Mitochondrial Oxidative Stress Mediates Macrophage Pro-inflammatory Metabolic Switch in Atherosclerotic Vascular Disease in Aging

Aleksandr E. Vendrov, Andrey Lozhkin, Takayuki Hayami, Julia Levin
Jamille Silveira Fernandes Chamon, Marschall S. Runge, and Nageswara R. Madamanchi
Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA

ABSTRACT

Aging elevates cardiovascular disease risk, including atherosclerosis. Macrophages play crucial role vascular aging by promoting inflammation and atherosclerosis progression. Age-related increase in NOX4 NADPH oxidase expression correlates with mitochondrial dysfunction, inflammation, and atherosclerosis severity. We hypothesized that NOX4-dependent mitochondrial oxidative stress induces macrophage metabolic dysfunction and an inflammatory phenotype in aging-associated atherosclerotic disease. Aortic and brachiocephalic artery lesion areas were comparable in 5-month-old (young) Apoe^{-/-} and Apoe^{-/-} mice, increased significantly in 16-month-old (aged) mice, but were significantly lower in Apoe^{-/-} mice. Aged Apoe^{-/-} mice, atherosclerotic lesions had reduced CD11b⁺ area, lower expression of CCL2, IL-1β, and IL-6, and fewer classically activated pro-inflammatory macrophages (CD80⁺CD68⁺). Spectral flow cytometry and t-SNE analysis revealed a significantly lower proportion of activated inflammatory macrophages and macrophage-like cells in atherosclerotic lesions of aged Apoe^{-/-} compared to Apoe^{-/-} mice. Macrophages from aged Apoe^{-/-} mice had altered metabolic function. In contrast, macrophages from Apoe^{-/-}/Nox4^{-/-} mice were less glycolytic, more aerobic, and had preserved basal and maximal respiration and mitochondrial ATP production. Nox4^{-/-} macrophages had lower mitochondrial ROS and reduced IL-1β secretion, compared with Apoe^{-/-} mice. In aged Apoe^{-/-} mice, inhibition of NOX4 using GKT137831 significantly reduced macrophage ROS and improved mitochondrial function. This resulted in a decreased CD80⁺CD80^{-/-} and increased CD163⁺CD206^{-/-} macrophages and attenuated atherosclerosis.

Our results imply that NOX4-dependent mitochondrial oxidative stress in aging contributes to macrophage mitochondrial dysfunction, glycolytic metabolic switch, and pro-inflammatory phenotype, advancing atherosclerosis. Inhibition of NOX4 could alleviate vascular inflammation and atherosclerosis by improving mitochondrial function in macrophages.

RESULTS

Figure 1. Aging-associated atherosclerosis burden is attenuated in Nox4-deficient Apoe^{-/-} mice. (A) Flow cytometry analysis and quantification of atherosclerotic lesion area in young (5-month-old) and aged (16-month-old) Apoe^{-/-} and Apoe^{-/-} mice fed Western diet for 3 months (mean±SEM, n=8). (B) Representative images of oil red-O-stained atheroma sections and quantification of atherosclerotic lesion area (mean±SEM, n=7). (C) Representative fluorescence microscopy images and fluorescence quantification in brachiocephalic artery sections stained with MitoSOX. Data are mean±SEM, n=7.

Figure 2. Increased NOX4 expression in aging is associated with vascular inflammation. (A) Representative fluorescence microscopy images and quantification of immunoreactive CD11b⁺ expression (red) in brachiocephalic artery sections stained for ACTA2 (green) and DAPI (blue). Data are fluorescence integrated density of expression (ROI area x 10³) per lesion cell number (mean±SEM, n=6).

Figure 3. Nox4 deficiency induces pro-resolving phenotype in atherosclerotic lesion macrophages in aged Apoe^{-/-} mice. (A) Oxygen consumption rate (OCR) measurements and quantification of atherosclerotic lesion single-cell respiration and mitochondrial ATP production. Nox4^{-/-} macrophages had reduced mitochondrial OCR and ATP production.

Figure 4. Mitochondrial function and metabolic profiling of macrophages from young and aged Apoe^{-/-} and Nox4^{-/-} Apoe^{-/-} mice. (A-C) Oxygen consumption rate (OCR) measurements and quantification of atherosclerotic lesion single-cell respiration and mitochondrial ATP production. Nox4^{-/-} macrophages had reduced mitochondrial OCR and ATP production.

Figure 5. Inhibition of NOX4 improves mitochondrial function inducing pro-resolving phenotype in atherosclerotic lesion macrophages in aged Apoe^{-/-} mice. (A) Quantification of MitoSOX fluorescence in control M0, M[IFNγ+LPS], and M[IL4] macrophages isolated from young and aged Apoe^{-/-} and Nox4^{-/-} Apoe^{-/-} mice (mean±SEM, n=4). (B) Concentration of IL1β in conditioned media from M[IFNγ+LPS] macrophages (mean±SEM, n=4). (C) Quantification of MitoSOX fluorescence in cultured control M0, M[IFNγ+LPS] or M[IL4] macrophages pre-treated with vehicle or GKT137831 (mean±SEM, n=6). (D) Mitochondrial bioenergetic parameters were determined in control M0 (A), M[IFNγ+LPS] (B), and M[IL4] (C) cultured macrophages (mean±SEM, n=6). (E-G) Metabolic profiling showing basal respiration and glycolysis relations in control M0 (D), M[IFNγ+LPS] (E), and M[IL4] (F) cultured macrophage (mean±SEM, n=6).

Figure 6. Inhibition of NOX4 improves mitochondrial function inducing pro-resolving phenotype in atherosclerotic lesion macrophages in aged Apoe^{-/-} mice. (A) Quantification of MitoSOX fluorescence in control M0, M[IFNγ+LPS], and M[IL4] macrophages isolated from young and aged Apoe^{-/-} and Nox4^{-/-} Apoe^{-/-} mice (mean±SEM, n=4). (B) Concentration of IL1β in conditioned media from M[IFNγ+LPS] macrophages (mean±SEM, n=4). (C) Quantification of MitoSOX fluorescence in cultured control M0, M[IFNγ+LPS] or M[IL4] macrophages pre-treated with vehicle or GKT137831 (mean±SEM, n=6). (D) Mitochondrial bioenergetic parameters were determined in control M0 (A), M[IFNγ+LPS] (B), and M[IL4] (C) cultured macrophages (mean±SEM, n=6). (E-G) Metabolic profiling showing basal respiration and glycolysis relations in control M0 (D), M[IFNγ+LPS] (E), and M[IL4] (F) cultured macrophage (mean±SEM, n=6).

CONCLUSIONS

- Aging-associated increase in NOX4 expression/activity leads to mitochondrial dysfunction in macrophages, a metabolic shift towards glycolysis, and a proinflammatory phenotype.
- An inflammatory plaque microenvironment causes lesion expansion in aging.
- Reducing the expression/activity of NOX4 or improving mitochondrial function may help alleviate vascular inflammation and atherosclerosis.