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Introduction
Previous research projects (Adel, Agustynowicz, and Wehrle 2021; Adel Ahmadian 2020; 
Craney and Adel 2020; Adel et al. 2018; Apolinarska et al. 2016; Helm et al. 2017; Willmann 
et al. 2015; Oesterle 2009) have explored the use of comprehensive digital design-to-fab-
rication workflows for the construction of nonstandard timber structures employing 
robotic assembly technologies. More recently, the Robotically Fabricated Structure (RFS), 
a bespoke outdoor timber pavilion, demonstrated the potential for highly articulated 
timber architecture using short timber elements and human-robot collaborative assembly 
(HRCA) (Adel 2022). In the developed HRCA process, a human operator and a human fabri-
cator work alongside industrial robotic arms in a shared working environment, enabling 
collaborative fabrication approaches. Building upon this research, we present an explo-
ration adapting HRCA to nail-laminated timber (NLT) fabrication, demonstrated through a 
case study exhibition (Figures 1 and 2).

The case study is a three-floor structure supported by two curved walls, exemplifying a 
nonstandard NLT multistory housing construction system that would be difficult to achieve 
using conventional methods. For the exhibition, we constructed a single story of this 
structure.
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1 Bespoke nail-laminated timber construction.
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Design
The case study structure was fabricated using a robotic 
workcell consisting of two six-axis industrial robotic arms, 
each with a payload of 60kg and a reach of 2m, mounted 
2.7m apart. The two robotic arms employed custom 
pneumatic gripper end effectors and had separate pickup 
stations for dimensional 2x4 lumber. The workcell also 
included a shared table saw and assembly platform, with 
a combined working envelope approximately 1.6m wide, 
4.6m long, and 2.0m high. The minimum element length 
that could be safely cut without colliding with the saw was 
330mm, while the maximum element length was 880mm, to 
prevent collision with the robot during the cutting process. 
These parameters defined the fabrication constraints for 
the design.

The constructive system was informed by NLT design 
guidelines (Holt, Luthi, and Dickof 2017) and physical 
prototyping experimentation. The core of the constructive 
system was an underlying pattern that repeated every 
three laminations to create a double-layered structural 
component. One visual effect of this pattern was a series 

of seam lines between sections of the NLT, with the number 
of sections bounded by the element length constraint. For 
instance, in the case study, we divided the 3m-tall wall 
into five horizontal sections using four Bezier curves 
(Mortenson 1999), creating a visual perspectival scaling 
effect along the wall surface (Figure 6). We interrupted the 
pattern by algorithmically transforming elements to intro-
duce functional openings such as embedded shelving.

A minimum overlap of 30mm from any timber element edge 
was required to ensure proper fastening between lamina-
tions. This allowed elements to be offset out of plane up to 
59mm (the width of an element minus the overlap), allowing 
for curvature and textural effects in the NLT. The exhibi-
tion structure was situated within a 2m by 3.8m footprint 
and showcased an S-curved wall, simultaneously demon-
strating the mass customization potential of the robotic 
fabrication process and being structurally self-supporting 
to leverage a cantilevering ceiling with a maximum 1.7m 
span and 2.32m interior height. This wall partitioned an 
interior and exterior space, and Perlin noise (Perlin 1985) 
was applied to the elements on the exterior face of the wall, 

2 Multistory NLT constructive system and its components. For the exhibition, we constructed the second story.
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3 Robotically placing an element on the NLT fabrication module.

4 On-site tilt-up assembly process.
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5 Fully assembled NLT structure, showing exterior wall and cantilever roof.

offsetting them to create an undulating texture that could 
be potentially tied to performance aspects such as acous-
tics or shading (Figure 1).

We utilized an iterative feedback loop to ensure that 
the design was fabricable at each step of the assembly 
process, performing automated validation to impose the 
fabrication constraints. The final design was then subdi-
vided into fabrication modules with a maximum of 15 
laminations each to fit within the workcell envelope and to 
maintain a weight that three human workers can comfort-
ably carry.

Fabrication and On-Site Assembly
We have implemented a digital design-to-fabrication work-
flow, in which a valid assembly sequence and fabrication 
instructions are generated from the computational design 
model to pick, cut, and place each element (Adel 2022; Adel 
Ahmadian 2020). These instructions also tell the human 
operator what nominal length of timber stock to load into 
the pickup station, minimizing offcut waste. After placing, 

the robot halts to allow the human operator access into 
the cell to fasten the element to the previous lamination 
using a nail gun, as well as perform a quality check of the 
module (Figure 3). This process repeats until the module is 
completed, after which it is tagged and prepared for trans-
port for final assembly on site.

The fabrication modules were first combined using screws 
to form sub-assemblies, which were then braced tempo-
rarily, tilted up, and shifted into place (Figure 4). We used 
ratchet straps to temporarily bond each sub-assembly 
in place, while more screws were used to fasten them to 
the structure. This on-site assembly method was particu-
larly suited for the exhibition structure due to its location 
indoors and, as such, avoided crane usage and weather-
proofing. In the case of the envisioned multistory structure 
(Figure 2), the on-site assembly process will need to be 
adapted to accommodate lifting larger sub-assemblies into 
place, which is an area for further research.

FABRICATED TRANSITIONS
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6 Fully assembled NLT structure, showing interior wall.

Results
The developed robotic NLT fabrication workflow enabled 
the construction of the exhibition structure consisting of 
1,814 short timber elements fastened with 7,166 nails. This 
case study demonstrates the potential for mass-customiz-
able housing using automated NLT prefabrication through 
its high-resolution structure, curved surfaces, and differ-
entiated texture to accommodate performance constraints 
and functional requirements.
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