Chapter 1
Nanoparticles Synthesized by Microorganisms

Abstract Microorganisms capable of synthesizing nanoparticles are prevalent microflora of the terrestrial and marine ecosystems. These microorganisms are involved in biogeochemical cycling of metals in processes such as precipitation (biomineralization), decomposition (bioweathering), and degradation (biocorrosion). The biosynthesis of metal NPs by microbes is a function of heavy metal toxicity resistance mechanisms. Resistance mechanisms range from redox enzymes that convert toxic metal ions to inert forms, structural proteins that bind protein, or through the use of efflux proteins that transport metal ions by proton motive force, chemiosmotic gradients, or ATP hydrolysis, which work together to coordinate synthesis nanoparticle synthesis. This chapter focuses on the biological systems; bacteria, fungi, actinomycetes, and algae for utilization in nanotechnology, especially in the development of a reliable and eco-friendly processes for the synthesis of metallic nanoparticles. The rich microbial diversity points to their innate potential for acting as potential biofactories for nanoparticles synthesis.

1.1 Introduction

Nanoparticles (NPs) fall within the size range of 0.1–100 nm and are capable of exhibiting a range of ideal properties such as near identical strength (e.g. resistance to crushing), active surfaces, which have important catalytic properties; and discrete energy levels that can yield some important tailoring of electronic properties (Daniel and Astruc 2004; Kato 2011). While the chemical compositions of NPs are important, the morphology of the NPs (size and shape) and its surface/colloidal properties are equally essential. For example, smaller size NPs are known to have more antimicrobial activity than larger NPs (Chwalibog et al. 2010). With regard to drug delivery, the smaller the NP, the longer it will remain in the circulatory system and therefore have a greater chance of being distributed among the target sites (Gaumet et al. 2008). NPs in general can be synthetically formed or occur naturally (e.g. by microbial biosynthesis) within the environment. In both instances, variations in the morphology of the resulting NPs are common. NPs can be found as
nanospheres, nanorods, nanocubes, nanoplates, nanobelts, nanotetrapods, and nanoprisms. These can be loosely grouped into face-centered cubic, cuboctahedron, icosahedrons, regular decahedron, star decahedron, marks decahedron, and round decahedrons (Yacaman et al. 2001). Another extremely important aspect of NPs in addition to their morphology is their composition. For instance NPs containing metal ions have many beneficial properties, which are becoming increasingly more common in new technology and processes. For example, a recent review on silver nanoparticles (AgNP) (Sweet and Singleton 2011) covers the usage of AgNP in a wide range of applications including food storage, photonics, information storage, electronic and optical detection systems, therapeutics, diagnostics, photovoltaics, and catalysts. However, despite the significant advantages of NPs being formed with metals such as silver, the challenge of synthetically controlling the shape of metal NPs has met with variable success, making manipulation aimed at a certain size and/or shape of metal NPs difficult.

Microorganisms capable of synthesizing NPs are especially prevalent microflora of the terrestrial and marine ecosystems. It is well known that microbes are involved in biogeochemical cycles of metals in processes such as precipitation (biomineralization), decomposition (bioweathering), and degradation (biocorrosion). Central to each ecological process is the mobilization, distribution, and chemical modification that govern metal speciation and ultimately toxicity (Gadd 2010). As a consequence of these ecological processes, microbes are often subjected to toxic levels of heavy metals, which unless managed, may induce cell death. For example, silver toxicity can occur through interaction with thiol groups of membrane-bound proteins including enzymes involved in respiration, leading to disruption of the cellular membranes, and subsequent disruption of proton motive force through an inability to maintain a proton gradient. This is thought to promote uncoupling of the respiratory chain from oxidative phosphorylation, due to disruption of electron transport (Holt and Bard 2005). Uncontrolled respiration promotes superoxide and hydroxyl radical formation, leading to induction of SOS response and ultimately cell death. Similar metal toxicity responses are observed with other metals, for example, cadmium (Ahmad et al. 2002), and NP biosynthesis would appear to be a common byproduct of metal resistance. The biosynthesis of metal NPs by microbes is a function of heavy metal toxicity resistance mechanisms, whereby toxic heavy metals are converted to nontoxic species and precipitated as metal clusters of nanoscale dimension and defined shape (Narayanan and Sakthivel 2010). Resistance mechanisms range from redox enzymes that convert toxic metal ions to inert forms, structural proteins that bind protein (Gadd 2010), or through the use of efflux proteins that transport metal ions by proton motive force, chemiosmotic gradients, or ATP hydrolysis (Nies 2003). It is proposed that such mechanisms work to coordinate synthesis. This chapter provides an overview of the different types of NPs and the different microorganisms that synthesize them.

The general scheme of the formation of metallic nanoparticles through biosynthesis is shown in Fig. 1.1. The nanoparticles are produced either intracellularly or
extracellularly (Rangarajan et al. 2014). In case of the intracellular synthesis the nanoparticles are produced inside the bacterial cells by the reductive pathways of the cell wall and accumulated in the periplasmic space of the cell. The nanoparticles are produced extracellularly when the cell wall reductive enzymes or soluble secreted enzymes are extracted outside the cell and are involved in the reductive process of metal ions.

One of the enzymes involved in the biosynthesis of metal nanoparticles is the nitrate reductase which reduces the metal ions (Me\(^{+1}\)) to the metallic form (Me\(^0\)). This enzyme is a NADH- and NADPH-dependent enzyme. He et al. (2007) described the hypothetical mechanism for gold nanoparticles biosynthesis carried out by *Rhodopseudomonas capsulate*. These bacteria are known to secrete cofactor NADH- and NADH-dependent enzymes that can be responsible for the biological reduction of Au\(^{3+}\) to Au\(^0\) and the subsequent formation of gold nanoparticles (Fig. 1.2). This reduction is initiated by electron transfer from the NADH by NADH-dependent reductase as electron carrier during which the gold ions gain electrons and are therefore reduced to Au\(^0\).

Fig. 1.1 The formation of the metal nanoparticles (Me-NPs) during biosynthesis. *Source* Mittal et al. (2013). Copyright © 2013, Elsevier. Reproduced with permission.
1.2 Metallic Nanoparticles

Metallic nanoparticles have fascinated scientists for over a century and are now heavily utilized in biomedical sciences and engineering. They are a focus of interest because of their huge potential in nanotechnology. Metallic nanoparticles have possible applications in diverse areas such as electronics, cosmetics, coatings, packaging, and biotechnology. For example, nanoparticles can be induced to merge into a solid at relatively lower temperatures, often without melting, leading to improved and easy-to-create coatings for electronics applications. Typically, NPs possess a wavelength below the critical wavelength of light. This renders them transparent, a property that makes them very useful for applications in cosmetics, coatings, and packaging. Metallic NPs can be attached to single strands of DNA nondestructively. This opens up avenues for medical diagnostic applications. Nanoparticles can traverse through the vasculature and localize any target organ. This potentially can lead to novel therapeutic, imaging, and biomedical applications. Today these materials can be synthesized and modified with various chemical functional groups which allow them to be conjugated with antibodies, ligands, and drugs of interest and thus opening a wide range of potential applications in biotechnology, magnetic separation, and preconcentration of target analytes, targeted drug delivery, and vehicles for gene and drug delivery and more importantly diagnostic imaging (Mody et al. 2010). Some typical metal nanoparticles produced by microorganisms are summarized in Table 1.1.
Table 1.1 Metal nanoparticles synthesized by microorganisms

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Type nanoparticle synthesize</th>
<th>Size (nm)</th>
<th>Shape</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinobacter spp.</td>
<td>Magnetite</td>
<td>10–40</td>
<td>Not available</td>
<td>Bhard et al. (2005)</td>
</tr>
<tr>
<td>Bacillus licheniformis</td>
<td>Silver</td>
<td>50</td>
<td>Not available</td>
<td>Kalimuthu et al. (2008)</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>Silver</td>
<td>4–5</td>
<td>Spherical</td>
<td>Babu and Gunasekaran (2009)</td>
</tr>
<tr>
<td>Brevibacterium casei</td>
<td>Gold, silver</td>
<td>10–50</td>
<td>Spherical</td>
<td>Kalishwaralal et al. (2010)</td>
</tr>
<tr>
<td>Clostridium thermoaceticum</td>
<td>Cadmium sulfide</td>
<td>Not available</td>
<td>Not available</td>
<td>Sweeney et al. (2004)</td>
</tr>
<tr>
<td>Corynebacterium glutamicum</td>
<td>Silver</td>
<td>5–50</td>
<td>Irregular</td>
<td>Gurunathan et al. (2009)</td>
</tr>
<tr>
<td>Desulfovibrio desulfuricans</td>
<td>Palladium</td>
<td>50</td>
<td>Spherical</td>
<td>Lloyd et al. (1998)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Cadmium telluride</td>
<td>2-3</td>
<td>Spherical</td>
<td>Bao et al. (2010)</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>Gold</td>
<td>5–32</td>
<td>Not available</td>
<td>Malararkodi et al. (2013)</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>Gold</td>
<td>15–30</td>
<td>Not available</td>
<td>Husseiny et al. (2007)</td>
</tr>
<tr>
<td>Pseudomonas stutzeri</td>
<td>Silver</td>
<td>200 nm</td>
<td>Not available</td>
<td>Klaus et al. (1999)</td>
</tr>
<tr>
<td>Pyrobaculum islandicum</td>
<td>Uranium (VI), Technetium (VII), Chromium (VI), Cobalt (III), Manganese (IV)</td>
<td>Not available</td>
<td>Spherical</td>
<td>Kashefi and Lovley (2000)</td>
</tr>
<tr>
<td>Rhodococcus sp.</td>
<td>Gold</td>
<td>5–15</td>
<td>Spherical</td>
<td>Ahmad et al. (2003b)</td>
</tr>
<tr>
<td>Rhodopseudomonas capsulate</td>
<td>Gold</td>
<td>10–20</td>
<td>Spherical</td>
<td>He et al. (2007)</td>
</tr>
<tr>
<td>Shewanella algae</td>
<td>Gold</td>
<td>10–20</td>
<td>Not available</td>
<td>Konishi et al. (2007a)</td>
</tr>
<tr>
<td>Shewanella oneidensis</td>
<td>Gold</td>
<td>12–17</td>
<td>Spherical</td>
<td>Suresh et al. (2011)</td>
</tr>
<tr>
<td>Shewanella algae</td>
<td>Platinum</td>
<td>5</td>
<td>Not available</td>
<td>Konishi et al. (2007b)</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Type nanoparticle synthesized</th>
<th>Size (nm)</th>
<th>Shape</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shewanella sp.</td>
<td>Selenium</td>
<td>181–221</td>
<td>Spherical</td>
<td>Lee et al. (2007)</td>
</tr>
<tr>
<td>Thermonospora</td>
<td>Silver</td>
<td>8</td>
<td>Not available</td>
<td>Ahmad et al. (2003a)</td>
</tr>
<tr>
<td>Ureibacillus thermosphaericus</td>
<td>Silver</td>
<td>50–70</td>
<td>Not available</td>
<td>Juibari et al. (2011)</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus flavus</td>
<td>Silver</td>
<td>8–9</td>
<td>Spherical</td>
<td>Vigneshwaran et al. (2007)</td>
</tr>
<tr>
<td>Candida utilis</td>
<td>Gold</td>
<td>Not available</td>
<td>Not available</td>
<td>Gericke and Pinches (2006)</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>Silver</td>
<td>5–50</td>
<td>Spherical</td>
<td>Senapati et al. (2004)</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>Silicon</td>
<td>5–10</td>
<td>Spherical</td>
<td>Bansal et al. (2005)</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>Titanium</td>
<td>6–13</td>
<td>Spherical</td>
<td>Bansal et al. (2005)</td>
</tr>
<tr>
<td>Phaenerochaete chrysosporium</td>
<td>Silver</td>
<td>50–200</td>
<td>Pyramidal</td>
<td>Vigneshwaran et al. (2006)</td>
</tr>
<tr>
<td>Trichoderma viride</td>
<td>Silver</td>
<td>5–40</td>
<td>Spherical</td>
<td>Fayaz et al. (2010)</td>
</tr>
<tr>
<td>Verticillium luteoalbunum</td>
<td>Gold</td>
<td>Not available</td>
<td>Not available</td>
<td>Gericke and Pinches (2006)</td>
</tr>
<tr>
<td>Yarrowia lipolytica</td>
<td>Gold</td>
<td>15</td>
<td>Triangles</td>
<td>Agnihotri et al. (2009)</td>
</tr>
<tr>
<td>Algae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorella vulgaris</td>
<td>Silver</td>
<td>9–20</td>
<td>Not available</td>
<td>Jianping et al. (2007)</td>
</tr>
<tr>
<td>Plectonemaboryanum</td>
<td>Gold</td>
<td><10–25</td>
<td>Cubic</td>
<td>Lengke et al. (2006a)</td>
</tr>
<tr>
<td>Plectonema boryanum UTEX 485</td>
<td>Gold</td>
<td>10–6 µm</td>
<td>Octahedral</td>
<td>Lengke et al. (2006b)</td>
</tr>
<tr>
<td>Sargassum wightii</td>
<td>Gold</td>
<td>8–12</td>
<td>Planar</td>
<td>Singaravelu et al. (2007)</td>
</tr>
</tbody>
</table>
1.2 Metallic Nanoparticles

Gold nanoparticles (AuNOS) have attracted attention in biotechnology due to their unique optical and electrical properties, high chemical and thermal ability, and good biocompatibility and potential applications in various life sciences related applications including biosensing, bioimaging, drug delivery for cancer diagnosis and therapy (Jiang et al. 2012). Covalently modified gold nanoparticles have attracted a great deal of interest as a drug delivery vehicles. Their predictable and reliable surface modification chemistry, usually through gold-thiol binding, makes the desired functionalization of nanoparticles quite possible and accurate. A variety of therapeutic molecules have been attached in this manner, including various oligonucleotides for gene therapy, bacterial compounds, and anti-cancer drugs. (Jiang et al. 2012). Recently, many advancements were made in biomedical applications with better biocompatibility in disease diagnosis and therapeutics. AuNPs could be prepared and conjugated with many functionalizing agents, such as polymers, surfactants, ligands, dendrimers, drugs, DNA, RNA, proteins, peptides and oligonucleotides. Overall, Au-NPs would be a promising vehicle for drug delivery and therapies. AuNPs can be produced by microorganisms such as bacteria, fungi and algae (Table 1.1).

Table 1.1 (continued)

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Type nanoparticle synthesize</th>
<th>Size (nm)</th>
<th>Shape</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spirulina platensis</td>
<td>Silver</td>
<td>11.6</td>
<td>Spherical</td>
<td>Mahdieh et al. (2012)</td>
</tr>
<tr>
<td>Pterochladia capillaceae</td>
<td>Silver</td>
<td>7 (average)</td>
<td>Spherical</td>
<td>El-Rafie et al. (2013)</td>
</tr>
<tr>
<td>Jania rubins</td>
<td>Silver</td>
<td>12 (average)</td>
<td>Spherical</td>
<td>El-Rafie et al. (2013)</td>
</tr>
<tr>
<td>Ulva faciata</td>
<td>Silver</td>
<td>7 (average)</td>
<td>Spherical</td>
<td>El-Rafie et al. (2013)</td>
</tr>
<tr>
<td>Colpmenia sinusa</td>
<td>Silver</td>
<td>20 (average)</td>
<td>Spherical</td>
<td>El-Rafie et al. (2013)</td>
</tr>
</tbody>
</table>

1.2.1 Gold Nanoparticles

Gold nanoparticles (AuNOS) have attracted attention in biotechnology due to their unique optical and electrical properties, high chemical and thermal ability, and good biocompatibility and potential applications in various life sciences related applications including biosensing, bioimaging, drug delivery for cancer diagnosis and therapy (Jiang et al. 2012). Covalently modified gold nanoparticles have attracted a great deal of interest as a drug delivery vehicles. Their predictable and reliable surface modification chemistry, usually through gold-thiol binding, makes the desired functionalization of nanoparticles quite possible and accurate. A variety of therapeutic molecules have been attached in this manner, including various oligonucleotides for gene therapy, bacterial compounds, and anti-cancer drugs. (Jiang et al. 2012). Recently, many advancements were made in biomedical applications with better biocompatibility in disease diagnosis and therapeutics. AuNPs could be prepared and conjugated with many functionalizing agents, such as polymers, surfactants, ligands, dendrimers, drugs, DNA, RNA, proteins, peptides and oligonucleotides. Overall, Au-NPs would be a promising vehicle for drug delivery and therapies. AuNPs can be produced by microorganisms such as bacteria, fungi and algae (Table 1.1).

Bacteria have been used to synthesize AuNPs. For example, microbial synthesis of gold nanoparticles was achieved by Konishi et al. (2007a) using the mesophilic bacterium *Shewanella algae* with H2 as the electron donor. The authors used varying pH conditions in their study. When the solution pH was 7, gold nanoparticles of 10–20 nm were synthesized in the periplasmic space of *S. algae* cells. Interestingly, when the solution pH was decreased to 1, larger-sized gold nanoparticles (50–500 nm) were precipitated extracellularly (Konishi et al. 2004). In an analogous study, He et al. (2007) showed that the bacteria *Rhodopseudomonas capsulata* produces gold nanoparticles of different sizes and shapes. He et al. incubated *R. capsulata* biomass and aqueous chloroauric acid (HAuCl4) solution at pH values ranging from 7 to 4.16 They found that at pH 7, spherical gold nanoparticles in the
range of 10–20 nm were formed. In contrast, at pH 4, a number of nanoplates were produced (He et al. 2007). In both of these studies, the solution pH was an important factor in controlling the morphology of biogenic gold particles and location of gold deposition. These observations are in line with the findings of Klaus et al. (1999) who observed that variations in incubation conditions lead to variations in particle size. Of note, gold nanoparticles can be used for a variety of applications (e.g., direct electrochemistry of proteins) (Liangwei et al. 2007). The synthesis of gold nanoparticles by two novel strains of Arthrobacter sp. 61B and Arthrobacter globiformis 151B isolated from basalt rocks in Georgia was studied by Kalabegishvili et al. (2012). Their study has shown that the extracellular formation of nanoparticles took place after 1.5–2 days. They noted that the concentration of gold particles accumulated by increases in bacterial biomass. Gericke and Pinches (2006) reported intracellular gold production by Pseudomonas stutzeri NCIMB 13420, Bacillus subtilis DSM 10 and Pseudomonas putida DSM 291. He et al. (2007) demonstrated that the bacterium Rhodopseudomonas capsulata is capable of producing gold particles extracellularly. The gold nanoparticles produced are stable in solution. In the study conducted by Malarkodi et al. (2013), the extracellular biosynthesis of gold nanoparticles is achieved by an easy biological procedure using Klebsiella pneumoniae as the reducing agent. After exposing the gold ions to K. pneumoniae, rapid reduction of gold ion is observed and leads to the formation of gold nanoparticles in colloidal solution (Figs. 1.3 and 1.4). The method exploits a

Fig. 1.3 Transmission electron microscopy and photo of gold nanoparticles prepared by using K. pneumoniae a 100 nm and b 50 nm. TEM images of gold nanoparticles using K. pneumoniae a and b. Source Malarkodi et al. (2013). Copyright © 2013, Springer. Reproduced with permission
cheap and easily available biomaterial for the synthesis of metallic nanoparticles (Malarkodi et al. 2013).

Fungi are taking the center stage of studies on biological generation of metallic nanoparticles because of their tolerance and metal bioaccumulation ability (Sastry et al. 2003). A distinct advantage of using fungi in nanoparticle synthesis is the ease in their scale-up (e.g., using a thin solid substrate fermentation method). Given that fungi are extremely efficient secretors of extracellular enzymes, it is thus possible to easily obtain large-scale production of enzymes. Further advantages of using a fungal-mediated green approach for synthesis of metallic nanoparticles include economic viability and ease in handling biomass. However, a significant drawback of using these bio-entities in nanoparticles synthesis is that the genetic manipulation of eukaryotic organisms as a means of overexpressing specific enzymes (e.g. the ones identified in synthesis of metallic nanoparticles) is relatively much more difficult than that in prokaryotes. Sastry and coworkers have reported the
extracellular synthesis of gold nanoparticles by fungus *Fusarium oxysporum* (Mukherjee et al. 2002). They reported the intracellular synthesis of gold nanoparticles by fungus *Verticillium* sp. as well (Mukherjee et al. 2001a). The extracellular and intracellular biosynthesis of gold nanoparticles by fungus *Trichothecium* sp. was reported by Absar et al. (2005). The gold ions react with the *Trichothecium* sp. fungal biomass under stationary conditions, resulting in the rapid extracellular production of nanoparticles; reaction of the biomass under shaking conditions resulted in intracellular production of the gold nanoparticles. Chauhan et al. (2011) reported biogenic synthesis of gold nanoparticles using cytosolic extract of *Candida albicans*. The study revealed that the shape and the size of nanoparticles formed govern the characteristic features of their spectra (Figs. 1.5 and 1.6). This technique can be extended for rapid, specific, and cost-effective detection of various cancers, hormones, pathogenic microbes, and their toxins if a specific antibody is available.

There are few reports of algae being used as a “biofactory” for synthesis of metallic nanoparticles. Singaravelu et al. (2007) adopted a systematic approach to study the synthesis of metallic nanoparticles by *Sargassum wightii*. This is the first

![Fig. 1.5 Extracellular synthesis of K. pneumoniae biomass and gold chloride mixed with biomass. K. pneumoniae biomass (a), 1 mM gold chloride mixed with biomass at the beginning of reaction showing a greenish-brown color change (b), and after 1 day of reaction showing a dark-purple in color change (c). Source Malarkodi et al. (2013). Copyright © 2013, Springer. Reproduced with permission](image-url)
report in which a marine alga has been used to synthesize highly stable extracellular gold nanoparticles in a relatively short time period compared with that of other biological procedures. Indeed, 95% of the bioreduction of AuCl\(^{-4}\) ions occurred within 12 h at stirring condition (Singaravelu et al. 2007). The authors extended their report to the formation of palladium and platinum nanoparticles starting with their corresponding metallic chloride—containing salts (Singaravelu et al. 2007). Rajeshkumar et al. (2013, 2014) reported synthesis of gold particles by marine brown algae Tubinaria conoides. The nanoparticles showed antibacterial activity against Streptococcus sp., Bacillus subtilis, Klebsiella pneumoniae.
Southam and Beveridge (1996) have demonstrated that gold particles of nanoscale dimensions may readily be precipitated within bacterial cells by incubation of the cells with Au$^{3+}$ ions. Monodisperse gold nanoparticles have been synthesized by using alkalotolerant *Rhodococcus* sp. under extreme biological conditions like alkaline and slightly elevated temperature conditions (Ahmad et al. 2003b). Lengke et al. (2006a) claimed the synthesis of gold nanostructures in different shapes (spherical, cubic, and octahedral) by filamentous cyanobacteria from Au(I)-thiosulfate and Au(III)-chloride complexes and analyzed their formation mechanisms (Lengke et al. 2006a, b). Nair and Pradeep (2002) reported the growth of nanocrystals and nanoalloys using *Lactobacillus*. Some other typical gold nanoparticles produced by microorganisms are summarized in Table 1.1.

1.2.2 Silver Nanoparticles

Silver nanoparticles (AgNps), like their bulk counterpart, show effective antimicrobial activity against Gram-positive and Gram-negative bacteria, including highly multiresistant strains such as methicillin-resistant *Staphylococcus aureus* (Panacek et al. 2006). Silver nanoparticles synthesis by microorganisms is a result of their defense mechanism. The resistance caused by the microorganism for silver ions in the environment is responsible for its nanoparticle synthesis. The silver ions in nature are highly toxic to microorganisms. As a defense mechanism, the microorganism utilizes its cellular machinery to transform the reactive silver ions to stable silver atoms. Parameters such as temperature and pH play an important role in their production. It is now known that more nanoparticles are synthesized under alkaline conditions than under acidic conditions (Saklani and Jain 2012).

The reduction of Ag$^{+}$ to colloidal silver by microorganisms in aqueous solutions is a stepwise process. First various complexes of Ag$^{+}$ are reduced to metallic silver atoms (Ag0). This is followed by the agglomeration of Ag0 into oligomeric clusters (Sharma et al. 2008). It is these clusters that eventually lead to the formation of colloidal AgNPs (Kapoor et al. 1994; Sharma et al. 2008). The low molecular weight peptide, glutathione (GSH) and proteins like metallothioneins and phytochelatins, enzymes such as oxidoreductases, NADH-dependent reductases, nitroreductases, NADH-dependent nitrate reductases (NRs) and cysteine desulphhydrases have been shown to be responsible for nanocrystal formation in yeast, bacteria, and fungi. These microbes are known to reduce the Ag$^{+}$ ions to form silver nanoparticles, most of which are found to be spherical particles (Mukherjee et al. 2001b; Ahmad et al. 2003a; Fayaz et al. 2010). In one of the earliest studies in this technology, Slawson et al. (1992) found that a silver-resistant bacterial strain isolated from silver mines, *Pseudomonas stutzeri* AG259, accumulated AgNPs within the periplasmic space. Of note, the particle size ranged from 35 to 46 nm (Slawson et al. 1992). Interestingly, Klaus et al. (1999) observed that when this bacterium was placed in concentrated aqueous solution (50 mM), particles of larger size (200 nm) were formed. Klaus et al. (1999) group attributed the difference in
particle size (in comparison with the report of Slawson et al. 1992) to the differences in cell growth and metal incubation conditions. Klaus et al. (1999) have shown that the bacterium *Pseudomonas stutzeri* AG259, isolated from a silver mine, when placed in a concentrated aqueous solution of silver nitrate, played a major role in the reduction of the Ag⁺ ions and the formation of silver nanoparticles (AgNPs) of well-defined size and distinct topography within the periplasmic space of the bacteria (Klaus et al. 1999). An important application of such a bacterium would be in industrial Ag recovery. Intriguingly, the exact mechanism(s) of AgNPs synthesis by this bacterium is still unclear. However, the molecular basis of biochemical synthesis of AgNPs from *Morganella* sp. RP-42, an insect midgut isolate (Parikh et al. 2008). Parikh et al. (2008) observed that *Morganella* sp. RP-42 when exposed to silver nitrate (AgNO₃) produced extracellular crystalline AgNPs of size 20 ± 5 nm. Three gene homologues (*silE, silP, and silS*) were identified in silver-resistant *Morganella* sp. The homologue of *silE* from *Morganella* sp. showed 99% nucleotide sequence similarity with the previously reported gene, *silE*, which encodes a periplasmic silver-binding protein (Parikh et al. 2008). This is the only report that elucidates the molecular evidence of silver resistance in bacteria, which could be linked to synthesis mechanism. In another study, Nair and Pradeep (2002), exposed common *Lactobacillus* strains present in buttermilk to large concentrations of metal ions to produce microscopic gold, silver, and gold-silver alloy crystals of well-defined morphology. The bacteria produced these intracellularly and, remarkably, the cells preserved their viability even after crystal growth (Nair and Pradeep 2002) Notably, even cyanobacteria have been observed to produce AgNPs. For example, the biosynthesis of AgNPs has been successfully conducted using *Plectonema boryanum* UTEX 485, a filamentous cyanobacterium (Lengke et al. 2007). The authors posit that the mechanisms of AgNPs production via cyanobacteria could involve metabolic processes from the use of nitrate at 25 °C and/or organics released from the dead cyanobacteria at 25° (Fig. 1.7) to 100 °C (Fig. 1.8).

AgNPs were synthesized in the form of a film or produced in solution or accumulated on the cell surface of fungi, *Verticillium, Fusarium oxysporum*, or *Aspergillus flavus*, were employed (Mukherjee et al. 2001b; Senapati et al. 2004; Bhainsa and D’Souza 2006; Vigneshwaran et al. 2007; Jain et al. 2011). Mukherjee et al. (2001b) studied the synthesis of intracellular AgNPs using the fungus *Verticillium*. The authors observed that exposure of the fungal biomass to aqueous Ag⁺ ions results in the intracellular reduction of the metal ions and formation of 25 ± 12 nm AgNPs. A shortcoming of the study by Mukherjee et al. (2001b) was that the metallic nanoparticles were synthesized intracellularly. Indeed, when the site of nanoparticle synthesis is intracellular, downstream processing becomes difficult and often defeats the purpose of developing a simple and cheap process. In this regard, Bhainsa and D’Souza (2006) have reported extracellular biosynthesis of AgNPs using the filamentous fungus *Aspergillus fumigatus* and the synthesis process was rapid. AgNPs were formed within minutes of silver ion coming in contact with the cell filtrate. The ultraviolet-visible (UV-Vis) spectrum of the aqueous medium containing Ag⁺ ion showed a peak at 420 nm corresponding with...
Fig. 1.7 TEM micrographs of whole mounts of cyanobacterial cells cultured in the presence of AgNO₃ at 25 °C and 28 days. **a** Precipitation of silver nanoparticles on the cyanobacterial surface. **b** TEM micrograph of a thin section of cyanobacteria cells with nanoparticles of silver deposited inside the cell. **c, d** Spherical nanoparticles of silver precipitated in solution. **e** TEM-SAED diffraction powder-ring pattern consistent with crystalline nanoparticles of Ag with a possible trace of silver sulfide (*). *d* spacings of 0.235, 0.204, 0.144, and 0.123 nm corresponding to reflections 111, 200, 220, and 311, respectively. **f** TEM-EDS for area D. Scale bars in A, B, C, and D are 0.5 and 0.2 nm and 25 and 50 nm, respectively. *Source* Lengke et al. (2007). Copyright © 2007, American Chemical Society. Reproduced with permission.
Fig. 1.8 TEM micrographs of whole mounts of cyanobacterial cells cultured in the presence of AgNO₃ at 100 °C and 28 days.

a. Silver nanoparticles encrusted on cyanobacterial cells.
b. TEM micrograph of a thin section of cyanobacteria cells with nanoparticles of silver deposited inside the cell.
c. Octahedral, spherical, and anhedral nanoparticles of silver precipitated in solution.
d. Octahedral silver platelets.
e. TEM-SAED diffraction powder-ring pattern consistent with crystalline nanoparticles of Ag; d spacings of 0.235, 0.204, 0.144, and 0.123 nm correspond to reflections 111, 200, 220, and 311, respectively.
f. TEM-EDS for area B. Scale bars in A, B, C, and D are 1, 0.05, and 0.1 and 50 nm, respectively. Source: Lengke et al. (2007). Copyright © 2007, American Chemical Society. Reproduced with permission.
the plasmon absorbance of AgNPs. The crystalline AgNPs were well dispersed in the range of 5–25 nm. Remarkably, the nanoparticles present in the aqueous medium were quite stable, even up to 4 months of incubation at 25 °C. Mukherjee et al. (2008) demonstrated green synthesis of highly stabilized nanocrystalline silver particles by a nonpathogenic and agriculturally important fungus, Trichoderma asperellum. An interesting aspect of this study is the mechanism of formation of AgNPs. The process of growing nanoparticles comprises two key steps: bioreduction of AgNO₃ to produce AgNPs followed by stabilization and/or encapsulation of the same by a suitable capping agent. The size of the silver particles using TEM and XRD studies is found to be in the range 13–18 nm. These nanoparticles are found to be highly stable and even after prolonged storage for over 6 months they do not show significant aggregation (Fig. 1.9).

A mechanism behind the formation of silver nanoparticles and their stabilization via capping has been investigated using FTIR (Fig. 1.8) and surface-enhanced resonance Raman spectroscopy (Fig. 1.9). Both the spectra exhibit a broad intense band at ~3400 cm⁻¹ with overlapping shoulders on either side assigned to the N–H stretching frequency arising from the peptide linkages present in the proteins.

![Fig. 1.9](image)

Fig. 1.9 High-resolution transmission electron micrograph of drop-cast silver nanoparticles preserved for over 6 months. Inset: a low-resolution micrographs showing size of the particulates, b histogram of particle size distribution as obtained from TEM and c SAED pattern recorded on the same sample. Source Mukherjee et al. (2008). Copyright © 2008, IOP Science. Reproduced with permission.
of the extract (Fig. 1.10). Upon deconvolution, the side bands were respectively identified to be the overtone of the amide-II band (~3270 cm\(^{-1}\)) and the stretching frequency of the O–H band (~3600 cm\(^{-1}\)) possibly arising from the carbohydrates and/or proteins present in the sample. However, it can arise from the aqueous solvent as well. It may be observed that the intensity of the first two bands diminishes significantly in (b), indicating a decrease in the concentration of the peptide linkages in the solution. The spectra also exhibit an intense band at ~1640 cm\(^{-1}\) and a broad asymmetric band at ~2100 cm\(^{-1}\), the latter assigned to the N–H stretching band in the free amino groups of biomacromolecules and a low intensity peak at ~2600 cm\(^{-1}\) due to S–H stretching vibrations. It may be noted that the intensity of the band at ~2100 cm\(^{-1}\) remains almost unchanged in the two spectra while that due to S–H stretching shifts towards lower wavenumbers in (b). Upon deconvolution, the band at ~1640 cm\(^{-1}\) is found to be a superposition of three different bands centred at ~1550, 1640 and 1670 cm\(^{-1}\), respectively assigned to the amide-II band, carbonyl and carboxylic C=O stretching bands of the peptide linkages (Mukherjee et al. 2008).

Figure 1.11 shows the aforesaid Raman spectrum which clearly exhibits an intense band at ~240 cm\(^{-1}\) identified to be due to stretching vibrations of Ag–N bonds and two broad bands at ~1350 and 1565 cm\(^{-1}\) attributed, respectively, to symmetric and asymmetric C=O stretching vibrations of the CO\(_2\) ions apart from a few weak features at ~692, 940, 970 and 1050 cm\(^{-1}\) assigned, respectively, to the stretching vibrations of C–S, C–CO\(_2\), C–C and C\(\alpha\)–N bonds. Selective enhancement of these Raman bands clearly indicates that C=O bonds of the carboxylate
ions and Ag–N bonds from the free amine groups are lying perpendicular to the nano silver surface and are directly associated with the capping of the same. This is further supported from the fact that both the symmetric and asymmetric stretching bands of CO$_2$ are significantly broadened due to distortion in the respective bond angles and bond lengths that have resulted from the strain induced following encapsulation of silver nanoparticles (Mukherjee et al. 2008). The band at 240 cm$^{-1}$ is direct evidence of the formation of a chemical bond between silver nanoparticles and the nitrogen of the amine group present in the amino acids. The probing technique itself manifests the feasibility of using these nanoparticles as potential templates for surface-enhanced resonance Raman spectroscopy (SERS) (Mukherjee et al. 2008). Some other silver nanoparticles produced by microorganisms are listed in Table 1.1.

1.2.3 Cadmium Nanoparticles

The health risks posed by cadmium toxicity have been investigated for over 50 years. Yet knowledge in this area is still expanding, as evidenced by the excellent reviews appearing in this volume. At the level of the organism, cadmium toxicity is associated with liver and kidney injury, osteomalacia, osteoporosis, skeletal deformations, neurological, and other deficits. Cadmium is classified as a category 1 carcinogen, but is not directly genotoxic or mutagenic in bacteria. It is known to affect genome stability via inhibition of DNA repair and generation of free radical-induced DNA damage. At the cellular level, cadmium induces oxidative stress by depletion of endogenous antioxidants such as glutathione and is associated with mitochondrial damage, induction of apoptosis, and disruption of intracellular calcium signaling. Despite the extensive studies on cadmium toxicity, there...
continues to be much territory left to cover regarding its mechanism of action, intracellular damage, and environmental exposure. At present, the primary cadmium nanoparticles are those of CdSe or CdTe, encapsulated in various coatings in the form of semiconductor quantum dots (Bao et al. 2010). Semiconductor nano-crystals, which have unique optical, electronic, and optoelectronic properties have potential application in the field of nano-electronics.

Kumar et al. (2007) synthesized CdSe nanoparticles (9–15 nm) using a fungus, Fusarium oxysporum, in a mixture of CdCl₂ and SeCl₄. Cui et al. (2009) synthesized CdSe using a yeast strain: Saccharomyces cerevisiae. Pearce et al. (2008) also synthesized CdSe nanoparticles by adding CdCl₂O₈ to selenide (Se[II]) produced from selenite (Se[IV]) by an anaerobic bacterium: Veillonella atypica. In the latter two studies (Pearce et al. 2008; Cui et al. 2009), cadmium was added after microbial formation of selenide for CdSe synthesis, probably because of its toxicity to the microbes. Consequently, they synthesized CdSe in two-vessel processes consisting of reduction of selenide to selenide and subsequent synthesis of CdSe from selenide and cadmium ion. In contrast, only Kumar et al. (2007) reported a one-vessel process in which the fungus generates CdSe in the co-presence of selenite and cadmium ion, which might improve economic efficiency through its simple operation of fewer reaction vessels. Synthesis of CdSe was observed in Pseudomonas sp. RB. by Ayano et al. (2014). Transmission electron microscopy and EDS revealed that this strain accumulated nanoparticles (10–20 nm) consisting of selenium and cadmium inside and on the cells when cultivated in the same medium for the enrichment culture. This report is the first report describing isolation of a selenite-reducing and cadmium-resistant bacterium (Ayano et al. 2014).

Cadmium telluride (CdTe), an important group II–VI semiconductor material with large exciton Bohr radius (7.3 nm) and narrow bulk band gap of 1.5 eV has shown significant potential for LED (energy), FRET (electronics), and biomedical applications (Yang et al. 2009) due to their size dependent properties. These nanoparticles provide excellent photostability, narrow emission and high quantum yield in comparison with organic dyes and therefore explored in live cell bio-imaging (Pan and Feng 2009). Syed and Ahmad (2013) uses the fungus Fusarium oxysporum to synthesize highly fluorescent extracellular CdTe (quantum dot) nanoparticles. The process utilizes Cd and Te precursors in a very dilute form and allows bottom-up, one-step preparation of nanoparticles. Different techniques were employed for their characterization such as SAED and XRD which confirmed the crystalline nature of biosynthesized nanoparticles. These biosynthesized nanoparticles are capped by proteins secreted by the fungus in the reaction mixture, which makes them water dispersible and provides stability in solution by preventing their agglomeration. These nanoparticles also showed antibacterial activity against Gram-positive and Gram-negative bacteria. This study demonstrates that fungus based approach provides a novel, rational and environment friendly synthesis protocol for nanomaterials synthesis. This is the first demonstration of a fungal-mediated approach for the synthesis of CdTe quantum dots (Syed and Ahmad 2013).
1.3 Alloy Nanoparticles

Alloy nanoparticles or bimetallic nanoparticles exhibit unique electronic, optical, and catalytic properties that are different from those of the corresponding individual metal particles (Harada et al. 1993). For instance gold nanoparticles supported on metal oxide or gold-containing bimetallic nanoparticles are found to exhibit enhanced catalytic activity (Bond 2002).

1.3.1 Gold—Silver (Au–Ag) Nanoparticles

In many functional properties, the performances of Au–Ag alloy nanoparticles are superior to the corresponding monometallic ones, such as in surface enhanced Raman spectroscopy (SERS), sensors, and catalysis. Therefore, many synthesis approaches of bimetallic Au–Ag nanoparticles have been developed, such as digestive ripening, laser synthesis method, seed growth method, ligand binding method, and galvanic reaction. Since the seminal discovery of catalytic activity by gold nanoparticles, supported Au–Ag alloy nanoparticles have been receiving increasing attentions for possible enhancement in catalytic activity (Liu et al. 2013).

In 2005, Liu et al. reported that Au and Ag showed obvious synergetic effect in CO oxidation reaction over an alloy nanocatalyst Au–Ag@MCM-41 catalyst. Since then, the Au–Ag alloy system has been applied to various reactions including oxidation of alcohols, acetylene hydrogenation, and photocatalytic reaction. Sandoval et al. (2011) investigated the Au–Ag alloy nanoparticles supported on TiO2 by a sequential precipitation-deposition method, where they deposited Ag first and Au at the second step, and found that Au–Ag alloy nanoparticles are also very stable under high temperature pretreatment. However, the effect of the deposition sequence on the formation of Au–Ag bimetallic nanoparticles supported on SiO2 and their catalytic performances have not been investigated yet. Since Sun and Xia (2002) found the replacement reaction method could synthesize Au–Ag bimetallic systems, various Au–Ag nanostructures have been developed including hollow cubes, porous surfaces and alloy nanoparticles.

Senapati et al. (2005) reported the synthesis of bimetallic Au–Ag alloy by Fusarium oxysporum and argued that the secreted cofactor NADH plays an important role in determining the composition of Au–Ag alloy nanoparticles. Using TEM, well-separated nanoparticles with occasional aggregation in the size range 8–14 nm are clearly observed (Fig. 1.12). The amount of cofactor NADH plays an important role in determining the nanoalloy composition (Senapati et al. 2005).

Zheng et al. (2010) studied Au–Ag alloy nanoparticles biosynthesized by yeast cells (Fig. 1.13). Fluorescence microscopic and transmission electron microscopic characterizations indicated that the Au–Ag alloy nanoparticles were mainly synthesized via an extracellular approach and generally existed in the form of irregular
polygonal nanoparticles. Electrochemical investigations revealed that the vanillin sensor based on Au–Ag alloy nanoparticles modified glassy carbon electrode was able to enhance the electrochemical response of vanillin for at least five times.

Sawle et al. (2008) demonstrated the synthesis of core-shell Au–Ag alloy nanoparticles from fungal strains *Fusarium semitectum* and showed that the
nanoparticle suspensions are quite stable for many weeks. As *Fusarium. oxysporum* is known to synthesize technologically important metal sulfide quantum dots extracellularly, this procedure can further be extended for the synthesis of other composite nanoparticles such as Au–CdS, Ag–CdS, and CdS–PbS.

1.4 Oxide Nanoparticles

The industrial use of metallic oxide nanoparticles in a wide variety of applications has been rapidly expanding in the last decade. Such applications include the use of silicon, titanium, iron, and other metallic oxide nanoparticles, thereby increasing the occupational and other environmental exposure of these nanoparticles to humans and other species (Lai et al. 2007a). Nevertheless, the health effects of exposure of humans and other species to metallic oxide nanoparticles have not been systematically investigated as their impact on the environment has not been under the scrutiny of regulatory control (Lai et al. 2007b). Oxide nanoparticle is an important type of compound nanoparticle synthesized by microbes. In this section, Li et al. (2011) reviewed the biosynthesis of oxide nanoparticles. Most of the examples of the magnetotactic bacteria used for the production of magnetic oxide nanoparticles and biological systems for the formation of nonmagnetic oxide nanoparticles (Table 1.2).

1.4.1 Cerium Oxide Nanoparticles

Cerium, which is the first element in the lanthanide group with 4f electrons, has attracted much attention from researchers in physics, chemistry, biology and materials science. It is the most abundant of rare-earth metals found in the Earth’s crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. When combined with oxygen in a nanoparticle formulation, cerium oxide adopts a fluorite crystalline structure that emerges as a fascinating material. This cerium oxide nanoparticle (CeONP) has been used prolifically in various engineering and biological applications, such as solid-oxide fuel cells, high-temperature oxidation protection materials, catalytic materials,, solar cells and potential pharmacological agents (Xu and Qu 2014). Although useful because of its various properties and applications, the main application of CeONPs is in the field of catalysis, and stems from their unique structure and atomic properties compared with other materials. Cerium nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. Industrial applications include its use as a polishing agent, ultraviolet absorbing compound in

smtiquia@umich.edu
sunscreen, solid electrolytes in solid oxide fuel cells, as a fuel additive to promote combustion, and in automotive exhaust catalysts (Sindhu et al. 2015). CeONPs have also been used in fighting inflammation and cancer, and in radiation protection of cells (Shah et al. 2012).

A recent mass flow modeling study predicted that a major source of CeO$_2$ nanoparticles from industrial processing plants (e.g., electronics and optics manufactures) is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO$_2$ nanoparticles is highly dependent on its physicochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO$_2$ nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO$_2$ NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO$_2$ nanoparticles, acting as either an antioxidant

<table>
<thead>
<tr>
<th>Table 1.2 Oxide nanoparticles synthesized by microorganisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microorganism</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Curvularia lunata</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
</tr>
<tr>
<td>Lactobacillus sp.</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
</tr>
<tr>
<td>Shewanella oneidensis</td>
</tr>
<tr>
<td>Shewanella oneidensis MR-1</td>
</tr>
<tr>
<td>Yeast cells</td>
</tr>
<tr>
<td>Penicillium sp.</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
</tr>
<tr>
<td>Stereum hirsutum</td>
</tr>
</tbody>
</table>
or reactive oxygen species production-inducing agent) (Dahle and Arai 2015). This poses a challenge in future regulations for the CeO$_2$ nanoparticle application and the risk assessment in the environment.

Arumugam et al. (2015) successfully synthesize CeO$_2$ nanoparticles using *Gloriosa superba* L. leaf extract. The synthesized nanoparticles retained the cubic structure, which was confirmed by X-ray diffraction studies. The oxidation states of the elements (C [1s], O [1s] and Ce [3d]) were confirmed by XPS studies. TEM images showed that the CeO$_2$ nanoparticles possessed spherical shape and particle size of 5 nm. The Ce–O stretching bands were observed at 451 cm$^{-1}$ and 457 cm$^{-1}$ from the FT-IR and Raman spectra respectively. The band gap of the CeO$_2$ NPs was estimated as 3.78 eV from the UV–visible spectrum. From the photoluminescence measurements, the broad emission composed of eight different bands were found. The antibacterial studies performed against a set of bacterial strains showed that Gram-positive bacteria were relatively more susceptible to the NPs than Gram-negative bacteria. The toxicological behavior of CeO$_2$ NPs was found due to the synthesized NPs with uneven ridges and oxygen defects in CeO$_2$ NPs.

CeO$_2$ NPs have been successfully synthesized using the fungus *Curvularia lunata* (Munusamy et al. 2016). The XRD patterns, Micro Raman spectra and SAED pattern studies suggest the formation CeO$_2$ NPs cubic fluorite structure. The TEM images showed spherical morphology with the average size of 5 nm. Synthesized CeO$_2$ NPs were investigated by antibacterial activity. The perusal results observed at 100 µg CeO$_2$ NPs had most significant effect of antibacterial activity due to the strong electrostatic forces to binding the bacterial cell membrane to inhibit the bacterial growth.

1.4.2 Silica Dioxide Nanoparticles

Silica, or silicon dioxide, is the same material used to make glass. In nature, silica makes up quartz and the sand you walk on at the beach. Unlike metals such as gold and iron, silica is a poor conductor of both electrons and heat. Despite these limitations, silica (silicon oxide) nanoparticles form the framework of silica aerogels. Silica aerogels are composed of silica nanoparticles interspersed with nanopores filled with air. As a result, this substance is mostly made up of air. Because air has very low thermal conductivity and silica has low thermal conductivity, they are great materials to use in insulators. These properties make nano aerogels one of the best thermal insulators known to man. Silica nanoparticles can also be functionalized by bonding molecules to a nanoparticle that also is able to bond to another surface, such as a cotton fiber. The functionalized silica nanoparticles attach to the cotton fiber and form a rough surface that is hydrophobic (water repellent), giving an effect similar to the water repellency of lotus leaves. Another type of silica nanoparticle is riddled with nanoscale pores. Researchers are developing drug delivery methods where therapeutic molecules stored inside the pores are slowly released in a diseased region of the body, such as near a cancer tumor (Argyo et al. 2014).
Application of silica nanoparticles as fillers in the preparation of nanocomposite of polymers has drawn much attention, due to the increased demand for new materials with improved thermal, mechanical, physical, and chemical properties. The chemical synthesis of silica-based materials are relatively expensive and exo-hazardous, often requiring extreme temperature, pressure and pH. Singh et al. (2008) demonstrated the synthesis of silicon/silica nanoparticle composites by Acinetobacter sp. The formation of silicon/silica nanocomposite is shown to occur when the bacterium is exposed to K$_2$SiF$_6$ precursor under ambient conditions. This bacterium has been shown to synthesize iron oxide and iron sulfide nanoparticles. It is hypothesized that this bacterium secretes reductases and oxidizing enzymes which lead to Si/SiO$_2$ nanocomposite synthesis. The synthesis of silica nanoparticles by bacteria demonstrates the versatility of the organism, and the formation of elemental silicon by this environmentally friendly process expands further the scope of microorganism-based nanomaterial synthesis.

1.4.3 Titatium Oxide Nanoparticles

Titanium dioxide (TiO$_2$) has become part of our everyday lives. It is found in various consumer goods and products of daily use such as cosmetics, paints, dyes and varnishes, textiles, paper and plastics, food and drugs, and even paving stones. 4.68 million tons of titanium dioxide were produced worldwide in 2009. Titanium dioxide (TiO$_2$) is a material of great significance in many fields, e.g., photocatalysis, solar cell devices, gas sensors, and biomaterials (Gong and Selloni 2005). The non-toxic and biocompatible properties of Titania find its applications in biomedical sciences such as bone tissue engineering as well as in pharmaceutical industries (Jha et al. 2009a). TiO$_2$ catalysts have been confirmed to be excellent and efficient photocatalysts for the degradation and inhibition of numerous toxic environmental contaminants. Various applications of titanium dioxide include air and water cleaning and surface cleaning (Pan et al. 2010). Titanium is recommended for desalinization plants because of its strong resistance to corrosion from seawater. In medical applications the titanium pins are due to because of their non-reactive nature when contacting bone and flesh (Prasad et al. 2007). The TiO$_2$ nanoparticles are synthesized using various methods such as sol gel, hydrothermal, flame combustion, solvothermal, fungal mediated biosynthesis.

Titanium oxide nanoparticles can be synthesized from Bacillus subtilis (Kirthi et al. 2011). The TiO$_2$ nanoparticles have shown spherical clusters of the nanoparticles. Nanoparticles were spherical, oval in shape, individual as well as a few aggregates having the size of 66–77 nm. The particle size distribution reveals the morphological homogeneity with the grain size falling mostly in submicron range. The energy yielding material—glucose, which controls the value of oxidation—reduction potential (rH$_2$), the ionic status of the medium pH and overall rH$_2$, which is partially controlled by the bicarbonate, negotiate the synthesis of TiO$_2$ nanoparticles in the presence of B. subtilis. The synthesis of n-TiO$_2$ might have
resulted due to pH-sensitive membrane bound oxidoreductases and carbon source dependent rH₂ in the culture solution (Kirthi et al. 2011).

A low-cost green and reproducible microbes (Lactobacillus sp. and Saccharomyces cerevisiae) mediated biosynthesis of TiO₂ nanoparticles was carried out by Jha et al. (2009a). The synthesis was performed akin to room temperature in the laboratory ambience. X-ray and transmission electron microscopy analyses were performed to ascertain the formation of TiO₂ nanoparticles. Individual nanoparticles as well as a few aggregate having the size of 8–35 nm are found. Concentric Scherrer rings in the selected area electron diffraction pattern indicated that the nanoparticles are having all possible orientations. A possible involved mechanism for the biosynthesis of nano-TiO₂ has also been proposed in which pH as well as partial pressure of gaseous hydrogen (rH₂) or redox potential of the culture solution seems to play an important role in the process (Fig. 1.14).

1.4.4 Iron Oxide Nanoparticles

Eight iron oxides are known (Cornell and Schwertmann 2003), among these iron oxides, hematite (α-Fe₂O₃), magnetite (Fe₃O₄) and maghemite (γ-Fe₂O₃) are very promising and popular candidates due to their polymorphism involving temperature-induced phase transition. Each of these three iron oxides has unique biochemical, magnetic, catalytic, and other properties which provide suitability for specific technical and biomedical applications. As the most stable iron oxide and n-type semiconductor under ambient conditions, hematite (α-Fe₂O₃) is widely used in catalysts, pigments and gas sensors due to its low cost and high resistance to corrosion. It can also be used as a starting material for the synthesis of magnetite (Fe₃O₄) and maghemite (γ-Fe₂O₃), which have been intensively pursued for both fundamental scientific interests and technological applications in the last few decades (Wu et al. 2010a). As shown in Fig. 1.15b, Fe₃O₄ has the face centered cubic spinel structure, based on 32 O²⁻ ions and close-packed along the direction. Fe₃O₄ differs from most
other iron oxides in that it contains both divalent and trivalent iron. Fe$_3$O$_4$ has a cubic inverse spinel structure that consists of a cubic close packed array of oxide ions, where all of the Fe$^{2+}$ ions occupy half of the octahedral sites and the Fe$^{3+}$ are split evenly across the remaining octahedral sites and the tetrahedral sites. Fe$_3$O$_4$ has the lowest resistivity among iron oxides due to its small bandgap (0.1 eV). As shown in Fig. 1.15c, the structure of γ-Fe$_2$O$_3$ is cubic; each unit of maghemite contains 32 O$^{2-}$ ions, 21 1/3 Fe$^{3+}$ ions and 2 1/3 vacancies. Oxygen anions give rise to a cubic close-packed array while ferric ions are distributed over tetrahedral sites (eight Fe ions per unit cell) and octahedral sites (the remaining Fe ions and vacancies). Therefore, the maghemite can be considered as fully oxidized magnetite, and it is an n-type semiconductor with a bandgap of 2.0 eV.

The bacterium *Actinobacter* sp. has been shown to be capable of extracellularly synthesizing iron based magnetic nanoparticles, namely maghemite (γ-Fe$_2$O$_3$) and greigite (Fe$_3$S$_4$) under ambient conditions depending on the nature of precursors used (Bharde et al. 2008). More precisely, the bacterium synthesized maghemite when reacted with ferric chloride and iron sulfide when exposed to the aqueous solution of ferric chloride-ferrous sulfate. Challenging the bacterium with different metal ions resulted in induction of different proteins, which bring about the specific biochemical transformations in each case leading to the observed products. Maghemite and iron sulfide nanoparticles show superparamagnetic characteristics as expected. Compared to the earlier reports of magnetite and greigite synthesis by magnetotactic bacteria and iron reducing bacteria, which take place strictly under anaerobic conditions, the present procedure offers significant advancement since the reaction occurs under aerobic condition. Moreover, reaction end products can be tuned by the choice of precursors used. The process of magnetic nanoparticles mineralization can be divided into four steps (Faramazi and Sadighi 2013): (1) vesicle formation and iron transport from outside of the bacterial membrane into the cell; (2) magnetosomes alignment in chain; (3) initiation of crystallization; and (4) crystal maturation (Fig. 1.16).
1.4.5 Zirconium Dioxide (ZrO\textsubscript{2}) Nanoparticles

Zirconium is a strong transition metal that resembles titanium. Because of its strong resistance to corrosion, it is used as an alloying agent in materials that are exposed to corrosive agents such as surgical appliances, explosive primers, vacuum tube getters and filaments. Since it has a very negative reduction potential (−1.55 V), it is never found as the native metal. It is obtained mainly from the mineral zircon, which can be purified with chlorine (Eshed et al. 2011). Because of its intrinsic physicochemical properties such as hardness, shock wear, strong acid and alkali resistance, low frictional resistance, and high melting temperature, zirconia can be used as an abrasive, as a hard, resistant coating for cutting tools, and in high temperature engine components. For these reasons, it is often called ceramic steel. Zirconia nanoparticles are of great interest due to their improved optical and electronic properties with application as a piezoelectric, electro-optic and dielectric material. Zirconia is also emerging as an important class of catalyst. The synthesis of zirconia has been realized by physico-chemical methods such as sol–gel synthesis, aqueous precipitation,
thermal decomposition and hydrothermal synthesis (Bansal et al. 2004). However, all these methods require extremes of temperature (in the case of thermal synthesis) and pressure (hydrothermal synthesis).

Bansal et al. (2004) have shown that the fungus *Fusarium oxysporum* secretes proteins capable of hydrolyzing aqueous ZrF_6^{2-} ions extracellularly to form zirconia at room temperature. Particularly interesting is the fact that the fungus is capable of hydrolyzing tough metal halide precursors under acidic conditions. While the hydrolytic proteins secreted by *Fusarium oxysporum* are yet to be sequenced and studied for their role in the fungus metabolic pathways, our studies indicate that they are cationic proteins of molecular weight centered around 24 and 28 kDa and thus, similar to silicatein. The regenerative capability of biological systems coupled with the fact that that fungi such as *Fusarium oxysporum* are capable of hydrolyzing metal complexes that they never encounter during their growth cycle shows enormous promise for development, particularly in large-scale synthesis of metal oxides.

1.4.6 Antimony Trioxide (Sb_2O_3) Nanoparticles

Antimony trioxide (Sb_2O_3) is a good semiconducting material and an excellent catalyst for the production of PET plastic used in the packaging of mineral water and soft drinks, which has been confirmed by the World Health Organization and the European Food Safety Authority. In addition, $\text{Sb}_3\text{O}_7/\text{Sb}_2\text{O}_5$ is a potential compound for the synthesis of antimony gluconate, which is considered to be an effective medicine against Kala azar (visceral leishmaniasis). Common salts of antimony are irritants, thus an oral administration produces nausea, vomiting and diarrhea; they are therefore administered parenterally. It is also a cumulative drug. Antimony compounds are avoided in cases of pulmonary tuberculosis, jaundice, nephrites and dysentery (Acharya 1972). Nanoscale antimony compounds could prove to be less toxic to the body because they can cross the renal barrier. Further, Sb_2O_3 greatly increases flame retardant effectiveness when used as a synergist in combination with halogenated flame retardants in plastics, paints, adhesives, sealants, rubber and textile back coatings (Ye et al. 2006). Sb_2O_3 also has several applications, such as a fining agent or as a degasser (to remove bubbles) in glass manufacturing, an opacifier in porcelain and enameling services, and a white pigment in paints. Sb_2O_3 nanoparticles have been synthesized using different techniques by different groups of researchers (Guo et al. 2000; Friedrichs et al. 2001; Ye et al. 2002). A microbe (*Lactobacillus* sp.)-mediated biosynthesis of Sb_2O_3 nanoparticles was reported by Jha et al. (2009b). The synthesis was performed at around room temperature. X-ray and transmission electron microscopy analyses were performed to ascertain the formation of Sb_2O_3 nanoparticles. X-ray analysis indicated that Sb_2O_3 nanoparticles had a face-centered cubic unit cell structure. Individual nanoparticles as well as a few aggregate of 3–12 nm were found.
1.4.7 Copper Oxide (CuO) Nanoparticles

Copper as a metal or copper oxides exhibit broad-spectrum biocidal activity, and several studies during the last two years found that copper demonstrates remarkable antibacterial activity at the nanoscale (Cuevas et al. 2015). In contrast to silver nanoparticles, which have been studied extensively for antibacterial application, copper is an essential element for living organisms and may be suitable for biomedical applications (Rubilar et al. 2013). It is important to note that copper is approximately 10-fold cheaper than silver in the market, and therefore, a method utilizing copper would prove to be quite cost-effective. On the other hand, it has been reported that copper nanoparticles are less toxic than silver nanoparticles (Bondarenko et al. 2013). Microorganisms such as *Fusarium oxysporum* are able to leach copper from integrated circuits present on electronic boards under ambient conditions (Cuevas et al. 2015). The analysis of the biogenic synthesis of copper oxides from CuSO₄ has been observed in by *Penicillium aurantiogriseum*, *P. citrinum*, *P. waksmanii*, and *F. oxysporum* showed no large polydispersity in the pH range of 5–9 (Honary et al. 2012; Hosseini et al. 2012). A limited number of studies have been published, and these evaluated different fungal strains for the biosynthesis of copper nanoparticles. Fungi, such as *Penicillium* sp. and *F. oxysporum* strains, have been reported to biosynthesize copper oxide and Cu₂S nanoparticles (Honary et al. 2012; Hosseini et al. 2012).

Cuevas et al. (2015) evaluated the ability to synthesize copper and copper oxide nanoparticles using a mycelium-free extract produced by *Stereum hirsutum*, a white-rot fungus, in the presence of three different copper salts and to characterize and assess the involvement of proteins in the formation of the nanoparticles. The nanoparticles biosynthesis in presence of all copper salts demonstrated higher formation with 5 mM CuCl₂ under alkaline conditions. TEM analysis confirmed that the nanoparticles were mainly spherical (5–20 nm). The presence of amine groups attached to nanoparticles was confirmed by FTIR, which suggests that extracellular protein of fungus is responsible for the formation of the nanoparticles.

1.4.8 Zinc Oxide (ZnO)

Zinc oxide (ZnO) NPs have unique optical and electrical properties, and as a wide band gap semiconductor, they have found more uses in biosensors, nanoelectronics, and solar cells. These NPs are being used in the cosmetic and sunscreen industry due to their transparency and ability to reflect, scatter, and absorb UV radiation and as food additives. Furthermore, zinc oxide NPs are also being considered for use in next-generation biological applications including antimicrobial agents, drug delivery, and bioimaging probes (Jayaseelan et al. 2012). A low-cost and simple procedure for synthesis of zinc oxide NPs using reproducible bacterium, *Aeromonas hydrophila*, was reported. X-ray diffraction (XRD) confirmed the crystalline nature
of the NPs, and atomic force microscopy (AFM) showed the morphology of the nanoparticle to be spherical, oval with an average size of 57.72 nm. The antibacterial and antifungal activity was ended with corresponding well diffusion and minimum inhibitory concentration. The maximum zone of inhibition was observed in the ZnO NPs (25 μg/mL) against *Pseudomonas aeruginosa* (∼22 ± 1.8 mm) and *Aspergillus flavus* (∼19 ± 1.0 mm) (Jayaseelan et al. 2012).

1.5 Sulfide Nanoparticles

In addition to oxide nanoparticles, sulfide nanoparticles have also attracted great attention in both fundamental research and technical applications as quantum-dot fluorescent biomarkers and cell labeling agents because of their interesting and novel electronic and optical properties (Yang et al. 2005). Examples of sulfide-producing nanoparticles are listed in Table 1.3.

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Type nanoparticle produce</th>
<th>Size (nm)</th>
<th>Shape</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coriolus versicolor</td>
<td>CdS</td>
<td>100–200</td>
<td>Spherical</td>
<td>Sanghi and Verma (2009)</td>
</tr>
<tr>
<td>Desulfobacteraceae</td>
<td>CdS</td>
<td>2–5</td>
<td>Hexagonal lattice</td>
<td>Labrenz et al. (2000)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>CdS</td>
<td>2–5</td>
<td>Wurtzite crystal</td>
<td>Sweeney et al. (2004)</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>CdS</td>
<td>5–20</td>
<td>Spherical</td>
<td>Ahmad et al. (2002)</td>
</tr>
<tr>
<td>Lactobacillus</td>
<td>CdS</td>
<td>4.7–5.1</td>
<td>Spherical</td>
<td>Prasad and Jha (2010)</td>
</tr>
<tr>
<td>Rhodopseudomonas palustris</td>
<td>CdS</td>
<td>8</td>
<td>Cubic</td>
<td>Bai et al. (2009)</td>
</tr>
<tr>
<td>Schizosaccharomyces pombe</td>
<td>CdS</td>
<td>1–1.5</td>
<td>Hexagonal lattice</td>
<td>Kowshik et al. (2002)</td>
</tr>
<tr>
<td>Yeast</td>
<td>CdS</td>
<td>3.4–3.8</td>
<td>Spherical</td>
<td>Prasad and Jha (2010)</td>
</tr>
<tr>
<td>Rhodopseudomonas sphaeroides</td>
<td>PbS</td>
<td>10.35–10.65</td>
<td>Spherical</td>
<td>Bai and Zhang (2009)</td>
</tr>
<tr>
<td>Sulfate-reducing bacteria</td>
<td>FeS</td>
<td>2</td>
<td>Spherical</td>
<td>Watson et al. (1999)</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>CuS</td>
<td>10–40</td>
<td>Not available</td>
<td>Schaffie and Hosseini (2014)</td>
</tr>
<tr>
<td>Rhodopseudomonas sphaeroides</td>
<td>ZnS</td>
<td>8</td>
<td>Hexagonal lattice</td>
<td>Bai et al. (2006)</td>
</tr>
</tbody>
</table>
1.5.1 Cadmium Sulfide (CdS) Nanoparticles

CdS nanocrystal is one typical type of sulfide nanoparticle and has been synthesized by microorganisms (Prasad and Jha 2010; Kowshik et al. 2002). Cunningham and Lundie found that *Clostridium thermoaceticum* could precipitate CdS on the cell surface as well as in the medium from CdCl$_2$ in the presence of cysteine hydrochloride in the growth medium where cysteine most probably acts as the source of sulfide (Cunningham and Lundie 1993). Dameron et al. (1989) have used *Schizosaccharomyces pombe* and *Candida glabrata* (yeasts) to produce intracellular CdS nanoparticles with cadmium salt solution. ZnS and PbS nanoparticles were successfully synthesized by biological systems. *Rhodobacter sphaeroides* and *Desulfobacteraceae* have been used to obtain ZnS nanoparticles intracellularly with 8 nm and 2–5 nm in average diameter, respectively (Bai et al. 2006; Labrenz et al. 2000).

Kang et al. (2008) reported phytochelatin-mediated intracellular synthesis of CdS nanocrystals in engineered *E. coli*. By controlling the population of the phytochelatin (PCs), *E. coli* cells were engineered as an eco-friendly biofactory to produce uniformly sized PC-coated CdS nano-crystals. This is the first systematic approach toward tunable synthesis of semiconductor nano-crystals by genetically engineered bacteria. The first report on the production of semiconductor nano-crystal synthesis in bacteria was published by Sweeney et al. (2004). The study revealed that *E. coli* has the endogenous ability to direct the growth of nano-crystals. Parameters such as growth phase and strain type are essential for initiating nano-crystal growth. El-Shanshoury et al. (2012) reported a rapid and low-cost biosynthesis of CdS using culture supernatants of *Escherichia coli* ATCC 8739, *Bacillus subtilis* ATCC 6633, and *Lactobacillus acidophilus* DSMZ 20079T. The CdS nanoparticles synthesis were performed at room temperature and were formed within 24 h. The process of extracellular and fast biosynthesis may help in the development of an easy and eco-friendly route for synthesis of CdS nanoparticles. Mousavi et al. (2012) reported the synthesis of CdS nanoparticles using *Escherichia coli* PTTC 1533 and *Klebsiella pneumoniae* PTTC 1053. The synthesis of 5-200 nm nanoparticles occurred after 96 h of incubation at 30 °C and pH 9.

A plausible mechanism has been made to understand the synthesis of CdS nanoparticles (Fig. 1.17). At the initial phase of the reaction, CdCl$_2$ dissociates into Cd$^{2+}$ and accumulates around the bacterial membrane because of the negative potential of the bacterial membrane (Triphati et al. 2014). Cd$^{2+}$ being a heavy metal ion creates stress conditions for bacteria, thus leading bacterial biomass to initiate a defense mechanism. This leads bacteria to secrete certain enzymes/proteins in order to detoxify the metal ions that created the metal stress condition. The secreted protein by bacterial biomass binds up with Cd$^{2+}$. Subsequently, Na$_2$S being added dissociates into S$^{2-}$ in the solution and it also binds with the protein. The CdS nuclei then grow following the process of Ostwald ripening leading to the formation of CdS nanoparticles. Thus, protein secreted in this process becomes incorporated as it serves a capping layer for synthesis of CdS nanoparticles (Triphati et al. 2014).
1.5.2 Lead Sulfide (PbS) Nanoparticles

Semiconductor PbS nanoparticles have attracted great attention in recent decades as a result of their interesting optical and electronic properties, and some of them are used for the fabrication of devices size (Bai and Zhang 2009). Some new chemical methods for the preparation of lead sulfide nanoparticles require special container, high temperature or long time for initiating the reaction. Biological synthesis method is one of the promising methods due to requiring a relatively milder condition, one step synthetic procedure, clean, and controllable size distribution. An earlier study found that *Torulopsis* sp. is capable of synthesizing PbS nanocrystals intracellularly when challenged with Pb$^{2+}$. PbS nanoparticles were also synthesized by using *Rhodobacter sphaeroides*, whose diameters were controlled by the culture time (Bai and Zhang 2009).

![Biosynthesis mechanism of CdS nanoparticles. Source Tripathi et al. (2014). Copyright © 2014, IOP Science](image)

Fig. 1.17 Biosynthesis mechanism of CdS nanoparticles. *Source* Tripathi et al. (2014). Copyright © 2014, IOP Science

1.5.3 Iron Sulfide Nanoparticles

Ahmad et al. (2002) have found eukaryotic organisms such as fungi to be a good candidate for the synthesis of metal sulfide nanoparticles extracellularly. Another kind of sulfide nanoparticle was magnetic Fe$_3$S$_4$ or FeS nanoparticle. Bazylinski et al. (1995) reported the formation of Fe$_3$S$_4$ by uncultured magnetotactic bacteria. They examined a sediment sample that contained approximately 1×10^5 magnetotactic bacteria per cm3, and approximately 10^5 cells were obtained after purification by the racetrack method. Magnetosomes in the uncultured cells exhibited elongated rectangular shape. The average magnetosome number per cell was approximately 40, and they were mainly located as a large cluster within the cell. Aligned magnetosomes forming a chainlike structure were also observed beside the large cluster. Sulfate-reducing bacteria were capable of producing magnetic FeS nanoparticles (Watson et al. 1999).
1.5.4 **Copper Sulfide Nanoparticles**

Copper sulfide (CuS) nanoparticles have attracted increasing attention from biomedical researchers across the globe, because of their intriguing properties which have been mainly explored for energy- and catalysis-related applications to date. Recently, CuS nanoparticles are gradually emerging as a promising platform for sensing, molecular imaging, photothermal therapy, drug delivery, as well as multifunctional agents that can integrate both imaging and therapy (Goel et al. 2014). Although copper sulfide nanoparticles have been previously synthesized by several chemical, electrochemical, organic and enzymatic methods, the first report on a biosynthesis approach was published in 2012 by Hosseini et al. in which the copper sulfide nanoparticles were synthesized from a pure copper sulfate solution by *F. oxysporum*. Industrially, the heavy metals in wastewaters are precipitated in the sulfide forms via dissimilatory reduction of sulfate that is performed by anaerobes. However, the performance of these sulfate-reducing bacteria is limited to anaerobic environments. Metal sulfides are also formed from sulfate by assimilatory sulfate reduction (Tiquia 2008; Tiquia et al. 2006) performed via aerobic pathways by overproducing two unique enzymes called serine acetyltransferase (SAT) and cysteine desulfhydrase. The precursor of cysteine biosynthesis (O-acetylserine) is produced by the acetylation of serine that is catalyzed by SAT, but a single amino acid change renders the SAT insensitive to feedback inhibition by cysteine that results in cysteine overproduction by the microorganism. Then the excess cysteine is converted into pyruvate, ammonia and sulfide ions by cysteine desulfhydrase. Finally, the secreted sulfide precipitates metal ions like copper and removes it from the solution as copper sulfide nanoparticles. Schaffie and Hosseini (2014) demonstrated in their study that is feasible to produce copper sulfide nanoparticles from acid mine drainage (AMD) through a biological approach. The properties of the produced nanoparticles were the same as the nanoparticles synthesized from the pure copper sulfate solution. These nanoparticles have the same composition like covellite and an average size of 10–40 nm.

1.5.5 **Silver Sulfide Nanoparticles**

Silver sulfide nanoparticles possess unique semi-conducting, optical, and electrical properties and are highly stable. Owing to these features, they are broadly used in solar cell batteries (Tubtimtae et al. 2010), thermoelectric sensors, etc. (Yan et al. 2011). The recently obtained Ag₂S/graphene nanocomposite is promising for the development of super capacitors (Mo et al. 2012). The great potential of practical applications of Ag₂S nanoparticles brought into existence numerous protocols for their preparation. The thermolysis of silver xanthates with long aliphatic chains at 200 °C brings about egg shaped particles with a narrow range of sizes (Zhang et al. 2012). Rod shaped Ag₂S nanocrystals have been obtained from silver nitrate and
thioacetamide (Zhao et al. 2007). Lea fshaped Ag\textsubscript{2}S nanolayers can be produced by autoclaving an ethanol solution of silver nitrate and carbon disulfide at 160 °C (Chen et al. 2008). Bacteria of the genus *Shewanella* are commonly used in the preparation of nanoparticles of metals, oxides, and sulfides (Perez-Gonzalez et al. 2010). These bacteria can reduce many substances, including metal oxides, nitrates, sulfates, etc. They have been employed in the synthesis of gold nanoparticles (Suresh et al. 2011), arsenic sulfide nanotubes (Jiang et al. 2009), and uranium dioxide nanoparticles (Burgos et al. 2008). Debabova et al. (2013) synthesize Ag\textsubscript{2}S nanoparticles using the metal-reducing bacterium *Shewanella oneidensis* MR1 an aqueous solution of AgNO\textsubscript{3} and Na\textsubscript{2}S\textsubscript{2}O\textsubscript{3} at an ordinary temperature and pressure. The nanoparticles vary in size within 2–16 nm, and the fraction 6–12 nm in size constitutes about 70 %. The maximum yield of nanoparticles in silver equivalent is 53 %. Being visualized by transmission electron microscopy, the particles look like spheres with average diameters varying from 7 ± 2 to 9 ± 2 nm. The elemental composition of synthesized nanoparticles has been analyzed by energy dispersive X-ray spectroscopy, and the estimated silver to sulfur atomic ratio is 2:1. The presence of living bacterial cells is mandatory for the formation of Ag\textsubscript{2}S nanoparticles in the aqueous salt solution. Changes in the reaction conditions (reagent concentrations, temperature, and cell incubation time in the reaction mixture) influence the yield of nanoparticles dramatically, but have little influence on their size.

1.5.6 Zinc Sulfide (ZnS) Nanoparticles

Zinc sulfide (ZnS), are the most attractive materials for applications in areas such as IR optical devices and fast optical switching devices. Zinc sulfide nanoparticles can be prepared by different methods, such as colloidal aqueous and micellar solution synthesis method (Khiewa et al. 2005), using ultrasonic waves (Behboudnia et al. 2005), microwaves (Ni et al. 2004), and gamma-irradiation (Qiao et al. 2000). In most cases, particles prepared by these methods have some problems including poor reproducibility, control of particle size, distribution and shape. Some reactions require high temperature, and/or high pressure for initiating the reaction, and/or inert atmosphere protection, and/or using toxic matters such as H\textsubscript{2}S, toxic template and stabilizer, and metallic precursors. When zinc sulfide nanoparticles are used as biological probes in clinic examinations, the synthesis of zinc sulfide is expected to be clean (Dubertret et al. 2002). Consequently, researchers in nanoparticles synthesis have turned to biological systems for inspiration. Spherical aggregates of 2–5 nm sphalerite ZnS particles were formed by sulfate-reducing bacteria under anaerobic conditions (Mandal et al. 2006).

A novel, clean biological transformation reaction by immobilized *Rhodobacter sphaeroides* has been developed for the synthesis of zinc sulfide (ZnS) nanoparticles was developed by Bai et al. (2006). *Rhodobacter sphaeroides* is a purple, non-sulphur, photosynthetic bacterium. It can grow not only aerobically
in the dark but also anaerobically in the light and has tolerance to heavy metals (Giotta et al. 2006). In the biological synthetic process for ZnS nanoparticles by *Rhodobacter sphaeroides*, soluble sulfate acts as the source of sulfur. The formation mechanism of ZnS nanoparticles by biological transformation reaction of *Rhodobacter sphaeroides* can be explained in (Fig. 1.18). First, the soluble sulfate enters into immobilized beads via diffusion, and later is carried to the interior membrane of *Rhodobacter sphaeroides* cell facilitated by sulfate permease. Then, the sulfate is reduced to sulfite by ATP sulfurylase and phosphoadenosine phosphosulfate reductase, and next sulfite is reduced to sulfide by sulfite reductase. The sulfide reacts with O-acetylserine to synthesize cysteine via O-acetylserine thiolase (Holmes et al. 1997; Auger et al. 2005), and then cysteine produces S^{2-} by a cysteine desulphydrase in presence of zinc. After this process, S^{2-} reacts with the soluble zinc salt and the ZnS nanoparticles are synthesized. Finally, ZnS nanoparticles are discharged from immobilized cells to the solution. In the synthetic process, the particle size is controlled by the culture time of the *Rhodobacter sphaeroides*, and simultaneously the immobilized beads act on separating the ZnS nanoparticles from the *Rhodobacter sphaeroides*. Although the detailed mechanism study of this process is in progress, it suggests that many other high grade binary metal sulfides can also be produced using this method (Bai et al. 2006).
1.5.7 Antimony Sulphide (Sb_2S_3) Nanoparticles

Sb_2S_3 exhibits important applications in photovoltaic, photosensors, optical nanodevices, and photoelectronics. It has been used in electronics as poor conductors of heat and electricity. Very pure antimony is used to make certain types of semiconductor devices, such as diodes and infrared detectors (Grigorescu and Stradling 2001; Wei et al. 2006). Antimony, as a metallic form, is not soluble in body fluids and, as reported in old literature, cannot produce any effect on human system (Filella et al. 2002a, b). In contrast, organic or inorganic salts of antimony can be decomposed by the fluids and have been used for therapeutic purposes (Filella et al. 2002a, b; Johnson et al. 2005). Antimony salts are currently chosen for the treatment of leishmaniasis, a disease that affects 12 million people annually around the world (Berman 1997; Haldar et al. 2011). Moreover, trivalent antimony compounds have been used in treating bilharzia, trypanosomiasis and kala-azar for more than a century (Berman 1997; Isago et al. 2008).

Bahrami et al. (2012) explored the biological synthesis of antimony sulfide using *Serratia marcescens*. The bacterium was isolated from the Caspian Sea in northern Iran and was used for intracellular biosynthesis of antimony sulfide nanoparticles. This isolate was identified as nonpigmented *Serratia marcescens* using conventional identification assays and the 16S rDNA fragment amplification method, and was used to prepare inorganic antimony nanoparticles. Antimony-supplemented nutrient agar (NA) plates ($SbCl_3$, 1 % w/v) were inoculated with the bacterial isolate. These inoculated NA media were incubated aerobically at 30 °C. After 72 h, bacterial cells were harvested from the surface of culture media. The biogenic nanoparticles were released by liquid nitrogen and extracted using two sequential solvent extraction systems. The energy-dispersive x-ray demonstrated that the extracted nanoparticles consisted of antimony and sulfur atoms. The transmission electron micrograph showed the small and regular non-aggregated nanoparticles ranging in size less than 35 nm. Although the chemical synthesis of antimony sulfide nanoparticles has been reported in the literature, the biological synthesis of antimony sulfide nanoparticles has not previously been published. This is the first report to demonstrate a biological method for synthesizing inorganic nanoparticles composed of antimony (Bahrami et al. 2012).

1.6 Palladium and Platinum Nanoparticles

Palladium is an excellent hydrogenation and dehydrogenation catalyst available in organo-metallic forms. Palladium nanoparticles have found to be effective catalysts in a number of chemical reactions due to their increased surface area over the bulk metal. The sulfate-reducing bacterium, *Desulfovibrio desulfuricans* and metal iron-reducing bacterium, *Shewanella oneidensis*, were capable of reducing soluble
palladium (II) into insoluble palladium (0) with formate, lactate, pyruvate, or H₂ as the electron donor (Lloyd et al. 1998; Yong et al. 2002a; de Windt et al. 2005).

Coker et al. (2010) demonstrated a novel biotechnological route for the synthesis of heterogeneous catalyst, consisting of reactive palladium nanoparticles arrayed on a nanoscale biomagnetite support. The magnetic support was synthesized at ambient temperature by the Fe (III)-reducing bacterium Geobacter sulfurreducens. The palladium nanoparticles were deposited on the nanomagnetite using simple one-step method to an organic coating priming the surface for Pd adsorption, which was produced by the bacterial culture during the formation of the nanoparticles. A recent biological method used to produce palladium nanoparticles is the precipitation of Pd on a bacterium. These palladium nanoparticles can be applied as catalyst in dehalogenation reactions. Large amounts of hydrogen are required as electron donors in these reactions, resulting in considerable cost. A study carried out by Hennebel et al. (2011) demonstrates how bacteria is cultivated under anaerobic conditions and can be used to reductively precipitate the palladium catalysts and generate the hydrogen (electron donor). This avoids the cost coupled to hydrogen supply. Batch reactors with nanoparticles formed by Citrobacter braakii showed the highest diatrizoate dehalogenation (Hennebel et al. 2011).

Konishi et al. (2007b) demonstrated that resting cells of Shewanella algae were able to deposit platinum NPs by reducing PtCl₆²⁻ ions within 60 min at pH 7 and 25 °C. Biogenic platinum NPs of about 5 nm were located in the periplasmic space. In this case, the cell suspension changed the color from pale yellow to black in 10 min. The black appearance provided a convenient visible signature for the microbial formation of metallic platinum NPs. The observed decrease in aqueous platinum concentration was presumably caused by the rapid reduction of PtCl₆²⁻ ions into insoluble platinum. In the absence of lactate, however, S. algae cells were not able to reduce the PtCl₆²⁻ ions. They reported that the PtCl₆²⁻ ions were not chemically reduced by lactate. Yong et al. (2002b) also reported that the sulfate-reducing bacterium Desulfovibrio desulfuricans was able to adsorb only 12 % of platinum (IV) ions on the bacterial cells from 2 mM platinum chloride solution. In another study, Gram-negative cyanobacterium, Pediastrum boryanum UTEX 485, extracellularly produced Pt (II)-organics and metallic platinum NPs at 25–100 °C for up to 28 days and 180 °C for 1 day with different morphologies of spherical, bead-like chains and dendritic in the size range of 30 nm–0.3 μm (Lengke et al. 2006c).

1.7 Selenium Tellurium Nanoparticles

Selenium is of considerable environmental importance as it is essential at low concentrations but toxic at high concentrations for animals and humans, with a relatively small difference between these values (Fordyce 2005). Selenium occurs in different oxidation states as reduced form (selenide, Se²⁻), least mobile elemental selenium (Se⁰) and water soluble selenite (SeO₃²⁻)/selenate (SeO₄²⁻) oxyanions.
Selenium possesses several applications in medicine, chemistry and electronics. Selenium (Se), as a functional material, is an important semiconductor and photovoltaic element due to its special physical properties (Zhang et al. 2011). Therefore, Se is used in many applications ranging from photocells, photographic exposure meters and solar cells to semiconductor rectifiers. Recently, there has been increasing interest in the synthesis of nanoparticles using microorganisms, leading to the development of various biomimetic approaches (Mohampuria et al. 2008). However, most methods used to synthesize SeNPs are characterized by elevated temperatures and high pressures and are hazardous to the environment (Zhang et al. 2011).

Stenotrophomonas maltophilia SELTE02 showed promising transformation of selenite (SeO$_3^{2-}$) to elemental selenium (Se0) accumulating selenium granules either in the cell cytoplasm or in the extracellular space. In addition, Enterobacter cloacae SL1a-1, Rhodospirillum rubrum, and Desulfovibrio desulfuricans have also been found to bioreduce selenite to selenium both inside and outside the cell with various morphologies like spherical, fibrillar, and granular structure or with small atomic aggregates. E. coli also deposited elemental selenium both in periplasmic space and cytoplasm, and P. stutzeri also aerobically reduced selenite to elemental selenium (Narayanan and Sakthivel 2010). Under aerobic conditions, Hunter and Manter (2008) reported that Tetrathioibacter kashmirensis bioreduced selenite to elemental red selenium. A 90-kDa protein present in the cell-free extract was believed to be responsible for this bioreduction. Moreover, Yadav et al. (2008) showed that P. aeruginosa SNT1 biosynthesized nanostructured selenium by biotransforming selenium oxyanions to spherical amorphous allotropic elemental red selenium both intracellularly and extracellularly.

Oremland et al. (2004) reported the biogenesis of SeNPs under anaerobic conditions. Se0 nanoparticles (SeNPs) formed by the Se-respiring bacteria, such as Sulfurospirillum barnesii, Bacillus selenitireducens, and Selenihalanaerobacter shriftii, are structurally unique when compared to Se0 formed by chemical synthesis. However, anaerobic conditions have limitations, such as culture conditions and isolate characteristics that make biosynthesis processes tedious and challenging (Prakash et al. 2009). The generation of SeNPs by soil bacteria Pseudomonas aeruginosa and Bacillus sp. under aerobic conditions has been reported; however, these studies only include the partial characterization of selenium nanospheres (Yadav et al. 2008; Prakash et al. 2009). The characterization of the nanospheres in relation to size is of great importance, both in industrial and biologic activities. Recent reports describe that Se0 nanoparticles with a size under 100 nm have a greater bioavailability (Thakkar et al. 2009; Dhanjal and Cameotra 2010). In addition, other studies mention that a smaller size increases the ability to trap free radicals with greater antioxidant effect (Huang et al. 2003). Peng et al. (2007) mentioned that the size of Se0 nanoparticles plays an important role in their biologic activity and, as expected, 5–200 nm nano-Se can directly scavenge free radicals in vitro in a size dependent fashion. The bio-reduction of selenite (Se [IV]) by Pantoea agglomerans generates nanoparticles with sizes ranging between 30 and 300 nm was reported by Torres et al. (2012). Their study demonstrated that,
Pantoea agglomerans strain UC-32 produce amorphous SeNPs under aerobic conditions with a size optimal for biotechnological use (such as trapping free radicals in the induction of selenoenzymes) after at least 20 h of incubation. These results are of great importance due to the low culture requirements of UC-32 strain with the subsequent low cost of biologically active SeNPs production.

Synthesis of S^0 under aerobic conditions by Bacillus cereus was investigated by Dhanjal and Cameota (2010). The aerobic reduction of selenate (SeO_4^{2-}) and selenite (SeO_3^{2-}) to S^0 is depicted in Fig. 1.19. The electron transfer was initiated from NADPH/NADH by NADPH/NADH-dependent electron carrier. The results show: (1) selenite reduction in 0 h; (2) formation of red elemental selenium in membrane fraction after 3–4 h of incubation; and (3) prolonged incubation for 12 h resulted in formation of red elemental selenium in soluble fraction.

Tellurium (Te) has been reduced from tellurite to elemental tellurium by two anaerobic bacteria, Bacillus selenitireducens and Sulfurospirillum barnesi. B. selenitireducens initially formed nanorods of 10 nm in diameter and 200 nm in length were clustered together to form larger rosettes of ~1000 nm but with S. barnesi small irregularly shaped extracellular nanospheres of diameter <50 nm were formed (Baesman et al. 2007). In another study, tellurium-transforming Bacillus sp. BZ isolated from the Caspian Sea in northern Iran was used for the intracellular biosynthesis of elemental tellurium NPs. The biogenic NPs were released by liquid nitrogen and purified by an n-octyl alcohol water extraction system. TEM analysis showed rod-shaped NPs with dimensions of about 20 × 180 nm. The produced NPs had a hexagonal crystal structure (Zare et al. 2012).
1.8 Bismuth Nanoparticles

The bismuth nanoparticles (BiNPs) has attracted a great deal of interest because of its potential applications in X-ray radiation therapy, catalysts, thermoelectricity, and optical uses (Hossain and Su 2012; Wang and Buhro 2010; Carotenuto et al. 2009; Lin et al. 2011). BiNPs electrodes have been applied in the detection of heavy metal ions as a substitute for bismuth film (Sahoo et al. 2013). In addition, bismuth compounds, such as BiPO$_4$ (Pan et al. 2010), BiVO$_4$ (Qu et al. 2013), Bi$_2$O$_3$, (Zhou et al. 2009) and Bi$_2$S$_3$ nanoparticles (Wu et al. 2010b) were also reported over the past decades as novel catalysts for photodegradation of environmental pollutants. Several approaches have been employed to fabricate BiNPs including thermal plasma (Wang et al. 2007) an electrochemical method (Reim et al. 2013) a gas condensation method (Lee et al. 2007) and solution phase chemical methods. The latter is the most popular method, which often involves the reduction of relevant metal salts with various reductants in the presence of morphology-controlling surfactants.

The biological synthesis of BiNPs was explored using *Serratia marcescens* by Nazari et al. (2012). The biogenic bismuth NPs were released by liquid nitrogen and purified using an n-octanol water two-phase extraction system. The energy-dispersive X-ray and X-ray diffraction (XRD) patterns demonstrated that the purified NPs consisted of only bismuth and are amorphous. In addition, the transmission electron micrograph showed that the small NPs formed larger aggregated NPs around 150 nm.

1.9 Conclusions and Future Perspectives

Biological systems; bacteria, fungi, actinomycetes, and algae have many opportunities for utilization in nanotechnology, especially in the development of a reliable and eco-friendly processes for the synthesis of metallic nanoparticles. The rich microbial diversity points to their innate potential for acting as potential biofactories for nanoparticles synthesis. Despite some related reports, many aspects of nanoparticles biosynthesis remain unclear especially with regards to why and how the size and shapes of the synthesized nanoparticles are influenced by the biological systems. The biochemical and molecular mechanisms of biosynthesis of metallic nanoparticles need to be better understood to improve the rate of synthesis and monodispersity of the product. The properties of NPs can be controlled by optimization of important parameters which control the growth condition of organisms, cellular activities, and enzymatic processes (optimization of growth and reaction conditions). The large-scale synthesis of NPs using microorganisms is interesting because it does not need any hazardous, toxic, and expensive chemical materials for synthesis and stabilization processes. It seems that by optimizing the reaction conditions and selecting the best microbes, these natural nanofactories can be used in the synthesis of stable NPs with well-defined sizes, morphologies, and compositions.

smtiquia@umich.edu
References

Bazylinski DA, Frankel RB, Heywood BR, Mann S, King JW, Donaghay PL, Hanson AK (1995) Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Appl Environ Microbiol 61:3232–3239

References 43

smtiquia@umich.edu

Nanoparticles Synthesized by Microorganisms

References

