
Technical Report: MRDRC Project UM21-14

1

C-NARS: An Open-Source Tool for Classification of Narratives in Survey Data

Joelle Abramowitz and Jinseok Kim

Abstract

To help researchers and policy makers better understand how different types of self-employments

contribute to older adults’ income, retirement, and quality of life, this project develops a

computational method to classify self-employment narratives in survey data. Among 17,854 job

narratives in the Health and Retirement Study between 1994 and 2018, about 4,500 instances are

labeled into one of three categories – Owner, Manager, and Independent - by human coders. A

variety of machine learning algorithms are trained and tested on the labeled data in which each

narrative text is pre-processed (lemmatization, stemming, etc.) and transformed into a vector of

word tokens for cosine similarity calculation among narratives. The best performing classification

model (Gradient Boosting Trees) is applied to the entire 17,854 instances to produce probability

scores of an instance being likely to belong to each of three categories. A total of 14,748 instances

with a probability score of 0.9 or above for ‘Independent’ or with a probability score of 0.6 or

above for ‘Owner’ are filtered as accurately tagged instances because they are highly likely to be

assigned correct categories (97.3% for Independent and 99.0% for Owner) when evaluated on 10

random subsets (20% of 4,500 instances each) of the labeled data. The remaining instances are

passed to manual inspection and correction before the entire data are to be used for statistical

analyses. The classification code sets – Classification of Narratives in Survey Data (C-NARS) -

are made publicly available for researchers to implement machine learning methods for

classification of narratives in survey data.

Overview of Algorithmic Classification Method

The project uses machine learning to automate the classification of occupation types – Owner,

Manger, and Independent - depicted in narrative responses in the Health and Retirement Study.

The machine learning approach uses manual classifications of a subset of the data into self-

employment roles to automate classification of the remainder of the data. To do this, the approach

performs several tasks: (1) pre-processing the raw data, (2) training candidate machine learning

models, (3) developing and validation of the candidate models, and (4) testing and implementation

of the optimal model. These tasks follow common procedures conducted in previous similar

studies in predicting occupational or demographic classes using text data (Boselli et al, 2018; Ikudo

et al, 2019; Lampos et al., 2016; Mac Kim et al., 2017; Preoţiuc-Pietro, Lampos, and Aletras, 2015;

Preoţiuc-Pietro and Ungar, 2018).

Technical Report: MRDRC Project UM21-14

2

Our approach first pre-processes all words in the occupation narratives in the Health and

Retirement Study data. This pre-processing includes cleaning, standardization, stop-word removal,

and stemming which are typical procedures in natural language processing (Berry and Castellanos,

2004). Then, the approach transforms the pre-processed words into a vector (list) of word tokens.

Next, to train candidate machine learning models, the vector of tokens are fed into various machine

learning algorithms including Logistic Regression, Naïve Bayes, Random Forests, Gradient

Boosted Trees, and Support Vector Machine to learn frequencies and combinations of tokens that

best associate each narrative to one of the classes using a subset of the data that have been manually

coded. To develop and validate the candidate models, the approach identifies the best performing

combinations of feature weights and increases generalizability of the machine learning models by

implementing various modifications of parameters and data on another subset of the manually

coded data. Finally, testing and implementation of the optimal classification model identified from

this training and development and validation are applied to the remainder of the unclassified

narratives to assign each narrative one of the occupation classes.

Technical Details

This project produces a code set that consists of two execution files with a file extension ‘.py’

(CNARS_main.py and CNARS_training.py) and implements the machine learning procedure

described in the Overview. The code is written in a script language (‘python’ version 3.6.5 or

above) using open-source machine learning (‘scikit-learn’ version 0.21) and natural language

processing (‘nltk’ version 3.6.3) packages. The code set is named ‘C-NARS’ (Classification of

Narratives in Survey Data) and will be shared on public code repositories (GitHub1 and

FigShare2) for validation, reuse, and improvement by researchers.

Input Data

The code set accepts two input data sets – training data and test (target) data - in a csv file

format. Figure 1 shows a partial preview of input data used for the project. Each input data set

consist of three columns: Project id, narrative, and class. In the figure, project id and narrative

information are blinded as the data sets used for this project contain IRB-protected information.

(1) Project id: this is a series of numbers or alphanumeric characters used to refer to a

unique instance (case).

(2) Narrative: in this column, a textual narrative of job description is recorded.

(3) Class: One of occupational classes – for this project, Owner (1), Manager (2), or

Independent – is assigned to the instance through manual coding. The classes can be

recorded in integers or a string of characters (e.g., A, B, or C; or Owner, Manager, or

Independent). This column needs to be populated if machine learning algorithms are

trained to learn patterns of distinguishing classes (consisting of the training data).

1 www.github.com
2 www.figshare.com

Technical Report: MRDRC Project UM21-14

3

Depending on the machine learning stages, however, this column can be empty. Once

machine learning algorithms are trained on the training data, they are ready to predict

classes in test data where classes for narratives are unknown.

Figure 1: Example of Input Data for C-NARS

Execution Files

Two execution files - CNARS_main.py and CNARS_training.py – can be run on a command

prompt by typing ‘python CNARS_main.py’ or ‘CNARS_training.py’ and pushing an Enter

button. They are almost identical in data input, pre-processing, machine learning, and prediction

steps - except that the CNARS_training file contains steps for random sampling of input data and

an evaluation of machine learning performance.

Loading Modules

Each execution file needs to load python modules to perform routine functions and algorithmic

implementations of machine learning procedures. Figure 2 shows the snippet of code that loads

modules required for the project.

Technical Report: MRDRC Project UM21-14

4

Figure 2: Code Section for Loading Packages and Modules

Each module is imported from that packages that contain it. For example, ‘PorterStemmer’ is

located in ‘ntlk,’ a python package for natural language processing. The packages required for

this project do not come with the installation of python and, accordingly, need to be installed

separately3

Loading Data

The next part of the execution files directs how input data are loaded. In Figure 3, a process of

loading the input data (‘filename’) is defined (‘def’). Although this project uses a CSV file

format, files in any other formats such as tab-delimited (‘.txt’) or MS spreadsheet (‘.xls’) can be

loaded by modifying the ‘pd.read_csv’ part.4

Figure 3: Code Section for Loading Data

Another important note is that special care needs to be taken for selecting ‘encoding’ type. If not

properly chosen, encoding issues can stop the code execution and produce warnings. For this

3 For installing ‘scikit-learn,’ see https://scikit-learn.org/stable/install.html For installing ‘nltk,’ see
https://www.nltk.org/install.html
4 For more information, see https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html

Technical Report: MRDRC Project UM21-14

5

project, ‘unicode_escape’ was chosen, but depending on how the input file was created and what

languages are used, another encoding scheme may need to be selected.5

Sampling Data

In much real world data, classes to be predicted can be imbalanced. In a prediction task of

cancers from patients’ records, for example, positive cases (patients with cancers) tend to be

smaller than negative ones (patients without cancers). Accordingly, labeled data created from

target population data tend to have class imbalance. Many machine learning algorithms are

sensitive to imbalanced training data, producing inaccurate predictions. To address this issue,

this project includes in the code both over-sampling and under-sampling methods to create

balanced training data. Figure 4 shows the code snippet for over- and under- sampling. Note that

users need to install ‘imblearn’ to run the sampling techniques properly.

Figure 4: Code Section for Over- and Under-Sampling

Pre-processing Data

After input data are loaded, texts in Narrative go through a series of steps before they are used

for machine learning and prediction. Figure 5 shows the code section for data pre-processing.

First, all characters in narratives are lowercased. Next, non-alphabetical characters (e.g., numbers

and special characters such as question marks) are removed. Then, words that are commonly

used for everyday (‘the,’ ‘and,’ ‘to,’ etc.) are deleted. The deleted words are called ‘stop-words.’

The list of stop-words are listed in a dictionary that comes with the installed natural language

processing toolkit (‘nltk’). As some narratives are recorded in Spanish, the project also uses the

Spanish stop-words list in the nltk package. Another step to clean the narrative text is to remove

5 https://docs.python.org/3/library/codecs.html#standard-encodings

Technical Report: MRDRC Project UM21-14

6

words that have no meaning such as ‘po,’ and ‘pi’ (used for embedding a question in the

narrative). Users can expand the list of words to be removed by editing the items in

‘words_to_remove = { ‘po’ … }’ in the code section below. In addition, this project removes

words with a single letter (length < 2).

Figure 5: Code Section for Data Pre-processing

After the aforementioned pre-processing steps are completed, each narrative text is dissected into

a list of word tokens using the nltk word tokenizer.6 For example, a sentence ‘I owned a shop’ is

transformed into a bag of words (‘owned’ and ‘shop’; ‘I’ and ‘a’ are deleted through the stop-

words listing and single-character word removal). Next, the tokens are trimmed into shorter and

simplified word forms. This process is called ‘stemming’ (e.g., ‘owned’ → ‘own’). This project

6 For more information about word tokenizing, see https://www.guru99.com/tokenize-words-sentences-nltk.html

Technical Report: MRDRC Project UM21-14

7

uses the most commonly used stemmer, ‘Porter’s Stemmer,’ as implemented in the nltk

package.7

For future use, this code section contains a function to convert a narrative text into a list of n-

gram tokens. For example, a sentence ‘I love you’ is converted into a list of word pairs (‘I love’ -

‘love you’) if 2-gram is chosen. Users can un-commentize the code part below ‘#ngram’ to

include it in pre-processing.

Fitting Models

This stage trains machine learning algorithms to learn patterns of classification from training

data. Figure 6 describes how the training is conducted. Various machine learning algorithms are

included in the code so that users can try each to find the best performers. In the released code, a

total of six algorithms are included: Decision Tree, Support Vector Machine, K-Nearest

Neighbors, Naïve Bayes, Random Forests, and Gradient Boosting Trees. They have been widely

used in text classification tasks as baselines or best performers.

Figure 6: Code Section for Fitting Model

Each algorithm is implemented using its baseline hyper-parameters (e.g., max_depth in Random

Forests) as described in the documentation for scikit-learn packages.8 For more information

7 https://tartarus.org/martin/PorterStemmer/
8 https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html; https://scikit-

learn.org/stable/user_guide.html

Technical Report: MRDRC Project UM21-14

8

about the hyper-parameter options available for each algorithm, please refer to the

documentation.

Evaluating Models

Given labeled data in which each instance is assigned a tag (label decided by human coders), the

performance of machine learning models can be assessed by counting how many correct

predictions are made by a model. In Figure 7, two evaluation methods are implemented: a

confusion matrix and a classification report.9 Both the Confusion Matrix and the Classification

Report are generated by innate functions in the code.

Figure 7: Code Section for Model Evaluation

(1) Confusion Matrix: This visualizes the performance of a model in a table format. Table

1 illustrates how a confusion matrix is created.

Table 1: An Example of a Confusion Matrix

 Predicted A Predicted B

True A 15 5

True B 3 7

In Table 1, two labels – A and B – are predicted for a total of 30 cases (= 15+ 5 + 3 + 7).

Among 20 cases labeled A (true), 15 cases are correctly predicted as A while the

remaining five are predicted as B. In contrast, three out of 10 B-labeled cases are

predicted as A and seven of them are predicted as B. As such, the confusion matrix

succinctly summarizes the prediction results of a model per label.

(2) Classification Report: The model performance can be quantified as precision and

recall based on the confusion matrix. Recall measures how many cases are correctly

9 For more detailed explanation about confusion matrix and classification report, please refer to
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9

Technical Report: MRDRC Project UM21-14

9

predicted by a model for their labels (= Predicted A among True A/True A = 15/20 or

Predicted B among True B/True B = 7/10). Precision measures how many predicted cases

are actually true (= True A among Predicted A/Predicted A = 15/18 or True B among

Predicted B/Predicted B = 7/12). The f1 score is a harmonic mean of recall and precision

(= 2*Recall*Precision/(Recall + Precision)) weighing both equally.

Predicting Probability

In classification tasks, machine algorithms learn patterns of classification based on training data

and produce probability scores for instances in test data to refer to target classes. If the

probability score is 0.5 or above for an instance to belong to a target class, the class is assigned

to the instance, while if below 0.5, the class is not assigned (→ binary decision). This threshold

(= 0.5) is set by default in most machine learning procedures.

Unlike those tasks, the code set used for this project is set to produce the probability scores used

by machine learning algorithms to assign labels for target data. This allows users to modify the

levels of probability scores that are decided to refer to a target class. For example, users can set

the probability score for a target class as 0.75 or higher, increasing the accuracy of prediction

results.

Figure 8 shows the procedure of producing probability scores for instances in test data. The

output file is formatted as a CSV file with the utf8 encoding by default.

Figure 8: Code Section for Predicting Probability Scores

Main Function

So far, several functions are defined for loading and sampling data, pre-processing features

(variables), fitting models, and predicting probability scores. These steps need to be executed one

by one to produce a final output. A main execution function as defined in Figure 9 controls the

order of execution.

Technical Report: MRDRC Project UM21-14

10

Figure 9: Code Section for Main Function

(1) Load Data: Training and test data are loaded to be pre-processed through various

steps of natural language processing techniques.

(2) Sampling: If sampling is chosen (‘sample_on’), instances in training data are over- or

under-sampled to create balanced labeled data.

(3) The narratives in pre-processed training data are converted into bags of words for the

calculation of TF-IDF scores. TF-IDF is an acronym of Term Frequency – Inversed

Document Frequency. This score counts first how often a token appears in a document

and then divides it by how often the token appears across documents. In this way, a token

is assigned a score that represents its importance in distinguishing a document that

contains it from others. In our project, specifically, a token (e.g., ‘own’) can be helpful to

Technical Report: MRDRC Project UM21-14

11

decide whether a narrative refers to a specific class (e.g., Owner) if it frequently (→ high

TF) and almost uniquely (→ low DF) appears in the narratives of respondents who are

labeled ‘Owner.’

(4) Model Fitting: Machine learning algorithms learn that specific words are indicative of

specific classes in training data through the distribution of TF-IDF scores of tokens in

training data.

(5) Predict Output: Based on the models learned from model fitting, machine learning

algorithms predict labels for instances in test data by looking into the TF-IDF scores of

tokens in narratives of those instances.

(6) Evaluating Model Performance: If test data are provided with labels and the

evaluation mode is chosen (‘eval_on’), the code produces both a confusion matrix and a

classification report that contain evaluation results of the machine learning models that

produce probability scores for instances in test data.

(7) Probability Prediction: The code produces an output file in which instances in test

data are assigned probability scores to belong to each of the target classes and a label

assigned by the machine learning models.

Execution Command

In this section, users decide which dataset is used for training and data, whether over- or under-

sampling is used, which machine learning algorithm is used, whether evaluation is conducted,

and how the output file is named. Figure 10 shows the types of choices that need to be made by

users and what options are available for each choice. The selected choices are reflected in

running the main execution function explained above.

Figure 10: Code Section for Execution Command

Technical Report: MRDRC Project UM21-14

12

For this project, over- or under-sampling is not selected (‘sampling_on = 0’) as they are found

not to improve the performance of algorithmic models. After trying several algorithms, this

project uses the Gradient Boosting Trees algorithm for producing final outputs as it outperforms

others in precision and overall f1 scores). The Gradient Boosting Trees algorithm outperformed

the other models mainly because the algorithm works well in classification tasks for imbalanced

data.

Output Screen

Once the code set is run on a command prompt, it produces a progress report as illustrated below

in Figure 11. It shows (1) the numbers of rows and columns (for training and test data) and (2)

class counts (for training data) in loaded data. It also reports whether sampling is chosen and

whether an output file is created. Note that the numbers shown in the screenshot are different

from those reported for this project.

Figure 11: Example of Code Implementation Output Screen

Output File

Once the execution of the code set is completed, an output file with a CSV file extension is

created and saved on the folder where the code set is located. Figure 12 shows part of the output

file as an example.

Technical Report: MRDRC Project UM21-14

13

Figure 12: Example of Output File

In the file, an instance (row) is assigned probability scores to refer to each of three classes (‘1,’

‘2,’ and ‘3’) and a label (‘pred’ column) decided by a machine learning model. As the code set

run for this example case does not include labels for test data, actual labels (‘act’ column) are not

shown. In the example file, the first instance (Row #2) is assigned ‘3’ for a label because its

probability score for the class ‘3’ is 0.981881.

Using the probability scores assigned to instances, this project filters instances that are highly

likely to refer to a specific class. Specifically, a total of 17,854 instances were assigned one of

three tags – Independent, Manager, and Owner – along with probability scores of an instance

belonging to each tag. Using the probability score, a total of 14,748 instances with a probability

score of 0.9 or above for ‘Independent’ or with a probability score of 0.6 or above for ‘Owner’

were filtered as accurately tagged instances because they are highly likely to be assigned correct

tags (on average 97.3% for Independent and 99.0% for Owner) when evaluated on 10 random

subsets (20% of 4,500 instances) of hand-coded labeled data used for training models. The

probability score thresholds are chosen by trying different probability scores and comparing

accuracies of correct tag assignments. The remaining instances are assigned under manual

inspection and correction by two human coders before the data are able to be used for analysis.

Evaluating Performance

Technical Report: MRDRC Project UM21-14

14

One of the code sets (CNARS_training.py) has a function to be used to evaluate how well an

algorithmic model performs in assigning classes to instances. Figure 13 shows the code section

for loading data in the CNARS_traing.py file.

Figure 13: Code Section for Splitting Data in CNARS_training.py

Unlike the CNARS_main.py file in which separate training and test files are required, the

load_data function here divides the loaded data into two subsets: training and test sets. The ratio

between training and test sets can be set by users. Following the common practice in machine

learning research, the test set size for this project is set to be 0.2 (‘test_size = 0.2’; 20% of the

loaded data).

The Execution Command in CNARS_training.py is shown in Figure 14. Unlike the

CNARS_main.py, it does not require a test file as a training file as the input file (input_file =

“data_training.csv”) is split into training and test sets in the data loading step (→ Figure 13).

Figure 14: Code Section for Execution Command in CNARS_training.py

Technical Report: MRDRC Project UM21-14

15

Note that the evaluation option is turned on (‘eval_on’ = 1). Once the Execution Command is run

and completed, it produces an output screen as shown below in Figure 15. The screen reports

both the confusion matrix and the classification report.

Figure 15: Example of Code Implementation Output Screen for CNARS_training.py

The output file is different from that produced by running the CNARS_main.py file. As shown in

Figure 16 below, it contains actual (= true) labels for each instance in a test set. For example, the

instance in the fourth row is assigned ‘3’ (‘pred’ column) by a machine learning algorithm

because the probability score for the class ‘3’ is highest (0.500354). But the label should be ‘1’

(‘act’ column) according to the decision by human coders.

Technical Report: MRDRC Project UM21-14

16

Figure 16: Figure 12: Example of Output File by CNARS_taining.py

Code Maintenance and Update

The code set will be deposited on two code repositories (GitHub and FigShare) that are

accessible without restrictions. Acknowledgements of the project sponsor (MRDRC) with the

project number (UM21-14) and title (“What We Talk about When We Talk about Self-

Employment: Examining Self-Employment and the Transition to Retirement among Older

Adults in the United States”) will appear in the released code set. Users can report issues and

request modifications by leaving comments on GitHub. The code set will be maintained and

updated on a regular basis (every other month) for a year (until September 2022) and

intermittently after that. Any technical questions or suggestions for the code set will be directed

to Dr. Jinseok Kim (jinseokk@umich.edu).

Technical Report: MRDRC Project UM21-14

17

References

Berry, Michael W., & Castellanos, Malu (2004). Survey of text mining. Computing Reviews,

45(9), 548.

Boselli, Roberto, Cesarini, Mirko, Mercorio, Fabio, & Mezzanzanica, Mario (2018). Classifying

online job advertisements through machine learning. Future Generation Computer Systems, 86,

319-328.

Ikudo, Akina, Lane, Julia I., Staudt, Joseph, & Weinberg, Bruce A. (2019). Occupational

classifications: A machine learning approach. Journal of Economic and Social Measurement,

44(2-3), 57-87.

Lampos, Vasileios, Aletras, Nikolaos, Geyti, Jens K., Zou, Bin, & Cox, Ingemar J. (2016).

Inferring the socioeconomic status of social media users based on behaviour and language. Paper

presented at the European conference on information retrieval.

Mac Kim, Sunghwan, Xu, Qiongkai, Qu, Lizhen, Wan, Stephen, & Paris, Cécile. (2017).

Demographic inference on twitter using recursive neural networks. Paper presented at the

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics

(Volume 2: Short Papers).

Preoţiuc-Pietro, Daniel, Lampos, Vasileios, & Aletras, Nikolaos. (2015). An analysis of the user

occupational class through Twitter content. Paper presented at the Proceedings of the 53rd

Annual Meeting of the Association for Computational Linguistics and the 7th International Joint

Conference on Natural Language Processing (Volume 1: Long Papers).

Preoţiuc-Pietro, Daniel, & Ungar, Lyle. (2018). User-level race and ethnicity predictors from

twitter text. Paper presented at the Proceedings of the 27th International Conference on

Computational Linguistics.

