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Sample Criteria For Testing Out lying 
Observations

1. Introduction. Scientific data are collected usually,for 
purposes of interpretation and if proper use is to be made of the 
information thus obtained then some decision should be reached or 
some action taken as a result of analyzing the data. In many cases 
a critical examination of the data collected is necessary in order 
to insure that the results of sampling are representative of the 
thing or process we are examining. Quite frequently our observations 
do not appear to be consistent with one another, i.e. the data may 
seem to display non-homogeneities and the group of observations as 
a whole may not appear to represent a random sample from, say, a 
single normal population or universe. In particular, one or more 
of the observations may have the appearance of being "outliers" and 
we are interested here in determining once and for all whether such 
observations should be retained in the sample for interpreting 
results or whether they should be regarded as being inconsistent 
with the remaining observations. It is clear that rejection of the 
"outliers" in a sample will in a great number of cases lead to a 
different course of action than would have been taken had such 
observations been retained in the sample. Actually, the rejection 
of "outlying" observations may be just as much a practical (or 
common sense) problem as a statistical one and sometimes the prac
tical or experimental viewpoint may naturally outweigh any statis
tical contributions. In this connection, the concluding remarks 
of Rider’s survey [2] are pertinent: "In the final analysis it 
would seem that the question of the rejection or the retention of a 
discordant observation reduces to a question of common sense. 
Certainly the judgement of an experienced observer should be allowed 
considerable influence in reaching a decision. This judgement can 
undoubtedly be aided by the application of one or more tests based 
on the theory of probability, but any test which requires an inor
dinate amount of calculation seems hardly to be worth while, and the 
testimony of any criterion which is based upon a complicated hypo
thesis should be accepted with extreme caution." Hence, it would
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appear that statistical tests of significance for judging or testing 
"outliers” come into importance either in supporting doubtful prac
tical viewpoints or in providing a basis for action in the absence 
of sufficient experimental knowledge of underlying causes in an 
investigation. Indeed, the latter two situations are met quite 
frequently in practice.

In the present treatment, we intend to throw some light beyond 
the work that has already been done [1], [2], [3], [4J, [11], [12] 
on the problem of testing outlying observations statistically and to 
see just where our contributions fit into this corner of mathematical 
statistics. In the course of our investigation, we take into consid
eration the idea of efficient tests for various hypotheses according 
to the theory of Neyman and Pearson [17] and present also derivations 
of several sampling distributions for statistics which have an impor
tant bearing on the problem of testing outlying observations. First, 
however, we give a very brief history of the problem.

2. Historical Comments. A survey of statistical literature 
indicates that the problem of testing the significance of outlying 
observations received considerable attention prior to 1937. Since 
this date, however, published literature on the subject seems to 
have been unusually scant—perhaps because of inherent difficulties 
in the problem as pointed out by E.S. Pearson and C. Chandra-Sekar 
[1]. These authors made some important contributions to the problem 
of outlying observations by bringing clearly into the foreground 
the concept of efficiency of tests which may be used in view of 
admissible alternative hypotheses (to be discussed later).

In 1933, P.R. Rider [2] published a rather comprehensive 
survey of work on the problem of testing the significance of out
lying observations up to that date. The test criteria surveyed by 
Rider appear to impose as an initial condition that the standard 
deviation, a, of the population from which the items were drawn 
should be known accurately. In connection with such tests requiring 
accurate knowledge of o, we mention (1) Irwin's criteria [3] which 
utilize the difference between the first two individuals or the 
difference between the second and third individuals in random 
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sample s from a normal population and (2) the range or maximum 
dispersion [4], [5), (6], [7], [8], [91, [10], [18] of a sample which 
has been advocated by ’’Student” [4] and others for testing the sig
nificance of outlying observations. We remark further that a natural 
statistic to use for testing an "outlier" is the difference between 
such an extreme observation and the sample mean. In 1935, McKay [11] 
published a note on the distribution of the last-mentioned statistic 
and by means of a rather elaborate procedure obtained a recurrence 
relation between the distribution of the extreme minus the mean in 
samples of n from a normal universe and the distribution of this 
statistic in samples of n-1 from the same parent. McKay gave also 
an approximate expression for the upper percentage points of the 
distribution but did not tabulate the exact distribution due to the 
complicity of the multiple integrals involved. McKay pointed out 
that if Kp denotes the p-th semi-invariant of the distribution of 
^-x (where x^ is the largest observation) and Kp’ refers similarly 
to the distribution of xn, then K^KK^-K^' - i and

Kp=Kp’ (pi 3) where >= E(xi). The author was not aware of the 

work of A.T. McKay when the simplified derivation for the distribu
tion of xn~x given in section 3 below was worked out, McKay’s 
result being called to his attention by C.C. Craig.

Under certain circumstances, accurate knowledge concerning a 
may be available as, for example, in using ,"daily control" tests 
[4], [18] the population standard deviation may be estimated in 
some cases with sufficient precision from past data. In general, 
however, an accurate estimate of o may not be available and it 
becomes necessary to estimate the population standard deviation 
from the single sample involved or "Studentize" [18] the statistic 
to be used, thus providing a true measure of the risks involved in 
the significance test advocated for testing outlying observations.

* The derivation for the exact distribution of the range is given 
in reference [9], 1942; however, Dr. L.S. Dederick of the Ballis
tic Research Laboratory also derived the exact distribution of 
the range in an unpublished Aberdeen Proving Ground Report ( 1926).
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W.R. Thompson [12] apparently had this very point in mind when he 
devised an exact test in his paper, "On a Criterion for the Reject
ion of Observations and the Distribution of the Ratio of the 
Deviation to the Sample Standard Deviation", which appeared in 1935- 
Thompson showed that if _

x, -x '

n
where x = g x^, 

1=1

n
1 V” — 2s2 = — 2_ (x^-x) and x^ is an observation 

1=1

selected arbitrarily from a random sample of n items drawn from a
normal parent, then the probability density function of

is given by 

, V r(^) 
p(t) = —---------- ------------

-^n-2)w r(2^)

i.e. "Student’s" t-distribution with f = n-2 degrees of freedom.
For

Thompson fixes <p = nP, the frequency of rejection per sample and 
tabulates the limits Tq and tQ for values of <p = 0.2, 0.1 and 0.05. 
It is to be noted that for a given value of <p - and criterion of 
rejection, .

To s '
then Thompson’s criterion rejects on the average one observation 
in every samples unnecessarily and this figure will be the same 
regardless of the sample size n. A more customary practice would 
have been to fix P at the values, say, 0.2/ 0.1, 0.05, etc., in



order that the probability of rejection under the null-hypothesis 
of sampling a single normal parent remains fixed regardless of 
sample size.

Pearson and Chandra Sekar have given a rather comprehensive 
study of Thompson’s criterion in an interesting and important . 
paper [1] which appeared in 1936. They discussed also some very 
important viewpoints which should be taken into consideration when 
dealing with the problem of testing outlying observations. It con
sequently appears appropriate at this point to summarize briefly the 
comments of Pearson and Chandra Sekar on Thompson’s paner. These 
authors show that if /T ^ / , /T^ , ... /T^/ represent the n values 

of X.-U
h - -à-

in a sample arranged in descending order of absolute magnitu.de, then 
for certain sample sizes the maximum values of for 12 2 lie 
within the significance levels of Thompson’s test! This indicates
a weakness of Thompson’s criterion to detect outlying observations 
in some circumstances. By setting up alternatives to the null
hypothesis Ho that all items in the sample come from the same 
population, Pearson and Chandra Sekar point out that if only one 
of the observations actually came from a population with divergent 
mean, then Thompson's criterion would be very useful, whereas if 
two or more of the observations are truly outlying then the criter
ion i ?TO s may be quite ineffective, particularly if the 
sample contains less than about 30 or 40 observations.

A point of major interest concerning Thompson's work never
theless is that he proposed an exact test for the hypothesis that 
all of the observations came from the same normal population, with 
regard to the use of an arbitrary observation in Thompson's test, 
however, it should be borne in mind that the problem of finding the 
probability that an arbitrary observation will be outlying is 
different from that of finding the probability that a single obser
vation from a population with mean/<+ Ao will be outlying "1 th 
respect to a set of n-1 observations from a normal universe with 
mean A .

magnitu.de


Returning now to the paper of Pearson and Chandra Sekar [1], 
we find that for the n values of arranged in order of magnitude 
taking account of sign, say .

... T^n), '

then
T(1)É t(2) 5 t(3) > T(n)

and the above authors show that the form of the total distribu
tion of all the at its extremes depend only on and T^n\ 

This is because for some combinations of sample size and percentage 
(2)points the algebraic upper limit for T and algebraic lower limit 

for T^n-D do not extend into the "tails" of the total distribution.

Hence, the following probability law holds for when a the 
algebraic maximum of T' .

p = Np(T) .

Likewise, p £ = np(t)

for £ algebraic minimum of Therefore, since 9 - NP,
Peatson and Chandra Sekar were able to use Thompson’s table [12] 
and give (for some sample sizes) upper probability limits for 
T(1) = xi~x for "the highest observation and lower probability limits

(n) -X
for T'"'= —— for the lowest observation without actually obtains
ing the exact probability distribution of T^^ and T^ . Hence, the 

appearance of the table of percentage points on page 318 of their 
paper [1] was a substantial contribution to the problem of testing 

. outlying observations since an exact test for the significance of a 
single outlying observation was provided for the case where an 
accurate estimate of a is not available. (The exact distribution 
of T^U or T^n) is derived later in this work.] -

With the above highlights of historical background in mind, 
we turn now to a consideration of the types of problems the experi- 
menter may be faced with in testing "outlying? observations.

-6-



3. Statement of Hypotheses in Tests of Outliers. Once the 
sample results of an experiment are available, the practicing sta
tistician is confronted with one or more of the following distinct 
situations as regards discordant observations : (a) To begin with,
a very frequent or perhaps prevalent situation is that either the 
greatest observation or the least observation in a sample may have 
the appearance of belonging to a different population than the one 
from which the remaining observations were drawn. Here we are con
fronted with tests for a single outlying observation, (b) Then 

. again, both the largest and the smallest observations may appear to 
be "different” from the remaining items in the sample. Here we are 
interested in testing the hypothesis that both the largest and the 
smallest observations are truly "outliers". (c) Another frequent 
situation is that either the two largest or the two smallest obser
vations may have the appearance of being discordant. Here we are 
interested in reaching a decision as to whether we should reject the 
two largest or the two smallest observations as not being represen
tative of the thing we are sampling.

In this work, we will not be concerned generally with more than 
two outlying observations (although some of our theory may be exten
ded to more than two outliers) since for such cases in dealing with 
small samples the data will probably be so heterogeneous that it 
would be desirable to conduct a fundamental investigation of our 
experimental technique or product under investigation.

As to why the discordant observations in a sample may be 
outliers, this may be due to errors of measurement in which case we 
would naturally want to reject or at least "correct" such observa- 
tiens. On the other hand, it may be that the population we are 
sampling is not homogeneous in the uni-modal sense and it will con
sequently be desirable to know this so that we may carry out further 
development work on our product if possible or desirable.

In what follows, we will examine the problem from the stand
point of testing whether the observations appear to have been drawn 
from more than one normal population. As a useful practical 
assumption, we will postulate that each of the observations is 
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subject to the same standard error even though they may come from 
different normal populations. We shall consider two cases: one in 
which the standard deviation o of the normal populations sampled is 
known accurately and the other in which a must in effect be inferred 
from the sample.

4. Sample Criteria Based Upon ihe Principle of Likelihood and 
the Theory of Best Tests in the Neyman-Pearson Sense [17]. We new 
turn to the problem of determining optimum sample statistics to use 
in testing "outlying" observations for the situations described in 
the preceding section. As mentioned above, we will restrict our 
investigation to normal populations which have the same variance 
(known or unknown) but which may have different true means as speci
fied below.

The general probability function for normal samples takes on 
the form l £ . (x.-a^)2

P = ( V^a)-n g 2" 

where we may or may not have a^ = a • for i / j . No generality will 

be lost by specifying in this section that x ^x^

since the likelihood function of such a sample is simply n! times P.

(a) Sample Criteria for a Single Outlier— a Assumed 
Known = a . We are interested here in testing the composite hypo- o
thesis H™that a^a for 1=1, 2, ... n against the hypothesis 
that a^ a*  In particular, we would like to know whether a^= a+ Xcro, 
X » 0. In order to find sample criteria based upon the principle of 
likelihood, we obtain (1) P# , by substituting in P those values of 
the a< which maximize P with respect to H and (2) P& , by substi
tuting in P those values of the a^ which maximize P with respect to 
all admissible values of the population parameters under the more 
general hypothesis and then take Hie ratio of Pw to P^ .

Under Ho- n

-n
P = PH = %) £
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so that

Now

9%
——— = 0 gives 

da

O)""

To determine ,

PH

gives

gives

we have
'n-1

1=1

1 
n-

n-1

1=1
say

so that n-1

Pa o’’D e %2 (xr

o’"1
(x.-x)2 - iTT

i=i

i n

= &
n

apH

Hen ce
P

e

e

I
2%2

a

r

x

n

n 
2(n-l)aQ2

Therefore, it follows that the sample statistic which provides an 
efficient test of HQ against for the case of a single outlying 
observation is the difference between this observation and the 
sample mean (in terms of the population oQ). Of course, if in the 
above approach we had under H put a^ = a+X aQ, X/0 and had taken 
partial derivatives with respect to a and X, we would have arrived 
at the same result. Moreover, it follows that if we test the
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null-hypothesis HQ that 
alternative H that a = 1 2
an efficient test would

a = a = a = ... = a = a against the 
1 2 3 **

a3= ... = an= a but that a^ a-XaQ, then 
be based on the sample statistic 

i.e. the difference between the sample mean and 'the smallest observa
tion.

We will now demonstrate that the above test provides the most 
efficient criteria for comparing H against H . Following the theory 
of Neyman-Pearson [17], we are testing a composite hypothesis with 
one degree of freedom, i.e. Hq: an= a, against alternatives of the 
form an~ a = b>0. Here the true mean a is unspecified.

_n - —— X (x.-a)2
Now p0 = %)” C 2o02 i=l

and = 9 . n(i-a)
3 a. a2 

o

n 
o

o

so that 4*=  A + where A and B are independent of the (in 
fact, B=O). Consequently, for the test of Hq critical regions, w, 
similar to the sample space exist [17]. Further, the inequality

Pt*  k (4) p0 [(105) of ref. 173

where k(4) is a constant (which may depend upon <#), will determine 
the best critical region w (^) subject the condition for similarity o 

where € is the size of the critical region and PQ { w ( f )J and 
PQ {w (4 )} represent respectively the integral of pQ taken over 
the critical region w( ) and the entire sample space W($ ) whatever
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be the value of for the family of hypersurfaces constant.
I Now under the simple alternative hypothesis H- , we have . 

t

and since we are dealing with regions similar to the sample space 
with regard to the parameter a, the condition -

Pt- po 

means that > ^o log k(^ ) +

i.e. k' ( f ), say

Thus, we wish to determine k1(4 ) so that the condition 

Pop"'*)]  °

holds. That is to say, the best critical region will be built up 
© from pieces of the family of hyper-surfaces = (x is constant

on each for which ^2 k’ (^).

It can be seen from section 5 below that pt^, x) can be 
represented in the form

F.
2tr

where Qn = -2— , p(x) is the probability density function of x

and P i is defined in section 5 below. Thus x and u are in effect n—±
distributed independently of one another and the conditions,

/°CP
i.e. I Po<xn,x)dxn= €p(x) where x is constant on

________________X . ___________ _______ _______________ __

*As a matter of fact, x and 4^ are orthogonal linear forms of 
normally distributed variates and therefore independent.
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and
(b) 

really imply

n Wn

4 2n 4n-l
^n-l^n-1 ^^n"

where uQ = . Hence, k' (f ) is equivalent to u^ è u = .
° o

It follows that uQ can depend only on n and E and whatever be x the 
element w( cP ) of the best critical region is given by the sample 
criterion, _ .

*n"*
—— - a const.

(b) Sample Criteria When the Two largest or the Two 
Smallest Observations are Outliers — a Assumed Known = oq. For 

this case, we test the hypothesis HQ that a^a for i=l, 2, ..., n 
against the hypothesis H that a =a = ... a o= a but that a ,= 

. 1 1 2 n-2 n-1

a * Xn-l°o »»= a + XnaQ where xn / °-

AS before, 1 £ (x.-x)2
' 2%S 1=1 1 

s» = e

To determine , we have

Moreover, 

“k> \ 1
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»PH x^-a
-—3 = 0 gives X = -j—

°

3Ph
= 0

n-2
gives r ^-l.n ’ say

and thus

n n n-l,n o
so that

__ 1_ n-2

n

P.

o

1=1

Hence
p
42- leads to 1he test

> a const

the two lowThe similar statistic for 
obvious.

If in the above treatment

o>’n 2V

thenwe had put

outliers is therefore

2n

P e
1

leads to a critical region based on

a const2

■V-



Analogously, if the two lowest observations and are 
equally outlying the likelihood principle would give a test based on

> a const

(c) Sample Criteria When Both the Largest and the Smallest
Observations are Outliers — a Assumed Known - oQ. Here, we test

o)"

Now

X -a
------- 1 = 0 gives X - ------ —

31^ * 1 %

the composite hypothesis HQ that a^ a for 1=1, 2, ..., n against 
the alternative hypothesis H that a = a-X. o . a = a = ...= a__-, = a1 1 " O 2 3 ~

and a^= a+ Xnc0 where X , X^/ 0.

As before, -, n _
s T 

%rn e 2% 1=1

To determine

H x -a
— = 0 gives V —

—'—- = 0 gives 
da

n-1
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and thus
X — . i

so that

= ( /2Tr a0)-n e 
. p

Hence, V = leads to the test

> a constant.

. We remark that if above we put X =X = X so that x. and x in j-
are equally outlying ( in opposite directions), then

%)'n 6 

p
Hence, n) = gives as an efficient test, 

-°-
x -x
——1 > a constant, 

%
i.e. the sample range, which has been proposed by "Student" [4] and 

others.
(d) Sample Criteria for a Single Outlier — cr Unknown. Our 

purpose here is to test the composite hypothesis Hq that a^=a for 

i=l, ... n against the simple alternative hypothesis. H that a^=a 
for i=l, 2, ..., n-1 and an = a+Xo, X70, no knowledge of a being 
available. In fact, a and o both are unspecified. 
Maximizing n

- à
P„ = ( <2tt o )“n
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with respect to a and o, we have

^ = o 
da

gives 1 sr -

JP
= 0 gives a2 = ~ ^(x^-a)2 = = 38 

so that n
~ 2

= (^ s)-" &

To determine P^. , we take into account all admissible values
of the parameters by setting .

p„ = (72^ o)-n e .

Taking partial derivatives, we have

% 1 n-1 _
—1 = 0. gives a = Z xr xn, say 

o a 1--L

gives

----- 1 = 0
9 CT

gives

Cl
 <N

-16-

1 n■1 , - \2 2
• 5 S ^l^n' = =n' 

1—1
so that ...

1 n-1
(v„>2

sn)-n e " = (-Jaw sn)’n e



and we will use the — th root of V as our test criterion, i.e. — 
n s2

-, n -,
»o" s' = e (^-x)2 - A (xn- 5,2

and thus •

s.

s

where is the statistic suggested by Pearson and Chandra Sekar [1] 
referred to in the Historical Comments above. We see therefore that 
the use of as a test of "the hypothesis concerning a single 
outlier is equivalent to the test based on "the most efficient (see 
proof below) sample criterion,

.2 
n
.2

where sf = n s2 and S2 = n s2. n n
The best test for the case in which the lowest observation is a 
single outlier is, correspondingly,

2

2
1
2

'J

s s
Percentage points for — ( or —1) are given in Table I and 

62 S2
were computed from the exact distribution derived in Section 8 of 
this work. Again, we emphasize that we have available here an exact 
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test for the situation where g is unknown and we are dealing with a 
single outlier. gs

We will now show that the sample criteria a const. is the 
. s

most efficient test of the statistical hypothesis Hqî a^= a for 
i=l, 2, ...» n against alternatives of the type a1=a2=.. .= a^.^a, 
a^= a+b where b >0, i.e. for the case of a single outlying observation, 
assuming that all the are subject to the same but unknown standard 
error, a. Since both a and g are unspecified we are .interested in 
testing the composite hypothesis with two degrees of freedom that 
b=0. That is to say, following the Neyman-Pearson theory of best 
tests [171, the simple alternative H = specifies

= at- ot an-at=b
( 3 ) ' while Hq specifies only the single parameter, q = b = 0 .

----- Si (x.-a)2 
z-y 2o2 i=l

Now pQ = ( |2ir o)"nC

and the condition of indefinite differentiability (see (A), page 317
of reference [17]) with respect to both a and g is obviously satisfied.
Also

n
o2

so that

- A + B <0 where A and B are independent of the x. ; 
Tl 11J1 1 1 x

in fact, A = —— , B — 0 , 
' a2

and . ,

■ - F " - - § * + sî
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where A and B are independent of the x. also. Moreover, the 2 2 1
equation,^ a constant^is equivalent to x = ci and the family of 
hypersurfaces S(c<^\ C_) — see condition (C), page 327 of [17] —

■ * ( 2 )corresponding to x = C is clearly independent of = a. There- i .
fore critical regions similar to the sample space with regard to a 
and d exist for testing HQ. In order to find the best critical 
region wQ of size € we first find the hypersurface W( )

determined by the loci of points such that const., = const,
and then find that part w^( of satisfying the
conditions:

P?k ’o '

=e /• P0Aw
J w

W( 4 0 determined also by x = and s2 - C^O.

No" - 575
,__  _ p 2at 1=1 *

Pt = (<27 ot)

and since the best critical region is independent of a and a, then
a=a. and a=a. may be substituted in p . Hence the condition vu O

means that
2b(x -a. )•> b2 + 2a? log k( / , / ) 

n u T 1 172

or since for the single outlier xn we are interested in b> 0, then 
p. p^ means simply that, say,y O

k’ ( , ^2), a const.
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Further, we can determine k’ by considering the hypersurface <^)
on which x and s2(or S2) are constant, i.e. from

(i) Po'x, J PO(Ï, S2,
k’ -vo

We complete the argument by saying that it can be seen from sections 
5 and 8 below, specifically the transformation (2) of-section 5 and 
the transformation (11) of section 8, that xn*x  — ^ln*

Y cos e ,= x and r = S. Also, x and S are . 
n wF

distributed independently of each other and can be factored - out 
of (i) without affecting the variable sin ©n of section 8. Upon 
making the above transformations in (i), it will be found that

k’ = x + S cos 6^

(where 6’ is that value of 6 for a given n n
(17) below. = £ ) so that xn^. k*  means

which makes the integral

or

cos2

S2
< sin2 6*  s n

%

That is to say, the best critical region is given by

S2

n-1

a const., where

It follows, therefore, that the best critical region for testing x c2 1
will be given by 1

S2
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(e) Sample Criteria When the Two Largest or the Two 
Smallest 'Observations Are Outliers — a Unknown. This case is 
similar to that in 4(b) above except that o must in effect be esti
mated from the sample.

It is clear from preceding developments that

we haveFor P

PH -, n-2 _
TT = ° s'™

- 0 Gives an_1= x^
^^-l

gives an = xn

1gives a» =' - ^.1)n)2 - =n-!,n . ^ay

Hence, = (f2ir sn-1 n)-n C_ 2 and the principle of

likelihood gives

= (fÊzLn)?

We propose to use the th root of P^ /P^ as the sample criterion, 

i.e. the test based on the principle of likelihood will involve the 
critical region
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s2 S2
Z a cons t.

s2 S2

The distribution of this sample statistic is derived in Section 9.

(f) Sample Criteria When Both the Largest and the Smallest 
Observations aré Outliers — a Unknown. We test here the composite 
hypothesis HQ that a%= a^~ ... — a^— a against the simple alternative 
hypothesis that a^- a^= ... = &n-l= a ais a"^  say>*
and a^= a+X^o, where X , 0. This case is similar to 4(c) above
except that a must in effect be estimated from the sample.

As previously, we have

we haveFor P

Hi - 0 gives

3

. - = 0 gives ' a^ = xn

0
H

IT
Hence, P^ ~ 2 and the principle of likelihood
renders
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nr
Thus, an efficient test would be based on the critical region

S1—=2 < a cons t.
s2

It follows from this section that if the population standard 
deviation, o, is known then efficient sample criteria for testing 
"outlying observations" should consist of the difference between 
two sums of squares : the first sum of squares is based on the 
entire sample and the second is determined from only the observations 
not suspected of being discordant. On the other hand, if a is in 
effect to be inferred from the sample, efficient tests should 
include the ratio of one sum of squares to a second sum of squares : 
the first sum of squares is based on the observations considered as 
being harmonious and the second is made up from all the items in the 
sample. If we are concerned with the hypotheses of 4(a) our test 
should be based on the difference between the largest observation 
and the sample mean (or the sample mean minus the smallest observa
tion in testing whether the smallest observation is outlying). We 
explore this distribution in the following sections. If we are 
interested in the hypotheses of 4(d), then we have an exact test and 
Table I gives significance levels for some useful sample sizes, the 
exact distribution being derived in Section 8 below. The exact dis
tribution of the sample statistic for testing the hypotheses of 4(e) 
is given in Section 9 below. For the general cases of either 4(b), 
4(c) or 4(f) further developments in the field of order statistics 
are apparently needed. (See Section 10 below for comments on the 
distributions called for in 4(f), however.) For the special case 
of 4(b) where the largest and the smallest observations are so to 
speak equally outlying and a is assumed known, an efficient test in 
the Neyman-Pearson sense is already available ; namely, the sample range 
[5], [6], [8], [9], [10]. The author believes that the tests propose d 
in 4(b), 4(c), 4(e) and 4(f) are "best" tests, however, he has not 
succeeded in proving this. We conclude this section by re narking 
that efficient tests for outlying observations depend apparently 
on just what situation we are faced with. The appropriate test to
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employ will depend upon the particular observations in the ordered 
sample considered to be outlying. No single test provides a uni
formly most powerful test for all conditions likely to be encountered 
in practice. The type of criteria giving best tests for any number 
of outliers in a sample appears to involve two sums of squares—one 
based on all the observations and the other only on the "harmonious" 
observations in the sample. '

5. Distribution of the Difference Between the Extreme and 
Mean-in Samples of n From a Normal Population? The simultaneous 
density function of n independent observations from a normal parent 
with zero mean and variande o2 which are arranged in order of magni
tude

(1)

is given by

dx dx 1 2

subject to x^

Since

then

where
- 1 P”—*n,n-l“ Çï *1' etc.

and consequently we find that we are particularly interested in the 
following Helmert _orthpgpnal_ transformation ___________
*It has been noted that K. R. Nair published the same derivation of this 
distribution in Biometrika, Vol. 35 (May, 1948)- see Ref. [20]. How
ever, the author arrived at the derivation in the spring of 1945 and 
hence includes it as a basic part of this work in connection with the 
derivations given in Sections 8 and 9» Our Table II is considerable 
more extensive than Nair’s table.
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X2

The above transformation solved for the gives

n+1

nTn^n
V(n-1)(n-2) 

n-1 " n-1

- -®1 * H" 4^4^^ n-1- '*  

(3) ;

x' = ^n.r * ^3

44»
xr ?^n+l Vn(n-lj 1» Yrn^THn^Tl*  

nTCTT^n- -^n-Il^T^ n-1 e

-25-



Thus, the conditions

give the following relations for the^^

>1 3»t 2

3

(4)

n-2

I n 
n-: n-1

whereas the region

The Jacobian

of integration for % is

of the transformation (3) is unity

x? \""%n)

and due to orthogonality we have

Hence, the density function of theX^ is given by

nl 'àSK'

(^CT)n ^M3'"^)&i+1

subject to the conditions or regions of integration (4).
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Since n+1 is unrestricted, we integrate this variable out 
arriving at the density function

- — ZX2 
nf P 2c2 1=2 1

(^")n=T C ^2 ^2 "A

Recall that we seek the distribution of Hie statistic

xt~ x - 1 Xu = —— where x = %(x + x + ...+ x ) r a r i 2 r

Hence, we make the transformation

(5)

The Jacobian of Hiis transformation is given by

,T(n2'^2"" %n 2o . 3o
2.1

no 
n(n-l)

n-1

and 
for

the conditions 
the K- as

on the X (4) determine the limits of integration

^2 n

^2^2

(6) 3

n-l n-1

Integrating the l<r, (r=2, 3, ... n-1) over their appropriate 
ranges, we have the probability density function of K
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0

Thus, the distribution of xR- x or of x - x^ 
problem of computing a transformed multiple normal 
integral for n-1 variables.

Defining F^( K ) = I we have 
vo

F2((X) = 2

resolves into the 
probability

|(2x=).
dx

0

(8) P (%) = I
3 Jo

- |(P)
F (&)dx 

2 £

-
?3(^x)dx

0
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This is equivalent to the result of McKay (11), although the 
above derivation is a considerably simpler one.

Now increases from 0 to

Hence, if ^n-l^n^I^^ is practically

large, the upper percentage points of

1 as K. increases from 0 to œ . 

unity, i.e . for numerically 

*cn may be approximated by the
normal integral

(9)
J^n

r* - 4 jlk.2

t2
2

Formula (9) was found to be particularly useful in checking 
the higher probabilities in Table II.

It may be noted that for n-2 in (7) and (8), we have the
well-known result

PM2 2
0

2
22

where *.  is either the sample standard deviation, the difference 
2 .

between the largest and mean, the mean déviation or the semi-range
for a sample of two items. ■

The cumulative distribution functions (8) may be put into 
another form by setting

4Cr y t = 2, 3, ..., n
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Then Fn ( K) becomes

(10) Fn(Uj = n nl*' h-1 3
n 2

i(i-l)
0 <*0 0*0

Define the following functions :

H (x) = 1
fx _ 1 . t2

H (x) = -“C 2 H (t)At
2 1

-ç-x . 1 . _t^=^Jo 2 3-2
__ .X _ 1 . t2

4’3

1 
2

Hence, the probability that the difference between the extreme 
and the mean in samples of n from a normal population is less than no 
is given by the alternative forms

" F (wj = H (nK) w ix j n n

Of course, H^fn 1 as for any given n.

In the November 1945 issue of Biometrika, Godwin [13] arrived 
at a series of functions closely related to the Hr(x) in connection 
with the distribution of the mean deviation in samples of n from a
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normal parent. In Godwin's work, he defines functions G (x) which 
are related to the H^(x) by the equation

(2tt)7 H^(x) = G^(x)

The G^(x) functions which were computed by H. 0. Hartley [15 ] for 
r=2, 3, ... 9 only have not as yet been published. Computations 
on the functions ?n(M), i.e. (8), were well under way by the 
author before Godwin’s article on the mean deviation appeared.
The or G^(x) can be used to obtain both the distribution of
the difference between the extreme and mean and also the probability 
integral of the mean deviation. Indeed, it is believed that these 
functions will have a useful place in tabulating distributions of 
order statistics.

6. The Tabulation of the Distribution Function, (W).

The tabulation of the F^(4) with ordinary computing equipment 
is quite laborious. However, a table model computing machine was 
used initially to obtain the (% ) for n=2 to n=15 with the aid of 
formulae (8) in the following fashion.

For a sample of size n=2, the probabilities F (K) may be 
obtained directly from the Wl'A "Tables of Probability Functions"', 
Volume I [14 ], since

F (q) = —Ig dx
2 /tT o/

0

For sample sizes greater than n=2, a uro cess of numerical 
quadrature was used to obtain the F^(^). Thus,
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t2 
T

The functions ~=—v were obtained to
V2rr 

decimal accuracy by interpolation on column 2, of the

seven or eight

MPA Tables [14]
and the integrals

A*"
£Pr_1W =

were recorded to seven decimal places using six-point Lagrangian 
interpolation formulae on the distribution functions

Fr-l^

in view of the fact that must be interpolated on to find one
of the factors of checks were made at each stage, Fr(**),  by
differencing, calculating moments in the final tables and by formula 
(9).

Each was produced by numerical quadrature (Weddle’s Rule) 
on the computed ordinates, ' .' ;. The following table gives an 
approximate summary of the intervals used for the tabulation:



n Range- of pv ( u)

3 u = 0 ( .025) 1.00 ( .05) 5.00 ‘
4 u = 0 (.025) 1.00 (.05) 5.20
5 u = 0 (.025) 1.00 (.05) 2.00 (.10) 5.30
6 u = 0 (.025) 0.90 (.05) 2.00 (.10) 5.40
7 u = 0 (.025) 0.80 (.05) 2.00 (.10) 5.50
8 u = 0 (.025) 0.70 (.05) 2.10 (.10) 5.60
9 u = 0 (.05) 2.20 (.10) 5.70

10 u = 0 (.05) 2.30 (.10) 5.80
11 u = 0 (.05) 2.40 (.10) 5.90 *
12 u = 0 (.05) 2.50 (.10) 6.00
13 u = 0 ( .05) 2.60 ( .10) 6.10
14 u = 0 (.05) 2.70 (.10) 6.20
15 u = 0 (.05) 2.80 (.10) 6.30

* The author suggested the problem of tabulating the functions P (u) - ■ n
or HQ(nu) to the Computing Laboratory of the Ballistic Research _ 
Laboratories in the fall of 1945; how ever, due to problems of higher 
priority, these functions were not computed on the E”IAC until 
March, 1948.

About five decimal accuracy was available for (u) using the 
above procedure.

In view of the possible general usefulness of the H (x), these 
functions were also computed as a sample problem on a high-speed 
computing device, the ENI AO (Electronic Numerical Intergrator and 
Computer) of the Ballistic Research Laboratories of the Ordnance 
Department". In this connection,'the'H (x) have been computed for 
r=2 to r=25 at the Ballistic Research Laboratories. Dor n=2, the 
functions H (x) were computed to nine decimal places of accuracy on 
the_MIAC and at n=25 about five decimal places of accuracy were 
obtained. In Table II we have tabulated Fn(u) or H (nu), i.e. 
the probability integral of the extreme minus the mean, at intervals 
of u = .05c. Values computed on the table model computing machine 
agreed to five decimal places at n=15 with values from the ENIAC. 
Percentage Points of the distribution are given in Table III and. 
the moment constants may be found in Table IV. Moment constants 
for n=60, 100, BOO, 500 and 1000 were obtained by use of McKay’s 
formulae [ill (which relate the semi-invariants of x -x with those 
of xn) and Tippetts moments [5] for the largest observation x .
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7. Relation Between the Distribution of the Largest Minus 
the Mean of All n Observations and the Largest Minus the Mean of 
the Remaining n-1 Items. The following relation is of interest 
concerning these two statistics:

x,+ x + ...+ x
Let K. = x - —i-----— ---------- 21n n n

= À V'"Xn-l

I
Hence, 

AT « n n n—1 n

or 

i.e. the probability integral of the largest minus the mean of the 
other observations may be obtained by interpolation on the distribu
tion of the largest minus the mean of all n items in the sample.

8. The Distribution of S®/S2 and S2/S®. As shown in

Section 4 above the best test in the Reyman-Pearson sense and the 
likelihood principle leads to the sample criterion

S

S

g 
!»

' n-1
V 5=1 *1

1=1

for testing the largest observation and
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2
n

1=1

Xi

for testing whether the smallest observation 
find the probability distribution of S^/S2; 
s=/s=.

is outlying. We now 
hence, also that of

Returning to the density function

il(N 2.n3----Hn,= *.A, — An

. of Section 4 (but neglecting a which will not effect what follows), 
we make the polar transformation

yt = r sin 6 sin 6 , sin 6. sin 6,*2 n n-1 ... 4 j

* = r sin 6 sin 6 n ... sin 6. cos 6_'13 n n-1 4 3

yi. = r sin 6 sin 6 _ ... sin 6. cos 6,M- n n-1 4 3

(11) :

>tn.2 - r sin 6n sin 6n_1 cos

1n-l = r sin 6n cos en-1

Un = r 6n

Now

Z^i = .
1=2 1=1

and 
n-1 n-1

SThi 2 = r2 sin2 6^
3^ M.
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Hence, n^l- - ■ is 

1=1 1

The Jacobian of the above transformation is

rn~2 sinn~^6_ sin^"^6_ -, . sin36 sin26 sin6
n n-l b d 4

and since 0£r£«&

(12) 4F(©n» ®n-i» ®4»

= -----n*'  , 2 2 r(”i”) sinn”^6 • • • sin26-sin 0A 6 .. .4,6- 46. 4 6,
n-i 2 n 5 4 n ? 4 >

(2TT)^"

Recalling the restrictions

)1 2 0 r-2 A r^Xr-l )

we have Vi
tan 6 cos 6 - = n^ 4

n n‘1 Hn

or tan 6^ $ sec 6n_1 n? 4

and 0 46^ ^-y-
■ n-l

0

sec 6 .. n-lsec 6 o / tan n-2 I

2 2 r(^), we see thatV —Til

* -tan-1^sec 6

... sin26_ sin6. ^6 .A 6. ^6_ = 1
5 4 n 4 3
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Upon reversing the order of integration (the variable limits are 
monotonic) we get for n=3 

so that

(14) F(e^ e) *e 5 o e 6 tan"1 V^i
Jo

When n=4, we obtain

so that
K/ / j

(15a) P(e4^ e) = f sin e4 Ae4

0 
and

(15b) P(6.^e) .4

when 0 £ 6 £ tan"1

sec"1Jr tan 6. 
V4 4

sin 64 3 4

when tan"1^66 tan"1

When n=5, we get

0 0

sin2 6C sin 6. Ae_ Ze.^6c 
3 4 3 4 5
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(where see is to be taken as 0 whenever 6

= 1

4^ tan

so that

tan 64

(16a)

when tan"^^6^ tan-1

tan 6.4

and we put tan G =0 whenever 6. s tan 4 4
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For a sample of n items

(17a) Sin^e 
n n

_ n T ,n-2 1
2 ^sin^e 2 when 0^66 tan

and

(17b) P(eM < 6)

16 «tan (n-1)(n-J) ptan"1 ^(n-2) (n-4 )

sec y tan 6 , “n-l n-1

sin e /e,Àe..,. ^b„ 
4 3 4 n

for tan 6tan ^n(n-2^

where I^fp,^ is K. Pearson’s Incomplete Beta Function Ratio [19]• 
It is to be understood in (17) that

-1 \1-2 „sec J —r tan G. for i=4, 5, n-|

is to be taken as zero when
G^ tan
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Percentage points for the sample statistic

2

1=1

are given in Table I and were obtained by inverse interpolation on 
the tabulation of the probability integral (17) above. The job of 
tabulating the multiple integral (17) was carried out on the Bell 
Relay Computers at the Ballistic Research Laboratories.

9.____________________________ The Distribution of S2 , /S2 and S2 /S2. As indi n-l,n____________ i, a
cated in Section 4, the Neyman-Pearson likelihood criterion for 
judging the significance of the two largest observations is

n-2

2

2

and that for testing the two smallest observations is

where

xi
1» 2 n- Xi

1=3

n

From the preceding section, we note that

= re 
i=2 1

2 sin2 6 n sin2 6n-l

Hence n-2
-l,n>2

sin26, sin2@ ,= n n-1
2
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so that if we find the distribution of
- v * X»
sinG^ sinô^ = sin 6% , say,

then we have the distribution of S2_-^ n^2 hence also that of

P ^sin2An^ k"^ = sin 1

Returning to the multiple integral (13), let

sin An= sin Gn sin Gn_1 '

&i= @1 îü^n-1

The Jacobian of this transformation is given by

d ( ®n, • • • » cos

n-1 n

The limits of integration for An are given by

\Jn" sin 4 n-10*  An4 sin"1
V 2(n-l)-(n-2)sin2a ,

n-1

and, of course, those for An-1,...,A^ are the same as the limits 

for ...,G^ respectively. Hence, substituting in (13), we 

obtain

tan"1^^ &n-2

0

sin
V2 (n-1 ) - ( n-2 ) sin2^^

sin11 ^A^sin" ^A^_^...sin^&^sinA^cosA^^.. 

s inn ” 3 An _ 1 s in 2 An _ 1 - s in 2 An



Reversing the order of integration, we have

^an"1 g(n-l)(n-3)

_ ^2(n-lï sin^
sin"^ ----------------------—

yn+(n-2) sin2A

^tan~^ ^n-2) (n-4?

tan^n-i

IT
s in11 in11 ^"An j--.sin A^cos

= 1

For A. tan

so that for n=4,

(22) F(A^ A)= K

then sec”^ tan A^ isAto be put equal to zeroj

sinA. cos A ÂA,Xa 
4 4 P T

/ J -1 siniJsln®4,-sln%

• 5
where % , O^A^sin”1 &

and for n=5,

TT

sinaA^cosAg4A^A^A^

sinA.sinaA.-sinaAc■ 4 w 4 5

where 04 A 4.sin~l 
etc.
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We remark that an obvious extension of the above principles
should lead to the distributions of

Sn-2,n-l,n/s2 and S2
1,2,3

c2
n-3,n-2,n-l,n/S2 and S2 ^/s2 ,

etc. although the tabulation of such probability integrals may be 
exceedingly difficult.

The problem of tabulating the probability integral (21) 
involves a double quadrature process and has already been suggested 
to the Computing Laboratory of the Ballistic Research Laboratories. 
It is hoped that percentage points for

Sn-l,l/S' “13

will be available in due course ; however, this problem will have 
to wait its turn along with other computing problems. For n=4, 
the 1% point for the above statistic is .0055 and the 5% point 
is .0158.
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10. Comment on the Distribution of S2 /S2 
_ ;_____________________________ X»n

with the distribution of the statistic 
n-1

s« ZT"

n-1
i 5”

n"2 1=2

In connection

x.

i=l

for testing simultaneously whether the smallest and largest observa
tions are outlying, an investigation indicates that since

♦ ...♦|(V^^)’+2(x3-^

then the transformation -

*2"1 ^2 = -x + x
2 3 .

fÿï. r3 = -x2-x3+ 2x4

*4'3^4 = -xs-x3-x4+ 3Xj

(24) ;
V(n-2)(n^)ir.g=

f(n-l)(n-2) V* n _1= -(n-2)xi+xg+x3+..,+xn-1

X -X -X - 
2 -^-i+fn-ilXn

n+i i 2

followed by transformations of the type (11) and that of Section 9 
will lead to the distribution of S2 n/S2. However, the limits of 
integration do not turn out to be functions of single variables,and 
the task of computing the resulting multiple,integral may be exceed
ingly difficult.
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11. Examples on Testing Outlying Observations for Rejection.
We now turn to the problem of applying our theory to particular 
practical examples of data which appear to have outlying observations. 
Apparently, in the following examples there were not sufficient prac
tical or experimental grounds to reject the suspected outliers and 
hence some statistical judgement became necessary either to support 
retaining the "outliers" in the sample or leave little doubt that 
certain of the observations should be rejected.

Example 1. Our first example has almost become a classical one as 
Irwin (3 ], Rider [2], and other writers on the subject including 
Chauvenet, Peirce, Gould, etc. (see Rider’s survey [2]) all refer to 
it, applying their various tests. The example consists of a sample 
of 15 observations of the vertical semi-diameters of Venus made by 
Lieut. Herndon in 1846 and is given in William Chauvenet’s, "A Manual 
of Spherical and Practical Astronomy", II (5th ed., 1876), p.562.
The individual residuals or deviations from the mean are :

-0.30"
-0.44
1.01

0.48
-0.24
0.06

0.63 -0.22
-0.13 -0.05
-1.40 0.20

0.18
0.38
0.10

Arranging the observations in increasing order of magnitude, we have:

-1.40"
-0.44
-0.30

-0.24
-0.22
-0.13

-0.05 0.18
0.06 0.20
0.10 0.39

0.48
0.63
1.01

and it is seen that two of the residuals, -1.40 and 1.01, appear to
be outliers. Rider [2] indicates that^the above observations have 
been referred to by previous writers as "residuals"; nevertheless 
their sum is 0.27, so that the sample mean, x=.O18. Let us apply 
the exact test, i.e. S^/S2 as developed in Sections 4 and % for a 
single outlier to the least observation, -1.40. We find S2- 4.2496 
using all 15 observations and S2- 2.0953 which is based on 14 obser- • i
vations, the suspected outlier -1.40 not being considered. Further, 
S2/S2= 0.4931 and from Table I we see that 0.0K P<0.025 so that 
we would reject the observation -1.40 when using the 5% level of 
significance. Having rejected -1.40, we now have left a sample of
14 observations and test the greatest one, i.e. 1.01. Upon computing 
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new sums of squares, we find S^= 1.2409 leaving out 1.01 and 
S2= 2.0953 including the observation 1.01. Hence, S2/S2= 0.5922 
and from Table I, we find P slightly greater than .10, so that we 
decide to retain the observation 1.01.

It would be interesting to see whether or not ihe test S2 /S2 1 
would reject simultaneously the observations -1.40 and 1.01 if per
centage points for the distribution of this statistic were available.

It is of interest to remark that for this particular example 
Irwin [3, page 245), using the difference between the first two 

x -x 
individuals divided by an estimate of cr, i.e. 2g 1 , concluded 
also that -1.40 but not 1.01 should be rejected. In testing both 
of these observations, Irwin used the single biased estimate for o, 

I n
\| zE (x.-x)2 = . 5326 (assuming x=0) ,
N n 1=1 i

based on all 15 observations. It is a mere coincidence, of course, 
that for this example Irwin's test gives the same results as the 
exact test based on the ratio S2/S2. In this connection, Irwin 
rightly calls attention to the fact that in dealing with a sample 
of only 15 observations the standard deviation of the sample is a 
very unreliable estimate of the population standard deviation.

It is remarked that here we would, of course, hesitate to .
x-x

apply the test ----- - of Section 5 above to the observation -1.40c
as we do not have available an accurate estimate of or from past data.

Example 2. We next consider an example of Pearson and Hartley [18] 
which is a modification of one used by "Student" [4) concerning the 
control of accuracy in routine chemical analyses. The problem of 
"Student" was one of checking day after day the conformance of some 
solution or substance to a standard by use of a small sample. We 
quote Pearson and Hartley [18], p.90: "The characteristic measured, 
for example the acidity of a solution, is estimated from the mean 
of a few (say n) observations, and a routine check on the consistency 
of these determinations is required to ensure that accuracy is main
tained. Discordant observations will be repeated and, if■necessary, 
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rejected, and ’Student’ pointed out that it would obviously be of 
advantage to work on a regular system; for this purpose he proposed 
the use of the range of the n determinations. The situation he 
considered was one in which the standard deviation of the within-day 
error of analysis had been found from experience to remain constant 
and could be assigned a known value, a. It is clear, however, that 
situations will occur in which the standard error of analysis appro
priate on a given day can only be estimated from the determinations 
of a few previous days, In [18] Pearson and Hartley give per
centage points for q= (x^-x^/s, where is the largest observation, 
x^ the smallest and

V+1 
s2 = y (x.-x)g 

1=1 ,

is determined from an independent sample (V = d.f. )., i.e. in 
’’Student’s” problem s2 based on 1/d.f. is found from previous days 
and x , Xg, ... xn represent the sample values on the particular 
day the acidity of a solution is checked.

Pearson and Hartley cite as an example the four test results 
22.8, 23.5, 26.0 and 26.6 on a particular day and give s=.675 as an 
estimate of c which is determined from tests of five previous days 
and based on V = 15 degrees of freedom. Using the statistic, q, 
and the tables of percentage points for q in [18] Pearson and 
Hartley proceed according to ”Student” and find that x^-x^ 
26.6 - 22.8 = 3.8 is greater than can be ascribed to chance (5% 
level of significance). Consequently, an additional observation 
is called for and it is hypothesized that a retest gives the new 
result 23.9. (This new observation is called for since the esti
mate of a day’s mean is to be based on at least four observations.) 
With a sample now of five observations, Pearson and Hartley now find 
that x^-x^z 3.8 is still too great and decide to reject 22.8 thus 
leaving 23.5, 26.0, 26.6 and 23.9. But now for the remaining four 
observations the sample range 26.6 - 23.5 = 3.1 is found to be sig
nificantly large as that a new test result is called for: suppose 
23.5 is obtained. Finally, using all six observations and testing
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their significance with the statistic q= (x—xj/s, Pearson and . 
Hartley following ’’Student’s" procedure reject 22.8, reach a sample 
of five items, then reject 26.6 and wind up with a sample of four 
observations, i.e. 23.5, 26.0, 23.9, 23*5,  whose range (2.5) is not 
too great and accept as the day’s mean 1/4(23.5 + 26.0 + 23.9 + 23.5) 
— 24•2•

Our interest in the above example stems from the fact that the 
observation 26.0 in the final sample appears to be a single outlier 
and moreover it is of interest to compare the above procedure with 
the findings of this paper. Let us first apply the exact test for 
a single outlier to the final sample, 23.5» 26.0, 23-9, 23.5 without 
using any previous knowledge of a. Here, we have S2= 4*3075  and 
S®= 0.0107 (leaving out x^= 26.0) so that 82/52= 0.025 which is 
significant at the 2.5^ probability level—see Table I below for 
n=4. Thus, the observation 26.0 would be rejected under this test. 
On the other hand, using the value s=.675 based on past data for 
15 d.f. and tables of the x2-distribution, we find the p£ oÿ .97^ = 

0.05. ' Thus, taking a fair upper limit for a and using the test

= (26.0-24.2)/.970 = 1.86, for which P = .06 from Table II and 

we may even say there is indicative significance. If we had used 
Irwin’s criterion for a single outlier, (x^-x^^/o, we would obtain 
(26.0-23.9)/.970 = .216 and find from Table II of Irwin’s paper [3] 
that P< .05; hence, we are inclined to doubt that the observation 
26.0 is consistent with the other observations, even using the 
somewhat liberal maximum for a = .970.

Suppose next we consider the entire sample of six observations: 
22.8, 23.5, 26.0, 26.6, 23.9 and 23*5  (x= 24.38). In view of the 
findings of the present work, we should probably want to apply a 
test based on the sums of squares about the mean of the observations 
23.5, 23.9, and 23.5 divided by the sums of squares about the mean 
for all six items since we may suspect a-"low” observation (22.8) 
and perhaps two "high” observations (26.0 and 26.6). If we suspected 
only the observations 22.8 and 26.6, Section 4 above indicates that 
a statistic based on the range provides an efficient test for the
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case in which both the greatest and least observations are equally 
outlying—this is the sort of test used by Pearson and Hartley in 
this example. Presumably, however, in using a test based on range 
we should reject simultaneously both the largest and smallest obser
vations. Suppose, nevertheless, that instead of rejecting first the 
observation 22.8 and then the observation 26.6 (as Pearson and - 
Hartley [18] did), we first reject using (x^x^)/s the observation 
26.6 since xn-x turns out to be greater than x-x^, i.e. 26.6 -24.38 = 
2.22 and 24*38  - 22.8 = 1.58. We are then left with the five obser
vations s 22.8, 23.5, 26.0, 23.9 and 23*3*  Now employing the exact 
test Sq/S2 to the suspected single outlier 26.0 where now S2= 5*932  
and S®= 0.6275, we obtain S2/S2= 0.106 and find from Table I that n n
O.O25< P<0.05? hence, 26.0 should be rejected, leaving 22.8, 23.5, 
23*9  and 23.5 which appear "consistent" by using any of the tests. 
Moreover, using the figure of .970 as a maximum for the past a and 
Irwin's criterion for the difference between the first two individ
uals we would also reject 26.0 from the sample of five (22.8, 23.5, 
26.0, 23.9 and 23*5)  or with c = .970 and using Irwin’s criterion 
for the difference between the second and third individuals [3] we 
would reject both 26.0 and 26.6 from the sample of six observations. 
Hence, our final sample would again consist of the four observations 
22.8, 23.5, 23*9  and 23*5  with x = 23.4*

We remark that Pearson and Hartley were interested primarily 
in demonstrating "Student's" procedure using the statistic (x^x^/s, 
in the above example. Consequently, it is not the intention here to 
question the judgement of outstanding authorities in the field of 
applied statistics, but rather to point up "the difficulties encoun
tered with presently available tools and to indicate that certain 
combinations of appropriate tests may be valuable, depending on just 
what information is available.

Example 3« The following ranges (horizontal distances from gun 
muzzle to point of impact) were obtained in firing projectiles from 
a weapon at a constant angle of elevation and at the same,weight of 
charge of propellant powder:

-49-



- Distances in Yards
4782 4420 '
4838 . 4803
4765 4730
4549 4833

It is desired to know whether the projectiles exhibit uniformity in 
ballistic behavior or if some of the ranges, such as 4549 and 4420, 
are not consistent with the others.

Arranging the distances in increasing order of magnitude, ■

4420 4782
4549 4803
4730 4833
4765 4838

we suspect the presence of two outliers, i.e. 4420 and 4549• Having 
no available knowledge of o from past data for this example, an 
efficient test to apply would be that of Section 9, i.e. £/S2; 

however, not yet having available the percentage points of this dis
tribution, we apply the test, S2/S2, suspecting that at least the 
observation 4420 is an outlier. From the entire sample of ei^it 
items we get S2= 158592 and leaving out 4420 we obtain S2~ 59134.9 
so that S2/S2= 0.3729 and from Table I we find 0.05<P<0.10. Thus, 
we do not necessarily reject the lowest observation, 4420. We are 
still not satisfied, however, for we know that the test, S2/S2, 
may be weak in the presence of more than a single outlier [1].
Hence, the following treatment is mentioned in passing as a temporary 
practical expedient (until the distribution of S2 g/S2 has been 
tabulated). Consider the last seven of the ordered observations, 
i.e. «

’ 4549 4782
4730 4803
4765 4835 .

' 4838 '

and apply the exact test, S2/S2, to the smallest observation, 4549. 
We find then our new

. s® = 8590.8 S2 = 59134.9

and S2/S2 = 0.1453 so that 0.01< .025 from Table I aid we should 

' . -50-



thus reject 4549 from the sample of seven. More over, we should now 
surely reject 4420 as being outlying. Hence, following this scheme 
as a practical expedient we would be inclined to reject both the 
observations, 4420 and 4549, leaving a sample of six items:

4782
4838
4765

4803
4730
4833

Apparently then, "the two projectiles giving the short ranges of 
4420 yards and 4549 yards behaved differently in ballistic character
istics from the others.

12. Summary. The problem of testing outlying observations, 
although an old one, is of considerable importance in applied statis
tics. Many and various types of significance tests have been pro
posed by statisticians interested in this field of application. In 
this connection, we bring out in the Historical Comments notable 
advances toward a clear formulation of the problem and important 
points which should be considered in attempting a complete solution. 
In Section 3 we state the situations the experimental statistician 
will very likely encounter in practice, these considerations being 
based on experience, and in Section 4 we proceed in a systematic 
manner to set up the statistical hypotheses to be tested when engaged 
in the problem of outlying observations and determine just what 
sample criteria provide efficient or best tests in the sense of 
Neyman-Pearson. Efficient tests for outlying observations appear 
to be based on (1) the sum of squares about the mean of all the 
observations in the sample and (2) the sum of squares about the mean 
of only the observations in the sample which appear consistent with 
one another. In case an accurate estimate of population standard 
deviation is available, say from past experience, we should employ 
a test of the difference between (1) and (2). On the other hand, 
for an exact test having no knowledge of o we obtain for efficient 
tests the ratio of (2) to (1). For the case of a single outlying 
observation, a assumed known, the best sample statistic consists of 
the difference between the extreme and mean. The distribution of 
this statistic is derived in Section 5 and its probability integral
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is tabulated in Table II. It is apparent that the set of functions 
necessary for tabulating the probability integral of the difference 
between the extreme and sample mean may prove of wide use in Mathe
matical Statistics - probably in the field of order statistics. The 
set of functions referred to have been tabulated at the Ballistic 
Research Laboratories on the Electronic Numerical Integrator and 
Computer.

For the case in which the population standard deviation is 
unknown, we derive.exact distributions for efficient sample statistics 
in testing the largest or the smallest observation in the sample 
(Section 8) and the two largest or two smallest observations (Section 
9)» The distribution of 8®/S2 or S2/S2 in Section 8 has been tabu
lated on the Bell Relay Computers at the Ballistic Research Labora
tories and it is hoped that priorities will permit the tabulation of 
the distribution called for in Section 9 in due course. In Section 
10, we indicate some theoretical difficulties connected with deter
mining in suitable computational form the distribution of efficient 
sample criteria for testing simultaneously the largest and smallest 
observation.

We conclude the dissertation with applications of our theory 
to practical problems and point out some useful methods of attack in 
testing outlying observations.
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Table 1
' Sn S?

Table of Percentage Points for —- or — 
S® S2

Percentage Points

n 1% 2.5# 5# 10#

3 .0001 .0007 .0027 .0109

4 .0100 .0248 .0494 .0975

5 .0442 .0808 .1270 .1984
6 .0928 .1453 .2032 .2826

7. .1447 .2066 .2696 .3503
8 .1948 .2616 .3261 .4050
9 .2410 .3101 .3742 .4502

10 .2831 ..3526 .4154 .4881
11 .3211 .3901 .4511 .5204
12 .3554 .4232 .4822 .5483
13 .3864 .4528 .5097 .5727
14 .4145 .4792 .5340 .5942

15 .4401 .5030 .5559 .6134
16 .4634 .5246 .5755 .630 6
17 .4848 .5442 .5933 .6461
18 .5044 .5621 .6095 .6601

19 .5225 .5785 .6243 .6730
20 .5393 .5937 . 6379 . 6848
21 .5548 .6076 " .6504 .6958
22 .5692 .6206 .6621 .7058

23 .5827 .6327 .6728 .7151
24 .5953 .6439 .6829 .7238

25 .6071 .6544 .6923 .7319

X ] 4 M x3 *

S2 n (x,-x)2 where x = x
1=1 1 n 1=1 i

n-1 , n-1
S2 (x.-x )2 where x • XZZr
n 1=1 in n n-1 1=1 i

n

1=2
where x& •H 

K 
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Table II

Probability Integral of the Extreme Minus the Mean, un, in 
Normal Samples of n Observations (Pop. S.D. as unit)

P(u^)

Kn 2 5 4 5 6 7 8 9 1 • u

.00 .00000 .00000 • .00000 .00000 .00000 .00000 .00000 .00000 .00

.05 .05657 .00509 .00017 .00001 .00000 .00000 .00000 .00000 .05

.10 .11246 .01251 .00154 .00015 .00002 .00000 .00000 .00000 .10

.15 .16800 .02745 .00445 .00072 .00012 .00002 .00000 .00000 .15

.20 .22270 .04817 .01055 .00221 .00047 .00010 .00002 .00000 .20

.25 .27655 .07405 .01966 .00520 .00157 .00056 .00010 .00005 .25

.50 .52865 .10450 .05292 .01055 .00524 .00101 .00052 .00010 .50

.55 .57958 .15896 .05040 .01820 .00656 .00256 .00085 .00051 .55

.40 .42859 .17677 .07218 .02955 .01191 .00482 .00195 .00079 • 40

.45 .47548 .21724 .09816 .04416 .01982 .00889 .00598 .00178 -45

.50 .52050 .25968 .12807 .06288 .05080 .01507 .00757 .00560 .50

.55 .56552 .50544 .16152 .08559 .04525 .02590 .01261 .00665 «55

.60 .60586 .54788 .19801 .11219 .06544 .05585 .02022 .01140 • 60
1 -65 .64205 .59245 .25697 .14246 .08547 .05121 .05067 .01856 .65
> .70 .67780 .45656 .27781 .17602 .11150 .07050 .04457 .02800 .70

.75 .71116 .47985 .51992 .21242 .14076 .09518 .06164 .04076 .75

.80 .74210 .52185 .56274 .25115 .17555 .11978 .08265 .05698 .80

.85 .77067 .56250 .40571 .29160 .20920 .14995 .10759 .07688 .85

.90 .79691 .60095 .44855 .55525 .24727 .18529 .15578 .10055 .90

.95 .82089 .65761 .49021 .57555 .28721 .21945 .16757 .12791 .95

1.00 .84270 .67214 .55095 .41795 .52847 .25791 .20240 .15877 1.00
1.05 .86244 .70448 .57020 .45999 .57050 .29815 .25980 .19280 1.05
1.10 .88021 .75459 .60777 .50125 .41276 .55961 .27927 .22957 1.10
1.15 .89612 .76248 .64546 .54156 .45478 .58175 .52025 .26858 1.15
1.20 .91051 .78817 .67715 .58001 .49611 .42401 .56220 .50951 1.20

1.25 .92290 .81174 .70870 .61697 .55658 .46595 .40457 .55117 1.25
1.50 .95401 .85525 .75812 .65205 .57525 .50712 .44685 .59562 1.50
1.55 .94576 .85280 .76540 .68515 .61249 .54716 .48857 .45615 1.55
1.40 .95229 .87049 .79055 .71612 .64788 .58574 .52955. .47822 1.40
1.45 .95970 .88644 .81564 .74497 .68129 .62265 .56878 .51945 1.45

1.50 .96611 .90075 .85472 .77170 .71261 .65762 .60665 .55944 1.50
1.55 .97162 .91555 .85590 .79652 .74180 .69058 .64265 .59789 1.55
1.60 .97655 '.92495 .87127 .81890 .76885 .72145 .67668 .65456 1.60
1.65 .98058 .95506 .88695 .85949 .79578 .75015 .70862 .66925 1.65
1.70 .98579 .94400 .90099 .85820 .81664 .77666 .75859 .70184 1.70



Table II (Cont1d.)

Probability Integral of the Extreme Minus the Mean, u^, in 
Normal Samples of n Observations (Pop. S.D. as unit)

P(un$u) . -

2 3 4 5 6 7 8 9 u

1.75 .98667 •95187 •91358 .87513 .83750 .80107 .76597 .73225 1.75
1.80 .98909 .95877 .92480 •89037 .85646 .82341 .79139 .76046 1.80
1.85 .99111 .96480 .93476 .90405 .87360 .84376 .81469 .78647 1.85
1.90 .99279 •97005 .94358 .91628 .88903 .86220 .83593 .81032 1.90
1.95 .99418 .97461 •95135 .92716 .90288 .87885 .85522 .83207 1.95

2.00 .99532 •97854 .95818 .93682 •91526 .89381 .87264 .85183 2.00
2.05 .99626 .98193 .96416 .94536 .92627 .90721 .88832 .86968 2.05
2.10 .99702 .98483 .96938 .95289 .93605 .91916 •90236 .88574 2.10
2.15 .99764 .98731 .97392 .95949 .94468 •92977 .91490 .90012 2.15
2.20 .99814 .98942 •97785 •96527 .95229 .93917 .92604 .91296 2.20

2.25 .99854 .99121 .98125 .97032 .95897 .94746 •93591 .92438 2.25
2.30 .99886 .99273 .98418 .97470 .96482 .95476 .94462 .93448 2.30

■^2.35 .99911 .99400 .98669 .97850 .96992 .96114 .95229 .94340 2.35^2.40 .99931 .99507 •98883 .98178 .97435 .96672 .95900 .95125 2.40
2.45 •9994-7 .99596 .99066 .98461 .97819 .97158 .96487 .95812 2.45

2.50 .99959 .99670 .99222 .98703 .98151 •97580 .96999 .96412 2.50
2.55 .99969 .99732 .99353 .98911 .98436 •97944 .97443 .96935 2.55
2.60 .99976 .99782 .99464 .99088 .98681 .98259 .97827 .97389 2.60
2.65 .99982 .99824 .99557 .99238 .98891 .98529 .98158 .97781 2.65
2.70 .99987 .99856 .99635 .99365 .99070 .98761 .98443 .98120 2.70

2.75 .99990 .99886 .99701 .99473 .99223 .98959 .98688 .98411 2.75
2.80 .99992 .99909 .99755 .99564 .99352 .99128 .9Q897 .98661 2.80
2.85 .99994 .99928 .99800 .99640 .99461 .99272 .99075 .98874 2.85
2.90 .99996 .99943 .99838 •99704 .99553 .99393 .99227 .99056 2.90
2.95 •99997 .99955 .99868 •99757 .99631 .99496 .99355 .99211 2.95
3.00 •99998 .99964 .99894 .99801 .99695 .99582 .99464 .99342 3.00
3.05 .99998 .99972 .99914 .99838 •99750 .99655 .99555 .99453 3.05
3^10 .99999 .99978 .99931 .99868 .99795 .99716 .99632 .99546 3.10
3.15 .99999 .99983 .99945 .99893 .99832 .99766 .99697 .99625 3.15
3.20 •99999 .99987 •99956 .99913 .99863 .99808 .99750 .99690 3.20

3.25 1.00000 .99990 •99965 .99930 .99889 .99843 .99795 .99745 3.25
3.30 .99992 .99972 ,99944 .99910 .99872 .99832 .99791 3.30
3.35 .99994 .99978 .99955 .99927 .99896 .99863 .99829 3.35
3.40 .99995 .99983 •99964 .99941 .99916 •99889 .99860 3.40

&3.45 .99996 .99986 .99971 .99953 .99932 .99910 .99886 3.45
- 1



Table II ( Cont * <3. )

Probability Integral of the Extreme Minus the Mean, in 
Formal Samples of F Observations (Pop. S.D. as unit)

P(un^u)

n 
U 2 3 4 5 6 7 8 9 u

3.50 .99997 .99989 .99977 .99962 .99945 .99927 .99908 3.50
3.55 .99998 .99992 .99982 .99970 .99956 .99941 .99925 3.55
3.60 .99998 .99994 .99986 .99976 .99965 .99952 .99940 3.60
3.65 .99999 .99995 .99989 .99981 .99972 .99962 .99951 3.65
3.70 .99999 .99996 .99991 .99985 .99977 .99969 .99961 3.70

3.75 .99999 .99997 .99993 .99988 .99982 .99976 .99969 3.75
3.80 1.00000 .99998 .99995 .99991 .99986 .99981 .99975 3.80
3.85 .99998 .99996 .99993 .99989 .99985 .99980 3.85
3.90 .99999 .99997 .99994 .99991 .99988 .99984 3.90
3.95 .99999 .99997 .99995 .99993 .99990 .99987 3.95

4.00 .99999 .99998 .99996 .99995 .99992 .99990 4.00
4.05 .99999 .99999 .99997 .99996 .99994 .99992 4.05
4.10 1.00000 .99999 .99998 .99997 .99995 .99994 4.10
4.15 .99999 .99998 .99997 .99996 .99995 4.15

-4.20 .99999 .99999 .99998 .99997 .99996 4.20

4.25 .99999 .99999 .99998 .99998 .99997 4.25
4.30 1.00000 .99999 .99999 .99998 .99998 4.30
4.35 .99999 .99999 .99999 .99998 4.35
4.40 1.00000 .99999 .99999 .99999 4.40
4.45 .99999 .99999 .99999 4.45

4.50 1.00000 .99999 .99999 4.50
4.55 1.00000 .99999 4.55
4.60 1.00000 4.60
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Table II (Cont'd.)

Probability Integral of the Extreme Minus the Mean, u^, in 
Normal Samples of n Observations (Pop. S.D. as unit)

. Ptu^u)

n u 10 11 12 13 14 15 16 17 u

.25 .00001 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .25

.30, .00003 .00001 .00000 .00000 .00000 .00000 .00000 .00000 .30

.35 .00011 .00004 .00001 .00001 .00000 .00000 .00000 .00000 .35

.40 .00032 .00013 .00005 .00002 .00001 .00000 .00000 .00000 • 40

.45 .00080 .00036 .00016 .00007 .00003 .00001 .00001 .00000 •45

.50 .00176 .00086 .00042 .00021 .00010 .00005 .00002 .00001 • 50

.55 .00351 .00185 .00098 .00051 .00027 .00014 .00008 .00004 • 55

.60 .00643 .00363 .00204 .00115 .00065 .00037 .00021 .00012 • 60

.65 .01098 .00657 .00393 .00235 .00141 .00084 .00050 .00030 .65

.70 .01766 .01113 .00702 .00443 .00279 .00176 .00111 .00070 .70

.75 .02694 .01780 .01177 .00777 .00514 .00339 .00224 .00148 .75

.80 .03928 .02707 .01865 .01285 .00886 .00610 .00420 .00289 *80

.85 .05503 .03938 .02818 .02016 .01442 .01031 .00738 .00527 .85

.90 .07444 .05510 .04077 .03017 .02232 .01652 .01222 .00904 .90
•95 .09761 .07448 .05682 .04334 .03305 .02521 .01922 .01466 .95

1.00 .12452 .09763 .07655 .06000 .04703 .03687 .02889 .02265 1.00
1.05 .15497 .12454 .10008 .08041 .06460 .05190 .04169 .03348 1.05
1.10 .18867 .15503 .12737 .10464 .08595 .07060 .05799 .04762 1.10
1.15 .22520 .18879 .15825 .13263 .11116 .09315 .07806 .06541 1.15
1.20 .26407 .22542 .19240 .16420 .14013 .11957 .10203 .08706 1.20

1.25 .30475 .26442 .22941 .19901 .17263 .14973 .12987 .11264 1.25
1.30 .34666 .30525 .26876 .23662 .20830 .18336 .16140 .14207 1.30
1.35 .38924 .34734 .30992 .27650 .24667 .22005 .19629 .17509 1.35
1.40 .43196 .39011 .35229 .31810 .28721 .25931 .23411 .21135 1.40
1.45 .47430 .43302 .39529 .36082 .32934 .30058 .27433 .25036 1.45

1.50 .51583 .47555 .43838 .40408 .37244 .34327 .31636 .29156 1.50
1.55 .55615 .51726 ►48104 .44733 .41595 .38676 .35960. .33434 1.55
1.60 .59495 .55774 .52282 .49004 .45930 .43046 .40342 .37807 1.60
1.65 .63196 .59668 .56332 .53178 .50199 .47384 .44726 .42216 1.65
1.70 .66699 .63380 .60221 .57216 .54358 .51641 .49058 .46602 1.70

1.75 .69991 .66892 .63925 .61086 .58370 .55773 .53289 .50915 1.75
1.80 .73063 .70189 .67424 .64763 .62204 .59744 .57380 .55108 1.80
1,85 .75912 .73264 .70704 .68229 .65838 .63528 .61297 .59144 1.85
1.90 .78538 .76113 .73758 .71472 .69254 .67102 .65016 .62992 1.90

ni-95 .80945 .78737 .76584 .74486 .72443 .70453 .68516 .66630 1.95
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Table II (Cont'd.)
o Probability Integral of the Extreme Minus the I 

Normal Samples of n Observations (Pop. S.D. i 
. P( u< u)

Kean, 
is unit)

in

• n u 10 11 12 15 14 • 15 16 17 u

" 2.00 .83141 .81140 .79183 .77269 .75399 .73571 .71786 .70042 2.00
2.05 .85155 .83350 .81560 .79824 .78121 .76453 .74819 .73218 2.05
2.10 .86932 .85514 .83721 .82155 .80614 .79101 .77614 .76153 2.10
2.15 .88550 .87105 .85678 .84271 .82885 .81519 .80174 .78849 2.15
2.20 .89998 .88715 .87440 .86183 .84941 .83715 .82505 .81311 2.20

2.25 .91290 ,90151 .89021 .87902 .86795 .85699 .84616 .83545 2.25
2.30 .92437 .91451 .90432 .89441 .88458 .87484 .86518 .85563 2.30
2.35 .95453 .92568 .91688 .90812 ,89943 .89081 .88224 .87375 2.35
2.40 .94348 .93572 .92799 .92030 ,91264 .90504 .89748 .88997 2.40
2.45 .95154 .94457 .93781 .95106 .92435 .91766 .91101 .90440 2.45

2.. 50 .95823 .95233 .94644 .94055 .93468 .92883 .92300 .91720 2.50
2.55 .96424 .95912 .95400 .94887 .94376 .93866 .93357 .92850 2.55
2.60 .96948 .96504 .96060 .95616 .95172 .94728 .94285 .93844 2.60
2.65 .97401 .97019 .96635 .96251 .95866 .95482 .95098 .94715 2.65

-2.70 .97793 .97464 .97134 .96802 .96471 .96139 .95807 .95475 2.70
M.75

.98131 .97849 .97565 .97280 .96995 .96709 .96423 .96137 2.75
2.80 .98422 .98180 .97937 .97695 .97448 .97203 .96957 .96712 2.80
2.85 .98671 .98464 .98257 .98048 .97839 .97629 .97418 .97208 2.85
2.90 .98883 .98708 .98551 .98355 .98174 .97995 .97816 .97636 2.90
2.95 .99064 .98915 .98765 .98614 .98462 .98309 .98156 .98003 2.95

3.00 .99218 .99092 .98965 .98837 .98708 .98578 .98448 .98318 3.00
3.05 .99548 .99242 .99154 .99026 .98917 .98807 .98697 .98587 3.05
3.10 .99458 .99369 .99278 .99187 .99095 .99002 .98909 .98816 3.10
3.15 .99551 •99476 .99400 .99523 .99245 .99167 .99089 .99010 3.15
3.20 .99628 .99566 .99502 .99437 .99372 .99307 .99241 .99175 3.20 ~

3.25 .99694 .99641 .99588 .99534 .99479 .99424 .99369 .99314 3.25
3.50 .99748 .99704 .99660 .99615 .99569 .99523 .99477 .99431 3.30
5.55 .99795 .99757 .99720 .99682 .99644 .99606 .99568 .99529 3.35
5.40 .99831 .99801 .99770 .99739 .99707 .99676 .99644 .99611 3.40
5.45 .99862 .99837 .99812 .99786 .99760 .99733 .99707 .99680 3.45

5.50 .99888 .99867 .99846 .99825 .99803 .99781 .99759 .99737 3.50
5.55 .99909 .99892 .99875 .99857 .99839 .99821 .99803 .99785 3.55
3.60 .99926 .99912 .99898 .99884 .99869 .99854 .99839 .99824 3.60
3.65 .99940 .99929 .99917 .99906 .99894 .99881 .99869 .99857 3.65
3.70 .99952 .99943 .99955 .99924 .99914 .99904 .99894 .99883 3.70
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Table II (Cent* d.)

Probability Integral of the Extreme Minus the Mean, u%, in 
Normal Samples of n Observations (Pop. S.D. as unit)

. P( U4 u)

un 10 11 12 13 14 15 16 17 u

3.75 .99961 .99954 .99946 .99938 .99930 .99922 .99914 .99905 3.75
5.80 .99969 .99965 .99957 .99950 .99944 .99937 .99930 .99925 5.80
3.85 .99975 .99970 .99965 .99960 .99955 .99949 .99944 .99938 3.85
3.90 .99980 .99976 .99972 ..99968 .99964 .99959 .99955 .99950 5.90
3.95 .99984 .99981 .99978 .99974 .99971 .99967 .99964 .99960 3.95

4.00 .99988 .99985 .99982 .99980 .99977 .99974 .99971 .99968 4.00
4.05 .99990 .99988 .99966 .99984 .99982 .99979 .99977 .99974 4.05
4.10 .99992 .99991 .99989 .99987 .99985 .99985 .99981 .99979 4.10
4.15 .99994 .99993 .99991 .99990 .99988 .99987 .99985 .99984 4.15
4.20 .99995 .99994 .99993 .99992 .99991 .99990 .99988 .99987 4.20

4.25 .99996 .99995 .99995 .99994 .99993 .99992 .99991 .99990 4.25
4.30 .99997 .99996 .99996 .99995 .99994 .99993 .99995 .99992 4.30

,^4.35
U4.4O

.99998 .99997 .99997 .99996 .99996 .99995 .99994 .99993 4.35

.99998 .99998 .99997 .99997 .99996 .99996 .99995 .99995 4.40
4.45 .99999 .99998 .99998 .99998 .99997 .99997 .99996 .99996 4.45

4.50 .99999 .99999 .99998 .99998 .99998 .99998 .99997 .99997 4.50
4.55 .99999 .99999 .99999 .99999 .99998 .99998 .99998 .99997 4.55
4.60 .99999 .99999 .99999 .99999 .99999 .99998 .99998 .99998 4.60
4.65 1.00000 .99999 .99999 .99999 .99999 .99999 .99999 .99998 4.65
4.70 1.00000 .99999 .99999 .99999 .99999 .99999 .99999 4.70

4.75 1,00000 .99999 .99999 .99999 .99999 .99999 4.75
4.80 1.00000 1.00000 .99999 .99999 .99999 4.80
4.85 1.00000 .99999 .99999 4.85
4.90 • .99999 .99999 4.90
4.95 1.00000 .99999 4.95

5.00 .99999 5.00
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Table II (Cont’d.)

Probability Integral of the Extreme Minus the Mean, u , in -
Normal Samples of n Observations (Pop. S;D. 

P(u^u)
as unit)

n u 18 19 20 21 22 23 24 25 u

.50 .00001 .00000 .0000 .0000 .0000 .0000 .0000 .0000 .50

.55 .00002 .00001 .0000 .0000 .0000 .0000 .0000 .0000 .55

.60 .00007 .00004 .0000 .0000 .0000 .0000 .0000 .0000 .60

.65 .00018 .00011 .0001 .0000 .0000 .0000 .0000 .0000 .65

.70 .00044 .00028 .0002 .0001 .0001 .0000 .0000 .0000 .70

.75 .00098 .00065 .0004 .0005 .0002 .0001 .0001 .0001 .75

.80 .00199 .00157 .0009 .0007 .0004 .0003 .0002 .0001 .80

.85 .00577 .00270 .0019 .0014 .0010 .0007 .0005 .0004 .85

.90 .00669 .00494 .0057 .0027 .0020 .0015 .0011 .0008 .90
... .95 .01118 .00855 .0065 .0049 .0058 .0029 .0022 .0017 •95

1.00 .01775 .01591 .0109 .0085 .0067 .0052 .0041 .0052 1.00
1.05 .02690 .02161 .0174 .0159 .0112 .0090 .0072 .0058 1.05
1.10 .05911 .05212 .0264 .0217 .0178 .0146 .0120 .0099 1.10
1.15 .05481 .04592 .0585 .0522 .0270 .0226 .0190 .0159 1.15

Q,20 .07428 .06558 .0541 .0461 .0594 .0536 .0287 .0244 1.20

1.25 .09769 .08472 .0735 .0657 .0553 .0479 .0416 .0360 1.25
1.50 .12504 .11005 .0969 .0855 .0750 .0660 .0581 .0512 1.30
1.35 .15618 .15950 .1242 .1108 .0988 .0882 .0786 .0701 1.35
1.40 .19080 .17225 .1555 .1404 .1267 .1144 .1053 .0932 1.40
1.45 .22848 .20851 .1905 .1736 .1585 .1446 .1320 .1204 1.45

1.50 .26869 .24761 .2282 .2105 .1938 .1786 .I646 .1516 1.50
1.55 .51084 .28899 .2687 .2498 .2522 .2159 .2007 .1866 1.55
1.60 .55450 .55202 .5111 .2916 .2732 .2560 .2599 .2248 1.60
1.65 .39845 .57607 .3549 ..3349 .3162 .2984 .2816 .2658 1.65
1.70 .44269 .42052 .3994 .3794 .3604 .3424 .3252 .3089 1.70

1.75 .48645 .46476 .4440 .4242 .4053 .3872 .3699 .3534 1.75
1.80 .52924 .50827 .4881 .4687 .4502 .4323 .4152 .3987 1.80
1.85 .57065 .55058 .5312 .5125 .4945 .4771 .4603 .4441 1.85
1.90 .61051 .59150 • 5729 .5549 .5377 .5209 .5047 .4890 1.90
1.95 .64796 .65011 .6127 .5958 .5794 .5634 .5479 .5328 1.95

2.00 .68540 .66678 .6506 .6548 .6193 .6042 .5895 .5752 2.00
2.05 .71650 .70114 .6861 .6714 .6570 .6429 .6291 .6156 2.05
2.10 .74719 .75311 .7193 .7058 .6924 .6793 .6665 .6540 2.10
2.15 .77545 .76262 .7500 .7375 .7254 .7133 .7015 .6899 2.15
2.20

Q
.80152 .78971 .7782 .7670 .7558 .7448 .7340 .7234 2.20
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Table II (Cont’d.)

Probability Integral of the Extreme Minus the Mean, u , in
Normal Samples of n Observations (Pop. S.D. as unit)

P(u 4u)
■ n .

n 
u 18 19 20 21 22 23 24 25 u

2.25 .82486 .81440 .8041 .7938 .7838 .7738 .7640 .7543 2.25
2.30 .84616 .83679 .8275 .8184 .8093 .8003 .7914 .7827 2.30
2.35 .86533 .85699 .8487 .8405 .8324 .8244 .8164 .8085 2.35
2.40 .88251 .87511 .8678 .8605 .8533 .8461 .8390 .8319 2.40
2.45 .89783 .89129 .8848 .8784 .8720 .8656 .8593 .8530 2.45

2.50 .91142 .90568 .9000 .8943 .8887 .8831 .8775 .8719 2.50
2.55 .92345 .91842 .9134 .9084 .9035 .8985 .8936 .8888 2.55
2.60 .93404 .92965 .9253 .9209 .9166 .9123 .9080 .9037 2.60
2.65 .94332 .93951 .9357 .9319 .9282 .9244 .9207 .9169 2.65
2.70 .95144 .94814 .9448 .9416 .9382 .9351 .9318 .9286 2.70

2.75 .95852 .95567 .9520 .9500 .9472 .9444 .9415 .9387 2.75
2.80 .96466 .96220 .9598 .9573 .9549 .9524 .9500 .9476 2.80
2.85 .96997 .96787 .9658 .9637 .9616 .9595 .9574 .9553 2.85

^.90 .97456 .97275 .9710 .9692 .9674 .9656 .9638 .9620 2.90
^2.95 .97850 .97696 .9754 .9739 .9724 .9709 .9693 .9678 2.95

3.00 .98187 .98057 .9793 .9780 .9767 .9753 .9741 .9728 3.00
3.05 .98476 .98365 .9825 .9814 .9803 .9793 .9781 .9771 3.05
3.10 .98722 .98629 .9853 .9844 .9835 .9826 .9816 .9807 3.10
3.15 .98931 .98852 .9877 .9869 .9862 .9853 .9846 .9838 3.15
3.20 .99108 .99042 .9898 .9891 .9884 .9878 .9871 .9865 3.20

3.25 .99258 .99202 .9915 .9909 .9904 .9898 .9893 .9887 3.25
3.30 .99384 .99337 .9929 .9924 .9920 .9915 .9911 .9906 3.30
3.35 .99490 .99451 .9941 .9937 .9933 .9930 .9926 *9922 3.35
3.40 .99579 .99546 .9951 .9948 .9945 .9942 .9939 .9936 3.40
3.45 .99653 .99626 .9960 .9957 .9955 .9952 .9949 .9947 3.45

3.50 .99715 .99693 .9967 .9965 ,9963 .9961 .9958 .9956 3.50
3.55 .99766 .99748 .9973 .9971 .9969 .9968 .9966 .9964 3.55
3.60 .99809 .99794 .9978 .9976 .9975 .9973 .9972 .9971 3.60
3.65 .99844 .99832 .9982 .9981 .9979 .9978 .9977 .9976 3.65
3.70 .99873 .99863 .9985 .9984 .9983 .9982 .9982 .9981 3.70

3.75 .99897 .99889 .9988 .9987 .9986 .9986 .9985 .9984 3.75
3.80 .99917 .99910 .9990 .9990 .9989 .9988 .9988 .9988 3.80
3.85 .99933 .99927 .9992 .9992 .9991 .9991 .9990 .9990 3.85
3.90 .99946 .99941 .9994 .9993 .9993 .9993 .9992 .9992 3.90

, 3.95 .99956 .99953 .9995 .9995 .9994 .9994 .9994 .9994 3.95c
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Table II (Cont’d.)

Probability Integral of the Extreme iiinvs the ^ean, m 
Normal Sample of n Observations (Pop. S.D. as unit)

n
Ptu^u)

21u 18 19 20

4.00 .99965 .99962 .9996 .9996
4.05 .99972 .99969 .9997 .9996
4.10 .99977 .99975 .9997 .9997
4.15 .99982 .99980 .9998 .9998
4.20 .99986 .99984 .9998 .9998

4.25 .99989 .99987 .9999 .9999
4.30 .99991 .99990 .9999 .9999
4.35 .99993 .99992 .9999 .9999
4.40 .99994 .99994 .9999 .9999
4.45 .99995 .99995 1.0000 .9999

4.50 .99996 .99996 1.0000
4.55 .99997 .99997
4.60 .99998 .99997

y 4.65 .99998 .99998
' 4.70 .99998 .99998

4.75 .99999 .99998
4.80 .99999 .99999
4.85 .99999 .99999
4.90 1.00000 1.00000

22 23 24 25 u

.9995 .9995 .9995 .9995 4.00

.9996 .9996 .9996 .9996 4.05

.9997 .9997 .9997 .9997 4.10

.9998 .9998 .9998 .9998 4.15

.9998 .9998 .9998 .9998 4.20

.9999 .9999 .9999 .9999 4.25

.9999 .9999 .9999 .9999 4.30

.9999 .9999 .9999 .9999 4.35

.9999 .9999 .9999 .9999 4. 40

.9999 .9999 .9999 .9999 4.4 5

1.0000 1.0000 .9999 .9999 4.50
1.0000 1.0000 4.55

4.60
4.65
4.70

4.75
4.80
4.85
4.90



Table III

Percentage Points for Extreme Minus Mean

n 90% 95% 99% 99.5%

2 1.163 1.386 1.821 1.985
3 1.497 1.738 2.215 2.396

4 1.696 1.941 2.431 2.618

5 1.835 . 2.080 2.574 2.764
6 1.939 2.184 2.679 2.870

7 2.022 2.267 2.761 2.952

8 2.091 2.334 2.828 3.019

9 2.150 2.392 2.884 3.074
10 2.200 2.441 2.931 3.122

11 2.245 2.484 2.973 3.163
12 2.284 2.523 3.010 3.199

13 2.320 2.557 3.043 3.232

14 2.352 2.589 3.072 3.261

15 2.382 2.617 3.099 3.287
16 2.409 2.644 3.124 3.312

17 2.434 2.668 3.147 3.334
18 2.458 2.691 3.168 3.355
19 2.480 2.712 3.188 3.375
20 2.500 2.732 3.207 3.393
21 2.519 2.750 3.224 3.409
22 ' 2.538 2.768 3.240 . 3.425
23 2.555 2.784 3.255 3.439
24 2.571 2.800 3.269 3.453
25 2.587 2.815 3.282 ■ 3.465



Table IV

Moment Constants for Extreme Minus Mean

n Mean
Std.
Dev. ”3 ”4

2 .5642 .4263 .9953 .3.8692

3 .8463 .4755 .8296 3.7135
4 1.0294 .4916 .7675 3.6717

5 1.1630 .4974 .7372 3.6560

6 1.2672 .4993 .7165 3.6511
7 1.3522 .4991 .7042 3.6503

8 1.4236 *4979 .6959 3.6518
. 9 1.4850 .4962 .6900 3.6546

10 1.5388 .4943 .6857 3.6582
11 1.5864 .4923 .6827 3.6622

12 1.6292 .4902 .6804 3.6663

13 1.6680 .4881 .6788 3.6705

14 1.7034 .4861 .6777 3.6746

- 15 1.7359 .484'1 .6770 3.6787
20 1.867 .475 .677 3.700

60 2.319 .436 ,.699 3.801
100 2.508 .418 .712 3.855
200 2.746 .395 .737 3.932
500 3.037 .368 .771 4.033

1000 3.241 .350 .794 4.105
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