. In many systems, this procedure is not technically feasible (for example, Boorman's (1967) work on the so-called sphalerite geothermometer), since the rates of reaction for runs involving unmixing may be very slow (Barton et al, 1963). In this study, reactions have been run in only one direction. However, three other criteria of equilibrium conditions have been used, namely: - (1) pronounced recrystallization of the sulphide charge; - (2) sharp peaks in the X-ray diffractometer patterns of the run products - (3) intra- and inter-crystalline chemical homogeneity of the run products (e.g., no zonation of sphalerite). All of these are indicative of chemical equilibrium, but only in a permissive sense. The first two criteria were easily and routinely tested. Of the three criteria, chemical homogeneity of the run products is the most important and the most difficult to check. This criterion was tested in two ways. Several electron microprobe scanning images (Figures 5 and 6) were completed of the various run products. In most cases no obvious zonation of the phases was observed. The most common inhomogeneities detected by this method were discrete inclusions of Figure 5: Scanning electron beam images of element distributions in sphalerite and pyrite reaction products formed at 525°C for 14 days (run 21). (A) Secondary electron image of sphalerite crystal with adjacent pyrite crystal. (B) Distribution of Fe. Note pyrite inclusions within sphalerite crystal. (C) Distribution of Mn. (D) Secondary electron image of pyrite crystal. (E) Distribution of Mn. Mn rich phase is sphalerite. X714. Figure 5 Figure 6: Scanning electron beam images of element distributions in sphalerite or wurtzite and pyrite reaction products from runs at 420°C for 47 days. (A) Secondary electron image of subhedral to anhedral wurtzite crystals, surrounded by slightly smaller pyrite crystals, from run 175 with MnS added. Distribution of Zn (B), Fe (C) and Mn (D) for sample (A). (E) Secondary electron image of subhedral to anhedral sphalerite crystals surrounded by much smaller pyrite crystals, from run 182 with CoS₂ added. Distribution of Zn (F), Fe (G) and Co (H) for sample (E). X323. Figure 6 other phases in single crystals (Figure 5). The application of statistical methods on the analytical data to test for chemical homogeneity of the phases in each run is discussed fully below. #### ANALYTICAL METHODS ## Analytical Conditions All analyses were carried out on an Applied Research Laboratories electron microprobe X-ray analyzer (Model EMX - SM) in the Department of Materials and Metallurgical Engineering at the University of Michigan. A beam, normal to the specimen surface, focussed to a size of lµ or less in diameter, and with a potential of 15 KeV, was employed. The X-ray take-off angle of this instrument is fixed at 52.5°. Pulses were counted for fixed times ranging from 10 to 100 seconds. Beam current was monitored by means of a sensitive microammeter, and it was kept constant at from 1.0 to 1.2µA. Sample currents were found to be approximately 0.04 to 0.06µA. Pure metallic standards were used in the analysis of Mn, Co and Zn, in addition to synthetic MnS and ZnS. Pure metallic Fe and a large euhedral pyrite crystal from Gilman, Colorado were used as standards for Fe. Both the metallic and the sulphide standards gave essentially the same results. Both the samples and standards were mounted in polyester resin and were polished with 6μ and 1μ diamond paste, and finally 0.25μ carborundum on nylon covered laps. The standards and samples were coated simultaneously with a light film of carbon to ensure conductivity. Counts were taken on the Ka peaks of Mn, Co, Fe and Zn. Pulse height discrimination of the peaks effected a lowering of the background and the elimination of possible interferences by high order lines. Background counts were taken on both sides of the K_{α} peaks, on both standards and samples. All sample counts were bracketed by counts on each of the standards to provide an effective drift correction. S was not determined directly. Sulphur concentration was calculated by the stoichiometry of (Zn, Fe, Mn, Co)S and (Fe, Zn, Mn, Co)S₂. ### Correction Procedures The raw probe data were corrected by means of two computer programs, Probe 1 and Probe 2, written in the Fortran IV language. Both programs are extensive revisions of programs developed by Frazer, Fitzgerald and Reid (1966) at the Scripps Institution of Oceanography. The first program, Probe 1, corrects probe data for background, deadtime and drift, and by comparing sample counts with the appropriate readings on standards, calculates initial probe ratios. The second program, Probe 2, corrects the data for the effects of absorption, fluorescence and atomic number. ### Background Correction: Bombardment by high energy electrons (Keil, 1967) produces both continuous radiation and characteristic X-rays. The continuous radiation is directly proportional to the accelerating potential, the electron beam current and the average atomic number of the target. Small contributions to background are caused by cosmic rays, scattered X-rays and electrons, circuit noise and fluorescence radiation produced in the diffracting crystal. Backgrounds were measured on both sides of the Ka peaks for both standards and samples. These readings were averaged and subtracted from the appropriate counts on peaks. Accurate background readings were found to be essential for elements in low concentration. #### Deadtime Correction: Deadtime constants (τ) were determined for each element by measuring count rates on standards over a range of sample currents. Counts per second (N) were divided by sample current (i_s) and a linear function between these values (N/I_s) and sample current (i_s) was calculated by means of a least-squares technique incorporated in the Probe 2 program as a subroutine. This is the same as fitting the counts per second values with a parabola of the form $Ai_s + Bi_s^2 = 0$, where $\tau = -B/A^2$ (Frazer et al, 1966). Deadtime constants (τ) were found to be 0.6, 2.8, 0.9 and 1.0 microseconds for CoK α , ZnK α , MnK α , and FeK α radiation, respectively. The deadtime correction was applied through the relation $$N = N'/(1 - N_T)$$ where N^{\prime} is the observed count rate and N is the true count rate. #### Drift Correction: All sample readings were bracketed by standard readings. A linear drift curve was calculated by program Probe 1 and counts on samples were corrected according to the time each count was taken relative to the beginning of counting for each element. ## Absorption Correction: The absorption correction accounts for the loss of intensity of characteristic X-rays by interactions with sample atoms along the path from their point of origin to the surface of the sample (Keil, 1967). Philibert's (1963) formula for $f(\chi)$ was used to calculate absorption correction factors: $$f(\chi) = \frac{1+h}{(1+\chi/\sigma)[1+h(1+\chi/\sigma)]}$$ In this expression: (2) $$\chi = {\binom{\mu}{\rho}} \cos \theta$$ where ${\binom{\mu}{\rho}} = \Sigma C_{i} {\binom{\mu}{\rho}} i$ and C_{i} = weight % of element i θ = take-off angle of emitted radiation, in this case 52.5°. ${\binom{\mu}{\rho}}_{i} = the$ mass absorption coefficient of element i for the X-ray line used in the analysis. (3) Heinrich's expression for σ was used (Goldstein and Comella, 1969, p.10) and is: $\sigma = \frac{4.5 \times 10^5}{E_0^{1.65} - E_c^{1.65}}$ where E_{O} = the operating voltages of the electron beam in KeV E_{C} = the excitation potential of the analyzed element in KeV. It should be noted that all mass absorption coefficients were calculated in the Probe 2 program using a set of equations proposed by Frazer (1967). This method calculates mass absorption
coefficients which are essentially the same as those given by Heinrich (1966). An attempt was made to analyze Zn by means of an La line, using Frazer's equation to determine mass absorption coefficients for Zn La by extrapolation. The resulting analytical data were found to be seriously in error due to a gross overcorrection for absorption. ### Fluorescence Correction: The intensity of the analytical line of one of the elements in a sample is enhanced when the wavelength of a characteristic line from one of the other elements in the sample is shorter than the absorption edge of the analyzed element. The ratio (γ) of intensity due to secondary fluorescence to the intensity of primary radiation was calculated for K - K, K - L, L - K and L - L interactions using the formula of Reed (1965). This formula is: $$\gamma = 0.5 \text{ P}_{ij} C_{B} \left(\frac{r_{A} - 1}{r_{A}} \right) W_{B} \frac{A'}{B'} \left(\frac{U_{B} - 1}{U_{A} - 1} \right)^{1.67} \frac{\mu_{B}^{A}}{\mu_{B}} \left(\frac{\ln(1+x)}{x} + \frac{\ln(1+y)}{y} \right)$$ where A = analyzed element B = element causing secondary fluorescence of A C_B = mass concentration of element B r_A = absorption edge jump ratio of element A ^{W}B = K or L shell fluorescence yield of element B, given by $W = Z^{4}/(a + Z^{4})$, with Z = Atomic number of element B and $a = 1.02 \times 10^{8}$ for K shell A' and B' = atomic weights of elements A and B U_A = the overvoltage ratio, E_{C} / E_{C} for element A $U_{\rm B}$ = the overvoltage ratio, $^{\rm Eo}/_{\rm Ec}$ for element B μ_{B}^{A} = the mass absorption coefficient of element A for radiation from element B μ_B = the mass absorption coefficient of the specimen for radiation from element B $x = (\mu_A/\mu_B)$ cosec θ , with μ_A = the mass absorption coefficient of the specimen for radiation from element A $y = \sigma/\mu_B$, with σ = the electron mass absorption coefficient P_{ij} is a constant whose value depends upon the type of interaction (K - L, L - K, K - K, L - L) was considered. For K - K and L - L interactions, $P_{KK} = P_{LL} = 1$. For K - L and L - K interactions, $P_{KK} = 0.24$ and $P_{LK} = 4.2$. No corrections were made for secondary fluorescence caused by K_{β} or L_{β} lines, or for secondary fluorescence due to continuous radiation. Both of these effects are usually negligible (Reed, 1965; Springer, 1967). In this study Zn $K\alpha$ caused enhancement of Mn, Co and Fe $K\alpha$ lines. ## Atomic Number Correction: Electron backscattering and electron retardation depend upon the average atomic number of the target (Keil, 1967). These effects lead to analytical values which are too low for heavy elements in a light matrix and too high analytical values for light elements in a heavy matrix. An atomic number correction was calculated by means of a method described by Duncumb and Reed (1968). The loss of ionization efficiency due to backscattering (R_i) was calculated for each element using a set of polynomial equations given by Duncumb and Reed (1968). The fraction of the total energy loss of an electron going into the ionization of a particular shell (S_i) in a specific element (i) is given by the equation: $$S_{i} = \frac{Z_{i}}{A_{i} \ln \left[\frac{1.166 \times 10^{3} \left(\frac{Eo + Ec}{2}\right)}{J_{i}}\right]}$$ where Eo = the operating voltage in keV Ec = the excitation voltage of the X-ray line of interest in keV Z; = atomic number of element i A; = atomic weight of element i J_i = mean ionization potential for element i For a multielement sample, an average R and S are calculated by: $$\overline{R} = \Sigma C_1 R_1$$ and $$\overline{S} = \Sigma C_1 S_1$$ where C_i is the weight fraction for an element in the sample. The atomic number correction is effected by finding the ratio $\overline{R}/\overline{S}$ for the analyzed element in the sample and in its standard, and combining these two factors as shown below. Combined Correction for Absorption, Fluorescence and Atomic Number: The true concentration of an element in a sample (W_i) was calculated by: $$W_{1} = C_{i} \times \frac{\left[\overline{R}/\overline{S}\right]_{st}}{\left[\overline{R}/\overline{S}\right]_{sa}} \times \frac{\left[f(x)_{i}\right]_{st}}{\left[f(x)_{i}\right]_{sa}} \times \frac{\left[1 + \gamma_{i}\right]_{st}}{\left[1 + \gamma_{i}\right]_{sa}}$$ C_i is the initial estimate (probe ratio) of element i in the sample, or the most recently calculated concentration of element i. The subscripts st and sa refer to correction factors for standard and sample. The true concentration of element i was calculated by an iterative procedure in which the most recently calculated concentration of each element was used in the calculation of the correction factors. Iteration was continued until the change in concentration between consecutive iterations for all elements present in concentrations greater than 1% was less than 0.001%. The correction procedure was usually completed within three to four iterations. # Analytical Accuracy The accuracy of the correction procedures of the computer program, Probe 2, was checked by running a test problem (Goldstein and Comella, 1969, p.48) for a silicate analyzed using K - alpha lines at 20 KeV with a take-off angle of 52.5° (Table 3). The two sets of final Table 3: Test Of Correction Procedures Of Program Probe 2 On Silicate Problem From Goldstein And Comella (1969, p.48) | | • | Final Calculated Composition (wt%) | | | | | |------------|------------------------------------|------------------------------------|-----------------|--|--|--| | Element | <pre>Initial Estimate (wt.%)</pre> | Goldstein &
Comella (1969) | Program Probe 2 | | | | | Ca | 11.54 | 11.57 | 11.55 | | | | | Mg | 12.55 | 12.87 | 12.66 | | | | | Si | 25.13 | 26.1 | 25.80 | | | | | Al | 1.15 | 1.08 | 1.07 | | | | | Na | 0.88 | 0.93 | 0.90 | | | | | Mn | 0.09 | 0.09 | 0.09 | | | | | Cr | 0.59 | 0.58 | 0.58 | | | | | Fe | 2.57 | 2.59 | 2.57 | | | | | Ti (known) | 0.10 | 0.10 | 0.10 | | | | | 0 | 43.78 | 45.0 | 44.57 | | | | | Total | 98.38 | 100.91 | 99.89 | | | | Note: The compositions of the six silicate standards used in this problem are given by Goldstein and Comella (1969, p.69). calculated compositions show very close agreement, with program Probe 2 giving slightly lower calculated compositions for most elements, but a better analytical total (99.89% for program Probe 2 compared with 100.91% given by Goldstein and Comella). The accuracy of the whole analytical procedure has been estimated by determining the compositions of a series of Bolivian sphalerites (Table 4) which had been analyzed by atomic absorption and X-ray diffraction techniques (Kelly and Turneaure, 1970, p.635). Grain mounts were made and three grains per mount were analyzed. Counting was done on two points in each grain to test for within-grain homogeneity. The electron microprobe data indicate that the distributions of Fe and Mn in the sphalerites are sufficiently uniform so that comparisons may be made with the atomic absorption and X-ray diffraction analyses. Both the quantitative data and semiquantitative scans indicate no marked zonation of either Fe or Mn. Considering that the electron microprobe analyses were carried out on a limited number of individual grains, whereas the atomic absorption analyses were done on bulk samples, the two methods are in good agreement for both MnS and FeS. The X-ray diffraction data for FeS are consistently higher, by as much as 7.1 mole % FeS, than the equivalent electron microprobe data. The positive error is caused by expansion of the sphalerite unit cell by Mn and Cd (Kelly and Turneaure, 1970, p.635). Another measure of accuracy is provided by the analytical totals derived during routine analysis. Analytical totals were found to range from 95.0 to 105.7 per cent, with a mean of 100.4% and a standard deviation of 2.0% of the mean. The scatter of analytical totals increased due to the fact that S was determined stoichiometrically. Comparison Of Electron Microprobe, Atomic Absorption Ard X-ray Diffraction Data On Some Bolivian Sphalerites (mole %) Table 4: | X-ray Diffraction | Apparent
FeS | 27.5 | 21.4 | 25.8 | 20.9 | 25.8 | 1.5 | 18.1 | 22.7 | 10.7 | | |----------------------|--------------------|-----------|-----------|-----------|-----------|---------------|-----------|-----------|-------------|-----------|--| | ¥ | Spo | .26 | .18 | .45 | .50 | 74. | ۳. | •29 | † †† | . 23 | | | Atomic
Absorption | FeS | 23.2 | 22.9 | 22.3 | 14.7 | 17.6 | .63 | 18.9 | 18.9 | 8.3 | | | | MnS | .22 | ħ0° | .10 | .07 | .26 | •03 | ħ0· | • 08 | 60. | | | Electron Microprobe | Range
ZnS | 72.2-76.2 | 75.4-78.3 | 75.9-77.2 | 78.9-82.9 | 77.4-80.2 | 98.5-99.5 | 82.4-86.4 | 80.3-81.7 | 91.6-92.1 | | | | Mean
ZnS | 74.2 | 76.8 | 76.3 | 80.7 | 79 . 4 | 0.66 | 84.2 | 81.0 | 91.9 | | | | Range
FeS | 23.6-27.3 | 21.6-24.5 | 22.7-24.0 | 17.1-21.0 | 19.7-22.1 | .47-1.47 | 13.6-17.5 | 18.2-19.7 | 7.82-8.34 | | | | Mean
FeS | 25.6 | 23.1 | 23.6 | 19.3 | 20.5 | .95 | 15.7 | 18.9 | 8.03 | | | | Range
MnS | .1351 | 9040. | .0709 | .0410 | .0350 | <:0102 | 9040. | .0615 | 6040. | | | | Mean
MnS | .27 | •05 | 80. | . 08 | .12 | .01 | .05 | 60. | 90• | | | | Specimen
Number | co-200 | 609-00 | SVD-21 | MCC-14 | PZA-105 | PUL-113 | HRI-1 | HUA-132 | LAR-9 | | Any error in the estimation of Mn, Co, Fe or Zn is magnified by the calculation of S content. The analytical totals of this study compare favourably with those found by Williams (1967, p. 490) for the electron microprobe analysis of 50 sphalerites. His analytical totals ranged from 95.6 to 104.2%, with a mean of 99.7 and a standard deviation of 2.1% of the mean. S was determined stoichiometrically by Williams. ### Sensitivity In this study, sensitivity is defined as the concentration of an element which produces a peak equal to three times the standard deviation of the background.
Sensitivities have been calculated by means of a formula provided by Norrish and Chappell (1967, p. 204). Lower limit of detection = $$\frac{6}{m} \sqrt{\frac{Cb}{T}}$$ where m = the number of counts per second obtained per unit of concentration for the element, C_b = background counts per second, and T = counting time in seconds. For typical counting rates of this study, using a 100 second counting time, the calculated sensitivities for Mn, Co, Fe, and Zn are 75, 70 95 and 520 ppm respectively. #### DISCUSSION OF RESULTS # Partitioning Of Mn Between Sphalerite Or Wurtzite And Pyrite The analytical data for all sphalerite - or wurtzite-pyrite pairs containing Mn are listed in Appendices I and II in terms of mole percent. The runs are in order of temperature from 675 to 305°C. The concentration of MnS in sphalerite or wurtzite varies from very low levels to about 42 mole percent. The concentration of FeS is fairly constant. Most analyses fall within the range of 2 to 10 mole percent FeS. There is a slight increase in FeS to 16 mole percent at 675°C. MnS₂ in pyrite is usually less than 1 mole percent. ZnS₂ in pyrite was found to be low at 1 mole percent or less, a concentration probably too low to affect the partitioning of Mn. ## Homogeneity Of Run Products: As mentioned previously, an important criterion of chemical equilibrium is homogeneity of the run products. Several electron microprobe scanning images of both sphalerite and wurtzite showed no obvious zonation of Mn and Fe in either polymorph. However, because of the common growth zoning present in sphalerite from natural occurrences (Barton et al, 1963) and because of the iron-rich "patches" in hydrothermally synthesized sphalerites found by Scott and Barnes (1972), a more accurate test of homogeneity was carried out on the sphalerite and wurtzite run products. In the analysis of 32 of the runs, counts were taken on two distinct points in each of the crystals. One - way analysis of variance (Snedecor and Cochran, 1967, chapter 10) indicated that the within - crystal variation of both MnS and FeS is much less than the between - crystal variation at the 99% level of confidence. In general, then, both MnS and FeS are homogeneously distributed within the sphalerite and wurtzite crystals. Electron microprobe scanning images of the distribution of Mn within pyrite crystals showed no obvious zonation of the crystals. Because of the low concentration of MnS₂ in the pyrite crystals, this cannot be taken as a discriminating test. The Mn analyses for each phase in each run were tested for between - crystal homogeneity by a statistical method (Dixon and Massey, 1957, p.276) designed to detect extreme values in a group of data. For a group of k analyses, x_1 , x_2 , ----, x_k , which are ranked in order of magnitude, the statistic: $$r_{10} = \frac{x_2 - x_1}{x_k - x_1}$$ where $x_2 - x_1$ = the difference between the maximum or minimum value and the next highest or lowest value and x_k - x_l = the difference between the maximum and minimum value is a measure of the deviation of the minimum or maximum value from the whole group of analyses. Ratios of this type were calculated and compared with a set of critical values tabulated by Dixon and Massey (1957, Table 8e, p.412) for the 95% confidence level for k observations. Ratios higher than the appropriate critical value were taken to indicate that the phase, in the particular run considered, contains extreme concentrations of Mn and must be considered to be heterogeneous. In cases where duplicate analyses were performed at different spots on single crystals, the duplicate analyses were averaged before this test was performed. Phases found to be heterogeneous by this method are marked in Appendices I and II. The results of the corresponding runs were not used in the determination of partition coefficients. Consideration was given to the use of Boyd's (1969) "homogeneity index" which tests the statistical fit of the distribution of a group of X-ray counts to the Poisson distribution. That is, if the variation in counts for a particular group of crystals follows the Poisson distribution, the apparent chemical variation among the crystals is due solely to counting errors. Boyd's index has two drawbacks. It is not a sensitive test for elements at the trace element level. Secondly, it makes the a priori assumption that the only permissible component of variation in a group of analyses must be due to counting errors. This latter assumption seems restrictive and would probably lead to the rejection of potentially meaningful data. The occurrence of heterogeneities of the type detected in the data may have several causes. Extreme values of Mn in sphalerite, wurtzite or pyrite may reflect incomplete mixing of MnS in the original sulphide charge, particularly at high concentrations of MnS. Heterogeneities in runs at 305°C (e.g. run 200) are probably due to lack of reaction. Anomalously low concentrations in crystals from runs at other temperatures could indicate the presence of unreacted or partially reacted material. High concentrations of ZnS₂ in pyrite (greater than 1.5 mole percent) may be caused by micro-inclusions of sphalerite or wurtzite in pyrite, and should be accompanied by a corresponding increase of MnS, in the same pyrite crystals. This is apparently what has happened in a few of the runs (e.g. run 138, Appendix II), in spite of the fact that pains were taken to avoid all inclusions during the microprobe analyses. An error of this type would cause anomalously low partition coefficients for the runs involved. To further investigate this point, a rank correlation coefficient (Snedecor and Cochran, 1967, p.194) was calculated for the ZnS, and MnS, analyses in pyrite. The rank correlation coefficient was found to be non-significant at the 95% confidence level, indicating that contamination of this sort is not a common problem. Finally, apparent heterogeneities may result from the relatively high errors inherent in measuring MnS₂ in pyrite at low concentrations. Distribution Of Mn Between Sphalerite Or Wurtzite And Pyrite: The distribution of Mn in sphalerite - or wurtzite-pyrite pairs for seven different temperatures, from 675 to 403°C, is shown in Figures 7 to 13. The error bars about each point in these diagrams represent the variation of MnS in sphalerite or wurtzite Figure 7: Partitioning of Mn between sphalerite or wurtzite and pyrite at 675°C. o = sphalerite. • = wurtzite. Figure 8: Partitioning of Mn between sphalerite or wurtzite and pyrite at 625°C. o = sphalerite. • = wurtzite. Figure 9: Partitioning of Mn between sphalerite or wurtzite and pyrite at 575°C. o = sphalerite. ● = wurtzite. Figure 10: Partitioning of Mn between sphalerite or wurtzite and pyrite at 525°C. o = sphalerite. ● = wurtzite. Figure 11: Partitioning of Mn between sphalerite or wurtzite and pyrite at 475°C. o = sphalerite. • = wurtzite. Figure 12: Partitioning of Mn between sphalerite or wurtzite and pyrite at 420°C. o = sphalerite. • = wurtzite. Figure 13: Partitioning of Mn between sphalerite or wurtzite and pyrite at 403°C. o = sphalerite. ● = wurtzite. and of MnS_2 in pyrite as \pm ls. If no error bar is present about a point, the value of \pm ls was found to be too small to plot. No diagram has been plotted for runs at 305°C because a reasonable approach to chemical equilibrium was probably not attained in any of the runs at this temperature. A partition coefficient, K^{Mn}_{ZnS:FeS₂}, for each temperature has been estimated by linear regression (Krumbein and Graybill, 1965, p.240; Snedecor and Cochran, 1967, p.166), according to the model: $$Y = bX + e$$ In this case: Y = concentration of MnS in sphalerite or wurtzite $X = concentration of MnS_2 in pyrite$ $$b = K_{ZnS:FeS_2}^{Mn}$$ e = a normally distributed random error in Y. It is assumed in this model that the calculated line passes through the origin of the diagram. The slope of such a line is ${}^{Mn}_{ZnS:FeS_2}$ and is an estimate of the mean value of the partition coefficients for all sphalerite – or wurtzite-pyrite pairs at a specific temperature. The calculated values of ${}^{Mn}_{ZnS:FeS_2}$ are given on the appropriate distribution diagrams (Figures 7 to 11 and 13) along with the standard deviations of their estimates. No value of ${}^{Mn}_{ZnS:FeS_2}$ was calculated for runs at 420°C (Figure 12) since the remaining data points do not represent a sufficiently large range of concentration of Mn. The statistical fit of the data points in each distribution diagram (Figures 7 to 11 and 13) to a straight line passing through the origin was tested by calculating a linear correlation coefficient, r, according to a method described by Krumbein and Graybill (1965, p.240). At each temperature considered, the value of r was found to be significantly different from zero at the 95% confidence level, indicating that there is a statistically significant linear relationship between MnS in sphalerite or wurtzite and MnS₂ in pyrite and that the calculation of $K_{ZnS:FeS_2}^{Mn}$ is justified since Henry's Law is at least approximated in both phases over the range of concentrations considered. Wurtzite is apparently stabilized relative to sphalerite by concentrations of MnS between 5 and 10 mole percent and there is very little variation with temperature of the amount of MnS required to stabilize wurtzite. This is in agreement with the work of Bethke and Barton (1971, p.149). The change from sphalerite to wurtzite is probably transitional in character due to: (1) within - run variation in the concentration of MnS in ZnS; and (2) the possible presence of polytypes which cannot be identified except by single-crystal X-ray diffraction methods. These effects may have led to the misclassification of some runs as either sphalerite or wurtzite runs. No distinction has been made in the calculation of K^{Mn}_{ZnS:FeS₂} between sphalerite-pyrite and wurtzite-pyrite pairs since there is
no clustering of the sphalerite-pyrite as opposed to the wurtzite-pyrite data points in the distribution diagrams. A clustering of this sort would mean that different straight lines could be calculated for the partitioning of Mn between sphalerite-pyrite and wurtzite-pyrite, and as a consequence, different partition coefficients ($K_{\mathrm{Sp:Py}}^{\mathrm{Mn}}$ and $K_{\mathrm{Wz:Py}}^{\mathrm{Mn}}$) would be calculated at each temperature. Bethke and Barton (1971) describe an effect similar to this for the partitioning of Cd and Mn between sphalerite-galena and wurtzite-galena. They concluded that the character of the polymorph of ZnS significantly affects partitioning behaviour, and that polytypism in natural sphalerites would significantly affect temperature estimates. This phenomenon has not been demonstrated here. Variation Of $K_{ZnS:FeS_2}^{Mn}$ With Temperature: A plot of log ${\rm K}_{\rm ZnS:FeS_2}^{\rm Mn}$ versus $10^3/{\rm T}({\rm ^oK})$ is given in Figure 35 in terms of mole percent. The error $(\pm\ {\rm l}_{\sigma})$ in determining ${\rm K}_{\rm ZnS:FeS_2}^{\rm Mn}$ at each of the six temperatures is shown as an error bar. Two things are immediately apparent. The partition coefficients are in the order of 10^2 , denoting a strong selective uptake of Mn in sphalerite or wurtzite relative to pyrite. Secondly, there is a slight but distinct increase of the partition coefficient with temperature. The statistical significance of the variation of $\log \kappa_{\rm ZnS:FeS_2}^{\rm Mn}$ versus $10^3/T({\rm ^{\circ}K})$ has been tested by linear regression. The linear equation representing the variation among these data is: log $$K_{\text{ZnS:FeS}_2}^{\text{Mn}}$$ = 2.828 - $\frac{735.1}{\text{T(°K)}}$ (mole %). The corresponding linear correlation coefficient is -0.773, a value which is significant at the 90% confidence level and which indicates a significant linear relationship between $\log k_{\rm ZnS:FeS_2}^{\rm Mn}$ and $10^3/{\rm T}$. Using the log KMn versus 103/T line plotted in Figure 35 for the determination of the temperature of formation of a natural sphalerite-pyrite assemblage, assuming an analytical error of + 10% would result in an error of + 50°C at 500°C in the temperature estimate. This is a rather large error and it is a reflection of the low slope of the line. In addition, at expected concentrations of Mn in natural sphalerites (1000 to 2000 ppm), the concentration of Mn in coexisting pyrite would be about 10 to 20 ppm, a concentration too low for measurement with an electron microprobe. This would necessitate chemical analysis of pyrite by a more sensitive method (e.g. atomic absorption), with the attendant problems of phase separation and sample purity. It is tempting to extrapolate the line to temperatures outside the experimental range. However, there is no basis for assuming that $\overline{\Delta H}$ (partial molar enthalpy of reaction) and therefore the slope of the line is constant beyond the range of temperatures considered. In summary, these data may be useful for both rough determinations of temperature of formation for natural sphalerite-pyrite assemblages and as a means of detecting and defining conditions of chemical equilibrium in such assemblages. Interaction Of MnS and FeS In Sphalerite Or Wurtzite: One of the major assumptions in partitioning theory is that changes in composition of either of the phases involved does not influence the partitioning of the element common to both phases. FeS is a very common constituent of both sphalerite and wurtzite and its concentration ranges up to about 60 mole percent. It is reasonable to assume that there may be an interaction of MnS and FeS in sphalerite or wurtzite. This is a particularly - important consideration in view of the strong influence of total pressure on the FeS content of sphalerite (Scott and Barnes, 1972). An interaction of this type would almost certainly cause the partition coefficient for Mn to be sensitive to changes in total pressure. wurtzite, mole percent FeS has been plotted against mole percent MnS for sphalerites and wurtzites for each point analyzed in all of the runs at each of the eight temperatures (Figures 14 to 21). A correlation coefficient (Snedecor and Cochran, 1967, chapter 13) was calculated between MnS and FeS for all sphalerite and wurtzite analyses at each temperature. In no case were the correlation coefficients found to be significant at the 95% level of confidence. No interaction of FeS and MnS is evident at any of the run temperatures. It should be noted that the amount of FeS in sphalerite or wurtzite does not vary widely in any of the runs and the apparent lack of interaction of FeS and MnS can be assumed only within the range of FeS concentrations in this study. 0.50 625°C Figure 15: Interaction of MnS and FeS in sphalerite or wurtzite at 625°C. 0.13 Mole Fraction FeS in Sphalerite or Wurtzite 0.02 0 0 0 L9.0 0.3 0.2 0.0 0.5 0.4 0.1 Mole Fraction MnS in Sphalerite or Wurtzite 0.50 575°C Figure 16: Interaction of MnS and FeS in sphalerite or wurtzite at 575°C. <u>0</u> Mole Fraction FeS in Sphalerite or Wurtzite 0.0 0.00 L9.0 0.0 0.5 0.4 0.3 0.5 Mole Fraction MnS in Sphalerite or Wurtzite 525°C Figure 17: Interaction of MnS and FeS in sphalerite or wurtzite at 525°C. Mole Fraction FeS in Sphalerite or Wurtzite 0.00 L9.0 0.0 0.2 0.3 0.5 Mole Fraction MnS in Sphalerite or Wurtzite 420°C Figure 19: Interaction of MnS and FeS in sphalerite or wurtzite at 420°C. 0.15 Mole Fraction FeS in Sphalerite or Wurtzite 0.0 0.05 00.0 L 9.0 0.4 0.3 000 0.2 -0 0.5 Mole Fraction MnS in Sphalerite or Wurtzite 302°C Figure 21: Interaction of MnS and FeS in sphalerite or wurtzite at 305°C. 0.15 Mole Fraction FeS in Sphalerite or Wurtzite 0.05 0.00 0.0 ٠6م 0.0 0.5 -0 0.5 0.4 Mole Fraction MnS in Sphalerite or Wurtzite Variation Of FeS In Sphalerite Or Wurtzite: Figure 22 shows the variation of FeS in sphalerite or wurtzite with temperature. The error bars at each point on this diagram represent twice the pooled standard deviation of FeS for all runs at each temperature. FeS in the sphalerite or wurtzite of these runs was derived from the breakdown of FeS₂, according to a reaction of the type: $$2 \text{ FeS}_{2,\text{SS}} = 2 \text{ FeS}_{\text{SS}} + \text{S}_2$$ The concentration of FeS in sphalerite or wurtzite was controlled by the amount of sulphur that could be released during reaction in the closed and originally evacuated reaction tubes. For all runs, only a ZnS phase, a FeS₂ phase and sulphur vapour were present, at temperature, in addition to the molten fused salt. The concentration of FeS, at each temperature, was controlled by: (1) the amount of vapour space available in the reaction tubes relative to the size of the sulphide charge; and (2) the solubility of sulphur in the molten fused salt. The ratio of (ZnS + MnS) / FeS₂ in the sulphide charge was maintained constant at 1:1 throughout the runs. The relatively narrow compositional range for FeS in sphalerite or wurtzite at temperatures at and below 625°C (Figure 22) is the result of uniform experimental conditions. Variations of FeS, at any one temperature, are caused by random weighing errors and changes in the vapour space relative to the sulphide charge, Figure 22: Variation of FeS in MnS-bearing sphalerite or wurtzite with temperature. in addition to analytical errors. To illustrate this point, the FeS concentration in the wurtzites of runs 26 (2.6 mole % FeS) and 103 (6.4 mole % FeS) may be compared (Appendix I). The runs were carried out under almost identical conditions, except that the vapour space relative to the size of the sulphide charge was approximately double in run 103. The increase of FeS to about 16 mole percent in runs at 675°C (Figure 22) was caused by the use of a much smaller sulphide charge and a much larger vapour space than in runs at other temperatures. For runs in which MnS in sphalerite or wurtzite is heterogeneous, FeS tends to be homogeneous (Appendix I). This may mean that FeS equilibrates more rapidly than MnS. This observation can be compared with the work of Doe (1962) on sphalerite-pyrite assemblages from No. 2 Mine of the Balmat area, New York. Doe found that the ratio of Mn (mole %) in sphalerite relative to pyrite varies from 3 to 1100. FeS (mole %) in sphalerite, in the same suite of samples ranges from 8.1 to 13.6. Doe concluded that Mn had not equilibrated between sphalerite and pyrite, but that Fe had equilibrated. ## Partitioning Of Co Between Sphalerite And Pyrite The analytical data for all sphalerite-pyrite pairs containing Co are listed in Appendices III and IV, in terms of mole percent and in order of temperature from 675 to 305°C. The concentration of CoS in sphalerite ranges from very low values to approximately 2.6 mole percent. The FeS content of sphalerite varies from less than 1 to about 14 mole percent. It is relatively uniform in runs at and below 625°C but there is a slight increase of FeS to 14 mole percent at 675°C, similar to that found in the previous system. Only sphalerite, and not wurtzite, was found in the experimental runs. This is in agreement with the results of Hall (1961) who determined that sphalerite is stable at concentrations of CoS up to 33 mole percent at 850°C. The concentration of CoS₂ in pyrite ranges up to 80 mole percent. The concentration of ZnS₂ in pyrite is usually less than 1 mole percent. Its concentration and limited variation in pyrite is not likely to influence the partitioning of Co. ## Homogeneity Of Run Products: The analyses of Co in both sphalerite and pyrite for each run were tested for the occurrence of extreme values by the same statistical method used for runs containing Mn (Dixon and Massey, 1957, p.276). Phases found to be heterogeneous by this method are marked in Appendices III and IV. The results of the corresponding runs were not used in the determination of partition coefficients. The distribution of Co in sphalerite was found
to be uniform by means of electron microprobe scanning images. However, this is not a definitive test because of the low concentration of Co in sphalerite. In the analysis of 24 of the runs, counts were taken on two distinct points within each of the sphalerite crystals. A one-way analysis of variance of these data indicates that withincrystal variation of both CoS and FeS is much less than the betweencrystal variation of those elements at the 99% confidence level. With few exceptions, the runs contain no extreme values for CoS in sphalerite. The sphalerite crystals appear to be quite homogeneous for CoS. Scanning images of Co-bearing pyrites from runs at 675, 625 and 575°C showed no within-crystal heterogeneity. However, for runs at and below 525°C irregular zonation of pyrite is evident. Moreover, a crystal to crystal variation of Co, considerably more pronounced than the within-crystal zoning (Figure 6, E to H) is present. Inspection of Appendix IV for runs at and below 575°C indicates that there is wide variation of CoS₂ content among pyrite crystals in any one run. System at temperatures below 700°C. According to Klemm, the gap lies between 55 and 75 mole percent \cos_2 at 600°C, between 33 and 83 mole percent \cos_2 at 500°C, and 7 and 83 mole percent \cos_2 at 400°C. This could explain the heterogeneity of pyrite in these runs, since two varieties of the \cos_2 - FeS₂ solid solution should be present within runs below 600°C. However, \cos_2 compositions lying within Klemm's solubility gap have been found (Appendix IV) at temperatures below 575°C. Assuming Klemm's data to be correct, chemical equilibrium was not attained in the Co bearing runs below 575°C. Even if there is complete solid solution of \cos_2 and FeS₂ at these temperatures, as indicated by the study of natural bravoites (Riley, 1965; 1968), the same conclusion must be accepted. The pyrite crystals produced in this temperature range are subhedral to anhedral in character, and are much smaller and more numerous than the corresponding sphalerite crystals. It is possible that the pyrite crystals nucleated rapidly at many centres, preserving and reflecting original inhomogeneities in the sulphide charge. The sphalerite crystals probably grew at a slower rate, maintaining only surface equilibrium with the FeS₂ - CoS₂ fraction of the sulphide charge. The subhedral to anhedral nature of the pyrite crystals may be due to surface etching subsequent to their formation. Distribution Of Co Between Sphalerite And Pyrite: Figures 23 to 25 show the distribution of Co between sphalerite and pyrite at three different temperatures from 675 to 575°C. The plots are in terms of mole percent. The error bars about each point in these diagrams represents the variation of CoS in sphalerite and of CoS_2 in pyrite as $\pm 1\sigma$. No diagrams have been plotted for runs below 575°C because of the gross disequilibrium evident at these temperatures. A partition coefficient, $K_{\text{FeS}_2:\text{ZnS}}^{\text{Co}}$, has been estimated for runs at 675°C and 625°C by linear regression in the same way as in the case of runs containing Mn (Krumbein and Graybill, 1965, p.240; Snedecor and Cochran, 1967, p.166). The calculated values of $K_{\text{FeS}_2:\text{ZnS}}^{\text{Co}}$ for each temperature are given in Figures 23 and 24 along with their appropriate standard deviations of estimate. The Figure 23: Partitioning of Co between sphalerite and pyrite at 675°C. Figure 24: Partitioning of Co between sphalerite and pyrite at 625°C. Figure 25: Partitioning of Co between sphalerite and pyrite at 575°C. statistical fit of the data points in each distribution diagram (Figures 23 to 25) to a straight line passing through the origin was tested by calculating a linear correlation coefficient (Krumbein and Graybill, 1965, p.240) for each temperature. For temperatures of 675 and 625°C, the correlation coefficient was found to be significantly different from zero at the 95% confidence level, indicating that the calculation of $K_{FeS_2:ZnS}^{Co}$ is justified at those temperatures. For runs at 575°C, a statistically significant linear relationship does not exist between CoS in sphalerite and CoS_2 in pyrite and a value of $K_{FeS_2:ZnS}^{Co}$ has not been calculated. Henry's Law has been approximated in both phases only in runs at 675 and 625°C over the range of concentrations considered. Variation Of KCo FeS₂:ZnS With Temperature: Two values of log ${}^{\text{Co}}_{\text{FeS}_2:\text{ZnS}}$ versus $10^3/\text{T(°K)}$ are shown in Figure 35 in terms of mole percent. The error $(\underline{+}\ \text{lo})$ in determining ${}^{\text{Co}}_{\text{FeS}_2:\text{ZnS}}$ at each temperature is shown as an error bar. The value of $K_{FeS_2:ZnS}^{Co}$ at 675 and 625°C are, respectively, 24.2 ± 2.5 and 38.1 ± 21.2 . There is a strong selective uptake of Co in pyrite relative to sphalerite. Nothing definitive can be said about the variation of $\log K_{FeS_2:ZnS}^{Co}$ with $10^3/T(^{\circ}K)$ since only two valid data points exist. There could be a rapid increase of the concentration of Co in sphalerite relative to pyrite with increasing temperature, but this has not been firmly established. Interaction Of CoS and FeS In Sphalerite: Variations of FeS in sphalerite may affect the partitioning of Co between sphalerite and pyrite. Mole percent CoS in sphalerite has been plotted against mole percent FeS in sphalerite, for each point analyzed in all of the runs at each of the eight temperatures (Figures 26 to 33). A linear correlation coefficient (Snedecor and Cochran, 1967, chapter 13) was calculated between CoS and FeS for all sphalerite analyses at each temperature. Four statistically significant (at the 95% confidence level) interactions between CoS and FeS have been found, namely at 675, 525, 420 and 305°C (Figures 26, 29, 31, and 33). In each case, the corresponding correlation coefficient and the equation of the calculated regression line is given in the appropriate diagram (Figures 26, 29, 31, and 33). The inverse relationship between CoS and FeS in sphalerite at 675°C (Figure 26) is very similar to the inverse relationship of NiS and FeS in sphalerite formed at 755°C reported by Czamanske and Goff (1973, p.260). They explained the preferential acceptance of Fe⁺² relative to Ni⁺² in terms of crystal field theory. Fe⁺² has a lower octahedral site preference energy than Ni⁺² and should be more stable in the tetrahedral sites available in sphalerite. Differences in ionic size are apparently of secondary consideration. In a similar way, the preference of sphalerite for Fe⁺² at the expense of Co⁺² may be due to the small octahedral site preference energy of Fe⁺² relative to Co⁺² (Table 2). No significant inverse 0.50 0.50 0.20 420°C 0.15 CoS = 0.2759 + 0.1272 FeS (mole.%) Figure 31: Interaction of CoS and FeS in sphalerite at 420°C. r = +0.5770Mole Fraction FeS in Sphalerite 0.0 0.05 0 0 0 Mole Fraction CoS x 10² in Sphalerite 3.07 0.0 2.5 0.5 Figure 33: Interaction of CoS and FeS in sphalerite at 305°C. correlation between FeS and CoS in sphalerite is evident at 625°C. The absence of this interaction with decreasing temperature is probably due to slight lowering in the concentration range of FeS and not to a reduction in the potential of such an interaction. At 525, 420 and 305°C, the concentration of CoS and FeS in sphalerite are directly correlated. This curious reversal can be explained in two ways. The direct correlation may be due to the presence of microinclusions of (Fe, Co)S, in some of the sphalerite crystals. This would result in anomalously high analyses of both CoS and FeS. For example, in Figure 33, if the analysis at 4.2 mole percent CoS and 12 mole percent FeS is disregarded, the significant correlation between FeS and CoS disappears. This sort of effect is also possible for analyses at 420°C (Figure 31). The direct correlation between CoS and FeS at 525°C (Figure 29) may be entirely to chance. On the other hand, it could reflect small but sympathetic variations of CoS and FeS in sphalerite in response to random fluctuations of relative vapour space in the reaction tubes. It should be noted that the concentration of FeS in sphalerite from runs at 525°C is less than 10 mole percent, a level probably too low to cause a significant inverse interaction between FeS and CoS of the type detected at 675°C. The significant influence of changes of FeS in sphalerite on the concentration of CoS in sphalerite means that the partitioning of Co between sphalerite and pyrite cannot be used as a geothermometer without a thorough evaluation of this interaction, over a wide range of FeS concentrations in sphalerite. Variation Of FeS In Sphalerite: Figure 34 shows the variation of FeS in sphalerite with temperature. The error bars at each point on this diagram represent twice the pooled standard deviation of FeS for all runs at each temperature. If an error bar is not present, the error is too small to plot. The narrow range of FeS content in sphalerite below 675°C is again, due to uniform experimental conditions. The marked increase of FeS to 14 mole percent at 675°C is, as in the case of runs containing Mn, due to a large increase in the relative vapour space in the reaction tubes. Figure 34: Variation of FeS and CoS-bearing sphalerite with temperature. Figure 35: Variation of partition coefficients with temperature. ## CONCLUSIONS An attempt has been made to determine the partitioning of Mn and Co between sphalerite or wurtzite and pyrite as a function of temperature from 675 to 305°C. Microcrystalline wurtzite and pyrite were recrystallized in the presence of variable concentrations of MnS and CoS₂ in KCl - LiCl and NH₄Cl - LiCl eutectic fused salt mixtures for periods of time up to 47 days. The distribution of Mn and Co in the sphalerite or wurtzite and pyrite reaction products was determined by means of an electron probe microanalyzer. Mn is selectively concentrated in
sphalerite and wurtzite relative to pyrite by a factor of about 100. Both sphalerite and wurtzite as well as pyrite were found in the reaction products. Wurtzite is stabilized relative to sphalerite by concentrations of MnS in ZnS above 7 to 10 mole %. This transition is relatively insensitive to changes in temperature. Equilibrium conditions were apparently attained in most runs at temperatures down to 400°C. The partitioning of Mn obeys Henry's Law at concentration levels above those normally found in natural assemblages. No distinction could be drawn in the partitioning of Mn between sphalerite-pyrite and wurtzite-pyrite pairs. The amount of Mn in sphalerite or wurtzite relative to pyrite increases slightly with temperature. The partition coefficient (K) for Mn is a linear function of temperature (log K versus 1/T) within the range of temperatures considered. This variation in the partition coefficient can probably be used for the rough estimation of temperature of formation of natural sphaleritepyrite assemblages, although the magnitude of the partition coefficient would make the simultaneous chemical analysis of both phases by electron microprobe methods difficult if not impossible. No interaction of MnS and FeS in sphalerite and wurtzite is evident. Variations of FeS in sphalerite or wurtzite, up to a concentration of 16 mole % FeS in sphalerite or wurtzite should not affect the partitioning of Mn between sphalerite or wurtzite and pyrite. Co is selectively concentrated in pyrite relative to sphalerite by a factor of 22 to 38. Only sphalerite and pyrite were present in the reaction products. Equilibrium conditions were probably attained only at temperatures of 675 and 625°C. Gross disequilibrium was evident at temperatures below 575°C, possibly due to differential rates of recrystallization of sphalerite and Co-rich pyrite. There may be a rapid decrease in the partitioning coefficient (K) for Co between pyrite-sphalerite pairs with increasing temperature. Sphalerite may become relatively more enriched with Co as temperature increases. A relationship between log K and 1/T was not established since partitioning coefficients could be calculated only at two temperatures (675 and 625°C). A marked inverse interaction of FeS and CoS in sphalerite was found to exist at 675°C. It may be due to the preferential inclusion of FeS in the tetrahedral sites of sphalerite. Significant direct correlations between CoS and FeS in sphalerite were found at 525, 420 and 305°C for lower concentration levels of FeS in sphalerite than at 675°C. These could be due to contamination effects of microinclusions of (Co, Fe)S2 in sphalerite or to random fluctuations of the relative vapour space in reaction tubes changing the concentrations of CoS and FeS sympathetically. These interactions between CoS and FeS invalidate the use of this system as a geothermometer until the character of this effect is fully investigated over a wide range of FeS concentrations in sphalerite. The qualitative character of the partitioning of Co and Mn between sphalerite or wurtzite and pyrite can be adequately explained using crystal field theory. An analysis of this type should be carried out as a preliminary step in any experimental work on partitioning between sulphide phases. Kinetic problems leading to lack of equilibrium in some of the runs, particularly those involving \cos_2 , \sin_2 , point up the fact that thorough examination of reaction products by electron microprobe methods was absolutely necessary. The chemical analysis of mixtures of heterogeneous crystals by other techniques would give average values and would lead to highly erroneous conclusions. Kinetic difficulties of the type encountered here could probably be solved by: (1) considerably longer run times; (2) simultaneous precipitation of microcrystalline sulphide reagents to increase the homogeneity of the sulphide charges; (3) use of other eutectic fused salt mixtures. The use of eutectic fused salt mixtures in the study of partitioning between sulphide minerals seems to hold promise, and it constitutes a viable alternative to methods of hydrothermal synthesis. For example, an extension of Bethke and Barton's (1971) investigation of the distribution of Cd, Mn and Se between galena and sphalerite could be carried out down to 400°C by means of KCl - LiCl eutectic mixtures. In addition, partitioning between such sulphide pairs as pyrite-pyrrhotite and pyrite-chalcopyrite would be studied in this way. The application of experimental data on partitioning between coexisting sulphides to ore deposits is fraught with numerous problems. The most important of these is the frequent inability to identify precisely equilibrated sulphides in natural assemblages. Even if a specific pair of coexisting sulphides were in chemical equilibrium at some time, it may be very difficult to determine whether partition coefficients reflect conditions of ore formation or some later metamorphic event. The apparently simple procedure of sampling can present severe obstacles due to the requirement of sample purity, when analyses are done by such methods as atomic absorption, and due to compositional inhomogeneities commonly present in natural sulphide crystals as a result of growth zonation and exsolution. It should be emphasized that the compositional homogeneity of sulphide crystals has usually not been considered in any detail either in experimental partitioning studies (e.g. Bethke and Barton, 1971) or in partitioning studies on natural sulphide assemblages (e.g. Ghosh-Dastidar, 1970) despite the fact that the occurrence of heterogeneous sulphides can lead to major errors in the calculation of partition coefficients. Finally, a strong selective concentration of trace elements in one phase of a specific mineral pair may be a common feature of sulphides, making the analysis of the depleted phase difficult. Some of the problems outlined above may be solved by the use of ion probe techniques. This method provides greater analytical sensitivity than electron microprobe methods, chemical analysis on a micron scale and the potential of simultaneously measuring trace element concentrations and stable isotope ratios. Trace element distributions between coexisting sulphides in natural assemblages could be compared with fluid inclusion data and temperature estimates derived from sulphur isotope partitioning. # Appendix I Analyses Of Mn In Sphalerite Or Wurtzite #### Note - Appendix I In the following tables, the numbered column headings refer to: - (1) Analysis identification number. For example, the identifier 14901 refers to an analysis of a single crystal of sphalerite or wurtzite from run 149. Repetition of the identifier indicates that analyses were carried out at two or more distinct spots on the crystal. - (2) Run temperature in °C - (3) Run time in days - (4) Weight per cent Mn in sulphide charge - (5) Mole per cent MnS in sphalerite or wurtzite - (6) Mole per cent FeS in sphalerite or wurtzite - (7) Mole per cent ZnS in sphalerite or wurtzite - (8) Deviation of original analytical total (in weight per cent) from 100%. Lines started by "AV" give the averages for the preceding set of analyses. The presence of an asterisk (*) preceding the average value of MnS indicates that the distribution of MnS is heterogeneous and that the calculation and use of an average for the set of analyses is probably not justified. | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|-------|--|--|--|--| | | 14901
14901
14902
14902
14903
14903 | | | | 39.9900
39.5529
40.5093
40.3954
41.0358
41.6158 | 14.2317
14.4533
12.4335
12.2804
14.6072
14.8567 | 45.7783
45.9939
47.0572
47.3241
44.3570
43.5276 | -0.2442
1.9657
3.3312
3.0115
0.5299
-0.8965 | | AV | 149 | 675 | 10 | 25.30 | 40.5165 | 13.8105 | 45.6730 | 1.2829 | | | 15001
15001
15002
15002
15003
15003 | | | | 37.2580
37.3365
37.3871
37.1484
36.8542
36.8537 | 13.9839
13.9879
14.1607
14.2552
16.1723
16.3678 | 48.7581
48.6756
48.4522
48.5964
46.9735
46.7785 | 4.1390
3.3065
3.5825
3.1454
3.2619
3.6415 | | AV | 150 | 675 | 10 | 18.96 | 37.1396 | 14.8213 | 48.0390 | 3.5128 | | | 15101
15101
15102
15102
15103
15103 | | | | 23.2557
23.4453
25.4548
24.2033
22.4899
22.5736 | 13.7076
14.4469
16.4146
16.6964
14.3199
15.3513 | 63.0367
62.1079
58.1305
59.1003
63.1902
62.0750 | 0.9182
1.9036
-0.0767
1.0864
2.3976
2.4173 | | AV | 151 | 675 | 10 | 12.64 | 23,5704 | 15.1561 | 61.2734 | 1.4411 | | | 15201
15201
15202
15202
15203
15203 | | | | 15.0879
15.9616
16.2746
15,8048
16.2763
16.2699 | 17.1022
17.7918
13.6273
13.6618
17.3842
17.4470 | 67.8099
66.2465
70.0981
70.5333
66.3395
66.2832 | -2.8378 2.3211 1.5624 1.3576 1.6362 1.5548 | | AV | 152 | 675 | 10 | 9.48 | 15.9459 | 16.1691 | 67.8850 | 0.9324 | | | 15301
15301
15302
15302
15303
15303 | | | | 8.2361
8.2916
8.1336
8.2934
9.6971
10.3510 | 14.9406
14.9570
14.9093
14.9518
16.2493
16.4889 | 76.8233
76.7514
76.9571
76.7548
74.0536
73.1601 | -4.1060
-4.1478
-3.8545
-4.0723
-2.1258
-3.0797 | | AV | 153 | 675 | 10 | 6.32 | 8.8338 | 15.4161 | 75.7500 | -3.5644 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|-------
--|--|--|--| | | 15401
15401
15402
15402
15403 | | | | 3.1845
3.3779
3.5974
3.5007
3.7920 | 11.2732
9.1081
11.9827
11.6248
14.1685 | 87.5140
84.4199
84.8744
82.0395 | 0.4063
1.6609
2.7202
3.1257
0.7548 | | | 15403 | | | | 3.877 9 | 14.3786 | 81.7434 | 1.2753 | | AV | 154 | 675 | 10 | 3.16 | 3.5551 | 12.0893 | 84.3555 | 1.6572 | | | 11301
11301
11302
11302
11303
11303
11304
11304 | | | | 42.6685
42.9041
42.1199
42.1532
42.1431
34.0741
42.6854
42.5200 | 3.9726
4.0218
3.7999
3.8320
7.2185
7.8408
5.0850
4.1256 | 53.3589
53.0741
54.0802
54.0148
50.6384
58.0851
52.2297
53.3545 | 4.4735
3.7133
4.0767
4.0897
3.0405
1.7619
3.8561
3.0320 | | AV | 113 | 625 | 14 | 25.30 | . * 41 . 4085 | 4.9870 | 53.8545 | 3.5055 | | | 11401
11401
11402
11402
11403
11403
11404
11404 | · | | | 42.6284
42.3173
42.2409
42.4641
33.5571
35.2549
40.4029
39.6035 | 4.1329
4.2365
5.0897
4.3810
7.9498
7.6332
3.9516
3.9735 | 53.2388
53.4462
52.6694
53.1548
58.4931
57.1119
55.6455
56.4229 | 3.1016
3.6500
3.2192
2.5042
2.2388
1.2770
1.6881
2.1842 | | AV | 114 | 625 | 14 | 18.96 | 39.8086 | 5.1685 | 55.0228 | 2.4829 | | | 11501
11501
11502
11502
11503
11503 | | | | 28.2158
26.8019
26.4125
25.1764
25.3291
22.9465 | 7.7105
6.2577
6.6461
6.8297
6.1622
5.4308 | 64.0737
66.9404
66.9414
67.9938
68.5087
71.6227 | 1.4203
3.9822
0.7879
0.3478
5.0514
5.6965 | | AV | 115 | 625 | 14 | 12.64 | 25.8137 | 6.5062 | 67.6801 | 2.8810 | | | 11601
11601
11602
11602
11603
11603 | | | | 21.7001
17.6098
15.6011
16.1045
15.4815
15.4028 | 8.1984
5.4568
7.7855
7.1756
5.1169
5.0802 | 70.1015
76.9335
76.6134
76.7198
79.4016
79.5171 | 1.2064
3.0178
1.3218
1.6822
3.2346
3.8188 | | AV | 116 | 625 | 14 | 9.48 | 16.9833 | 6.4689 | 76.5478 | 2.3803 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|-------|--|--|--|--| | | 11701
11701
11702
11702
11703
11703 | | | | 11.3123
10.0662
8.1840
7.9691
9.5956
10.0368 | 7.2912
6.7175
5.6930
5.8656
6.5013
6.6907 | 81.3965
83.2163
86.1230
86.1653
83.9013
83.2726 | 1.0825
2.1655
0.4845
0.6183
2.2706
2.4523 | | AV | 117 | 625 | 14 | 6.32 | 9.5273 | 6.4599 | 84.0128 | 1.5138 | | | 11801
11801
11802
11802
11803
11803 | | | | 3.4077
4.7519
4.8185
4.7218
1.3492
5.1335 | 6.4804
7.4350
6.5298
7.3092
7.4645
8.6412 | 90.1118
87.8131
88.6517
87.9691
91.1863
86.2253 | 1.0193
2.7687
1.2461
1.0550
5.5413
4.0462 | | AV | 118 | 625 | 14 | 3.16 | 4.0304 | 7.3100 | 88.6595 | 2.6128 | | | 8901
8901
8902
8902
8903
8903 | | | | 42.0030
42.4377
42.6386
43.9509
42.4454
44.3491 | 3.8186
3.4948
3.5098
4.7384
2.9742
5.6591 | 54.1785
54.0675
53.8516
51.3108
54.5808
49.9918 | 2.4051
4.0255
4.2495
3.4624
2.7770
2.1719 | | AV | 8 9 | 575 | 14 | 25.30 | 42.9707 | 4.0325 | 52.0067 | 3.1819 | | | 9001
9001
9002
9002
9003
9003
9004
9004 | | | | 33.6838
34.4651
42.7102
42.8385
39.0768
32.8879
33.5551
36.0111 | 4.5310
4.8427
3.6557
4.3195
5.2469
4.4995
5.5237
4.2108 | 61.7852
60.6922
53.6341
52.8419
55.6763
62.6127
60.9212
59.7782 | 2.8288 3.0724 3.8641 3.5494 2.1881 3.5038 5.5820 4.6783 | | AV | 90 | 575 | 14 | 18.96 | *36.9036 | 4.6037 | 58.4927 | 3.6584 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|-------|--|--|--|---| | | 12601
12601
12602
12602
12603
12603 | | | | 39.2464
42.6313
43.9020
43.7050
42.9003
40.3145 | 7.6945
3.8489
5.0888
4.7922
3.5763
7.3948 | 53.0591
53.5199
51.0092
51.5029
53.5234
52.2907 | 3.4900
1.8587
0.7188
0.7184
1.1290
1.2327 | | AV | 126 | 575 | 27 | 18.96 | 42.1166 | 5.3992 | 52.4842 | 1.5246 | | | 9101
9101
9102
9102
9103
9103 | | | | 24.8376
25.4163
25.5469
25.3841
23.0272
25.1207 | 8.7288
4.7613
7.6801
8.5997
6.8082
7.0797 | 66.4336
69.8225
66.7731
66.0163
70.1646
67.7997 | 4.1151
4.4816
3.2412
3.8688
3.8048
3.8965 | | AV | 91 | 575 | 14 | 12.64 | 24.8888 | 7.2763 | 67.8349 | 3.9013 | | | 12701
12701
12702
12702
12703
12703 | | | | 31.1049
29.1993
24.6509
25.3948
22.9845
22.1373 | 12.5710
8.6360
7.5178
6.8641
7.1026
4.8692 | 56.3241
62.1647
67.8313
67.7411
69.9130
72.9936 | 4.0018 3.8698 4.7542 3.1032 1.3468 0.7406 | | AV | 127 | 575 | 27 | 12.64 | 25.9119 | 7.9268 | 66.1613 | 2.9694 | | | 9201
9201
9202
9202
9203
9203
9204
9204 | | | | 9.5651
9.8955
9.4569
6.3610
8.8618
10.6065
8.8164
7.2864 | 4.1111
4.9736
3,4532
3.1657
3.6911
3,5697
3.3449
3.7301 | 86.3238
85.1310
87.0899
90.4733
87.4471
85.8239
87.8387
88.9834 | 2.4729
2.7817
5.6456
0.9233
2.0421
3.7392
2.3517
2.6452 | | AV | 92 | 575 | 14 | 9.48 | 8.8562 | 3.7549 | 87.3888 | 2.8252 | | | 12801
12801
12802
12802
12803
12803
12804 | | | | 12.5593
12.4654
20.1149
20.6051
17.8476
18.6345
17.8840
16.8379 | 3.9685
3.7925
6.3034
8.7716
5.2594
4.9131
5.4285
8.7906 | 83.4722
83.7421
73.5818
70.6233
76.8930
76.4525
76.6875
74.3715 | 1.3408
0.9481
0.5487
0.4280
1.0434
1.4221
0.2875
-0.1773 | | AV | 128 | 575 | 27 | 9.48 | 17.1186 | 5.9034 | 76.9779 | 0.7302 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|----------------|--------------|-----|------|----------------|---------|-----------------|---------| | | 5101 | | | | 15.1304 | 3.8593 | 81.0104 | -1.3240 | | | 5102 | | | | 13.9516 | 4.8588 | 81.1897 | -1.2097 | | | 5103 | | | | 17.2013 | 6.2264 | 76.5722 | | | | 5103 | | | | | | | -2.1632 | | | 3104 | | | | 15.8875 | 3.8222 | 80.2903 | -3.0200 | | AV | 51 | 575 | 5 | 8.24 | 15.5427 | 4.6917 | 7 9.7656 | -1.9292 | | | 9301 | | | | 8.8673 | 9.6213 | 81.5114 | 0.0344 | | | 9301 | | | | 7.8 945 | 7.3887 | 84.7168 | 0.8222 | | | 9302 | | | | 4.9657 | 5.7956 | 8 9.2388 | 1.9689 | | | 9302 | | | | 4.6881 | 4.5143 | 90.7976 | 2.8093 | | | 9303 | | | | 11.2265 | 13.9203 | 74.8531 | 3.7525 | | | 9303 | | | | 7.6260 | 6.8218 | 85.5522 | 3.0476 | | | 9304 | | | | 6.2700 | 5.0627 | 88.6673 | 2.6286 | | | 9304 | | | | 6.2266 | 5.3100 | 88.4635 | 2.3817 | | AV | 93 | 575 | 14 | 6.32 | 7.2206 | 7.3043 | 8 5.4750 | 2.1806 | | | 12901 | | | | 1.3873 | 10.9455 | 87. 6673 | 0.1160 | | | 12901 | | | | 1.3360 | 10.3804 | 88,2836 | -0.1536 | | | 12902 | | | | 1.4653 | 5.5744 | 92.9603 | 1.0704 | | | 12902 | | | | 1.2622 | 8.4107 | 90.3272 | 1.3961 | | | 12903 | | | | 11.8840 | 6.4547 | 81.6613 | 0.3272 | | | 12903 | | | | 11.6418 | 6.4195 | 81. 9388 | 0.4917 | | | | | | | | 6.9288 | 77. 7790 | 3.7313 | | | 12904 | | | | 15.2922 | | | | | | 12904 | | | | 14.5075 | 6.9116 | 78.5809 | 3.6238 | | | 12905 | | | | 15.3916 | 7.1199 | 77.4885 | 2.1035 | | | 12 905 | | | | 15.0234 | 7.0255 | 77. 9510 | 2.3667 | | AV | 129 | 5 7 5 | 27 | 6.32 | * 8.9191 | 7.6171 | 83.4637 | 1.5073 | | | 9401 | | | | 4.4202 | 7.7188 | 87. 8609 | 0.8379 | | | 9401 | | | • | 4.4151 | 8.9839 | 86.6010 | -2.4489 | | | 9402 | | | | 3.1624 | 5.2167 | 91. 6209 | 1.4520 | | | 9402 | | | | 4.3381 | 7.4861 | 88. 1758 | 1.8462 | | | 9406 | | | | 2.7221 | 4.2822 | 92.9957 | 2.5522 | | | 9406 | | | | 4.8131 | 11.4332 | 83.7538 | 1.2071 | | | 9404 | | | | 2.6729 | 4.5587 | 92,7686 | 2.1719 | | | 9404 | | | | 3.2588 | 5.8511 | 90.8901 | 3.2884 | | ΑV | 94 | 5 7 5 | 14 | 3.16 | 3.7253 | 6.9413 | 8 9.3333 | 1.3633 | | | 13001 | | | | 5.4351 | 6.8735 | 87.6914 | 0.1765 | | | 13001 | | | | 6.2688 | 6.8725 | 86.8587 | -0.2638 | | | 13002 | | | | 4.2285 | 9.1694 | 86.6021 | -1.1905 | | | 13002 | | | | 3.6242 | 6.4330 | 89.9428 | 1.2215 | | | 13002 | | | | 5.1469 | 7.3702 | 87. 4829 | 0.5139 | | | 13003
13003 | | | | 4.6427 | 6.4237 | 88.9337 | 1.7438 | | VA | 130 | 575 | 27 | 3.16 | 4.8911 | 7.1904 | 87.9185 | 0.3669 | | | | | | | | | | | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|-------|--
--|---|---| | | 6401
6402
6403
6404
6405 | | | | 0.9305
0.8126
0.7984
0.7639
0.8188 | 4.7478
3.7739
3.0082
3.0038
2.7125 | 94.3217
95.4136
96.1935
96.2324
96.4687 | -1.5094
-2.9130
0.3271
-0.3259
-0.2997 | | AV | 64 | 575 | 21 | 2.42 | * 0.8248 | 3.4492 | 95.7259 | -0.9442 | | | 6501
6502
6503 | | | | 0.1681
0.1819
0.1858 | 3.2381
1.9592
2.1245 | 96.5983
97.8590
97.6897 | 3.3849
1.2165
1.4113 | | AV | 65 | 575 | 21 | 1.24 | 0.1786 | 2.4406 | 97.3808 | 2.0042 | | | 6801
6802
6803
6803
6804
6805
6806
6807
6808 | | | | 0.0837
0.0782
0.0757
0.0757
0.0632
0.0653
0.0749
0.0581 | 2.6455
3.2040
3.1505
3.1505
2.8885
2.8476
3.5299
2.7588
3.6576 | 97.2708
96.7178
96.7738
96.7738
97.0484
97.0870
96.3951
97.1831
96.2949 | -0.6701
-0.0719
-0.2952
-0.2952
-1.4855
-1.4797
0.0216
-2.2824
0.8981 | | AV | 68 | 575 | 21 | 0.13 | 0.0692 | 3.0926 | 96.8382 | -0.6289 | | · | 10101
10101
10102
10102
10103
10103 | | | | 42.9482
42.0216
41.4747
41.8104
41.7562
40.9211 | 2.1252
5.5018
6.9533
5.2349
3.1563
7.6159 | 54.9267
52.4765
51.5720
52.9547
55.0876
51.4630 | 0.8470
1.9871
2.6894
3.4446
2.4632
2.5491 | | AV | 101 | 525 | 30 | 25.30 | 41.8220 | 5.0979 | 53.0800 | 2.3301 | | | 10201
10201
10202
10202
10203
10203 | | | | 42.6276
41.8121
41.9083
41.1192
41.8834
42.0661 | 2.5192
3.2062
2.0084
2.0559
3.2548
3.2858 | 54.8532
54.9817
56.0824
56.8249
54.8618
54.6482 | 0.8019
2.6123
2.1966
2.3005
2.6579
3.2589 | | AV | 102 | 525 | 30 | 18.96 | 41.9028 | 2.7219 | 55.3753 | 2.3047 | | | 2001
2002
2003
2004
2005
2006 | | | | 33.0228
34.8234
33.7112
33.7709
32.8287
31.8846 | 2.2026
2.6426
2.6197
2.4375
2.9503
1.6880 | 64.7746
62.5340
63.6690
63.7916
64.2210
66.4274 | -0.1163
-1.9403
-1.0926
-1.5224
-0.6486
-1.2212 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|-------|--|--|--|--| | AV | 20 | 525 | 14 | 14.57 | 33.3403 | 2.4235 | 64.2362 | -1.0902 | | | 2601
2602
2603 | | | | 36.0111
36.3269
34.1333 | 3.0332
2.5807
2.2634 | 60.9557
61.0923
63.6033 | -2.1713
-3.7920
-0.9482 | | AV | 26 | 525 | 28 | 14.57 | 35.4904 | 2.6258 | 61.8838 | -2.3038 | | | 10301
10301
10302
10302
10303
10303 | | | | 26.3314
23.6296
24.7662
27.8051
28.2214
23.2415 | 5.1034
6.5260
3.1691
8.3834
7.5110
7.7289 | 68.5652
69.8444
72.0648
63.8115
64.2677
69.0296 | 2.2663
1.3232
2.7007
2.6666
2.5368
1.6371 | | AV | 103 | 525 | 30 | 12.64 | 25,6658 | 6.4036 | 67.9305 | 2.1884 | | | 10401
10401
10402
10402
10403
10403 | | | | 10.9060
8.5979
8.4483
9.3884
10.7024
9.2925 | 3.5635
2.4525
2.6223
2.7863
4.2537
4.0462 | 85.5305
88.9496
88.9294
87.8253
85.0439
86.6614 | -2.1406
-0.0838
1.4670
1.0539
1.5297
1.1527 | | AV | 104 | 525 | 30 | 9.48 | 9,5559 | 3.2874 | 87.1566 | 0.4965 | | | 2101
2102
2103
2104 | | | | 8.4770
9.4101
3.7236
8.0790 | 1.9536
1.9812
6.1156
3.5505 | 89.5694
88.6086
90.1609
88.3705 | -2.5400
-1.7271
-4.3210
-1.5347 | | AV | 21 | 525 | 14 | 8.24 | * 7.4224 | 3,4002 | 89.1773 | -2.5307 | | | 2701
2702
2703
2704
2705
2706 | | | | 10.5297
10.3110
9.9558
15.0073
12.0515
10.0593 | 1.7687
1.7080
1.8692
1.5161
2.3164
1.5007 | 87.7015
87.9810
88.1750
83.4766
85.6321
88.4400 | -0.7459 -3.2503 -2.1037 -1.8504 -0.8053 -0.5554 | | AV | 27 | 525 | 28 | 8.24 | * 11.3191 | 1.7799 | 86.9010 | -1.5518 | | | 10501
10501
10502
10502
10503
10503 | | | | 1.3014
1.3015
0.9389
0.9394
1.0330
1.0612 | 8.2564
8.3570
3.8243
3.6644
9.6474
9.6704 | 90.4422
90.3415
95.2368
95.3962
89.3195
89.2684 | -4.3229
-4.0277
-3.2810
-3.2060
-3.9790
-4.5962 | | AV | 105 | 525 | 30 | 6.32 | 1.0959 | 7.2366 | 91.6673 | -3.9021 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|---|-----|-----|-------|--|---|--|--| | | 2801
2802
2803 | | | | 2.6313
2.7903
2.3482 | 2.7316
2.7495
2.1427 | 94.6372
94.4603
95.5091 | -0.2458
0.3413
0.1198 | | AV | 28 | 525 | 28 | 3.57 | 2.5899 | 2.5413 | 94.8688 | 0.0718 | | | 10601
10602
10602
10603
10603
10604
10604 | | | | 0.3302
0.3149
0.2695
0.2707
0.9200
0.5515
0.5038
1.0395 | 8.2038
10.7164
3.4554
3.1502
10.1782
8.8401
9.3673
11.0200 | 91.4660
88.9686
96.2751
96.5791
88.9019
90.6085
90.1288
87.9406 | -1.8206 -3.5611 2.6891 2.5295 -1.6595 1.1756 -0.2381 -4.1567 | | AV | 106 | 525 | 30 | 3.16 | * 0.5250 | 8.1164 | 91.3585 | -0.6302 | | | 7401
7402
7403 | | | | 0.4301
0.3108
0.3228 | 4.6580
2.4237
2.4730 | 94.9119
97.2656
97.2042 | 0.9770
2.7468
1.8733 | | AV | 74 | 525 | 21 | 2.42 | 0.3546 | 3.1849 | 96.4605 | 1.8657 | | | 13701
13702
13703
13704 | | | | 41.1525
38.7301
38.2374
36.8669 | 1.1756
1.6869
4.5060
4.9459 | 57.6719
59.5830
57.2566
58.1871 | 0.5259
1.3454
-1.1628
0.6956 | | AV | 137 | 475 | 28 | 25.30 | 38.7467 | 3.0786 | 58.1747 | 0.3510 | | | 13801
13802
13803 | | | | 29.7823
34.1757
31.9195 | 5.5327
4.1246
4.3623 | 64.6851
61.6997
63.7182 | -0.8730
-0.5841
-0.2678 | | AV | 138 | 475 | 29 | 18.96 | 31.9592 | 4.6732 | 63.3676 | -0.5750 | | | 13901
13902
13903
13904 | | | | 24,0050
25.7468
24.4154
22.3821 | 2.6619
7.6054
2.3575
2.4272 | 73.3332
66.6478
73.2271
75.1907 | 3.9396
3.6935
4.4204
3.7349 | | AV | 139 | 475 | 28 | 12.64 | 24.1373 | 3.7630 | 72.0997 | 3.9471 | | | 14001
14002
14003
14004 | | | | 8.7461
13.2147
9.0776
10.6816 | 2.3659
7.0602
2.6148
6.6632 | 88.8880
79.7252
88.3076
82.6552 | 3.0259
2.6379
0.9269
3.7671 | | AV | 140 | 475 | 28 | 9.48 | 10.4300 | 4.6760 | 84.8939 | 2.5894 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|-------|--|--|--|--| | | 14101
14102
14103
14104 | | | | 5.8463
6.6937
2.2150
9.5171 | 10.0194
10.1235
5.2912
12.3520 | 84.1344
83.1828
92.4938
78.1309 | 1.4379
-0.4942
-1.0390
2.4410 | | AV | 141 | 475 | 28 | 6.32 | 6.0680 | 9.4465 | 84.4854 | 0.5864 | | | 14201
14202
14203 | | | | 4.2319
3.5518
3.7110 | 11.9215
13.5028
11.6093 | 83.8467
82.9454
84.6797 | 2.1015
-4.9791
-4.5107 | | AV | 142 | 475 | 28 | 3.16 | 3.8316 | 12.3445 | 83.8249 | -2.4628 | | | 8401
8402
8403
8404
8405
8406 | | | | 2.0404
1.7301
2.3883
2.9466
2.8470
2.5277 | 6.5326
3.8594
2.1713
2.7545
3.7611
5.4779 | 91.4270
94.4105
95.4404
94.2990
93.3919
91.9944 | -0.8948
-1.3810
-1.2955
-1.6531
-1.8609
-3.8873 | | AV | 84 | 475 | 21 | 2.42 | 2.4134 | 4.0928 | 93.4938 | -1.8288 | | | 8501
8502
8503
8504
8505
8506 | | | | 0.0193
0.1338
0.4176
0.0206
0.3602
0.0315 | 1.0844
3.8348
5.3253
1.7737
8.2383
2.5489 | 98.8963
96.0314
94.2570
98.2057
91.4015
97.4197 | -0.8627
2.2207
0.9307
1.1946
3.1577
1.2349 | | AV | 85 | 475 | 21 | 1.24 | * 0.1638 | 3.8009 | 96.0352 | 1.3126 | | | 17301
17302
17303
17304
17305 | | | | 34.5041
32.5071
36.4415
35.2045
35.9359 | 9.6427
3.7709
8.3263
9.1716
7.6498 | 55.8531
63.7221
55.2322
55.6240
56.4143 | -1.5728
-2.8151
-1.3128
-1.8887
-0.2908 | | AV | 173 | 420 | 47 | 25.30 | 34.9186 | 7.7123 | 57.3691 | -1.5760 | | | 17401
17402
17403
17404
17405 | | | | 20.1591
13.3019
15.8057
27.9570
6.8183 | 2.2804
6.3505
3.9984
2.0966
3.7588 | 77.5605
80.3476
80.1960
69.9464
89.4229 | 1.2295
-1.5377
-2.1129
-0.0239
1.2843 | | AV | 174 | 420 | 47 | 18,96 | *16.8084 | 3,6970 | 79.4946 | -0.2322 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|-------|--|--|--|--| | |
17501
17501
17502
17502
17503
17503 | | | | 11.2786
10.8714
9.3477
8.7625
12.3089
13.4841 | 9.7610
9.5833
8.4295
7.7489
9.7205
8.9256 | 78.9604
79.5455
82.2229
83.4887
77.9707
77.5903 | -2.2677 -1.1823 -0.6377 0.0508 -0.3019 -0.5926 | | AV | 175 | 420 | 47 | 12.64 | 11.0088 | 9.0281 | 79.9630 | -0.8219 | | | 17601
17602
17603
17604
17605 | | | | 4.0177
5.2789
8.0801
6.5428
7.2321 | 8.3142
12.2903
15.9840
11.7524
13.6324 | 87.6682
82.4307
75.9359
81.7048
79.1356 | 0.7052
-0.9125
-0.0680
-0.5456
-0.9613 | | AV | 176 | 420 | 47 | 9.48 | 6.2303 | 12.3947 | 81.3750 | -0.3564 | | | 17701
17702
17703
17704 | | | | 1.2878
0.8934
1.4454
2.6172 | 13,7712
12.6885
13.6663
13.3704 | 84.9411
86.4181
84.8883
84.0124 | -1.5431
-2.3946
-2.1291
-0.9777 | | VA | 177 | 420 | 47 | 6.32 | 1.5609 | 13.3741 | 85.0649 | -1.7611 | | | 17801
17802
17803 | | | | 0.4551
0.3596
0. 3 943 | 7.3439
7.1394
8.9153 | 92.2010
92.5010
90.6904 | -1.8432
0.1663
0.2012 | | AV | 178 | 420 | 47 | 3.16 | 0.4030 | 7.7995 | 91.7974 | -0.4919 | | | 18501
18502
18503
18504 | | | | 36.8737
31.5117
49.5041
34.3354 | 8.3786
1.7199
1.3697
7.5872 | 54.7477
66.7684
49.1262
58.0773 | 1.0581
0.7379
0.2601
2.6113 | | VA | 185 | 403 | 47 | 25.30 | 38.0521 | 3.9468 | 45.7439 | 2.0302 | | | 18601
18602
18603
18604 | | | | 29.2834
37.5460
32.7363
28.1551 | 7.4278
1.5245
7.1454
9.1107 | 63.2888
60.9295
60.1182
62.7677 | 0.1903
1.7773
1.3763
1.0318 | | ΑV | 186 | 403 | 47 | 18.96 | 31.9302 | 6.3021 | 61.7677 | 1.0319 | | | 18701
18702
18703
18704
18705 | | | | 7.8619 10.4320 2.3785 7.8856 8.2975 | 10.9434
13.7995
9.0726
10.7708
15.8458 | 81.1947
75.7684
88.5489
81.3436
75.8567 | 1.8703
-0.3715
-0.4890
2.5325
3.4070 | | ΑV | 187 | 403 | 47 | 12.64 | * 7.3711 | 12.0864 | 80.5424 | 1.3898 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|---|-----|-----|-------|--|--|---|---| | | 18801
18802
18803
18804 | | | | 4.3696
5.1999
5.3432
6.2538 | 6.0925
7.3831
12.2794
12.3521 | 89.5379
87.4171
82.3774
81.3941 | -3.2417
-0.8458
-1.3998
-1.9430 | | AV | 188 | 403 | 47 | 9.48 | 5.2917 | 9.5268 | 85.1816 | -1.8576 | | | 18901
18902
18903
18904 | | | | 4.5908
1.6247
4.2316
1.5903 | 9.3826
9.3752
7.2135
7.5953 | 86.0266
89.0002
88.5549
90.8144 | 0.5905
-0.4381
0.4728
0.1942 | | AV | 189 | 403 | 47 | 6.32 | * 3.0093 | 8.3917 | 88.5989 | 0.2048 | | | 19001
19002
19003
19004 | | | | 0.3326
0.1349
0.1844
0.1939 | 8.6783
4.2700
5.3103
5.2325 | 90.9891
95.5952
94.5053
94.5737 | -3.0198
-2.3078
-0.3191
1.6545 | | AV | 190 | 403 | 47 | 3.16 | 0.2114 | 5.8728 | 93.9157 | -0.9981 | | | 19701
19702
19703
19704
19705 | | | | 8.5618
15.2488
9,4624
13.0690
7.5469 | 1.2174
1.0227
0.8176
8.8211
2.8090 | 90.2207
83.7286
89.7201
78.1099
89.6441 | 0.1068
1.9188
1.5308
-0.6659
2.4799 | | AV | 197 | 305 | 47 | 25.30 | 10.7778 | 2.9376 | 86.2847 | 1.0741 | | | 19801
19802
19803
19804 | | | | 11.5170
8.9001
7.1013
5.7153 | 3,5433
3.3686
1.5221
1.4406 | 84.9498
87.7313
91.3767
92.8441 | -1.7609
0.9746
1.8025
0.5736 | | AV | 198 | 305 | 47 | 18.96 | 8.3084 | 2.4686 | 89.2229 | 0.3974 | | | 19901
19902
19903
19904 | | | | 0.0729
0.0663
0.1455
2.1073 | 1.7223
2.6955
2.7361
9.1543 | 98.2048
97.2382
97.1184
88.7384 | -2.6221
0.2795
-1.3069
1.5711 | | AV | 199 | 305 | 47 | 12.64 | <u>*</u> 0.5980 | 4.0771 | 95.3249 | -0.5196 | | | 20001
20002
20003
20004 | | | | 0.0180
16.2975
34.2782
0.0573 | 1.6813
2.3055
2.4865
9.5681 | 98.3008
81.3970
63.2353
90.3747 | -1.7497
-2.5916
-4.2060
-3.1020 | | AV | 200 | 305 | 47 | 9.48 | * 12.6627 | 4.0104 | 83.3269 | -2.9123 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|-------------------------|-----|-----|------|----------------------------|-------------------------------|-------------------------------|-------------------------------| | | 20101
20102
20103 | | | | 0.0856
0.0171
0.1393 | 7.3988
2.3591
1.3314 | 92.5157
97.6238
98.5294 | -1.6698
1.2923
0.7139 | | AV | 201 | 305 | 47 | 6.32 | 0.0807 | 3.6964 | 96.2229 | 0.1121 | | | 20201
20202
20203 | | | | 0.1645
0.4908
0.3187 | 13.7047
14.5936
12.8579 | 86.1308
84.9157
86.8234 | -4.6031
-2.0813
-4.5102 | | AV | 202 | 305 | 47 | 3.16 | 0.3246 | 13.7188 | 85.9565 | -3.7315 | ### Appendix II Analyses Of Mn In Pyrite #### Note - Appendix II In the following tables, the numbered column headings refer to: - (1) Analysis identification number. For example, the identifier 14901 refers to an analysis of a single crystal of pyrite from run 149. Repetition of the identifier indicates that analyses were carried out at two or more distinct spots on the crystal. - (2) Run temperature in °C - (3) Run time in days - (4) Weight per cent Mn in sulphide charge - (5) Mole per cent MnS₂ in pyrite - (6) Mole per cent FeS, in pyrite - (7) Mole per cent ZnS2 in pyrite - (8) Deviation of original analytical total (in weight per cent) from 100% Lines started by "AV" give the averages for the preceding set of analyses. The presence of an asterisk (*) preceding the average value of MnS indicates that the distribution of MnS₂ is heterogeneous and that the calculation and use of an average for the set of analyses is probably not justified. - = element not detected | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|-------|--|--|--|--| | | 14901
14902
14903
14904
14905
14906 | | | | 0.0413
0.3910
0.8509
0.4596
0.4662
0.5649 | 99.9587
99.6090
99.1491
99.5404
99.5338
99.4351 | -
-
-
-
- | -1.0381
-2.3762
-3.6300
-1.9785
-3.9214
-3.1563 | | AV | 149 | 675 | 10 | 25.30 | * 0.4623 | 99.5376 | - | 26834 | | | 15001
15002
15003
15004 | | | | 0.3683
0.2494
0.2533
0.6024 | 99.1491
99.6709
99.4799
99.1944 | 0.4826
-
0.2668
0.2032 | -0.4056
-0.9771
-0.8129
-0.9083 | | AV | 150 | 675 | 10 | 18.96 | 0.3683 | 99.3735 | 0.2581 | -0.7760 | | | 15101
15102
15103
15104
15105
15106 | | | | 0.1231
0.0399
0.0958
0.0731
0.0977
0.2471 | 99.5089
99.7264
99.7977
99.7312
99.6138
99.3590 | 0.3680
0.2337
0.1065
0.1957
0.2885
0.3940 | -1.5372
0.6308
0.9711
-2.0023
-0.2966
-0.8899 | | AV | 151 | 675 | 10 | 12.64 | *0.1128 | 99.6227 | 0.2644 | -0.5207 | | | 15201
15202
15203
15204
15205 | | | | 0.0847
0.1316
0.0693
0.2402
0.1475 | 99.5441
99.1844
99.6969
99.4379
99.5739 | 0.3712
0.6840
0.2348
0.3219
0.2786 | -2.2396
-2.3727
0.4530
-2.8781
-2.0992 | | AV | 152 | 675 | 10 | 9.48 | 0.1345 | 99.4874 | 0.3781 | -1.8273 | | | 15301
15302
15303 | | | | 0.0430
0.0556
0.0566 | 99.6065
99.4996
99.7454 | 0.3505
0.4448
0.1979 | -0.2010
-0.6629
0.8315 | | AV | 153 | 675 | 10 | 6.32 | 0.0517 | 99.6172 | 0.3311 | -0.0108 | | | 15401
15402
15403 | | | | 0.0360
0.0507
0.0735 | 99.1010
99.2028
99.2826 | 0.8630
0.7465
0.6439 | -2.2266
-0.0831
-1.2546 | | AV | 154 | 675 | 10 | 3.16 | 0.0534 | 99.1954 | 0.7511 | -1.1881 | | | 11301
11302
11303 | | | | 0.3180
0.1126
0.3960 | 99.3226
99.7543
99.1385 | 0.3594
0.1331
0.4655 | -2.5923
-2.3911
-2.9101 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|-------|--|--|--|---| | | 11304
11305 | | | | 0.4622
0.6075 | 99.3807
98.6269 | 0.1571
0.7656 | -1.8924
-1.8833 | | AV | 113 | 625 | 14 | 25.30 | 0.3792 | 99.2445 | 0.3761 | -2.3338 | | | 11401
11402
11403
11404
11405 | | | | 0.1947
0.3703
0.2564
0.4575
0.2421 | 99.2865
98.8161
99.0625
98.9375
99.1878 | 0.5188
0.8136
0.6810
0.6050
0.5701 | 1.5630
1.1581
0.8863
0.6238
0.6371 | | AV | 114 | 625 | 14 | 18.96 | 0.3042 | 99.0580 | 0.6377 | 0.9737 | | | 11501
11502
11503
11504 | | | | 0.3605
0.2565
0.3814
0.2573 | 98.0151
98.4560
97.8834
98.2849 | 1.6244
1.2875
1.7352
1.4579 | -1.9747
-0.2680
-3.3415
-2.0949 | | AV | 115 | 625 | 14 | 12.64 | 0.3139 | 98.1598 | 1.5262 | -1.9198 | | | 11601
11602
11603 | | | | 0.1315
0.1299
0.1116 | 98.8578
98.9837
98.9666 | 1.0107
0.9314
0.9217 | 1.2486
1.4834
1.2137 | | AV | 116 | 625 | 14 | 9.48 | 0.1243 | 98.9210 | 0.9546 | 1.3152 | | | 11701
11702
11703 | | | | 0.0568
0.0661
0.0699 | 99.1391
99.1011
99.0698 | 0.8040
0.8327
0.8602 | -1.9528
-1.5172
-0.9463 | | AV | 117 | 625 | 14 | 6.32 | 0.0643 | 99.1033
| 0.8323 | -1.4721 | | | 11801
11802
11803
11804 | | | | 0.0457
0.0667
0.0475
0.0380 | 98.8450
98.2909
98.6883
98.4065 | 1.1093
1.6424
1.2642
1.5555 | 3.2750
0.3427
0.8434
3.6379 | | AV | 118 | 625 | 14 | 3.16 | 0.0495 | 98.5576 | 1.3929 | 2.0247 | | | 8901
8902
8903
8904
8905
8906 | | | | 0.5008
0.5821
0.6005
0.6248
0.4011
0.5169 | 98.9515
98.6620
98.7092
98.7438
98.9270
98.8878 | 0.5477
0.7559
0.6902
0.6314
0.6719
0.5953 | -0.0088
1.0550
1.5081
1.5474
1.4386
1.5627 | | AV | 89 | 575 | 14 | 25.30 | 0.5377 | 98.8135 | 0.6487 | 1.1838 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-------------|-----|-------|--|--|--|--| | | 9001
9002
9003
9004 | | | | 0.3504
0.3140
0.4956
0.3447 | 98.9491
99.0843
98.8855
98.8916 | 0.7004
0.6017
0.6189
0.7638 | 0.4495
0.6301
1.6060
1.3124 | | AV | 90 | 575 | 14 | 18.96 | *0.3762 | 98.9525 | 0.6712 | 0.9995 | | | 12601
12602
12603
12604 | | | | 0.2384
0.1932
0.2167
0.4304 | 99.4087
99.3990
99.4987
99.2132 | 0.3529
0.4078
0.2846
0.3564 | 0.9704
5.4783
4.4195
4.2489 | | AV | 126 | 575 | 27 | 18.96 | * 0.2697 | 99.3799 | 0.3504 | 3.7793 | | | 9101
9102
9103
9104
9105
9106 | | ٠ | | 0.3205
0.3310
0.3293
0.1546
0.2638
0.3805 | 98.3156
98.3069
98.2811
98.5256
98.2650
98.1362 | 1.3639
1.3622
1.3896
1.3197
1.4711
1.4832 | 2.2481
2.7124
2.1152
1.7947
1.5961
1.9299 | | VA | 91 | 575 | 14 | 12.64 | 0.2966 | 98.3051 | 1.3983 | 2.0661 | | | 12701
12702
12703
12704 | | | | 0.1288
0.2100
0.1235
0.2857 | 99.4696
99.3177
99.7159
99.4673 | 0.4016
0.4722
0.1606
0.2470 | 1.2489
3.0925
3.7713
0.6169 | | AV | 127 | 57 5 | 27 | 12.64 | 0.1870 | 99.4926 | 0.3204 | 2.1824 | | | 9201
9202
9203
9204 | | | | 0.0900
0.1100
0.1462
0.1495 | 99.0085
99.0756
99.4109
98.8707 | 0.9015
0.8144
0.4430
0.9799 | 1.6940
1.4718
1.0363
1.4562 | | VA | 92 | 575 | 14 | 9.48 | 0.1239 | 99.0914 | 0.7847 | 1.4145 | | | 12801
12802
12803
12804 | | | | 0.2117
0.2331
0.0999
0.1788 | 98.8229
98.6836
99.2691
98.9107 | 0.9654
1.0833
0.6311
0.9105 | -2.7674
-2.1213
-0.4389
0.2063 | | AV | 128 | 575 | 27 | 9.48 | 0.1809 | 98.9215 | 0.8975 | -1.2803 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--------------------------------------|-------------|-----|------|--|---|--|---| | | 5101
5102
5103
5104
5105 | | | | 0.1377
0.2091
0.0910
0.1108
0.1279 | 99.6669
99.5840
99.7017
99.7195
99.6810 | 0.1954
0.2069
0.2073
0.1697
0.1911 | -0.8964
-0.3388
-0.7377
-1.1588
-0.4998 | | AV | 51 | 575 | 5 | 8.24 | 0.1353 | 99.6706 | 0.1941 | -0.7263 | | | 9301
9302
9303
9304
9305 | | | | 0.0719
0.0527
0.0893
0.0902
0.0707 | 98.8362
98.9851
98.9257
98.9079
99.0350 | 1.0919
0.9621
0.9850
1.0019
0.8943 | 1.2331
-0.5314
-0.6374
-0.3919
-0.0991 | | AV | 93 | 57 5 | 14 | 6.32 | 0.0750 | 98.9379 | 0.9870 | -0.0853 | | | 12901
12902
12903
12904 | | | | 0.0948
0.1023
0.2193
0.0923 | 98.8250
98.9507
98.5624
98.5587 | 1.0803
0.9470
1.2183
1.3490 | -2.2355
-1.2901
-1.4364
-1.6639 | | AV | 129 | 575 | 27 | 6.32 | *0.1272 | 98.7241 | 1.1486 | -1.6565 | | · | 9401
9402
9403
9404
9405 | | | | 0.0263
0.0174
0.0338
0.0342
0.0323 | 99.0038
98.7129
98.7664
98.8112
98.7032 | 0.9699
1.2696
1.1998
1.1546
1.2644 | 0.6765
1.5553
1.0119
1.6098
1.4499 | | AV | 94 | 57 5 | 14 | 3.16 | 0.0288 | 98.7994 | 1.1717 | 1.2607 | | | 13001
13002
13003
13004 | | | | 0.0389
0.0442
0.0280
0.0872 | 98.8208
98.9385
98.9578
98.9579 | 1.1403
1.0173
1.0142
0.9549 | -0.5374
0.5379
-1.3388
0.9347 | | VA | 130 | 57 5 | 27 | 3.16 | 0.0496 | 98.9187 | 1.0317 | -0.1009 | | ٠. | 6401
6402
6403
6404
6405 | | | | 0.0694
0.1124
0.0732
0.0283
0.0508 | 99.8953
99.8876
99.8416
99.9717
99.9492 | -
-
-
- | 0.0132
-0.1525
0.0012
-0.5501
-0.6717 | | AV | 64 | 575 | 21 | 2.42 | 0.0666 | 99.9089 | - | -0.2720 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-------------|-----|-------|--|---|--|---| | | 6501
6502
6503 | | | | -
-
- | 99.7448
99.7529
99.7500 | 0.2513
0.2462
0.2408 | 0.2180
0.4765
0.1323 | | AV | 65 | 575 | 21 | 1.24 | - | 99.7492 | 0.2461 | 0.2756 | | | 6801
6802
6803
6804
6805
6806 | | | | 0.0325
0.0335
0.0292
0.0340
0.0254
0.0210
0.0313 | 99.9675
99.9665
99.9660
99.9660
99.9746
99.9790
99.9687 | -
-
-
-
-
- | -1.2020
-1.0069
-1.3726
-1.1063
-0.9350
-1.1697
-1.0372 | | AV | 68 | 57 5 | 21 | 0.13 | 0.0296 | 99.9704 | - | -1.1185 | | | 10101
10102
10103
10104 | | | · | 0.4474
0.4785
0.4928
0.3596 | 98.9514
98.6667
98.8872
99.0545 | 0.6012
0.8547
0.6200
0.5860 | -0.5651
-2.0951
-1.2187
-1.7454 | | AV | 101 | 525 | 30 | 25.30 | 0.4446 | 98.8899 | 0.6655 | -1.4061 | | | 10201
10202
10203
10204 | | | | 0.1709
0.4179
0.4660
0.5387 | 99.3683
98.5452
98.9501
98.7230 | 0.4608
1.0369
0.5839
0.7383 | 0.7454
0.2506
1.1216
0.9167 | | AV | 102 | 525 | 30 | 18.96 | 0.3984 | 98.8965 | 0.7050 | 0.7586 | | | 2001
2002
2003 | | | | 0.1535
0.1645
0.1898 | 99.7805
99.7742
99.7403 | -
-
- | -0.7840
-1.2857
-0.6614 | | AV | 20 | 525 | 14 | 14.57 | 0.1693 | 99.7650 | - | -0.5770 | | | 2601
2602
2603 | | | | 0.1742
0.1048
0.0983 | 99.8258
99.8952
99.9017 | -
- | -0.3065
-0.8224
-0.2625 | | AV | 26 | 525 | 28 | 14.57 | 0.1258 | 99.8742 | - | -0.4638 | | | 10301
10302
10303
10304
10305 | | | | 0.0949
0.2332
0.1508
0.2421
0.1974 | 99.3457
99.1985
99.0656
99.0764
99.1917 | 0.5594
0.5683
0.7835
0.6815
0.6109 | 1.5491
1.2757
1.5679
1.1695
0.7145 | | AV | 103 | 525 | 30 | 12.64 | 0.1837 | 99.1755 | 0.6407 | 1.2553 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|------|--|--|--------------------------------------|---| | | 10401
10402
10403
10404 | | | | 0.1717
0.1110
0.1074
0.0978 | 98.4619
98.9198
98.8950
98.9236 | 1.3664
0.9692
0.9976
0.9786 | 1.4964
0.7717
2.8014
3.4255 | | AV | 104 | 525 | 30 | 9.48 | 0.1220 | 98.8000 | 1.0779 | 2.1237 | | | 2101
2102
2103 | | | | 0.0101
0.0145
0.0119 | 99.8434
99.8274
99.8323 | 0.1465
0.1581
0.1558 | -0.2127
0.8672
0.8260 | | AV | 21 | 525 | 14 | 8.24 | 0.0122 | 99.8343 | 0.1535 | 0.4935 | | | 2701
2702
2703
2704
2705
2706 | | | | 0.0602
0.0621
0.0597
0.0486
0.0670
0.0610 | 99.9398
99.8802
99.8651
99.9514
99.8249
99.8345 | -
-
-
0.1081
0.1045 | -0.6516
1.3837
1.3629
1.1520
1.4066
1.7524 | | AV | 27 | 525 | 28 | 8.24 | *0.0598 | 99.8826 | | 1.0677 | | | 10501
10502
10503
10504 | | | | -
-
-
- | 98.7361
98.5238
99.0695
99.0084 | 1.2524
1.4682
0.9233
0.9894 | 0.2115
0.3119
0.1092
0.0909 | | AV | 105 | 525 | 30 | 6.32 | - | 98.8344 | 1.1583 | 0.2061 | | | 2801
2802
2803 | | | | 0.0207
0.0201
0.0139 | 99.8773
99.8450
99.8776 | -
0.1348
0.1084 | 01.5938
-1.2522
-2.7923 | | AV | 28 | 525 | 28 | 3.57 | 0.0182 | 99.8666 | 0.1216 | -1.8794 | | | 10601
10602
10603 | | | | -
-
- | 98.6310
98.9859
98.8481 | 1.3690
1.0141
1.1517 | -0.2278
0.2838
0.5889 | | AV | 106 | 525 | 30 | 3.16 | - | 98.8216 | 1.1783 | 0.2150 | | | 7401
7402
7403 | | | | -
-
- | 99.9414
99.9693
99.9551 | -
-
- | -0.1062
-0.1519
0.1295 | | ΑV | 74 | 525 | 21 | 2.42 | - | 99.9552 | - | -0.0429 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|----------------------------------|-----|-----|-------|--------------------------------------|--|--------------------------------------|--| | | 13701
13702
13703
13704 | | | | 0.6350
0.5975
1.1544
0.8234 | 98.9928
98.7159
98.2849
98.7736 | 0.3723
0.6866
0.5607
0.4030 | -2.0248
-1.1634
-2.3145
-0.0035 | | AV | 137 | 475 | 28 | 25.30 | 0.8026 | 98.6917 | 0.5056 | -1.3766 | | | 13801
13802
13802
13804 | | | | 2.7493
1.0228
1.0824
0.4991 | 92.1526
97.2918
96.7922
98.0941 | 5.0981
1.6854
2.1254
1.4067 |
-0.9327
-1.4001
-0.1734
0.3887 | | AV | 138 | 475 | 28 | 18.96 | * 1.3384 | 96.0826 | 2.25789 | -0.5294 | | | 13901
13902
13903 | | | | 0.4009
0.2417
0.4881 | 98.3882
98.0685
97.9217 | 1.2109
1.6899
1.5902 | -0.8685
2.1626
0.8902 | | AV | 139 | 475 | 28 | 12.64 | 0.3769 | 98.1261 | 1.4970 | 0.7281 | | | 14001
14002
14003 | | | | 0.1806
0.2480
0.1187 | 98.5843
98.6088
98.6305 | 1.2351
1.1432
1.2508 | 0.0805
-0.3072
-0.7200 | | AV | 140 | 475 | 28 | 9.48 | 0.1824 | 98.6078 | 1.2097 | -0.3156 | | | 14101
14102
14103 | | | | 0.0936
0.0765
0.0642 | 98.3979
98.6605
98.8356 | 1.5085
1.2629
1.1002 | -2.3883
-0.8749
0.0341 | | AV | 141 | 475 | 28 | 6.32 | 0.0781 | 98.6313 | 1.2905 | -1.0764 | | | 14201
14202
14203
14204 | | | | 0.0222
0.0190
0.0298 | 99.0228
98.8620
99.0663
98.8570 | 0.9692
1.1158
0.9147
1.1132 | -0.9345
-0.4600
0.2267
-1.0320 | | AV | 142 | 475 | 28 | 3.16 | 0.0237 | 98.9520 | 1.0282 | -0.5500 | | | 8401
8402
8403
8404 | | | | 0.0651
-
-
- | 98.9561
99.9414
99.9536
99.9243 | 0.9788
-
-
- | -2.1223
-2.2231
-1.7681
-1.7728 | | AV | 84 | 475 | 21 | 2.42 | - | 99.6938 | - | -1.9716 | | | 8501
8502
8503 | | | | - | 99.9706
99.9425
99.9376 | -
-
- | -0.9408
-0.2963
-0.3932 | | VA | 85 | 475 | 21 | 1.24 | - | 99.9502 | - | -0.5434 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|---|-----|-----|-------|--|---|--|--| | | 17301
17302
17303
17304
17305 | | | | 1.0383
1.0364
0.8734
3.4306
1.5264 | 97.8378
97.9057
98.2504
95.2450
97.5093 | 1.1239
1.0578
0.8762
1.3244
0.9643 | -0.6822
-0.1546
0.2577
-0.7474
-2.7506 | | AV | 173 | 420 | 47 | 25.30 | * 1.5810 | 97.3495 | 1.0693 | -0.8154 | | | 17401
17402
17403
17404 | | | | 0.6772
0.9380
0.7330
0.7226 | 96.0201
95.4004
96.0839
99.2774 | 3.3027
3.6616
3.1831 | -0.3168
0.3293
1.7599
-1.0818 | | AV | 174 | 420 | 47 | 18.96 | * 0.7677 | 96.6954 | 2.5369 | 0.1726 | | | 17501
17502
17503 | | | | 0.0270
0.0671
0.0905 | 99.7667
99.7049
99.3557 | 0.2062
0.2280
0.5538 | -3.8843
-2.3459
-1.5013 | | AV | 175 | 420 | 47 | 12.64 | 0.0615 | 99.6090 | 0.3293 | -2.5772 | | | 17601
17602
17603
17604 | | | | 0.0488
0.0713
0.1035
0.0745 | 98.8885
98.5542
97.8129
98.1641 | 1.0627
1.3746
2.0835
1.7613 | -0.3296
-0.2819
-0.2719
0.6411 | | AV | 176 | 420 | 47 | 9.48 | 0.0745 | 98.3549 | 1.5705 | -0.0606 | | · | • 17701
17702
17703 | | | | 0.0464
0.0734
0.0412 | 97.9253
97.9153
97.9054 | 2.0283
2.0114
2.0534 | -1.9281
0.1480
-0.6739 | | AV | 177 | 420 | 47 | 6.32 | 0.0537 | 97.9153 | 2.0310 | -0.8180 | | | 17801
17802
17803
17804 | | | | 0.0175 | 98.9668
98.3505
99.1069
98.7110 | 1.0158
1.6382
0.8907
1.2793 | -1.2399
-0.8347
-1.2370
1.4325 | | AV | 178 | 420 | 47 | 3.16 | - | 98.7837 | 1.2060 | -0.4698 | | | 18501
18502
18503
18504
18505 | | | | 0.8397
0.9168
0.7339
0.5488
0.4470 | 98.2995
98.1632
98.4259
98.7192
98.9258 | 0.8606
0.9200
0.8402
0.7320
0.6273 | -2.9797
-0.2984
-0.8469
0.7356
-1.6527 | | AV | 185 | 403 | 47 | 25.30 | 0.6972 | 98.5066 | 0.7960 | -1.0084 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|----------------------------------|-----|-----|-------|--------------------------------------|--|--------------------------------------|--| | | 18601
18602
18603
18604 | | | | 0.5147
0.5306
0.4581
0.4798 | 98.6087
98.5642
98.6569
98.7259 | 0.8766
0.9052
0.8850
0.7943 | 5.3293
4.5795
4.4730
3.7539 | | AV | 186 | 403 | 47 | 18.96 | 0.4958 | 98.6389 | 0.8653 | 4.5339 | | | 18701
18702
18703
18704 | | | | 0.1034
0.1024
0.0914
0.0644 | 98.1027
98.4297
98.3363
99.5007 | 1.7939
1.4679
1.5723
0.4350 | -4.6445
0.7335
0.2682
-2.9281 | | AV | 187 | 403 | 47 | 12.64 | 0.0904 | 98.5923 | 1.3172 | -1.6427 | | | 18801
18802
18803 | | - | | 0.0603
0.0588
0.0419 | 98.7098
99.0265
98.9568 | 1.2299
0.9147
1.0012 | -0.3481
2.2298
2.1911 | | AV | 188 | 403 | 47 | 9.48 | 0.0537 | 98.8977 | 1.0486 | 1.3576 | | | 18901
18902
18903 | | | | 0.0862
0.0414 | 98.5556
98.6116
98.9743 | 1.3581
1.3470
1.0133 | 0.6533
0.4168
1.9763 | | AV | 189 | 403 | 47 | 6.32 | 0.0638 | 98.7138 | 1.2395 | 1.0155 | | | 19001
19002
19003 | | | | -
-
- | 98.8145
98.7525
98.7217 | 1.1752
1.2397
1.2782 | -0.2177
1.7796
1.7342 | | AV | 190 | 403 | 47 | 3.16 | - | 98.7628 | 1.2311 | 1.0987 | | | 19701
19702
19703 | | | | 0.7604
0.7145
0.8684 | 97.4814
97.4384
97.6706 | 1.7582
1.8471
1.4609 | 2.1145
1.9801
0.0975 | | AV | 197 | 305 | 46 | 25.30 | 0.7811 | 97.5301 | 1.6887 | 1.3974 | | | 19801
19802
19803 | | | | 0.4424
0.4613
0.5840 | 98.0870
96.6275
98.0405 | 1.4706
2.9111
1.3755 | -1.9440
-0.5518
-1.6232 | | AV | 198 | 305 | 47 | 18.96 | 0.4959 | 97.5850 | 1.9191 | -1.3730 | | | 19901
19902
19903 | | | | 0.0194 | 98.5340
98.8837
98.8110 | 1.4466
1.1060
1.1704 | 2.6704
1.3535
1.1671 | | AV | 199 | 305 | 47 | 12.64 | 0.0190 | 98.7428 | 1.2410 | 1.7303 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|-------------------------|-----|-----|------|------------------|-------------------------------|----------------------------|-------------------------------| | | 20001
20002
20003 | | | | -
-
0.0179 | 98.5490
98.2995
98.3948 | 1.4394
1.6862
1.5873 | 1.2324
-4.1081
-0.0386 | | AV | 200 | 305 | 47 | 9.48 | - | 98.4144 | 1.5709 | -0.9714 | | | 20101
20102
20103 | | | | -
-
- | 99.4002
99.4137
99.3646 | 0.5998
0.5822
0.6227 | -0.0909
0.4101
1.9555 | | AV | 201 | 305 | 47 | 6.32 | - | 99.3928 | 0.6016 | 0.7582 | | | 20201
20202
20203 | | | | -
-
- | 98.8429
98.8044
99.0323 | 1.1571
1.1956
0.9437 | -2.3229
-1.7943
-0.5737 | | ΑV | 202 | 305 | 47 | 3.16 | - | 98.8931 | 1.0988 | -1.5636 | ## Appendix III Analyses Of Co In Sphalerite #### Note - Appendix III In the following tables, the numbered column headings refer to: - (1) Analysis identification number. For example, the identifier 15501 refers to an analysis of a single crystal of sphalerite from run 155. Repetition of the identifier indicates that analyses were carried out at two or more distinct spots on the crystal. - (2) Run temperature in °C - (3) Run time in days - (4) Weight per cent Co in sulphide charge - (5) Mole per cent CoS in sphalerite - (6) Mole per cent FeS in sphalerite - (7) Mole per cent ZnS in sphalerite - (8) Deviation of original analytical total (in weight per cent) from 100% Lines started by "AV" give the averages for the preceding set of analyses. The presence of an asterisk (*) preceding the average value of CoS indicates that the distribution of CoS is heterogeneous and that the calculation and use of an average for the set of analyses is probably not justified. | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|-------|--|--|--|---| | | 15501
15501
15502
15502
15503
15503 | | | : | 2.6127
2.6573
2.1327
2.1624
2.0662
2.3709 | 9.0903
9.9682
8.5504
8.6162
8.4014
9.3120 | 88.2966
87.3745
89.3170
89.2214
89.5324
88.3171 | 0.2520
0.3723
0.9036
0.6735
0.8800
0.9604 | | AV | 155 | 675 | 10 | 19.10 | 2.3337 | 8,9898 | 88.6764 | 0.6736 | | | 15601
15601
15602
15602
15603
15603 | | | | 1.7496
1.9640
1.5884
1.6616
1.7319
1.6806 | 10.2778
11.6831
9.7562
9.8920
10.2825
10.0359 | 87.9726
86.4529
88.6554
88.4464
87.9856
88.2835 | 1.8099
-2.0785
1.1032
1.4221
1.7198
1.7196 | | AV | 156 | 675 | 10 | 14.35 | 1.7294 | 10.3046 | 87.9660 | 0.9493 | | | 15701
15701
15702
15702
15703
15703 | | | | 1.1637
1.0846
0.9014
0.9852
1.1422
1.0492 | 10.2175
10.5616
10.3479
10.1399
10.7285
10.6583 | 88.6188
88.3538
88.7507
88.8749
88.1294
88.2926 | 0.5896
1.4851
1.0865
1.7506
1.4894
1.3359 | | AV | 157 | 675 | 10 | 9.57 | 1.0544 | 10.4423 | 88.5033 | 1.2895 | | | 15801
15801
15802
15802
15803
15803 | | | | 1.5195
1.2603
0.7812
0.7982
0.7058
0.7771 | 12.5227
12.8207
11.2853
11.9423
11.0350
11.2556 | 85.9577
85.9191
87.9335
87.2596
88.2593
87.9673 | 0.0433
0.1811
1.1020
0.8517
1.8426
1.3634 | | AV | 158 | 675 | 10 | 7.17 | 0.9737 | 11.8103 | 87.2160 | 0.8973 | | | 15901
15901
15902
15902
15903
15903 | | | | 0.6605
0.6222
0.7661
0.7412
0.6772
0.6154 | 12.3386
12.2648
12.6455
12.6735
11.8230
12.2520 | 87.0009
87.1130
86.5884
86.5853
87.4998
87.1326 | 0.3089
0.2785
0.1080
-0.0149
0.9260
0.7399 | | AV | 159 | 675 | 10 | 4.78 | 0.6804 | 12.3329 | 86.9866 | 0.3911 | | | 16001
16001
16002
16002
16003
16003 | | | |
0.4091
0.4097
0.3016
0.3531
0.4646
0.5073 | 14.2564
14.3421
13.4762
13.1594
13.6961
13.9684 | 85.3345
85.2483
86.2223
86.4876
85.8393
85.5243 | -0.0435
0.1728
0.6633
0.6061
1.6408
0.7679 | | AV | 160 | 675 | 10 | 2.39 | 0.4076 | 13.8164 | 85.7760 | 0.6346 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|-------|--|--|--|--| | | 19001
11901
11902
11902
11903
11903
11904
11904 | | | | 0.8039
0.8453
1.3076
1.4726
0.7861
0.8622
0.8916
0.7533 | 4.0437
3.9897
4.9275
4.0992
5.5826
4.2458
5.1156
3.7890 | 95.1524
95.1650
93.7649
94.4283
93.6313
94.8920
93.9928
95.4577 | 0.9967
2.1113
1.4431
0.8817
0.8584
1.4224
-1.6778
-1.4766 | | AV | 119 | 625 | 14 | 19.10 | 0.9653 | 4.4741 | 94.5605 | 0.5699 | | | 12001
12001
12002
12002
12003
12003 | | | | 1.2424
1.2834
1.4694
1.5343
1.2725
1.0709 | 5.4844
5.3922
5.1756
5.1026
5.2077
4.6723 | 93.2732
93.3244
93.3550
93.3632
93.5197
94.2569 | 1.6785
2.0856
2.8575
2.4653
2.0188
2.9898 | | AV | 120 | 625 | 14 | 14.35 | 1.3121 | 5.1725 | 93.5153 | 2.3492 | | | 12101
12101
12102
12102
12103
12103 | | | | 0.7878
0.8258
0.7432
0.6664
0.7692
0.7205 | 5.4329
5.6979
4.5757
4.5759
5.7381
5.0791 | 93.7794
93.4763
94.6809
94.7577
93.4927
94.2004 | 1.5686
1.5275
1.0298
1.4947
-0.2509
0.5516 | | AV | 121 | 625 | 14 | 9.57 | 0.7521 | 5.1833 | 94.0645 | 0.9869 | | | 12201
12201
12202
12202
12203
12203 | | | | 0.8865
0.8202
0.8174
0.7376
0.8882
0.8727 | 7.2499
7.2556
7.3360
5.2016
6.0703
5.9828 | 91.8636
91.9241
91.8467
94.0608
93.0415
93.1445 | 0.6818
0.9741
0.7012
0.4142
1.0829
0.9663 | | AV | 122 | 625 | 14 | 7.17 | 0.8371 | 6.5160 | 92.6468 | 0.8034 | | | 12301
12301
12302
12302
12303
12303 | | | | 0.4969
0.4918
0.4840
0.5193
0.5739
0.5925 | 5.3299
5.1482
4.7833
4.8389
5.6543
5.6319 | 94.1732
94.3600
94.7327
94.6418
93.7718
93.7757 | -0.7270
0.4874
1.3648
1.6138
1.2977
1.1178 | | AV | 123 | 625 | 14 | 4.78 | 0.5264 | 5.2311 | 94.2425 | 0.8591 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|--------------|-----|-------|--|--|--|---| | | 13101
13101
13102
13102
13103
13101 | | | | 0.5846
0.5304
0.5305
0.6959
0.4386
0.6270 | 2.9898
2.8539
3.5137
6.5147
3.8870
7.2828 | 96.4347
96.6158
95.9557
92.7895
95.6745
92.0901 | 1.8188
3.8219
4.8786
3.9163
4.9753
3.9149 | | AV | 131 | 575 | 27 | 19.10 | 0.5678 | 4.5055 | 94.9266 | 308876 | | | 9601
9601
9602
9602
9603
9603
9604
9604 | | | | 1.4718
1.1350
0.5766
0.5443
1.0862
1.0216
1.1482
1.4884 | 4.2497
3.2969
2.5107
2.4844
4.7054
5.2571
3.2104
5.4108 | 94.2785
95.5682
96.9128
96.9714
94.2084
93.7214
95.6413
93.1008 | -3.9233
-0.8297
0.9348
0.8662
-0.3611
0.2440
0.4571
0.1844 | | AV | 96 | 575 | 14 | 14.35 | 1.0590 | 3.8907 | 95.0502 | -0.3035 | | | 13201
13201
13202
13002
13203
13203 | | | | 0.7414
0.8027
0.6126
0.8727
0.6609
0.7250 | 7.1752
7.3903
6.1144
9.9274
4.8385
6.9044 | 92.9835
91.8070
93.2731
89.2000
94.5007
92.3706 | -0.3730
3.6348
3.1927
1.9320
4.1529
3.1760 | | AV | 132 | 5 7 5 | 27 | 14.35 | 0.7359 | 7.0583 | 92.2058 | 2.6192 | | | 9701
9701
9702
9702
9703
9703 | | | | 0.2858
0.2422
0.3469
0.3427
0.3276
0.3175 | 3.5745
4.1334
5.0473
3.9457
4.0469
4.3274 | 96.1398
95.6244
94.6058
95.7115
95.6255
95.3551 | 0.3014
2.7800
2.1716
2.7187
3.0316
3.5291 | | AV | 97 | 575 | 14 | 9.57 | 0.3105 | 4.1792 | 95.5103 | 2.4221 | | | 13301
13301
13302
13302 | | | | 0.4632
0.4511
0.2085
0.2466 | 5.9557
6.3551
3.3044
3.3905 | 93.5810
93.1938
96.4871
96.3629 | -2.5946
-0.6363
4.3133
3.8064 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|---|-----|-----|-------|--|--|--|--| | | 13303
13303 | | | | 0.3959
0.6335 | 5.0110
8.5710 | 94.5931
90.7955 | 3.5255
3.0542 | | AV | 133 | 575 | 27 | 9.57 | 0.3998 | 5.4313 | 94.1689 | 1.9114 | | | 13401
13401
13402
13402
13406
13406 | | | | 0.3142
0.3640
0.3736
0.3782
0.3318
0.3396 | 5.0926
7.0964
5.2055
6.9862
6.5505
7.1375 | 94.5933
92.5396
94.4210
92.6356
93.1176
92.5230 | -1.4655
-1.2039
-1.8866
-1.5599
-1.0633
-0.8573 | | AV | 134 | 575 | 27 | 7.17 | 0.3502 | 6.3448 | 93.3049 | -1.3394 | | | 13501
13501
13502
13502
13503
13503 | | | | 0.2863
0.7006
0.4242
0.2844
0.3054
0.3171 | 4.6594
9.5447
7.7565
5.5016
4.5945
5.1089 | 95.0544
89.7547
91.8193
94.2139
95.1002
94.5740 | -1.6483
-0.8225
-1.6242
-1.1532
-2.1963
-2.4954 | | AV | 135 | 575 | 27 | 4.78 | 0.3863 | 6.1943 | 93.4193 | -1.6567 | | · | 10701
10701
10702
10702
10703
10703
10704 | | | | 2.2381
2.2481
2.1749
1.9945
1.3606
1.3796
2.4969
2.4232 | 7.6934
8.6439
8.8981
8.0171
3.2711
3.4350
7.9187
7.8739 | 90.0686
89.1081
88.9270
89.9884
95.3683
95.1854
89.5845
89.7029 | 1.7459
2.1877
2.7440
2.8901
3.6044
4.2012
0.2728
0.2374 | | AV | 107 | 525 | 30 | 19.10 | 2.0395 | 6.9689 | 90.9916 | 2.2354 | | | 10801
10801
10802
10802
10803
10803 | | | | 1.7707
1.0186
1.6523
1.6562
1.6295
1.6151 | 7.5527
4.1955
7.0366
7.0824
5.7027
5.9648 | 90.6766
94.7859
91.3111
91.2615
92.6678
92.4202 | -1.7130
-0.3464
-2.0256
-1.5346
-2.9406
-2.7082 | | AV | 108 | 525 | 30 | 14.35 | 1,5571 | 6.2558 | 92.1870 | -1.8781 | | | 10901
10901
10902
10902
10903
10903 | | | | 1.1218
1.0081
0.7771
0.7728
0.9656
0.8688 | 4.9215
4.9929
3.1103
3.2017
3.1286
3.0376 | 93.9567
93.9991
96.1226
96.0255
95.9058
96.0936 | 0.5444
0.7129
1.3593
1.0213
0.5774
1.3604 | | AV | 109 | 525 | 30 | 9.57 | 0.9190 | 3.7304 | 95.3505 | 0.9293 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-------------|-----|-------|--|--|--|--| | | 11001
11001
11002
11002
11003
11003
11004
11004 | | • | | 1.7945
1.6720
0.8698
1.1115
0.6722
0.7311
1.1489
1,4920 | 8.3187
7.9615
4.1181
5.1712
4.0471
3.9387
5.3598
7.4945 | 89.8868
90.3666
95.0120
93.7174
95.2808
95.3303
93.4912
91.0136 | -1.2406
-0.7574
2.5850
1.9266
4.9610
4.0062
1.1590
0.4893 | | AV | 110 | 525 | 30 | 7.17 | 1.1865 | 5.8012 | 93.0123 | 1.6399 | | | 11101
11101
11102
11102
11103
11103
11104
11104 | | | | 1.0944
1.0707
0.4703
0.6530
0.5626
0.4974
0.9218
0.8664 | 6.4226
6.3490
5.0327
6.5705
5.7049
4.5660
6.8491
6.7982 | 92.4830
92.5803
94.4971
92.7765
93.7325
94.9366
92.2290
92.3354 | 4.9548 3.8204 4.5630 4.1965 0.9579 0.7586 1.4341 1.1105 | | AV | 111 | 525 | 30 | 4.78 | 0.7671 | 6.0366 | 93.1963 | 2.7245 | | | 14301
14302
14303
14304 | | | | 1.4155
2.2466
3.6909
2.2562 | 3.2224
7.3215
4.4686
8.2021 | 95.3622
90.4320
91.8406
89.5418 | -0.6912
-0.2884
-1.0080
0.6082 | | AV | 143 | 47 5 | 28 | 19.10 | 2.4023 | 5.8036 | 91.7941 | -0.3449 | | | 14401
14402
14403 | | | | 0.8831
1.0388
1.0956 | 6.1063
8.5869
7.2629 | 93.0107
90.3743
91.6415 | -0.0311
0.1659
-1.9134 | | AV | 144 | 475 | 28 | 14.35 | 1.0058 | 7.3187 | 91.6754 | -0.9262 | | | 14501
14502
14503 | | | | 0.5197
0.7379
0.6525 | 2.9178
4.1700
7.6016 | 96.5625
95.0921
91.7459 | 1.2794
-0.0161
1.1894 | | AV | 145 | 475 | 28 | 9.57 | 0.6367 | 4.8965 | 94.4668 | 0.8176 | | | 14601
14602
14603
14604 | | | | 0.8388
0.7883
1.8713
1.4173 | 4.1747
3.0644
8.4073
5.2018 | 94.9865
96.1473
89.7214
93.3809 |
1.8484
1.9974
0.3467
-1.1615 | | AV | 146 | 475 | 28 | 7.17 | 1.2289 | 5.2121 | 93.5590 | 0.7577 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|-------|--|---|--|---| | | 14701
14702
14703 | | | | 0.6525
0.9740
0.4511 | 8.7352
6.2301
5.7437 | 90.6123
92.7959
93.8052 | -1.0884
2.9359
2.7435 | | AV | 147 | 475 | 28 | 4.78 | 0.6925 | 6.9030 | 92.4044 | 1.5303 | | | 14801
14802
14803 | | | | 1.2604
0.7199
1.6618 | 9.1024
5.6719
10.6715 | 89.6372
93.6082
87.6667 | -3.4470
1.0398
-1.9513 | | AV | 148 | 475 | 28 | 2.39 | 1.2140 | 8.4819 | 90.3040 | -1.4528 | | | 17901
17902
17903
17904
17905
17906 | | | | 2.2202
2.0104
0.7043
0.8770
0.7149
0.8778 | 10.4660
3.5582
1.5378
1.6009
1.8794
1.6209 | 87.3139
94.4314
97.7580
97.5221
97.4057
97.5013 | -0.3629
2.5597
-0.1913
-0.1842
0.8129
0.1534 | | AV | 179 | 420 | 47 | 19.10 | *1. 2341 | 3.4439 | 95.3220 | 0.4646 | | | 18001
18002
18003
18004 | | | | 1.0372
0.8696
1.5727
1.0549 | 3.2726
1.9639
6.4203
3.0742 | 95.6903
97.1666
92.0071
95.8709 | -1.4709
-0.7936
-2.3619
-4.4853 | | AV | 180 | 420 | 47 | 14.35 | 1.1336 | 3.6827 | 95.1837 | -2.2779 | | | 18101
18102
18103
18104 | | | | 0.3678
0.3485
0.3394
0.4482 | 1.9864
2.0932
1.7431
2.1532 | 97.6459
97.5584
97.9176
97.3987 | -1.0447
0.1243
-0.3722
-0.2260 | | AV | 181 | 420 | 47 | 9.57 | 0.3759 | 1.9940 | 97.6301 | -0.3797 | | | 18201
18201
18203
18204 | | | | 0.9036
0.6388
0.3411
0.3696 | 10,8028
5,6648
2,4287
2,7565 | 88.2936
93.6964
97.2302
96.8739 | -2.6929
0.9739
1.5653
1.7310 | | VA | 182 | 420 | 47 | 7.17 | 0.5633 | 5.4132 | 94.0236 | 0.3943 | | | 18301
18302
18303
18304 | | | | 0.2913
0.2526
0.2223
0.1775 | 2.4938
2.2393
1.7319
1.6486 | 97.2149
97.5081
98.0458
98.1740 | -1.2781
-0.0411
1.7179
-0.1434 | | AV | 183 | 420 | 47 | 4.78 | 0.2359 | 2.0284 | 97.7356 | 0.0638 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|----------------------------------|-----|-----|-------|--------------------------------------|--------------------------------------|--|---------------------------------------| | | 18401
18402
18403 | | | | 0.2771
0.3794
0.1222 | 3.3901
3.1497
3.0499 | 96.3329
96.4709
96.8278 | 0.8949
1.5357
1.5591 | | AV | 184 | 420 | 47 | 2.39 | 0.2596 | 3.1966 | 96.5439 | 1.3299 | | | 19101
19102
19103 | | | | 2.0666
2.4313
1.7637 | 2.1937
1.5990
1.7380 | 95.7397
95.9697
96.4984 | -4.4146
-4.2162
-2.6167 | | AV | 191 | 403 | 47 | 19.10 | 2.0872 | 1.8436 | 96.0692 | -3.7492 | | | 19201
19202
19203 | | | | 1.6281
1.3333
0.8799 | 2.2762
2.2351
0.9726 | 96.0957
96.4316
98.1475 | -3.5494
-0.8051
-1.8585 | | AV | 192 | 403 | 47 | 14.35 | 1.2804 | 1.8280 | 96.8916 | -2.0710 | | | 19301
19302
19303 | | | | 1.1371
0.8624
1.2852 | 3.0139
2.2921
2.5851 | 95.8490
96.8456
96.1297 | -2.9559
-3.8363
0.5524 | | VA | 193 | 403 | 47 | 9.57 | 1.0949 | 2.6304 | 96.2747 | -2.0799 | | | 19401
19402
19403
19404 | | | | 0.6876
0.6083
0.7328
0.5989 | 1.6145
1.7822
1.7436
1.9167 | 97.6979
97.6095
97.5237
97.4844 | -1.1411
1.9448
1.4815
2.0984 | | AV | 194 | 403 | 47 | 7.17 | 0.6569 | 1.7642 | 97.5788 | 1.0959 | | | 19501
19502
15903 | | | | 0.6305
0.4962
0.3022 | 2.5962
1.9270
1.1215 | 96.7733
97.5769
98.5763 | 1.0476
0.5389
0.0016 | | AV | 195 | 403 | 47 | 4.78 | 0.4763 | 1.8816 | 97.6421 | 0.5294 | | | 19601
19602
19603 | | | | 0.2218
0.2627
0.1853 | 2.0712
2.1589
1.3818 | 97.7071
97.5784
98.4329 | 0.7892
3.1504
2.3584 | | AV | 196 | 403 | 47 | 2.39 | 0.2233 | 1.8706 | 97.9061 | 2.0993 | | | 20301
20302
20303 | | | | 1.6763
1.7921
2.6017 | 2.3255
1.4922
2.9766 | 95.9982
96.7157
94.4217 | -1.8701
-3.3680
-4.4570 | | AV | 203 | 305 | 47 | 19.10 | 2.0234 | 2.2648 | 95.7118 | -3.2317 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|-------------------------|-----|-----|-------|----------------------------|-----------------------------|-------------------------------|-------------------------------| | | 20401
20402
20403 | | | | 4.2131
1.6206
1.4983 | 11.8462
2.2487
3.0809 | 83.9408
96.1307
95.4208 | -0.7869
2.5831
1.2341 | | AV | 204 | 305 | 47 | 14.35 | *2.4440 | 5.7253 | 91.8307 | 1.0101 | | | 20501
20502
20503 | | | | 0.8076
0.7820
0.4653 | 2.6629
1.7310
1.2960 | 96.5295
97.4870
98.2386 | 2.1442
3.8128
3.6891 | | AV | 205 | 305 | 47 | 9.57 | 0.6850 | 1.8967 | 97.4183 | 3.2154 | | | 20601
20602
20603 | | | | 0.2515
0.2124
0.2084 | 1.6529
1.7185
1.7302 | 98.0957
98.0690
98.0615 | -1.8851
-0.4872
-1.3295 | | AV | 206 | 305 | 47 | 7.17 | 0.2241 | 1.7005 | 98.0753 | -1.2339 | | | 20701
20702
20703 | | | | 0.1403
0.1316
0.3660 | 2.5942
1.5341
2.1264 | 97.2655
98.3344
97.5077 | -0.1896
4.3383
-0.0764 | | AV | 207 | 305 | 47 | 4.78 | *0.2127 | 2.0849 | 97.7025 | 1.3574 | | | 20801
20802
20803 | | | | 0.0359
0.0615
0.0295 | 0.7426
0.9447
0.9782 | 99.2215
98.9939
98.9924 | -3.8060
-1.0039
-1.8698 | | AV | 208 | 305 | 47 | 2.39 | 0.0423 | 0.8885 | 99.0692 | -2.2266 | ## Appendix IV Analyses of Co In Pyrite ## Note - Appendix IV In the following tables, the numbered column headings refer to: - (1) Analysis identification number. For example, the identifier 15501 refers to an analysis of a single crystal of pyrite from run 155. Repetition of the identifier indicates that analyses were carried out at two or more distinct spots on the crystal. - (2) Run temperature in °C - (3) Run time in days - (4) Weight per cent Co in sulphide charge - (5) Mole per cent CoS, in pyrite - (6) Mole per cent FeS2 in pyrite - (7) Mole per cent ZnS, in pyrite - (8) Deviation of original analytical total (in weight per cent) from 100%. Lines started by "AV" give the averages for the preceding set of analyses. The presence of an asterisk (*) preceding the average value of \cos_2 indicates that the distribution of \cos_2 is heterogeneous and that the calculation and use of an average for the set of analyses is probably not justified. - = element not detected. | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|---|-----|-----|-------|--|--|--|---| | | 15501
15502
15503
15504
15505
15506 | | | | 50.4332
56.1073
56.8135
56.9815
50.5431
47.3895 | 48.0282
43.0879
42.6240
42.3696
48.6969
51.9897 | 1.5386
0.8047
0.5625
0.6488
0.7599
0.6207 | 1.2149
0.4183
-0.0130
-1.3059
1.4640
-0.6296 | | AV | 155 | 675 | 10 | 19.10 | 53.0446 | 46.1327 | 0.8225 | 0.1914 | | | 15601
15601
15602
15602
15603
15603
15604
15604
15605 | | | | 39.0248
40.5347
44.9007
46.4224
39.2727
39.8251
52.6449
49.2840
41.7848
40.7334 | 60.3000
58.8652
54.3676
52.9251
60.1235
59.5329
46.5640
49.8349
57.6881
58.6870 | 0.6752
0.6001
0.7317
0.6525
0.6038
0.6420
0.7910
0.8811
0.5271
0.5796 | 1.3848
1.9623
0.8519
1.4043
-0.4470
0.7216
1.0809
0.1513
1.5389
0.6322 | | AV | 156 | 675 | 10 | 14.35 | 43.4427 | 55.8887 | 0.6684 | 0.9281 | | | 15701 | | | | 34. 3730 | 65.6269 | - | -0.6921 | | | 15701
15702
15703
15704
15705
15706
15707
15708
15709 | | | | 35.6264
27.6273
26.9467
36.0194
36.5621
33.9422
30.8379
33.1727 | 64.4123
72.1196
71.8617
63.2333
62.9464
65.6026
67.5853
66.4635 | 0.2530
1.1915
0.7473
0.4914
0.4552
1.5768
0.3638 | 0.3090
0.3819
-1.0871
1.8312
1.5171
1.3826
2.3381
1.3842 | | AV | 157 | 675 | 10 | 9.57 | 32.7786 | 66.6501 | 0.5711 | 0.8183 | | | 15801
15802
15803
15804
15805
15806
15807 | | | | 21.1122
19.9195
21.3797
21.5107
20.8875
18.7640
18.8767 | 77.0142
79.0850
77.6844
77.4861
78.1394
80.2048
80.1363 | 1.8735
0.9955
0.9359
1.0031
0.9731
1.0313
0.9870 | -0.0673
-3.0013
0.6511
0.5200
0.1068
-0.9644
0.4478 | | VA | 158 | 675 | 10 | 7.17 | 20.3500 | 78.5357 | 1.1142 | -03296 | | | 15901
15902
15903
15904
15905
15906 | | | | 14.2102
23.9060
21.7195
13.0482
18.2217
14.4340 | 84.3508
75.4782
77.3054
86.0508
80.7267
84.8094 | 1.4390
0.6157
0.9750
0.9010
1.0516
0.7566 | -0.5206
1.7082
2.0374
1.2344
1.7791
1.8982 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|---|-----|-----|-------|---
---|--|--| | | 15907
15908 | | | | 15.5928
14.6059 | 83.8462
72.7050 | 0.5610
1.6891 | 2.2466
0.6404 | | AV | 159 | 675 | 10 | 4.78 | 16.9673 | 82.0340 | 0.9986 | 1.3780 | | | 16001
16002
16003
16004
16005 | | | | 11.7941
8.8882
9.2438
10.1623
8.2677 | 87.2349
90.1664
89.8321
88.9613
90.7808 | 0.9710
0.9454
0.9241
0.8764
0.9515 | -3.6063
-0.0170
-0.5000
-0.4409
0.5463 | | AV | 160 | 675 | 10 | 2.39 | 9.6712 | 89.3950 | 0.9337 | -0.8036 | | | 11901
11902
11903
11904
11905 | | | | 55.8182
51.1988
57.2606
45.8176
55.6102 | 44.1818
48.8011
42.6878
54.1180
44.2491 | -
-
-
-
0.1407 | 1.7819
3.1230
3.6020
2.0461
3.7586 | | AV | 119 | 625 | 14 | 19.19 | 53.1411 | 46.8076 | - | 2.8623 | | | 12001
12002
12003
12004
12005
12006 | | | | 29.7614
35.2007
40.8264
29.7109
42.5824
30.5007 | 68.7889
63.2523
58.4719
69.6528
56.6995
68.8808 | 1.4497
1.5471
0.7017
0.6363
0.7181
0.6185 | 2.3324
4.6780
0.4613
2.4604
4.5149
2.6834 | | AV | 120 | 625 | 14 | 14.35 | 34.7637 | 64.2910 | 0.9452 | 2.8551 | | | 12101
12102
12103
12104
12105
12106 | | | | 26.4075
25.2450
32.7334
29.3302
25.0316
26.8377 | 73.0851
74.0590
66.5086
70.1077
74.4595
71.9538 | 0.5074
0.6960
0.7579
0.5621
0.5089
1.2085 | 0.5493
1.3011
1.8790
-1.1016
0.7852
2.2380 | | AV | 121 | 625 | 14 | 9.57 | 27.5976 | 71.6956 | 0.7068 | 0.9418 | | | 12201
12202
12203
12204
12205
12206
12207 | | | | 21.0075
24.3255
46.6083
28.7267
33.7448
22.0018
45.0017 | 77.7205
74.7377
52.2274
70.4840
65.4348
76.9328
54.4167 | 1.2719
0.9368
1.1643
0.7893
0.8204
1.0654
0.5816 | 1.7165
1.6554
3.5240
2.6102
3.3234
2.9120
3.5976 | | AV | 122 | 625 | 14 | 7.17 | 31.6309 | 67.4219 | 0.9471 | 2.7627 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|-------|--|--|--|---| | | 12301
12302
12303
12304
12305
12306 | | | | 25.3899
28.7032
24.0267
37.7181
26.9988
38.3716 | 73.7165 69.7132 74.9916 61.4493 72.1301 60.5210 | 0.8936
1.5835
0.9818
0.8326
0.8712
1.1074 | -0.7457
-1.0433
-1.2178
0.4605
-0.8509
-1.6137 | | AV | 123 | 625 | 14 | 4.78 | 30,2014 | 68.7535 | 1.0450 | -0.8352 | | | 13101
13102
13103
13104
13105
13106 | | | | 45.6787
43.1504
15.9687
15.5833
42.0978
20.0386 | 52.8912
56.1972
81.8890
83.3702
57.3032
77.6703 | 1.4301
0.6524
2.1423
1.0465
0.5989
2.2911 | 0.7422
1.8282
-1.9235
-1.8431
-0.6424
-0.7918 | | AV | 131 | 575 | 27 | 19.10 | * 30.4196 | 68.2201 | 1.3602 | -0.4384 | | | 9601
9602
9603
9604 | | | | 47.4945
46.7747
55.4903
44.1769 | 51.1006
52.2041
42.9031
54.2412 | 1.4048
1.0212
1.6066
1.5818 | -3.4588
4.0749
4.5655
4.4052 | | AV | 96 | 575 | 14 | 14.35 | 48.4841 | 50.1123 | 1.4036 | 2.3967 | | | 13201
13202
13203
13204
13205
13206 | | | | 54.4406
45.8715
49.9203
28.4329
45.3377
46.9203 | 44.4218
53.1434
48.7450
69.5283
52.8518
50.9402 | 1.1376
0.9850
1.3347
2.0388
1.8105
2.1395 | -0.2668 -0.0707 -0.2518 -2.9850 -0.4859 -0.9689 | | VA | 132 | 575 | 27 | 14.35 | *45.1538 | 53.2717 | 1.5744 | -0.8382 | | - | 9701
9702
9703
9704
9705 | | | | 18.0738
37.9213
32.5846
34.7365
38.4949 | 80.2928
60.3036
65.7287
63.3878
58.7931 | 1.6334
1.7751
1.6867
1.8756
2.7120 | -0.7320
-1.3212
-0.9502
1.0003
-1.1446 | | VA | 97 | 575 | 14 | 9.57 | *32.3622 | 65.7012 | 1.9365 | -0.6296 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|-------|---|--|--|--| | | 13301
13302
13303
13304
13305
13306 | | | | 26.3241
38.5934
45.6258
42.4125
36.1944
39.4306 | 72.1499 59.0078 52.5997 55.5658 62.1093 59.1097 | 1.5259
2.3988
1.8745
2.0217
1.6963
1.4596 | 0.9190
-0.5388
-1.2817
-0.0074
-1.0708
-0.4705 | | AV | 133 | 575 | 27 | 9.57 | 38.0968 | 60.0736 | 1.8295 | -0.4084 | | | 13401
13402
13403
13404 | | | | 19.6756
19.3460
22.0303
24.5880 | 78.4042
78.4570
76.9634
73.4400 | 1.9202
2.1970
1.0062
1.9720 | 0.2486
0.3867
-1.2902
-1.0092 | | AV | 134 | 575 | 27 | 7.17 | 21.4100 | 76.8161 | 1.7739 | -0.4160 | | | 13501
13502
13503
13504
13505
13506
13507
13508 | | | | 40.4859
25.6645
7.1903
36.8527
50.6036
43.4402
43.2813
37.2299 | 58.1871
72.6107
91.0512
60.8621
47.0269
54.6221
55.6371
61.4267 | 1.3279
1.7248
1.7585
2.2852
2.3695
1.9377
1.0816
1.3434 | -0.9174
-1.4985
-0.2161
-1.9882
-2.0240
-1.6522
-1.1134
-1.4427 | | AV | 135 | 575 | 27 | 4.78 | *35. 5934 | 62.6779 | 1.7286 | -1.3566 | | | 10701
10702
10703 | | | | 76.3958
65.8809
64.5607 | 23.0095
33.5027
33.7815 | 0.5947
0.6163
1.6578 | 4.1084
5.2745
4.8929 | | AV | 107 | 525 | 30 | 19.10 | 68.9458 | 30.0979 | 0.9563 | 4.7586 | | | 10801
10802
10803
10804 | | | | 64.7878
58.3623
70.8998
65.1389 | 34.0065
40.2536
27.4464
33.3015 | 1.2056
1.3841
1.6538
1.5597 | 4.1426
4.1573
4.8017
3.5416 | | AV | 108 | 525 | 30 | 14.35 | 64.7972 | 33.7520 | 1.4508 | 4.1608 | | | 10901
10902
10903
10904 | | | | 68.6086
66.6675
52.4743
54.8665 | 29.3425
31.1509
45.3061
43.0877 | 2.0488
2.1815
2.2195
2.0458 | 3.0869
4.0988
4.1513
5.3053 | | AV | 109 | 525 | 30 | 9.57 | 60.6542 | 37.2218 | 2.1239 | 4.1606 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|-------|--|--|--|--| | | 11001
11002
11003
11004
11005 | | | | 70.8250
53.8350
65.1024
65.5100
69.6257 | 27.7350
44.5982
33.3800
32.9399
29.3343 | 1.4400
1.5668
1.5176
1.5501
1.0400 | 5.3731
3.2180
3.9813
4.0596
4.2500 | | AV | 110 | 525 | 30 | 7.17 | * 64 . 9796 | 33.5975 | 1.4229 | 4.1764 | | | 11101
11102
11103
11104 | | | | 59.6182
44.9509
64.6486
74.2071 | 38.4364
53.3616
33.3534
23.6863 | 1.9454
1.6874
1.9980
2.1065 | 2.9218
2.3054
4.7034
4.9122 | | AV | 111 | 525 | 30 | 4.78 | 60.8562 | 37.2094 | 1.9343 | 3.7107 | | | 14301
14302
14303
14304 | | | | 59.7908
64.4613
0.6752
54.9986 | 36.3127
31.2079
95.1455
40.3255 | 3.8965
4.3308
4.1793
4.6759 | -1.5379
-0.6699
1.6552
0.0594 | | AV | 143 | 475 | 28 | 19.10 | * 49 . 2945 | 46.4808 | 4.2247 | -0.4724 | | | 14401 | | | | 46.2540 | 52.9779 | 0.7681 | -2.2850 | | AV | 144 | 475 | 28 | 14.35 | 46.2540 | 52.9779 | 0.7681 | -2.2850 | | | 14501
14502
14503
14504
14505
14506 | | | | 58.7464
49.2495
66.1609
67.2644
58.7599
47.5503 | 40.2385
49.6031
32.9186
31.6705
40.3451
51.2309 | 1.0151
1.1474
0.9205
1.0651
0.8950
1.2188 | -0.8218
-2.3132
-1.2498
-0.2384
0.2661
1.1490 | | AV | 145 | 475 | 28 | 9.57 | 57.9552 | 41.0011 | 1.0436 | -0.5347 | | | 14601
14602
14603
14604 | | | | 2.2451
1.4989
2.5400
1.2033 | 97.6198
98.2881
97.0308
98.6446 | 0.1351
0.2129
0.4292
0.1522 | -3.7426
-0.0584
-1.4698
0.6348 | | AV | 146 | 475 | 28 | 7.17 | 1.8718 | 97.8958 | 0.2323 | -1.1590 | | | 14701
14702
14703
14704
14705 | | | | 1.2117
1.0547
0.8309
2.5582
0.8462 | 98.2314
98.4997
98.6531
96.5597
98.5036 | 0.5569
0.4456
0.5160
0.8821
0.6502 | -1.8300
-0.9508
0.8438
-1.4576
-0.7623 | | AV | 147 | 475 | 28 | 4.78 | *1.3003 | 98.0894 | 0.6102 | -0.8314 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|-------|--|--|--|--| | | 14801
14802
14803
14804
14805 | | | | 1.7670
0.1879
0.2139
0.7388
0.1678 | 97.1702
98.7541
98.5542
98.0813
98.3684 | 1.0628
1.0580
1.2319
1.1799
1.4638 | -2.2838
0.3072
-1.2204
-2.9281
0.8030 | | AV | 148 | 475 | 28 | 2.39 | * 0.6151 | 98.1855 | 1.1993 | -1.0644 | | · | 17901
17902
17903
17904
17905
17906 | | | |
73.9917
69.7212
62.9494
62.4685
59.9349
64.4473 | 25.2601
29.5802
36.1540
36.6725
38.7966
34.6369 | 0.7482
0.6985
0.8969
0.8590
1.2685
0.9158 | -0.5201
-3.4751
-0.6696
-0.4444
-0.3685
0.5128 | | AV | 179 | 420 | 47 | 19.10 | 65.5854 | 33.5167 | 0.8978 | -0.8275 | | | 18001
18002
18003
18004
18005
18006 | | | | 1.7181
1.0521
44.9924
53.5986
57.7516
58.0028 | 97.7415
98.3734
54.4177
45.7455
41.6653
41.3943 | 0.5404
0.5745
0.5899
0.6559
0.5831
0.6029 | -1.0898
-0.0344
-2.4909
-2.1224
-2.2346
-1.6383 | | AV | 180 | 420 | 47 | 14.35 | *36.1859 | 63.2229 | 0.5911 | -1.6017 | | | 18101
18102
18103
18104
18105 | | | | 58.1932
46.6850
56.3109
56.8086
59.3689 | 40.8629
52.4842
42.8786
42.3378
39.8212 | 0.9438
0.8308
0.8105
0.8536
0.8098 | 0.5437
-3.4782
-1.1340
-0.5347
-1.8665 | | AV | 181 | 420 | 47 | 9.57 | ☆ 55.4733 | 43.6770 | 0.8497 | -1.2939 | | | 18201
18202
18203
18204
18205 | | | | 48.3459
49.7970
43.6420
52.8693
49.5025 | 51.6541
50.2030
56.3580
47.1306
50.4974 | -
-
-
- | -0.2854
-1.4787
1.0526
-1.0417
-1.1392 | | AV | 182 | 420 | 47 | 7.17 | 48.8314 | 51.1686 | - | -0.5785 | | | 18301
18302
18303
18304
18305
18306 | | | | 60.1302
0.3593
1.1582
62.1985
62.2466
65.0905 | 38.2992
98.9099
97.7399
37.3653
37.2213
34.4335 | 1.5706
0.7308
1.1019
0.4362
0.5321
0.4760 | -2.4477 -2.0245 -2.3561 -1.5414 -1.5564 -2.3061 | | AV | 183 | 420 | 47 | 4.78 | * 41.8639 | 57.3281 | 0.8079 | -2.0387 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|-------|--|--|--|--| | | 18401
18402
18403
18404 | | | | 0.0693
50.7447
0.1307
0.2241 | 98.3732
48.4562
99.1259
98.5825 | 1.5575
0.7991
0.7434
1.1935 | -4.2910
-2.0790
-4.3081
-2.3366 | | AV | 184 | 420 | 47 | 2.39 | *12.7922 | 86.1344 | 1.0734 | -3.2537 | | | 19101
19102
19103
19104
19105
19106 | | | | 72.6049
84.6860
83.9241
83.5094
78.1320
78.9617 | 26.7425
14.3792
15.0900
15.7695
21.1570
20.3737 | 0.6527
0.9348
0.9859
0.7211
0.7109
0.6645 | 2.5707
3.3620
3.2057
2.9220
3.1238
3.6642 | | AV | 191 | 403 | 47 | 19.10 | 80.3029 | 18.9186 | 0.7783 | 3.1414 | | | 19201
19202
19203
19204
19205
19206 | | | | 1.1580
4.7594
4.6223
78.8034
86.1136
54.5082 | 98.6301
94.8462
95.1714
20.8507
13.6583
45.2985 | 0.2119
0.3944
0.2063
0.3459
0.2281
0.1933 | 0.9509
2.5686
3.2412
4.4014
3.9835
2.5668 | | AV | 192 | 403 | 47 | 14.35 | * 38.3275 | 61.4091 | 0.2633 | 2.9521 | | | 19301
19302
19303
19304
19305 | | | | 0.6238
1.3976
83.6758
83.6562
74.1612 | 98.9253
98.0007
15.4070
15.9921
25.4147 | 0.4509
0.6016
0.9173
0.3517
0.4241 | -1.4988
-0.5986
3.8815
3.1193
3.0587 | | AV | 193 | 403 | 47 | 9.57 | *48.7 029 | 50.7479 | 0.5491 | 1.5924 | | | 19401
19402
19403
19404
19405 | | | | 0.2549
88.5854
84.7651
0.3774
89.8378 | 99.6117
9.2963
14.5224
99.1156
9.7648 | 0.1334
2.1183
0.7125
0.5070
0.3975 | 0.1562
3.9698
1.9064
0.7475
1.7900 | | AV | 194 | 403 | 47 | 7.17 | * 52 . 7641 | 46.4621 | 0.7737 | 1.7140 | | | 19501
19502
19503
19504 | | | | 0.4904
24.5393
82.5320
22.8820 | 99.3063
74.4768
15.9302
76.0945 | 0.2033
0.9838
1.5378
1.0234 | -2.2992
-0.3622
2.7436
0.5672 | | AV | 195 | 403 | 47 | 4.78 | *32.6109 | 66.4520 | 0.9371 | 0.1623 | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |----|--|-----|-----|-------|--|--|--|--| | | 19601
19602
19603 | | | | 2.1409
1.2948
1.9013 | 97.1376
97.9236
97.3544 | 0.7215
0.7815
0.7443 | 1.0379
1.8632
2.2411 | | AV | 196 | 403 | 47 | 2.39 | 1.7790 | 97.4718 | 0.7491 | 1.7141 | | · | 20301
20302
20303
20304 | | | | 0.6896
6.4459
74.7010
8.6881 | 98.9398
92.7885
24.7350
91.2579 | 0.3706
0.7656
0.5639
0.0540 | -0.9686
-1.0425
1.9735
-1.9839 | | AV | 203 | 305 | 47 | 19.10 | *22.6311 | 76.9303 | 0.4385 | -0.5054 | | | 20401
20402
20403 | | | | 7.8546
83.4362
72.0727 | 91.6052
15.0448
27.1453 | 0.5403
1.5189
0.7819 | -0.5951
0.5052
-0.3843 | | AV | 204 | 306 | 47 | 14.35 | * 54 . 4545 | 44.5984 | 0.9470 | -0.1581 | | | 20501
20502
20503
20504 | | | | 4.3781
3.5350
8.5568
2,5938 | 95.0617
95.8482
87.6547
97.3730 | 0.5603
0.6167
3.7885 | 0.6513
-0.1159
1.4116
-0.9411 | | AV | 205 | 305 | 47 | 9.57 | 4.7659 | 93.9844 | 1.6552 | 0.2515 | | | 20601
20602
20603
20604
20605
20606 | | | | 0.1877
1.9367
6.6887
0.8912
1.2438
4.1146 | 99.8123
97.8439
93.2983
98.9389
98.6501
95.8854 | 0.2194
0.1700
0.1061 | -1.8708
-0.5966
1.2847
-2.9064
-0.2093
0.0952 | | AV | 206 | 305 | 47 | 7.17 | *2.5104 | 97.4047 | - | -0.7005 | | | 20701
20702
20703 | | | | 0.8724
1.2825
0.3803 | 98.8526
97.8663
99.3004 | 0.2750
0.8512
0.3194 | -0.8527
-3.1910
29665 | | AV | 207 | 305 | 47 | 4.78 | 0.8450 | 98.6731 | 0.4819 | -2.3367 | | | 20801
20802
20803
20804
20805 | | | | 1.1417
1.8315
5.8512
2.2089
2.0320 | 98.3974
97.9754
93.6521
97.4642
97.4548 | 0.4609
0.1932
0.4966
0.3269
0.5131 | -4.8167
-1.7949
-0.3743
-4.3639
-1.6820 | | AV | 208 | 305 | 47 | 2.39 | *2.6131 | 96.9887 | 0.3981 | -2.6064 | ## REFERENCES - Arnold, R. G., Coleman, R. G. and Fryklund, V. C. (1962) Temperature of crystallization of pyrrhotite and sphalerite from the Highland-Surprise mine, Coeur D'Alene district, Idaho: Econ. Geol., vol. 57, p.1163-1174. - Barnard, M. M. (1965) Solubilities of selected chalcophile elements in hydrothermally synthesized β -ZnS (Sphalerite): Ph.D. Thesis, The Pennsylvania State University. - Barton, P. B. Jr., Bethke, P. M. and Toulmin, P. III (1963) Equilibrium in ore deposits: Min. Soc. Am., Special Paper 1, p.171-185. - Barton, P. B. Jr. and Toulmin, P. III (1966) Phase relations involving sphalerite in the Fe-Zn-S system: Econ. Geol., vol. 61, no. 5, p.815-849. - Bethke, P. M. (1967) Personal communication. - Bethke, P. M. and Barton, P. B. (1959) Trace-element distribution as an indicator of pressure and temperature of ore deposition (Abstract): Bull. Geol. Soc. Am., vol. 70, p.1569-1570. - Bethke, P. M. and Barton, P. B. (1971) Distribution of some minor elements between coexisting sulfide minerals: Econ. Geol., vol. 66, p.140-163. - Bethke, P. M., Barton, P. B. and Page, N. J. (1958) Preliminary experiments on the distribution of selenium between coexisting sulfides (Abstract): Bull. Geol. Soc. Am., vol. 69, p.1759-1760. - Boorman, R. S. (1966) Subsolidus studies in the system FeS-ZnS (303-714°C): Ph.D. Thesis, Dept. Geology, University of Toronto. - Boorman, R. S. (1967) Subsolidus studies in the ZnS-FeS-FeS₂ system: Econ. Geol., vol. 62, p.614-631. - Boyd, F. R. (1968) Quantitative electron-probe analysis of pyroxenes: Annual Rpt. Div. Geophys. Lab., Carnegie Inst. Wash Year Book 66, p.327-334. - Burns, R. G. (1970) Mineralogical applications of crystal field theory: Cambridge University Press. - Cabri, L. J. (1969) Density determinations: Accuracy and application to sphalerite stoichiometry: Am. Mineral., vol. 54, p.539-548. - Czamanske, G. K. and Goff, F. E. (1973) The character of Ni⁺² as demonstrated by solid solutions in the Ni-Fe-Zn-S system: Econ. Geol., vol. 68, p.258-268. - Delarue, G. (1960) Propriétes chemiques dans l'eutectique LiCl-KCl fondu II. Soufre, sulfures, sulfites, sulfates: Bull. Soc. Chim. France, 1960, p.906-910. - Delarue, G. (1962) Comportement des oxydes et des sulfures métalliques dans l'eutectiques LiCl-KCl fondu Reactions chimiques mettant en jeu les ions 0²⁻ et S²⁻: Chimie Analytique, vol. 44, no. 3, p.91-101. - Denbigh, K. (1971) The principles of chemical equilibrium: Cambridge University Press, Third Edition. - Dixon, W. J. and Massey, F. J. (1957) Introduction to statistical analysis: McGraw-Hill Book Co., Inc., New York. - Doe, B. R. (1962) Distribution and composition of sulfide minerals at Balmat, New York: Bull. Geol. Soc. Am., vol. 73, p.833-854. - Duncumb, P. and Reed, S. J. B. (1968) The calculation of stopping power and backscatter effects in electron probe microanalysis: in Quantitative Electron Probe Microanalysis, ed. Heinrich, K. F. J., National Bureau of Standards Special Publication no. 298, p. 133-154. - Fleischer, M. (1955) Minor elements in some sulfide minerals: Econ. Geol., 50th Ann. Vol., p.970-1024. - Frazer, J. Z., Fitzgerald, R. W. and Reid, A. M. (1966) Computer programs FMX and FMX2 for electronmicroprobe data processing: SIO Reference 66-14, June 20, 1966, Scripps Institution of Oceanography, University of California, La Jolla, California, 67 p. - Frazer, J. Z. (1967) A computer fit to mass absorption coefficient data: SIO Reference 67-29, Institute for the Study of Matter, University of California, La Jolla, California, 19 p. - Fyfe, W. S. (1964)
Geochemistry of solids, an introduction: McGraw-Hill Co., Ltd. - Ghosh-Dastidar, P. (1969) A study of trace elements in selected Appalachian sulfide deposits: Ph.D. Thesis, University of New Brunswick. - Ghosh-Dastidar, P., Pajari, G. E. Jr. and Trembath, L. T. (1970) Factors affecting the trace element partition coefficients between coexisting sulfides: Econ. Geol., vol. 65, p.815-837. - Goldstein, J. I. and Comella, P. A. (1969) A computer program for electron probe microanalysis in the field of metallurgy and geology: Report X-642-69-115, Goddard Space Flight Center, Greenbelt, Maryland, 82 p. - Halbig, J. B. (1965) Solubility of selected chalcophile elements in hydrothermally synthesized galena: unpublished MSc. Thesis, The Pennsylvania State University, lll p. - Halbig, J. B. (1969) Trace element studies in sythetic sulfide systems: The solubility of thallium in sphalerite and the partition of selenium between sphalerite and galena: Ph. D. Dissertation, College of Earth and Mineral Sciences, The Pennsylvania State University. - Halbig, J. B. and Wright, H. D. (1969) Distribution of selenium between hydrothermally synthesized sphalerite and galena at trace-level concentrations (Abstract): Trans. Am. Geophys. Union, vol. 50, no. 4, p.339. - Hall, W. E. (1961) Unit-cell edges of cobalt-iron bearing sphalerites: U. S. Geol. Survey Prof. Paper 424-B, p.271-273. - Hall, W. E., Rose, H. J. and Simon, F. (1971) Fractionation of minor elements between galena and sphalerite, Darwin lead-zinc-silver mine, Ingo County, California and its significance in geothermometry: Econ. Geol., vol. 66, p.602-606. - Heinrich, K. F. J. (1966) X-ray absorption uncertainty: in Electron Microprobe, Proc. Symp. Electron Microprobe, Washington, D. C., 1964, ed. T. D. McKinley, K. F. J. Heinrich and D. B. Wittry, John Wiley and Sons, Inc., p.269-377. - Holland, H. D. (1956) The chemical composition of vein minerals and the nature of ore forming fluids: Econ. Geol., vol. 51, p.781-797. - Hulliger, F. (1968) Crystal chemistry of chalcogenides and pnictides of the transition elements: in Structure and Bonding, vol. 4, p.83-229. - Hutta, J. J. and Wright, H. D. (1964) The incorporation of U and Ag by hydrothermally synthesized galena: Econ. Geol., vol. 59, p.1003-1024. - Keil, K. (1967) The electron microprobe X-ray analyzer and its applications in mineralogy: Fortschr. Miner., vol. 44, no. 1, p.4-66. - Kelly, Wm. C. and Turneaure, F. S. (1970) Mineralogy, paragenesis and geothermometry of the tin and tungsten deposits of the eastern Andes, Bolivia: Econ. Geol., vol. 65, p.609-680. - Klemm, D. D. (1962) Untersuchungen über die mischkristallbildung im dreieckdiagramm FeS₂-CoS₂-NiS₂ und ihre beziehungen zum aufbau der naturlichen bravoite: N. Jb. Miner. Mh., vol. 100, p.76-91. - Klemm, D. D. (1965) Synthesen und analysen in den dreiecksdiagramen FeAsS-CoAsS-NiAsS und FeS₂-CoS₂-NiS₂: N. Jr. Miner. Abh., vol. 103, p.205-255. - Kretz, R. (1959) Chemical study of garnet, biotite and hornblende from gneisses of southwestern Quebec, with emphasis on distribution of elements in coexisting minerals: Jour. Geol., vol. 67, p.371-402. - Kretz, R. (1960) The distribution of certain elements among coexisting calcic pyroxenes, calcic amphiboles and biotites in skarns: Geochim. et Cosmochim. Acta, vol. 20, p.161-191. - Kretz, R. (1961) Some applications of thermodynamics to coexisting minerals of variable composition. Examples: Orthopyroxene-Clinopyroxene and Orthopyroxene-Garnet: Jour. Geol., vol. 69, p.361-387. - Kroger, F. A. (1938) Formation of solid solutions in the system zinc sulfide-manganese sulfide: Zeit. Krist., Al00, p.543-545. - Kroger, F. A. (1939) Solid solutions in the ternary system ZnS-CdS-MnS: Zeit. Krist., Al02, p.132-135. - Krumbein, W. C. and Graybill, F. A. (1965) An introduction to statistical models in geology: McGraw-Hill Book Co., New York. - Manning, P. G. (1967) Absorption spectra of Fe(III) in octahedral sites in sphalerite: Canadian Mineralogist, vol. 9, p.57-64. - Marfunin, A. S. and Mkrtchyan, A. R. (1967) Mossbauer spectra of Fe⁵⁷ in sulfides: Geochemistry International, vol. 4, p.980-989. - McIntire, W. L. (1963) Trace element partition coefficients a review of theory and applications to geology: Geochim et Cosmochim. Acta, vol. 27, p.1209-1264. - Nickel, E. H. (1968) Structural stability of minerals with the pyrite marcasite arsenopyrite, and lollingite structures: Canadian Mineralogist, vol. 9, p.311-321. - Nickel, E. H. (1970) The application of ligand-field concepts to an understanding of the structural stabilities and solid-solution limits of sulphides and related minerals: Chem. Geol., vol. 5, p.233-241. - Nickel, E. H., Webster, A. H. and Ripley, L. G. (1971) Bond strengths in the disulphides of iron, cobalt and nickel: Canadian Mineralogist, vol. 10, p.773-780. - Norrish, K. and Chappell, B. W. (1967) X-ray Fluorescence spectrography: in Zussman, J. ed., Physical Methods in Determinative Mineralogy, Academic Press, London and New York, Chapter 4. - Philibert, J. (1963) A method for calculating the absorption correction in electron probe microanalysis: in Proc. Third Intern. Symp. X-Ray Optics and X-Ray Microanalysis., Stanford, 1962, Academic Press, ed. H. H. Pattee, N. E. Cosslett and A. Engstrom, p.379-392. - Ramberg, H. (1952) The origins of metamorphic and metasomatic rocks: University of Chicago Press. - Reed, S. J. B. (1965) Characteristic fluorescence corrections in electron-probe microanalysis: Brit. Journ. Appl. Phys., vol. 16, p.913-926. - Riley, J. F. (1965) An intermediate member of the binary system FeS₂(pyrite)-CoS₂ (cattierite): Amer. Min., vol. 50, p.1083-1086. - Riley, J. F. (1968) The cobaltiferous pyrite series: Amer. Min., vol. 53, p.293-295. - Roedder, E. (1967) Fluid inclusions as samples of ore fluids: in Geochemistry and Hydrothermal Ore deposits, H. L. Barnes, ed., Holt, Rinehart and Winston, Inc., p.515-574. - Schröke, H. (1958) The determination of exsolution equilibrium: Neues. Jahr. Mineral. Monatsh, 1958, p.67-69. - Scott, S. D. (1968) Stoichiometry and phase changes in zinc sulphide: Ph.D. Thesis, Dept. of Geochemistry and Mineralogy, The Pennsylvania State University. - Scott, S. D. (1971) Mossbauer spectra of synthetic iron-bearing sphalerite: Canadian Mineralogist, vol. 10, p.882-885. - Scott, S. D. and Barnes, H. L. (1972) Sphalerite-wurtzite equilibria and stoichiometry: Geochim. et Cosmochim. Acta, vol. 36, p.1275-1295. - Skinner, B. J. (1961) Unit-cell of natural and synthetic sphalerites: Am. Min., vol. 46, p.1399-1411. - Snedecor, G. W. and Cochran, W. G. (1967) Statistical Methods: Iowa State University Press, 6th edition. • • • • • • - Springer, G. (1967) Die Berechnung von Korrekturen für die quantitative Elektronenstrahl-Mikoanalyse: Fortschr. Miner., vol. 45, no. 1, p.103-124. - Springer, G., Schachner-Korn, D. and Long, J. V. P. (1964) Metastable solid solution reactions in the system FeS₂-CoS₂NiS₂: Econ. Geol., vol. 59, p.475-491. - Straumanis, M. E., Amstutz, G. C., Chan, S. (1964) Synthesis and X-ray investigation within the system FeS₂-CoS₂: N. Jb. Miner. Abh., vol. 101, p.127-141. - Title, R. S. (1965) Electron paramagnetic resonance spectra of Cr⁺, Mn⁻² and Fe⁻² in cubic ZnS: Phys. Rev., vol. 131, p.623. - Troshin, Y. P. (1965) The distribution of trace elements of different valences among hydrothermal minerals as an index of the oxidation-reduction regime within the system: Geochemistry International, vol. 2, p.937-946. - Whittaker, E. J. W. and Muntus, R. (1970) Ionic radii for use in geochemistry: Geochim. et Cosmochim. Acta, vol. 34, p.945-956. - Williams, K. L. (1967) Electron probe microanalysis of sphalerite: Am. Min., vol. 52, p.475-492. - Wright, H. D., Hutta, J. J. and Barnard, W. M. (1963) Incorporation of some trace elements by hydrothermally synthesized galena and sphalerite (Abstract): Econ. Geol., vol. 58, no. 7, p.1192-1193. - Wright, H. D., Barnard, W. M. and Halbig, J. B. (1965) Solid solution in the system ZnS-ZnSe and PbS-PbSe at 300°C and above: Am. Min., vol. 50, p.1802-1815. - Yund, R. A. and Giletti, B. J. (1964) Partition of Zn between pyrite and galena: Geol. Soc. Am. Abstracts, 1964, p.231-232. ## RULES COVERING USE OF MANUSCRIPT THESES IN THE UNIVERSITY OF MICHIGAN LIBRARY AND THE GRADUATE SCHOOL OFFICE Manuscript copies of theses submitted for the doctor's degree and deposited in The University of Michigan Library and in the Office of the Graduate School are open for inspection, but are to be used only with due regard to the rights of the authors. For this reason it is necessary to require that a manuscript thesis be read within the Library or the Office of the Graduate School. If the thesis is borrowed by another library, the same rules should be observed by it. Bibliographical references may be noted, but passages may be copied only with the permission of the authors, and proper credit must be given in subsequent written or published work. Extensive copying or publication of the thesis in whole or in part must have the consent of the author as well as of the Dean of the Graduate School. This thesis by has been used by the following persons, whose signatures attest their acceptance of the above restrictions. A Library which borrows this thesis for use by its readers is expected to secure the signature of each user. NAME AND ADDRESS DATE UNIVERSITY OF MICHIGAN 3 9015 08474 7651