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A TOPOLOGICAL STUDY OF THE LEVEL CURVES OF HARMONIC FUNCTIONS

INTRODUCTION

It is known that the level curves of any function f(x,y) which is 

harmonic in a simply connected domain form a curve family which is regular 

( locally homeomorphic to parallel lines) in the neighborhood of every point, 

w. th the exception at most of an isolated set of points at each of which the 

curve family has a singularity of the multiple saddle point type. The proof 

that these local properties are sufficient to characterize topologically the 

level curve families of such harmonic functions is the main'task of this 

paper. This generalizes some of the results of several papers by W. Karlen*  

in which curve families which were regular (without singularities) in the en

tire plane were considered. It was proved in these papers that ( 1) every such 

curve family is the level curve family of a harmonic function; (2) every such 

family is the solution family of a system of differential equations — = ffx v) dt \ >J / r 
dy 
dt = 5(x,y) ; and (?) the family can be decomposed into the sum of a denumerable 

collection of non-overlapping subfamilies each homeomorphic to the parallel 

lines of a half-plane. These results are all extended in this paper to the

* A detailed bibliography of papers referred to in the introduction 
and tne body of the text is appended. Roman numerals in brackets refer to the 
bibliography.
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more general type of curve family with isolated branch points (i.e., multiple 

saddle points).

Section 1.0 is devoted to enumerating, without proof, some of the 

more important properties of curve families which are regular in some region 

? of the oriented plane n. These theorems essentially stem from the work of 

Poincare and Bendixson on c irve families defined by a system of differential 

equations. Th it the theorems listed in this section are typological in charac

ter was shown by Kaplan, from which source they are quoted. In particular, 

neighborhoods of points and arcs, the existence of cross-sections, and the 

limit points in « of an open curve are discussed. Several important classical 

theorems are given; for example, Theorem 1.5-5 which states that interior to 

every closed curve is a singular point, and Theorem 1.4-4 which says that an 

open directed curve which is bounded but has no singular point as a limit point 

in one direction is asymptotic to a closed curve.

Finally, the important Theorem 1.6-1 due to Whitney is given. This 

theorem states that if the curve family is orientable it is always possible to 

find a function f(p,t) (p a point of P, t a real parameter) which may be inter

preted as defining a continuous flow of particles along the curves of the 

family. .

In Section 2.0 we restrict ourselves to curve families which are 

regular everywhere in it except for isolated singularities. This set of singu

larities is then shown to be both closed and denumerable. The notion of index 

of a regular curve family is defined and two theorems are quoted from 

Kerekjarto. The first of these (Theorem 1.2-1) gives the arithmetic relation 

between the sum of the indices at all singular points and the topological In

variants of the surface (with boundary) on which the curve family is assumed 
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to be defined; the second (Theorem 1.2-2) gives the index at a branch point in 

terms of its multiplicity. Figure 1 gives a few pictures of isolated singu

larities, and Figure 2 an example of a curve family with only isolated 

singularities.

In Section 5.0 we make our final restrictions on F, namely that it 

be regular in a region B consisting of all of n except for an isolated (de

numerable ; set of singular points B, at each of which the curve family has a 

singularity of the branch point type (Figure la). A series of theorems is 

then proved which makes it possible to divide the curves of F into two classes, 

the regular curves, which extend to infinity in each direction, and the branched 

curves, which have a branch point as limit point in at least one direction. It 

is shown that the collection of branched curves decomposes into subfamilies 

which are actually connected, one-dimensional complexes with branch points as 

vertices and branched curves as 1-cells; these subfamilies are called trees 

(Figures 5 and 4). The use of this term is justified by showing that not only 

does F contain no closed curves, but that there are also no polygons formed by 

branched curves, i.e., the trees contain no 1-cycles (Theorem 5.2-1).

At this point two important potential difficulties present them

selves, both concerned with the distribution of the branched curves as sub

sets of it. First, it must be shown that the individual trees are not patho

logically imbedded in and second, the question of how the collection of 

trees is distributed on n must be examined more closely, as it may be seen, for 

example,1 that the collection of trees crossing a single cross-section pq may be 

so large that the points of intersection with pq are dense on pq (see Figure 5). 

The first question is settled by establishing a numbering system for the curves 

of a tree (Theorem 5.4-1) which in a certain sense characterizes the tree
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(Theorem >.4-2), and. then noting that the tree may be mapped homeomorphically 

onto a model tree in the xy-plane made up of straight line segments and that, 

by virtue of a theorem of Adkisson and Maclane, the homeomorphism may be ex

tended to all of «. The second question is taken up in the next section.

Finally, we note that the complementary domains of a tree and their 

boundary curves (which will be called maximal chains) are discussed and a 

notation established for them. They play an important role in later sections, 

particularly 5.0.

Section 4.0 has as its purpose the generalization of the theorem of 

Kaplan which states that any family F, regular in a simply connected domain, 

may be given as the family of level curves of a continuous function without 

relative extrema. The desired generalization (Theorem 4.1-4) is achieved by 

making certain cuts in it extending from branch points to infinity along trees, 

i.e., oy removing certain chains of branched curves and their endpoints from 

each tree; this being done so as to leave a simply connected open subset R*  

of it in which F*,  the curves of F filling R*,  is regular without singularities 

(Figure 4, cuts indicated by heavy lines). Then, applying the theorem of 

niGntioned above, there must exist a function f* continuous on R*  and 

with the curves of F*  as level curves. It is then shown that this function 

may be extended to a function f defined on all of it, which has the curves of 

F as level curves and takes the same value on every curve of a given tree.

The cutting operation described above is made possible by Theorem 

4.1-1, which in effect settles the second possible difficulty mentioned above. 

This theorem states in essence that if we choose any point p of it and consider 

the closed concentric circular discs Kn of center p and radius n, then for any 

n, there are at most a finite number of trees which intersect k on more than
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one 0.1 their curves. This enables us to choose cuts so that they recede to 

infinity but still include every branch point.

In section 5.0, it is shown that there exists a decomposition of F 

into a denumerable collection of subfamilies, S(cx), each consisting of all 

curves crossing a cross-section P(a) which extends from a point on a curve 

C*,  called the initial curve of the subfamily, to infinity. Each set S(a) is 

homeomorphic as a curve family to the lines y = constant of the upper half

plane, with C*  mapping onto the line y - O and j ’(a) onto the x-axis, Two 

families S(aj and S(£) of the decomposition can overlap only on their initial 

curves. In the event that our curve family F is exactly the level curves of 

the real part of an analytic function, then this is actually a decomposition 

of the Riemann surface of the inverse function into fundamental domains. 

Figure 4 shows such a decomposition by indicating with dotted lines the cross

sect ions p(a).

Finally, in Section 6.0, we show that every curve family F has a 

complementary family G (Theorem 6.1-2) where we mean by a complementary family 

of F a curve family of the same type, with the same singularities and to the 

same multiplicity, and such that each of its curves is a cross-section of F. 
I

The method of proof is to first note the existence of a complementary family 

G*  of F*  in the region R*  (= « - the ’cuts'), which was demonstrated by Kaplan, 

and then to modify G*  near the cuts in such a way that when we replace the cuts 

we get a family G of the desired type. The existence of continuous functions 

f and g with the curves of these families as level curves enables us to define 

a map T of « into the complex w-plane as follows : T(p) = (u,v), where u = f(p) 

and v = g(p). This map carries the curves of F onto the lines u = constant 

and is light and interior; hence, by Stoilow, it is topologically equivalent to 
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an analytic function. Thus, there is a homeomorphism h from either ( 1) the 

domain consisting of the z-plane, or (2) the domain consisting of 

|z|< 1, onto « such that ^(z) = T |h( zj| is analytic. Then the level curves 

of 9^z) are homeomorphic under h to the family F, i.e., F is homeomorphic to 

the level curve family of a harmonic function. It also follows at once that F 

is homeomorphic to a family defined by a system of differential equations.

1 .0 GENERAL PROPERTIES OF REGULAR CURVE FAMILIES IN THE PLANE

This section contains the statement of basic definitions and theorems 

from W. Kaplan jivj and jÿlj which will be used in this paper. Proofs will be 

omitted. '

1.1 Curve Families Filling a Region

An open curve will mean a homeomorphic image of-an open interval, a 

closed curve a homeomorphic image of a circle, and a half-open curve will mean 

a homeomorphic image of a half-open interval. A curve will mean any one of 

these three. A family F of curves will be said to fill a subset R of the Eu

clidean plane it if every curve of F is in R and every point of R lies on one 

and only one curve of F. If U is a subset of R such that each curve C of F 

intersects U in a set UnC each of whose components is a curve, then we denote 

by F|uJ the curve family filling U whose curves are the components of C«U for 

all C in F. If the curve family F fills R and the curve family G fills S, 

then F and G will be called homeomorphic if there is a homeomorphism of R onto 

S such that the image of each curve in F is a curve in G. If p is a point of 

R, R filled by a curve family F, then Cp will denote the curve of F through p. 

i(R) will denote the interior of R.
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1.2 Regularity

' Henceforth, F will denote a curve family filling a subset R of n,

the oriented Euclidean plane. If RQ denotes the rectangle | x!^ l, jy^ 1, of 

the xy-plane, and the family of lines y = constant filling R , then F will 

•be said to be regular at a point p of R if there is a set U(p) to which p is 

interior (relative to R) and such that Fju(p); is homeomorphic to F'. F is 

then regular in R if F is regular at every point of R. A cross-section of F 

(through the point r) is an arc pq (to which r is interior), such that pq lies 

in a subset R' of R which is open relative to R, and such that each curve of 
F^R' meets pq at most once. An r-neighborhood of a point p of R will mean 

a set U(p) which (1) contains p, (2) is open relative to R, (5) whose closure 

U(p) lies in R, and is moreover such that (k) f|Ü(p^ is homeomorphic to the 

family filling the rectangle Rq (above) of the xy-plane in such a way that 

the inverse images of the lines |x| = 1 are cross-sections.

Theorem 1.2-1: If a family F fills an open region R and is regular 

in R, then each curve of F is either open or closed in «. ! IV, 1^

Theorem 1.2-2: If a family F fills any region R and is regular in R, 

then every point p of R has an arbitrarily small r-neighborhood U(p), and there 

is a cross-section pq with p as endpoint. If p is in the interior of R, then

there is a cross-section through p. Moreover if st is any arc lying on a curve

C of F, then there is, within any €-neighborhood U, (st), an r-neighborhood

containing st. VI, I and IV,8!

Theorem 1.2-5: Let R = R,UR„ where F R
" 1 ■" "" x ci — --—

y ! and F^R^ are 'both defined.

If p is an interior point of R and F R^j and F^R^ are both regular at p, then

F is regular at p.
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1.5 The S-Families

By a homeomorphism y’ = f(y) defined for 0^y<2, and with 

f(O)<f(l) = l<f(2), points (0,y) on the line segment x = 0, 05y^2, can be 

identified with points (1,y') on the line x = 1. With this identification 

made, the rectangle O^xCl, 0^y$2 plus the points (l,y ' ) for O^y'Cf(O) 

and f(2)<y’^2 becomes homeomorphic to a region G of n and the lines, y = 

constant, filling the rectangle become a curve family F^ filling G. Any curve 

family homeomorphic to F^ i(G) , where 1(G) denotes the interior of G, is 

called an open s-family. Any curve family homeomorphic to F1|i(G)nG*J  where

G*  is the set of images of points (x,y) of the rectangle with y^l, will be 

called a half-open s-family.

Theorem 1.5-1: Let F be a regular curve family filling the set R of

n. Let C be a closed curve of F such that F is regular at every point of C.

If C is in the interior of R, then there is a set R such that F R^j has 0 as

an element and is an open s-family. If C is in R-i(R), then there is a set Rq 

such that has C as an element and is a half-open s-family. VI, ill?

1.4 The Sets L(C+) and L(C-)

If C is any open curve in F and it has been given a direction, then 

by a positive (negative) limit point of C will be meant any point q which is 

the limit of a sequence pn = f(t^), where C is the image of Oct <1 under f 

and tn-*l  (tn-^0) . The set of all positive (negative) limit points of the 

directed curve C will be denoted by L(C+) (by L(C-)). L(C) is defined by 

L(C) = L(C+) UL(C-). Clearly, L(C)DC is empty since C is homeomorphic to 

0 < t < 1.

Theorem 1.4-1: If C Is an element of a regular curve family F, and

L(C+) contains a closed curve D of F, then L(C+) = D.
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Theorem 1.4-2: If C is an element of a regular curve family F and

if L(C+) = D, a closed curve of F, then to every point p of C corresponds an

€ -neighborhood, U(p), such that every curve of F crossing (p) has D as 

its limiting curve in (at least) one direction. iv, loi
Theorem 1.4-5: If F is a regular curve family filling R and p is in

R and, moreover, in L(C+) for some curve C of F, then every point of the curve

DP of F through p is in L(C+). IV, 7 J

Theorem 1.4-4: If C is a directed open curve of F which is bounded

in the positive direction, but has no boundary point of R as positlve limit

point, then L(C+) contains (and hence is equal to) a closed curve of F.

The above theorems still hold if ve replace L(C+) by L(C-).

Let the curve C of F meet the cross-section pq at

interior to pq. Denote by (tu)and (tu)g respectively the

determined by t and

intersect only at t

tains neither p nor

IV, 11 I

points t and u

arcs on pq and C

u and moreover assume t and u taken so that these arcs

and u, hence forming a simple closed curve K. If K con-

q in its interior, it is called a bay.

Theorem 1.5-1: If C is a closed curve of a regular curve family

F, and D is a curve of F such that L(D+) = C = L(D-), then an arc of D forms

part of a bay ip F. The bay is interior to C if, and only if, D is.

Theorem 1.5-2: Interior to a bay of a regular curve family F filling

R there is a boundary point of R. IV, 121

Theorem 1.5-3= Let C be a closed curve of a regular curve family F

filling R. Then interior to C there is a boundary point of R.

1.5 Bays
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1.6 Orientable Regular Families

A regular curve family F filling the open region R is said to be 

orientable if it is possible to assign a direction to each curve of F in such 

a fashion that for each point p of R there is an r-neighborhood in which the 

arcs are all similarly directed. Whitney Qtvj has proved the following 

theorem:

Theorem 1.6-1: If F is orientable and fills R, there is a function 

f(p,t) defined for each p in R and t in -oo < t < poo, and simultaneously con

tinuous in both variables, which assigns to (p,t ) the unique point q = f(p,t) 

in R lying on the curve c through p. f(p,0) - p and f(p,t) moves continuously 

in the positive (negative) direction on C as t increases (decreases). If C is 

an open curve, then for p fixed and on C, f (p,t) is a homeomorphism of 

-co < t < co onto C. '

2.0 CURVE FAMILIES WITH ISOLATED SINGULARITIES

2.1 Isolated Singularities

By an isolated singularity of a regular curve family filling a region 

B will be meant any isolated boundary point b of R, i. e., there is a neighbor

hood of b which contains only the point b of n - R. From this point on ve 

will only' deal with families F which are regular in the entire plane except 

for isolated singularities. In P VIJ, W. Kaplan has completely classified the 

structure of such a family in any neighborhood of an isolated singular point 

(containing no other singular point).

Theorem 2.1-1: If the curve family F fills the region R consisting 

of the entire plane it except for isolated singular points, and F is regular in 
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B, then the set of singularities is closed in n.

Proof: Let S(B) = « - B denote the set of singular points. Suppose 

that plea limit point of S(R), then p is not in 2(B) since the points of 

this set are isolated from each other. We shall also prove p cannot be a 

regular point whence it follows that S(B) has no limit points and is therefore 

closed. Now, corresponding to any regular point p, there is a set ü(p), to 

which p is interior relative to B, and a homeomorphism f of U onto carrying 
fHj onto (Section 1.2). It follows that either f(p) is interior to R , or

that if ^p) is on an edge of Ro, then the inverse image of the entire edge is 

on the boundary of B, since p is an interior point of U relative to R. The 

first is impossible if p is to be a limit point of 3(B), and the second is im

possible if 2(B) is to be an isolated set of points.

Th-eorem g .1-2: The singularities of the family F above are 

denumerable.

Proof: Any non-denumerable subset of « must have a point of ac- 
y 

cumulation which can certainly not be an isolated point.

2.2 index "

Following the definition given in Kerekjarto, QlX , p. 251 ff., we 

define the index of an isolated singularity on a surface as follows : Let K 

be any simple closed curve containing the isolated singularity b but no other 

singularities in its interior and let U , . ., be a covering of K by r- 

nelghborhoods. Then, it is clear that we may replace K by a simple closed 
n

curve K' in (J and such that K' is a polygon composed of sides which are 
1 = 1 .

alternately (1) arcs of curves of F and (2) cross-sections of F. Every vertex 

of the polygon K' is the intersection of a cross-section and a curve of F; we 
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call it an internal vertex if the curve of F which forms the side at that ver

tex enters the interior of K' at the vertex and in the other case we call it 

an external vertex. If we denote the number of internal vertices by e and ex

ternal vertices by a then the index is p(b) = 1 - & - (see Figures la and 1b).

The following theorem due to Hamburger is proved in Kerekjarto, loc. cit.

Theorem 2.2-1: If 3" is a closed two-dimensional manifold (with boun

dary) of genus p and r boundary curves, and F is a curve family which is 

regular on $ except for isolated singularities b^ 1 = 1, . . ., n, then 

n .
y p(b^) = 2 - (2p + r) If 3" is orientable.
1=1 ■ 

n
y p(b.) = 2 - (p + r) if <3- Is non-orientable.
1=1 1

We also quote the following from the same source:

Theorem 2,2-2: If b is an isPlated singularity of a regular curve 

family F, and the number of sets L(C+) and L(C-) which equal b is k, then the 

index, p(b) = 1 - k/2. (See Figure la.)

1 '
5.0 CURVE FAMILIES WHOSE SINGULARITIES ABE BRANCH POINTS

5.1 Branch Points

If b is any boundary point of R, Rex, and F is a regular curve 

family filling R, and if b is such that there is a neighborhood U(b) for which 

F^U(b)-bJ is homeomorphic to the level curve family of the real part of 

f(z) = zn, nZ>l, under the homeomorphism g carrying U(b) onto |z|c1 with b 

going onto z = 0; then we say that b is a branch point of F, that n is the 

multiplicity of b, and that the neighborhood U(b) together with the 
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homeomorphism g is an admissible neighborhood (U, g) of b (see Figure la for a 

branch point of multiplicity 4). In the case of a branch point b of multipli

city n, then there are precisely 2n curves in F|ü which may be directed so 

that L(C+) = b. It follows that the multiplicity is independent of the choice 

of the neighborhood U. A branch point is clearly an isolated singularity of

F; hence, if F fills the entire plane except for branch points, Theorems 2.1-1 

and 2.1-2 will apply to F and R. Henceforth, this will be the only type of 

curve family considered; thus F will always mean a curve family regular in 

n - B where B is a set of branch points; and hence B is closed, discrete and 

denumerable, and R open. Such a family will be called a branched regular curve 

family filling n = RUB. ’

Theorem 3.1-1: The level curves of a function f(x,y) harmonic in a 

simply-connected domain are g. branched regular curve fanily filling the plane.

This theorem is well known and the proof will not be given. A de

tailed proof may be found in Morse jxij, pp. 6-^. Throughout most of this 

paper we will use the Euclidean plane « as a homeomorphic model for an onen 

simply-connected domain. It should be noted, however, that the converse of 

the above theorem, proved in Section 6.0, states that given a branched regular 

curve family F filling an open simply-connected domain, then there exists a 

function f(x,y) harmonic on the finite plane, or such a function harmonic on 

the unit circle, whose level curves are homeomorphic to F.

5.2 Chains and Polygons of Branched Curves

As remarked above, from this point on, only branched regular curve 

familes F filling the oriented plane, n, will be considered. The collection of 

branch points will be denoted by B and the region « - B, in which F is regular, 
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by R. We may assume the orientation in it yiven by a definite fixed homeo

morphism h of the xy-plane (or z-plane) onto n, and we will use only admissible 

and r-neighborhoods whose associated homeomorphism to the xy-plane is such that 

if we return to the neighbor box-, in it via h then the res citing homeomorphism 

of the neighborhood onto itself is orientation preserving.

We shall also assume that all the curves of F are directed, so that 

there shall be no ambiguity in the use of the symbols L(C4) and L(C-), al

though we shall at times find it convenient to redirect curves of F. If 

L(C) = 0, we call C a regular curve, and if t(C+) = bcB, 1 .e., a branch point, 

we shall say that C is a branched curve, branched at the positive end at b; we ■ 

also call b the positive endpoint of C in this case. Similarly if 

L(C-) = b ' &B. We call doubly-branched if both L(0+ ) and L(C - ) have endpoints, 

and half-branched if only one has. It will subsequently be shown that these 

are the only possibilities, 1.e., L(C+) = 0 or = b, a single branch point, 

(and similarly L(C-)), so we shall not give any name to the as yet possible 

type of curve which might have more than one point in L(C-i), (or L(C-)).

If bt.B the curves C which have b as endpoint together with their end

points are called the star of b, St(b); and without their endpoints, except b, 

the open star of b, open St(b). If b is of multiplicity n, then there are at 

most 2n curves in St(b); it will be shown later that there are exactly 2n, 1.e., 

that the two endpoints of a curve of F cannot coincide. It is useful to note 

that by virtue of this remark and the fact that B is denumerable there are at 

most a denumerable number of branched curves in F.

If C^,. . . Cn are n 52 distinct branched curves of F with their end

points, which may be so directed that LfC^) = b^ = L(Ci+1~), b^B and bj
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distinct for 1=1, . . ., n - 1, and if in addition neither L(C^~) nor L(C^+) 

is any of the b^'s, then we call . .0^ a simple polygon of branched

curves or a chain of branched curves accordinn; to whether or not there is a 

boEB such that L(C^-) = bQ = L(Cn+). A single curve will be called a chain if 

its endpoints do not coincide and will be shown below to always be a chain, 

i.e., as already remarked It will be shown that a curve cannot have two co

incident endpoints. In brief, the curves Cp . . . C , together with their 
n

endpoints, for n >1 will form a chain, if the setU Ch is homeomorphic to a 
r

closed line segment and a simple polygon ifis homeomorphic to a simple 

closed 'curve.

We shall call curves C, C’ clockwise adjacent if they may be directed 

so that L(C+) = b = L(C’beB of multiplicity n, and in the map of some ad

missible neighborhood on |z| cl they map onto the radii 9 = (l/n)n and © ' = 0, 

respectively, of the level curves of the real part of zn. Because of our re

strictions and conventions on orientation above this definition clearly is in

dependent of the neighborhood chosen, depending only on the orientation of it. 

C, C are a counterclockwise adjacent pair if C, C are a clockwise adjacent 

pair, and in either case we shall call them adjacent. A chain C,, . . . Cr is 

called an adjacent chain if C^, are clockwise adjacent for each 1 or if, 

for each 1, they are counterclockwise adjacent. We shall also consider in-

flnite chains of branched curves: j . . C^, . . . C_1,CQ,C1,

If this collection is such that for every k< m the curves C%, .

. Cj, . g .

C_ f orm a

chain, we shall call the collection an infinite chain, and every set Ck, . . Cm 

a subchain. If the collection has no first or last element we shall often 

call it doubly infinite and in the opposite case half infinite. An infinite
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chain will be called adjacent if every subchain is adjacent. (Figures 3 and 4

illustrate many of the terms defined above.)

Theorem A branched regular curve family F filling n can con-

talr. neither a closed curve nor a simple polygon of branched curves. (See

Firuru

Proof : We suppose that F does contain a closed curve or simple

polygon K. We define on the xy-plane a family F' filling the surface

X' as follows: (1) ve fill the annular domain

A1 with concentric circles and (2) we map K with its

interior onto A, x‘ so that the image K' of the curve K is
p

the circle x 2 = 1. F ' is regular and F ' is regular except for a

possible finite number of isolated singular points b^ b' lying interior

lying inside

lar point of

Any such singular point must be

K, or on K (if K is a polygon).

F*,  then in some neighborhood of

the image of a branch point of F

If b' lies on K’ and is a singu-

b’ there must be at least three

curves Cj, Co, which can be directed so that L(C^+) b', i.e., at least one

from the interior of K' . Hence the index p(b ' -1/2 by Theorem 2.2-2. If b'

is interior to K' and it is the image of a branch point of multiplicity n

then the index p(b’) = 1 again by Theorem 2.2-2. Now by Theorem

1.5-3 the family F' must contain at least one singularity hence the sum of the

to or on K’.

indices of F ' filling 3 -1/2, i.e., is negative. This, however, contra

diets Theorem 2.2-1, which says that the sum of the indices must be 1 = 2 

(2p+r) = 2 - (2.0 + 1) since the genus of 3" is 0 and it has 1 boundary curve.

Thus it is impossible for F to contain a closed curve or a simple polygon.

Theorem 3-2-2: A branched regular curve family F filling n can con-

tain no bays. (See Figure 6.)
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Proof; Suppose F contains a bay formed by the arc (tu)^on the cross

section pq and the arc (tu) on the curve C of F. We will let K denote the 
*

simple closed curve (tu)^u(tu)^ and ZD (K) its interior. Then p and q lie in 

the complementary domain to O (K), and we assert that F^ = F^K^ (K)J 

is a regular curve family except for possible isolated singularities in ZD(K) . 

It is clear that F is regular in (K) except at branch points, since Z)(K) 

is an open set of n. And at every point of K - (tu^jF is regular, since, if 

s is any such point, then a regular neighborhood U(s) in it - (tu) will furnish 

a regular neighborhood, U n [ku/)* , of s in Ff This is true since the 

image of this intersection under the homeomorphism of U(s) onto ^oin the xy-

plane will be the image y = 0 of C together with all of the rectangle to one

side of this line. Similarly, if s is any point of K - (tu) , we may choose 

an r-neighborhood of s in it - (tu),, such that the cross-section (tu) in the
1 

neighborhood maps on a line x = 0 of Bq ( IVj, Lemma p. 15c). The image of the 

intersection of this neighborhood with K^^K) is the line x = C plus all of 

the rectangle to one side of this line, which will clearly be an r-neighborhood

Finally, if we take an r-neighborhood of t or u such that (tu) maps on x = 0 

and t on the origin, so that C is the line y = 0, then the image of that part 

of this neighborhood in Ku(K) will be the part of R$ in one quadrant plus 

the part of the lines x = 0, y - 0 bounding it; again this is an r-neighborhood.

Now we map KUZ) (K) homeomorphically onto the right half of the 

circular disk B = px,y) | x2 + y2^ lj in such a way that (tu)1 maps onto the 

diameter x = 0. This maps F^ on a family F’ regular in B except for possible 

singularities in the interior. Reflecting B^ in the y-axis onto Ro, the right 

semi-circle, will give us a family F^, image of. F ’, regular in R^ (and on its' 
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boundary) except for possible branch points in its interior. Hence we have 

defined a family F, by F Ru = F ' and = F', regular in R except for

possible branch points, by Theorem 1.2-5. The family F contains at least two 

branch points, since by Theorem l.~-2, the bay must contain a singularity. The 

index at every such singular point is at most -1, but the sum of the indices 

must, as in the previous theorem, be + 1. Hence cur assumption that F con

tained a bay is contradictory.

Theorem 5.2-=: If L( O ) is bounded it consists, of a single branch 

point. (See Figure Va.)

Proof: First, we note that by virtue of Theorem 1.4-4, together with 

Theorem 5.2-1, every curve of F which is bounded in the positive direction must 

contain at least one branch poipt in L(C+). Second, note that L(C+) is bounded 

and closed, hence it can contain at most a finite number of branch points. 

Finally, if L(C-i) contains more than a single branch point, i.e., if L(C+) / 

bEB, then for each branch point p it contains, it must contain also at least 

two adjacent curves of St(p). This is clear if we examine the image of the 

admissible neighborhood of p, i.e., the level curve family of The image

of C cannot coincide with any of the 2n radial curves G = (k/n)T, k = 0, 1, . . 

., 2n, since p is not its endpoint; hence it must clearly Intersect the neigh

borhood an infinite number of times in at least one of the sectors between 

these radii, and therefore have positive limit points on the two radii bounding 

that sector; whence L(C+) contains the curves on which lie the inverse images 

of the two radii, i.e., two adjacent curves of St(p), by Theorem 1.4-5.

Thus, if we assume that L(C+) contains more than a single branch

point, then it must contain a certain finite collection of curves branched at 

these points, and hence a collection of chains. In this collection we will
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consider chains C^, . . . which are maximal in the sense that a chain is 

maximal il there is no longer chain in the collection containing it as a sub

chain. F or such a chain, the initial and final curves must each be half

branched, for if cither, say for example C^, were branched at each end, then 

(since there are no polygons in F), at the end not already linked to the chain, 

e.g., at the negative end, there would be a branch point, b = L(C* -), and in 

St(b) would be a curve C * in L(C+) adjacent to the end curve of the chain 

and yet which was not already in the chain. C could thus be added to the

chain to form a new and longer chain, C', C^, . . . . This is contrary to

the definition of maximal chain. For the i-th maximal chain we shall let 

denote the limit set of the unbranched end of an arbitrarily chosen but fixed 

end curve of the chain. Now number a subcollection of the maximal chains as 

follows: Choose any one of the chains as the first, then take any maximal 

chain of as the second and in general choose as the k-th chain any maximal 

chain of Clearly, L± must contain a maximal chain since it must just

as L(C+) contain a branch point together with other points of L(C+) and hence 

two adjacent curves, which can be extended to a maximal chain. Moreover, at 

any stage L± may not contain the i-th chain itself for then one of the end 

curves of the chain would be contained in its own limit set. Moreover, it

cannot contain any preceding chain for we have the sequence L(C+)

and again we get a curve contained in its own closure. By this process we 

soon exhaust all of the n branch points of L(C+), although on the assumption 

that L(C+) could contain more than a single branch point which we made ini

tially, the process set up above cannot terminate. Hence it is seen that our .

assumption cannot be true and that the theorem is correct.
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Theorem 3.2-4: An arc pg of R - n - B is a cross-section If and 

only if it meets each (finite) chain (Including one-element chains, i.e., 

curves) of F at most once. (See Figure Th.)

Proof: If pg meets each curve only once, it is by definition a 

cross-section.

Let K be either a single curve or a chain of curves of F and let pq 

be a cross-section which is assumed to meet K more than once. We may find 

points t, u on pq such that the arcs (tu^ and (tu)„ on K intersect only at t 

and u, since the two curves can intersect only a finite number of times on any 

closed arc on K, as a consequence of the definition of a cross-section plus the 

fact that for any curve C, L(C)nc = 0. We denote by K*  the simple closed 

curve (tu)^u(tu)^. By Theorem 5.2-5 together with the fact that the number of 

branched curves with endpoints in K' is finite, we can find a curve C passing 

through a point r interior to K’ and which leaves K' in both directions. Let 

m,n be the points on (tuh and on C on opposite sides of r at which C first 

leaves K’ . Then ( mn) on (tu^ and (mn)^ on C form a simple closed curve in

terior to K' and intersecting the boundary of K’ along ( mn ) ^ but at no other 

points. It follows that t and u are exterior to this simple closed curve which 

is therefore a bay, formed by the cross-section (tu^ and the curve C. This 

contradicts Theorem 5-2-2. Thus, it is necessary that a cross-section have only 

one point on each curve of F or chain of F.

Theorem 5■2-5: L(C+) is either empty or contains a single branch

point.

Proof: We have already, proved this theorem in the event that L(C+) 

is bounded, and we have also shown that if L(C+) contains more than a single 
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branch point, then it must contain at least two curves adjacent at that branch 

point. From this we can conclude that if the theorem is untrue, then L(C+) 

must contain a regular point p. Consider the image in of an r-neighborhood 

of p. Let be a sequence of points approaching (0,0), the image of p.

These clearly lie on an infinite number of different lines y = yn, each of 

whic^ is an image of an arc of C. Hence C crosses any cross-section through 

p an infinite number of times, which contradicts Theorem 3*2-4.

5.3 Trees

In this section we define an equivalence relation which decomposes 

the oriented plane, n, into a collection of disjoint closed sets, each of which 

is a sum of curves of F and points of B, and each of which is a topological 

tree of a certain type which we define below:

Definition: Let the closed set T of the oriented plane be decom

posable into the sum of an at most denumerable collection of subsets C^, each 

closed in «, and satisfying the four following conditions:

(1) Each set is the homeomorphic image of either a closed, half

open, or open line segment (whence we will refer to it as a curve).

(2) Each set Cp has at most an endpoint in common with any Cj, 

1 / j; and if we denote by St(b) the collection of all curves with b as end

point, then St(b) consists of a finite even number of curves 4.

(3) There is a unique finite chain c(C^,Cj) = (C^,C^^, .

from Ci to (% for every 1,j; i.e., each curve of the chain having an 

* Clk'V 

endpoint in

common with the preceding curve as in the definitions of 3-2.

(4) The sets open 3t(b), consisting of the curves of St(b) without

their endpoints opposite b, and open Cp, consisting of without its endpoints, 
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are both open sets in T (as a subspace of it).

Then we say that T is a tree. (See Figure 8.) Our use 

of this term is much less general than is usual, but since we consider only 

this specialized type of tree throughout, there should be no confusion in the 

use of the term.

The decomposition of any tree T into sets Ch is unique quite clearly, 

except for the numbering, and therefore we may speak without ambiguity of the 

curves of T and the endpoints of curves (or, i.e., branch points) of T. Note 

that a tree is connected and, in fact, arcwise connected by (5) and that by the 

uniqueness of the chains of (5) there can be no closed curve in T. Condition 

(4) plus the fact that T is closed in -rt is equivalent to the following state

ment: If (pn) is any sequence of points of T and pn->peit, then peT and all the 

points of p^ after some N will lie either on a single curve of T or on St(p) 

depending on whether p is not or is an endpoint of some curve of T. In the 

language of combinatorial topology each tree, as described above, is a locally- 

finite, connected, one-dimensional complex containing no one-cycles. In order 

to exhibit this, it would be necessary to introduce arbitrarily an infinite 

number of vertices tending to infinity on each curve of the tree homeomorphic 

to a half-open line segment. Once this is done, the statement is clearly true.

It is clear that any regular curve C of a curve family F is a tree 

with the decomposition being 0^ = C. Now, among the elements of our family 

F we define the relation joins as follows: C is said to Join C' if and only 

If there is a finite chain c(C,C') of curves of F from C to C'. If we add to 

this definition that every curve joins itself, then this is easily shown to be 

an equivalence relation on the curves of F. We denote by Tc the equivalence 

class of C, including with each curve its endpoint, i.e., Tc is the set of all 
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curves of F which Join C together- with their endpoints. These equivalence 

classes are disjoint sets and will be shown below to be trees in the sense of 

our definition.

Theorem 3-5-1: An arc pq on n is a-cross-section of F if and only if 

it lies entirely in B = n - B and has at most one point of intersection with 

each set Tg. '

Proof: If pq has only one point in common with each set T^, since Tc 

is itself a sum of curves of F with their endpoints, then it will have at most 

one point in common with each curve of F and hence be a cross-section by 

definition.

On the other hand, by Theorem 3-2-4, it is necessary that pq meet any 

set Tc at most once if it is a cross-section, since if pq met Tc at points r,s, 

then either Cr,Cg are the same curve or else there is a chain c(Cr,Cg) either 

of which is impossible by that theorem.

Theorem 3-3-2: Each set Tp of a branched regular curve family F is a 

tree in the sense of our definition.

. Proof: In the event that C is a regular curve the theorem is trivial

since Tc = C, as already noted. Now let contain a singular curve, then it 

follows that it contains only such and at most a countable number, since there 

are at most a countable number of singular curves in F. Each curve of F, to

gether with its endpoints, will constitute a curve C± of the decomposition of 

Tq. Each such set is closed in it, since we include endpoints, and is homeo

morphic to either a closed or half-open segment, the latter if the curve ex

tends to infinity in one direction. Thus (1) is satisfied. Condition (2) is, 

however, also satisfied since each set has at most an endpoint in common 

with any set Cj, i / j, and, if b is any endpoint, then St(b) contains at least 
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four curves and always an even number, 2n = twice the multiplicity of b as a 

branch point. Likewise (5) is satisfied; i.e., the existence of a'chain 

c(C,C") from CcT^ to C'= Tc is part of the definition of T^, and the uniqueness 

is due to the fact that there can be no polygons of branched curves of F by 

Theorem 5.2-1. Finally, we prove simultaneously that condition (4) is satis

fied and that is closed as a subset of n. Let pn be any sequence of points 

of Tg with a point p of n as limit point. Now if p is a regular point of F, 

then we take an r-neighborhood U(p) and note that unless every pn lies on the 

same curve Cpk, which is necessarily Cp itself, we have a cross-section through

p which must cross more than once, gontrary to Theorem 5.5-1; and, if p is a 

branch point, then taking an admissible neighborhood of p, we observe that un

less we assume all the points pn, n>N, to lie on St(p) we arrive at the same 

contradictory conclusion by considering a cross-section from p into one of the 

sectors of the admissible neighborhood. Thus we conclude that the theorem 

must be true.

We return to a discussion of a tree T which conforms to our defini

tion, but is not necessarily a tree consisting of curves of a branched regular 

curve family. As previously noted, the decomposition of T into curves is 

unique, and hence we may refer without ambiguity to the curves and the branch 

points (or endpoints) of T. Since T is assumed to be imbedded in an oriented 

plane, a cyclic order is induced on the curves of St(b); hence our definitions 

of adjacent curves and adjacent chains and so on apply at once to the curves of

T. These concepts will be used below.

It is convenient at this point to give some attention to a theorem 

due to Adkisson and Maclane which states that if T,T' are two homeomorphic 

Peano continua lying on spheres S,S1 respectively, then a homeomorphism from
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T to T*  can be extended to a homeomorphism of S to S’ if and only if it pre

serves the relative sense of every pair of triods of T. By a triod, 

t = £a, f , of T is meant any set of three arcs in T which have only a

single point, called the vertex, in common. A homeomorphism is said to pre

serve the relative sense of triode of T if every two triode t ,t which have 

the same sense (i.e., both clockwise or both counterclockwise) on S are carried 

into two triode t^,t^ of T ' which have the same sense on S'. Let us denote by it 

the plane it plus the point oo and by T the tree T plus the point co . Assuming 

for the moment that the set T is a Feano continua, the theorem above is ap

plicable to our situation, and it is a direct consequence of this theorem that 

if T,T' are two homeomorphic trees on « and the xy-plane respectively, then 

any homeomorphism between them may be extended to a homeomorphism of the planes 

if and only if the relative sense of the curves of St(b^),St(bg) is preserved 

for every pair of branch points bj,bo of T. In order to show that this is a 

consequence of the theorem, it must be shown that the relative sense of every 

pair of triods of T is preserved if this is true for every triod of T. This 

follows from Theorem 6 of the same paper which states that two non-intersecting 

triods t^ = tg = ^2,02^ 2J have opposite sense on a sphere S if

and only if there exists on S a ©-graph whose vertices are the vertices of t^ 

and tg and whose three (non-intersecting) arcs contain respectively the legs

and dig, and po, and Yg . Now it is clear from condition (5) in the de

finition of a tree (the arcwise connectedness) that given any triod with vertex 

at 00, it is possible to find at least one triod with vertex at a branch point 

of T which does not intersect it but is, with it, part of a 6-graph. Finally, 

note that in a tree T the branch points and oo are the only possible vertices 

of triods. The conclusion is immediate that we may restate the theorem of
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Adkisson and Maclane, as we have above, for our own purpose here. It remains 

to prove that T is a Peano space. This will be done in ^.4 and also in that 

section a numbering system for the curves of T will be established by the use 

of which it becomes apparent that it is possible to map the plane it onto the 

xy-plane by a homeomorphism which carries T onto a tree T' consisting entirely 

of closed and half-open straight line segments (each curve with two endpoints 

becoming a single line segment, each curve with one endpoint a line segment 

plus a ray extending to œ ). This makes it clear that a tree as defined above 

actually coincides with our intuitive notion, and that no matter how badly 

'twisted' it may be it can actually be straightened cut, by a homeomorphism of 

the entire plane, into a rectilinear tree. Although this result is not com

pletely proved until Section 5.4, it will be established there independently 

of the remainder of this section, and it will be convenient to assume it at 

this point to be used in the theorems of this section. (See Figure 8.)

We now consider relations between a tree T and its complementary do

mains . In this connection it is convenient to consider a special class of 

adjacent chains (of curves of T) which we shall call maximal chains. An 

adjacent chain of curves of a tree is said to be maximal if it is not a sub

chain of any adjacent chain. It is an immediate consequence of our definitions 

that a chain of adjacent curves is maximal if and only if ( 1) it is doubly 

infinite, or (2) it is half infinite and its initial (or terminal) curve has 

only one endpoint, or (3) it is a finite chain and both its initial and terminal 

curves have each only one endpoint (i.e., a curve of a tree with only one end

point extends to infinity in the direction opposite to that with the endpoint).

* In fact, this may be done so that any particular given chain goes 
onto the x-axis.
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Moreover, since a tree is a closed subset of %, so also is every maximal chain 

a closed subset and is in fact an open curve extending to Infinity in each 

direction, thus dividing the plane into two Jordan domains.

Theorem If T is itself a single curve, then it is its only

maximal chain. When T contains more than one curve, then (1) each curve of T 

is contained in exactly two maximal chains which intersect only on this curve 

and (2) every branch point is contained in exactly 2n maximal chains whose only 

common point is the branch point itself. Conversely, the intersection of any 

two maximal chains can be empty, be a single branch point, or, at most a curve 

of the tree.

Proof: Let C^, . . . C^ be any clockwise adjacent chain of two or 

more curves. Now if has only one endpoint, then there is no curve C' ad

jacent to Cj such that C', Cp, . . . is a clockwise adjacent chain; but, if 

has two endpoints, then there is exactly one curve C' such that C', Cp . . . 

C^ is a clockwise adjacent chain. Similar remarks apply to C^. If neither 0^ 

nor Ck has more than a single endpoint, then the chain is maximal; in any 

other case we may extend the chain, one curve at a time added to the initial or 

final curve, until we arrive at endcurves which have only one endpoint, or, if 

we do not come to a curve with one endpoint, indefinitely. In any of these 

cases, the resulting chain is maximal since it is an open curve extending to 

infinity in both directions. Thus every such finite adjacent chain which is 

not already maximal can be extended to a unique maximal chain.

If we begin with a single curve, C with at least one endpoint b, then 

there is one curve clockwise adjacent to C in St(b) and one counterclockwise 

adjacent. Thus in St(b) we have 0,C' and C,C", unique adjacent chains containing 
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C, one clockwise and one counterclockwise. Hence, C is contained in just ex

actly two maximal chains, one of which contains C,C ', the other C,C" . Similarly, 

if b is a branch point, there are just 2n pairs of adjacent curves in St(b), 

whence b is contained in 2n maximal chains.

Now consider the converse. If two chains intersect, they surely 

must have a branch point b in common. If this is their only point of inter

section in open st(b), then they can intersect at no other point, since the 

tree is arcwise connected and can contain no closed polygon. If they Intersect 

along two curves of St(b), they must be adjacent curves since the chains are ad

jacent chains; hence by the preceding remarks on uniqueness they must coincide. 

This leaves only the possibility that they intersect along a single curve of 

Stfb), and is this case again, since there are no closed curves in the tree, 

they either have no other intersection or they coincide.

Theorem Every maximal chain of a tree T divides the plane into

two domains, whose complete boundary it is ; and one of these domains contains 

no points of T.

Proof: The first part of this theorem is just the Jordan curve 

theorem. The second part is clear intuitively, but not too easily stated. 

Using the Theorem of Adkisson and Maclane, we first map n onto the xy-plane so 

that the maximal chain becomes the x-axis and every curve of T a chain of line 

segments and moreover, so that the orientation is preserved, i.e., every clock

wise adjacent pair of n will still be clockwise adjacent on the xy-plane, and 

conversely. Now the contention is that all of the image of T, except what is 

on the x-axis, will lie in one half-plane, say the upper half-plane. If this 

is not the case, then there will be a point (u,v) of the upper half-plane and a
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point (x,y) of the lower half-plane, each in the image T' of T. Then, from 

C'(u,v), the image-curve containing ( u, v), there is a chain to any image-curve 

on the x-axis, i.e., on the given maximal chain. Let C be the last line seg

ment on the last curve (of some such chain) to lie in the upper half-plane 

(except for one endpoint); i.e., the endpoint p of C lies on the x-axis, but 

the rest of the curve lies in the upper half-plane. Similarly, we may choose 

a line segment C' of T' which lies in the lower half-plane except for one end

point q. Clearly, p and q are branch points. Now let C1# Co, Cz, C^ be curves 

of the maximal chain, i.e., line segments on the x-axis, numbered from left to 

right such that p is the common endpoint of the first pair, q of the second. 

Then necessarily, C^,Cg and C^C^ are each adjacent in the same sense, say 

clockwise. Then it is clear that if ^C^,C,C^, a triod with vertex p, are in 

counterclockwise order, then ^>C ',C^|, a triod with vertex q, will be in 

clockwise order and conversely, since we may easily form a Q-graph whose arcs 

contain the legs of these triods, and apply Theorem 6 ij (referred to above), 

which would be impossible if C^,Cg and C^,C^ are each counterclockwise adjacent 

and equally impossible if they were both clockwise adjacent. Thus all of T' 

must lie in the closed upper half-plane, or conversely; whence, the theorem is 

immediate.

Now let C be a directed curve of T, a tree consisting of more than 

one curve. Then we have seen that C determines exactly two maximal curves 

which we shall denote by C*  and C# with the following convention. As we move 

along C*  in the direction corresponding to the positive direction on C, then 

the complementary domain of C*  "to the right" (this can clearly be defined in a 

topologically invariant manner, by a method similar to that above) will contain 

no points of-T, and as we move along C# in the direction corresponding to the
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positive direction on C, the complementary domain "to the left" will contain no 

points of T. These domains will be denoted «0*̂2*  ) and respectively and

also by Z?*(3)  and Z)#(C) respectively. Now as proved above, C*  is the common 

boundary of two Jordan domains, and the notation for one of them was given 

above as Z) *(C*) , the other will be denoted by Z# (!*)  . Similarly, divides 

the plane into the domains and . When T is just a single curve

then C,C*  and are all the same curve, and Z? *( 2^ - 0 - 2)C*.  If we re

verse the direction on- C, we must replace by * throughout. (See Figure 9.)

if we remove open C from C* UC^ we get either two or four half-open

arcs extending to infinity from the endpoint(s) of C; two if C has one end

point, four if it has two. We lot d*(C+)  denote the are from the positive end

point of C lying on C*,  and d ^(34) the arc from the positive endpoint of C 

lying on CSimilarly, we use the notation /*(C-)  and J ^(2-) for the arcs at 

the other end point. We also let </(C+) stand for </*(O  ) plus ^^2^ ) > and </(□-) 

for ^(3 ) plus *̂(C-),  and finally, cf(C) for .

The collection of "all curves C*  and C# are then just the maximal 

chains of T. As already noted above each of these maximal chains bounds two 

domains, one of which contains no points of T. A converse to this also holds, 

i.e., denoting by « the extended plane and T the points of T plus the point at 

infinity, we have : .

Theorem 5-5-5: If T is a tree of it, then n - T consists of an at 

most countable collection of Jordan domains, each bounded by a simple closed 

curve in T containing the point at infinity. The necessary and sufficient 

condition that a curve of T bound one of these domains is that it be a maximal 

chain of curves of T.
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Corollary 1: If T is a tree of a regular curve family F, then each 

complementary dorm, in is a sum of sets Tn of F. .

Corollary 2: The complementary domains, if infinite in number, tend 

uniformly to infinity with any sequence of their boundary points.

Proof : By the theorem quoted from at the beginning of this sec - 

tion, Tv may be mapped on the xy-plane so thet the image of T is rectilinear and 

even so that a given are (or chain) of T goes onto the x-axis. It is clear 

then that the complementary domains are Jordan domains. The number of open 

sets on the plane is countable, hence the number of complementary domains must 

be countable also. A boundary curve of a complementary domain must contain 

the point at infinity, since T contains no closed curves. Finally, it is 

clear that n may be mapped onto the xy-plane so that a given complementary do

main maps onto the upper half-plane and its boundary onto the x-axis. Thus 

each such boundary must be a maximal chain.

Corollary I follows from the fact that each set Tp is connected and 

disjoint from every other such set. If Corollary 2 were not true we would 

obtain an immediate contradiction to either property (4) of a tree or the fact 

that T is a closed subset of it.

}.4 A Numbering System for the Curves of a Tree

To facilitate further proofs it will be convenient to establish a 

system for numbering the curves of a tree of it. The numbering proceeds from an

arbitrarily chosen, directed curve C of T, which we shall call the base curve

of the tree. Using the orientation of the plane together with the existence

of a unique chain from the base curve C to each curve of T, we set up a 1-1

correspondence between curves of T and a collection of signed finite sequences,
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the particular collection depending on both T and C, the sign of the sequences 

depending only on the direction of C. (See Figure 8b.)

. To the curve C itself we assign, ambiguously, the sequences +0, and

we write C = C(+0). If C has a positive endpoint, we denote 11: by b(+0) and,

numbering in clockwise order, the curves of St b(+0) by c(+0) , C(+01), C(+02),
. . . , C +0u( +0 fj , where u(+0) is defined as the number of curves in St(b(+0))

less one, i.e., as twice the multiplicity of that branch point less one. We

then denote, If it exists, the endpoint of C(+Ok) opposite b(+0) by b(+Ok). We

follow exactly the same procedure at the other endpoint, if there is one, of

C(+0). This endpoint is denoted by b(-0) and the curves of St(b(-0)) are

numbered, again in the clockwise direction, C( -0)1 , C(-01), C( -02), . . .,
C £ou( -0)j . If the

chain c(C,G 1) from the case curve C to another curve G 1 of

T contains n curves we shall say that 01 is of order n with respect to C. The

process above then : Tas numbered every curve of T of order 1 or 2 by exactly one

finite sequence of one or two elements respectively (except for the ambiguity

in the numbering of C itself), Moreover, it assigns a unique sequence to the

endpoints of the curve, with the endpoint being numbered with t ie same number

às the curve of lowest order having it as endpoint. Two curves C,C' of the

same order will be clockwise adjacent (in that order) if the final integer of

the sequence of C is one less than that of the sequence for C'; and two curves

C, C' with C of lower order than C' will be clockwise adjacent 1: r the sequence

of C’ is that of C with a final integer I added to it. Finally , the chain from

the base curve to a curve C' consists of the curves whose numbering sequences

are successive "lower segments" of the sequence numbering C1, i .e., if a = Opg

• . • Pn numbers C', then — 0> — Opg, • • • ” Opg • • ' pn-l*

a = an = Opg -I 

C

’n-lpn number the curves of the chain from the base curve to
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Now if we assume that everything said above is true for every curve 

of order n, it is very simple to show that it may be extended in toto to the 

curves of order n + 1; i.e., let C! be any curve of T of order n + 1. Then C' 

is the terminal curve of a chain c(C,C') of n + 1 curves, all of which except 

C itself have already received their unique numbering, the next-to-last of them 

by a sequence a of n terms, which sequence also numbers the common endpoint 

b(a) of this curve and C‘. As before, we number the curves in St(b(a)) in 

clockwise order as |c(ooj , C(a,l), C(a,2), . . . C^,u(afj . In this process 

C' will receive a unique numbering, and the statements above will follow through. 

With the help of a little new terminology, we will express these facts 

in a theorem. As above, et, P, etc., will denote finite signed sequences of 

positive integers and a,k will be the sequence whose first n elements corre

spond to those of a, but whose final element is k; i.e., we adjoin one more 

element, k, to a. Given two collections of sequence, A, A*,  we denote by AuA*  

the collection of all signed sequences obtained by giving those in A positive 

sign and those in A*  negative. Using this notation we shall call a collection 

A of finite sequences admissible if:

(1) Every sequence has 0 as first element, positive integers for the 

other elements, and O is a sequence of A.

(2) a,kfA implies a,k-l?A if k / 1 and implies acA if k = 1.

( 5) For each at A there is defined an odd integer u(q) ^0 and 1 

such that if u(a)> 0 then a,l; a,2; . . . cr,u(a) are in A but 

not tn,u(a) + l; and, if u(a) = 0, then there is nc sequence of A 

with a as lower segment, i.e., of the form a,p ,p c. . .p , . 

(Note: If u(a) = 0 we call a a terminal sequence.)
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Theorem $.4-1: Given a tree T, a curve C of T, and a direction on C, 

then there exist two unique admissible collections of finite sequences, A,A*  

such that there is a 1-1 correspondence between the curves of T and the signed 

sequences AuA*  (except for +0 being assigned to C), and such that there is 

further a 1-1 correspondence between the endpoints of the curves of T and the 

signed sequences of the collection: AuA*  - ^ll terminal sequences] , these 

correspondences being as described above and having in particular the 

properties : ..

(1) If C(a) is any curve of T, then C(+0), C(a ), . . C(an_1), C(a) 

is the chain from the base curve to C(a).

(2) C(a,k) has the endpoint b(a) in common with the lower order 

curve C(a) and, if a, k is not a terminal sequence, the endpoint b(a,k) at the 

opposite end.

(5) C(a), C(p) of the same order n are clockwise [counterclockwise] 

adjacent if and only if cxn_1 = Pn-1 and a = an-1,k; p = Pn-1>k+l p = Pn-1#k-l]. 

C(a),C(fi) of different order are clockwise [counterclockwise] adjacent if and 

only if p = g,l [p = q,u(a)] . ’

It is obvious but tedious to prove that maximal chains, the sets 

tf*( C+),</^(C+) and so on are numbered by sequences with certain characteristic 

properties. We shall not develop this aspect, but will state one or two im

portant properties below:

‘ Theorem 5.4-2: Two trees T,T' of it, or a tree T of it and a tree T' of

the xy-plane, are homeomorphic under a homeomorphism which may be extended to 

all of n if and only if we may choose and direct a base curve from each so that 

the numberings of the two trees are then identical.
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Proof: If the two trees are homeomorphic under such a homeomorphism 

and on the same plane n so that orientation will be the same for each, or on 

the xy-plane, from which n takes its orientation, then it is trivial that for 

any directed curve C of T we may choose the homeomorph C' of C in T', and 

giving it the direction induced by C, and using C,C' as base curves, we will 

get precisely the same numbering for each tree.

t " On the other hand let T,T’ be two trees with identical numberings.

We first show that they are homeomorphic. We let f(a):C(a) '(a) be any 

homeomorphism of C(a) onto C'(^) such that b(an_1) maps onto b'(an-1), then 

f(a) coincides with fat b(ctn_^), the only point where their domains 

overlap. The map f:T-*T'  defined by f(x) = f(a)x, for a such that xeC(a), is 

1-1 and is continuous on each of a family of closed sets covering T. Now let 

xn be any sequence of points on T such that xn*̂x £T, then by property (4) of 

trees, for n^3xn will lie on Cx or St(x), the latter if x is a branch point. 

From the continuity of f on Cx and St(x) for every x£T, it follows that

. Hence, since xn was any sequence and x any point, f is continuous 

on T. It follows in the same manner that is continuous on T ' . Thus f is 

a homeomorphism from T to T'.

Now in view of the fact that for every branch point p of T, the sense 

in St (p) must be preserved by f as defined above, and in view of our earlier 

discussion of the theorem of Adkisson and Maclane, it remains only to show that 

T is a Peano continuum to complete the proof of this theorem, where

T = TuOocn = nuoo. First, it is clear that T is a Peano continuum: it is"con

nected, and also locally connected and locally compact due to the fact that open 

C and open St(p) are open sets in T. Moreover, T is closed in n, and on n, 

œ is a limit point of T but is also the only limit point of T, thus T is a
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closed, connected and hence a compact subset of it. Finally, T is locally 

connected, for a compact continuum cannot fail to be locally connected at a 

single point (Whyburn XVI, 12.3, p. 19). .

We now remark that this theorem makes it possible to construct a 

rectilinear model of any tree T on the xy-plane, and assures us that there will 

be a homeomorphism of it onto the xy-plane carrying T onto this model. The 

model is constructed by considering any numbering AvA*  of T, and, using line 

segments of length^1 as our elements, building up the model piece by piece: 

We begin with a base segment corresponding to the sequence +0, add segments 

corresponding to the 2nd order sequences, 3rd order, etc., each time moving 

further out from our base segment so that its distance from any n-th order seg

ment approaches infinity with n. In this process it is clearly possible to 

construct the model so that the image of any one particular chain is a straight 

line, e.g., the x-axis. •

3.5 Semi-r-nelghborhoods and Cross-sections

For an arc pq, lying on an adjacent chain of curves C^, . . . C , it 

is possible to get a serviceable analog of the r-neighborhood of an are on a 

regular curve (cf, Theorem 1.2-2). By suitably directing C^, we have both pq 

and C^, . . . Cn as arcs on C*,  the latter containing the former. We will de

fine an open seml-r-nelghborhood of pq as any open set U=Z>*(C*)  together with 

a homeomorphism g of Ü onto the rectangle of the xy-plane, where 

$1 = 0$ ij,. with g having the properties:

(1) g carries F U

(2) g"l(Xj) are cross-sections, where X^, 1 = 1,2 are, respectively,

onto the lines y = constant in B^

that part of the lines x = -1 and x = +1 in Rp
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(3) pq. 18 mapped into the set £(x,y) | y = o, -1< x < ij.

We shall finally call the set U(pc) = Uvg-1( £(x,0), -l^x^lj) a 

semi-r-neighborhood of pq. U(pq) contains no branch points except those on C*  

itself and lies entirely in °<9*(C*)u  c*,  which contains no points of except 

those on C*.  We shall find it convenient to refer to a semi-r-neighborhood of 

a single point p, by which we shall mean one side of a regular neighborhood of 

p if p is a regular point and one sector of an admissible neighborhood if p 

is a branch point.

Theorem 5.5-1: Any are pq on an adjacent chain of curves C^, . . Cn, 

—_ has an arbitrarily small semi-r-neighborhood (there exists a neighborhood 

contained in (pq) for any (>0) in the complementary domain of T of which

the maximal chain containing the given adjacent chain is the boundary.

Proof: We change the curve family F as follows : Let c± be directed

so that C*  contains the chain C^, . . . Cn. We leave F unchanged in <*>  *( C*),

the complementary domain of TC1 in which U is to lie; but we map the lines y 
(

constant of the lower half-plane, including the x-axis so thatonto C* U°Û#C*)

the x-axis is mapped onto C*.  Then by Theorem 1.2-5 this new family is regular 

in n and agrees with F in *(C*) . CJ is a regular curve of this new 

family; hence by Theorem 1.2-2, there is an arbitrarily small r-neighborhood of 

pq, call it V. Then U(pq) = Vn will be our desired semi-r-

neighborhood. .

Theorem 5.5-2: If a sequence of points qn on distinct curves Cn ap

proach the point p, where p is a regular point or a branch point, then there is 

a curve C which may be so directed that p lies on C*  and an infinite subsequence 

of pinj lies in . If p' is any other point on C*,  then there is a

sequence of points rm on the same curves Cm containing the qm such that rm->p'.
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Proof: Let T be the tree of F which contains p, then there are at 

most a finite number of complementary domains of T on whose boundary p lies, 

and since the qn lie on distinct curves, there must be a subsequence qm of 

these points lying in one of these complementary domains. The maximal chain 

which bounds this domain, caq, for some suitable directed C be given as -Z> *(C*) . 

Now let p1 be any other point on C* . We may take a semi-r-neighborhcod U(pp’) 

of pp’ in *(C*)  and, if f:U(pp'then the curves Cm containing qm map 

onto lines y = for m>M. If f(p’) = (x’,0), then the points rm = f’,k^) 

will be the desired sequence.

Theorem An arc pqr is a cross-section of F if and only if ( 1)

it contains no branch points, (2) one of the domains *( Cq), contains

22__theother29ljL__gT]d_JjlLj2q_and_q2Lf!^C!LeachL22^^

Proof: We first assume that the arc pqr is a cross-section through 

q. Then (1) and (5) follow by definition of cross-section. By the Lemma 

stated in ivj, p. 158, there is an r-neighborhood of q, V(q), such that the 

image of pqr in RQ is the y-axis. Every curve crossing V(q) crosses pqr; 

hence, no curve has more than one line y = constant as image in RQ. The point 

q itself maps on (0,0) and C$ on the x-axis; hence, V - Cq splits into two 

domains, one containing p and the other r. Moreover, one of these domains lies 

in Z>*(C q) and .the other in /)^(Cq) for q is a point on the common boundary of 

these two domains and hence every neighborhood of q contains points of each 

domain.

Now, if we assume that pqr is an are with the properties (1), (2) and 

(5), we may show that it is a cross-section by showing that it intersects any 

set Tc at most once. This is clear at once if we remember that a set Tc cannot 

have points in each of the domains Z) *(Cq)  and /).#(Cq) so that if pqr had more 
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than one point in common with Tq, each such common po^nt would have to lie in 

the same domain, i.e., both on pq, or both on qr. This is impossible, however, 

since both of these arcs are cross-sections. It follows that pqr is a cross

section.

The following corollary is immediate:

Corollary 1; If C,C' both intersect a cross-section pq, and each is 

directed to cross pq in the same direction, then eitherZ) *(C) aZ>*(C ') or 

Z)#O=Z)#c').
Corollary 2: If an arc is such that any point on it is interior to 

a_J3uba£c_jrfhinhJh^_a_cross-siect^^

Proof: Let pq be such an arc; then we may cover pq with a finite 

number of r-neighborhoods which overlap. Then, applying the theorem repeatedly 

a finite number of times, gives the result desired.

U.O THE FAMILY F AS THE LEVEL CURVES OF A CONTINUOUS FUNCTION

In this section it will be shown that there is a continuous function 

f(x,y) whose level curves are exactly the family F. The proof of this state

ment will depend on our ability to remove certain branched curves of F to

gether with their branch points so as to leave a subset R*  of the plane n, 

which is open connected, and simply connected and is such that F*  = is a

regular curve family filling R*.  It will then follow from iv]that there is a 

continuous function f*(x,y)  defined on R*  and having the family F*  as level 

curves. Finally, it is shown that f*(x,y)  may be extended to a continuous 

function on all of the plane with the curves of F as level curves. In this and 

the next section we will restrict the use of the term tree to those sets Tc 

containing singular curves.
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4.1 The Numbering of the Trees of F

Theorem 4.1-1: If K is any compact subset of n, then there are at 

most a finite number of distinct trees of F which intersect K on more than one 

curve,of the tree. Moreover, no more than a finite number of curves from any 

one tree can intersect K.

Proof: The second part of the theorem is an immediate consequence 

of the fact that any point p which is a limit of a sequence of points pn of the 

tree must be a point of the tree; and, in addition to this, for n^N, pn must 

lie in St(p) if p is a branch point, or on Cp if p is a regular point. If an 

infinite sequence of curves of a single tree intersected K, we could, by com

pactness of K, choose a sequence of points on distinct curves of this sequence 

which has a limit point, and hence could not conform to the requirements above 

for a convergent sequence of points on a tree.

We prove the first part of the theorem by assuming it false and ar

riving at a contradiction. Let (1 = 1, 2, . . .) be an infinite collection 

of trees, each intersecting the compact set K on two curves C^, . By com

pactness of K we may choose a sequence of the T4 's and a point p^£ nK to

gether with a point K in each T^ of the sequence such that there exists

p = llm p, and q = llm . By Theorem 3-5-2 we may assume p and q are each 
1—*oo  1 l-*oo  1

regular points and that all of the points pn lie in the same complementary do

main of the tree containing p and similarly with q. Moreover, it may be as

sumed that p and q are distinct, for otherwise, in an r-neighborhood of the 

point p = q we could easily find a cross-section intersecting both and 

for some 1. This is impossible by Theorem 3-3-1. It follows that p will have 

a semi-r-neighborhood U(p) containing an infinite subsequence of the p^'s and 

not intersecting a similar semi-r-neighborhood U(q). This infinite subsequence 
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will determine an infinite subsequence of the q^'s, which will itself have an 

infinite subsequence approaching q and lying entirely in the semi-r-neighborhood

U(q) of q. This is really a sub-subsequence of the original q^'s and we will 

renumber the original sequence so as to denote the sub-subsequence by q^,

1 = 1, 2, . . .. The subsequence of the p^'s determined by this sub-sequence 

jq^J will be denoted p^(i=l, 2, . . 1.e., we renumber the terms of the

original sequence). Then we have for all i: P1cU(p), q^eU(q) and p^q^T^K. 

(See Figure 11.)

Now there will exist in U(p) a cross-section V which contains three

points pi^, Pig, Pi5 from the sequence 

in U(q) containing points q, , q, , 
^1 ig

a corresponding cross-section

q^ from the sequence all pointÿ

so chosen that p, lies between pj and p^ on Y and similarly q. lies 
1 12

q^ and q^ on ¥*.  Then, denoting by Cj the chain c(C^ ,C^ ) in T^ , j 
13 J J J

2 , 3# ve may define the following three arcs, X^, X^^, Xi having only

between

1

their

endpoints

on

p< and q^ in common: 
x2 x2

cn plus the arc q^ q.

X< is
X1 

on Y'.

the arc (p^p^ ) on Y plus the arc

is similarly defined with I re-

placed by 5 in the subscripts above, and
3

finally X. is the arc p^ q. on c^
12 2 12 2

Two of these arcs, say X, ,X. , must form a simple closed curve F containing 
J1 J2

the third Xj in its interior. But this is impossible since each arc contains 

a branch point, in particular the are Xj^, thus enclosed in the interior (in

our example) would contain a branch point; and from this branch point issues a

chain of curves of T«_, all distinct from Xi , which must leave P at some point

r. This point r cannot be on Tj or Tj^ since two trees cannot Intersect, nor

can it be on Y or Y'since then this cross-section would have two points on the 

same tree, which is ruled out by Theorem 3.3-1. Hence, we conclude that our 

initial assumption is impossible and that the theorem must be true.
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This theorem will be used to give a method of numbering all non

trivial trees, i .e., trees containing singular curves. We choose any regular 

point p on x and let Kn designate the circle (with its interior) of center p 

and radius n. Now the number of trees cutting is, of course, denumerable

and we number them in any order as T^, T^, Tjy • • • &nd choose from each a 

curve C^, . respectively, which itself intersects Ky. By the

above theorem these choices of curves will be unique for all except a finite 

number of the trees, and for these is chosen at random from any one of the 

finite number of curves of the tree cutting Ky. Next we number the trees which 

intersect Kg not Ky as T^y, Tgg, Tg^, . . . etc., and let Cg^, Ogg, Cg^. . 

. . respectively be curves of these trees which themselves intersect K^. Pro

ceeding with this process we number the trees cutting Kn but not &n_y as T^y 

TnQ, Tn^, . . . etc., and choose from each curves C^, Cng, . . . cutting K^. 

This process will clearly number all the trees of F, and we choose the curves 

j as base curves of the trees,, hence deteminii^ within each tree T^j a num

bering of its curves by sets of finite sequences as described in 3 A.

Our method of numbering the trees guarantees that for m > n no tree inter

sects K^ and, moreover, for all n, there are at most a finite number of curves 

of the set U (Th, - (L .) which intersect K . For future reference we shall 
m, j ma n %

call the above method of numbering trees a standard numbering of the trees of F.

With these preliminaries we are able to define the curves which we 

are going to remove from each tree in order to make the region R = n - B simply 

connected. Let T^j

ing given above; and thus with numbering sequences Let b(a) be any

branch point of this tree with sequence a = eOk^ . . . ^n_q^n with k& l (where 

be any tree (with base curve C..) from the X J
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e denotes the sign + or -). Any such b(a) will be called the initial point of 

a cut, and the cut, X(b), will consist of all curves C(a,l), C(a,l,l), 

C(a,1,1,1), . . . and so on ad infinitum, or until a terminal sequence a,1,1 . 

. ., 1 is reached, i.e., each cut is a chain of adjacent curves extending 

from b(a) to infinity. We assume endpoints of the curves included, of course, 

as_part of the cut; thus each cut is of the form d*  C(a)+j or the

latter if b(a) is the positive endpoint of C(a) and the former if it is the 

negative (see heavy lines in Figure 4). Each X(b) is, again, an arc from b(aj 

to infinity and includes all branch points numbered by sequences of the form 

a,1,1 . . ., 1. It is clear that every branch point of the tree is on one and 

only one cut X(b) and that no two cuts intersect at any point. We denote the 

collection of all half-open arcs X(b) on T by ¥, and by 3 the sum of the sets 

T over all the trees of F. The set R*  = R - J contains no branch points and is 

a union of curves of F. Let F*  denote the family F R*  filling R*.

Theorem 4.1-2: R*  is an open, arcwise connected, and simply con

nected domain, and F*  is regular in R*.

Proof: Let q be any point of R*  and let Kn be the first circle with 

center at p (in the standard numbering scheme) which contains q in its interior. 

Now consider how much of Kn is removed when 27 is subtracted from K. None of 

the base curves are in 3 since none of them are in a set X(b) for these 

curves are assigned the sequence +0 in the numbering, which sequence is not of 

the form a, 1, . . ., 1. And by Theorem 4.1-1 there can then be at most a finite 

number of other curves (than base curves) of any T-5 in KL. Hence there is 

surely an r-neighborhood of q in Kn - 3 and R*  is therefore open and F*  regular. 

We wish to show that R*  is arcwise connected. Since every point has

an r-neighborhood in R*,  it is clear that R*  is locally-connected. Hence, if it
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is connected, it is arcwise connected. Now since each cut X(b) is an arc,

extending from a point b to infinity, the set 0 ce on the extended plane it

can clearly be deformed continuously along itself to a single point, the point

at infinity. It follows from Eilenberg Theorem 6, p. 77, that R*  is

connected.

Finally, if K is any closed curve in R*  containing a point q. of 3 # 

then q lies on a cut X(b) which extends to infinity from b and hence must 

intersect K, contrary to the assumption that K is in R*.  Thus R*  is simply 

connected.

Theorem 4.1-3: Let B'=B be the set of all initial points of cuts

X(b), then we may define a collection of disjoint, open sets 1 V^]btB'such 

that Vb=x(b) .

Proof: Referring to the closed circular discs of our standard

numbering of the trees of F, we have noted already that only a finite number 

of the cuts X(b) Intersect any Kn. We denote by B^ = J the finite subset 

of B' whose elements b^ are for j = 1, . . ., Jn those initial points of cuts

which intersect Kn but not Kn_j. Now, using the normality of ir we are able to

find disjoint open sets

We define V,(b^) as the
-L d

covering the disjoint closed sets X^

intersection of the so chosen open

= X(b^)nK1-

sets covering ^(b^)

with the interior of . Then we find disjoint open sets covering each of the 

closed sets Xo(b^) = X(b^ - 
c- J J L

open sets covering Xg(bj) do not

iCK^j > 1 = 1,2 and such, moreover, that the 

intersect N,. Finally, we define Vp(b.), 1 d
i = 1,2 as the intersections of these open sets with the interior of Kg. Then

the sets Vo(b^) and Vj_(b^)« V,. (b^) are non-intersecting open sets lying in the 

interior of and covering X(b'Hni(Ko), 1 = 1,2, for all b^’s in B^ or B,'.
<- J • u -
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This process is continued indefinitely, covering every intersection of a X(b) 

with a K^. Then, given any b$B' it will be in for some n, hence will be of 

the form b^, and the cut x(b^) with it as initial point is covered by 

V(bJ) = U V.(bJ).
i j=n J x

Theorem 4.1-4: Let F be a branched regular curve family filling the 

plane n. Then there exists a function f(p) such that :

(1) f(p) is defined and continuous for all p in n.

(2) for every real number k the locus f(p) = k consists of an at most 

countable infinite collection of trees (including regular curves) of F.

(;) in every neighborhood of any point p in n there are points q for 

which f(q)2>f(p) and points r for which f(r)<f(p).

proof: We assume a standard numbering of the non-trivial trees of F 

and that thus the cuts X(b) and the sets J and B*,  etc., are determined. This 

theorem was proved in ivjby W. Kaplan for curve families regular throughout 

an open, simply connected domain; thus we may assume that there is a function 

f*(p)  defined and continuous in B*  and with the properties above. We must 

show that this function can be extended to a function f(p) with properties 1-3 

above. The proof has three sections, A, B and C.

(A) First it is necessary to prove that, given any tree T of F, the

value of f*  is the same on each curve of T e., on all curves of T which

lie in B*.  Let C(+0) be the base curve of T in the numbering; we shall proceed

by induction on the order of the curves of T. If C(+0) has no endpoint, then it

is a regular curve, lies entirely in B* and the result is trivial. Assume it

has a positive endpoint b(+0) . Then C(+01) 

or T |b* , but the other curves of St(b(+O)) 

is in x(b(+0)) and hence not in B*

are all in T B*  . To prove that
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f*(p)  has the same value on each of these it is only necessary to prove that it 

has the same value on each pair of adjacent curves among them, for then the 

value of f*  on C(+02) is the same as that on C(+05) and so on until finally 

we have the value on c£ou( -0)] the same as that on C(+0). It is quite obvious 

that this must be so, however, for if C,C*  are adjacent curves of T R*  and 

p£C, qeC', then there is a semi-r-neighborhood U(pq) in R*;  and, if P €U is a 

sequence of points approaching p, then there is a sequence q^ECp^ with qnfU 

and qn approaching q. But, since qn?Cp^ we have f*(q n) = f*(p^)  and hence 

f*(q)  = lim f*(q_)  = lim f*(p_)  = f*(p).  This same procedure actually tells us 
n oo n->oo "

even more, i.e., that if C-^, . . . Cn is any chain of adjacent curves with both

Cp,CncR*,  then f*  must have the same value on Cp,Cn-

Now let C(a,k) be a curve of T|r* whose sequence is positive and of 

order n + 1, and assume that f*  has the same value on each curve of T 

numbered by a positive sequence of order n or less. The sequence a is of the 

form a = 0ko . . . k^^k ; and we consider two cases: (1) k^ / 1 and (2) k^ = 1; 

in either event k / 1 since C(a,k) is in R* . In case (1) b(a) is the initial 

point of a cut, hence C(a,1) is the only curve of St(b(a)) In the cut, and 

moreover, the St(b(a)) contains the curve C(a) of order n. It follows by 

precisely the same argument as above that f*  has the same value on each of the 

curves of St(b(a)) in R*  and in particular on C(a,k) as it has on the n-th order 

curve C(a) and hence that it has on C(+0). In case (2) both the curves C(c%) 

and C(q,1) of St(b(a)) are in a cut. But the curves C(^n_p,2), C(ctn_p,l) = C(a), 

and C(a,u(a)) form an adjacent chain with the first and last curves in R* . On 

the first curve f*  has the same value as on C(+0) since it is of order n, hence 

it has this value also on the last, C(ct,u(a)). Now, by going from adjacent 

curve to adjacent curve, we see that this, must be the value of f*  on each curve 
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of St(b(a)) in B*  and in particular on C(a,k). This completes the first step 

in the proof. .

(B) Next we define f(p) at every point of n as follows: f(p) = f(p)  

for p&R,  and f(p) = value of f  on T |r}  for peT. f(p) will then be con

*

* * *

tinuous at each point of R*  since R*  is an open subset of n and thus the ex

tension cannot affect the continuity of f in that domain. Now every point of 

7 = 71 - R*  lies on a cut X(b), which in turn lies in a neighborhood V(x(b) ) 

not containing points of any other cut. What must be shown is that f(p) is 

continuous at an arbitrary point q of an arbitrary cut >.(b) . Now let q be

any sequence of points approaching the point q of X(b). We shall denote by T 

the tree containing q; then since f(p) is constant on T we shall assume that 

each qfi lies on a distinct curve and none of them is in T. This involves no 

loss of generality since the result is trivial otherwise. Moreover, we may

I restrict ourselves to sequences lying in a single complementary domain of T, 

the reason being that any sequence qn, with ^^T can be decomposed into a 

finite number of such subsequences, containing all the terms of q^, but no two 

having a term in common, since the number of complementary domains of T con

taining q on their boundary is finite. Now, if for each of these subsequences 

we have f(qn^)->f(q), then f(qn)->f(q). Thus we need now to consider only a 

sequence q^q such that for some C*=q,  q^Z)*̂*)  for all n. C*  is then in T, 

and since no cut separates n, there is a curve C' on C*  which is in R*.  Let p 

be any point of'C and U(qp) a semi-r-neighborhood of qp in x)*(C*).  Then, by 

Theorem 3-5-2 there is in U a sequence pn~> p with Cp = Cq and hence f(Pn)=f(qn 

But p is in R*  and f(p) is continuous in R*,  therefore lim f(qn) = lim f(pn) = 

f(p). But this is exactly what is needed for p,q are both on T and hence 

f(p) = f(q)> so f is continuous at q.
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Property (2) of the theorem is trivial for f(p) since it is satisfied 

by f*  in R*  and we have added only a denumerable number of curves to the 

domain of f*  to get the domain of f.

(C) Finally we must prove property (5)» Le., that f(p) has no weak 

relative extrema. This is clearly equivalent to the following, at least for 

regular points : if p is a regular point, then f takes a different value on 

every curve of every r-nelghborhood of p, or again equivalently, is monotone on 

every cross-section. Since any arc pq on a curve C has an r-neighborhpod, this 

implies that a function satisfies property (5) at every point of a curve or no

point of a curve. As to branch points, we can show at once that the condition

is satisfied there, for there is always a curve of St(b) in R*, hence in any 

neighborhood of b we may find a point q of this curve and a neighborhood of

this point q inside that of b. Now f(q) = f(b) and in this neighborhood of q

there will be points q^^ at f is respectively <, >f(q), since we are in

R*,  where we know f to have property (5). Since q^Qg are in the given neigh

borhood of b, we have proved our contention.

Now we wish to show that if f has property (5) on every curve of 

St(b) except one, C, where b is any branch point, then f has property (5) on 
- 4.

C also. Let the curves of St(b) be numbered counterclockwise C = C^C^, . . . 

C2m' m the order of the branch point b. In U(b), an admissible neighbor

hood, we shall let s^ denote any arc into the sector bounded by C1,C1+1, such 

that s^ without b, its endpoint is a cross-section, e.g., in the image of U on 

Ite I cl we could take for s. radii into the respective sectors. Then we indl- I i i

cate by s^ that f increases as we move from b on s^, by s£ that f decreases. 

Clearly C j has property (5) if and only if implies s^ and implies s^. 

Hence if we have st, then we have by induction st for even J, and in particular 

s^, whence has property (3). .
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Nov let the curves of any cut X(b) be numbered . • beginning

with the initial curve and proceeding out from b. is the only curve of

St(b) not in B*  and hence it must have property (5). If the n-th curve Cn has 

property (5) then Cn+1 is the only curve of St(C^C^i) not having this pro

perty since the other curves (than Cn) are in R*,  thus Cn+^ also must satisfy 

the desired property. This proves by induction that every curve of every cut 

has property (5) and hence f(p) has the property for all points of it.

Corollary: The branched regular curve family F is orientable as a 

regular curve family in B = « - B.

Proof: Exactly as in W. Kaplan IvL Remark 2, p. 184-5.

5.0 DECOMPOSITION OF F INTO HALF-PARALLEL SUBFAMILIES

It is the purpose of this section to describe a decomposition of the 

curve family F into a sum of subsets, which overlap at most along their boun

daries, and such that each of them is homeomorphic as a curve family to the 

•lines y= k filling the upper half of the xy-plane.

5.1 Extended Cross-sections

Theorem 5.1-1: Let p be any regular point of n, Cp the curve of F 

through p, and let C be a curve containing a point q such that there is a 

cross-section pq. Then there will be a cross-section from p to an arbitrary 

point q’ of Tc if and only if q’&C*,  where C is directed so that pT^(C) • 

Moreover, if q’tC*  and U(qq’) is any semi-r-neighborhood of qq', we may choose 

the cross-section qq’ as follows : qq’ = qrq*  where gr lies on pq and rq’ is
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Proof: Suppose q' to lie on C*  and let U(qq’) be any semi-r- 

neighborhood of qq'. Now moving along pq from p the cross-section pq lies 

entirely inside U(qq’) from some point on, so we may choose some r on pq, 

with rq interior to U, letting prq now denote pq. We direct Cr so that 

prex) *(C r) and rqc^^(C^), which we can do by Theorem 5-4-5 since prq is a 

cross-section. We replace rq by a cross-section rq' in U which is found as 

follows : U is homeomorphic to a rectangle in the xy-plane by definition, 

and we join in the image of r to that of q*  by a straight line, whose in

verse image we take for rq’. Since the straight line is a cross-section of the 

lines y = k (image of F) rq’ will be also a cross-section, and will lie in the 

same domain ^^(Cr) as rq, since each cross the same curves in U. Hence, by 

Theorem 5.4-5, we know that prq’ is a cross-section.

It remains only to prove that if C1 is any curve of not on C*,  

then there is no cross-section to C’ from p. Now p lies in ^)*(C*)  and C1 in 

gj#(C*),  hence any such cross-section, if it existed, would have to cross C*  

and thus would have two points on Tc, contrary to the assumption that it is a 

cross-section.

Theorem 5.1-2: Let the trees of F be numbered as in Section 4, i.e., 

in a standard numbering, using the concentric circles Kn of center p and radius 

n; further, let the cuts Ç7 be removed from F, leaving F*  = F^f^ . Then, out

side every circle lies at least one curve of F*  which can be reached from £ 

by a cross-section lying in R*n.^* (Cn)- (See Figure 12.)

Proof: Denote by ÇcJ the collection of all curves in «Ô *( C^) which 

can be reached by a cross-section from p lying in R* n<Z)*(Cp) . We direct each 

curve of £cj so that ^^(O^ *̂(O^  . The existence of a cross-section from p 
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to qeC makes this possible, i.e., direct C so that Z)^(C)»pq. faj will cer

tainly not be empty since we assume p to be a regular point.

Now define on the curves of the positive real-valued function 

d(C) = GIB ^distance from x to p| . We have at once that C is outside if 

and only if d(C) >n. Also it is clear that <5 *(C )»,/)♦(C ' ) implies that 

d(C)<d(C'). To prove the theorem we must show that the numbers d(C) are un-

bounded. We assume that this is not so; then there is a least upper bound d’ 

of d(C) for C in ^cj. To show that this is impossible we choose N >d1 and con

sider intersections of curves of joj with K??. Every curve of fc) will then 

intersect if d(C) is bounded by d', although by Theorem 4.1-1 only a finite 

number of these curves lie completely inside K^. All but a finite number of

curves of fcj in fact, not only have both endpoints outside K^, but contain

within themselves the only intersection of

infinite sequence of curves Cm of fCJ such 

and contains neither endpoint of C .

with K^. Hence, we may choose an 

that d(Cm)-*d-  and

Having chosen such a sequence we

find a subsequence q^ of points from Cm which approach a regular point q as a 

limit and all lie on one side of the image of Cq in an r-neighborhood U(q) 

(i.e., in the upper or lower half of BQ, the image of U(q)). This may be done

as follows: First, by compactness of we may find (a subsequence of

the m’s) which converges to some point q* . Second, if q' is a regular point, 

we let q = q' and choose a subsequence q^ of the qm’s all of whose points lie 

in one side only of U(q). Third, if q’ is a branch point, V(q') an admissible 

neighborhood of a 1, then an infinite subsequence of the q^'s will lie in one 

sector of V. If q is any regular point on either of the adjacent curves boun

ding this sector there will be a sequence of points q^ on the same curves as 

the sequence approaching q' and such that q^-*q.  The q*  will lie on the same
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side of 0^ in any r-neighborhood of q and is thus the desired sequence. 

Finally, we may choose a subsequence of which we will denote by rQ such 

that if qs is a cross-section from q to s in U(q), where s lies on the same 

side of U(q) as the q^, then the intersections C^qs tend monotonely to q on 

qa, (Cn denoting the curve on which rn lies). Thus we have d(Cn)^d« monotonely 

since *̂(C n) »^ *(  Cn+1)a for all n. We direct Cq so that <) 2>*(C q).

Now choose in ^>#(Cq) a semi-r-neighborhood W of qq" where q" is any 

point of which is in R*.  W is chosen so that its interior lies in R*,  which 

is possible by Theorem 4.1-4. Now for n^, rn will lie in W and since we 

have 'd>*(C nQ)s C*  and we may extend the cross-section

to a cross-section pr^q"cR^/)*(Cp)  by merely adding to it the 

cross-section r^q" in *(C nQ) which is the inverse image of the straight 

line joining the images of r^ and q" in Rq, the image of W. This will be a 

cross-section by Theorem 5.4-5. Now since q” is a regular point of a curve 

Cq"' if "G take its direction such that C#„ = Cj , we have Z>#(Cr„>Cp and = Cq; 

and for all n, whence d(Cq„) ^d‘. Now it is easy, however,

by taking an r-neighborhood of q" (which will lie in R*)  to extend prn q" to a 

slightly larger cross-section pr^q"s, and since Cg<<)*(C q"), we have at once . 

that x)*(C q")3/)*(Cg),  where Cs is directed as a curve of [cj. Hence 

d(Cs) > d(Cq«) >d'. This is contrary to the assumption that d' is a bound of 

d(C). Hence-d(C) is unbounded, which is what was to be proved.

By an extended cross-section, we shall mean any open or half-open are 

in R = « - B which meets each curve of F at most once. An extended cross

section is said to tend properly to infinity in R in a given direction on it, 

if it tends to infinity in that direction in such a way that the curves meeting 

it tend uniformly to infinity with their intersection points with the cross-
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section. We shall also speak of an extended cross-section in R*  which will 

be an extended cross-section as above, and lie entirely in R*  = « - J, i.e., 

it meets only curves of F*.

Theorem 5.1-5 : If p is any regular point on a curve C of F,  then 

there is an extended cross-section in R  from p, which lies in x)(Cp)  and 

tends properly to infinity.

*

* *

Proof: We consider a curve C in F*  and p any point on it. As before

will denote a circle with center at p and radius n; and for any point s we

shall let Qn(s) denote a circle with center at s and radius so chosen that

there

contains Kn. Now we choose a regular curve 

is a cross-section pq^ in %) *(Cp)aR*  from p to

in X)*(Cp)"R*  for which 

q^ on Cj. Direct so

that 4) *(C  •) »/)*(  cp and choose in *̂(C 1)nR*  a curve C2 outside of and

such that a cross-section q^qg in 2)*(C^)*R*  exists with q^ on C^. Having 

chosen Cn and q^EC^ in this manner, we choose for any regular curve out

side of for which there is a cross-section q^q^^ in *̂(C n)«R*  to

qn+1 on Cn+1. We direct Cn+1 so that . We can continue this

process indefinitely by Theorem 5-1-2. Then the curves pq^, pq^, pq1q2q^. . . 
will all be cross-sections by Theorem 3.4-5. They approach a curve P extending 

from p to infinity in *̂(Cp)/*R*  which is an extended cross-section extending 

from p to infinity in R*.  The curves intersecting P tend uniformly to infinity 

with any sequence of their points of intersection tending to infinity on P; 

since If r on P is beyond qn, then Cr lies outside K^. Thus P is an extended 

cross-section tending properly to infinity in R*.

«
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.2 Half-parallel Subfamilies of F

Theorem 5.2-1 : The set S of curves of F crossing an extended, half-

open cross-section P tending to infinity from a point p on C is homeomorphic 
F ”

to the family of parallel lines y = k, filling the upper half of the xy-

plane. If C*  is directed so that Cp) contains P, and If C is any open are 

on C*,  pEC', then this homeomorphism may be chosen to map C' onto the x-axis, 

and P onto the y-axis, y^O.

Proof: The set s fills a region of the plane in which it is clearly

a regular curve family for, if is any point on the boundary curve C ' c. C*,  we 

have in S a semi-r-neighborhood U(pq) within which we can find an arbitrarily 

small r-neighborhood of q. And, if q is a point on some other curve C of S, 

then we denote by p' the intersection of C with P , and there will exist an 

r-neighborhood U(p'q) by Theorem 1.2-2, which will lie in S (since every curve

in it crossesP). Within this neighborhood again, we may find an arbitrarily

small r-neighborhood q.

The family

S crosses P exactly

we shall say a curve

3 is not only regular, but orientable, for each curve of 

once and thus I divides 5 into two regions A and B and 

has positive direction if this direction on it carries us

from A into B. Then, by Theorem 1.6-1, there is a function f(p,t) defined on

S with the properties described in that theorem. "We let T, co , be a

parameter on P and restrict p to P giving us f p(T), t a homeomorphism from the

upper half-plane to S, c

We shall mean by a half-parallel subfamily of F the collection of all 

curves of F which intersect an extended cross-section P tending from a point p

on a curve Cp properly to infinity. And we shall mean by a complete 
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half-parallel subfamily of F the curve C*  together with all curves of F cross- 

ingP/Cp being so directed that 2) *( Cp)° P) • Each of these sets is homeo

morphic to the lines y = k, k ^0 of the half-plane; the first will be denoted 

by S and the second by S*.  Clearly S*>S  and when CD is a regular curve they 

are identical. Cp is called the initial curve of S, C*  of 8*.

; IfP(q) is any half-open cross-section of F tending from a regular 

point q properly to infinity, then the boundary of S(p), the collection of 

curves intersecting P is best described in terms of maximal chains C*,C#  and 

the sets J(C+), £(C-) defined in Section J. We shall refer to these latter 

two sets as mixed maximal chains, since they consist of two subchains of maxi

mal chains, one clockwise adjacent, the other counterclockwise adjacent, e.g., 

(which may be empty). J(C) will denote </(C+)u^(C-).

It is empty if and only if C is a regular curve.

Theorem 5-2-2: The boundary of S(P) is a collection of maximal 

chains C*,C#:  and mixed maximal chains JÏC) where ^(C) is on the boundary if 

and only if C Is in S(P) . From each set Tq of F there is either (1) no point,

(2) exactly one maximal chain, or (5) a set J(C) of Tq on the boundary of S(P).

(1), (2) and (5) are mutually exclusive. (See Figure 15, T^ for case (2) and 

Tg for case (5)-)

Proof: Suppose CES(p) is a singular curve, then cT(C) is in the boun

dary of S(p), for (1) if we consider any point q on <f(C) there exists a semi

r-neighborhood U(pq) containing q and p = C nP (since C lies on an adjacent ■

chain with q); choosing a sequence of points Pn~*P,  Pn6^n P > ve can find a

sequence qn6U such that qn£Cpn for all n and qn~*q. Whence q is a limit point

of points of S(P) . But (2), if q is in cT(C) it is on a curve of Tq other than
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C and Cq cannot intersect P hence Cq is not in S(P), and thus q is on the 

boundary of S(P). Moreover, no other curves of Tc can in this case be on the 

boundary of S(P), for S(p) is clearly contained in ^)*(C)uCu  a comple

mentary domain of <f(C), whereas every other curve of Tc lies in one or two 

other complementary domains of cf(C). ( Note : cT(C) divides n into at most

three Jordan domains.)

On the other hand, suppose that C is a curve of F on the boundary of 

S(p). Then, directing C so that Z)*(C)  contains the initial point of P , we 

note that if p is a point on C, limit point of a sequence pn of S(p), then 

there is a seml-r-neighborhood U(pq) of any are pq on C*  and a sequence Qn-*q  

with q^Cp , and hence a sequence in S(P), from which we conclude that q is 

either in S(P) or on its boundary. If C*  does not cross P , then q will be on 

the boundary and C*  is a boundary curve of S(P). When this is the case C*  

divides into two domains *̂(C*)=S(P)  and 2)$C*)=T C-C*,  whence no other point 

of Tc than those of C*  is on the boundary of S(P). But, if C*  crosses P at a 

point p on a curve C ’, then we are back in the previous case and </(C’) =

- C ' is the boundary in Tç of S(P) .

Theorem Let P(q) be a cross-section from q on the curve Cq

of F*,  and tending properly to infinity in R*  in each direction. Further, let 

h be any homeomorphism of R*  onto the xy-plane, then h [p (q)] is a cross-section 

of the family h^F^ (filling the xy-plane) which tends properly to infinity in 

both directions on the xy-plane.

Proof: On the xy-plane we let Kn denote a circle of radius n, center 

h(q) and we must show that for every n there are points q^, r^ on P ' = h £p(q) 

such-that every curve of h(F*)  intersecting P’ at points beyond q^r^ will lie 

outside K^. If this is not the case we will be able to find a sequence of points
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t' on P’ such that each C+• n n

the inverse image of is a

interior. We will denote by

intersects a fixed one of the circles K^. Now 

simple closed curve in B*  containing q in its

Cn the inverse image of , and by tn the inverse

image of t^. Every Cn must then intersect K and hence Intersect some circle

with center at q which contains K. But this contradicts the assumption that

P(q) tended properly to infinity in B*,  since we have a sequence t approach-

Ing infinity on P( q), but the curves do not approach infinity. Hence the

theorem must be true.

W. Kaplan introduced the notion of admissible collections of finite

sequences in order to number the half-parallel subsets of a regular curve

family filling an open simply connected domain. The concept is so similar to

that already considered in, the numbering of curves of a tree that we shall be

able to use the same notation as in that section. We shall however, reserve

the tend admissible for collections of the type of Section 5.4 and, after

Kaplan we shall call a collection A of finite sequences allowable if

A contains the one element sequence I and no other one element

sequences, and

(2) ct, kcA implies a,k-l£A if k >1 and implies «fA if k = 1.

Nov if we have a regular curve family F' filling the xy-plane, and

if we have assigned to each point (x,y) an extended cross-section P(x,y) tend

ing properly to infinity in both directions, t^en for any fixed curve

shown in ivj that we into a collection of non-

overlapping, half-parallel subfamilies 3(a) which will be numbered by the finite

sequences of an allowable collection A.

will be the set of all curves intersecting

Each half-parallel family S(ct)

a cross-section P(a) tending from
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an initial curve Ca to infinity and lying on some P(x,y) as chosen above; Ca 

will be the only curve of S(a) mapped onto the x-axis in the homeomorphism of 

S(a) onto the lines y = k ^0 and the complete boundary of S(a) will be, in 

addition to Ca, just exactly the curves Ca#k. Note that when we write Ca we 

mean to indicate that Ca is an initial curve of some S(a) in the decomposition 

of F1, whereas C(a) will as above indicate that C is the curve of a numbered 

tree which has been assigned the signed sequence a in the numbering of the tree.

As a corollary to the preceding Theorem 5.2-3 plus the proof of the 

facts mentioned in the preceding paragraph from ivjwe can immediately state 

the following theorem:

Theorem 5.2-4: Given the family F*  = F[B^ and an arbitrary regular

curve CX of F*,  we can decompose F* which is the same as

F into a collection of non-overlapping half-parallel subsets

S(q), each S(a) being all curves intersecting a cross-section P (cz) tending 

from a curve Ca in F*  properly to infinity in B* . (See Figures 4 and 13.)

In order to study the relation between an arbitrary tree T of F and a

given decomposition of F*  into sets S(a) (a?A, as described above), it is con

venient to adopt some new notation. A(T) will denote the subset of A contain

ing all sequences a such that S(a)*T  / 0; and An(T) the subset of all sequences 

of A(T) of order n. We denote by N(T) the smallest Integer N such that An(T) 

is not empty. It is clear that P (a) can have at most one point on T, and 

S(a)^T is a curve of F*  or is empty. If P(a)nT is the initial point of P(a) 

we say that P(a), or S(a), begins at T; in this case Ca = S(a)nT. When ,

P(a)''T is a point of P(a) other than the initial point, then P (a), or 3(a) is 

said to straddle T. In the former case 3(a) lies in one domain of T, in the
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latter in two. Using these notations, we may state the following properties : 

. (1) If a,p are distinct elements of A with Ç^A(T), and a either an

element of A(T) or such that points of T lie on the boundary of S(cx); then 

S(cx), S(p) cannot each have a point in the same complementary domain of T.

(2) If An(T), N - N(T), has one element a, then either S(cx) strad

dles T, or if S(a) begins at T, then CL/nR*  = S(a)-T, i.e., C * has Just one 

curve in R*.  (See T2 in Figure 15 for S(cx) straddling T2.)

If A^(T) has more than one element, then every element of A^(T) is of 

the form p, k for fixed p of order N-1 and C for p,kM(t) are just those 

curves in B*  of a maximal chain C*.  (See Figure 15, the tree T^.)

(5) Let T be an element of A^^(T), then every lower segment of X 

of order ^N(T) is in A(T), i.e., for 0 c j ^k we have ^EA^j(T) .

(U) A necessary condition that S(a) straddle T is that a^A^(T) and 

is the only element of A^(T).

First we prove (1). Let ^)*(C)  be a complementary domain of T, boun

ded by C*  on T. Suppose that S(u) and S(3) both have points in /*(C) . Then 

there is a point p on P(a), p„ on R(p), each in *̂(C).  Now since p£A(T), 

P(P) has a point on C*  and P2Q2, an arc on P(p), lies in /)*(C)"C*.  in 

either of the possibilities for a mentioned above, there would be a noint a 
. ‘ *1  

on C*  which was a limit point of points in S(a) . If qea(T) then may be 

taken on P(ex), otherwise qQ will be in <>*(C),  since S(a)o/)*(C) . It follows 

by arguments used many times above that there is a cross-section from on C*  

into <)*(C),  which always may be shown to cross a curve also crossed by p^q^. 

This curve would have to be in both S(a) and S(p) which is impossible since 

cx,P were assumed distinct.
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Lemma:

a, k as a lower ses 

Proof:

any curve of S(a, k 

S(a,k)=/)*(C a/k), 

the boundary of S( 

exists C = T'nSf&l 

and is all of this 

on the boundary of 

since it contains 

divides « into thi 

of these which we 

tain all other cut 

hence every curve

The remE 

always a connectée 

such that Y is in 

in case (1) or in 

Moreover, the set 

this set lies in 

set has points on 

or J(C) as the cat 

pointed out is a

The leim 

then a, Up ... 

sequence of A(T)

If ct£A(T) and a,k / A(T), then no sequence Y of A(T) can have 

?nent.

Ca k lies on the boundary of 3(a) but is not in T, nor is 

) in T by hypothesis. Assuming k directed so that .

we have two possibilities: ( 1) the entire curve is on

a) and is all of this boundary on T ' = %, or (2) there

such that ke/(C) where J(C) is on,the boundary of 3(a)

boundary on T ' . In case (1) every curve of being

3(a), is a curve Ca,k, for some k' . We have

3(a) which intersects T. In case (2) <T(C) = eT(C+) u J(C-) 

ee domains (or two if one of the sets </(C^) is empty); one 

denote contains C and hence 3(a) and T. The others con-

•ves of T ' . tf(C) is the complete boundary in T ' of 3(a), 

of dXC)nR*  is a curve Ca#k« for some k’.

kinder of the proof depends on the fact that S(p)u3(p,k) is

I set. If there exists any sequence Y = a^n^, . . . n%, 

A(T) then, S(T) must clearly have points in 1

in case (2), these being the domains of T’ in which T lies, 
r
(I S(a,k,n1 . . . k ) is connected, and 3(a,k) which is in 
j=o 1 3
d*(C a k) in case (1), and in D2 or in case (2). Thus this

either C#k or J(C), i.e., for j / 0 there is a curve of C^k 

3e may be in 3(a,k,n^, . . n^). But each such curve as already 

:urve Ca# k» which is a contradiction.

na implies in particular, that if a and a, n^, . . . n^&A(T) 

n gA(T), J^r. Hence (5) will follow if we prove that every 

contains a lower segment in A^(T).
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Now we turn to an examination of the possibilities for A^(T) and 

completion of the proof of (5). Suppose that a is an element of A^(T). Then

either ( i) S(a) straddles T or (ii) begins at T. In the former case let

C = S(a)nT, then C) is the complete boundary of S(a) in T and we know that

every curve in B*  of ^(C) is in the collection Moreover, /(C) divides

ir into three (or two) domains D^,D^,(D^) of which the first contains C^, and 

of T, only the curve C. Now let X be any sequence of A(T) . S(Y) must, by (1) 
n

lie in IL or D . But Us(T3 la a connected set containing C, (i.e., Ca_^), 
c 5 1=1 i j. ~

hence points of and also points of Dg or D,. It must then contain a curve 

^a,k <f(C), and therefore S(a), i.e., a is a lower segment of Y. Since this

is only possible

In the

of S(p), where 8

boundary on T of

if Y is of order *̂N  we conclude a is the only element of A^(T) . 

case ( ii) where S(a) begins at T, we have on the boundary 

is of order N-1 and a = p,k. In fact, is the complete 

S(P) ^he curves of are all of the set Cp, which

therefore are in A^(T) ; and we have Now let us

suppose that

any point of

YcA(T), then S(Y) by ( 1) cannot lie in ) » hence must lie
n M_

But LJs(Y|) is connected and has a point in <0^%^ ), namely, 
i -1

Cj. Thus this set has a point on and hence a curve CQ#kt.

it follows that every sequence of A(T) has a lower segment in A^(T). This

proves (1) and completes the proof of (5).

To prove (4) we need show only that if S(a) straddles T then no lower

segment of at is in A(T). If a = p,k, so that p is the lower segment

then if any lower segment of a is in A(T), P is also by our lemma. Then CQ,

being on the boundary of S(p) we necessarily have S(p), 5(a) in different do-

mains of Tq2. This is impossible unless T = for we would otherwise have

points of T in two different domains of Tq^.
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As above we consider the branched regular curve family F with a

regular curve Cj of F and the decomposition of the corresponding F*  )

into sets S(a) with initial curves C(a). Then we have the following:

Theorem 5.2-5: The complete half-parallel subfamilies S*(a)  = S(a)uC^

decompose 1 1 into a family of half-parallel subsets which intersect

only at points of their initial curves, i.e., S*(a) nS*(P)  = C where C*  = C*  

and = C^.

Proof : First to prove that every curve of FK^u 

in this decomposition we note that every curve of F*  C^v£

is included

aut omat i cally

included, being already in a set S(a) of the decomposition of that part of the

simply connected region R*  included in xD *(C^) . We have only to consider

curves of 3 ; let C be a curve of F which is not in R*  and let T

denote the tree which contains it. Then no cross-section P(X) has a point on

C. C will be on the boundary of two distinct sets S(a) and S(p) in /)*(€) and

/^f(C) respectively. They cannot coincide since if they did then it would

mean that S(ci) = S(P) would straddle T, for otherwise the set S(a) lies in

single domain of T. Moreover, in this case, since P(a) would have to lie in

l

a

two domains both having C as common boundary (and only G), it would have to

contain a point of C, which is clearly impossible if C is not in R*.  

Now, if either a or p say ol, is of order >N(T) then, since ex, k

for some k is in A(T), by (5), a must also be in A(T). Then by (4), C must

lie on T, whence we have at once that C* C*sC  and hence C is in S*(a) . Thus

it remains to show that either a must be of order >N. Assume a is of

order <N, then by ( 1) all of C* is on the boundary of S(a) and every curve of

C*nB*  is in the set Now, since p,k*  for some k’ is in A(T), p is of

or p
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order ^N-l: If 0 is of order N-1, it must then be equal to a by ( 1) ; or if 

it is order N, then it is of the form a,k for some k. This letter would mean 

that the common boundary of the domains containing S(cc) and S(p) would be the 

curve CQ which must then coincide with the curve C, contrary to assumption 

that C is not in R*.  Hence p in this case must be of order >N. On the other 

hand, if a is of order N, then either p is of order >N or Ca and C& lie on 

the same maximal curve C# = and in thl^ case quite clearly, 0^ and C*  

could not have a boundary curve C in common. Hence either a or p is of order 

>N and we have shown that in this event C is In either S*(a)  or S*(p).

Next it must be shown that if CQ is the initial curve of a set S (et), 

then for any S(p) which intersects C£, the intersection must be along C^. Let 

C be the curve of intersection, i.e., _C = C*iC(g ). Thus, a,p A(T) where T is 

the tree containing C^. Now S(a) and S(p) cannot have points in the same com

plementary domain of T, which means in particular that F(p) cannot straddle 

T, since one complementary domain of C is <)*(C*).  Hence C^ = C which was to 

be proved. -

Corollary: The family F can be decomposed into complete half

parallel subfamilies which overlap only along their initial curves.

Proof: We merely begin with any regular curve and decompose both 

and as above.

6«° FAMILY F AS THE LEVEL CURVES OF A HARMONIC FUNCTION

It is the purpose of this section to prove that corresponding to any 

branched, regular curve family F, there exists a harmonic function whose level 

curves form a family homeomorphic to F. This is a generalization of a similar 
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theorem proved by W. Kaplan |_V for regular curve families filling n. The 

method here closely parallels that of jvl. A mapping Tj from it to the w-plane 

is defined which carries the curves of F onto the lines u = constant. It is

noted that is light and interior and hence topologically equivalent to an

analytic function. This gives the desired theorem at once.

6.1 Complementary Curve Families

Given a branched regular curve family F filling n, we shall call an

other such family, G, filling it complementary to F if (1) the singularities of 

G are exactly those of F and each is of the same type, i.e., a point b is an 

n-th order brunch point of G if and only if it is an n-th order branch point of 

F; and (2) every curve of G is a cross-section*  of F. It follows at once from 

this definition and Theorem 5-2-4 that if G is complementary to F, then F is 

complementary to G. Hence we may speak of two complementary families, F and G, 

filling it. They will have a common set of singular points, B.

* We must extend the definition of a cross-section slightly as fol
lows: an open, or half-open arc is a cross-section if every closed sub-are 
on it is a cross-section.

The major result of this section is to establish that every branched 

regular curve family F has a complementary family G. In |ivj it is shown that 

this, in effect, is true when B = 0, i.e., for any regular family filling it. 

This result immediately gives us a family G*  complementary to F*  in B*  = it - J , 

for we may by IV map F*  onto a family F' filling the xy-plane and defined by 

differential equations, = f(x,y); = g(x,y). The orthogonal trajectories

define a family G' complementary to F' and the inverse image G*  of G’ is then 

the desired complementary family to F*.  The method we shall use to establish
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the existence of a family G, complementary to F will be to first consider F*

its complementary family G*,  both defined in R*  and then to modify G*

slightly near the boundary of R*,  i.e., near the cuts X(b), so that it will be

come a family G of the desired type when 3, the boundary of R*,  is added to R*.  

Theorem 4.1-5 tells us that we may cover J with a collection £vQ(°3 J of dis

joint open sets; we shall assume such a covering, and moreover, assume that

each VcU^ [x(bQ an -neighborhood of x(b) where ^>0 is fixed. Any modifica

tion in G*  will actually take place deep inside V, i.e., in an open set whose 

closure lies in V. We shall actually discuss the modification for one such V 

and, assuming similar modifications have taken place ml each V, we will denote 

by G*  the modified G*.  G*  will be shown to be such that when is added to R*

G*  becomes a set G complementary to F. Several preliminary steps must be taken 

before the transition from G*  to G*  can be adequately described.

First, we must define a semi-r-neighborhood of a cut X(b). We let C

be that curve of St(b)*R*  which is clockwise adjacent to the initial curve of

X(b), i.e., OX(b) is an adjacent chain; and we assume C directed so that

CuX(b)=C*.  Next, we let Rx denote the rectangle R^ without the corner point 

(1,0), i.e., Rx - {(x,y) | C<y<l, -Kx^ - ^(1,0)1, and ?1 denote the 

family of lines, y = a, filling R^. Now let U be a set contained in

=*̂(C*)  together with a homeomorphism k:U-*R x with the propertie

is mapped homeomorphically by k onto F ; (2) the inverse image of

x = -1 is a cross-section, and the inverse image of the half-open segment con

sisting of that part of x = 1 in R^ is a cross-section tending to infinity (but 

not properly) in one direction; and (5) k takes X(b) onto the right half of the 

x-axis in R, with k(b) = (0,0); an arc on C then maps onto the left half of the 
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x-axis. Then we shall refer to that part of U which is mapped onto except 

for the edges x = +1, y = 1, as a seml-r-neighborhood of X(b).

Theorem 6.1-1; If ViX(b^ is any open set containing X(b) and Y is 

any cross-section through p£CnV, C*»C uX(b) as above, then there is in xD*(C)  a - 

semi-r-neighborhood U X(bjj with U=V and bounded on one side by T (i.e., the 

image in of Y under k is x - -1).

Proof : The proof will consist of two parts, the first, part (A), 

being the choice of a set U, to be a candidate for the desired semi-r- 

neighborhood; and second, part (B), being the description of the homeomorphism 

from U to R . (See Figure 1k.)

(A) We begin by choosing on G a regular point p , so chosen that it 

is inside V and is separated from b on C by p, p = G . Next we choose a

sequence p^, p^, . . . pn of regular points on X(b) which approach in

finity monotonely along x(b). Then P pn+1 will denote the arc on C*  joining 

these two points; and for each such pair n^O, we choose a semi-r-neighborhood

Un, Ü cx)*(C)'iV  and having the further property that U^Ug^(p^p^^), an 

neighborhood of the arc PnPn+p# where 6n-*0.  Moreover, we let Un be chosen 

so that U pnUn+i = Of and we shall assume that when we refer to the image of

in the homeomorphism will always be chosen so that the positive direction 

on the x-axis corresponds to the direction from b to infinity on x(b). Now let 

pq be any are on 15 which lies entirely in U (p^); there must be such an arc 

since p lies between p^ and p^ and hence in U$, and Y is a cross-section through 

p. Consider for a moment the image in R^ of Uq, let (X(y),y) be the image of 

pq, defined for y^ a < l with p-»()S(O),O) and q-^(x(a),a) and C^-»(y = a).

The image of will lie in the lower right" hand corner of R^, and we may



ENGINEERING RESEARCH INSTITUTE
UNIVERSITY OF MICHIGAN_____

find two points (x',i) and (x",b), the second in the image of and with

K(a)<x,f a>b and so chosen that the points may be connected by a straight 

Jine (hence a cross-section of ) not intersecting the image of pq. let 

denote the inverse images respectively of these two points and the 

cross-section consisting of the inverse image of the line. Note that, by 

choice of as inverse image of (x',a), both q, q^ lie on the same curve of F. 

If we now direct all curves C crossing pq so that /)*(C)=x)*(C'),  that is, so 

that Z)#C')»X(b), then clearly (except for q^). Now in

we choôse a point qg of ^#(0^) and connect by a cross-section lying in

Ü which may be done again, by taking.the inverse image of a straight line 

connecting their image points in the map of onto We repeat this process 

for all n, each time, however, choosing q^ as indicated but with the additional 

restriction that t^ = is such that t% approaches p. We thus obtain a

sequence of arcs, q^, q^i^, . . each of which is a cross-section by 

Theorem 5.5-2, hence they approach a half-open cross-section P tending from qQ 

to infinity. Every curve crossing pq,except C*  will cross P uin-e tn -

->p by our choice of q . Now the arc from p to infinity on C», the cross-
I '^n 11

section pq on Y, the arc qqQ on Cq and finally the are P from qQ to infinity 

\ form an arc extending to infinity in each direction and thus dividing « into

two domains, one interior to v[\(b)j . It is this latter domain that we denote 

| by Ui it will be our semi-r-neighborhood. It remains to find the map k from 

I U tO Py.

(B) We shall denote by 3 the collection of all curves of F crossing 

\ cq on Y, and by s the domain of 3 - Y containing X(b) taken together with pq, 

I its boundary in 3. Now in Theorem 5-2-1, by use of the function defined by 

Whitney (Theorem 1.6-1) we were able to map all curves crossing an extended
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cross-section onto the lines y = a of a half-plane. Hence it is obvious that 

in a similar manner we can map S by some homeomorphism onto the lines y = a 

of the strip 0 % y s I so that C*  maps onto y - 0 and pq onto x - -1. then 

takes S onto that part of this strip to the left of x = -1, i.e.,

R" = V(x,y) | 0 < y 5 +1, -1$ x < coj . The image of U under will be that por

tion of R" bounded by (1) a segment on y = 1 Joining (-1,1), the image of q, to

( x', 1), the image of qQ, plus (2) a curve given by (^(y),y) which is the

image of P, and hence a cross-section, together with all of the x-axis in

R^ and (4) the line x 1.

Now let F' denote the rectangle R, without 
1 1

line x = 1. Then kg

defined by kgi(x,y)-*(x,y)  where x for -15 x < 0 —T for 0 sx51 and x+1

y £ y, a homeomorphism from R" onto R£ holding all of R^ to the left of the

x-axis fixed, and shrinking each curve along itself to the right of the

y-axis. Y goes into a curve Y, riven by x = YW, where 11m ^(y) 
x y -*0

The closure of this half-open arc connects a point (Y(l), 1) on the top

1.

edge of

R£ to (1,0), the lower right hand corner, and thus splits F/ into two domains 

the one of which lying to the left of this are is the image of U under the

combined homeomorphisms kgk^. This portion of R£ is then mapped onto R^ by a 
— — .— —. - — 2+2x

third homeomorphism defined as follows k^: (x,y) -*(x,y)  where x - pTT^Yy)

y = y. k5 holds the lines x = -1 and y = 0 fixed, takes each line y = a along

itself and maps Yp onto the line Y, whose equation is x = +1.

k - k^kgk^ is a homeomorphism of U onto R^ with the desired properties, and U

is a semi-r-neighborhood of X(b) in the sense of our definition.

Since nothing in the above proof depended on the fact that b was the

initial point of a cut, we can state the following corollary to the proof above:

y

x

1
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Corollary : Let X(b) be a cut with a finite number of curves, the 

last of which begins at the branch point b' and extends to infinity, and let 

this last curve be denoted by and the curve counterclockwise adjacent to it 

by Cx (i.e., so that with properly directed 0^,0^ form an adjacent chain 

lying on C^) . If V is a cross-section through psC1, then there is, inside any 

open set V(X(b)) containing p, a semi-r-neighborhood U of C_ with the cross- 

section TT as one boundary curve.

We shall call a semi-r-neighborhood of type II any which extends thus 

to infinity along a cut; the earlier defined semi-r-neighborhood (of a finite 

arc) will then be of type I.

We now proceed to define for each X(b ) a certain possibly infinite

collection of closed sets W^,W^, . . . all contained inside V(x(b)). These are 

the sets in which G*  will be modified. Wq is the closure of a semi-r- '

neighborhood of type II, and if the number of curves in X(b) is finite, then 

there will be a last set W^ of this collection which is also the closure of a 

neighborhood of type II. All the other sets VL will be closures of neighbor

hoods of type I. These sets will be chosen as follows : First, let b^_= b, 

b^, bg, ... be the branch points on X(b) and let the curves in R*  of each 

St(bp be numbered with two indices, the first being that of b , the second 

being given by a counterclockwise numbering of the Ft(b ) proceeding from the 

first curve to follow counterclockwise after a curve of S t(l) ) n x ( b ) to the last 

to precede a curve of St (b^ )f>X(b) in the counterclockwise ordering: C = C^, 

C01, . . . COn ; C^, Clo . . Cln ; . . . etc. (fee Figure l u ) Second, 

diooue regular points s. . on each C, . and short cross-sect tons X. , through t> .
c • j . I 1 . ' I J

the Y j y being in each case nr arc on a curve of G*  and both s. . and Y £ - be 1 ng 

chosen no as to lie in V(> ) . Now we choose our sets W ns fol l own : W <=7(X) In 
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the closure of a eemi-r-neigh"borhoodL of type II, bounded on one side by an are

r00^00 on *00 on side, of course, by . Next, in the domain

bounded by (the maximal chain of) the adjacent curves C00,CQ1 we choose a semi- 

r-neighborhood of type I of the arc SqqBc1 on these curves, which is bounded 

by the arcs s^t^ on YQ0 and r01s01 on ^01 and whose closure lies in V(X) and 

will be our W^. Similarly, we. choose W^, . . . each a closure of a type

I neighborhood in V(x) and bounded by arcs on some . It may be that bQ is

the only branch point of X(b), In which case the next set W is the last and 
I

must be of type II, bounded on one .side by an are =0n,t0n1 on ^0nj' Otherwise, 

we choose for a semi-r-neighborhood of type I of s^^b^b-^s-^, an arc on the 

adjacent chain C^i,C',Cn (C being the curve of X(b) with endpoints bQ,b1), 

the neighborhood being so chosen that its ends are arcs 80r^0n^ ^ll^ll on 

Y0nj and Tpp respectively, and that it lies in V(X). This process is continued 

until we have chosen semi-r-neighborhoods on both sides of every curve of Su(b^) 

in R*  for all b^ and on both sides of each curve of x(b) . Then X(b) will be 

contained in the interior of the set W = W is bounded by an open arc f

extending to infinity in each direction; and P consists either of one infinite 

cross-section of P*,  not in general a curve of G*,  plus an infinite number of 

arcs alternately on curves of F*  and on curves of G*  (the latter of the form 

rijSijti/

F*  and G*  plus two half-open cross-sections of F*  extending to infinity. The 

first case occurs when the number of neighborhoods of type II is one, the second 

when it is two. P lies entirely inside V(X) and W, which consists of P plus 

number of such alternate arcs on^ ); or else P consists of a finite

that one of its complementary domains inside V(X), is a closed set. The W^'s 

clearly intersect on curves of F, namely on X(b) plus arcs bs. on each curve 

in B*  of every ^t(b^) for b^ in X(b) . We denote by X the set of all points
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which lie on the common boundary of two or more W^'s. A point of X which is a 

regular point clearly lies on the intersection of just two such sets, whereas 

each branch point b^ lies on the intersection of 2m, where m is. the multiplicity 

of bp We denote by W*  the set - X and by W*  the set W - X, and finally by 

V*  the set V(x) - X. Then let G*  = G*fv*j  and F*  = F*|v*l  .

Now each Wn has associated with it a homeomorphism kn, of W onto 

if it is of type I, and onto R^ if it is of type II. In order that the modi

fication of G*  to G*  which we are going to make will not destroy the relation

ship between G*  and F*  we will actually achieve it by a homeomorphism h of R*  

(R*  = R*  - X) onto itself which is the identity outside of each set W, but 

which inside such a set carries each curve of F*  onto itself, i.e., it may be 

visualized as "sliding" the points of a curve of G*,  along the curves of F*  to 

which they belong, to their new position. Actually, we shall describe this 

operation piecewise, for each W*  and, in fact, as a homeomorphism on the image 

curves in Rj (or R^ as the case may be).

We begin by defining a typical homeomorphism f% on the image of

F*̂W^j,  G* under for W^ of type I (see Figure 16a). The image will be 

B*  = R1 -; (x-axis), and we denote the images of the curve families as F*,  G», 

respectively. . The former will, of course, be just the lines y = a, O^a^l, the 

latter being a regular curve family filling R^ complementary to F*,  and having 

among its curves the two lines x = +1, images of arcs on two of the curves \ j 

of G*.  It will be seen that G£ consists exactly of the curves whose inverse 

images cross C', the inverse image of y = 1 in R*,  for, if we consider any 

curve of G*  with a point inside Wp it is clear that it must leave W^ in each 

direction, there being no branch points interior to.Wp and hence, it must 

either cross C' or have two endpoints on X(b). It could scarcely have both
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endpoints on X(b), however, without crossing some curve of F*  twice Inside

which is impossible. Moreover, no curve of G*  will cross C' more than once

is a cross-section of G*. Thus we may define a function

R*  onto itself as follows: Let x = f(x,y) be defined by f(x,l) =

Fmapping

x and f(x,y)

= constant on each curve of G^, and let y = g(x,y) be defined by g(x,y) s y.

Then
it follows from the above remarks and the work of Kaplan ^TVJ andjyill that

'since C'

this is a homeomorphism of B*  onto itself which takes each curve of F*  onto it-

self

held

and each curve of G*  onto a line x = b, -is 

pointwise fixed, as is the line y = 1, i.e.

the lines x = +1 being

all of the boundary of R*  on

which fz is defined is held pointwise fixed. h|w*  is then defined by

and if thus defined h maps F*  ^W-J onto itself, takes G*[w*  homeomorphically

onto a new family G*which  

tical to G*  on the boundary of

is still complementary to F*  and which is iden-

W*. Since k^ is actually a homeomorphism of

all of W^ onto Rp it will now 

G*pW^  will map onto the lines

map

a and x

G* so that the curves F* , 

b, respectively. We re-denote

F

y

by to emphasize that it acts on G*. Thus it is clear that every curve of

G*|W*J  has exactly one endpoint, unique 

unique to it on the curve of F*  forming

to it, on X and exactly one endpoint

the opposite side of . The regularity

of G*  which we have achieved at X is precisely what is needed. We assume a

similar homeomorphism defined for every index I such that is of type I -, then

h will be defined on every set of W except the one or two neighborhoods of type

II.

Now let us suppose that we are dealing with a neighborhood of type II

say Wq, with its associated homeomorphism k$ onto Again let P^, G* denote

the images of the respective families of Wq in = R^ - (x-axis), the former 

being the lines y = a, and the line x = -1 being a curve of the latter, but not 
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in general the line x = +1. fjj will be given as the composition of four homeo

morphisms of ft*  onto itself (see Figure 16b). Before we can describe f^ the 

first of these, we must note that there is in at least one curve Y of G*,  

distinct from the arc r00s00 on Yqq (inverse image of x = -1), whose image 

in B joins a point (x",0) to a point (x',1), where -1< x”, x'c 0, i.e., a 

curve of G*  joining one side of WQ to the other, and intersecting each at a 

regular point of H*,  i.e., not on x(b). That such a curve exists follows from 

the fact that in the family G*,  regular in B*,  the are n^s^ on a curve of G*  

has an r-neighborhood U (by Theorem 1.2-2) with U«B*.  The curves C8 and 0^^ 

have small arcs entirely in this neighborhood, since they are cross-sections of 

G*,  and each of these will be crossed by an infinite number of curves of G*  on 

each side of Sg^t^Q, one of which will serve our purpose; namely, one crossing 

that part of each of these arcs which is the inverse image of the segments 

( -1,1) to (0,1) and (-1,0) to ( - €,0), l>€=-0. will be given by a continuous 

function x = ^(y), O<y^l, and we shall use it to define f^P*-»^*  given by 

f^ (x,y)-e»(x,y) where:
[i + yg(y)] X - - %y)l ,

1 + y/y) 1 .

& -W*  - EW -^(yj for (,)„«+i 

1 - x

y = y

(where we have Y^(y) = (x'-x")y + x", this being the equation of the line Join

ing (x',1) to (x",0), the curve into which is mapped by f^).

The next homeomorphism, f^zB*-*̂*  will carry into the line 

x — x’ . f is"given by f^:(x,y)^(x,y) where:
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(1 + x')x + [x*  - VgCyj] 

i +
for -1^x^5^g(y);

(1 - x^x + [x" - /^(yj] 
i - ^(y)

for y2(y)^ 1

Each of these homeomorphisms holds the boundary curves x = +1, y = 1

pointwise fixed.

lies on or to the

To describe f_ we first denote by M that portion of P*  which 
5 x

left of /y i.e., M = px,y) | -1« x«x’, 05 y 1^ . M is

bounded on each side by a line x = constant which is the image of a curve of

G*  under the composition of the above maps, and bounded on top and bottom by an

image of a curve of F* . The image of F*  in M is the family of lines y = a.

Hence by precisely the same argument as in the definition of fj for the neigh-

borhood of type I above, we may find

boundary of M pointwise fixed, takes

a homeomorphism f^:M-*M  which 

each curve y = a onto itself,

holds the

and takes

the image family of G*  onto the lines x = b We extend f, to all of5

------------ r
I

y = y

P*  by defining it as the identity on the rest of this set. Again, f^ will be a

homeomorphism leaving the boundary curves x = +1, y = 1 pointwise fixed, as 

well as the curve and all of to the right of y^.

Finally, we define a homeomorphism f^:B*4>p*,  again by giving

f:(x,y)-»(x,y) as follows:

X 1
X = (^(y) + ■ 1 

x = (1 - nWXi + ^4 x'«x«n

ÿ = y
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where % denotes the line x = Y^(y) =(x*  - l)y + 1 joining (x’,1) to (1,0), 

this being the image of under The image of M under f^ will be denoted 

by and will be the trapezoid bounded by the x-axis, the line x = -1, 

and the segment from (-1,1) to (x’,1) on the line y = 1. ftakes the lines 

y = a onto themselves and the lines x = b, -1-^ b ^x ' of M onto a family of non

intersecting straight lines joining the points of the top edge of to the 

bottom (as listed above). f^ leaves the lines x = +1 and y = 1 pointvise fixed.

Now we define f^:^as the homeomorphism f^f^i, and we define 

h|w*  as kQ-^jkQ. Then h|w*  is a homeomorphism of W*  = WQ - X onto itself 

which is pointvise fixed on the boundary of W*  in R*,  i.e., on t^s^, on 0%^, 

and on the extended cross-section which bounds one side of WQ. h also takes 

the curves of G*fw*j  homeomorphically onto a family G*,  at the same time map

ping each curve of F*  onto itself. Now, if as above for k^ we re-denote kQ 

by kg, then we have a homeomorphism of all of onto R^ which takes X onto the

x-axis between (-1,0) and (1,0), with bQ mapping onto (0,0), and b00 onto (-1,0), 

and which moreover, takes the curves of F onto the lines y = a and takes part of 

G*  onto the straight lines joining the top and bottom of as described above, 

the remainder of G*  mapping onto a regular family filling the rest of R^. The 

curve i of G*,  image of f under h|w*  divides WQ into two domains, one of which 

maps onto M1, the other onto R^ - M^. We shall denote the one which maps onto 

Ni, together with its boundary, by %, the boundary consisting of two curves 

of ^ely, roosoo and 1, together with Cy00 and eœb0<(b) F. It is

obvious that Mi in cun be mapped onto by a homeomorphism g which holds

x « -1 and y = 0 pointwise fixed, takes each line y - a Into Itself, and 

finally moves the image curves of G*  in onto the lines x - b, -I~ b-1, 

keeping, of course, their lower endpoints fixed, thus taking the line $ onto
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x = 1. Then R1

the lines x = constant.

with F going onto the lines y = constant and G*  onto

X(b), hence of type II

plementary families and

Wo is then again, like VQ, a semi-r-neighborhood of

but

has

of a kind which is bounded by curves of two com-

associated a homeomorphism gk$ which maps the

curves of the respective families onto the lines parallel to the axes on B^. 

Hereafter, we shall denote gk^ merely by k$. Note that this is similar to the 

case when we had a semi-r-neighborhood of type I. /

Now if W is a second neighborhood of type II in W, then it must be 
N

the last defined for \(b) and on it we define, in a manner entirely parallel 

to the above discussion, f , h|w*,  W^, k^, etc. Thus we have defined h|w*  

for all 1, and since the are overlapping closed sets of V*  (with only a 

finite number containing any given point) such that h is actually the identity

along their overlapping boundaries as well as on P, the boundary of W, we have

defined a home omorphi sm

similarly defined for a

h of W*  onto itself (W*  = W - X). Assume that h is 

set W*«v[x(b)  for every cut X(b) contained in J, and

we define h as the identity outside the W^'s. We remark that the collection of

all the sets for x(b) in J, together with the set % - \

of overlapping closed sets which has a locally finite character

is a collection

i.e., every

neighborhood of any point meets only a finite number of the closed sets.

is clear because the cuts, X, recede to infinity, and each lies in an

This

f -neighborhood of the cut X, 6>0 being fixed. Then it 

homeomorphism of B*  onto itself, where by B*  we mean B*  -

follows that h is a

every curve of F*  onto itself homeomorphically, and every

- h
curve of G*  B*j

carries

homeo-

morphically onto a family G*  which is complementary to F* in B*  and which co

incides with G*  except in the interior of the W^'s.
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It remains to prove that by adding the boundary points of R*,  i.e., 

it - R*,  the curves of" G*  become curves of a family G complementary to F in «. 

To prove this we must first prove that G is regular in R = it - B. Now if p is 

a point of R*,  this is clear, since G = G*  (which is homeomorphic to G*)  in 

some neighborhood of p. In fact, it is clear that there is an arbitrarily 

small r-neighborhood of p whose closure maps onto R$ = px,y) \ |x|^l, |y|- 

so that the lines x = constant are the images of the curves of G, those lines 

y = constant the image curves of F.

Now, however, suppose that p is a regular point on \(b). Then p will

be on the common boundary of just two of the neighborhoods Wf, since p is not

a branch point. Let W^,W be the two neighborhoods. Then p is interior to

WnvWm, and it follows from Theorem 1.2-5 that G is regular at p, since

G is regular in W and in separately, as may be seen from the existence of 

the maps k^,k^ onto R (or as the case may be) with G mapping onto the 

lines x = constant. It follows that G is regular at every point of B, so that 

the singularities of G are contained in the set B of singularities of F, and 

are thus isolated. Now each branch point is in a cut, and hence will be 

b f\(b) for some l and some x(b). b1 is on the common boundary of just 2m sets 

Wn, where m is the multiplicity of b^. Then it is clear that there are just 

exactly 2m curves of G [w] , one in each of these sets which have b^ as a limit

point in one direction. Thus, if has b± on its boundary, then in the homeo

morphism the point b^ will map onto a point (a,0) and the inverse Imat 

of the line x = a is the single curve of G[w^j which has b^ am a limit point.

It follows at once that b^ is a branch point of multiplicity 2m of G. Hence we 

have established that G is a branched regular curve family with the same branch 

points as F. Again, just as above, it is clear that it is possible to find an



engineering research institute Page
UNIVERSITY OF MICHIGAN

arbitrarily small neighborhood U of each b± which is homeomorphic to |z|«l, and 

moreover, with a homeomorphism k carrying fJu] onto the level curves of ) 

and onto the level curves offc^z™).

Finally, to complete the proof that G is complementary to F, we note 

that by Corollary 2 to Theorem J. 5-5 we have at once that every curve of G is 

a cross-section of F. This completes the proof of the following:

Theorem 6.1-2: Every branched regular curve family F has at least 

one complementary family G ns described above.

6.2 The Fundamental Theorem ■

Given any branched regular curve family F on it, we have shown the 

existence of a complementary family G; and also, we have shown that each of 

these families is the level curve family of a continuous function f(p) and g(p) 

respectively. This enables us to define a single-valued mapping T^ from tne 

plane n to the complex'w-plane as follows: T^p) = u + lv where u = f(p) and 

v g(p). T (p) is clearly continuous, because f and g are continuous. 

Moreover, T^ is locally a homeomorphism on R and is at most m-to-1 in the 

neighborhood of an m-th-order branch point.' To show this, it is sufficient 

to consider the special neighborhoods mentioned in the proof of the previous 

theorem, i.e., for every regular point we consider only a neighborhood U such 

that there is a homeomorphism of U onto the rectangle R^ of the xy-plane such 

that F[U] goes onto the lines y = constant and G Q onto the lines x = constant 

Then T becomes a map of R^ onto a rectangle in the uv-plane carrying the lines 

y = constant onto u = constant and x = constant onto v = constant. It is 

clearly a homeomorphism since it is monotone on each line x - constant and each 

line y = constant. This is exactly as inpIIIj. It is ecually easy to show that 

in a neighborhood V of a branch point, where F [VJ and G [vj map onto X&z*)  and
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zn) respectively under a homeomorphism of V onto [zjcl, T^ carries V onto an 

open set and is at most m-to-1, where m is the multiplicity of the branch point.

It

is

follows that T1 is not only interior but light (since for every point there 

a neighborhood in which f and g take on the same value only a finite number

of times in the neighborhood). It follows from Stoilow XIII and Whyburn

XVli that is topologically equivalent to an analytic function W = ^(z)

i.e.. there exists a homeomorphism p = h(z) of the plane it onto either the

domain

f(z) = T^|h(z)]

°? Doo

is analytic.

|z|<oo| of the z-plane such that , 

The family F’ of level curves of the real part

of %) are just those curves mapping onto the lines u = constant of the

w-plane and hence

Theorem

are homeomorphic to F under h. It is thus proved that: 

6.2-1: Given any branched regular curve family F there ex

lets a function harmonic in either the finite plane or the unit circle whose 

level curves are homeomorphic to F.

Since if the function u(x,y) is harmonic in a domain D, its level 

curves satisfy the differential equations = u^, ve have at once:

Theorem 6.2-2: Given any branched regular curve family F, then 

there is a solution family of a system of differential equations to which it 

is homeomorphic.
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