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INTRODUCTION

The calculation of the neutron flux distribution in nuclear reactor 

cores is of fundamental importance to nuclear reactor design. Since the 

equation which governs this distribution (the neutron transport equation) 

is well known, it would seem that the only difficulty in performing such 

calculations should be in obtaining the physical parameters of the reactor: 

the neutron-nuclear interaction cross sections.

Unfortunately, the enormous complexity of realistic reactor para­

meters (with variations in space, angle, energy, and even time) makes it 

impossible-to-solve the transport equation itself, and we are left casting 

around for approximations which are simple enough to be solvable while 

still imparting useful information. Discretization is the basis for most 

currently popular approximations. Each independent variable (space, 

energy, angle, time) is partitioned into intervals, and the behavior of 

the flux in each interval is assumed to be known (and usually simple); 

then the approximate equations are solved to find scale factors to be 

applied in each interval.

The problem with this scheme is due to limitations on the calcula- 

tional capacity of current computers, which put a limit on the total 

number of mesh intervals. With such a constraint in effect, the use of 

small intervals in a region where detail is necessary implies the use of 

gross intervals to treat the rest of the problem. (Two examples: three 

group calculations for water reactors where fine spatial detail is essen­

tial; one-dimensional calculations for fast reactors where the spectral 

detail must be resolved.)

Lately there has been a growing interest in synthesis methods of ap­

proximation (of which the discretization methods are a special case).

-1-
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Synthesis is based on the representation of the flux dependence as a 

combination of simpler (but realistic) "prototype" fluxes. The power of 

the synthesis methods derives from the fact that any details or trends in 

the flux distribution which can be predicted a priori can be built into 

the trials, rather than calculated anew. Further, when this is done the 

gross coupling coefficients represent shifts of emphasis between realistic 

modes, and thus express the gross behavior of the flux more clearly than 

a table of fine-group discrete mesh fluxes.

A particularly suitable application of the synthesis technique should 

be in the analysis of fast reactors. Here it is known that the energy 

spectrum shifts fairly slowly and smoothly from region to region, but be­

cause of the fine detail in the cross sections any multi group treatment 

requires many energy groups. Thus the ability to treat the spatial depen­

dence is limited by the need to calculate redundant spectra everywhere on 

the spatial mesh. This limitation can be lifted, however, by spectral 

synthesis - the treatment of the energy dependence as a combination of 

typical spectra characterizing regions in the core which are of greatest 

importance.

Unfortunately, spectral synthesis has not really been accepted for 

this application, principally because the savings in computational effort 

has not been as dramatic as expected. A secondary factor has been the 

lack of an analysis of those few situations in which the synthesis appar­

ently degenerate and produces absurd results. This dissertation describes 

an investigation of the foundations of spectral synthesis techniques.

In the following chapters we shall : review from various sources 

the theoretical justification of synthesis as a form of variational ap­

proximation; analyze the necessary conditions for solution; demonstrate
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an equivalence between variational and perturbative methods ; develop a 

computer-oriented form of spectral synthesis; and show how Wielandt's 

method can be applied to regain the computational advantages originally 

anticipated for synthesis.

In Chapter I we show that the Calculus of Variations provides a the­

oretical framework for the derivation of approximation methods. If F[u] 

is a functional defined on some space of functions ^u^ , then in general 

its first variation S F[u] will be zero only for certain particular func­

tions ü. The characterization of any û as the stationary point of F[u] 

is equivalent to its characterization as the solution of some appropriate 

equation Hu = s, where H is an operator related to the functional deriva­

tive of F.

This equivalence can be exploited in two ways: first, the value of 

F[u] is equal to F[û] plus terms of second order in the error (u-ü) and 

so F[u] can be used as an estimator; second, the stationary points of F 

in any trial subspace of £u£ will be an approximation (in the sense 

of being an early member of a sequence) to û.

The concept of seeking a stationary point u in a subspace of (u% 

is explored in Chapter II. The point u can be found by solving a reduced 

equation H u = s which is related to but (presumably) simpler than Hü = s; 

this equation is analyzed in terms of an eigenvector basis for the 

subspace. A case is described in which there is no solution to the re­

duced equations; this particular case is unlikely to occur in practice, 

but it does case some light on the occasional "anomalous" failures of 

the method.

In Chapter III an alternate application of variational methods is 

demonstrated. A functional F[u,z] whose value at u(x) is u(z) plus terms 
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of second order can be applied iteratively to generate a sequence of ap- 

proximants to u. This brings to mind Perturbation Theory expansions, and 

in Chapter IV it is shown that the higher order variational methods are 

equivalent to the various perturbation expansions of ü, in those cases 

where the base operator Ho of the perturbation method is consistent 

(Houo = s) with the trial function of the variational scheme.

The use of the Roussopoulos functional R[v,u] = <z»u} + <CV»S^ 

~^v, Hu} to derive the multi group neutron diffusion equations is reviewed 

in Chapter V, and in Chapter VI these equations are approximated still 

further by the application of spectral synthesis. The discretized neutron 

flux is expanded as a sum of known group dependent spectra multiplied by 

unknown space (and mode) dependent coefficients. In Chapter VII matrix 

equations for these expansion coefficients are derived, and the MACH-1 

one-dimensional neutron diffusion code is adapted to solve them. The 

spectral synthesis equations feature full coupling of every mode to every 

other, whereas the multi group equations were coupled only by downscattering. 

Because of this, the great computational savings expected from replacing 

many groups by a few modes does not appear.

It is noted in Chapter VIII that Wielandt's method for extracting 

eigenvectors has not been applied to the multigroup diffusion equations 

for this same reason : the extra cost of solving the new system with full 

energy coupling compensates for the savings derived from accelerated con­

vergence . Wielandt’s method can be applied to the spectral synthesis equa­

tions, however, without paying this extra penalty (the complication is 

already there), and so this combination of methods should provide a fairly 

cheap method of solving fast reactor eigenvalue problems. The synergistic
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effect has been demonstrated with the MACH/360 code, incorporating both 

spectral synthesis and Wielandt's method.



CHAPTER I

REVIEW OF THE CALCULUS OF VARIATIONS

The basic theory of the Calculus of Variation is quite old, with 

some parts deriving from the work of Euler (1707-1783). The elements 

of the theory [1, 2] will be reviewed (not with full rigor) to establish 

the relation between more traditional variational techniques and the 

practical methods to be developed in later chapters.

We will be dealing with scalars, functions, operators, and func­

tionals. Assuming that all but the last are familiar, we define a func­

tional to be a correspondence which assigns a definite scalar to each 

function belonging to an appropriate class (its domain). In the same 

way that we speak of a function f(r) assigning a value to a point r in 

Euclidean space, we shall say that a function F[u] assigns a value to 

the "point" u where u(r) is a function in a function space f u] . Note 

that a functional can also be an ordinary function of some independent 

parameter.

For example, consider the set of all curves connecting some fixed 

point r with some other point p: the length of each curve is a function­

al of the function describing the curve; the space of acceptable func­

tions is that set describing continuous curves passing through r and p; 

and if p is allowed to vary, the length is also an ordinary function of p.

We will assume that the argument functions u are members of a real 

inner product space U, i.e. a linear space with an inner product <^v, u^> 

and a norm ||u||2 =^i, u^ . A functional F[u] is a linear functional 

if F[o< u + ^v] = °CF[u] + ^F[v]; the Riesz-Fischer Theorem states 

that any bounded linear functional on an inner product space can be 

written as ^w, u\ , where w is an element which is uniquely determined

-6-
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by F[u]. Using these concepts we can define the variations and deriva­

tives of a functional.

The variations of a functional are analogous to the differentials 

of an ordinary function. Let &F[u,h] = F[u + h] - F[u] be the incre­

ment of F[u] corresponding to a finite variation h(r) in the argument 

function. If AF[u,h] = V[u,h] + h E[u,h] e where V[u,h] is a linear 

functional of h(r) and E[u,h] 0 as || 0, then V[u,h] is called

the (first) variation of F at u, £F[u,h]. Higher variations are defined 

in the same manner: the second variation is the quadratic part of A F, etc. 

Derivatives of a functional can be defined also. Since the first var­

iation is a linear functional, we define the first derivative of F[u] as 
c F 

that element -^[u,r] of U such that 
S F[u,h] = V[u,h] = h(r)\ .

Similarly we use .
% 2F[u,h] = ? // —[u,r,p], h(r)^ , h(p) \ 

to define the second derivative, etc.

Using the Dirac Delta notation ( S (p-r) or just Sp) to represent 

that generalized function [3] derived from any of the sequences u^(r)€ U 

with the property that lim /v(r), u^(r)\ = v(p), we see that we can for­

mally set h(r) = S(p-r) and write expressions like 

[u,n] = [u,r] , 6(n - r)\

for the derivatives of F.

Use as a Lagrangian -

Continuing the analogy with ordinary functions, we investigate the poss­

ible existence of extremal points of F[u], points û such that the limit of 

a F[u,h] as ||h|| 0 has the same sign for all h. A basic theorem states

that a necessary condition for F[u] to be an extremum is that û be a "sta­

tionary point" of F, that is, that the first variation vanish at u = u.
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The proof arises directly from the definition of 8 F as the linear 

part of the increment of F. If 8 F[Q,h] is not zero, then,for sufficiently 

small |l h|| , a F[Q,h] will have the sign of S F[u,h], but A F[u,-h] will 

have the opposite sign, and so this ü cannot be an extremum.

We now introduce the Fundamental Lemma of the Calculus of Variations, 

which allows us to specify the condition for û to be a stationary point 

without incorporating references to all possible increments h. The lemma 

states that if ^v(r), h(r)^ = 0 for every h(r), then v(r) = 0. (The 

validity of this can be demonstrated by considering the particular 

h(r) = 8 (p-r)).

Recalling S F[u,h] = we see immediately that
c p

F[u,h] = 0 implies that [u,r] = 0 for all r. Once again this is a 

direct parallel to the theory of ordinary functions, in which the first 

derivative is required to be zero at a function extremum.

The condition that [u,r] = 0 is known as Euler's equation, and 

can be used to find candidates for extrema of F. The solutions are only 

candidates, of course, because 8 F = 0 is only a necessary condition, and 

at least S^F must be examined for sufficiency. There are, however, 

many cases in which the stationary points themselves are of interest, and 

in these cases the stationary property and Euler's equation provide alter­

nate methods, global vs. local, for determining the û. The "Variational 

Principle" that will be used in the rest of this work to derive approxi­

mate functions exploits this duality.

The specification of a function as the solution of Euler's equation 

was originally developed in the field of mechanics. Taking q(t) to 

be the set of generalized coordinates of a finite dimensional mechanical
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system, and L(q, q, t) to be the Lagrangian of the system (kinetic energy

minus potential energy), Hamilton's Principle states that the time depen­

dence of 

tionary. 

and this

the actual q(t) is such that H[q] = L[q, q, 

Euler's equation for this functional is

is recognized as the Lagrangian equation of motion.

t]dt is sta- 
3L d_ 3L _ 
3q " dt 3^ " 0,

Constraints

It is not uncommon to want to restrict the class of functions to which 

F is applied, and then to seek the stationary points in this restricted 

class. (These points do not necessarily form a subset of the stationary 

points in the full space since the function variations h are restricted 

also.) Typically this can be expressed as an examination of the variations 

F[u,h] subject to the constraint that some other functional G[u + h] have 

a particular value g. Fortunately this form of constraint can be incor­

porated directly into a Variational Principle by the method of Lagrange 

Multipliers. Assuming such a stationary point u does exist and that u 

is not simultaneously a stationary point of G, then there is a scalar X 

such that û is a stationary point of the functional L[v,X] = F[v] + Xg[v] 

with respect to arbitrary variations h in the full space. The method for 

finding u is to find all the stationary points v(X) of L; then û = v(X) 

for that X such that G[v(X)] = g.

The validity of the Lagrange Multiplier method is demonstrated by 

examining explicity the variations of F when h(r ) is broken into two 

parts, one arbitrary and the other chosen so that the constraint is satis­

fied; then the Euler equation incorporating this class of function varia­

tion is seen to be the Euler equation of L[v,X ]. This line of argument 

can easily be adapted to more complicated constraints. For example,
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when the constraint is that g(u(x)) = g for all x, the appropriate Lagrange 
Multiplier is a function X(r) and L[v, X ] = F[v] + ( X (r)g(u(r))dr.

Functional Evaluation

So far, Variational Principles have been shown to be interesting alter­

nate schemes for exactly specifying certain functions. What is their 

connection with Approximation Theory? A very useful one [4,5] since there 

are two methods for developing approximations to the stationary point 

(the solution of the Euler equation) of a given functional.

The first involves the actual evaluation of the functional with trial 

functions close to the stationary point. Since S F[ü,h] = 0, F[û + h] - 

F[u] = 4 h II * E[ü,h], and E-* 0 as h|| 0. Thus if F[u] is a

value of interest, the error in approximating it by F[u] will be of an 

order higher than the order of the error |lu - u|l in u. If F[G] is 

an extremum of F, then |F[u] - F[G]| can be used as a "pseudo-norm" to 

rank the accuracy of a set of approximates Uj to 0; the larger (or smaller) 

F[uj] is, the closer Uj is to G. Finally, if F[G] has a known value 

(e.g. zero), or if F[u] and G[u] are extremum principles bracketing a de­

sired value g, the functional evaluation can provide an absolute measure 

of the error in any trial u and an absolute limit on the error of using 

the functionals to estimate g.

As an example of the bracketing approach, Pomraning [6] has created 

two functionals which can be used to bound the extrapolated endpoint for 

the Milne problem. Using asymptotic fluxes as trial functions, he gen­

erated upper and lower limits which (for strong absorbers) excluded the 

previously accepted "exact" numerically calculated values; these had been 

directly evaluated without an estimate of the error in the numerical 

procedure used.
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Variational Approximations

The more important use of variational methods for function approxi­

mation is through the derivation of reduced Lagrangians [7,8] i.e. func­

tionals whose stationary points are related to the exact functions but 

whose Euler equations are easier to solve. Consider the case when ü is 

the extremum, in some large space £u£ , of some functional F. If £ v£ 

is some subspace, and v is the extremum of F in this space, what is the 

relation between ü and v? Well, it is possible (but not likely) that 

v = u. More generally, v can be regarded as the"best approximation”to û 

in the space l vl , in the sense of minimizing|F[v] - F[ü]|, and further, 

as more degrees of freedom are added to £vj so that it approaches £ u£ , 

v will become a better approximation to û in the sense of this "pseudo-norm" 

derived from F. Assuming that the Euler equations of F are easier to solve 

when variations are restricted to the simpler spaces [v| , the variational 

principle can be used to generate a sequence of better and better approxi­

mations to ü, each approximation requiring a little additional work to evaluate.

This line of reasoning about "best approximations" does not do much 

good when the goal function is not the extremum of a functional, since then 

the stationary points in a given restricted space can be arbitrarily higher 

or lower than F[u], The use of reduced Lagrangians can still be justified, 

however, on the basis that the stationary principle will pick out v = û if 

the subspace fv} is made large enough to include ü. It is (unfortunately) 

up to the analyst to decide how much freedom must be allowed in the restricted 

space {v} in order to obtain an accurate approximation.

A further practical argument can be made to justify the use of varia­

tional methods with non-extremal functionals: they give internally consis­

tent approximations. That is, the approximation is determined completely by the 
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manner in which the subclass of the original full function space is chosen. 

Since there are no intermediate steps of unrelated approximations involved, 

the analysis of errors should be (formally) easier to perform. This argu­

ment should not be taken lightly, because it, coupled with the fact that 

they usually work, is the only theoretical justification for most neutron 

flux synthesis methods.

Generalization to Complex Spaces

Before showing how to construct some useful functionals we must in­

troduce the concept of functionals with argument functions from complex 

spaces. A common example of such a functional is the inner product on a 
complex Hilbert space (e.g. {v,u} = v*(r)u(r)dr or ^v,u^ = vT* u ; 

this is considered a functional of two arguments. Note that while it is 

linear in the second argument it is conjugate linear in the first, thus 

spurring a reconsideration of the definitions of the variations and deri­

vatives of a functional.

We will work with the partial variations and derivatives of a func­

tional with multiple complex arguments, and revise the definition of the 

first variation in the following manner:

Letting ^wF[v,u,w,..] = F[v,u,w+h,...J -F[v,u,w,..] be the incre­

ment of F corresponding to a variation h(r) only in the argument function 

w(r); if

AWF = V[v,u,w,.. .h] + ||h|| • E[v,u,w,..]

where E -* 0 as ||hll -» 0, and if V is either a linear or conjugate linear
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functional of h(r), then SWF = V is the (first) variation of F with 

respect to w(r) at F[v,u,w,...].
t p

We define the partial derivative r [v,u,w,... ,r] by using the 
Riesz-Fischer theorem as before. If S^F is linear, then , h^ 

= S F defines the derivative; but if S F is conjugate linear, then we

use /h, ) = S F to define the derivative.
\ P W / W

to examine some practical functionals.

We are now almost ready

One last definition is that of the "adjoint operator". If H is an 

operator on U, then we define H+ to be its adjoint operator on V if

^v, Hu )> = ^H^v.u^ for all possible choices of v and u. The proper­

ties of the adjoint operator thus depend on H, U, V and the definition of

/v, u^ . Often V is referred to as the adjoint space (to U), and the 

solution to an equation H+v = z will be called the adjoint to the solu­

tion of H u = s. Adjoints will be used formally throughout the remainder 

of this work, on the assumption that they can be constructed when needed 

for any practical problem.

Least Squares

In order to try out the approximation methods suggested earlier we 

must construct some functionals with useful Euler equations.

Perhaps the most obvious of these is the Least Squares [5] functional ; 

using the inner product as a functional which is linear in its second ar­

gument but conjugate linear in its first, consider the functional L[u] 
= ^Hu - s, Hu - s^ = ||Hu - s|| %. Clearly L[û] = 0 if Hu = s, while for 

all other trial functions L[u] is the norm of the residual error, à 0.

Thus we can characterize û either as the solution of Hü = s or as the 

minimizing point of L[u], The latter condition implies that ü is a sta-
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tionary point at L[u,h] = 0 ; unfortunately, it is not necessarily the

only stationary point. In fact,

L[u] = ^Hu, Hu} 

so that

6L[u, 6u] = 6u, Hu^ + H ôu^> - <^s, H 6u)> - <H 6u, s

= <^H ôu, Hu - s^ + <^Hu - s, H 5u^>

=<^u, H^(Hu - s + <^H^(Hu - s), 6iy>

= \H (Hu - s), ôu/ + <^HT(Hu-s), ôu^>

= 2 Re {<h+(Hu-s), 6u^}

The stationary requirement is that & L[u, S u] = 0, and clearly this will 

be true if Hu - s, but in general this will not be the only u.

There would be no problem if the solution u to Euler's equation were 

really the function of interest, but problems of this form are not very 

common. It is unfortunate that the Least Squares Principle leads to this 

over-complicated, over-generous variational principle, because the abso­

lute error bounding properties of this functional could be quite useful.
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Roussopoulos Functional

A much more useful functional is that known as the Roussopoulos func­
tional [9], R[v,u] = + ^v,s^ - ^v,H u^ . The usefulness is due to its

simple structure and its variational evaluation of the functional .

It can be motivated in terms of a goal functional subject to a constraint [10].

First assume that we wish to find a stationary point û of the func­

tional K[u] = ^z.u^ , so that we can evaluate K[u] with errors of sec­

ond order in |^u - ü But in addition, we want to restrict the varia­

tions of u to allow only those functions which satisfy Hü = s. This is 

just the specification of a constrained variational problem, and so we 

look for stationary points u(v,x) of the functional R[v,u] = <fz,u^ - 

^v, Hu - s> (where g(u) - Hu - s - O is the constraint and v(x) is a 

Lagrangian multiplier function). There should be a particular v such 

that H u (v,x) - s(x) = 0 and K[u(v,x)J is stationary.

To try to find u(v,x) we set the variation of R with respect to u 

equal to zero: - H+v, u^ = S^R = 0.

By the fundamental lemma , 0 = z - H+v, which is a condition on v,

not u! R is stationary in U only when v = V, the solution of H+ v = z, 

and in this case R[v,u] = <^ v, s^ for all u. This doesn't do much good 

in evaluating ^z.u^ , but it does suggest looking at the variations 

of R with respect to v;
ôvR = ^6v, s-Hy^

and so ^yR = 0 implies , s - Hu^> = 0 = s - Hu. At last we have 

a condition on u; in fact when u is the solution ü of Hü - s, then 

R[v,û] = <^z, u> for every v. -

The arguments motivating the construction of R are now in a shambles, 

but we can make use of R anyhow by thinking of it as an ad hoc functional
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of the function pair (v,u) and examining its usefulness from scratch.

The first variation of R is the sum of ^R and so that R = v, 

s - Hu y - H+v, u^ , and R[v,u] = 0 when Hü = s and H+v = z. 

At this point R[v,û] = <(z, û> = <fv, s)> and £*R = v, H £u> , 

a second order term proportional to the product of the error norms

Thus the stationary point of R is equivalent to the simultaneous solu­

tions of a direct problem HO = s and an adjoint problem H+v = z. Further­

more the value of R[v,u] at points close to the stationary point is an 

estimate of the value Cz, ü )> , as desired originally. The fact that 

^z,û^ = <v, s> gives rise to an interpretation of the adjoint func­

tion v as an "importance" function, since it measures the "importance" 

of an arbitrary source to the goal ^z,û^.

An alternate justification for the construction of R has been given 

by Selengut [11]. He proposes to evaluate some arbitrary functional F 

which depends on both the state function <b and an importance function ^> + 

of some physical system. Requiring that F[<^+, ] be expandable in a

Taylor series with no terms higher than second order leads to an expres­

sion
F[ = Ao + <^(r), 4>(r)y> + <\A1 (r), ^(r)^

+ ^(r), A2 *(r)\

Now requiring that F be insensitive to small perturbations in ^and $ , 

i.e. that the first variation of F be zero, leads to the requirements that

A^r) + A2 *(r) = 0

A2(r) + A2<|)t(r) = 0

s - Hu

z - H^v
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so that F[$+, *] = A, + ^(r)<f>(ry = Ao + ^z, .

Thus the goal of writing an insensitive, simple functional for evaluating 

some property of a physical system can be met provided that the desired 

property can be evaluated as Ao +^z,u^ and the state of the system can 

be specified by linear equations of the form Hû = s and H+v = z; the 

functional which does this is just the Roussopoulos functional (with an 

arbitrary constant term Aq).

Although the formal Roussopoulos functional seems to provide a very 

flexible method for generating functionals whose Euler equations have 

desirable solutions, there are certain classes of problems which cannot be 

handled in this simple manner. One class is that in which the goal func­

tional, for which a second order estimate is desired, is not linear. 

Pomraning [10] has considered this problem and has shown how to construct a 

generalized form of the Roussopoulos functional, P[v,u] = L[u] +^v, s-Hu} , 

which estimates an arbitrary goal functional L[u] to second order when 

the trial functions are approximations to Hü = s and H+v = [u].

Rayleigh Principle

An equally important class to treat is that set of problems for which 

the desired Euler equations are eigenvalue equations: Hu = X û and 

H+v = X*v. A functional related to the Rayleigh Principle can be devel­

oped for this class of eigenvalue problems in much the same way that the 

Roussopoulos functional was developed: we seek stationary points of the 

functional K[v,u] = ^v, Hu^ subject to the constraint G[v,u] = ^v,u^ = 

constant g. As a motivation for this, assume that H and H+ have complete 

orthonormal sets of eigenvectors un and vn and expand u and v in terms of 

these: u= $ •<„«„. v= v„ .
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Now K[u,v] = A o( A* while G[u,v] = A*. With the value of
I I II e I I ' 11 • I I

G constrained to a constant g, the value of K should contain some infor­

mation about the eigenvalues

Using the Lagrange Multiplier technique we write E[v,u,X] = K[v,u]- 

XG[v,u] or E[v,u, X ]= <^v, Hu^ - X /v,u = ^v, (H - X)u . 

The stationary point (v,u) of E is determined by requiring ^E = v, 

(H- >)ù> + )v, % u^> = 0, so v and ü must satisfy Hü = \û

and H*v = X* v, which is possible if and only if ü = u^, v = v^, and 

X = Xn. In this situation E[vfiS un> X ] = 0 and K[vn, un] = X^g; each 

of the stationary points characterizes a different eigenvalue.

Since K[vn,unJ = Xr g = Xn G[vn»unJ, we are tempted to examine the 

functional Y[v,u] = K[v,u]/G[v,u]. We already know that Y[vn,unJ = X^; 

perhaps this is a stationary point also (of course it is - Y is the 

Rayleigh Principle for evaluating eigenvalues [12] - but we shall prove 

it anyway). Consider E[v,u,X] :

E[vn+ôv, un+6u, Xn+ÔX] = ^v, (H-X^)u^

+ (vn. (H-An)6u^ + ^Sv, (H-Xn)6u^ -6A G[v,u]

= -6XG[v,u] + ^6v, (h-Xn) 6u^

= K[v,u] - (Xn + ÔX) G[v,u]

Rearranging terms, 

or

Y[v’u] - \+
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Clearly (vn> un) is a stationary point of Y, since the errors are of 

second order. The functional E[v,u,X] is probably more useful than Y 

for deriving approximations, however, because of the non-linear nature 

of the latter. The Rayleigh Principle can always be applied after the 

approximating is done, to extract the eigenvalue estimate.

Pomraning has gone a step further [13,14] in the derivation of func­

tionals and produced a sort of hybrid of R and E. The stationary condi­

tions of this new functional are the eigenvalue equations Hu - X u = 0 

and H+v - X*v = , and the value of the functional at its stationary

point is a second order estimate of an arbitrary homogeneous goal func­

tional L[u]. This is quite reasonable; although the solution ü of a crit­

ical system has an arbitrary normalization, homogeneous (ratio) functionals 

still have validity. The forms of the functional and the trial functions 

for v are not simple, but the ability to calculate more than just the 

eigenvalue in a critical system may make the extra complication worthwhile.



CHAPTER II

VARIATIONAL APPROXIMATIONS

In neutron transport theory (and in most other disciplines) there 

are very few realistic problems which can be solved exactly. We can 

write formally Hu = s, or equivalently S F[ü] = 0, but solving u = H-1s 

or finding this stationary point is out of the question. We have to be 

satisfied with an approximation u, where u is "like" ü (in some arbitrary 

sense), and our success in working with û instead of û depends on the 

appropriateness of our criterion for "likeness".

Restricted Domain

The Variational Principle, which is used to convert locally deter­

mined problems (Hü = s) into globally determined problems (S F[ü] = 0), 

can be put to work in a Variational Approximation Technique [4,8] to 

find u = ü in the following manner: let û be the stationary point of 

F[uJ; to get an easier problem we restrict the trials and variations 

to some subspace U of the full inner product space U. The stationary 

point u in this restricted space, i.e. the solution of the reduced 

Euler equations, is taken to be the approximation to û. With this 

scheme, V is "like" û in the sense that both are chosen by the same 

variational procedure; the accuracy will depend on the nature of 

the subspace U; and the hope is that the use of the "global" method 

will smooth out and reduce the error in u in a way that could not be 

achieved with "local" approximations to H.

Extremum Functionals .

Fortunately there are situations in which the accuracy of the Varia­

tional Approximation Technique can be assessed directly, thereby in-

-20-
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creasing confidence in its general application. When Fis a maximum 

functional this is particularly easy, because then F[u e Ü] £ F[ü] < 

F[ü]. This gives unambiguous meaning to the statement that u is the best 

approximation to û in the reduced space U in the sense of the "pseudo-norm" 

derived from F. It also provides a means for evaluating the suitability 

of this trial space; as degrees of freedom are added to U the evaluated 

F[u] always gets closer to F[û], and the changes in F[u] are indicators 

of the importance of those extra degrees of freedom.

Unfortunately our primary interest is in the functionals R[v,u] 

and E[v,u, X ], which because of the trial adjoint functions do not in 

general provide extremum principles. In those special cases, however, 

when the operator H is self adjoint and the real source s is the same 

as the adjoint source z we can derive extremum principles even from R 

and E.
If z = s and H+ = H, we can rewrite R[u] = R[u, u] = 2<^s,u) -

^u, H u> ; so R[ü] = ^s, û) , and S?R[u, £ u] = -^u, H % u^ .

If H is a positive (or negative) operator, i.e. ^w, Hw) is always posi­

tive (or negative), then R[u] provides an extremum principle for ^s, u^ , 

and the analysis above can be used in approximating u.

For eigenvalue problems, H+= H implies that vn = un and = X^, 

so we can write
E[u,u,X] = /u, (H-X)u\ = E[u, X] and Y[u,u] = = Y[u];

furthermore,

6*Y[u] = + («Su, (H-^jôu^ / (u,u) , 

(u,u) ô%Y[u] = (ôu, H6u) - Xn (ôu, Su) .
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If H is positive, then there are two numbers XQ and Xsuch that 

and so
XN > (u, Hu) > A,, <u, u) .

Clearly

Çu, u) (Y[uJ - An) = (u, Hu) - An u) £ 0 

while

(u, u) (Y[u] - Ao) = {u, Hu) - Ao ^u, u^ > 0 

and upon rearranging, we see that An £ Y[u] £ Ao > 0.

(Similarly when H is negative 4 Y[u] / \ 4 0) thus Y[u] is an 

extremum principle for both the largest and smallest eigenvalues, and 

can be used as described above to evaluate approximations to uQ and u^.)

Bracketing

There is a subclass of the extremum functionals whose members provide 

an even better error estimating property than the monotonic convergence 

of the ordinary extremum functionals. These are the bracketing function­

als - extremum functionals evaluating known limits, or pairs of function­

als providing both upper and lower bounds for the same value.

The prime example of the former type is the class of Least Squares 

functionals [5]. As described earlier, L[u] = <^Hu - s, Hu - s^ L[u] 

= 0. Thus l[u] is directly a measure of the error in u; in fact by con­

struction it is the norm of the residual source.

There are few examples other than the Least Squares of functionals 

which evaluate known quantities, so the few methods for constructing 

"reciprocal" functionals - methods which provide the corresponding bracket­

ing functional when one extremum is known - are of great (theoretical) 

interest.
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Pomraning [6] describes how to do this when starting out with a 

positive definite, self-adjoint operator H and the extremum Roussopoulos 

functional R[u] = 2 <fs,u^ - <^u, Hu^ / <^s,u> . He shows that it 

is always possible to decompose H into the sum L + T+T, where L and T+T 

are both non-negative, so that Hü = s can be rewritten as the coupled 

pair of equations w=Tu and LG + T*w = s. Assuming that the inverse of 

L is calculable (and this is probably a big assumption) we can use a new 

functional
P[u] = R[u] + ^(Hu - s), L-i(Hu - s)^

for the other side of the bracket, since P[û] = R[û] by inspection and 

P[u] ^s.û^ .

The proof that this is a minimum principle and the proofs of several 

other similarly constructed brackets [16, 17] can be written as special 

cases of a generalization and extension of Hamilton's canonical trans­

formation [15].

As the starting point in the transformation we assume that we are 

given some functional G^u.w] and we define G2[u] = G^u.Ku]. If G is 

the stationary point of G2 and ^^[0] & 0, then G2 is a minimum prin­

ciple for some value D = min G2[u], and G^ is also a minimum principle 

when w is restricted to equal Ku. (Note that G is determined by the 

Euler equation [tr, Ktr, r] + K+ [c, tor, r] = 0 ). In

order to avoid the restriction w = Ku, we use the Lagrange Multiplier 
technique to define a new functional Gg[u,w,v] = G^u.w] + ^/,(Ku-w^ 

where v is restricted to those functions for which G3 has a stationary 

point. Denoting this stationary point of Gg (for variations of v and w 

with v held constant) as (u(v), w(v), v), we see that u, w. and v must 

satisfy the Euler equations
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[u, w, r] = -K+v(r) and [u, w, r] = v(r).

If 62G3 >_ 0 for variation of u and w we can define

G,[u, v] = m’n Gju, w, v] 

and Gs[v] a G,[u, v] = m’n G,[u, w, v] 

and show an interesting relation between these functionals and D. Re­

calling the Euler equation for Gj, we see that the set

ü", w = Ku, and v = [ü", Kü, r]

is a stationary point of G^, and that

G3[1T, w, V] = Gu[û, V] = G5[V] = D.

Now since

G5[v] = G«[u, v] = G,[u. w, v]]

for any v, and this is

GsMi^Ku G,[u. w, v] = "i"G,[u] = D, 

the conclusion is that D = mJx Gs[v] = m^n G4[u, v].

G2[u] and Gs[v]

are known as Reciprocal or Involutory functionals for D, while G^[u,v] 

is known as the canonical form. The bracketing properties depend on the 

fact that GgCQ] is an extremum and that G^[u,w,v] has an extremum with 

respect to u and w. If these conditions do not hold the Canonical and
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Involutory transformations are still valid, but the intermediate steps and 

the final functionals are all just stationary principles.

When brackets do exist, they can be used to evaluate D within known 

error limits, as was done by Pomraning in his calculation of the Milne 

problem extrapolated endpoint described earlier [6]. They can also be 

used to evaluate the error in function approximations, even though ü 

and v presumably satisfy different Euler equations, by relating them both 

to a third function w. If there are operators such that û = U(w) and 

v = V(w), then the values of Gg[U(w)J and Gg[V(w)J, for any w, can be 

used as indicators of the accuracy of U(w) ~ u and V(w) X v.

Non Self-Adjoint Systems

One other method of generating bracketing principles, that of Buslick 

[18], deserves examination. This method is based on the transformation 

of a non-self-adjoint system Hu = s and H+v = z into self-adjoint and 

anti-self-adjoint parts. First we define Hs = (H + H+), H&= ^(H - H+), 

ws = ^{u + v), wa = |(u - v) and finally qs = ^(s + z), qa= j{s - z). 

Substituting these definitions in the original equations, we derive an 

equivalent set Hcw„ + H w = q . H_w_ + H_w_ = q_. Now we assume that 
b 5 da 5 d 5 5 d d

H,-1 can be calculated, and eliminate wa = H w ) to derive
5 d 5 d d 5

(He - w_ = Bw_ = q_ - H H "'q.. This coupled pair of equations
5 d S d S 5 S d 5 d

is also equivalent to the original pair, but each is written in terms 

of a self-adjoint operator (since B = Hs- = »Bf> 0

if and only if ^f, Hgf > 0 . The Roussopoulos functional can now be 

written for the ws equation:

R[w] = 2 /qs - Ha H"1 qa, w^ - (w, Bw^ ,
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wi th
R[w] > R[ws] = (z, u) f {(s-z), HgXs-z)}

provided that B (or equivalently Hs) is positive. Repeating the deriva­

tion with z replaced by (-z) does not affect the extremum property but does 

give a new functional R1[w], with the property that

R‘[w] > - (z, u ) + {(s+z), H-^s+z)) .

Therefore, since the second term in each of these expressions is a known 

constant, the two functionals can give upper and lower bounds on the or­

dinary goal functional ^z,u^ .

The particular value of this method is that it shows a way to con­

struct bracketing functionals for non-self-adjoint problems, problems 

which never even have extremals when treated with the ordinary functionals. 

Of course a price is paid, and that is the much greater complication in 

the effective operator B.

In fact, the complication inherent in each of these methods is quite 

apparent and is the reason they are hardly ever used to generate approxi­

mate solutions. There is no reason to expect that these bracketing 

functionals will produce better approximations than those which the usual 

Roussopoulos functional does (the experience has been the reverse [18]) - 

what they do provide is a means of assessing the accuracy of an approxi­

mation once it has been generated. From a practical standpoint the pre­

ferred procedure is to generate approximations using simple, easy to 

handle functionals and hold these special functionals in reserve for 

occasional verification of those results.
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Reduced Functionals

Once a suitable functional has been chosen the trial functions are 

allowed to vary only in a chosen subset #cu. In the following 

section we will assume U is the set of all functions U(x), where U is a 

mapping taking elements of the linear space X into U, and that V is the 

set of all functions V(y), where V is a mapping taking elements of the 

linear space Y into V. (Examples might be that X is a vector space and 

U a transformation matrix, or X is the set of scalars and U(x)=exp(ax)). 

We assume that the mappings U and V can be absorbed into the functional: 

and write F[V(y), U(x)] = F[y,x]. (We call this the "reduced" functional 

since only x and y are variable). Now we seek the stationary point F[y,x] 

in the reduced spaces Y and X; the Variational Approximations v and ü are 

seen to be V(y) and U(x).

For the reasons given in the previous section we are assuming that 

"practical" methods of approximation [4,7] will be based on the use of 

the Roussopoulos functional R[v,u] (or E[v,u] for eigenvalue problems). 

If the nature of the transformations U(x) and V(y) can be specified more 

closely, it is possible to perform a small amount of error analysis even 

for the non-extremum cases.

We will not (yet) assume that U or V are linear operators or that 

^U(x)^ and fv(y)^ are full linear subspaces of U and Y. We do assume, 

however, that for any small perturbation Sx in x we can expand U(x +Sx)= 

U(x) + U'(x) • S x * O ||& x|| %, and similarly for V(y). Thus it is 

clear that if

F[y, x] = (z, U(x)} + (V(y), s) - (v(y), HU(x)}
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then 6F[y, x, ôy,6x] = (z, U'(x) « ôx) + ^V'(y) • 6y, s)

- ^V(y), HU'(x) « ôx) - (V(y) • 6y, HU(x))

- - H+V(y), U*(x) • ôx^ + (v'(y) • Ôy, s - HU(x)} .

The stationary requirement that S F[y,x, Sy, S x] = 0 then gives the

Euler equations

and

(z - H\(y), U * (x) • 6x) = 0 

(V'(y) • 6y, s - HU(x)) = 0

V 6X

V 6y.

However, because of the linearity of the derivative term we can expand

U' (x) • S x = Ul(x) S x., i.e. we can expand Sx in components 
jk 1 1 .

S x[ corresponding to a basis for the space X (even when this is not

valid for U(x) itself). Similarly we expand W (y) • Sy = V!(y) y<,
J J J

and then the Euler equations can be rewritten

E <z - H+V(y), U!(x))Sx. = 0 V x

or (z - H^V(ÿ), U!(x)) = 0 X i ,

and ESy^ ^V'j(y), s - HU(x)^ = 0 N ôy

or A'-(ÿ), s - HU(x)) = 0 N j.
\ J

Already some dangerous situations are apparent. For example, if there 

is any % such that Auÿ), H U(x))> = 0 for every j, then the station­

ary point x may contain arbitrary amounts of x. More dangerously, if 

there is any Sy such that

^V'(M Sy. s) t 0

even though V (y) » y, H U(x))> = 0 for every x then there is no 

stationary point.
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We assume that a stationary point (v,u) = (V(y), U(x)) does exist 

so that we can continue the analysis, and we build this analysis on an 

expansion of the trial functions U(x) and V(y) in eigenvectors of H.

Assuming there exist complete bi orthonormal sets of eigenvectors for H

and H Hum and H vn ” ^*nvn’ nm *

we can expand any
m m

u = E 
k

ukck vidrv E
1

(We pause here

umem

to notice

v,, s

and

that

Vn‘

urer - H E uke

s = E 
m

z = £ 
n

vr £ 
r

I \ u e' el - Ai c]

so that the exact stationary point can be written in this eigenvector

notation as u = uk ek/ \ k, T ll Continuing, we

expand U(x) = ukck(x) and ll.!(x) = "k^ki'n eigenvectors, and 
k /*•

also

V(y) = E v^dj (y) and Vj (y) = £ v^^ty).

Substituting these expansions, the first Euler equation becomes

E v^^Cÿ), H £ ukck

or, using the orthonormality conditions,

E 
1

Similarly the second Euler equation reduces to

E 
k
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The Euler equations for the reduced functional thus have been transformed 

into a set of simultaneous (not necessarily linear) equations for the co­

efficients C£ (x) and 

ary point V(y), U(z).

d^(y) of the eigenvalue expansions of the station-

Linear Subspaces of Trials

Not much information can be obtained from the stationary conditions 

in this form, so again we simplify, finally assuming that U and V are

linear transformations from the

(From here on the analysis will

U(x) = exp (ax), for example).

spaces X and Y into subspaces of U and V.

not apply to nonlinear operators like

Because of the linearity of U and V, we write

u(r) = U(r,x) = E U^r) x. and Uj'(x) = Ui

but recall that we have already written U(x) = jJ ukck(x). By using the

expansi on of each of the U.. = in eigenvectors = £ u^a^j we see that

u(x) = n 
1 k

ukakixi = * uk ? akixi

so that

Similarly

ck(x)

we write

• J »ki"i

v(r) = V(r,y) = Vjr) y. 
J U

and Vj
J 
E 
j

' (y) = v. = %
J 1

vi hj

so that

v(y) = e 
1

Vd "i M ° *v £ 
j

^1iYi»

Substituting c and d into the Euler equations yields

E
1

%al = ^Ijh ? alixi
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and
g »ki "k Vj 11
K KJ

We now have two uncoupled sets of linear equations which can be solved 

for the components of y and x, the stationary points in the reduced 

spaces.

Adopting a matrix and vector notation to simplify the expression of 

these linear equations, we write the alternate forms

U(x) = U • x = u * A * x. V(y) = V • y. = v • b • 2» 

s = i£ • £ and z = v • f,

where the elements of jj and x are all the eigenvectors uand v^ , the 

elements of a and b are the expansion elements a^. and b^, and the I 

components of x and the J components of determine the functions x and y 

in the X and Y spaces.

Starting over again with the original Euler equations, we see that 

(y) * 6y, s - HU(x)) = 0 W 6y

becomes
gyT • " L JJ • £ ■ H £ ' 1 ' = ° Y

or .
ôy^ • b^ • ^v, £ • = ôyj • b? • ^v, Hu • a • x/

or
bT ' ^v, u • e = bT • , H uy a - x ,

and similarly the equation for y becomes

fT * (I, u_y a = £T • bT • (h+v, u ) • a .
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Now if H(and H+) had complete orthonormal sets of eigenvectors then 

^y,u^ would be the identity matrix and y, Hu^ = ^H+y, would 

be the diagonal matrix of eigenvalues, so we denote T = ^v,u^ and 

D = <^y, Hu^ , and define H = • D - a in order to write the station­

ary conditions as

• X • £ = bj • • a • x = fi • x = ë - .

and

f^'l'& = 2^'b-D'a=^ • H = fT 

or HT • £ = f

The elementary theory of linear equations shows that in general 

(arbitrary s and z functions) there will be undetermined components of 

x unless J ) I> and undetermined components of y unless I £ J, implying 

that I must equal J to ensure a unique stationary point (y, x) unless 

special assumptions can be made about the source functions. Actually, 

there may be multiple solutions even when I = J, because if H • x = 0 

or jF « y = 0, then arbitrary multiples of x and y can be added to any 

particular solutions x and y. Uniqueness of the stationary point may 

not be a requirement of the approximation problem, but if it is, it is 

good to be aware of potential failure.

A more dangerous situation arises if one of the stationary equations 

cannot be solved. The condition for this can be stated precisely using 

the notion of the rank of a matrix - the maximum number of linearly in­

dependent rows or columns (note that rank (H) = rank (HT)smaller of I,J). 

There will be a solution to H • x = e if and only if the rank of p is 

equal to the rank of the augmented matrix (H ©e). Likewise, there will 
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be a solution tofp"«y=fif and only if the rank of H? is equal to the 

rank of the augmented matrix (HT ® f). These formal statements are not 

really very useful (determining the rank is roughly equivalent to trying 

to solve the system) but they suggest caution rather than blind confidence, 

particularly when I is not equal to J and both are greater than the rank 

of H. A case which is unlikely to ever occur in practice but in which 

there will be no stationary point of the reduced system occurs if the 

trial functions u(x) form a linear subspace of U spanned by a set of eigen­

vectors uk> the trial functions V(y) form a linear subspace of V spanned 

by a set of eigenvectors V], and the Vj are not the corresponding adjoint 

eigenvectors to the u^.

Eigenvalue Problems

This analysis of the stationary point of the reduced functional can 

also be applied to the eigenvalue functional E[v,u,X] = v,(H- X I)u^ 

We define the reduced functional E[y,x,X] = E[V(y), U(x),X], and pass 

immediately to the assumption that U and V are linear transformations 

from X and Y to subspaces of U and Y.

Using the same expansions as before, we see that
(v'(y) • 6y, (H - Xi) u (x)) =0 i 6y 

becomes 

and
{(H+-X*I)V(y), U'(x) - 6x) = 0 

V j

V 6x

becomes

J K J K
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M T /v 
In matrix notation (defining K = b • I • a),

• D • a • x = Ab? • I • a • x■a a aa = = = —
and

XT * bT • D • a = X/ • bT • Ï • a 

or

H » x = X K » x 

and

ÈT "2=^-2
In comparison, we see that the original pair of ordinary eigenvalue 

problems Hü = X û and H+v = X v has by these approximations been trans­

formed into a pair of generalized eigenvalue problems, since there is no 

reason to expect bT. Y» a to be the identity matrix.

These equations can behave even more poorly than those for the re­

duced Roussopoulos functional, even when I = J, because there potentially 

can be valid solutions for any value of X at all. This is terrible, 

because the whole point of the reduction is to obtain approximations 

U(x), V(y), and X to the exact solutions ü, v and X of the more diffi­

cult exact problem. Assuming I = J, we see that one way the problem may arise is 

if there is some 2 such that H • x = 0 and K • x = 0, i.e. if the null spaces 

of H and | overlap. In this case an arbitrary multiple of x can be added 

to any valid x (rendering it non-unique), and x itself is a valid solu­

tion for any choice of X . (Similarly there will be a y if the null 

spaces of H? and K? overlap). As before, an example of this behavior 

occurs in the case of trial function spaces composed of non-corresponding 

sets of eigenvectors.

Fortunately, experience indicates that these degenerate cases do not 

occur very often in practice, so we make the working assumption that the



-35-

reduced Euler equations can be solved. When this "anomalous behavior" 

has occurred, it has usually given clearly very bad approximations [50].

An idea which comes to mind when generating approximate eigenvectors 

is to use the Rayleigh Principle with U(x) and V(y) to obtain a direct 

estimate of X which might be better than the indirect estimate X . Since

„rv,.. „,-n . <v«)> _ <V • b . 2. HU • A • x)
[ (y)> (x)] ^V(ÿ), U(x))

• bT • (v, Hu\ • a • x yT * H • x
= ----- ------ -—------------------ = -ÿ—- -------

y • b‘ • < v, u ) • a x y1 • K • xMB CS \ ■■ I K L os

= xÿ • k • yi • 1 • x = x.

Thus the Rayleigh Principle will not provide a better estimate of an 

eigenvalue than that calculated while solving the reduced Euler equations 

of E[v,u,X ].

A similar situation arises in the use of R[v,u], equal to ^z,u) at 

its stationary point, to evaluate approximations V(y) and U(x). It turns 

out that R[V(y), U(x)] is equal to ^z, U(x)^> ; a variational function­

al cannot be used to improve this sort of evaluation when the trial 

function has been determined by applying the Variational Approximation 

technique to the same functional [19,20].

Weighted Residuals

Having completed this analysis of the pitfalls of the Variational 

Approximation technique, it is interesting to consider the relation of 
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the variational method to the method of Weighted Residuals [21, 22, 23]. 

The WR method is motivated and justified by the argument that a good ap­

proximation to the solution of Hû = s can be determined by requiring that 

when the residual source s - Hu is weighted with J different functions 

measuring some kind of source "importance", each such weight should be 

zero:

^Wj, s - HU(x)^ = 0 V j

This is easily recognized as the variational condition obtained from 

a reduced Roussopoulos functional when u = U(x) and V(y) is chosen so 

that Vj(y) = Wjî the ancient and honorable Weighted Residual method is 

seen to be analyzable as a particular form of Variational Approximation.

Numerical Example

A genuine example might be appropriate at this point as a reminder 

that the goal here is to develop practical approximation methods for real 

numerical problems. We will use the Least Squares functional to calcu­

late approximate solutions for the Hi Ine Problem: the distribution of 

neutrons in angle and space in a semi-infinite source-free half-space 

with an asymptotic source at infinity.

The mathematical statement of this problem is an equation with bound­

ary conditions for ^(x,yu ) :

(x.p) + t(x,p) = | f*1 ^(x, p*)dp'

(where 1-c is the absorption probability)

and ÿ(0,u) = 0 for 0 £ p £ 1

and ip(x,p) * exp (x/vQ) as x-x»

(where VQ is the positive solution of 1 = CVQ tanh'y-)
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It can be demonstrated [24] that the solution of this problem may be

wri tten

c v exn(x/v ) c v exp(-x/v )
*(x, M) - -------5---------------2- ♦ a------------------------2­

2 (v + p ) 2 (vQ - p )

1

A(v) e"^ dv

wnere the (y* ) are the singular eigenfunctions

4>v(p) = + [l"vc tanh \] 

and where the scalar "a" and the expansion coefficient function A( V ) 

can be determined from the boundary condition that

CV- 1 CV -I 1
0 = -g- (v0+p) + a -g— (v0-p) + / A(v)^(p)dv

Explicit formulas for a and A(V) can be found by the application of 

the singular eigenfunctions half-range orthogonality relations, but 

both the discovery of these relations and the evaluation of the resulting 

expressions are difficult processes. We take the attitude that an approxi- 

mate solution for A(V) will be satisfactory, and more specifically that 

a polynomial approximation is desired. (Polynomials are particularly 

suitable, because the integral of ) times a polynomial is very easy 

to perform analytically, and it is the difficulty of handling the that 

makes the exact problem so difficult to solve). Note that theoretically 

A(V) could be expanded in a polynomial of arbitrarily high degree and there­

fore have an arbitrarily small error with respect to the exact function.

The values of a and the function A(v) can be specified as the sta­

tionary point of the Least Squares functional

1 1 9
L[b,B] = [*0. (p) + b^(p) + £ B(v)*^(p)dv] dp
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The approximate solution is found by restricting B(V)[= polynomial with 

parameters Cp Cg, .. .C^and integrating out of L first the V dependence 

and then theyu dependence, to obtain a reduced functional L[b,c ,..cn]. 

Notice that L has been reduced to an ordinary function (a common occur- 

ance in practice) so that the stationary point in the reduced space can 

be found simply by setting the ordinary derivatives equal to zero.

This was done for several cases involving different types of poly­

nomials, with typical results shown in Figure 1. The trial function used 

for B(V) had only four degrees of freedom, so finding the stationary 

point required the solution of only a five-by-five system of linear 

equations. The function actually used for the initial series.of cal­

culations was a quartic polynomial in (1-V), since it was known that 

A(1) = 0.

For cases with high absorption (small values of c) the use of quartics, 

cubics, etc. as trials does not lead to good approximation, because of 

the difficulty of representing the "comer" which appears in the true 

solution when V is near one. To avoid this problem, the functional was 

reduced again over a trial function space consisting of natural cubic 

splines with n joints. [Cubic splines [25] are piecewise continuous 

cubic polynomials with piecewise continuous first and second derivatives. 

Discontinuities are allowed in the third derivative at n different points 

known as the joints; the term "natural" implies that the second and third 

derivatives are zero outside the region between the smallest and largest 

joints. These functions have n degrees of freedom, where n can easily 

be changed by adding or removing joints. They are smooth but flexible, 

and they are capable or representing strangely shaped curves, because the 

joints may be arbitrarily placed.] The five-joint spline approximation
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(with four degrees of freedom since A(l) = 0) plotted in figure 1 is 

noticeably better than the quartic,giving weight to a recommendation to 

use splines wherever polynomial approximations are desired.
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CHAPTER III

ITERATIVE METHODS

Since so little can be proven about the accuracy of the Variational 

Approximation Principle there is good cause for interest in a procedure 

which is (almost) guaranteed to generate good approximate solutions. Such 

a procedure results from the iterative use of a variational functional 

whose value is a second order estimate of its stationary function.

The goal then is a functional which will provide 
u^(p) = F[uQ(r),p] = u" + | |6u11 • E[û,6u] 

where E -* 0 when %% u||=||u - û|| —* O . 

(Notice for later reference that this functional is explicitly an ordinary 

function of the new independent parameter p.)

If such a "Bootstrap" functional could be found, then it would be 

possible to pick some initial approximation u0 to ü, determine u^ = 

B[uq], then u^ = B[u^^], etc. until u^ = B[u^~^] was deemed a 

satisfactory point to stop the iteration. Reliance on the appropriate 

choice of restricted trial spaces would not be needed.

Bootstrap Functionals

Such a functional does exist. Symbolically using the Dirac Delta 

function to represent the sequence of functions with the property that
lim ^v^, u)= u(p), we can set z(r) = S(p-r) in the Roussopoulos functional 

and define the result as B[v(r,p),u(r)] = <^p,u^ +<v(p),s^ - ^v(p),Hu) 

with the Euler equations

H û = s and H* v(p) = ôp.

For "g = ü + % u and v(p) = v(p) + %» v(p), 

B[v(p),u0J = û(p) - ^v(p), H 6u^ = u<n

-41 -
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so that if u and || C then

U(]) = û + terms of order (en).

At the stationary point

-Ô*B[v(p),ü] = ^6v(p), H 6u^

so B cannot provide an extremal estimate of ü unless H is (positive or 

negative) definite and v(p)-v(p) = u - ü. This latter condition will only 

be met, however, when H+ = H, z = s, and v = u, and so we must be satis­

fied with a second-order error of unknown sign in our improved approxi­

mation.

Green's Functions

The Bootstrapping functional requires two arguments, a trial for the 

desired function and a trial for some sort of adjoint which incorporates 

an extra free parameter. We will see that this adjoint is the Green's 

function [12] for the problem Hu = s. The Green's function is defined 

as the contribution to u(p) of a unit point source at r; i.e. g(r,p) is 

that function for which u(p) = g(r,p), s(r)^ is true. To find an 

equation for g(r,p), we substitute s(r) = H û(r):

û(p) = (g(r,p), H û(r^ = ^g(r,p), û(r)^

which implies that H+ g(r,p) - &(p-r), which is the defining equation for 

the adjoint v(p).

The problem now is to generate the initial trial functions. When 

using the Variational Approximation Principle we were using trials with 

unknown parameters to be fixed later, but now we need good approximations 
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to start with (because if the errors € and ï^are not small, "second 

order" processes may actually increase them). We shall assume that the 

Green's function trials to be used are formally the solutions of the 

equation K+ v(r,p) = ^(p-r) (although these solutions do not have to be 

explicitly calculated). Here K is assumed to be an operator which ap­

proximates H but which is simple enough to allow solution of problems 

like K w = q.

This might look a little strange, trading all the freedom in picking 

v(r,p) trials for the choice of K, but it really is an adaptation to the 

practical problem of generating good approximate Green's functions. By 

assuming K+ v(r,p) = t (p-r) we ensure that all the adjoint trials are 

consistent, and by assuming K approximates H we hope the overall error 

with respect to H+g(r,p) = & (p-r) will be small. We will see that we 

can reformulate the variational functional so that the adjoint trials 

themselves never appear, being replaced by K"\ so that the ability to 

solve K w - q is a practical necessity. (Finally, we note that an oper­

ator which satisfies the requirements for K should not be hard to find, 

because the trial uQ presumably is generated precisely by the procedure 

of finding some operator H which approximates H and then solving the 

equation HuQ = s)

Inserting now the assumption that K+ S(p-r) = v(r,p), we find

B[v(p).u0] = <«p.u0^ + <Y - <Y "'ip, H Up)»

B[H0,u0)P]= u0(p) +(«p,K"l(s-H u0)) - u(1)(p)

or = uQ + K’1 (s-H uQ).
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Higher Order Methods

The notation has been used for this improved approximation 

because of the obvious capability to iterate the improvement process [26]. 

We define

u(")(p) = B[v(r,p)» u(n-l)(r)]

so that if the error in u^n was of order (e n”« )» where t H v-v 

and = § u@-û , then the error in u^n^ is of order ( n* ).

Using the K form of the Bootstrap functional, we see u^ = u^n"^ 

+ K 1 (s - Hu^n and so by induction u^ = u_ + u_, where we

define um = K~\s - Recognizing that s = Hü, and H = K + (H-K),

we see that um = [I + K"\h-K)] (ü - u^m”^). Subtracting um from um+p 

we derive a recursion relation:

um+l = um

and by induction get the relation um = (-1)m [K1(H-K)]mu . This provides 

a direct expression for u(n) in terms of uQ:

u(n) - u0 + £ (-l)m [K-T(H-K)]" Uo

m=l
which presumably will converge to some function u as n approaches infinity 

if

||K-1(H-K)|| - | 11 < 1 

i e. if K । is sufficiently close to We will return in Chapter IV 

to consider the fact that this expression for u(n), the approximation to 

u iteratively improved by a variational functional, strongly resembles the 

Perturbation Theory expansion of û.
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Compound Iteration

First, however, we have one more item to explore. The error in i/n^ 

was seen to be of order ( € n *i ), where UiQ-ü) was of order and 

(v(r,p) - g(r,p)) was of order € . The iterative error reduction is thus 

determined by the goodness of the adjoint trials. This suggests trying 

to "compound" the improvement [10] by calculating better v trials as 

well as u trials on each iteration.

A potential method, written symbolically with Delta functions again, 

would work like this: -
BB[v,w,p,t] = (6(p-r),w(r,t)) + ^v(r,p),6(t-r)^ - (v(r,p),Hw(r,t 

has the Euler equations ■

H w(r,t) = 6(t-r) and H+ v(r,p) = 6(p-r)

and evaluates at its stationary point to

w(p,t) = {a(p-r),w(r,t)) = ^H+ v(r,p), w(r,t)^ 

= (v(r,p), H w(r,t)) - <(v(r,p), ô(t-r)} = v(t,p)

and so we see that

9(t,p) = v(t,p) = w(p,t) = BB[g,g].

Using BB[v,v] we can generate improved Green's function trials up to any 

desired order:

g(") = g'""')] = ,g'-'> - (g^», Hg("^))

and since S g^n\ the error in g^n\ is of order || % g^n’^ || • || Ç» 

we see that % g^n^ is of order ||gQ , which represents a very 

rapid error reduction. At any point we can stop and recover the function
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Ug") - s) which is an approximation to ü with error of

order ||^90|| •

The problem with this scheme of compound improvement (there must be 

a problem since the results look so good) is that each is a function 

of two independent variables, and the work involved in calculating g^n\r,p) 

for every r and every p from ^g^n"^ (t,r), H g^n"^ (p,t) is too 

enormous to contemplate for a realistic problem.

Perturbation Theory

The iterative nature of these schemes to reduce the error in approxi­

mate functions (and also the form of the equations they involve) is re­

miniscent of the treatment of operators with small perturbations. It 

will be useful to digress somewhat here to develop the perturbation theory 

properly [12] so that a comparison with variational methods can be made.

The problem to be solved is H u = s, as always. We assume that 

there is some "simple" operator K which approximates H, and propose to find 

a series expansion of u whose terms can be calculated by solving equations 

no harder than K w = q.

The easiest way to generate such an expansion (and the least rigor­

ous) is to expand in a power series the effect upon the solution of K uQ=s 

of a small perturbation to K. In particular, we assume that the pertur­

bation is c(H-K), where c is some small scalar, and we expand the solu­

tion of

[K + e(H-K)] u(e) = s in powers of c:

co
u(e) = Uo + EU]+ E2U2 + . . . = Uo + I £m Um 

with the consequence that

K u0 + e[K u] + (H-K)u0] + e2[K u2 + (H-K)u,] + . . . = s
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This equation is valid for all values of é , so we see that KuQ = s as 

assumed, and that
K u-j = -(H-K) u0,

K Ug = -(H-K) Up etc.

so K um = -(H-K) Um_-|

which implies that um = (-l)m[K'\H-K)]mu0. The infinite expansion for 

u( € ) can now be written

u(e) = u + % (-c)M [K ?(H-K)]M uQ. 
m=l

Of course, this expansion is invalid if it is not convergent. Conver­
gence will be assured if ||t K~\H-K) / 1; if this is true foré =1,

i.e. || K’^H -ill = 1, then we have found the required expansion

for u:

Ü - u. ♦ I u0.
m=l

We can define an approximation u(n) to u by truncating this expan­

sion at m=n:

u("). u f î <-l)m [K-1(H-K)f u 
° m=l °

and recognize that this is the iterated variational approximation to u, 

as suspected. Note that we can now express the error in u' ' in terms 
of the neglected terms of the infinite series: ||u^n^ - û || is of 

order \\ K^H - l||

Successive Approximation

A version of perturbation theory which is better adapted to practi­

cal use than the infinite series presented above is the method of Successive
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Approximations. The name is derived from the procedure of solving a 

series of equations of the form Kw = q, where each step gives a better 

approximation to u than the last [12,28].

If H ü = s and K ~ H is easy to work with, consider Hû = (K + H-K) ü 

= K [I + K"\h-K)] ü = K(I - T) ü = s, where we introduce T - -K-\h-K)= 

(I - K”^H). Now defining uQ = also, we have (I - T) û = K~\ = uQ, 

or û = uQ + Tu. To get an approximate solution, we assume Tû « TuQ, and 
define = uQ + TuQ % ü. Generalizing this process, we let u^ = 

u0 + Tu^n~^ to get the sequence of approximations that was sought. Note 

that the operator T is not really required; in practice u’ ' is formed by 

solving the equivalent equation Ku^ - s + (K-H) as was proposed.

But does this sequence really converge to u? Defining un = u^^ - 

we see that Kun = Ku^) - Ku^"^ = ^K-H^u^~^~ (K-H)u^n~2^ = 

(K-H)un_i or un = -K~1(H-K) uR_^ = (-l)n[K~^(H-K)]nuQ. Thus the Success­

ive Approximation method is equivalent to the €-expansion method, and 
converges, just as it does, when ||K~^H-I {| < l.

Formal Derivation

The perturbation theory formulas developed above by arguments about 

the successive terms of an approximation can be derived in a more satis­

fying (and rigorous) manner from consideration of the formal inverse of 

an operator which is "close" to the identity. This analysis also has the 

benefit of suggesting another "perturbation" expansion with much faster 

convergence properties.

The problem we wish to solve is HQ=s, and the solution is formally 

ü = H'^s; the problem is to compute H"\ If we rewrite the equation as 

HQ = [K + (H-K)J ü = s = K[I + K”\h-K)]u, we can then formally invert
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the K operator to get

[I+K^fH-K)] ü = = (I-T) ü

(where we have defined T = -K“\h-K) = F - K^H). Nov/ the solution can 

be written ü = (I - However, (I-T)—can be expanded, provided

Ip II L as , (the Neumann expansion) so that 
m=0

Ü = K'^s + Î fK"1, - uo + J (-1)" [K-\H-K)f u„

As indicated, we expected this to be the usual perturbation expan­

sion and it is, but analysis in terms of (I-T)”has raised the interesting 

possibility of developing a new expression for û based upon the product 
expansion of (I-T)"1 rather than the Neumann expansion.

Although the latter is well known, the equivalent expansions

(I-T)’1 = (I+T) (I+T2) (I+T4) . . .

(I-T)"1 = (I+T+T2) (I+T3+T6) (I+T9+T18) . . .

etc. appear to be not as well appreciated. In fact, there is a general­

ized product expansion

(I-T)’1 = n ( £ T^"1» ) for any P > 2 

m=l K=1

with the property that the partial product of the first n factors is equal 

to the partial sum of the first term through the term (pn-l) of the sum­

mation expansion. Clearly even the order-2 product expansion reaches 

greater accuracy than the (usual successive approximation) series expan­

sion very quickly. Therefore we define the approximations u@ = K"1s and 

u(p»n) x y(K-l)P these have errors of order ||t|I • This
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method, called the "P-Hyperpower" method, has recently been proposed for 

use in reactor analysis by Devooght [27]. It is capable of dramatic 

accuracy, but for a number of good reasons it is only rarely used.

The problems with applying the hyperpower method are practical, not 

theoretical. First, powers of T must be calculated and applied, which can 

involve great amounts of work. Second and more important, the actual 

inverse of K must be found, sipce the fast convergence of the hyperpower 

method depends on the explicit application of T , where T = -K (H-K). 

The numerical calculation of matrix inverses is susceptible to errors and 

is expensive, so a significant advantage of the normal perturbation method 

is that K only appears in equations of the form K w = q which can be 

solved for w without inverting K. For these reasons, the hyperpower 

method is seldom used.

Operators with Parameters

All of these methods for forming high-order approximations implicitly

assume that the base operator K is chosen and fixed and that the desired 

degree of accuracy is obtained by iterating until || ° is suffi­

ciently small. There is, however, no reason why K cannot be chosen as an 

operator containing free parameters [28]. These parameters (call them

*'x")will also affect the approximate solution u and can be chosen so

as to make w = q easy to solve or, more likely, to reduce the poten­
tial error by minimizing I % (H-K/ %) .

A widely used iterative method which incorporates a free parameter 

is the Successive Over-Relaxation method [32] for the solution of sets 

of linear equations. The relaxation methods are perhaps not thought of 

as perturbation expansions, but they are in fact examples of the success­
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ive approximation formulation. To see their perturbative nature explicit­

ly, and to show how the parameter is introduced, we start with the matrix 

equation H u = (B-R-R^)u = s. (Where typically H is a finite difference 

approximation of the Laplacian).

The simplest relaxation method is Simultaneous Relaxation: take K=B so 
that T=B \r+ RT). b is assumed to be relatively easy to invert, hence 

we can solve for u^ = B-1s + B~^(R+R^)u^"~^. We note, however, that 

ifR is a lower triangular matrix and if the vector u^ is evaluated

from the top down, then R u^n"^ uses only those elements of u^n~^ which 

have already been "improved", and we could compute u^ = B-1s + B-1R ut")

+ B~^R^u^n~^ with presumably greater iterative improvement. This is 

called Successive Relaxation, and can be seen to be an ordinary itera­
tion with K - B-R and thus T = (B-R)~W= (I-B*^R)*^B"^R^.

The parameter is introduced now in an attempt to accelerate the 

convergence of u(n):

usor = + «(B'^s+Ru^Wu^*^) - ut"'^]

or

"son = "B'ls <-<oB'1Ru(n) + [(l-u)I»toB"1RT]u(n"1)

This scheme (Successive Over-Relaxation) is an iteration with K=(^ B-R), 

and since the intention is to iterate to convergence we want to choose 
cuso as to minimize the norm of T = || (B-vR)"^ ((!-*) B+ «oR^) | . For 

some problems (as when H is the finite-difference diffusion operator) this 

norm can be evaluated analytically and formulas for the optimum co ob­

tained.
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Fixing the Parameters

In general, what sort of freedom 

tions suggest themselves immediately, 

where presumably each is itself an 

would seem to be the simplest sort of 

great difficulties in trying to solve

can be allowed? Linear combina- 

so we try the form K(x) = £ Xz Kj, 

approximation to H. Although this 

expansion, it actually leads to 

the prototype equation K(x) w =

Xj w = q since the inverse of a sum of terms is needed. This 

suggests the alternate approach of forming K* (x) = x^ directly. 

Since K itself is never used, only the solution of Kw = q, obtaining

K(x)"^ directly is definitely more useful than obtaining K(x). The 

greater difficulty of choosing trials which approximate Ht1 instead 

of Kj which approximate H is offset by the flexibility which the free 

parameters incorporate in K(x)~\ The degenerate kernel technique, 

using a kernel (inverse) which is a sum of simpler kernels (trial in­

verses) is an example of this method.

Having inverted the parameters, it becomes necessary to fix their 

values. Some particular choice x must be made, but the criterion can 

depend on the application of u. If the actual goal is to approximate ü 

as closely as possible, then presumably the iterative procedure will be 

applied until the error is very small ; choosing x so as to minimize 
|| I - K~\x)H || will minimize the potential work in getting to a satis­

factory u^n\ since the norm of the correction terms ||um|| 4 || K’^H-K) 

jbm-l II will be decreased as rapidly as possible. On the other hand, it 

would not be unreasonable to ask for a small error after only a fixed 

small number of iterations.

Goldstein [29] attempts to achieve this by fixing x so that when 
\ • •
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some functional L[u] is evaluated with the u|^, L[u0^j] = L[u^j].

The justification is analagous to that used with the ordinary variational 

method: L[uq^*j] has only second order errors. To see this, recall that 
has errors of order }|k"\h-K)|| n+\ so that u^has errors of order 

|| K‘l(H-K))| . Then notice that since L[u0^~j] = L[u^], the error is 

of order |[k~\x) (H-K(x))| . Of course, this does not guarantee that 

the error L(u0^~j] - L[u] will itself be small, only that it will be re­
latively smaller than the error (u0(x) - ü).

Assuming L[u] is a linear functional written L[u] = ^z,u^ , this 

method requires that

0 • <z-u$> - " %(%)) 

or
° = <z* U](X)^

This is known as the "Zero Residual" method.since / z, u \ approxi­

mates

Since

^z , the residual error in the functional evaluation.

ul(x) ■ ^(x)"1 (H ■ K(x)) uo(x)

we have

0 = - <(z, 1 (H - uo(~^.

or
0 = ^(x)1 2* %(x) )

so that if we think of K+(x) v0^ = z or defining an approximate ad­

joint analagous to u0^^, this is a requirement that (H-K) be small in 

the sense of contributions to L[üJ. With x chosen this way, we see that

L[uO(xp = which has second order error, and we find an extra
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bonus in that which has a third order error, takes a parti­

cularly simple form:
L[u^] =

This explanation of the Zero Residual method shows how to fix only 

one parameter x; if x represents a set of parameters x^, more conditions 

are needed. There are two obvious ways of extending this procedure, one

more elegant and the other more useful. The elegant method requires 
L[uo^)J = L[u^] where n = 1 through I, the number of parameters. ' 

set of conditions should be large enough to determine all the x., and 

that

This

implies that the evaluation of L[u0^x)] will have errors of order
||K(H-K)|| %*! The calculation of all the u^ in terms of the free var­

iables will lead, however, to impractically large systems of (probably

non-linear) equations.

More useful is a procedure which specifies that L^Cuo (%) ] = Ln[u(Z)

for n = 1 to I different functionals. This leaves the error at second 

order, but (hopefully) produces an approximation u which can be used 

with confidence to evaluate a wide variety of functionals. An interesting 

point to notice here is that if the functionals are all linear of the 

form ^zn, u^ , then the definition K(x) v^(x) = zn transforms theZR 

equations into

^n(x)' (H'K(x))uo(x)) = 0 

or
(*n(X) ’ "%(x) - = 0

V n

which bears a remarkable resemblance to the Variational Approximation

Principle.



CHAPTER IV

PERTURBATIVE VS. VARIATIONAL METHODS

In the previous chapters we have noted on several occasions the 

similarity between the variational analysis and the perturbation analysis. 

We will formally analyze these similarities here, and show that the two 

methods are formally equivalent in many cases.

Formal Equivalence

We assume that the goal is an approximation to the function u which 

is the solution of the equation Hü = s. Further, we assume that the 

variational approximation will be formed by iterative application of the 

Bootstrap functional to some u(r) = U(r,x) % u(where x is a free parameter), 

while the perturbative approximation will be formed by successive approxi­

mations with the operator Kp(x) % H. Using the definition Tp(x) = -K^(x) • 

[H-Kp(x)], we recall that the perturbative expansion is

“pn)W ■ Up(x) *Tp(x)UpkP = “pW +

where

Kp(x)up(x) = s and Kp(x)UP(x) = -(H-Kp(x))u^(x).

On the other hand, for the variational expansion we start with uy(x), 

which we assume can be generated by some operator such that Kv(x)uy(x)= s, 

and we write the iterated approximation as 

u(")(x) = u^-^lx) + K/(x)[s-Hu("-1)(x)] = u/x) + ? u’(x),

where

x Kv(x)uy(x) - s and Ky(x)u^(x) = -(H-Ky(x))uJJ_1(x).

-55-
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Mow we see clearly that = u^p(x) for those situations in which 

the two approximate operators are equal, or effectively, when Kp(x)uv(x)=s. 

Furthermore, consider the Roussopoulos functional which evaluates some 

goal functional L[u]:

R[v,u] = L[u] + ^v, s-Hu^ .

The source for the adjoint problem for this functional is z = , and
if we assume that K*(x) v = z = ^- (for consistency with uQ(x)) we see 

that
REv.u^-'^x)] = L[u("'l)(x)] + {K* -1(x) s-Hu^-'hx))

- L[u("-’>(x)] , |Ç1(X) (s-Hu^-^tx)))

= l[u("-l)(x)] , un(x)}

while the value of L[u] upon inserting the approximation directly is

. . , \ higher
L[u(n)(x)J = L[u<n~l)(x) + un(x)J = Ltu^’^Cx)] + , u^fx)^ + orders

which is the same as F[v,u^p] in the instance that the goal functional

L[u] is linear [26].

Thus not only are the high order variational and perturbative ap­

proximations to û formally equivalent, but also the direct perturbative 

evaluation of a linear goal functional is equivalent to the variational 
evaluation with an approximation of one lower order, i.e.R[v,u^n"^J = 

L[u^n^]. In particular, this applies to evaluations with second order 

error: L[u] evaluated directly with a first order perturbation approxi­

mation will be equivalent to the variational evaluation of L[u] using the 

(zeroth-order) un-itérated trial function, provided again that the per­

bation base operator and the trial functions satisfy the relation 

Kv(x) • Up(x) = s.
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Practical Differences

Since second order evaluation is the most common type, we see that 

the accuracy of the results really does not depend on the nature of the 

method used - it depends on the quality of the trials, and the manner of 

fixing the parameter. Whether a particular method is called perturbative 

or variational will be determined by the order of the approximation and 

the manner in which the parameters are handled.

Low order methods involving no parameters or only a few tend to be 

considered perturbation methods, in the sense that they are used to cal­

culate small effects when given very good initial trials. When the ini­

tial trials are not too good, high-order iteration is thought of as a 

perturbation process ; whereas when the initial trials have a great many 

parameters the variational procedure fixes them all at once. The aim of 

the discussion in this section is to encourage consideration of the al­

ternate formulation of any problem to make certain that good approxima­

tions are not overlooked because they are unusual.

Example

As an example of this technique of trying the alternate formalism, 

we introduce the Intermediate Resonance method of Goldstein [29]. This 
is a method for evaluating L[^] = J c^(u) (u)du, the absorption of 

neutrons by a resonance, when the flux (u) cannot be treated in the 

traditional Narrow Resonance (NR) or Narrow Resonance Infinite Mass (NRIM) 

approximations.

The energy dependence of the flux of neutrons slowing down in a 

medium consisting of a light moderator and a heavy resonance absorber is 

determined by the equation
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(Z_ + Z (u) + Z (u)) *(u)-G(Z 40 = Hi b a d hi

where m is the moderator cross section, and the scattering operator is

G(u) - !u Mu') t(u')du'
s u-ln l/a u al 5

In the NRIM limit (called the Wide Resonance limit by Goldstein) G(

approaches _(u) (u) so that ^wn(u) = —; > while in the
a *

Narrow Resonance limit G( Z s^) approaches £p, the scattering cross

section of the absorber, so that 4 r ; Goldstein 

assumes that between these limits (the Intermediate Resonance region) the

expression 4^, \ — , which depends on X as a
’ * z w» 2*. + A 2^

free parameter, is a reasonable approximation to (u).

To get an improved approximation, however, he assumes there is an 

operator K $ which approximates and which has

the property that ir(u) = K1 m> i.e. that ^^(u) is the first 

order perturbation approximation to (u) when iterating with K. The 

value of X is then fixed by using the Zero Residual principle within the 

perturbative formalism: iterating (formally) to get a second order approxi­
mation and then requiring L[ ^R(u)J = L[ ^(u)]. With this 

value, L[ jR(u)] gives a second order estimate of the resonance absorp­

tion.

This has been a very successful method, due to the cleverness in 

introducing a parameter which interpolates between limiting cases and then 

using an iterative technique to boost the accuracy at the same time the 

parameter is fixed. Since its introduction the IR technique has been ex­

tended to allow treatment of material heterogeneity [30], multi-nuclide 

systems [31], etc. By its usefulness it justifies the transformation from 
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the trial function formulation (where the non-linear parameter would 

complicate a variational approximation) to the (seemingly) more flexible 

iterative approach.

Hybrid Applications

An interesting concept for getting the best out of both variational 

and perturbative methods comes from the following observation: the 

Successive Approximation form of the iterative expansion is phrased for­

mally in terms of the inverse of K, but it was pointed out that in fact 

all that is required is the ability to solve systems Kw = q. These, 

however, are approximations to Hw = q, and so we might propose to apply 

the Variational Approximation Technique to the functional L[u] +^v,q-Hu^ 

and define K implicitly by defining w to be the stationary pointw in an 

appropriate reduced space. Assuming the reduced space is reasonably well 
chosen, each w should be a good approximation to its H^q; so that the 

"effective" K should be a good approximation to H, and the Successive 

Approximations sequence should converge rapidly.

In effect, this is what has been done in some [33,34] of the appli­

cations of the Synthetic method of Kopp [35] (really a version of the 

Successive Approximations method written in a complicated form).

Kopp proposes to solve the problem ü = Au + s,when a simpler operator

B « A is available,by the following cyclic process: 

first take w^ = s and define x^ = ü - w^ ;

this implies x1 = A(x^ + wp , or x^ = (I - A)"V Wp now try Xp y^+ x^.

where y^ = B(y^ + Wj) s xpwhich implies Xg = A Sg + Wg, where Wg = (A-B)*
(y, + w,). The approximation to û accumulates as u^ = (w + y ) 

1 1 m=l m m
where ym = B(ym + w ) and w^^ = (A-B)*(ym + wm). We can greatly simplify 
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this, however, by defining um = y^^ + which implies u = (I-B)"1* 

(A-B) with uQ = (I-B)"^s, so that u(n) is just the ordinary pertur­

bation expansion for ü = (I-A)~^s when K = (I-B).

In the applications noted above, the problem (I-A)ü = s to be solved 

was the transport equation for the angular neutron flux distribution, 

while the most suitable choice for the simplified equation (I-B) y = Bw 

was shown to be the neutron scalar flux diffusion equation. The diffu­

sion equation, however, is a variational approximation to the transport 

equation, and although that was not the basis for its choice in these 

applications, it illustrates very well the usefulness of hybrid techniques.



CHAPTER V

NEUTRON FLUX DISTRIBUTION

The techniques for approximation presented up to this point have 

been formal methods with only a few examples. Now we shall start to 

apply them to the central problem of reactor physics, the calculation of 

the neutron flux distribution. As was pointed out in the Introduction, 

the equation governing this distribution is known but unsolvable in prac­

tice, and the goal will be to use the Variational Approximation Technique 

to eliminate unneeded complexity and to incorporate known detail. Varia­

tional methods, which are based on the accurate evaluation of some goal 

functional rather than the calculation of the flux itself, are very 

suitable for this problem because in fact the real quantities of interest 

are various weighted averages - functionals - of the unobservable flux.

Neutron Transport

We begin by introducing the definitions needed to state the exact 

problem. The unknown function for which we want to solve is the expected 
flux of neutrons <^(r> E,%, t) d^rdEd^L. in a small d^r about the point 

o 
n traveling within a solid angle d jl about the angle SV , with energy 

in the range dE about the energy E, at time t. This flux (defined on a 

linear space with seven independent dimensions) satisfies the neutron 

transport equation, which describes both the motion of neutrons through 

space and their interaction with the material comprising the reactor core.

The transport equation can be written [24]:

V |t + e V* + %,= Q+ZdEVd2^ Eg *(r,E',9' ,t)

with the following definitions:

-61 -
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v = velocity of a neutron with energy E

V* = gradient of the flux

3 2Q(nE,g,t)d rdEd Q = arbitrary source of neutrons

3 2X(£»E,O,t)<t>d rd Ed 2 = rate of removal of neutrons from the elements 

d^rdEd^ at (r,E,Q,t)

,t)d^rdE'dEd^O'd^% = rate of scattering of 

neutrons from energy E' and angle O' to energy 

E and angle g.

The neutron flux distribution after time t0 within a region R with sur­

face S is uniquely determined by the initial distribution in R at time 

tQ, the incident flux on the surface S, the internal source Q, and the 

transport equation written within R.

The difficulty in solving this equation derives primarily from the 

complex form of realistic cross sections. Since the nature and distribu­

tion of the interacting material is arbitrary, the cross section can change 

drastically over small regions in space, causing variations in the angular 

and spatial flux dependence which make the gradient term fluctuate. 

Furthermore, the energy dependence of the cross sections can vary wildly, 

impressing corresponding variations on the energy distribution of the 

flux. Various degrees of approximation will be made, either to ignore 

detail or extract it in advance, so that the remaining calculational 

problem provides only enough information to answer specific questions, 

rather than the complete solution of the exact equation.
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Angular Reduction

In preparation for this, we want to express the angular dependence of 

the transport equation in a different manner [36]. For most materials 

the scattering cross section is a function of the angle between Ax' and 

st rather than each of these angles independently:

es - • n,t).

Before rewriting the scattering term with this dependence we also split 

s into ^S(E'), the total scattering cross section, and F(E'-»E, 

a conditional probability distribution, so that

/dEVd2^^ = /dE’/d^^Cr.E'.Q'.t) Zs(r,E',t)F(r,E'-E ,n' • 0)

Now we expand the angular probability distribution in a complete set of 

Legendre polynomials: •

F(r,E'-E,£' • n) = Î fn(r,E'»E)P (S' • y, 

n=O 
where

fn(£.E'»E) = J+1 dp Pn(u)F(r,E'*E,u), 
-1 

so that

/dEVd^'M, = I /dE'Zjr.E' ,t)fn(r,E'^E)/d2n'* • Pn(g' • 0). 

5 n=0

This is still an exact representation, but in an alternate form.

We must, however, start eliminating parts of the exact equation, 

and this Legendre expansion was performed because most of the angular 

dependence will be the first to go. In many cases, particularly cases 

involving power reactors, the spatial and spectral dependence of the 

flux is most important, and the angular detail is sacrificed to allow 

better calculations in these other variables. The traditional way of
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doing this has been to expand the angular flux into terms with known 

angular dependence and then use the Weighted Residual method to derive 

equations for the coefficients of these terms.

Thus, for example, the flux can be expanded in a complete set of 

spherical harmonics,

*(r,E,D,t) = 4>0(r,E,t) + J_(r,E,t) + . . . ,

and the equations for the coefficients can be determined by setting equal 

to zero the integrals of the transport equation multiplied by the func­

tions orthogonal to the spherical harmonics used in the expansion. This 

produces a representation of the exact flux as an infinite series of 

harmonics which is truncated to the degree of angular detail desired 

(giving the so-called P-N equations).

A better way of eliminating angular complexity is by using the Var­

iational Approximation Technique. (This method is preferred because the 

procedure used to derive the approximate equations do not depend on the 

properties (e.g. orthogonality) of the trial functions, so that detail 

can be built in without increasing the angular "degrees of freedom"). 

We want to find a variational functional whose Euler equation is equiva­

lent to the transport equation and its boundary condition. Given this, 

we restrict the trial function space by allowing only certain kinds of 

angular dependence and find the reduced Euler equation.

Rather than write down such a functional for the full transport 

equation, we shall illustrate the procedure as applied to the one-dimen­

sional form of the transport equation in the one-speed approximation:

n=0
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Here the flux is a function only of the position r and the cosine of 

the angle relative to the r-axis. , Zs and f are functions of r only. 

The term P( ) has been transformed (using the addition theorem for 

spherical harmonics and integrating over d \ ) into the product P( y* ')• 

P( /kV
A suitable functional for this equation is

F[/,4»] + /dr/dpE^+^(^-H^^^

the Roussopoulos functional, where we see that an adjoint function satis­

fying H+ += Q+ must be introduced. We have avoided mentioning the 

boundary conditions to be associated with this flux equation because that 

topic brings up a lot of confusion without much compensating insight. 

Briefly, the boundary conditions can be treated either by requiring all 

trial functions to satisfy them or else by including them with extra 

Lagrange multipliers in the functional.

An approximate solution is obtained by assuming expansions for 

andPomraning [37] effectively uses
♦(r.n) - "n *„(r) W

m=0 
and similarly

= I 4(r) P£(p)

and performs the angle integrals in F to obtain a reduced functional

F[*o, 4>i» • • • •I’m » 4*0» ’t’-j » • • • 4^

Setting

af N V £
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is seen to provide as Euler equations the ordinary equations. With 

N = 1, and defining <^> Q(r) = (r) and ^(r) = J(r), we have

(E-Zg)*(r) = Q0(r) = /dpPo(p) Q(r,p) 

and

(E-f^pj(r) + = Qi(r) = /dWyii)Q(r,W,

showing that the common P-1 approximation (and also Diffusion Theory) can 

be thought of as variational approximations to the transport equation.

This really isn't too exciting. What is interesting is to note that 

any other sort of angular dependence can be used just as well to specify 

the restricted trial space, so that approximations tailored to particular 

known (or suspected) angular distributions can be easily generated. 

For example, Kaplan, Davis & Natelson [38] describe the use of angle­

expansion functions which are "peaked" in certain directions in an attempt 

to build in, rather than calculate again and again, the knowledge that 

the flux will be strongly anisotropic in some regions.

Diffusion Theory Functional

We did point out, however, that in practical reactor problems the 

angular distribution is of secondary importance, and so we shall not pur­

sue these clever angular syntheses any further. Instead, we shall adopt 

space and energy dependent diffusion approximations as the "exact" problem 

for the remainder of this work.

The Diffusion Approximation is developed by restricting the flux to 

a linear dependence on angle (the P-1 approximation) and assuming in addi- 

tion that the external source terms are isotropic (independent of angle).



-67-

Writing the restricted form of the flux in terms of the scalar flux 

(r,E) and the net current vector J.(£,E), we use the trial functions 

$ (r.,E, st ) = (r,E) +4}" «Kli'E), in the eigenvalue functional (written

for a Boltzmann equation with fission cross sections and a criticality 

ei genvector) to get V • J + (A- X M = 0 and + D"1^ = 0 as

the reduced Euler equations. The notation will be defined shortly, but 

notice that the second equation couples the scalar flux and the current 

together directly in a form of Fick's law. This coupled-equation form 

of the Diffusion approximation is known as the Canonical form; while the 

equation v • D v + (A- X M )^> = 0, formed by eliminating the 

current, is known as the Diffusion equation. (The Diffusion equation 

features the v diffusion term; the Canonical equations can be derived 

from it by the canonical transformation described earlier. Presumably 

there is an Involutory form also, but it is not nearly as useful as 

these).

Returning to the P-I equations, we define the A,M , and D operators. 

Total removal and isotropic scattering are combined into

A<f> = E(r,E)*(r,E) - ZdE'E^r.E'+EMr.E')

The fission source, which is isotropic, is defined as

e lx(E)A»(E')Ef(r,E')*(r,E'),

where X(E) is the fission spectrum and X is the eigenvalue for which this 

homogeneous system has a solution. The current equation has terms for 

the total removal and anisotropic scattering (where ^S1 is the linearly 

anisotropic component of the angle-dependent scattering).



-68-

D'^J E 3Z(r,E)J(r,E)-3/dE,Es1(r,E,->E)J(r,E').

The choice of the notation D-1J is obviously due to the fact that we will 

eventually want to solve for = -(D“ ) v 4> = -D v $ . This con­

venient notation, however, is not meant to imply that finding the real 
D= (D~l) 1 an easy task.

The question of adjoint operators will arise shortly, when we try 

to write a Diffusion Theory functional,so we may as well define them here. 

The inner product we will be using is defined as an integration,over all 

energies and over the reactor volume R,of the product of the argument func­

tions:

= J*dE / d3r$+(r.,E) ' *(r_,E). •
R

With respect to this inner product,

AV E S(r,E)t+(r,E)-/dE'^

mV = \;(E)Z^(r,E)/dE'X(E')/(r,E'), and

D+ "V = 3E(r,E)/(r,E) - 3/dE'Esl(r,E*E')J+(r,E).

Now we write a functional (for continuous trial functions which are 

zero on the outer boundary) whose Euler equations are the Diffusion equa­

tion and its adjoint:



”69“

F [v,u] = /"de/ d3r[Vv • DVu + v(A-A"^M)u]. 
0 R

6F ,
—= - v • DVu + (A-X M)u = 0 if u = $

ÔF_y. = - v • DW + (A^-X"^M^)v= 0 if v = /

This functional can be used with any restricted set of trial functions 

which are continuous and vanish on the boundary; the former conditions 

are due to the gradient operator; the latter arise from the use of the 

transformation

d3rW • DVu = d3rvV • DVu = d3ruV • D+Vv.

In order to ease the continuity requirement to allow the more general 

class of trial functions which are continuous within a set of subregions 

R& separated by the surface S, we add on Lagrange multiplier terms in­

volving the discontinuities across S:

T[v,u,a,b] = y /" dE / d3r[Vv • DVu + v(A-X ^M)u] 

K 0 Rk

+ /"dE / d2r[a(r,E)(u+-u_)+b(r,E)(v+-v_)] 
0 s

Now the Euler equations require

-V • DVu + (A-X'^M)u = 0 and -V • D+w+(A+-X~V)v = 0 in R„

and also

u. = u and v = v across S, T - T - *
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and also

a(r,E) = D*Vv+ • n = D\v_ • n on S, 

and also a
b(r.,E) = D+Vu+ • n = D_Vu_ • n on S.

This is a very general and useful functional : the functions which make 

it stationary must satisfy the Diffusion equation within each region R& 

and the continuity of flux and (normal) current across the interfaces, 

but it allows the derivation of approximate solutions which are allowed 

to be discontinuous. This point is very important, because a requirement 

of global continuity is bound to conflict with a desire to use special 

trials tailored to the expected behavior in very different, but adjacent, 

regions.

Multigroup Expansion

To conclude this chapter we will introduce a trial function space 

in which the spatial and spectral variables have been separated, and 

show how this form of restriction can lead to the standard Multigroup 

Diffusion Equations (among others).

We assume that the expansions

"(L.E) - J and Vt-E) ' F 

m= l m=]

are capable of approximating the solutions of the direct and adjoint 

diffusion equations well. In addition, we expand

M 4. * M
a(LM = »m(r)Ym(E) and b(r,E) = J oln(r)Ym(E) 

(perhaps relating these to the u and v expansions, in view of the known 

requirements on a and b). To get to the multi group equations we assume
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that the energy dependence of all the trial functions is known, and that 

they form whole but non-overlapping sets. That is, for every energy E 

there is one and only one m such that X^E) is non-zero (and similarly for 

Xm, and Xm).

Inserting these expansions into the Diffusion functional T[v,u,a,b], 

we see we can integrate out all the energy dependence, and we are left 

with a reduced functional involving the space-dependent expansion coeffi­

cients. If we use subscript notation to indicate the. energy-collapse of 

each operator, i.e.

«mn E /dEX*(E)HXn(E).

the Euler equations of the reduced functional can be written

V ° 0 V m

in each 5 and on the interfaces we have the corresponding conditions

V * V on s v m,
and

RV"n+ = ^mn-X- onS Y ">•

In the case in which the scattering cross-section (r,E'—' E) in

D does not couple energies from the range of one Xm into the range of 

any other, the collapsed operator Dmn will be zero unless m=n, and so the 

reduced equation will become

= 0 in Rk .

and

V • V W " Dm-X- °" S-
These are the standard Muitigroup Diffusion Equations, derived by the 

Variational Approximation Technique.
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The Y m unknown functions (of r only) which must satisfy this 

set of coupled partial differential equations. Unfortunately these equa­

tions can be solved exactly only for the most trivial cases, so normally 

one more level of approximation is applied: the Laplacian term is replaced 

by a difference operator coupling the values of ^m(r) only at a finite 

set of points r^. The differential equations thus become a set of coupled 

difference equations which are to be solved for the values approxi­

mating the at each r^; we have arrived at the Finite Difference Multi­

group Diffusion Equations, which represent the most commonly used approxi­

mation method for calculating neutron flux distributions.



CHAPTER VI

FLUX SYNTHESIS

The Finite Difference Multi-Group equations are popular because of 

their simplicity and their accuracy. The discretized flux representation 

can be brought as close to the "exact" diffusion theory analytic flux as 

desired by choosing a sufficiently large number of mesh points and energy 

groups. Extra points and extra groups are (formally) easy to incorporate 

because of the simple structure of the equations; this structure also al­

lows a thorough numerical analysis of the resultant matrices [32].

Synthesis Incentives

There are,however, problems in which significant details of the flux 

distribution can be predicted in advance, and in these situations the full 

calculation of the discretized flux generates (at great expense) large 

amounts of redundant information. As an example, consider the analysis 

of the flux in a fast reactor. An accurate calculation of the flux using 

the finite difference multi-group equations would require the use of a great 

many groups (20 to 30) to treat the energy dependence at each point, when 

in fact it is known that the spectrum shifts fairly smoothly in space from 

one typical mode to another. The actual "information content" consists 

of these modal spectra and their relative strengths at each point, so 

effort is wasted in the finding of the multigroup solution.

Synthesis techniques are designed to treat just such situations, by 

allowing the construction of approximations which incorporate any known 

features and require solution for only the remaining unknown parts. (The 

term "synthesis" is used because this is a process of building up a com­

plicated whole solution out of simpler, but not elementary, component parts).

-73-
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A synthesis typically involves a series expansion in which each term is 

the product of a known function of a few of the free variables multiplied 

by an unknown function not depending on those variables. Both the spheri­

cal harmonics expansion and the multigroup expansion fit this description; 

generally, however, the term "synthesis" is reserved for short series 

in which the known functions are detailed and tailored to the particular 

problem, rather than large expansions in relatively simple functions.

The accuracy of a particular synthesis approximation will depend not 

only on the choice of the expansion functions, but also on the method 

used to find the expansion coefficients. Occasionally orthogonality prop­

erties can be used, but usually some less direct procedure is necessary. 

Clearly the Variational Approximation Technique, which was used to derive 

the Diffusion theory» can be applied to fix the unknowns in a synthesis 

expansion in the same way it was applied to derive the multi group 

approximation.

All of the original abstract arguments favoring the variational tech­

niques still apply, but two stand out particularly. The first derives 

from the fact that the variational approximation principle tries to select 

a good approximation to the exact stationary function from the reduced 

space, and that the value of the functional near its stationary point 

evaluates a goal functional to second order. This is most useful, be­

cause the reason for trying to calculate the flux distribution is virtually 

always to allow the evaluation of some functional of the flux (a reaction 

rate, etc.) which can be used for the goal functional.

The more important justification of the variational technique is 

that it keeps all of the approximations visible and consistent. The final 
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reduced functional obtained by successively restricting the trial space 

more and more is equivalent to the one which would be obtained by sub­

stituting the most restricted trial set into the original functional; thus 

we can consider all of the approximations to have been made simultaneously 

at the beginning and all the rest of the method follows by logical deri­

vation. With this viewpoint it is easier to justify the generalization 

of expansion in elementary functions to expansion in trials chosen be­

cause of known closeness to the true solution(rather than ability to form 

complete sets).

The drawback to using variational synthesis as opposed to weighted 

residual synthesis (setting integrals of the source residual times some 

weighting functions equal to zero) is that the variational method seems 

to require the calculation of adjoint functions, since the multigroup 

diffusion equations are not self-adjoint. Real consideration of the manner 

in which the problem is solved, however, shows that only adjoint trial 

functions are needed. Certainly these may be generated as close approxi­

mates to the adjoint, but they can also be chosen to be elementary func­

tions, or equal to the flux trials, or even equal to the weighted residual 

weights. The fact that this method requires the use of "adjoint" trials 

does not by itself impose any complications; the difficulties are due to 

the fact that the accuracy of the solution depends on the choice of the 

trials. The use of the weighted residual method to avoid having to generate 

good adjoint approximations implies the acceptance of a correspondingly 

less accurate approximate solution.

Spatial Synthesis

Flux synthesis has been used for a number of years to generate approx­
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imate neutron fluxes, with greatest acceptance of its application to 

the problem of flux distributions with full three-dimensional dependence. 

Finite difference diffusion theory calculations require 50 to 500 mesh 

points along each axis in a typical reactor core, and although a 10,000 

point two-dimensional calculation at some cross section through the reac­

tor is feasible, a 1,000,000 point three-dimensional finite difference 

scheme is really rather impractical.

Because of the manner in which reactors are constructed, however, 

we know that there will be strong flux variations across any two-dimen­

sional section taken through the fuel assemblies, whereas the variation 

along flow of coolant will tend to be a smooth shift from one 2-D mode 

to another, each characterized by the 2-D coolant and control distribu­

tions, etc. Synthesis can be applied by expanding the spatial distribution 

functions ^(r) into series with known cross-sectional modes multiplied 

by unknown axial expansion coefficients: m(l) = C^(z) G^(x,y).

This is the basis for the Multichannel flux synthesis scheme [40].

Here the 2-D functions $^(x,y) are not required to exist over the 

whole core cross section - instead the section is divided into a set of 

non-overlapping "channels" and each ®j(x,y) is non-zero in only one. 

By this method (an analogue of the multigroup expansion) the 2-D detail 

characteristic of typical regions is incorporated in advance into the 

solution, and the final numerical problem involves the calculation only 

of the gross 2-D coupling of channel to channel and the finite-difference 

expansion of the coupling coefficients in only one dimension.

The actual implementations of spatial synthesis vary somewhat be­

cause of differences in the choice of the functional and the nature of 

the trial functions. If the flux expansion is not required to be contin­
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uous then special means must be found to treat the gradient terms in the 

diffusion equation. One such method [39] was reviewed earlier: the in­

corporation into the functional of extra surface integrals which add 

the proper continuity conditions to the Euler equations. An alternate 

scheme has been to revert to the P-1 functional and use it directly, spec­

ifying trial expansions for both the scalar flux and the current [40,41].

A recent development in flux synthesis goes a step further: the 

axial combining coefficient functions are themselves expanded into series 

with unknown scalar coefficients multiplying known functions each of which 

is non-zero only in a particular segment of the axis. The overall result 

is to partition the reactor into 10-20 intervals in each dimension (pro­

ducing a stack of blocks or "nodes'1) and then couple the proposed 3-D 

trial flux in each one to its neighbors. With this model [42], gross 3-D 

effects are calculated from a reasonably small number of scalar coupling 

coefficients, while the detailed flux behavior inside each node is ac­

counted for by the 3-D cell calculations used to generate the node trial 

fluxes.

Spectral Synthesis

In the sense that the multi group approximation is a synthesis method, 

synthesis of the energy dependence of the flux has been used for a long 

time. In the derivation of the multigroup equations it is assumed that 

the fine structure of the energy dependence is fairly constant over large 

energy ranges, and that it is only necessary to compute scale factors to 

be applied to the pre-calculated spectra within each group. This proved 

very successful in applications to thermal spectrum reactors, where in­

deed the dominant energy effect is the coupling of the neutron "birth"
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region through the resonance region to the thermal region, but it is not 

so useful in fast reactor analysis.

The weakness of the standard multigroup theory is not an inability 

to produce sufficiently accurate results; it is the inability to do this 

cheaply in certain situations, namely when the details of the energy de­

pendence cannot be assumed to be reasonably constant over large regions of 

space or when the details cannot be predicted over broad groups in energy. 

In the former situation, calculations must be performed carrying data 

for many regions (each with its own characteristic spectrum), an expensive 

process. In the latter situation, calculations must be performed with a 

large number of groups (in order to resolve the unknown detail), an even 

more expensive process.

Both of these problems arise during attempts to calculate the spa­

tial and energy dependence of thermal-energy fluxes. There are only a 

few principal parameters in this energy range (temperature, leakage, etc) 

but the resultant flux behavior is complicated, requiring fine energy and 

spatial calculations. Calame [42,43] attacked this problem with a syn­

thesis expansion in known spectra representing the potential extremes, all 

covering the full energy range. These overlapping spectra are combined 

with space-dependent weight coefficients that provide the shift from one 

region’s typical spectrum to another’s. The detail (which in view of the 

small number of physical parameters is clearly mostly redundant) is 

eliminated and only the few combining coefficients need be calculated.

Fast Spectrum Synthesis

Another application in which the use of spectral synthesis with over­

lapping modes should be very useful is in the analysis of fast flux distri­
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butions. (It is interesting to note that this is at the other end of the 

spectrum. In typical water moderated reactors the gross coupling of the 

fast, resonance, and thermal regions is very important, and the details 

of the spectrum need not be very exact; but when only one en:rgy range 

is being studied the fine structure is required information).

To do a proper multigroup analysis of a fast reactor requires cal­

culations in 20 to 30 groups because of the effects of the resonances in 

the fast region. The spatial variations of the flux, however, are fairly 

smooth because the long mean free paths of fast neutrons make fine 

structural detail "invisible”. This effect compensates somewhat, but 

not entirely, for the greater number of energy variables (because the 

number of spatial variables can be reduced) but does not affect the fact 

that the spectrum is everywhere in transition (so that many material 

regions should be used). Using 20 groups makes a two-dimensional diffu­

sion code expensive to run and makes three-dimensional analyses almost 

impossible, but spectral synthesis seems to hold out the promise of solving 

the space and energy fast flux problem without doing all the (diffusion 

theory) work [22].

The usual Spectral Synthesis equations are derived from the Diffu­

sion theory functional in the same way that the Multigroup equations are: 

we expand u(r, E) = ^(r) X ^E), but with the difference that the

Xm(E) are known functions of energy which span the whole energy range. 

Now the unknown space-dependent functions represent combining coefficients- 

relative proportions of the trial modes - rather than scale factors to be 

applied to each energy group.

Of course, nothing good is free, and spectral synthesis has some 

definite drawbacks. Potential discontinuities in the flux represent one



-80-

such problem, but this is shared with the multi group method and is treated 

the same way: either extra interface continuity terms are added to the 

Diffusion functional or else the P-1 functional is used with separate 

flux and current trials. Unique to the synthesis technique, however, are 

the problems of full mode coupling (due to the use of overlapping modes). 

This problem manifests itself in the structure of the matrices Dm„ and mn 
in the reduced equation: while D was diagonal and A lower triangular 

(downscattering only) in multi group theory, D and A are both full mat­

rices coupling every mode to every other in the synthesis method.

The most important question about synthesis, whether it really is an 

accurate alternative to multigroup theory, seems to have been answered 

in the affirmative. Several different studies [45, 46, 47] have shown that 

Spectral Synthesis approximations using three or four trials can achieve 

(except in occasional cases of anomalous failure) accuracies of a few 

tenths of a percent in criticality and reaction rate, provided that good 

flux trials and adjoint trials (weight functions) are used. To ensure 

that the latter qualification can be met, Cockayne [48] has shown how 

"Successive Space-Energy Synthesis" can be used to generate trial func­

tions of the required quality. (He proposes an iterative scheme: use 

energy synthesis to get spatial flux distributions; then use this flux in 

a spatial synthesis to generate good spectrum trials).

Deterrents

Despite the formal incentives for using Spectral Synthesis and the 

demonstrations of its reasonable accuracy, this method has received only 

very limited application to practical problems of reactor analysis. The 

primary deterrent has been the occasional occurence of "anomalous failures" 
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of synthesis methods - cases in which the approximate solutions turn out 

to be extraordinarily poor.

Examples of this have been reported for various types of spatial 

synthesis [49], for spatial synthesis with group collapsing [50], and 

for spectral synthesis [47]. (A case of anomalous failure was also dis­

covered during the course of the current investigations.) The effect of 

these reports has been to scare off potential users of synthesis since 

it is hard to justify an element of risk when trying to solve genuine, 

practical problems.

This lack of confidence has been aggravated by the lack of any for­

mal method of analysis which could identify the causes of the anomalies 

or predict their occurance. When using the finite difference multigroup 

approximation one can rely on a large body of mathematical analyses giving 

assurance that iterations will converge, fluxes will be positive, eigen­

values will be real, etc. Unfortunately the synthesis approximation is 

not susceptible to mathematical analysis. The goal, after all, is to 

develop a method whereby detailed guesses at the solution of a particular 

problem can be incorporated into the approximation; but the formal equa­

tions for the remaining unknown functions thereby are written in terms 

of a large amount of unknown information (the detailed guesses) about 

which any analysis must make the most conservative (worst) assumptions.

All this uncertainty would quickly be put out of mind if the Spectral 

Synthesis method proved to be significantly cheaper than the competing 

multigroup methods. A cheap calculation can be repeated or replaced if 

it turns out badly; a cheap calculational method allows the rapid accum­

ulation of experience in how to avoid dangerous situations. Thus it has 

been disappointing to find that the synthesis methods do not seem to
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achieve the savings implied by the fact that they require the calculation 

of only about one-tenth as many unknowns as are required by the multi- 

group methods. The reason for this is that when the number of energy 

variables is reduced, the nature of the equations coupling them is made 

more complicated, and thus more effort is required to solve them. Com­

parisons of alternate solutions of a given problem have shown that the 

synthesis methods used required from one-sixth [45] to one-half [51] of 

the calculational time required by multigroup programs. This is not a 

sufficient savings to justify the abandonment of the experience with and 

confidence in the finite difference multigroup diffusion methods.

The net evaluation of Spectral Synthesis is that although it is 

useful, it will not suddenly supplant the more traditional methods. The 

reason for this is not really due to the anomalies, as might be expected: 

synthesis results are generally accurate, and as Stacey [42] points out, 

the anomalies occur very infrequently and are easy to recognize. The 

real resistance to synthesis is due to the lack of strong economic in­

centives (the investment in multi group codes balances the savings of 

synthesis methods) and also a degree of "mental inertia" — unwilling­

ness to abandon all the accumulated experience in preparing and analyzing 

multigroup diffusion models.



CHAPTER VII

SPECTRAL SYNTHESIS OF DISCRETIZED FLUXES

In this chapter we shall begin describing the development and com­

puter implementation of a variant of the spectral synthesis developed in 

the previous chapters. Up to this point, we have treated synthesis methods 

as alternates to the discretization methods. That is, we used the analy­

tic diffusion theory functional to derive competing approximations based 

on different types of trial function expansions.

Now we take the point of view that we have reduced the functional 

whose Euler equations determine the analytic flux to the functional whose 

Euler equations determine the finite-difference multigroup (F-D M-G) fluxes, 

and we want to reduce it still further via spectral synthesis. Instead 

of comparing this new approximation to the "exact" diffusion theory flux 

4 (£»E) at every point r and every energy E, we accept as "truth" the 

F-D M-G flux fng available only at the points r^ and in the groups g.

The set of discretized fluxes f (there are NxG of them) satisfy 

the set of linear equations whose terms are the discretized versions of 

the operators in the analytic diffusion equation. Writing f as a 

vector , we see that the system of equations (NxG of them) can be written 

as one matrix equation Df + Af=Tf+\Ff (where X is the eigenvalue 

required in a criticality problem) with the following definitions of the 

component matrices. The matrix derived from the Laplacian term v. D v 

is D, typically representing 3, 5, or 7 point difference expressions written 

for every n and every g. The total removal term (r,E) (£,E) becomes

the matrix A, which is diagonal (no coupling effects). Scattering is 

included in the matrix T, which couples only from group to group; and the 

fission source (effectively an upscattering) is included through the 

matrix F.

-83-
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The functional for this approximation (the reduced functional 

corresponding to the discrete expansion of the diffusion theory scalar 

flux) can now be written as E[v,u, X ] = 7(D+A-T) u - X v^Fu. We have 

dropped the underscore notation for vectors and matrices, and replaced 

f and its adjoint with u and v (since f is the stationary point ü). 

Since the trial "functions" are now vectors, we see that E[v,u,X ] is in 

reality an ordinary function of the 2 x NxG+1 scalar variables v^, u^ 

and X . The Euler equations are found by setting equal to zero the or­

dinary derivatives of E.

0 = —=> ( D+A) û = (T+AF ) ü 
% 

and

0 = ^ÿ«*vT(D+A) = v^(T+XF) 

or (DT+AT)v = (TT+X*FT)

(Here we see that the matrices in the equation for the adjoint are the 

transposes of their counterparts in the direct flux equation.)

Synthesis

The synthesis approximation is obtained by restricting the freedom 

of the trials v and u and by finding the stationary point in the new 

reduced space. We expand

M
u = X • ç or uS = y xnm cnm

m-1
and

V = Y • e or - J enm,
m-1
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where the cnm and enm are the new unknown expansion coefficients and the 

X and Y matrices provide a specified energy (group)dependence. We con­

sider c and e to be vectors (even though they are doubly subscripted) 

because, as before, we shall be able to combine all the equations for all 

the cnm and enm into two matrix equations.

The matrices X and Y obviously must be dimensioned NxG by NxM, but 

most of their elements will be zero (so that Xc yields the summation for­

mula given). The non-zero elements X^ represent the M different trial 

spectra (the g dependence) which will be linearly combined X® c m 
J m nm nm

to form the trial flux at the point n. The sets of spectra used at dif­

ferent points may,but need not,depend on n. Since the object is to treat 

the transition in space (with the cnm) of the flux, clearly the strategy 

to be used in choosing the X^ is to try to pick spectra which might be 

typical or dominant in the regions near n. Sometimes one set of a few 

such spectra can be used for every point in the model, but more gener­

ally different sets will be used in different regions, with less impor­

tant spectra ignored so as to keep the number of unknowns (NxM) as low 

as possible.

Note that by starting off with the finite difference multigroup equa­

tions we have sidestepped the formal problem of ensuring continuity of the 

flux trials used for v and u. It is most important to consider this, be­

cause in a practical application it will undoubtedly be necessary to use 

different trial spectra in different regions to achieve reasonable accu­

racy, and thus discontinuities in the expansion coefficients should be 

expected. The synthesis solution, however, will be an approximation to 

the discretized flux, so that "continuity" really is not a meaningful 

term. We presume that the finite difference equations governing the
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discretized flux are derived in an appropriate manner so as to incorporate 

the special interface terms needed to approximate continuity, so that no 

further special treatment is needed in subsequent approximations.

When the spectral synthesis expansions are substituted for the F-D 

M-G fluxes, we find the reduced functional

E[e,c,X] = eV(D+A-T-XF)Xc. 

Again, we find the reduced Euler equations by setting equal to zero the 

ordinary derivatives of E as a function of enm and c^. In detail:

R * J X <1 >y "I

■ J 4^,1 j 4c-■ « k-£
RX J Iby IM

J J I C - 0 Vn.m
nm R)j x y

But these can be written very simply in matrix notation - the stationary 

points satisfy the equations
YT(D+A-T-XF)Xc = 0

eY^(D+A-T-XF)X = 0 

or, separating out the eigenvalue term 

YT(D+A-T)Xc = XYTFXc 

X^(ûW-f )Ye = X*XTFTYe

(Here we have a good reason for using the term "reduced": the matrix 

system for the vectors v and u was of order NxG by NxG, whereas this 

system is of order NxM by NxM, with the number of modes presumably much 

smaller than the number of groups).
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Defining D = Y^DX, A= Y^AX, etc. we can write (D + A - T)c = X F c 

and (D + A - T)^e = X* F^e as the equations that will actually be solved 

(by computer) to approximate the flux distribution needed to analyze a 

nuclear reactor.

How do we justify this level of approximation in comparison to the 

real analytic space, energy and angle dependent flux (i.e. the solution 

of the neutron transport equation). Two steps are required: first we 

must be sure that the analysis that will be performed does not require 

knowledge of the angular dependence (other than the net current) or of the 

fine details of the energy dependence or of the transients in the scalar 

flux near interfaces. In other words, we must be satisfied with the 

amount of detail that can be extracted from a multi-modal finite differ­

ence diffusion approximation.

Second, assuming that the form of the approximation is valid, we 

must justify the method for determining the numerical value of the free 

parameters. For the synthesis method presented here we do this by 

claiming that the final approximation is the stationary point, in the 

class of restricted functions accepted as valid, of the original varia­

tional functional for the complete neutron transport equation. That this 

is true can be seen by following the steps of successive approximations 

for the flux - the P-N method, Diffusion theory, finite difference multi­

group diffusion theory, and finally spectral synthesis of the discretized 

flux. Each approximation is the solution of the Euler equations of the 

same further and further restricted functional. We do not claim that 

this procedure is guaranteed to generate the best approximation (since 

the true stationary point is not an extremum). Rather, the formal strength 
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is that it is systematic and self-consistent so that variations can be 

explored and sensitivities tested without having to generate and justify 

completely new approximations after every change. (It is comforting to 

know, however, that the method does seem to work fairly well in practical 

applications.)

Generalized Eigenvalue Problem

Returning now to the practical problem at hand - finding an approxi­

mate solution for (D + A - T) f = Hf = X Ff - we perhaps should comment 

on the use of the functional form
E[v,u,X] = (v, Hu) -X ^v,Fu^ 

which clearly has been appearing ever since the neutron transport problem 

was introduced in Chapter V.

In the chapters on variational methods we developed and analyzed a 

related functional
E'[v,u,X] = ^v, Hu) -X ^v,u) 

which had Euler equations

Hü = Xu and H+v = X*v.

It should be obvious that the new functional E is an extension to provide 

Euler equations of the form

Hü = XFÛ and H+v = X*Fv, 

which are known as generalized eigenvalue equations.

Referring to the analysis of the Rayleigh principle we see that it 

can be generalized also, and that

Y[v,u] = <v, Hu) / <v, Fu)

provides a second order estimate of the eigenvalue A of the generalized 

problem. (The proof of this is made immediately obvious upon redefining 

G[v,u] = <^v, Fu^ instead of the <^v, u) used before).



-89"

Because of the occasional anomalous failures of synthesis we also 

want to re-examine the analysis of the Euler equations of the generalized 

E functional, for whatever warnings it might give. As before, we assume 

that v and u are restricted to the subspaces generated by the linear 

transformations U(x) and V(y), and that these transformations can be de­

fined by the expansions

U(x) = £ U;X. = | £ ukak1x1 = u • a • x 

and similarly

VM ■ I Vj j • U 'À/j “ ï • à • x 

J J % •

where the are now eigenvectors of the generalized problem Hu^X 

and the Vj are the eigenvectors of its adjoint problem h\1 = X 

(forming complete bi-orthonormal sets).

Since the eigenvalue is not applied directly to the argument func­

tion, we no longer get the "T" matrix in the reduced Euler equations:

bT ' (v, Hu)« a - x = Ab? • ^v, Fu • a • x

Z ' - (v, Hu ) - a = x/ ‘ àT • ^v, Fu ) • a

but we recall the I matrix disappeared immediately, so that where before 

we had b^« Zv, u \ • a, now we have b? & /v, Fu a. Thus the re­

duced equations developed by this eigenvector-synthesis of the generalized 

eigenvalue problem are formally no more complicated than those for the 

regular eigenvalue problem; the added difficulty that we would expect to 

find associated with such a generalization has not appeared in the struc­

ture of the problem.
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Assuming that the eigenvector - synthesis is possible, we see that 

a sufficient condition for failure (by allowing arbitrary X ) 

is that the null spaces of

b? • / v » Hu \ • a and b? • Zv, Fu \ • a 
■■1 \ " f st = \ ™ / ss

overlap. Unfortunately, this condition involves so many unknown quantities 

in such complicated relations that it is probably useless as a predictive 

tool - it just provides a warning that' sometimes things can go wrong.

"Exact" F-D M-G Problem

The method of spectral synthesis of the discretized flux cannot be 

implemented and tested without explicitly specifying the nature of the 

"exact" finite-difference multigroup problem. Here we will finally start 

defining the actual equations which will be incorporated into a synthesis 

computer code, MACH/360. This code consists of a revised version of the 

MACH-1 one-dimensional finite-difference multigroup diffusion theory and 

perturbation analysis code [52], combined with a spectral synthesis module 

which can be used in place of the multigroup module to calculate the flux.

MACH/360 finds an approximate solution to the multigroup equations

-V • D®(r)Vfg(r) + (r)f^(r) = d®(r)

f XZ9(r) 1 vti(r)fj(r) 
j=l j=l

with the following important assumptions: there is only one space dimen­

sion (in slab, cylinder, or sphere geometry); the material properties 

(cross sections)are constant within each of a number of regions K; the 

flux fg and the current D v fg are to be continuous across the interface 
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between any two regions. We have defined Z9(r) as the fission spectrum 

and as the fission production term; £ £ 9 is the scattering

term and is explicitly written for downscattering only; and v-D(r) v f(r)

becomes

k 2d 
r 3r

within each region.

The difference equations solved by the code are related to these

equations in the following manner. First, the spatial variable is dis­

cretized by choosing N mesh points rn with constant spacing h% in each 

region. Within these regions of constant material parameters the fluxes

f9 = f^^ are coupled by the following equations

and

d.,

■ % & 4 + 4 h 4 4- 
J-I J-I

(where p = 0, 1, or 2 for slab, cylinder, or sphere geometry). (These 

central difference approximations to the analytic equations were, to be 

truthful,formed by substituting the difference approximations for the 

analytic operators, but in principle they can be derived as Euler equa­

tions.) Defining Pn = p h^/2r^ and a^ = h|/D^, we see that these equa­

tions be written more compactly using the form

These equations are not suitable for those points rn which lie on

Interfaces: for these points there are requirements of continuity of flux
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(easily satisfied because f® = f®) and continuity of current (notpossible 

to satisfy exactly) which can be used to relate the fluxes for r > rfi 

(the + side) to the fluxes for r < rn (the - side). The approach used 

in the FAIM code [53] is used to derive these equations. We know that 

if r* and r^ are the boundary points for region K, then

*K - A -DKV2f(r)rpdr = 

r£

This is an exact relation, which we can approximate by using trapezoidal 

integration to show that

IK = /rm (d(r)-^t(r)f(r))rpdr 

r£

$ rm[" âï + T

K v f<+and Jm_ = -DKvfm? Defining Yn *

Now we equate the coefficients of r* and rm to find approximate relations 

(at an interface) for Jj+ = -D 

(DK+hK_)/(DK_hK+) we equate Jfi+ = Jn_ to derive

fl-PK ) x
f„-i -

+ aK* £ tK+

1
2

The equations for each interface, together with the equations for 

each internal point, form a system relating the flux at each point (except 
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the boundaries) to the fluxes at its two nearest neighbors. At the inner 

boundary (n = 1, k=l) and the outer boundary (n = N > k = K) we need to 

find some way to terminate this coupling. This can be done with finite 

difference approximations for the standard boundary conditions f + f - 

(where £ , , and are arbitrary parameters). The appropriate differ­

ence equations are

[n^l+P + ) - O]h]]f, - n1(l+P)f2 =

(where P = P, if r^ / 0; P = p if r] = 0)

and

nflO-PiP^-i + ^(T-Pn + K2tK ) + " nN —2^ +

This completes the derivation of the F-D M-G equation set. We have 

NxG unknown fluxes f^, and clearly there are NxG equations to be solved to 

determine them. The matrix representation Hf = X Ff of these equations 

uses sparse matrices with a very simple structure (see Figure 2). These 

matrices can be thought of as being partitioned into a G by G array of 

blocks, each of which is an N by N array of coefficients coupling the f^ 

for all n but for only one given g. With this arrangement the F matrix, 

for example, has non-zero entries only on the diagonal of each N by N 

block. This is due to the fact that the fission process couples each flux 
f® to the fluxes in every other group f^ at the same point.

Similarly, the scattering matrix T has non-zero entries only on the 

diagonals of the blocks in the lower triangular portion of T: the scat­

tering process only couples fluxes of high energy (in the upper groups)
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Figure 2. Structure of Multigroup Diffusion Theory Matrices and 
Spectral Synthesis Matrices -
(when N=10 points, G=4 groups, M=2 modes)
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to fluxes of lower energy. (The triangular nature of T will be seen to 

have great importance). The removal matrix A has been lumped in with the 

diffusion matrix D, since both are non-zero only in the block diagonal: 

in fact, the A matrix is purely diagonal, there is no coupling at all.

Each N by N block on the diagonal of the D matrix in the tridi agonal 

matrix derived from the difference equations written above to couple the 

fluxes at adjacent points. If the spatial dependence allowed two or three 

dimensions these N by N matrices would have five or seven non-zero diagonals 

(describing the greater degree of spatial coupling) and be considerably 

harder to solve.

These matrices are used in an iterative solution for the smallest 

eigenvalue X and its associated eigenvector [32] (there exists a proof 

that for the F-D M-G eigenvalue there is an everywhere positive eigen­

vector associated with the smallest X). The procedure is the familiar 

"source" or inverse power iteration: to solve Hf = X Ff we assume some 

initial and form s^ = Ff^0^/ || Ff^ II ; then the iterates are 

defined by
Hf(n+1) . s(n) . FfW___ . FH-M"-1’ . (FH^)" s(O

I |Ff^ 11 Hi™ if 

m=l 
as the number of iterations increases, = || Ff(")|| will approach 

the inverse of the smallest eigenvalue X (K^n^ -» the multiplication) 

and ft") will approach the associated eigenvector - the fundamental mode 

of the flux.

Note that it is not necessary to form the inverse matrix it is 

only necessary to solve equations of the form Hf = s. This is very im­

portant in view of the potentially very high order of the matrix H. The 

equation Hf = s is solved easily by working on only one group at a time
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(a procedure which can be considered to be either due to or requiring the 

separation of the fission matrix from the others). Since there is only 

downscatter coupling in the matrix H (which is block lower triangular) 

we can solve the N by N system for the fluxes in the first group, then 

compute the downscatter as pseudo-sources into the lower groups and solve 

the N by N system for the second group, etc. After the flux has been 

calculated for every group, a new source vector is computed by multiplying 

the fission matrix times this flux and normalizing the result. The itera­

tion continues until the differences between successive sources become very 

small.

(The solution of the N by N system representing the diffusion coupling 

may be very easy, as in the current case when it is tridiagonal, or very 

difficult, as in the three dimensional case when there are typically seven 

non-zero diagonals. For two and three dimensional problems each of the 

G spatial coupling systems is usually solved approximately with its own 

iteration scheme, the most common being the successive over-relaxation 

method discussed earlier as an example of perturbation expansion methods.) 

Formation of Trial Functions

To approximate the solution of these equations, we will restrict 

the form of the flux vectors to conform to the spectral synthesis:

The c^ and are now the only free variables, while the and y^ 

are the trial spectra to be used to reduce the matrix equations.

We will assume that these trials form an orthonormal set in order to 

avoid some potential numerical problems: if any direct flux trials were
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nearly linearly dependent then the f® would be expanded with large can­

celling terms; if any adjoint trials were nearly linearly dependent then 

the elements of the reduced equations weighted with them would not be well 

differentiated. Since the synthesis expansion is linear, the requirement 

of orthonormality presents no real restriction, since any set of (physic­

ally motivated) good flux trials can be transformed by the Gram- Schmidt 

procedure into an equivalent orthonormal set. After the synthesis equa­

tions corresponding to this set are found, the flux approximation is re­

covered by performing the inverse transformation.

Returning now to the problem of what to do with the trial spectra 

(assuming they have been made orthonormal), we want to develop the matrix 

forms X and Y in terms of x^ and y^ so that

u ■ un = l xmn cmn = Xc 

and
v = v® = T y® e = Y 

n » ^mn mn e

Since we are writing the fluxes u® as elements of the vector u and the 

expansion mode coefficients as elements of the vector c, the matrix 

X must be dimensioned to have N x G rows and N x M columns. Most of the 

NxGxNxM elements are zero, however, since only the NxGxM values of the 

X®n need be incorporated, and so we see that X^ equals where

% is the Kronecker delta, thus yielding the proper~vdlue u = Xc. 

Similarly we see that Y^ must equal y^ (We note here that the 

matrices X and Y are never really formed during the numerical solution of 

a synthesis problem - they are too big to store and contain no more in­

formation than the trial spectra. They are introduced formally to aid in 

the derivation of the formulas for the reduced matrices, which will be 

formed directly.)
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Reduœd Functional

The synthesis approximation involves solution of the reduced Euler 

equations of the functional E[v,u, X ] = 7(D + A -T - A F) u = v^( H- X F)u.

Writing this in component notation,

N.G N,G t1E “ Ji l '"-^):g "sg.

and after substituting the synthesis expansion

= e’ Y*[H-XF)XC

or

N,G

The Euler equations are

% % Xx™ c“-
obtained by setting each of the derivatives of E

% «

equal to zero:

3E 
%

thus

N,G

s,g

M,N

m»n
Xmn Cmn*

for

the

M,N N ,G

m,n t,j
tj 
IP

N,G fi

s,g

every combination of 1 and p.

matrix notation as

Xsg C 
mn mn

These NxM equations can be written in

. N,G

0 =

and

0 = YT(H-XF)Xc or YTHXc = XYTFXC

similarly the adjoint mode coefficients must satisfy the equation

XTHTYe X*X FYe.

The synthesis program will have to calculate the elements of H and F, 

obtain the orthonormal trial spectra x^ and y^, and then form the re-
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duced matrices 
H = YTHX and F = YTFX.

Since all of the matrices involved are very sparse, we may anticipate that 

the reduced matrices will also have many zero elements, the locations of 

which are of interest for two different reasons: first, if we can predict 

where the non-zero elements will lie we need not ever form the full mat­

rices H and F - we only have to reserve storage space for the non-zero 

values. Second, the fullness and structure of K will determine the nature 

of the numerical methods which can be used to solve this system. We will 

return to the question of matrix structure later, after we have seen how 
M A*
H and F are used (formally) to find an approximate eigenvalue and eigen­

vector.

Inverse Power Iteration

The goal of all this work is to approximate the fundamental mode 

eigenvector f® of the finite difference multigroup diffusion equation 

and also to approximate its corresponding eigenvalue Xp , which is the 

smallest eigenvalue of that equation (and is the inverse of kp, the 

multiplication factor). We shall choose as these approximations the 

smallest eigenvalue XQ of the reduced equation He = X F c, and the syn­

thesis flux Xc formed from its associated eigenvector c. There is no 

guarantee that these will be good approximations, only that the error 
| X p - XQ | will be of second order with respect to the error in the 

flux. The justification for this choice is by "consistency" - it is de­

rived by the Variational Approximation principle. ,

We shall extract the desired eigenvector from He = X Fc by using 

the inverse power iteration method ("inverse" since we want the largest
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1/ X ). Rearranging the equation, we have 1/ X He = Fc. Defining k = 1/X

and 1/ X Q * kQ, the approximation to the multiplication factor, we fur­
ther derive kc = H*^F c. (The use of the inverse of H is formal only,

and we shall see that we need only to be able to solve equations in H.)

To conform with the usual multigroup iteration scheme we shall also 

introduce the "source" vector z = Fc, although this no longer can be in­

terpreted so simply as the source of fission neutrons. Introducing this, 

we finally have the equation upon which the iteration will be based: 
k z ® F H-1 z.

Choosing an initial arbitrary source z^, we define the iteration 

procedure

K(n) =

HC(n+D = z(n)/k(n). 

and
z(n+l) = p c(n+l)

Clearly
(h-If)""1 h"1 z(0) 

m=0

so that if there is a smallest AQ ( a largest kQ) then c^ will approach 

c (normalized so that U He It = 1) while k^ approaches kQ (regardless 

of the norm used). The iteration proceeds until the fractional change 
in k/n) (and optionally the fractional change of every c^) is less than 

some small convergence parameter.

Matrix Structure

Recall that we have not yet specified the structure of the trial mode 

matrices X and Y; this is because the arrangement of the x^ and y^ can 
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be chosen so as to induce a useful structure for H. Two alternate possi­

bilities for X and Y are shown in Figure 2. The rows must be ordered to 

correspond to the arrangement of H - with G sets of N points - but the 

columns can be ordered as M sets of N points or as N sets of M modes. 

In the former case (the "obvious" ordering) the (and y^) appear on 

diagonals of the NxN blocks, and the reduced matrices have a structure 

of MxM blocks each with NxN points. As is shown, F is very much like F, 

but H has been "filled out" with three non-zero diagonals in every block. 

This is a manifestation of the prime problem of spectral synthesis: the 

coupling of every mode to every other mode in not only the scattering terms 

but in the diffusion terms as well. These coupling terms, which resemble 

a sort of upscattering, prevent the solution of these equations mode-by- 

mode (the way the multigroup equations were partitioned and solved group- 

by-group). The equations must be solved simultaneously, either by a direct 

process (which has to treat the whole NxM by NxM matrix H) or else by 

some iterative technique (e.g. treating the "up-coupling" as a perturbing 

matrix).

The problem with performing a direct solution of He = ( X Fc) when H 

has this MxM block structure is that the elements of H are so "spread 

out". The fact that this structure is so regular and so sparse suggests 

that the rows (equations) and columns (unknown) could be permutted so as 

to make H easier to work with. This is true, but rather than try to work 

out such a permutation we shall produce the new H directly from the al­

ternate ordering of X and Y.

With the columns of X and Y arranged as N sets of M columns each 

(the "preferred" ordering), the matrices H and F consists of an NxN system 

of blocks, each with MxM elements (see Figure 2, again). Now, the mode
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coupling at a given point is expressed by these small MxM blocks, while 

the spatial coupling manifests itself through the block structure. Since 

the fission process involves no spatial coupling the F matrix is block 

diagonal ; the H matrix has a block tridiagonal structure of the diffusion 

terms. (For two or three dimensional problems, FT would have five or 

seven block diagonals.) These matrices are equivalent to the previous 

versions, but are more amenable to solution.

Block Decomposition

The iterative procedure for finding the eigenvector of He = X Fc 

will require many successive solutions of equations of the form He = z, 

where H has non-zero elements only on three block diagonals. Because the 

size of the blocks is small (MxM) and because tridiagonal matrix equa­

tions can be solved directly very rapidly, we shall treat the individual 

blocks of H as "elements" and apply tri diagonal matrix methods to 

He = z. In particular, we shall form the block LU decomposition of ÎT 

before entering the inverse power iteration cycle and save the components 

L and U for use in each iteration.

The regular LU decomposition [54] consists of the calculation (essen­

tially by the process of Gaussian elimination) of the elements of a lower 

triangular matrix L and an upper triangular matrix U whose product is 

equal to H. Once this is done (and it can be done faster than H can be 

inverted) the solution of He = z can be found by a two step process, 

Ld = z and then Ue = d,as quickly as c could be found by multiplying 

Since H is block tridiagonal, however, we prefer the "block" LU decom­

position, where the MxM blocks of iï, L, and U are manipulated as though 

they were individual elements. With this procedure, L and U are both 

block bi diagonal, so that the calculation of each c is extremely rapid.
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The details of the LU decomposition and the solutions of Ld = z and 

Uc = d are derived by writing the procedures formally as though the ele­

ments were scalars, and then replacing the ordinary arithmetic with equi­

valent matrix operetions. Thus c = a + b is replaced by g = a + b (each 

being an MxM matrix), and c = a/b is replaced by the procedure of solving 

c * b = a (formally c = a. b"\ but we avoid computing the matrix in­

verse) . This method for obtaining the exact solution of block tridiagonal 

systems has been successfully incorporated as the heart of the inverse 

power iteration for the synthesis eigenvector.



CHAPTER VIII

APPLICATION OF WIELANDT'S METHOD

The failure to achieve substantial computational savings through 

the use of spectral synthesis is due to the increased complexity of the 

equations which must be solved. Although the expansion of the flux with 

overlapping trial spectra may allow a significant reduction in the number 

of trials (and therefore unknown coefficients), the use of overlapping, 

rather than disjoint, energy functions in the Diffusion theory functional 

produces Euler equations in which every mode coefficient is coupled to 

every other.

Cost of Synthesis

The ordinary multigroup equations, derived with the disjoint trial 

spectra, are never as complicated as the synthesis equations because the 

diffusion terms, V • Dg v <^g, are assumed to affect only one group co­

efficient. In the synthesis equations, however, the energy dependence of 

the diffusion coefficient forces coupling of each mode to each other 

mode by diffusion like terms, V • D^ V m, as well as by the expected 

scattering terms. Thus for a physical problem featuring only downscat­

tering the finite-difference multigroup equations will have terms rela­

ting each flux element only to its spatial neighbors in the same group 

and to its energy successors at lower energies at the same point; on the 

other hand, the synthesis equations will have terms relating each mode 

coefficient to the coefficients at the same and adjacent points in every 

other mode.

Although we have shown how the spectral synthesis matrix can be re­

arranged into a block-banded form, which can be formally solved by methods 
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used for one-group diffusion problems, this rearrangement does not elimi­

nate the basic complexity - it just makes it bearable. The greater diffi­

culty of solving the synthesis equations is the price that is paid for 

the reduction in the number of variables.

The applicability of spectral synthesis to a given problem must be 

evaluated in terms of: the number of modes which can potentially provide 

the accuracy of a reference multigroup calculation; the increased effort 

required to solve the modal equations rather than the multigroup equations; 

and the probability that inexperience in modal modeling (or anomalous be­

havior of the synthesis) will cause the solution to be invalid. The ques­

tion of calculational effort has been considered by Cockayne [55] for one­

dimensional problems. He deduces that the ratio of the number of multi­

plicative operations required to solve an M-mode synthesis compared to 

the number required to solve a G-group ordinary system is about 

for modest M and G. This formula indicates that the calculational effort 

can be cut to about one-fifth by substituting a three mode synthesis for 

a twenty-two group standard calculation. While this seems attractive 

enough, it apparently is not sufficient to outweigh the uncertainties 

associated with the use of synthesis.

Synergi sm

Since the acceptability of an approximation method is related directly 

to its cost reduction capability but inversely to the confidence in its 

results, we are motivated to look for special situations in which the sav­

ings resulting from the use of Spectral Synthesis are larger than the 

factor of two to five achieved in competition with plain multigroup methods. 

The goal is to find some synergistic combination of methods whose strengths 
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reinforce each other and whose weaknesses do not, so that the net effect 

is an improvement in effectivensss which exceeds that expected from the 

independent application of either.

It is obvious that such a synergistic effect will occur whenever 

Spectral Synthesis is used in conjunction with another technique which 

also forces "up-coupling" terms onto the (block) lower triangular multi­

group equations. The penalty of directly or indirectly treating the 

terms above the diagonal only is applied once, but the new technique 

should combine the advantages of both its components.

For example, consider the reactor time-eigenvalue problem. Here 

the flux is assumed to have a time dependence (r,E)e * \ and it is 

desired to find the possible values of d . Since the time-dependent dif­

fusion equation differs from the time-independent equation only by the 

addition of a term » we see that ^must satisfy a regular diffu­

sion equation incorporating a pseudo-absorption cross section -y- . This 

equation must be satisfied exactly (no eigenvalue can be applied to the 

fission source), so we see that the only allowable values of are the 

eigenvalues of the modified equation (D + A- T-F)^ = <|> . These

eigenvalues are usually found by trial and error: test values are used 

to actually incorporate the -y- term into the absorption matrix, and 

then (D + (A+^) - T) $ - X F<$> is solved to evaluate the X required by 

the guessed * ; the guesses are varied until X = 1.

The eigenvalues are not extracted directly because the fission mat­

rix F would incorporate upcoupling terms into the (D + A- T-F) matrix, 

thus greatly increasing the cost of solution: the successive solution of 

a whole series of regular multiplication factor problems is cheaper. 

This iterative process can be completely eliminated, however, if the
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problem is solved with Spectral Synthesis, because in this case the 

fission matrix is actually simpler than the others. The use of Spectral 

Synthesis in the time eigenvalue problem offers potential savings equal 

to the single synthesis advantage multiplied by the number of eliminated 

iterations.

Wielandt's Method

A hybrid scheme with far greater potential than the simple direct-cK 

method involves combining Spectral Synthesis with Wielandt's Method [56]. 

The latter is a technique combining inverse power iteration with a shift 

of eigenvalue that is viewed most often as a method of extracting eigen­

vectors but can also be applied to accelerate the extraction of eigen­

values. We will develop a version of Wielandt's Method that is suitable 

for the generalized eigenvalue problem; it will be clear why the combina­

tion with Spectral Synthesis is so useful.

Given a generalized eigenvalue problem Hu = A Fu, we will subtract 

an arbitrary multiple of Fu from both sides, to obtain (H - XQF)u = 

( A - XQ)Fu. Clearly both equations have the same set of eigenvectors, 

and the eigenvalues of the second equation are those of the first, shifted 

by the arbitrary value X Q.

Now we apply the inverse power iteration procedure to the shifted 
eigenvalue problem: given an initial guess u^°\

we form w^ = F u^L 

»C-> - II w<"> II.

and (H - X/) u^n+1^ = w^/k^.

If this iteration converges to a particular k and u, we see that
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(H- A qF)u =(l/k)Fû so that ü is an eigenvector of Hu = X Fu associated 

with the eigenvalue X = + 1/k.

Furthermore, analysis shows that

u(n) - f A -1
so that if u<°) can be expanded in a set of eigenvectors u^°^= ^a u , 

then

u(n) .r”;1 kwi-i ; a [ (H-x/rM n 
l m=0 J £ I J

or

-1V. * l//m)

If there is a such that
and u<n) converge, we see from this k must equal ( X k - X Q) ’and that 

ü is the eigenvector associated with X %.

The fact that this method can be used to extract the eigenvector 

corresponding to any known eigenvalue is interesting, but not particularly 

useful in reactor analysis. Of greater value is the observation that the 

rate of convergence of u^ to û can be made very large.

Each undesirable component of u^ will be reduced by the factor 

l/k(m) w VXo 

VXo X£“Xo

after each cycle of the iteration: The closer X Q is to \ k, the faster 

the convergence. In particular, in the reactor problem we are seeking the 
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smallest eigenvalue (which is presumably unity). The ordinary inverse 

power iteration corresponds to Wielandt’s method with a zero shift, and 
so the rate of convergence is controlled by X/Xi, where X % is the next 

larger eigenvalue. Choosing some X Q X and performing Wielandt’s 

shift we create an iteration scheme with convergence controlled by 

( ) which can be made much less than X/ \ ..
\ Ar Ao / i

Wielandt’s Method would appear to be of great value in reactor 

analysis: so many problems require the extraction of the multiplication 

factor. Why is it not used? Because the shifted multigroup matrix 

(H - X0F) no longer is block-lower-triangular. The acceleration of the 

convergence would be cancelled out by the greater effort required to 

solve the shifted equations. However, this argument does not apply to 

the Spectral Synthesis equation! Shifting over part of the fission mat­

rix causes no complications at all, and so Wielandt’s Method for accel­

erating the eigenvector convergence should be applicable with no addi­

tional penalty whatsoever. Only a trivial modification (a matrix sub­

traction) is required to apply Wielandt’s Method to a Spectral Synthesis 

problem; this modification has been incorporated as an option in the 

MACH/360 program.

The potential savings available through the use of this combination 

of (individually unattractive) methods should make this hybrid scheme 

very attractive for practical reactor analysis problems.



CHAPTER IX

AN EXAMPLE

The usefulness of Spectral Synthesis, especially when used in con­

junction with Wielandt's method, has been demonstrated with examples 

calculated by the MACH/360 core analysis code package. This set of 

programs provides (among other things) facilities for the solution of 

the one-dimensional multigroup diffusion theory criticality problem and 

also for the solution of the Spectral Synthesis approximation to this 

multigroup flux. (The "MACH" computer codes — MACH-1, MACH/360, and 

MACHLIB — are described more fully in the Appendices.)

Model Problem

The example which we will describe here is based upon the critical 

experiment ZPR-III Assembly 48. This assembly [57] was one of a series 

of experiments conducted by the Argonne National Laboratory in support of 

the liquid metal fast breeder program. The composition of Assembly 48 

was chosen to provide a central flux spectrum similar to that expected in 

a large power reactor, while the geometry was chosen to be as simple as 

possible so as to make the task of experimental evaluation easier. 

Assembly 48 has served as a test case for the evaluation of numerical 

methods since 1966, when it served this function for international 

intercomparison of fast reactor analysis codes [58]. We have used 

Assembly 48 as a test case because of the thorough experimental data 

available with which to check the MACH results.

ZPR-III Assembly 48 was "cylindrical" and "homogeneous" to within 

the limitation of its 2-inch wide drawers. The equivalent critical 

cylinder was calculated to be 76.35 cm in height and 41.71 cm in radius, 
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with radial and axial blankets each 30 cm thick. Since the MACH code 

allows treatment of only one spatial dimension the following two region 

finite cylinder was used as an appropriate model: a 42 cm radius core 

(of Assembly 48 core composition); surrounded by a 30 cm thick blanket 

(of Assembly 48 radial blanket composition); with extrapolated height 

of 118.95 cm. The radial axis was divided into 33 intervals (starting 

at the center) in the following manner: 5 of 2 cm, 6 of 4 cm, 8 of 1 cm 

(reaching the core-blanket interface at mesh point #20); 6 of 1 cm, 4 of 

4 cm, and 4 of 2 cm.

Test Calculations

The multigroup criticality calculation was performed using the 22 

group cross section library known as "ANL Set 224". This is a pre-ENDF-B 

library which was developed for the analysis of fast critical experiments 

similar to Assembly 48. The cross sections contained in it are out of 

date, but sufficiently accurate (or typical) to be used for an inter­

comparison of numerical methods.

The multiplication factor for this model problem was calculated to 

be 0.999988 by the multigroup diffusion equations (due to a careful choice 

of the extrapolated height). The flux (normalized to a maximum of 2.0) 

as a function of lethargy at points 1, 20, and 28 (the center of the core, 

the core-blanket interface, and a central point in the blanket) is plotted 

in Figure 3; in Figure 4 we show the radial distribution of the normalized 

flux in groups 1,6, and 11.

The calculation of this flux by the inverse power iteration method 

used in MACH required 10 iterations to meet the criterion that the frac­

tional change in the fission source be less than 10~5 at every point.
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Each iteration required approximately 0.65 seconds of CPU (central pro­

cessing unit) time on the IBM System 360/Model 67 computer operated by 

the University of Michigan Computing Center.

The same model problem was solved using the Spectral Synthesis 

option of MACH/360. Three trial flux spectra and three adjoint trials 

were provided as input data. The flux trials used were the exact spectra 

from points 1, 20, and 28 as calculated by the multigroup option; the 

justification for this is that the goal here is to compare feasibility 

and computational effort, and that accuracy per se has been demonstrated 

elsewhere [45, 48]. The adjoint trials were constructed according to 

the "reaction rate weight" scheme of Neuhold [46]: each adjoint trial 

is the product of the corresponding flux trial and the (group-dependent) 

core absorption cross section £capture ♦ £fiss1o„.

With these trials, the Spectral Synthesis eigenvalue equations were 

solved by ordinary inverse power iteration, yielding a multiplication 

factor of 1.00814 and the fluxes plotted in Figures 3 and 4. The error 

of 0.8% in kgff is not out of line with the errors reported from other 

synthesis tests, and the fluxes appear to approximate the multigroup fluxes 

very well (except in a few regions of where the flux is very small com­

pared to the peak value). The expansion coefficients of the three modes 

are plotted in Figure 5: the shifting of the dominant contribution from 

one mode to another is easily seen.

This solution required 9 iterations to meet the criterion that the 

fractional change in the modal source vector (£•£) be less than 10"^ at 

every point in every mode. Each iteration required approximately 0.17 

seconds of CPU time, about 1/4 of the time required for a multigroup 

iteration.
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As a test of Wielandt's Method, this modal problem was executed 

again with only one change: just before the LU decomposition of H was 

performed (in preparation for the inverse power iteration) an eigenvalue 

shift of Ao = 1/1.009 was performed. The result was convergence to the 

same criterion after only 3 iterations, with virtually identical fluxes 

and multiplication.

The particular application of Wielandt's method reduced the iteration 

cycle computational effort by a factor of 3, but the synthesis iterations 

were already a factor of 4 cheaper than the multigroup iterations. 

Thus we have an example of a savings of 11/12 of the time required to 

generate the flux eigenvector. If we assume that the Spectral Synthesis 

equations offer speed improvement factors of 3 to 8, and that Wielandt's 

method can decrease the number of iterations by a factor from 2 to 10, 

we see that the potential savings resulting from the use of this combina­

tion can be very large.

In closing, we must report one disconcerting fact: the Assembly 48 

model case also gave rise to an anomalous failure. One synthesis was 

attempted with the same flux trials taken from the exact solution, but 

with adjoint trials also taken from the exact adjoint solution at points 

1, 20, and 28; the inverse power iteration of the reduced eigenvalue 

equations did not converge.

In an attempt to determine the cause of this behavior we arranged 

to extract all the eigenvalues of the He = X F c system (to see what might 

be interfering with convergence to a smallest eigenvalue which should have 

been about 1/1.003). This extraction was made possible by the use of the 

newly-developed "QZ" algorithm [59], which solves the generalized matrix 

eigenvalue problem Ax = X Bx even when Bis singular: the components of
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the H and F matrices were dumped from core and then fed back as input 

to QZ.

The unexpected result of this procedure was the discovery that, 

although the smallest real eigenvalue of this He = A F c is 0.991 = 

1/1.00879 <3 1/1.003, there is one pair of complex conjugate eigenvalues 

(.733 *.571 i) with smaller norm:.929 <.991. Since the inverse power 

iteration eliminates all eigenvectors except those whose eigenvalues 

have smallest norm, the cause of the non-convergence is obvious: the 

successive iterates are arbitrary real vectors which exist in the space 

spanned by the complex eigenvectors whose eigenvalues are the pair having 

the smallest norm. The mystery of this anomalous case is the mechanism 

which introduced those complex eigenvalues.



CHAPTER X

CONCLUSIONS

This dissertation is a report of a series of studies performed to 

assess the potential usefulness for fast reactor analysis of the Spectral 

Synthesis approximation method. The initial chapters provide a thorough 

review of the Variational Theory which is used to justify the synthesis 

methods; the final chapters analyze Spectral Synthesis as it would really 

be applied — as an approximation to the finite-difference multigroup 

diffusion equations.

The investigations of the various types of variational perturbative 

approximation methods leads to the conclusion that most practical approxi­

mation techniques will take one of two forms: either a simple variational 

synthesis which achieves accuracy by introducing many free parameters, 

or a perturbation expansion with very few parameters (if any) carried to 

high order. The intermediate schemes seem to be too complex to ever see 

much use.

A further conclusion from the theoretical analysis is that virtually 

all flux synthesis approximations are inherently unreliable, since they 

are derived from variational principles for non-extremal functionals. 

Reliance on them must be justified by successful experience.

The analysis of the computer implementation of Spectral Synthesis 

has shown some potentially important applications, even though it appears 

that the synthesis equations are sufficiently more complex than the multi­

group to prevent their general adoption. There clearly are certain hybrid 

methods combining Spectral Synthesis with some other marginally useful 

technique in which a synergistic effect provides great potential for savings.
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Wielandt's Method can be made useful in reactor analysis this way; 

certainly there are other possibilities. The search for and investigation 

of this type of synergistic hybrid should provide an interesting topic 

for much future research.
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APPENDIX I

THE MACH-1 CODE

The computer code MACH-1 is really a coupled set of programs incor­

porating principally the features of the AIM-6 one-dimensional multi­

group diffusion theory code and the DEL perturbation analysis code. The 

reference report MACH-1 is ANL-7223, by D.A. Meneley, L.C. Kvitek, and 

D.M. O'Shea; for AIM-6 the reference is NAA-SR-MEM0-9204, by H.P.Flatt 

and D.C. Baller; for DEL the reference is ANL-7O52 by L.C. Kvitek.

MACH-1 solves almost the same set of finite difference multigroup 

equations described in Chapter VII: a slightly different (less accurate?) 

equation is used for points lying on an interface. The solution is 

carried out by assuming the formula - 15

valid. A forward sweep is made through the points n = 1 to N to compute

fi and and then a backward sweep is made to compute each $n.

MACH-1 will also compute the adjoint flux.

Source decks for this code are available as program #262 from the 

Argonne Reactor Code Center. One version is written in FORTRAN for the 

CDC-3600 - this presumably is the original version and should work prop­

erly. A second version, written in FORTRAN for the CDC-6500, is avail­

able (7000 + cards) but is not reliable. This version is the basis of 

the MACH/360 code, which is (supposed to be) MACH-1 plus a Spectral Syn­

thesis option, adapted for the IBM System/360 FORTRAN.
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APPENDIX II

THE MACH/360 CODE

MACH/360 is a revision and extension of the MACH-1 code. Several 

errors existing in the CDC-6500 version of MACH-1 were corrected, and in 

addition an attempt was made to convert all the special CDC FORTRAN 

statements to equivalent IBM System/360 FORTRAN-IV level G. This conver­

sion was not tested thoroughly in all the various MACH options. MACH/360 

is as independent of special system features as possible: necessary inter­

actions take place through easily identified (and replaceable) service 

subroutines.

MACH/360 allows the calculation of the finite difference multi group 

diffusion theory flux (from the equations presented in Chapter VII), or 

alternatively the calculation of the Spectral Synthesis approximation to 

that flux (also as described in Chapter VII). To reduce the core storage 

requirements a synthesis calculation may use no more than 50 mesh inter­

vals (the regular flux calculation allows 150); synthesis is performed 

with 1 to 5 sets of flux and adjoint trial spectra read as input, while 

the regular flux calculation may use 1 to 28 energy groups. Neither the 

reduction of the F-D M-G equations to obtain the synthesis equations nor 

the subsequent solution of these equations have been written in particular 

ly efficient FORTRAN - the synthesis option is clearly only an experi­

mental tool. An additional special option in MACH/360 allows the use of 

Wielandt's Method (described in Chapter VIII) to accelerate the conver­

gence of the Spectral Synthesis solution.

Source decks for MACH/360, with appropriate documentation, will be 

made available to the Argonne Reactor Code Center in early 1972.
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APPENDIX III

THE MACHLIB CODE

This code is available from the Argonne Reactor Code Center as part 

of the MACH-1 code - its purpose is to produce the cross section library 

tape required for MACH-1 (and MACH/360) execution.

The CDC-6500 version of MACHLIB has been converted to IBM System/360 

FORTRAN and will be returned to Argonne with MACH/360. The 6500 version 

has a number of features which have not been documented before but which 

will be described in the 360 version.

MACHLIB is distributed with a card version of the "ANL Set 224" 

cross section library. This is a pre-ENDF-B set of cross sections suit­

able for the analysis of fast reactor critical mock-ups, and is in the 

format required for input to MACHLIB. -
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