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Climate anomalies and competition reduce establishment 

success during island colonization 

 

Abstract 

Understanding the factors that facilitate or constrain establishment of populations in novel 

environments is crucial for conservation biology and the study of adaptive radiation.  

Important questions include: 1) Does the timing of colonization relative to stochastic events, 

such as climatic perturbations, impact the probability of successful establishment? 2) To what 
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extent does community context (e.g., the presence of competitors) change the probability of 

establishment? 3) How do sources of intra-population variance, such as sex differences, affect 

success at an individual level during the process of establishment? Answers to these 

questions are rarely pursued in a field-experimental context or on the same time scales 

(months to years) of the processes of colonization and establishment. We introduced slender 

anole lizards (Anolis apletophallus) to eight islands in the Panama Canal and tracked them 

over multiple generations to investigate the factors that mediate establishment success. All 

islands were warmer than the mainland (ancestral) environment, and some islands had a 

native competitor. We transplanted half of these populations only four months before the 

onset of a severe regional drought and the other half two years (two generations) before the 

drought. We found that successful establishment depended on both the intensity of 

interspecific competition and the timing of colonization relative to the drought. The islands 

that were colonized shortly before the drought went functionally extinct by the second 

generation, and regardless of time before the drought, the populations on islands with 

interspecific competition declined continuously over the study period. Furthermore, the effect 

of the competitor interacted with sex, with males suffering, and females benefitting, from the 

presence of a native competitor. Our results reveal that community context and the timing of 

colonization relative to climactic events can combine to determine establishment success and 

that these factors can generate opposite effects on males and females. 
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Since the beginning of life on earth, organisms have expanded their ranges and 

colonized novel environments (Whittaker, 2007). In the Anthropocene, the number of these 

colonization events has dramatically increased due to human activity, and alien species can 

cause problems if they become established and begin to spread (Savidge, 1984; Hoskin, 

2011; Blackburn et al., 2011; Capellini et al., 2015; Wan et al., 2019). We define 

“establishment” as the persistence of an alien population for several generations after 

colonization, such that it becomes a viable member of the local community. Successful 

establishment is a consequence of multiple complex processes, such as the community 

structure and climate of the region, as well as genetic, phenotypic, and demographic features 

of both the alien species and members of the native community (Dyer et al., 2017; Redding et 

al., 2019). Few studies have examined the respective roles of these factors (or their 

interactions) on the same time scale over which colonization and establishment occur (weeks 

to years, depending on the species; Ezard et al., 2009; Alzate et al., 2020). Understanding the 

phenomena that limit or enhance the establishment of alien species in new regions is a crucial 

step if we are to predict and therefore mitigate biological invasions. 

The ability to reach an environment (henceforth, “colonization”) does not guarantee 

establishment success (Losos and Spiller, 1999; Blackburn et al., 2011). After colonization, 

populations are likely to be small in size due to a limited number of initial arrivals and a 

sudden increase in selection intensity in the new environment (Endler, 1986; Calsbeek and 

Cox, 2010). If the population does not immediately go extinct, selection or plasticity (or both) 

may drive the mean phenotype towards the local fitness optimum, and the population should 

begin to recover (West-Eberhard, 2003). However, if a species arrives in a new environment 

in close temporal proximity to a chance climate event (e.g., a heat wave, drought, etc.), 

population size may be reduced below the recovery threshold before the species is able to 

grow in and adapt to the new environment. If, however, a population has had several 
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generations to grow and adapt to the local environmental conditions before the onset of the 

climate event, then it might be able to recover (Chevin et al., 2010; Wang and Althoff, 2019). 

Climate anomalies may also increase the probability that a population establishes if the 

anomaly results in a local environment that better matches the ancestral range or reduces the 

effects of antagonistic interactions. Regardless, these dynamics may become increasingly 

important in the Anthropocene, as climate change is predicted to cause an increase in the 

frequency of extreme weather events (IPCC, 2021).  

In addition to novel climates, alien species will encounter communities of competitors, 

predators, and parasites that differ from their ancestral range. Interspecific competition is a 

key mediator of invasion dynamics in many systems and often has strong effects on the 

fitness of both the invader and members of the native community (Case et al., 1994; Petren 

and Case, 1996; Alzate et al., 2017). Competitive interactions during invasion can involve 

exploitation competition, where different species negatively affect each other via the 

consumption of a common resource without direct interaction (Högstedt, 1980; Corlatti et al., 

2019), and interference competition, where individuals of different species interact directly as 

they fight over access to resources (Grether et al., 2009; Corlatti et al., 2019). Regardless of 

the type of interspecific competition that occurs, these interactions are often asymmetrical, 

with one or more members of the interaction suffering more than others. For example, Kolbe 

et al (2016) found that recently introduced crested anoles (Anolis cristatellus) were four times 

more abundant and perched lower in vegetation at sites without the previously introduced and 

firmly established brown anoles (Anolis sagrei) in urban environments in Miami. Even in 

situations where an alien species colonizes an environment that is more suitable than its 

original habitat, interspecific competition can reduce the survival and fitness of the invader 

(Petren and Case, 1996; Cox et al., 2020). The community context, and in particular the 
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competitive landscape, in which a colonizing population finds itself is likely to play an 

important role in mediating establishment success. 

In addition to exogenous factors such as climate and competition, endogenous 

features of the colonizing population such as trait differences between males and females 

may also affect establishment success. Males and females in many species differ in a wide 

range of traits, and these phenotypic differences might interact with aspects of the local 

environment to influence the sex ratio of the alien population and its probability of 

establishment (Fargevieille et al., 2020; Iglesias‐Carrasco et al., 2020). Females generally 

must disproportionately invest resources directly into reproduction, whereas males tend to 

spend more energy on competition (Agrawal, 2001; Iglesias‐Carrasco et al., 2020). Thus, 

when a colonizing population disperses to an environment with a high intensity of 

interspecific competition, it is possible that males may be at a disadvantage compared to 

females (Nicolaus et al., 2009; Iglesias‐Carrasco et al., 2020). Moreover, differences in the 

ecology and physiology of males and females might impact their survival with respect to 

local climate and exposure to extreme weather events (Gianuca et al., 2019). Some species of 

Anolis lizards, for example, exhibit differential habitat use between the sexes, which 

translates to sex-based differences in diet and thermal tolerance (Losos, 2009; Rosso et al., 

2020; Logan et al., 2021). This variation among the sexes in important phenotypes may 

translate to sex-biases in fitness during the process of invasion. 

We investigated how environmental circumstances, namely community context and 

the timing of an extreme environmental perturbation relative to colonization, influenced 

establishment success in populations of the Panamanian slender anole lizard (Anolis 

apletophallus, henceforth, “slender anole”) that we translocated to eight islands (henceforth, 

“experimental islands”) in the Panama Canal. Slender anoles are a good model for 

understanding the dynamics of establishment as they are small, abundant, and have a short 
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generation time with nearly 100% annual population turnover (Andrews and Nichols, 1990; 

Andrews, 1991). We introduced half of these populations in 2017 during a normal climatic 

year and half in 2018 in the months before a drought hit central Panama during the dry season 

(December 2018 – May 2019). This drought resulted in half of the dry season rainfall 

compared to the previous year and was so severe that it caused authorities to limit the amount 

of cargo that ships could bring through the Panama Canal (Fountain, 2019). Even in non-

drought years, the experimental islands were warmer than the mainland (ancestral) 

environment, and two of the islands (henceforth, “two-species islands”) had a native anole 

species Anolis gaigei (henceforth, “Gaige's anole”), which is a competitor of the slender 

anole. Despite an unbalanced design whereby fewer than half of the islands had a native 

competitor and both two-species islands received slender anoles in the same year, we 

nevertheless took advantage of the unanticipated drought to investigate how interspecific 

competition, climate stochasticity, and the timing of establishment interact to affect the 

chances of establishment and invasion success. We hypothesized that 1) the populations that 

had several generations to adapt to local conditions would be at higher densities before the 

onset of the drought and would therefore be more likely to establish, 2) the presence of a 

native competitor would reduce the establishment success of slender anoles irrespective of 

the timing of colonization, and 3) establishment success of males and females would differ 

(i.e., unequal sex-ratios of colonizing populations) because of ecological and physiological 

differences between the sexes. 

 

Methods 

Study sites 

We studied colonization and establishment dynamics in populations of a recently 

introduced species using an experimental island system in Panama’s Lake Gatún. Lake Gatún 
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is a 425 km2 artificial lake created by the damming of the Chagres River during the 

construction of the Panama Canal in 1913 (Giles Leigh Jr et al., 1993). We used eight small 

islands (areas ranged from 802 to 6210 m2, mean = 3223 m2) that were formerly hilltops 

before the valley was flooded. The islands in Lake Gatún are well within the natural range of 

slender anoles and this species almost certainly occupied the Chagres Valley before it was 

flooded (the larger islands in the lake have resident populations to this day). Thus, 

transplanting lizards around this area is not of ethical concern in that they are being moved 

relatively short distances within their natural range and to small, isolated plots of land that 

play a minimal role in the ecology of the broader region. We thoroughly surveyed each of 

these islands before transplantation to ensure that they did not have resident populations of 

slender anoles. Two of the islands (Islands D and F) had a different, resident species of anole 

called Gaige’s anole (Anolis gaigei). Nevertheless, all eight experimental islands had much 

lower competitor diversity (slender anoles co-exist with at least seven other anole species on 

the adjacent mainland), and they probably had lower predator and parasite diversity 

compared to the mainland due to their small size and isolation. This reduced biological 

complexity on the experimental islands and simplified the number of variables we needed to 

consider as potentially affecting establishment success (MacArthur and Wilson, 1967; Giles 

Leigh Jr et al., 1993; Arnold and Asquith, 2002).  

 

Collection of founding individuals 

The founder generation of slender anoles consisted of 560 lizards that we captured 

from a single site in Soberanía National Park on mainland Panama near the town of Gamboa 

(9°08’00.1” N, 79°43’11.0” W). We transplanted lizards to four islands (70 individuals per 

island, equal sex ratios) in 2017 (between July and September). We then repeated this process 

for four new islands in 2018 (between July and September). Thus, our data set includes eight 
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islands that were “colonized” over a two-year period. We caught adult lizards (>38 mm 

snout-vent-length, or “SVL”) either by hand or with a lizard catch-pole (fishing rod and line 

with a slipknot). Lizards were transported to the Smithsonian facility in Gamboa for 

morphological, physiological, and genetic sampling procedures that were associated with 

other projects (Cox et al., 2020; Logan et al., 2021; Neel et al., 2021). In captivity, lizards 

were housed in small plastic terraria for a maximum of 48 hours. We included a balled-up 

piece of paper towel saturated with water as a source of humidity within each terrarium. Due 

to the short processing time, we did not feed captive individuals.  

 

Transplantation to islands and mark-recapture 

Before transplanting lizards to experimental islands, we implanted visual elastomers 

(VIE codes; Northwest Marine Technology, Inc.) to give each individual a unique and 

reliable identifier (Daniel et al., 2006; Nicholson et al., 2015). Lizards were then randomly 

assigned to islands and released in batches (20–40 lizards per batch). We conducted mark-

recapture surveys on the 2017 founder (F0) populations between October and December 

2017, on their adult offspring (F1 generation) between June and November 2018, and on the 

third generation (F2) between June and September 2019. We conducted mark-recapture 

surveys on populations we transplanted in 2018 on their first-generation adult offspring (F1) 

between June and September 2019. During these recapture surveys, we systematically 

searched each island approximately twice per week. To conduct these searches, we divided 

an island into non-overlapping “lanes” that circled the island. One observer would occupy 

each lane and slowly move around the island until they encountered a lizard. When we 

encountered a new lizard (adult recruit) on an island, we first measured that lizard’s perch 

height and diameter using a tape measure and digital calipers, respectively. These individuals 

were then taken to the Smithsonian Facility in Gamboa for additional phenotypic 
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measurements and tagging, after which they were released back onto their island of origin 

and spot of capture within 48 hours. Any time we recaptured a lizard, we again recorded its 

perch height and diameter along with its VIE code, but we then immediately released it at the 

spot of capture. The same methods (for both initial captures and recaptures) were replicated 

for Gaige’s anoles when caught on the islands in which they occur. 

We analyzed habitat use between species and sex across islands by fitting a linear 

mixed-effects model, with ‘lizard ID’ as a random effect to account for repeated measures. 

Perch height was the dependent variable with ‘island’, ‘sex’, and ‘species’ included as fixed 

factors. Perch height was log10 transformed to meet the model assumption for normally 

distributed residuals. 

 

Local and regional climate 

 We monitored regional temperature and precipitation in the Lake Gatun area using the 

El Claro weather station on Barro Colorado Island (BCI: 9.1521° N, 79.8465° W). While we 

did not transplant lizards to BCI, this site is close by and centrally located to our experimental 

islands. The El Claro weather station records total daily rainfall (mm) and temperature (oC) 

every 15 minutes.  

Our methodology for measuring local environmental temperature distributions for 

slender anoles has been reported in detail elsewhere (Cox et al., 2020; Logan et al., 2021; 

Neel et al., 2021). In brief, we coated iButton temperature loggers (calibrated at factory: 

Embedded Data Systems, Lawrenceburg, KY, USA) in PlastiDip (PlastiDip International, 

Blaine, MN, USA) for waterproofing and then glued them to a short piece of wooden trim. 

We deployed these data-loggers on each of our islands, where they recorded environmental 

temperatures every 120 mins (we staggered start times so that multiple loggers recorded 

temperatures within every hour interval of the study period) between July 2017 and 
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September 2019. We deployed temperature data-loggers randomly in space across all eight 

islands (mean of 23 data loggers per island for most years but see caveat about Island D in 

2019, below). We used random cardinal directions and distances (0–5 m in 1 m increments) 

from haphazardly chosen points covering as much of each island as possible and then 

strapped the data loggers to branches using zip ties at random heights (0.5–2 m in 0.5 m 

increments) and orientations (above, to the side, or below the branch; Logan et al., 2021).  

We used linear models to compare weekly rainfall among years, with separate models 

for wet and dry seasons. We used weekly rainfall data to avoid zero-inflation caused by many 

rainless days. All analyses (here and below) were conducted in R version 3.5.3 (R Core 

Team, 2019). We used mixed-effect models to compare both daily regional temperatures 

(BCI weather station) and local island temperatures (OTM data) across years and seasons. 

We used ‘Date’ as a random effect to account for repeated daily measures. Mixed-effect 

models were implemented in the lme4 package in R (Bates et al., 2015). Diagnostic plots 

were checked for appropriate residual distributions for all fitted models. 

 

Population growth and survival models 

To calculate changes in population size and individual survival probabilities over 

time, we used open versions of the Robust Design model (Pollock, 1982) created in the 

RMark package (Laake, 2013). For both survival and population size models, we classed each 

year (breeding season) as the primary capture occasion and weekly captures within each 

season as the secondary occasions, of which there were 14 in 2017 and 13 in both 2018 and 

2019. We constrained the emigration and immigration (γ’’, γ’) parameters to zero under the 

reasonable assumption that rates of emigration and immigration were negligible in an island 

system. To calculate survival probability separately for males and females we included “sex” 

as a grouping factor. Models were ranked using Akaike’s Information Criterion corrected for 
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small sample size (AICc) and the final models were substantially lower in value than the next 

lowest value (Burnham and Anderson, 2002; Table S1). It was not possible to use the Robust 

Design Model for evaluating population sizes and survival for the islands introduced in 2018, 

as we did not conduct mark-recapture surveys on these islands immediately after introduction 

in 2018, and there were virtually no remaining individuals on any of these islands in 2019. 

Thus, population size estimates for 2019 represent the only remaining survivors after two 

months of extensive searching. We also estimated slender anole population density on each 

island by dividing our population size estimate by the total area of each island as calculated 

using Google Earth images in ImageJ v.1.52a (Schneider et al., 2012).  

 

Results 

Climate anomalies and establishment success 

Central Panama experienced a major drought from December 2018 to May 2019 with 

almost no rain recorded for four straight months (Paton, 2019). According to precipitation 

data recorded at the El Claro weather station on Barro Colorado Island from 1929 onwards, 

the 2019 dry season was the most severe dry season in more than 30 years, the seventh driest 

in almost a century, and was 65% drier than the average dry season. Within the timeframe of 

our study, rainfall was significantly lower in the dry season of 2019 compared to the previous 

two dry seasons (F(2,61) = 3.633, P =0.032; Fig. 1a). Rainfall was also significantly higher in 

the 2018 wet season during the second introduction period compared to 2017 and 2019 (F(2,61) 

= 3.656, P =0.029; Fig. 1a). Temperature data from the El Claro weather station on BCI 

showed that 2019 was also significantly hotter than the previous two years (as confirmed by 

the coefficient estimates and standard errors in a mixed-effects model; Table S2; Fig. 1b). 

This regional scale temperature difference was reflected at local scales, as well. Data from 

our environmental temperature data loggers showed that all islands were warmer during the 
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2019 drought period than during the same period in the year before (Island C: t(48)= -5.52, P = 

<0.001, temperature difference = 0.4°C; Island F: t(39)= -12.07, P = <0.001, temperature 

difference = 0.9°C; Island P: t(42)= -8.36, P = <0.001, temperature difference = 0.5°C). The 

difference was nonsignificant on Island D, but this was almost certainly a result of equipment 

failure which vastly reduced sample size (N = 2) in 2019. The timing of this drought meant 

that it primarily affected the F1 generations of the islands that were founded in 2017 and the 

F0 generations of the islands that were founded in 2018.  

After the drought, slender anole population size declined from 2018 to 2019 across all 

eight experimental islands (credible intervals for population sizes between these years were 

entirely or mostly non-overlapping for all islands; Table S3), including islands that were 

colonized in 2017 which had previously experienced population growth (Fig. 2a-d). The 

islands in 2018 that were founded only four months before the start of the drought 

experienced the steepest rates of decline, with all populations reduced to four or fewer 

individuals in 2019 (Fig. 2b+d).  

 

Competition and establishment success 

Slender anoles and Gaige’s anoles are likely competitors as they are similar in body 

size and are both generalist arthropod predators (Andrews, 1991; Köhler et al., 2012). These 

species also overlap in perch height, indicating that they may compete for space (confirmed 

by the coefficient estimates and standard errors for a mixed-effects model; Fig. 3; Table S4). 

Of the four islands to which we transplanted lizards in 2017, population size increased 

on the one-species islands (Islands C and P) from the first to the second generations (credible 

intervals for population sizes between these years were entirely or mostly non-overlapping 

for both islands; Table S3), followed by a decline in the third generation after the drought 

(Fig. 2a). By contrast, we observed continuous population declines of slender anoles over the 
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study period on the two-species islands (credible intervals for population sizes between years 

were entirely non-overlapping for both islands; Table S3), with near extinction by the third 

generation (Fig. 2a and 2c). While slender anole survival rates were higher on the one-species 

islands, population densities of slender anoles transplanted in 2017 were similar across all 

islands in 2018, irrespective of competitor presence (Fig. 2c, Fig. 4).  

 

Sex-specific survival and habitat use 

Among islands whereby differences in survival rate between the sexes could be 

analyzed (those founded in 2017), males had higher mean survival probabilities than females 

on one-species islands, whereas females were more likely to survive on two-species islands, 

across all years (Fig. 4). However, the credible intervals for estimates of survival probability 

broadly overlapped between the sexes in all years (Table S5). Male slender anoles perch 

higher than females on the mainland (Logan et al. 2021), and this difference in perching 

behavior between the sexes was also apparent on our one-species experimental islands 

(although the pattern was only statistically significant on Island C; confirmed by the 

coefficient estimates and standard errors from a mixed-effects model; Fig. 3; Table S4). 

Conversely, male and female slender anoles did not differ in perch height on the two-species 

islands (Fig. 3). The same mixed-effects model revealed that there were no significant 

differences in perch height when comparing within sexes across one versus two-species 

islands (Fig. 3; Table S4). 

 

Discussion 

Field-experimental studies on the processes that facilitate establishment during 

biological invasion are rare. We translocated slender anole populations to islands in the 

Panama Canal and found that both a chance climate anomaly and the community structure of 
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islands affected population dynamics across multiple generations. The populations that 

remained viable for at least three generations were those that had more time on the islands 

(two generations) prior to the drought, potentially allowing them to grow sufficiently or adapt 

to local conditions before the environment shifted. Populations were also more likely to 

remain viable in the absence of interspecific competition. Finally, we found limited evidence 

that males and females differed in their chances of survival depending on ecological context. 

Males appeared to survive longer than females in the absence of interspecific competition 

whereas females appeared to survive longer than males in the presence of interspecific 

competition, and this pattern held across years. Our results suggest that competition, climate 

stochasticity, and sex-biased trait differences in the colonizing population may be important 

factors limiting establishment success in invasive species. 

The final dry season of our study was drier than 93% of dry seasons over the previous 90 

years according to data from the El Caro weather station on BCI, and the Panama Canal 

Association asserted that it was the most severe drought on record in central Panama 

(Fountain, 2019). It is plausible that this drought resulted in severe water stress on our 

transplanted populations, especially as the experimental islands were warmer than the 

mainland even in non-drought years. Droughts can also have indirect effects by altering prey 

abundances and changing habit structure due to higher flora mortality (Walls et al., 2013). 

Studies have shown that precipitation levels influence reproductive output, habitat use, and 

population size in lizards (Andrews, 1991; Stapley et al., 2015; Ryan et al., 2016; Wang et 

al., 2016). Indeed, the four islands to which we translocated lizards only four months before 

the drought had effectively gone extinct by the beginning of the following wet season (less 

than a year later), even though these islands did not have a native competitor present. In 

contrast, the two one-species islands that we translocated during the wet season of 2017—

nearly two years and two lizard generations before the onset of the drought—were able to 
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maintain much larger population sizes into the third generation. Because these islands were 

hotter (and therefore likely drier) than the ancestral (mainland) environment from which these 

lizards came, it is possible that these populations were able to adapt (through genetic change, 

plasticity, or both) to drought-like conditions before exposure to the regional climate 

anomaly. Taken together, the growth trajectories of our experimental populations indicate 

that the timing of colonization relative to the timing of extreme weather events (or other 

environmental disturbances that shift local fitness optima) will be an important factor 

determining invasion success for some species.   

The drought alone did not constrain establishment success. Instead, it interacted with the 

community context in which slender anoles found themselves after colonization. Two of the 

four islands to which we transplanted slender anoles in 2017 had resident populations of a 

congener, Gaige’s anole. Slender anoles and Gaige’s anoles likely compete with one another, 

as these species are similar in body size, are both generalist arthropod predators, and their 

habitat use (perch height) overlaps (Fig. 3). These are conditions that are commonly expected 

to result in competition between species of anoles (Vanhooydonck et al., 2005; Johnson et al., 

2009; Grether et al., 2009; Delaney and Warner, 2017; Dufour et al., 2020). Prior to the 

drought, slender anole population size and density declined most on the two-species islands 

(Fig. 2). After the drought, slender anole populations on two-species islands further declined 

to near extinction, suggesting that competition had decreased population fitness beyond the 

threshold at which recovery from drought conditions may have been possible. These results 

support previous studies which argue that the presence of “enemies” in the colonized region 

can reduce the chance of successful invasion (Fey and Herren, 2014; Fey et al., 2019; Cox et 

al., 2020), while also highlighting the potential role of interactions between community 

structure and climatic variation.   
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 While extrinsic features of the colonized environment such as community structure 

and climate may affect establishment success and thus the likelihood of invasion, endogenous 

aspects of the colonizing population may also play a role. For example, in sexually dimorphic 

species, especially those where the sexes occupy different ecological niches, competition and 

climate stochasticity are unlikely to impact males and females equally (Clutton-Brock et al., 

2002; Rankin and Kokko, 2007). We found that male slender anoles had higher mean 

survival rates on islands where native competitor species were absent while females had 

mean higher survival rates on islands with an endemic competitor, resulting in skewed 

population sex-ratios almost immediately after colonization. While this pattern persisted for 

the length of our study, it is important to note that the credible intervals around our estimates 

of mean survival rate broadly overlapped between the sexes, and thus this result should be 

interpreted cautiously. Regardless, knowledge of the natural history of iguanian lizards 

suggests that males may have had reduced survival on two-species islands because they tend 

to be the more territorial sex, spending more time actively defending a region of space against 

individuals of related species (Iglesias‐Carrasco et al., 2020). Previous studies suggest that 

males tend to have lower survival rates in the presence of interspecific competition due to 

increased energy invested into territory defense and display behavior (Galliard and Fitze, 

2005; Seddon et al., 2013; Travers, 2015). Examination of perch height trends among islands 

showed increased niche overlap between male and female slender anoles on two-species 

islands (smaller differences in means and overlapping standard errors; Fig. 3), presumably 

because of competition for space with Gaige’s anoles, and this could have further reduced 

survival of both sexes via increased intraspecific competition (Bolnick et al., 2010). 

Nevertheless, it is important to note that we did not find statistical differences in the perch 

height of either male or female slender anoles when comparing them between one and two-

species islands, suggesting that the effects of Gaige’s anoles on slender anole habitat use 
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were subtle and indicating the need for further research on interactions between the two 

species. In contrast to reduced survival of males on two-species islands, males may have 

survived longer than females on one-species islands, and this could be because the islands 

were warmer than the ancestral environment, and male slender anoles have slightly higher 

heat tolerance than females (Logan et al. 2021). In support of this hypothesis, the only 

individuals left on the four one-species islands that were decimated by the drought were 

males. In the absence of interspecific competition, males may also be better at acquiring 

resources or evading island-based predators. Our results imply that sex-based trait differences 

in colonizing populations may play an important role in establishment success, and this 

should be especially apparent in sexually dimorphic species. Our results further indicate that 

differential survival of males and females in the aftermath of colonization may lead to faster 

population collapse than one would predict if sex-based differences are not considered.   

Due to human activity, the movement of alien species around the globe will continue 

to increase (Pimentel et al., 2000; Crozier and Dwyer, 2006; Urban, 2015), as will global 

temperatures and the frequency of extreme weather events (McLaughlin et al., 2002; IPCC, 

2021). Thus, it is crucial that conservation biologists understand the factors that increase the 

likelihood that alien species will establish outside their native range. We found that in novel 

environments, stochastic climatic events interact with competition to determine the 

establishment success of an experimentally generated “alien species,” and these dynamics 

played out differently between the sexes. Although extreme weather events might be 

expected to weaken local communities and increase their vulnerability to invasion 

(McLaughlin et al., 2002), we found instead that climate anomalies can eliminate an invading 

population if the anomaly occurs before that population has had a chance to adjust to local 

conditions. Community context was equally important, as the presence of a native competitor 

interacted with climate to limit establishment success. Finally, females benefitted from 
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interspecific competition but may have suffered under extreme weather, while the opposite 

was true for males, highlighting the ways in which invasion might play out differently 

between the sexes. Thus, accurate predictions of the likelihood of invasion will require an 

understanding of how features of the environment interact with endogenous aspects of the 

alien species to drive population dynamics.  
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Figure 1: Differences between mean weekly rainfall (A) and mean weekly temperature (B) 
for the wet (blue) and dry (orange) seasons, from 2017 to 2019. Rainfall and temperature 
were recorded from the El Claro weather station on Barro Colorado Island. Symbols 
represent mean ± S.E.M (some S.E.M are too small to be visible). Brackets with asterisks 
denote comparisons that were significantly different. 
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Figure 2: Changes in the size and density of slender anole populations that “colonized” 
islands with (dashed lines) or without (solid lines) a native competitor and either two 
generations before (left column), or within a few months of (right column), the onset of a 
severe drought. While slender anole population size (A) and density (B) either increased or 
remained stable on one-species islands that were colonized two generations before the 
drought, they declined on the two-species islands over the length of the study. Even though 
all the populations we translocated in 2018 about four months before the onset of the drought 
were placed on one-species islands, both population size (C) and density (D) crashed within 
one generation. Note that lines for several islands completely overlap on panels C and D.  
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Figure 3: Habitat use (perch height) differences between the sexes (red symbols = females, 
blue symbols = males) of slender (squares) and Gaige’s (triangles) anoles among one- and 
two-species islands. Left: in the absence of interspecific competition, male slender anoles 
perch higher than females, although this pattern was not statistically significant on Island P. 
Right: In the presence of a competitor, niche overlap tends to increase between male and 
female slender anoles. Data are pooled across generations and symbols represent mean ± 
S.E.M. The asterisk denotes a significant difference. 
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Figure 4: Differences in annual survival probability for males (blue bars) and females (red 
bars) among islands and years. Top row: males were more likely to survive on Islands C and 
P which lacked a native competitor. Bottom row: Females were more likely to survive on 
Islands D and F which had a native competitor (Gaige’s anole). Error bars represent upper 
and lower confidence limits. 
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