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S1 Satellite-observed temporal shifts in crop phenology and fire activity 

 
Figure S1. Spatial variability in monsoon crop phenology in Punjab during the 2003-2007 
period: (Top panel) Day of the year of peak monsoon greenness derived from MODIS 
MCD12Q2, averaged across 2003-2007. (Bottom panel) Location of seasonal (blue shades) and 
permanent (purple shades) water cover derived from the Copernicus Dynamic Global Land 
Cover (CGLS-LC100) from 2015-2019. Areas with greatest water coverage (i.e., darkest shades) 
are located near the intersection of the Beas and Sutlej Rivers. Most of the water cover pixels are 
classified as seasonal. The CGLS land cover is upsampled to 500 m for visibility. 
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Figure S2. Spatial variability in the midpoint of the post-monsoon fire season among 
Punjab districts from 2003-2019: (Top panel) The midpoint of post-monsoon fire seasons in 19 
districts (same as in Figure 1) in Punjab from 2003-2019, colored by year. The districts shown 
are ordered by the magnitude of the temporal shift, from highest to lowest. (Bottom panel) The 
standard deviation of the spatial distribution of district-level post-monsoon fire season midpoint 
dates, weighted by the overall FRP of each district, from 2003-2019. The slope and p-value of 
the linear trend are shown inset. The percentage inset indicates the total change in the standard 
deviation of the midpoint of the fire season from 2003-2019 as derived from the linear trend. 
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Groundwater levels. In addition to groundwater data from India-WRIS and Dacnet, we use 
household survey data from the 2017-18 crop season to estimate the usage of canal irrigation in 
three regions in Punjab: Amritsar (north), Sangrur (southeast), and Bathinda/Muktsar (southwest) 
districts. 573 households in Punjab are represented in the subset of the household survey we used 
in this study. Methodology for the household survey is described in Liu et al. (2020). 

S1.1 Spatial heterogeneity in groundwater usage and trends in context of temporal shifts 
in the monsoon growing season and post-monsoon fires 

Visual inspection of the spatial heterogeneity in peak monsoon greenness at the native 
MODIS spatial resolution (500 m) reveals that regions with initially early monsoon crop cycles 
(i.e., in northern and western Punjab), as well as the greatest cascading delays, are near major 
rivers integral to canal irrigation (Figure S1). Remote sensing and ground measurements suggest 
that these districts are less affected by groundwater depletion (Asoka et al., 2017). Annual maps 
of the pre-monsoon depth to water level by India’s Central Groundwater Board, based on 
interpolated well data, show shallower depths in western Punjab (< 20 m) than eastern Punjab 
(20-40 m) (https://indiawris.gov.in/wris/#/gwyearbook), suggesting more abundant water 
resources in the west. 

Household survey data of irrigation practices collected in 2018 in three Punjab regions 
(Amritsar, Bathinda/Muktsar, and Sangrur districts) show similar spatial variation (Figure S3). 
While access to tubewells is nearly universal, canal irrigation is high in southwestern Punjab 
(Bathinda/Muktsar: 88%) but low in southeastern and northern Punjab (Sangrur: 34%, Amritsar: 
11%) (Table S1). Recent structural collapses in the canal networks in districts such as Amritsar 
may increase groundwater dependence further (The Tribune India, 2019). Although paddy 
growing depends on groundwater rather than canal irrigation, the latter’s availability may have 
alleviated the water table decline. Aside from differences in irrigation, crop varieties may also 
contribute to spatial variation in peak monsoon greenness, which is tied to the duration of the 
growing season (Figure S4). Compared to eastern and central Punjab, farmers in western Punjab 
tend to plant crops earlier in the season (Figure S1) and favor varieties with shorter growing 
periods (Figure S4). While western Punjab experienced the greatest delays, farmers there use 
shorter duration crop varieties, which produce less residue and require less irrigation and may 
help to reduce fire emissions and offset groundwater use (Dhillon & Kumar, 2021; Mahajan et 
al., 2009).  
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Figure S3. Household survey locations in Punjab: Red dots correspond to household survey 
locations in Punjab, mainly within the Amritsar, Muktsar, Bathinda, and Sangrur districts. 

 

Table S1. Irrigation practices in Punjab, India by district from household survey data 

 Irrigation Amritsar Muktsar/ Bathinda Sangrur 
Household 

survey, 2018 
Canal 11%  88% 34% 

Groundwater    
tubewell, owned 78% 85% 82% 
tubewell, shared 19% 7% 18% 
tubewell, rented 6% 9% 2% 

Amritsar (n=186), Muktsar/Bathinda (n=196), Sangrur (n=191) 
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Figure S4. Duration from green-up to green-down during the monsoon growing season in 
northwest India: average number of days between green-up and green-down from 2003-2019 
derived from the MCD12Q2 phenology dataset.  
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S2 Atmospheric Transport Modeling of Smoke PM2.5 

S2.1 STILT Modeling 

 
Figure S5. Annual variation in STILT sensitivities from 2007-2019 with New Delhi as the 
receptor: STILT sensitivity maps are averaged using the daily smoke PM2.5 at New Delhi as 
weights. To calculate the PM2.5 weights, STILT sensitivities of a given meteorological year are 
applied to each year’s post-monsoon fire emissions from 2008-2019. The PM2.5 is then averaged 
by day across the fire emissions years to standardize the fire season, account for the delay and 
increase in fires during this period, and focus the year-to-year comparison of the STILT 
sensitivities on meteorological patterns.  
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Figure S6. Effect on PM2.5 in New Delhi from 2008-2019 if the post-monsoon agricultural 
fire season had not experienced delays relative to the 2003-2007 period: Fire emissions are 
shifted earlier by the number of days between the peak burning day of each fire season and that 
of the 2003-2007 average. Unlike Figure 5, here the STILT-simulated PM2.5 ratio is shown for 
eight different local hours of the day: 0, 3, 6, 9, 12, 15, 18, and 21 h. (Left panel) Maximum 
smoke PM2.5 from a 21-day rolling mean from October 1 to November 30 for a hypothetical fire 
season that is shifted earlier relative to one that was observed. For each hour, the PM2.5 ratio is 
shown as the median (red circles), mean ± 1σ (black dots and bars), and for individual years 
(colored dots). (Right panel) The fire emissions of each year are applied to STILT sensitivities 
for all years from 2007-2019 to show a range of possible meteorological conditions. The PM2.5 
ratio is averaged across meteorological years by quantiles. The horizontal bars show the median 
for each hour; the dark gray envelopes show the 25th-75th percentile range, and the light gray 
envelopes show the 5th-95th percentile range. 

 

S2.2 Background PM2.5 

We use PM2.5 observed at the U.S. Embassy in New Delhi from 2013-2019 to quantify 
the increase in background PM2.5 from October to December. For each year, we use quantile 
regression to fit a linear trend to the timeseries of daily average PM2.5 at the 20th percentile, 
which results in a fitted line apparently consistent with observations dominated by background 
PM2.5 and not strongly influenced by outliers or by PM2.5 spikes associated with crop residue 
burning. We extend the PM2.5 timeseries from October to December to prevent inflation of the 
estimated trend in background PM2.5 due to high PM2.5 days during November. 
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Figure S7. Increase in daily background PM2.5 in New Delhi from post-monsoon to winter, 
2013-2019: (Top panel) Example timeseries of daily average PM2.5 (black line) observed at the 
U.S. Embassy in New Delhi from Oct 1 to Dec 30, 2016. The linear increase in background 
PM2.5 (red dashed line) is estimated using quantile regression at the 20th percentile. (Bottom 
panel) The slope ± 1 standard error of the linear trend in background PM2.5 from 2013-2019. 

GEOS-Chem chemical transport model (CTM). We use the GEOS-Chem CTM, version 12.8.2 
(https://zenodo.org/record/3860693), to simulate daily background PM2.5 concentrations for a 3-
year period from 2015-2017 (Bey et al., 2001). We use the global 2° x 2.5° full chemistry 
simulation with a 6-month spin-up to generate boundary conditions for the nested grid simulation 
(0.5° x 0.625°) of the Asia domain, both driven by MERRA2 reanalysis meteorology (Wang et 
al., 2004). Anthropogenic emissions are from the MIX inventory for Asia (Li et al., 2017). Fire 
emissions are from a combined GFEDv4s and SAGE-IGP dataset, with SAGE-IGP replacing 
GFEDv4s agricultural fire emissions over north India. 
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We use the GEOS-Chem simulated background PM2.5 to calculate how much smoke 
PM2.5 contributes to the total PM2.5 at each receptor (Table S2). STILT and GEOS-Chem smoke 
PM2.5 concentrations are consistent for New Delhi, Kanpur, and Bathinda, whereas GEOS-Chem 
tends to overestimate smoke PM2.5 in Lahore, Ludhiana, and Jind relative to STILT. 
Discrepancies between the models may arise due to differences in spatial resolution and input 
meteorology. In GEOS-Chem, emissions inventories are first upscaled to the nested grid 
resolution (0.5° x 0.625°), while in STILT, we generate sensitivity footprints at the native 
resolution of the SAGE-IGP inventory (0.25° x 0.25°). 

In addition, we find that GEOS-Chem is unable to capture the increase in observed 
background PM2.5 as seen by its > 50% underestimate in December compared to October, two 
months with much less influence from biomass burning than from anthropogenic sources (Figure 
S8). Such biases in anthropogenic emissions inventories or incomplete chemical mechanisms in 
the model may in turn lead to underestimates in total PM2.5 and highly polluted days in 
November. 

Table S2. Background and smoke PM2.5 (μg m-3) in the six receptor cities from 2015-2017. The 
PM2.5 concentrations shown are the maximum of 21-day rolling means from October to 
November. Ranges within the parentheses refer to the minimum and maximum from 2015-2017. 
Smoke PM2.5 is simulated using STILT and GEOS-Chem, while background PM2.5 is simulated 
only in GEOS-Chem. Here, smoke PM2.5 is defined as the sum of primary OC and BC emitted 
by fires, or 2.1 ×	OC + BC, to make the STILT and GEOS-Chem estimates consistent. The 2.1 
factor converts OC to organic matter, as suggested in Turpin and Lim (2001). 

Receptor 
Background PM2.5 
(GEOS-Chem, no 
fire simulation) 

STILT  GEOS-Chem  

Smoke PM2.5 % Smoke PM2.5 % 

New Delhi 133 (110-173) 32 (27-37) 20 (14-24) 35 (31-40) 21 (18-22) 
Kanpur 116 (95-149) 13 (9-20) 10 (6-16) 16 (9-20) 11 (7-15) 
Lahore 119 (91-151) 28 (26-30) 20 (15-25) 66 (44-100) 35 (26-47) 
Ludhiana 134 (107-166) 39 (18-57) 23 (10-35) 179 (91-235) 55 (35-66) 
Bathinda 105 (82-145) 158 (145-179) 61 (51-67) 209 (148-244) 66 (63-73) 
Jind 115 (93-152) 64 (50-78) 36 (25-44) 143 (112-176) 56 (42-63) 
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Figure S8. Observed and modeled PM2.5 in New Delhi in October and December from 
2015-2017: Monthly average PM2.5 from observations (gray) and GEOS-Chem nested grid 
model simulations partitioned into anthropogenic (dark blue) and biomass burning (light blue) 
sources. Dots represent monthly averages of total PM2.5 in individual years.  
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