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Chapter 17
Informatics Technologies in the Diagnosis 
and Treatment of Mental Health 
Conditions

Wendy Marie Ingram, Rahul Khanna, and Cody Weston

Abstract Mental health conditions, unlike most other illnesses and disorders today, 
remain bereft of objective and conclusive physiological diagnostic tests. Classically, 
mental disorders are diagnosed, and treatment plans determined, based on extended 
interviews to collect patient reported symptoms and histories, careful evaluation by 
well-trained clinicians, and an often Odyssean journey to reach a satisfactory treat-
ment plan. Mental health informatics technologies may change that. Both consumer 
and clinician facing technologies hold promise to revolutionize the detection and 
diagnosis, the prevention and treatment, and the coordination and continuity of care 
for those with mental health conditions. In this chapter we introduce and discuss the 
current state of informatics technologies as it relates to the diagnosis and treatment 
of mental health conditions. We also highlight outstanding issues and challenges.
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17.1  Introduction

Mental disorders are typically diagnosed by first ruling out physical causes of symp-
toms through physical exams and laboratory testing, then performing in-depth psy-
chological examination. The Diagnostic and Statistical Manual of Mental 
Disorders  – 5 (DSM-5) is the most recent revision of the most widely accepted 
diagnostic criteria for psychological examination of mental illnesses [1]. It is used 
as part of a case formulation assessment that leads to a fully informed treatment 
plan for each patient. The DSM-5 is made up of three sections: I.  Basics, 
II. Diagnostic Criteria and Codes, and III. Emerging Measures and Models. Within 
the second section lies the core of contemporarily defined and accepted mental dis-
orders parsed into 22 different categories including Neurodevelopmental Disorders, 
Depressive Disorders, Feeding and Eating Disorders, and Personality Disorders, 
just to name a few. Trained mental health professionals such as social workers, psy-
chologists, and psychiatrists can employ the Structured Clinical Interview for 
DSM-5 (SCID-5) in order to make systematic diagnoses for both clinical and 
research purposes [2, 3]. These semi-structured diagnostic interviews are available 
in a number of versions differing in detail and design, tailored for specific uses 
including clinical trials or research. SCID-5 interviews are thorough and typically 
take 30 to 90 minutes to complete, depending on the diagnosis being tested and the 
complexity of the patient’s case. It is of note, however, that SCID-5 interviews are 
rarely used in non-research-related clinical practice [4, 5].

Despite the utilization of the methodical SCID-5 framework, there are many 
reasons that lead to inadequate care for patients with mental health conditions. 
Patients will often wait years after the onset of symptoms to seek treatment due in 
part to social stigma, restricted access to behavioral health specialists, and the com-
plex nature of mental illnesses themselves [6]. Once a patient is seen, it is quite 
common for mental health clinicians to require multiple visits with a patient before 
determining a primary diagnosis and an appropriate treatment plan. The majority of 
symptoms of a mental health condition occur outside of office visits and may be 
masked within the clinical environment, intentionally or otherwise. In addition, epi-
demiological research has revealed that many “discrete” DSM-5 diagnoses co-occur 
in the same person (e.g. depression and anxiety, or attention deficit hyperactivity 
disorder and conduct disorder [7]). The complexity of mental health conditions, the 
diversity of presentation, and the severe shortage of mental health providers all con-
tribute to many patients receiving shifting primary diagnoses over time as they 
interact with the health care system and are seen by increasingly specialized practi-
tioners and/or as their condition worsens. For example, a diagnosis of bipolar disor-
der (BD), a serious mental illness, is often preceded by a diagnosis of depression, 
with a mean delay of 8.7 years [8–11]. Additionally, many mental health conditions 
are chronic and/or episodic in nature. Once a correct diagnosis is reached and an 
adequate treatment plan determined, many patients with mental illnesses will expe-
rience periods of remission where regular clinical observation is not required. 
During these times, continuity of care may lapse and it falls on the patient and their 
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personal support system to detect an exacerbation and reinitiate care [12]. When 
considered together, the above-mentioned issues lead to major challenges in detect-
ing, diagnosing, preventing, treating, and coordinating continuity of care of mental 
health conditions. Fortunately, as depicted in Fig.  17.1 and described below, 
advances in mental health informatics may help address many of these issues 
through new research and application of informatics technologies [13].

17.2  Detection and Diagnosis

Arguably the largest problem in mental health is the delay of detection and accurate 
diagnosis of mental illness. In 2004, it was estimated that 80% of people with a 
lifetime DSM disorder had over a decade of delay between the onset of symptoms 
and initial contact with a mental health professional [14]. There now exist a multi-
tude of both consumer and provider facing technologies that are helping to close 
that gap (Fig. 17.1, step 1). Consumers have direct access to several platforms and 
technologies that produce extensive amounts of data which can be leveraged using 
informatics methodologies to assist in early detection and more accurate diagnosis 
of mental health conditions (Fig. 17.2).
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at-risk patients to
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Fig. 17.1 Classical mental health treatment cycle and informatics technologies improvements. 
The classical mental health treatment cycle may be improved or augmented in many ways by 
informatics technologies. The blue arrows indicated the classical treatment cycle beginning with 1. 
Patient sees clinician and cycling through steps 2 through 5. Exacerbation or episode. The green 
arrow and stars indicate a selection of informatics technologies that could improve these steps in 
the process

17 Informatics Technologies in the Diagnosis and Treatment of Mental Health…



456

17.2.1  Consumer Facing Technologies

17.2.1.1  Wearable Devices

The most evident method of capturing behavioral data on free-moving, natural acting 
individuals involves wearable fitness trackers which contain accelerometers, global 
positioning system (GPS), and other types of data gathering equipment. These collect 
actigraphy data (or level of activity, including sleep patterns), location data and more. 
Direct to consumer and research grade actigraphy devices, most typically worn on the 
wrist, have been used to study sleep, activity, and movement disorders in ever more 
impressive detail [15–23]. Less well known are other wireless and wearable devices 
such as patches and clothing that allow for measurement and electronic transmittal of 
a variety of biometrics ranging from heartrate to interstitial fluid molecule monitoring 
[24–28]. Using wearable technology allows real- time objective assessment of patient 
behavior including sleep quality, eating and drinking behaviors, activity levels and 
psychomotor activity which can enhance and refine the detection and diagnosis of 
mental illnesses, likely a significant improvement over current methods involving pre-
dominantly patient reported experiences [29–31].

Real World Clinical Setting

Majority of patient behavior.
Informatics technologies can detect
objective experience & environment.
Multiple time points can be collected.

Small fraction of patient behavior.
Report bias influenced by poor recall.
Only momentary experience captured.

Fig. 17.2 Clinical Setting versus Real World. The clinical setting is limited by how much informa-
tion can be gathered and how reliable that data is. Only a small fraction of patient behavior and 
experience can be assessed during clinical visit and is often influenced by problems with patient 
recall, especially when their mental health condition affects their cognitive ability or memory. The 
majority of patient experience occurs as the patient moves through the real world where informat-
ics technologies such as wearables and smartphone applications can collect and synthesize objec-
tive behavioral and environmental information longitudinally
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17.2.1.2  Smartphone Based Assessment

In addition to wearable technology, mobile phones allow for unprecedented mea-
surement and analysis of activity, environment, mood state, and behavior at the 
individual level. These advancements offer enormous potential for better character-
izing symptoms and mechanisms of psychiatric disorders, as well as predicting 
clinical severity and treatment response [30]. Presently it is estimated that 65% of 
US adults have a smartphone allowing for the development and deployment of 
applications capable of targeted or longitudinal psychiatric data collection. Global 
activity can be tracked with GPS transmitters which have already been used to study 
social behavior [32, 33] and food seeking [34, 35].

There are now over 10,000 smartphone-based applications providing various 
mental health services with growing acceptability [36–40]. Many include validated 
instruments for screening and symptom tracking, including the depression screener 
Patient Health Questionnaire (PHQ-9) or the Generalized Anxiety Disorder 7-item 
scale (GAD-7), while other mobile applications present screeners and resources for 
self-evaluation and personal tracking such as the Center for Epidemiologic Studies 
Depression Scale Revised (CESD-R) and Mood 24/7. In addition to measured or 
reported information about individuals collected by smartphones, digital environ-
mental sensors are also on the rise and allow the collection of data on noise, chemi-
cals, light, and weather-related environmental exposures [41–44]. The combination 
of momentary or periodic assessments with passively collected smartphone-based 
data holds even more promise to assist in detecting and monitoring psychiatric 
symptomology. In the case of schizophrenia spectrum disorder, the metrics of dis-
tance traveled, time spent alone and time sitting still all were associated with 
increased persecutory ideation (the delusion that includes the belief that they are 
being or will be intentionally harmed) [45].

17.2.1.3  Social Media

One of the most data-rich sources for detecting mental health concerns is also one of 
the most challenging: social media. For social, technical and ethical reasons, social 
media data such as that derived from platforms like Twitter, Facebook, Reddit, Weibo 
and Instagram have been found to be both promising and difficult to harness [46, 47] 
(and see Chap. 13). Depression and suicidality have been preferentially studied lead-
ing to insights into sentiment, circadian signals, and pronoun usage being linked to 
experience of mood disorder disturbance [48–59]. However studies of other disorders 
such as autism, substance use disorder and eating disorders have demonstrated cor-
relations with detectable signal in certain platforms and features in their data [60–63].

Utilization of social media text mining has also been employed to survey popula-
tions for concerning mental health deterioration following disasters [64]. There are 
significant differences in social media usage between patients based on the severity 
of their mental illness, however, which may affect studies employing this data to 
detect and diagnose individuals [54]. Despite the promise of leveraging social media 
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data to detect and diagnose mental illnesses, it should also be noted that the use of 
these platforms may be contributing to mental distress or disorders themselves 
[65–69].

17.2.1.4  Implications for Mental Health Conditions

Thus far, individual-level moment-by-moment mood monitoring data has advanced 
our understanding of the temporal associations of different symptoms within mental 
disorders such as bipolar disorder, post-traumatic stress disorder, and anxiety disor-
ders [70]. For example, a mood monitoring study of individuals with bipolar disor-
der found that chronic mood instability was more common than the diagnostic 
criteria of discrete episodes of mood variation [71]. Passive data from mobile 
phones can also increase our understanding of psychiatric disorders. Number and 
length of outgoing phone calls and text messages have been shown to be correlated 
with manic symptoms among individuals with bipolar disorder [72].

Complimentary studies using wearables in addition to self-reported mood data 
have elucidated potential underlying mechanisms of psychiatric disorders (Fig. 17.1, 
step 2). Individuals with borderline personality disorder demonstrated significant 
changes in diurnal physiology (i.e. sleep, activity and heart rate), which may exac-
erbate symptomatology and could prove to be useful targets for intervention [73]. 
Emotional processing has been shown to mediate the effects of antidepressants on 
mood, and early decrease in negative affective bias is considered an early marker of 
antidepressant efficacy [74]. In addition to the great wealth in knowledge generation 
about the diseases themselves through research, a crucial application of these con-
sumer facing technologies is to improve detection and accurate diagnosis of disease 
(Fig. 17.3).

Wearables Smartphones Social Media

Telemedicine Medical Mobile Devices Specialized Clinical
Information Systems

Fig. 17.3 Detection and diagnosis with informatics technologies. Wearables, smart phones, social 
media, telemedicine, medical mobile devices, specialized clinical information systems
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17.2.2  Provider Facing Technologies

17.2.2.1  Computerized Psychometric Assessment

Recently, extensive research has been devoted to determining validity and reliability 
of web- and application-based psychometric assessments comparing against exist-
ing paper and in-person administered scales. Computerized psychometric assess-
ments have generally been found equivalent to currently used methodologies, 
ranging from adolescent to geriatric populations [75–77]. These include psycho-
metric assessments for mental illnesses and associated features such as anxiety, 
depression, schizophrenia, OCD, suicidal ideation, post-traumatic stress disorder, 
emotional disorders, cognitive disorders, and more [76, 78–88]. The benefits of uti-
lizing validated computerized psychometric assessment are multifold. They save 
time for both clinicians and patients by being completed in a variety of settings, 
including by the patient in the comfort of their own home, before even scheduling 
an appointment. They can improve access to care for patients in settings that have 
behavioral health clinician shortages by effectively triaging patients, prioritizing 
patients with more severe or emergent conditions. In addition, it has been found that 
computerized adaptive testing, where each item is dynamically selected from a pool 
of items until a pre-specified measurement precision is reached, can actually 
improve the efficiency of testing while not losing reliability or validity [89–91].

17.2.2.2  Telemedicine

Access to specialized mental health clinicians that can reliably diagnose and treat 
mental health conditions is limited by both time and location. Telemedicine, the 
remote access to clinicians through digital technology, is particularly well suited to 
improve this aspect of the mental health field. Second only to radiologists, psychia-
trists in 2019 were the most likely specialty to employ telemedicine to provide care 
to their patients (27.8%) [92]. Because psychiatrists rarely need to conduct physical 
exams of their patients in an outpatient setting, two-way video telemedicine allows 
for increased access to care that may not otherwise be possible, especially for popu-
lations in rural, underserved, and developing nations’ communities [93–103]. 
Establishing a telemedicine practice, however, is not trivial and includes legal, tech-
nological, regulatory and billing issues that vary from state to state in the United 
States and from country to country worldwide [104, 105]. One of the barriers to the 
adoption of telemedicine is the resistance of clinicians themselves due to concern 
over developing trust and rapport with their patients as well as concerns over safety, 
security, and legal issues [105].

The 2019 novel coronavirus (COVID-19) global pandemic has played a transfor-
mative role in accelerating necessary rapid adoption of telepsychiatry resulting in 
both positive and negative consequences [106–115]. The pandemic itself has seri-
ously and negatively impacted a large proportion of individuals’ mental health [111, 
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116, 117]. Those with pre-existing mental health conditions were potentially 
impacted by not being able to be seen in person in order to refill prescriptions or 
address exacerbations in a timely manner, especially at the outset of the pandemic. 
The expansion of telepsychiatry was not instantaneous. It took a bit of time for rules 
to be suspended, allowing practitioners licensed in other states to provide services 
in areas that were in desperate need, and for practitioners and clinical systems to set 
up and adjust to the necessary infrastructure. However, following the growing pains 
of this sudden transition, clinicians that were previously reticent are now realizing 
unexpected benefits of telepsychiatry [118]. For example, outpatient psychiatry ser-
vices at Johns Hopkins School of Medicine have reported that their no-show rates 
have dropped precipitously, and more patients can be seen each day per physician. 
Other psychiatric service lines, however, continue to be negatively impacted by the 
pandemic. Some inpatient units now require each patient to have their own room, 
essentially halving the number of beds available. Brain stimulation services includ-
ing electroconvulsive therapy (ECT) and transcranial magnetic stimulation (TMS), 
are being delayed or rescheduled due to fear of contracting COVID-19. Altogether, 
it seems that the pandemic has one bright side in that the widespread adoption of 
telepsychiatry and reduced problematic regulation between states in the US may be 
here to stay, resulting in much needed improvements in access to care and reduced 
burden due to other disparities.

17.2.2.3  Mobile Medical Devices

Technological advances have led to the possibility of gathering even more sophisti-
cated types of data that are relevant to mental health [119]. While not used in con-
ventional diagnostic work ups of most mental disorders, research has demonstrated 
that many conditions are accompanied by clinically meaningful differences in brain 
structure and activity. Portable brain mapping is migrating from dedicated imaging 
facilities to the bedside and now into the community with mobile point-of-care MRI 
head and neck scanners, now FDA approved (example: hyperfine.io) [120]. 
Functional near infrared spectroscopy [121–124], portable EEG and telemetry 
applications [125–134], ultrasound imaging [135–137], and optical tomography 
[138–141] have all seen vast improvements in cost, portability, and accuracy. With 
increased portability and affordability, mobile medical devices will likely usher in a 
new era in biometric-based detection, diagnostics, and personalized care for mental 
health conditions (Fig. 17.1, step 3).

17.2.2.4  Specialized Clinical Information Systems

At the core of mental health informatics is the recognized value in collecting, stor-
ing, analyzing, and using specialized information. The collection of this informa-
tion and its processing leads to improved understanding of community needs, 
prevalence, treatment response, and other beneficial insights valuable for planning 
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and efficient detection. In 2005 the World Health Organization published a Mental 
Health Policy and Service Guidance Package specifically covering Mental Health 
Information Systems [142]. In this report, the authors conclude that general health 
information systems often fail to capture the data necessary for mental health pur-
poses due to lack of adequate understanding of this branch of medicine. It was 
perhaps too early at that point, but a major missing piece in their report is the inclu-
sion of mobile applications as a means of providing this specialized information 
systems for mental health [143]. Connecting primary and secondary care for mental 
health conditions, knowing when and where to refer patients, and efficiently diag-
nosing disorders may be fundamentally enhanced by informatics technology driven 
by mobile applications.

While still challenging, it is now easier than ever to securely connect smartphone 
based informatics systems to traditional electronic health records allowing for 
improved monitoring, management, and diagnosis of mental disorders [144–147]. 
Both electronic health records and smartphone-based applications are not without 
their challenges and concerns, however. Although there are thousands of mental 
health applications currently available, almost none provide scientific evidence that 
their systems properly diagnosis or improve outcomes among users [148–151], and 
there is evidence that consumers will largely not continue to use the apps when not 
enrolled in a clinical trial [152, 153]. Furthermore, patient perspectives on the pri-
vacy of their mental health information are complex and dynamic, requiring ardent 
patient engagement in the further development of mental health information sys-
tems and how they are used [154].

17.3  Prevention and Treatment

Informatics technology has applicability in prevention, treatment development, and 
therapeutic response prediction [70]. Individual-level digital monitoring, mental 
health information systems, and blending of these data are critically useful for the 
development of predictive algorithms that will allow for better prevention and treat-
ment of mental health conditions, with increasing sensitivity to personalized medi-
cine approaches (Fig. 17.4).

Online Support Groups Web Applications Mobile Applications Electronic Health Records

Fig. 17.4 Prevention and treatment. Online Support Groups, Web Apps, Mobile Apps, Electronic 
Health Records
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17.3.1  Consumer and Provider Facing Technologies

17.3.1.1  Online Support Groups

As epidemiological studies reveal an increase in mental health conditions world-
wide [155], the shortage of specialized clinicians and limited access to behavioral 
health care is driving many people to seek support online through disorder specific 
support groups [156]. International surveys have repeatedly demonstrated that an 
increasing number of people are seeking help through online support groups [157–
161]. Interviews and content analysis reveal that people predominantly seek online 
support to avoid stigma and to gain immediate, compassionate emotional support, 
especially when in-person care is unavailable or inconvenient [162–171]. These 
groups have been used effectively by patients with many disorders, including post-
partum depression, schizophrenia, eating disorders, and OCD. Many online support 
programs and groups are not designed, directed, or evaluated by clinical experts and 
thus may vary tremendously in their efficacy and safety for those using this modal-
ity in exclusion of professional psychiatric and/or psychological support. However, 
there are examples of clinically designed and distributed online support systems 
such as the recent Australian site “Moderated online social therapy for youth mental 
health.” [172]

17.3.1.2  Web Based and Mobile Applications

The advent of smartphones and the near ubiquitous availability of internet 
access in modern times have allowed people unprecedented access to means of 
daily mental health monitoring and convenient access to resources and remote 
care. The ability to self-monitor and have applications alert health care provid-
ers allows for earlier detection of exacerbations, episodes, or deterioration in 
individuals which in turn allows for earlier and more effective intervention. 
Both consumer and provider facing web-based and mobile applications are 
already available and have been shown to be effective for conditions such as 
OCD [173, 174] and predicting antidepressant response [175]. A number of 
web-based and mobile application mental healthcare programs have emerged to 
meet the need for prevention, early detection, remote therapy, and medication 
management as well [39, 40, 176–180]. These hold promise for extending the 
reach of scarce providers into underserved areas and for reaching patients who 
are reluctant or unable to reach providers in traditional settings. In addition to 
stand-alone mobile treatment, smartphone based cognitive behavioral therapy 
(CBT) may also accelerate or support pharmacotherapy for illnesses like depres-
sion [181]. Given the time-intensive nature of traditional in-person CBT, this 
could greatly extend the reach of this intervention in areas with a limited supply 
of psychotherapists (Fig. 17.1, step 4).

Mobile app-based programs are increasingly available as force-multipliers for 
teaching wellness skills such as mindfulness and self-compassion and were 
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effective at reducing psychological distress and improving mental well-being 
among various populations worldwide [182–184]. In addition to the use of self-
report measures, smartphone-based applications have the advantage of collecting 
other forms of data (keystroke rate, activity data, vocal patterns) that can be used to 
better understand a person’s day-to-day mental status. This can be especially useful 
in tracking symptoms in affective disorders, particularly bipolar disorder [39]. 
Prediction of future psychiatric manifestations is challenging with current tools, and 
accurate assessment could prevent significant harm in the form of risk-taking and 
suicidal behaviors if interventions were offered early. Despite the potential cost- and 
time- savings associated with adoption of mobile health technologies, psychiatric 
and psychological practices remain reluctant to adopt them due to lack of specific 
interest, challenges learning and deploying the technologies, and patient-reported 
difficulties using the tools [185]. Because mobile mental health applications are still 
relatively young as a field, there is limited regulatory oversight to differentiate safe 
and evidence-based interventions from others. This presents a significant barrier to 
adoption, as clear guidelines could confer legitimacy to rigorously developed appli-
cations and increase provider confidence [186] and clearly identify applications and 
programs that do not have an evidence base [187, 188]. While some efforts are 
being made to evaluate apps [189], there remains a need for more rigorous and 
widely accepted oversight and validation.

17.3.1.3  Coordination and Continuity of Care

Mental healthcare suffers from a severe lack of coordinated continuity of care [190–
193]. Many studies suggest that patient outcomes would improve dramatically if 
coordination and continuity of care were enhanced [190–193]. Informatics technol-
ogy could be the driving force behind such improvements [194] and yet continue to 
prove difficult to implement and bring to scale [195, 196]. Electronic health records 
(EHRs), sensors, digital technology and applications on wearable devices or smart-
phones have been tested in a variety of mental health conditions and shown promis-
ing results. However, interoperability issues and high initiation costs of these 
informatics technologies slow their adoption and deployment. An increase in imple-
mentation research may be useful in driving this domain forward (Fig. 17.1, step 5).

17.4  Ongoing Issues and Challenges

As is the case with any rapidly developing field, informatics technologies in the 
diagnosis and treatment of mental health conditions face several ongoing chal-
lenges. Some of these are conceptual and others practical. The conceptual issues 
relate to the nature and limits of psychiatric diagnoses themselves. Further, practical 
issues relate to clinician and patient acceptance, the latter of which raises equity and 
access challenges.
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17.4.1  Contemporary Psychiatric Diagnostics

To understand the challenges and opportunities of informatics in mental health 
diagnostics and treatment, we must understand the status quo and its limits. Although 
structured and validated interviews and rating scales are common in research set-
tings, contemporary clinicians primarily diagnose mental illnesses through infor-
mation gained through patient self-report and observations made during the clinical 
interview [197]. This information is then considered in light of the operationalized 
diagnostic criteria as outlined in the Diagnostics and Statistical Manual (DSM, cur-
rently version 5) published by the American Psychiatric Association (APA) or from 
the International Classification of Diseases (ICD, current version 11, though the US 
still largely uses ICD-10) published by the World Health Organization. The two 
documents, both consensus-based, share substantial overlap in their approach to 
categorizing psychiatric illnesses based on observable symptom clusters. They have 
been purposefully agnostic regarding etiology since DSM-III (1980) and primarily 
aimed to increase inter-clinician diagnostic reliability. The DSM-5 ‘recognize[s] 
that the current diagnostic criteria for any single disorder will not necessarily iden-
tify a homogeneous group…available evidence shows that… validators [e.g. bio-
markers] cross existing diagnostic boundaries but tend to congregate more frequently 
within and across adjacent DSM-5 chapter groups.’ [198] As such, practical ques-
tions of utility remain the explicit primary aim of these documents [199]. Despite 
this limited aim, lacking a clear alternative, these manuals have come to be the basis 
of everything from treatment research to compensation and remuneration schemes. 
The disorder categories they describe have therefore becoming rarified in a way not 
originally intended.

The implications of this background for the application of informatics solutions 
for diagnosis and treatment are manifold. Firstly, machine learning techniques com-
mon for analyzing the dense data provided by novel tools expect a valid ‘ground 
truth’ to train on. If that ground truth is flawed, our conclusions risk being even 
more flawed. So just collecting more accurate, refined data using more sophisticated 
tools within the same paradigm risks making the current approach more entrenched, 
adding to the mass of signs and symptoms that can be sliced and diced into more 
diagnostic categories. It may provide more phenotypes, but we will not have any 
more insight into which phenotypes represent a clinically meaningful class of disor-
ders (i.e., disorders with common etiologies that can be precisely targeted).

Further, although the informatics techniques described above may give a more 
accurate window into an illness state than retrospective self-report to a clinician, the 
latter is what most of the extant evidence base stands on. In fact, there is evidence 
that patients’ everyday experience or physiological state and retrospective evalua-
tion of mental states are distinct [200]. We therefore risk conflating distinct (if over-
lapping) illness states, adding to confusion and possibly hindering rather than 
helping to accurately and efficiently diagnose patients. To present an example, stud-
ies have correlated actigraphy profiles with a depressive episode [33]. Although 
exciting, it would not be correct to say that a person diagnosed in this way will have 
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an identical clinical trajectory or treatment response to one diagnosed on classic 
self-report. The question of what the clinician should then do to intervene with such 
a patient remains open. The issue is akin to the proverbial ‘incidentaloma’ in physi-
cal medicine, where a lesion is detected incidentally on a scan, but the patient is 
otherwise asymptomatic. The classic case is that of the pituitary incidentaloma, 
where pituitary masses are being detected in large quantities in patients having a 
brain scan for other reasons. The extant literature may for example suggest that 80% 
of said lesions are fatal without treatment, however this is based on symptomatic 
patients. Several years, surgeries and active surveillance later, doctors now know 
most of these lesions follow a benign course and intervention was unnecessary or 
worse, detrimental [201].

We present these caveats not to discourage further advancement in this field but 
to prompt informed clinicians and informaticians to fully appreciate both the risks 
and potentials for emerging tools and analytic approaches. Rather than aiming to 
diagnose within existing paradigms, we must remember that diagnoses are not aims 
in themselves but are ultimately the means to making predictions about outcomes, 
specifically treatment outcomes. This broader aim does not necessarily need to travel 
the circuitous path of a DSM-5 diagnosis. Rather, purely objective data-driven ana-
lytics can be embedded within clinical trials alongside classic diagnostic and treat-
ment approaches and aim to predict the ultimate outcomes directly. Doing so will not 
only help validate emerging technologies but also enhance clinician acceptance.

17.4.2  Clinician Acceptance

The issue of clinician acceptance is a challenge not restricted to informatics. 
Medicine is a conservative industry with good reason. The infamous startup mantra 
of ‘move fast and break things’ is ill-suited to high risk organizations, where ‘first, 
do no harm’ has held sway (in theory if not always in practice) for millennia. This 
conservatism however can sometimes have deadly consequences and several studies 
suggest the gap between research and widespread implementation in healthcare is 
seventeen years [202]. Demographic shifts alone, however, make the status quo 
untenable. By 2030, there is expected to be a worldwide shortage of 15 million 
health workers [203]. It is therefore crucial that informaticians and clinicians part-
ner effectively to implement practical models of care.

Contemporary EHRs have been described by clinicians as an intruder between 
patient and clinician which slow workflows [204] and compromise rapport [205]. 
Clinicians who are involved in the development and customizing of the software are 
however more likely to be satisfied users [206]. Intuitive and customized interfaces 
are necessary yet insufficient. The technologies we describe in this chapter depend 
on large volume and high-quality data, yet data quality can only improve if informa-
ticians can show value to the clinicians and patients entering the data. So although 
informatics has great potential for improved business intelligence [207] and 
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resultant improvements in efficiency, revenue and reporting, such potential can only 
be realized by simultaneously bringing clinical value and cultivating stake-
holder buy in.

Another barrier to clinician acceptance is a lack of training and remuneration 
[208, 209]. The ability to utilize consumer-grade technologies for diagnosis are a 
double-edged sword. On the one hand, this greatly expands the scale of diagnosis 
and intervention. On the other hand, it leaves clinical uses dependent on the whims 
of commercial actors which have a different set of priorities and regulation. 
Externalities like the Cambridge Analytica scandal of 2018 or the 2019 USA trade 
ban with Huawei, then the second largest smartphone manufacturer globally, are but 
two recent examples of events that can cause shifts in data availability for health 
analytics. Such events affect platform owners’ policies around access, individual 
willingness to share their data and regulations that cover data and technology trans-
fer [210]. Meanwhile, commercial incentives discourage open reporting of con-
sumer device accuracy, making external validation crucial. A recent comparison of 
a range of consumer wearables with sleep diaries and research grade equipment 
showed both the steady improvements in accuracy but also wide divergence between 
devices [211]. For example, when examining their ability to distinguish lying in bed 
awake from sleep, mean percent error ranged from 11.6% to 31.6%. Further, propri-
etary software often does not allow extraction of raw data and manufacturers are not 
obligated to share any data pre-processing changes that may occur even between 
different firmware versions of the same device. Furthermore, at the clinician level, 
there also exists a lag in the appropriate remuneration for the use of emerging tech-
nologies in mental healthcare. To facilitate clinician adoption of new informatics 
technologies, training and education are required and cost precious time and money, 
often out of limited continuing education funds. Companies developing these tech-
nologies often target administrators within health care systems to purchase their 
products or license their software. Without proper training and onboarding of 
healthcare workers themselves [212], with appropriate compensation for their time, 
implementation and adoption are going to be impeded. In contrast to companies, 
researchers producing cutting edge developments in informatics technology gener-
ally lack the funding or infrastructure to translate scientific and algorithmic innova-
tion to user-ready applications. Clinicians cannot be expected to invest their own 
time into incorporating informatics research innovations into their practice without 
extensive support. Additional focus on and funding for translation of informatics 
research to the clinical setting is required for these breakthroughs to reach patients 
and clinicians and realize their promised benefits [213].

17.4.3  Patient Acceptance, Access and Equity

Superficially, the popularity and volume of web-based treatments described above 
implies a high level of acceptance in the population. However, once the high global 
prevalence of mental illness is accounted for, these numbers still represent a small 
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segment of those in need. Further, up to 94% of those downloading popular mental 
health apps stop using them within two weeks [153]. This suggests work is needed 
to provide value and enhance engagement. Co-development and living laboratory 
approaches, where multiple stakeholders including patients, clinicians, funders and 
developers work together, are one potential path forward [214].

Bringing informatics technologies for diagnosis and treatment to individuals 
with mental health conditions also raises several specific access challenges. There is 
a bidirectional relationship between poverty and mental illness [215], so patient- 
access to devices and the internet may be limited. In Australia, despite having the 
10th highest average wage in the world, a study of schizophrenia sufferers pub-
lished in 2020 showed that only 58% owned a smartphone and 30% had never 
accessed the internet from any device [216]. Both clinician- and patient-facing lim-
its to access require resolution and often lie outside the boundaries of health depart-
ments or organizations. Further, specific symptoms like paranoid delusions may 
also impact patients’ willingness to use informatics tools for diagnosis or treatment.

17.5  Summary and Conclusion

As we can see, informatics technologies have made great strides in bringing innova-
tive approaches to mental health diagnoses and treatment. Some, like telemedicine 
and computerized psychometric testing, digitize existing validated approaches. 
Others, such as wearables and mobile medical devices, can provide insights hitherto 
impossible. These may allow us eventually to entirely leapfrog the extant diagnostic 
paradigms and help predict treatment outcomes and prognoses directly.

Though not insurmountable, several challenges remain before promising research 
outcomes can be translated to everyday care. One impediment is the uncertain validity 
of the current diagnoses as described in the DSM and ICD, an understanding of which 
is crucial for deriving useful insights from these novel tools. Beyond this, several clini-
cian and patient-side factors must be addressed. On the clinician side, enhanced training, 
remuneration and transparency from technology vendors could enhance acceptance. 
Some of these may require regulatory changes to overcome proprietary concerns and 
encourage validation studies. For patients, more needs to be done to address limited 
engagement and the ethical and practical access and equity issues. A focus on co-devel-
opment and re-thinking funding approaches may be helpful. Properly managed, the 
future for such technologies for diagnosis and treatment remains bright.
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