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Abstract 
Disturbances to aquatic habitats are not uniformly distributed within the Great Lakes and acute effects can be 
strongest in nearshore areas where both landscape and within lake effects can have strong influence. 
Furthermore, different fish species respond to disturbances in different ways. A means to identify and evaluate 
locations and extent of disturbances that affect fish is needed throughout the Great Lakes. We used partial 
Canonical Correspondence Analysis to separate “natural” effects on nearshore assemblages from disturbance 
effects. Species–specific quadratic models of fish abundance as functions of in-lake disturbance or watershed-
derived disturbance were developed separately for each of 35 species and lakewide predictions mapped for 
Lake Erie. Most responses were unimodal and more species decreased in abundance with increasing watershed 
disturbance than increased. However, eight species increased in abundance with current in-lake disturbance 
conditions. Optimum Yellow Perch (Perca flavescens) abundance occurred at in-lake disturbance values less 
than the gradient mean, but decreased continuously from minimum watershed disturbance to higher values. 
Bands of optimum in-lake conditions occurred throughout eastern and western portions of the Lake Erie 
nearshore zone; some areas were less disturbed than desirable. However, watershed-derived disturbance 
conditions were generally poor for Yellow Perch throughout the lake. In contrast, optimum Smallmouth Bass  
(Micropterus dolomieu) abundance occurred at in-lake disturbance values greater than the gradient mean and 
continuously increased with increasing watershed disturbance. Smallmouth Bass responses to disturbance 
indicated that most of the nearshore zone was less disturbed than is desirable  and were most abundant in areas 
that the Yellow Perch response indicated were highly disturbed. Mapping counts of species response models 
that agreed on the disturbance level in each spatial unit of the nearshore zone showed a fine-scale mosaic of 
areas in which habitat restoration may benefit many or few species. This tool may assist managers in 
prioritizing conservation and restoration efforts and evaluating environmental conditions that may be improved.  
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1 INTRODUCTION 

The Laurentian Great Lakes Region is a vast system of aquatic and terrestrial habitats of widely varying 

conditions, supporting a diverse array of living communities, including fish which are valuable as harvestable 

resources, key ecological component, and indicators of environmental conditions.  However, fish are threatened 

by numerous environmental disturbances and influenced by natural conditions (Loftus and Regier 1972, Ryder 

1972). Disturbances are extensive in the Great Lakes and degrade biodiversity and ecological function (Christie 

et al. 1972, Allan et al. 2013, Johnson et al. 2016, Uzarski et al. 2017). Resources to manage and rehabilitate 

fish populations and fish habitats are limited, as is knowledge of where aquatic habitat does and does not 

support healthy fish populations, and what may be degrading conditions for fish (Rieger and Loftus 1972, 

Kovalenko et al. 2018). Tools that effectively identify areas where management investment is likely to benefit 

the most species and ecosystem services could assist with prioritization of resources (Allan et al. 2013). 

Extensive environmental disturbances are caused by human activities, which are among the few factors 

that humans may manipulate to manage fish populations (Smith et al. 2015). These disturbances have numerous 

sources and are not uniformly distributed in space or time (Allan et al. 2013, Wehrly et al. 2013, Kovalenko et 

al. 2018, McKenna and Kocovsky 2020). There has been extensive work to identify environmental stressors that 

affect fishes in the Great Lakes (Colby et al. 1972, Johnson et al. 2016, Uzarski et al. 2017, for example). Most 

of these studies associate metrics and multimetric indices to measures of fish community conditions (e.g., 

species and guild richness) to make lake- or region-wide estimates of the extent of degraded conditions. 

Important ecological monitoring programs are based on some of these efforts (e.g., Great Lake Coastal Wetland 

Monitoring program (GLCWM), Uzarski et al. 2017 and Great Lakes Ecological Indicators (GLEI) program). 

These programs have focused on either stressors within watershed or those occurring within the Great Lakes 

proper, few have used both (Kovalenko et al. 2018).  Two recently developed multimetric disturbance indices 

that address each of these realms are the Great Lakes Environmental Assessment Mapping (GLEAM) (Allen et 

al. 2013) and landscape watershed (Wehrly et al. 2013) indices. The GLEAM index describes a combination of 

factors mostly from within lake or coastline sources, while the Wehrly watershed index combines watershed-

derived disturbances that are transferred to the Great Lakes through the region’s river networks, mostly to the 

nearshore zone. Together these indices encompass the vast majority of significant disturbance factors affecting 

the Great Lakes and include both US and Canadian regions.  

Coastal wetlands and coastline habitats are important for Great Lakes fishes (Johnson et al. 2016, 

Uzarski et al. 2017, Kovalenko et al. 2018), but face numerous degrading influences. A recent study used the 

GLEAM and Wehrly indices, along with data from the GLCWM and GLEI programs, to evaluate 

anthropogenic disturbances to wetlands and coastal fish habitats (Kovalenko et al. 2018).  The study showed 

degradation of numerous areas, based on reduced species richness and intolerant species occurrences (and other 
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metrics), but also identified high quality areas with few anthropogenic effects. The nearshore zone is also a 

critical realm for Great Lakes fish life cycles  (Goodyear et al. 1982, Lane et al. 1996, McKenna 2008, for 

example). However, the nearshore zone is at the interface between influence from watersheds and within lake 

processes and little is known about how various anthropogenic factors affect fishes in this realm.  

 The typical expectation is that the greater the disturbance, the worse conditions are for fish. However, 

increasing disturbance levels are not consistently detrimental to all fishes. Measures of “tolerant species” are 

common metrics (Karr et al. 1981, Riseng et al 2004) and some studies have noted relatively high occurrence of 

intolerant species in areas experiencing high anthropogenic disturbance (Kovalenko et al. 2018).  It is logical to 

expect that different fish species have different preferences for environmental conditions and will therefore 

exhibit different responses to disturbance in any given location. Differential changes to Great Lakes fishes in 

response to change environmental conditions have been observed (Smith 1972).  So-called tolerant species may 

actually be enhanced by increasing disturbance, not just tolerant of those conditions. Also, fish are mobile, 

responding to both natural and disturbed conditions and moving to different areas to satisfy their needs at 

different life stages (Stabell 1984, Atchison et al 1987, for example). Therefore, we would not expect all fish 

species to be distributed uniformly in space or time; the greatest abundances are likely to be in the best available 

habitats. Previously developed multimetric indices of anthropogenic disturbances may not behave as expected 

when species responding positively to increasing disturbance are included as a measure of degradation for fish 

communities. Because natural resource managers focus on disturbances and have limited resources, separating 

the influence of “natural” conditions from anthropogenic disturbances is important. We present a process to 

make this separation and display the spatial distributions of the effects of human disturbances from the fishes’ 

perspectives, statistically (sensu Magnuson et al. 1980).  

In this study, we used the extensive fish and habitat datasets for the Great Lakes Region and build on the 

statistical approaches of previous researchers to determine the responses of Great Lakes fish abundances to 

disturbance indices throughout the Great Lakes nearshore zone. Given the assumption that fish can move away 

from areas of poor condition to accessible areas with better conditions, we can use statistical ordination 

approaches to control for the effects of “natural” influences and detect the response of fish abundances to 

multiple stressors. We quantify species-specific responses of abundance to within- lake and watershed-derived 

disturbances and report on species’ preferences along gradients from high to low disturbance conditions. We 

determine the fish-disturbance relationships for all of the Great Lakes, but use Lake Erie to illustrate the spatial 

distribution of fish-perceived disturbance conditions in the nearshore zone of an entire lake. We use ordination 

and quadratic regression to develop the relationships between each species’ abundance and degree of 

disturbance, and a geographic information system (GIS) to map the distribution of disturbance and spatial 



4 
 

agreement among species, providing a tool that highlights locations with habitat that may be considered for 

protection or restoration for multiple species. 

Our objectives were to 1) separate the “natural” influences from anthropogenic disturbances affecting 

fish abundances in the Great Lakes, 2) develop quantitative, species-specific abundance models of response to 

multimetric indices that include all of the known significant disturbances to fish and fish habitats throughout 

Great Lakes nearshore zones , 3) use those models and the distribution of disturbances to predict abundance 

responses for each species at each location (30-m spatial cell) within the Lake Erie nearshore zone, and 4) 

quantify species agreement about disturbance conditions in each location by overlay of those species-specific 

maps. The resulting species-specific disturbance distributions and degrees of species agreement can assist 

managers with decisions about species on which to focus and in what locations to conduct restoration or 

protection activities. 

2 METHODS 

2.1 Study area 

The Great Lakes nearshore zone was defined as water of ~3 – 30 m depth, except in Lake Erie, where 

maximum nearshore zone depth was 15 m (Wang et al. 2015, Riseng et al. 2018). “Natural” environmental data 

(variables resistant to anthropogenic influence) and anthropogenic disturbance data used in this study were 

attributed to the nearshore zone at the 30-m spatial cell resolution. The entire nearshore zone of the Laurentian 

Great Lakes consisted of 53,478,427 spatial cells. These spatial units are grouped within large circulation units 

called Aquatic Lake Units (ALUs) within each Great Lake (McKenna and Castiglione 2010). Because the 

availability of disturbance indices and fish observations was greatest in Lake Erie, we use its nearshore zone to 

illustrate application of fish prediction models and spatial agreement of fish abundance response to disturbed 

conditions throughout a great lake. The Lake Erie nearshore zone consisted of 9,770,077 30-m cells (Forsyth et 

al. 2016, Riseng et al. 2018).   

2.2 Data    

This empirical analysis was possible because of extensive databases from throughout the Great Lakes 

collected by many people and agencies. Fish data were provided by the US Geological Survey and collaborators 

using standardized trawl collections throughout the Great Lakes (US Geological Survey 2018) (Fig. 1, 

Appendix I) Abundance of each fish species at each trawl event location was effort-standardized to number of 

fish per 1,000 m2 of area swept by the trawl (catch per unit effort, CPUE) and ln-transformed. There were 4,332 

nearshore fish assemblage samples with matching habitat and disturbance values throughout the Great Lakes 

(1,540 from Lake Erie, 619 from Lake Huron, 293 from Lake Michigan, 1,154 from Lake Ontario, and 837 

from Lake Superior), and included 80 species, 35 of which occurred at least 100 times (Appendix I). Collection 
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station depth ranged from 0.55m – 15.55m and of the 4,332 collections, 1,586 were from sites in depths ≤3m. 

Although modeled because of their presence in other lakes, four species do not occur in Lake Erie (Cisco 

(Coregonus artedi), Bloater (Coregonus hoyi), Pygmy Whitefish (Prosopium coulterii), and Round Whitefish 

(Prosopium cylindraceum)) (Meter and Trautman 1970, Scott and Crossman 1973, Page and Burr 1991); Cisco 

is a species of interest because of historic populations in Lake Erie (Oldenburg et al. 2007, Great Lakes Fishery 

Commission - Lake Erie Committee (glfc.org), September 2021). Each fish species was also classified 

according to its general habitat usage (pelagic vs. benthic or demersal).  

Environmental and disturbance data were available for all fish observation locations throughout the 

Great Lakes proper and for every 30-m spatial cell within Lake Erie. Data for 50 environmental variables, 

provided by the Great Lakes Aquatic Habitat Framework project (GLAHF) (Wang et al. 2015, Forsyth et al. 

2016, Riseng et al. 2018), and the Great Lakes Regional Aquatic Gap Analysis Project, (McKenna and 

Castiglione 2010, McKenna et al. 2015), were available to characterize “natural” habitat and aquatic conditions  

(Appendix II). Anthropogenic disturbance data came from three sources (Hillyer 1996, Wehrly et al. 2013, 

Allan et al. 2013) and consisted of the GLEAM index of Allan et al. (2013), the Wehrly index (Wehrly et al. 

2013), and the Coastal Modification Index (Hillyer 1996) (Appendix III). The GLEAM and Wehrly indices are 

composite indices of numerous stressors. The GLEAM index consists of 34 variables focused mostly on the 

open waters and coastline of each Great Lake. The Wehrly index consists of five synoptic variables affecting 

aquatic habitat within the watersheds emptying into each Great Lake and focused on nearshore stressors. The 

third disturbance variable was the coastline “protection” metric provided by US Army Corps of Engineers 

(Hillyer 1996), which is a measure of the extent of greatest shoreline modification projected out to each spatial 

cell in each lake. These disturbance measures represent the human perceptions of disturbances that are likely 

stressors for fish. These three stress factors were combined into composite variables in the partial canonical 

correspondence analysis (pCCA) described below. 

2.3 Ordinations 

Our objectives were accomplished by a methodological process that began with ordination followed by 

regression, classification, and GIS mapping (Fig. 2). Multivariate methods help reduce complex relationships 

among multiple species and with their environments to fewer, simpler relationships (Pielou 1977).  These 

provide insight into the influence of and preferences for various types of conditions by each species of a biotic 

community (ter Braak 1995, McKenna and Castiglione 2010, McKenna 2013, Kovalenko et al. 2018, for 

example). Correspondence analysis uses unimodal responses to identify important patterns of differences and 

similarities in species optimal conditions. In the canonical correspondence analysis (CCA) used here, the 

ordination was constrained to use combinations of the habitat variables to build the best composite variable that 

explained the variation in the fish abundance data. We used the CANOCO program to conduct CCA with 

http://www.glfc.org/lake-erie-committee.php
http://www.glfc.org/lake-erie-committee.php
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forward selection of each environmental variable, using a permutation test for significance (99 permutations), to 

identify each species’ preferred environmental conditions (ter Braak and Smilauer. 2012). The full CCA used 

spatially matched ln-transformed fish CPUE and environmental data for all Great Lakes nearshore zones (ter 

Braak 1995). The forward selection procedure identified those environmental variables that significantly 

affected fish abundance. The full CCA identified 26 of the 50 environmental variables as influential (all 

inflation factors were < 6.6, Fig. 3, Appendix II). Weighted linear combinations of those variables were used to 

construct composite environmental indices represented by each ordination axis (each axis is composed of all 26 

environmental variables, but with different weightings), with the first axis explaining the most variability within 

the data and subsequent orthogonal axes explaining additional portions of the remaining variation. A triplot 

diagram shows the clustering of samples and associations of each species’ optimal conditions with the 

environmental variable gradients and each Great Lake (Fig. 3).  

We then used partial CCA ordination to parse out the effects of the natural environmental factors and 

isolate the effects of the disturbance factors on fish abundances; the 26 influential environmental variables 

identified in the full CCA were co-variables with the three anthropogenic disturbance variables. As with the full 

ordination, the partial CCA process used weighted linear combinations of the three disturbance variables to 

construct composite disturbance variables represented by each axis, hereafter called disturbance gradients. We 

used the first two axes (i.e., disturbance gradients), because they explain the most variability (Fig. 4). 

2.4 Quadratic Model fit 

Predictive quadratic models were developed from these simplified multivariate relationships of species  

response to disturbance gradients in the two partial CCA unimodal models. All species included in the 

nearshore dataset (80 species) were included in the ordinations. However, most species were rare and to help 

ensure detectable responses to habitat and disturbance conditions, only species which occurred at least 100 

times in the dataset (35 species) were used to develop the quadratic response models. We used the CANOCO 

program to fit those quadratic models of the response of fish abundance (ln(CPUE)) for each species, separately 

to each composite disturbance gradient, assuming a Poisson distribution and using an F-test for model 

significance at the α=0.05 level (see ter Braak and Smilauer 2012, section 5.4.4). The optimum is the 

disturbance value associated with the maximum predicted abundance. The tolerance is a measure of the spread 

of a unimodal curve along the disturbance gradient. Together these describe the shape of unimodal response 

patterns, the same characteristics as that of a Gaussian curve (Jongman et al. 1995, ter Braak 1995) (See 

Supplementary Fig. S1). Monotonic increasing or decreasing response curves can also result from quadratic 

model regression (Fig. 5). If the second order term was not significant or the linear form of the model (i.e., 

model without the second order term) contained more information than the quadratic form (i.e., greater Akaike 

Information Criterion (AIC) value), then the linear model was selected.  
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These predicted species abundance patterns reflected fish response to disturbed conditions. Composite 

disturbance index values for each 30-m spatial cell within Lake Erie’s nearshore zone were computed by 

applying the weightings of the linear combinations for each disturbance gradient (i.e., partial CCA axis) to the 

values of the three original disturbance variables at each spatial location. These composite index values formed 

the independent variable data for quadratic model predictions and species-specific abundance predictions were 

then made for each Lake Erie nearshore zone spatial unit (cell) for each disturbance gradient. To simplify 

interpretation and comparison of disturbance conditions between species and among geographic areas, predicted 

disturbance values were classified according to the number of relative deviation units of those values from the 

optimum disturbance gradient value (i.e., at maximum abundance). Unimodal responses of fish abundance were 

placed into associated disturbance classes of multiple tolerance units (t) and coded for display and 

quantification purposes as +3 (< -2t), +2 (< -1t to ≥ -2t), +1 (< -0.5t to ≥ -1t), 0 (≤ 0.5t to ≥ -0.5t), -1 (> 0.5t to ≤ 

1t), -2 (> 1t to ≤ 2t), -3 (> 2t). This scale highlights small negative code values (e.g., -3) as highly degraded, 

large positive numbers as hyperoptimal (defined here as less degraded than preferred), and 0 as preferred 

conditions (Fig. 5). For example, an abundance value within ½ tolerance unit away from the predicted 

maximum would be associated with a disturbance level within ½ tolerance unit from the optimum disturbance 

level and would be given a disturbance class label of 0. An abundance value associated with a disturbance 

gradient value more than 2 tolerance units greater (i.e., more disturbed) than the optimal value was labeled -3. 

This tolerance unit scale divides the area under a symmetric unimodal curve of predicted fish abundance into 

four units on either side of the optimum disturbance value (splitting the 0 class into ½ t units).  These relative 

measures of deviation from the optimum disturbance value were necessary, because maximum abundance 

values and thus, optimal disturbance values, could occur anywhere along the disturbance gradients and differed 

by species. For best comparison, monotonic response model predictions of abundance were assigned to four 

similar disturbance classes, based on quintiles of the areas under those curves from the disturbance value 

associated with the maximum abundance value as follows: < 20%, 20%-40%, 40%-80%, and >80% (Fig. 5b). 

These indicate degrees of degradation for species whose abundance decreased with increasing disturbance 

gradient values and the degree of hyperoptimality for species whose abundance increased with increasing 

disturbance gradient values. The associated disturbance class labels were 0, 1, 2, or 3 and were positive or 

negative depending on whether the curve was increasing or decreasing. These classifications provide 

comparable measures of the degree of disturbance for each fish species in response to each disturbance gradient 

in each spatial unit.  

2.5 Disturbance distributions 

Classified model predictions of disturbance at each spatial location within the Lake Erie nearshore zone 

were then used in a GIS to determine spatial distributions of disturbance. A separate map layer was generated 
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for each species for each of the two disturbance gradients. Each spatial cell was colored coded according to the 

associated disturbance class label for a given species. Yellow Perch (Perca flavescens) and Smallmouth Bass 

(Micropterus dolomieu) were selected to illustrate how species may respond differently to levels and changes in 

anthropogenic disturbances, because of their clearly opposing responses. 

2.6 Disturbance level agreement 

Overlay of these species-specific distributions allowed us to count the number of species whose 

predicted abundances were classified into the same disturbance class (i.e., in agreement about the level of 

disturbance). All species-specific maps of disturbance were geographically aligned such that the disturbance 

class value for each species at each 30-m spatial location of the nearshore zone were stacked one on top of the 

other. Then, for each disturbance class, a count was made of the number of species in the stack whose predicted 

disturbance fell into that class at that location. Thus, the number of species associated with the most highly 

disturbed conditions (class -3) was recorded for a given spatial location. Then the number associated with 

moderately disturbed conditions (class -2) at that same location was recorded, and so forth for each disturbance 

class. The process was then repeated for every 30-m spatial location. These counts of species agreement were 

made separately for each disturbance gradient and mapped to show the spatial distribution of high and low 

agreement about disturbance throughout Lake Erie’s nearshore zone. The predictive models developed for the 

four species that do not exist in Lake Erie, but are present in other Great Lakes, were excluded from the counts 

of agreement for Lake Erie. 

3 Results 

Environmental and anthropogenic disturbance index values were available for all of the >53 million 30-

m spatial cells throughout all of the Great Lakes nearshore zones. Anthropogenic disturbances were not 

uniformly distributed throughout the nearshore zones (Supplementary Fig. S2) (see Wehrly et al. 2013, Allan et 

al. 2013, and Riseng et al. 2018 for distribution maps of the entire Great Lakes Region). In Lake Erie, the 

highest values (i.e., interpreted as most disturbed) of the predominately in-lake GLEAM disturbance index 

occurred in sections along the south shore and Buffalo, New York area, with many other areas having less 

disturbed conditions (Fig. S2a). The highest values of the predominately watershed derived Wehrly disturbance 

index were concentrated in the westernmost portion of the lake (Fig. S2b). Shoreline modifications also varied 

spatially, with the most extensive modifications in scattered patches along the southern coast of the lake and a 

few other areas (Fig. S2). 

3.1 Regionwide ordination 

The full CCA ordination provided indications of the effects of “natural variability” on distributions and 

abundances of the fishes in the Great Lakes. The ordination explained 18.6% of total variation and >75% of 
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fitted variation with the first two canonical axes (Table 1). Those CCA axes were dominated by the influences 

of cumulative degree-days (measured from mean daily surface water temperature with base 0° C), distance to 

nearest tributary mouth, mean summer wave height, ice duration, and water depth (Fig. 3, Appendix II). Species 

optima (shown by open triangles in Fig. 3) indicate the hyperspace location where environmental conditions 

were associated with the highest abundance values for each species, i.e., optimum conditions. For example, 

Largemouth Bass (Micropterus salmoides) and Bluegill (Lepomis macrochirus) have similar (but not the same) 

habitat optima, while Lake Whitefish (Coregonus clupeaformis) habitat conditions are quite different from 

Brook Trout (Salvelinus fontinalis) habitat. There was relatively strong separation by Great Lake based on 

distinct groups of species optima and associated conditions, with a clear gradient from Lake Ontario (negative 

values) to Lake Superior (positive values) along the second axis, but with Lake Erie being most distinct and 

located in the negative portion of the first axis and at approximately average values of the second axis.  

3.2 Disturbance ordination 

Partial CCA filtered out the natural variability and determined how the remaining variability was 

affected by disturbance factors (GLEAM, Wehrly, and Coastal Modification) (Anderson and Gribble 1998, 

Esselman et al. 2011) , revealing the effects of anthropogenic disturbances (as defined by our disturbance 

indices and coastal modification metric) on fish distributions and identifying “optimal” disturbance conditions 

for each species (Fig. 4). The first two axes of the partial CCA explained 0.56% of total remaining variation, but 

>84% of the association between disturbance and fish abundances (Table 1). Forward selection included all 

three disturbance variables (inflation factors were <4.3). Values of the 1st CCA axis were determined by,  

Axis1 = 1.9675G – 0.1488W – 0.0684S, 

and by  

Axis2 = 0.1937G + 1.4048W – 0.3321S 

for values of the 2nd CCA axis (Table 2), where G is the value of the GLEAM index, W is the value of 

the Wehrly index, and S is the value of the Coastal Modification index. 

As with the full CCA ordination diagram, the lengths and directions of the arrows in Figure 4 indicate 

that the Wehrly index (watershed effects) focused in the nearshore zone had the most influence (longest vector), 

but was very closely aligned with Axis 2 (which explains less variation then Axis 1), while the GLEAM index 

(essentially open lake and coastal effects), the second longest vector, is closely aligned with Axis 1. The coastal 

modification index (KM9PROTC) had the least influence, but contributed approximately equally to each CCA 

axis. Because the first CCA Axis was so strongly dominated by the GLEAM index and the second CCA Axis 

was strongly dominated by the Wehrly index (Table 2, Fig. 4), we hereafter refer to these disturbance gradients 

as in-lake disturbance and watershed disturbance, respectively. The clusters of sample points showed no 

separation by lake. The ordination used only locations where matching fish, habitat, and disturbance values 
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existed. However, values of each of the three original disturbance variables were available for every 30-m 

spatial cell within the nearshore zone, and because each disturbance gradient is a weighted combination of those 

three original disturbance variables, the values of disturbance were computed for each spatial cell and 

subsequently used in fish prediction models. Each species optimum represents the peak of a unimodal response 

to changes in fish abundance along each ordination axis, at which a specific combination of disturbance 

conditions occurs (based on the three variables) (Fig. 4).  

3.2.1 Spatial distribution of disturbance 

Given the dominance of each ordination axis by one of the disturbance indices, it is no surprise that the 

distributions of disturbance, based on the composite ordination variables, resemble aspects of the three original 

disturbance variables (Fig. 6). Values of the in-lake disturbance gradient were highest closest to shore in 

Maumee Bay, Ohio, near Buffalo, NY, near the mouth of the Raisin River, Michigan, and in a large section of 

the south shore from Sandusky Bay to the Pennsylvania border with Ohio. Western sections of the north shore 

and offshore areas of the western ALU were least disturbed. The second CCA Axis (Watershed-dominated 

gradient) showed most disturbed areas in a band along the western end of the lake from the Detroit River to 

Cedar Point, OH and in large patches along the south shore and a few other scattered areas; other areas 

experienced moderate to low disturbance.  

3.3 Responses to disturbance 

Quadratic models fit responses of fish abundance to each disturbance gradient well for most of the 35 

species that occurred at least 100 time in the dataset (Table 3). Of the 70 possible models, no model could be 

successfully fitted to three species, Burbot (Lota lota) and Bluegill in response to watershed disturbance, and 

Common Carp (Cyprinus carpio) in response to in-lake disturbance. Seven of the remaining models were 

significant (p ≤ 0.05) as linear, but not quadratic models; all linear models had negative slopes, except that for 

Smallmouth Bass (Table 4). All other models were significant (p ≤ 0.05) quadratic models. 

Quadratic models produced four patterns of fish abundance response to the two disturbance gradients, 

monotonic decreasing, monotonic increasing, unimodal, and concave up parabolic (Fig. 5, Table 4). Monotonic 

decreasing models indicated that maximum fish abundance occurred at the smallest observed disturbance 

gradient value (or less) and decreased with increasing disturbance values. Monotonic increasing models 

indicated that maximum fish abundance occurred at the largest observed disturbance gradient value and 

decreased with decreasing disturbance values. The unimodal models indicate that fish abundance was maximal 

at intermediate disturbance values. Thus, lower abundances occurred at both higher and lower disturbance 

values than that associated with the optimum. Parabolic models may be truncated bimodal curves and could 

suggest ecological displacement from optimum conditions due to competition (Fresco 1982), but that 
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investigation is beyond the scope of this study; species with parabolic response models for a given disturbance 

gradient were excluded from further analysis (Table 3).  

The majority of response patterns were unimodal within each disturbance gradient (62% of responses to 

in-lake disturbance and 65% of responses to watershed disturbance) (Table 3). Those models were divided into 

three classes for this analysis, optima near the mean (within ½ disturbance gradient unit) disturbance gradient 

value (defined here as a disturbance value of zero), those with optima less than the mean class, and those with 

optima greater than the mean class (Table 4).  

Species were listed in order of sensitivity to each disturbance gradient, with relative sensitivity defined 

by location of maximum predicted abundance along the disturbance gradient and more sensitive species having 

maxima associated with lower disturbance values than less sensitive species (Fig. 7, Tables 3 and 4); more 

steeply sloped monotonic curves were ranked as more sensitive than those with shallower slopes. Six species 

clearly showed decreasing abundance with increasing in-lake disturbance, while eight species clearly showed 

decreasing abundance with increasing watershed disturbance. Among those species with an optimal response to 

in-lake disturbance, two species optima were less than the mean in-lake disturbance (by more than 0.5 units), 14 

were near the mean, and two optima were greater than the mean disturbance. Among those species with an 

optimal response to watershed disturbance, seven species optima were less than the mean watershed 

disturbance, eight were near the mean, and four optima were greater than the mean disturbance. Five species 

preferred high levels of in-lake disturbance, while two species preferred high levels of watershed disturbance. 

Coregonine species and Yellow Perch were notably classified as most sensitive (or nearly so, more than 0.3 

below the mean) to both types of disturbance. More species were sensitive to watershed disturbances (52%) 

than to in-lake disturbances (28%). Conversely, defining "malphilic" species as either those with increasing 

abundances with increasing disturbance or those with optima more than the mean disturbance level, there were 

seven malphilic species associated with in-lake disturbance  and six malphilic species associated with watershed 

disturbance, including Smallmouth Bass, which responded positively to both disturbance gradients (Table 4). 

Several species clearly responded differently to the two types of disturbance. For example, Alewife (Alosa 

pseudoharengus) and White Sucker (Catostomus commersonii) preferred high levels of in-lake disturbance, but 

were among the most sensitive species to watershed disturbance. Round Goby (Neogobius melanostomus) and 

Channel Catfish (Ictalurus punctatus) were among the most sensitive species to in-lake disturbance, but 

preferred high levels of watershed disturbance. None of the species were classified into the same response class 

for both types of disturbance.  

3.4 Distributions of disturbance 

Predictions from all successful models were used to map the spatial distributions of disturbance for each 

species (Supp. Fig. S2 – S13).  In general, the distribution of the most disturbed conditions manifested as 
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patches or extensive bands of habitat along the western and southern shores of Lake Erie and at the eastern end 

in the Buffalo, NY area, while offshore areas and parts of the western portion of the north shore in the Central 

ALU (Fig. 1) had patches of better habitat (Fig. S2). However, the extent and specific locations of degraded, 

optimal, and hyperoptimal conditions varied by species and differed for each type of disturbance gradient. 

Several of the species (e.g., Alewife and Smallmouth Bass) that were associated with increasing disturbance, 

had optimal conditions along the western and southern shores and at the eastern end of the lake, but 

hyperoptimal conditions in other areas.  

We focus on two common and important fishery species from Lake Erie, Yellow Perch and Smallmouth 

Bass, and one extirpated species (Cisco) to illustrate differences in the association with disturbance conditions 

by different fish species in the nearshore zone. The Yellow Perch optimum (PRCH) in the partial CCA 

ordination space was located in the quadrant where values of each type of disturbance were less than the 

average (origin) (Figs. 5 and 7). The Yellow Perch response to in-lake disturbance showed a typical unimodal 

response, increasing in abundance to a maximum at just a little less than average disturbance conditions (-0.306, 

“optimum” disturbance) and then decreasing with greater disturbance (Table 3, Fig. 8a inset). Yellow Perch 

responded to watershed disturbances with a monotonic curve, decreasing as disturbance increased (Fig. 8b 

inset). Maps of these classified disturbance values (using the -3 through +3 scale) at each spatial location 

displayed the distribution of disturbance to Yellow Perch habitat conditions throughout the nearshore zone of 

Lake Erie (Fig. 8). The map of in-lake disturbance showed the highest disturbances (class -3) in bands along the 

lake shore at the western end, along the south shore from Cedar Point, OH east to Presque Isle, PA, in the 

Buffalo, NY area, and scattered among other areas of the eastern ALU (14.3% of the nearshore zone) (Fig. 8a).  

Less disturbed habitats occurred in bands moving offshore (29.5% of zone) and optimal disturbance conditions 

occurred in two large bands in the western ALU and around some of the islands, as well as in the eastern half of 

the lake (19.4% of zone). Several relatively large patches of habitat farthest offshore in the western ALU and 

western half of the north shore in the central ALU, and scattered in a few other places, were considered to be 

less disturbed than preferred by Yellow Perch (36.7% of zone). The map of watershed-derived disturbance 

indicated that nearly the entire lake was either highly (class -3) or moderately (class -2) disturbed for Yellow 

Perch, with <1% of the nearshore having suitable conditions (Fig. 8b).    

The Smallmouth Bass optimum (SBAS) in the partial CCA ordination space was located in the quadrant 

where values of each type of disturbance were greater than the averages (Figs. 5 and 7). The Smallmouth Bass 

response to in-lake disturbance showed a unimodal response, increasing in abundance to a maximum at a 

disturbance value much greater than that of average conditions (1.88, optimum disturbance) and then decreasing 

with greater disturbance (Table 3, Fig. 9a inset). The map of classified in-lake disturbance values for 

Smallmouth Bass in the Lake Erie nearshore zone was characterized by the most disturbed conditions (-3) in 
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patches along the south shore in Ohio, including Maumee Bay, and near Buffalo, NY (Fig. 9a). Narrow bands 

of less disturbed conditions occurred in the same areas. Optimal habitat occurred throughout most of Sandusky 

Bay, OH and narrow bands offshore of degraded conditions along most of the lake’s coast, except for the 

western half of the north shore. All remaining areas were considerably less disturbed than preferred 

(hyperoptimal). Smallmouth Bass was one of only two species that responded positively to watershed-derived 

disturbances with a monotonic curve increasing as disturbance increased (Fig. 9b inset). The map of those 

“disturbance conditions” showed a band of optimal habitat along the western shore of the lake from the Detroit 

River to Cedar Point, OH (Fig. 9b). All other areas of the lake were less disturbed than preferred by Smallmouth 

Bass. The preferences of other species for disturbance throughout the nearshore zones of Lake Erie tended to 

grade between these two examples (Supp. Fig. S2 – S13 species maps).  

Interest in Cisco restoration to Lake Erie makes identifying relationships between Cisco abundance and 

disturbance conditions highly desirable. The Cisco optimum (LKHR) in the partial CCA ordination space was 

also located in the quadrant with lower than average disturbances (Fig. 7). Its quadratic model in response to in-

lake disturbance was monotonically decreasing and its response model to watershed disturbance was unimodal 

with an optimum at -0.679, indicating that it was sensitive to both types of disturbance. Highly or moderately 

degraded Cisco habitat conditions were associated with in-lake disturbance throughout the Lake Erie nearshore 

zone (Fig. S3a.). Watershed-derived disturbance was patchy with optimal conditions for Cisco in narrow bands 

or patches throughout the nearshore zone; the most extensive optimal conditions were predicted be along the 

northeastern shore (S10g.). Highly degraded conditions were generally closer to shore, with the most degraded 

conditions along the western and southern shores, and hyperoptimal conditions generally offshore. A fine-scale 

mixture of predicted disturbance conditions occurred in several places, including Sandusky Bay, OH, Presque 

Isle, PA, and Buffalo, NY. 

A cursory examination of general habitat use (pelagic vs benthic) showed a broad mixture of habitat use 

across the different responses to in-lake disturbance. However, those species classified as generally pelagic 

were most sensitive (or within the average disturbance class, but with optima ≤ 0.0) to watershed disturbance. 

3.5 Disturbance agreement 

At any given location, predictions of species’ abundance-disturbance relationships will differ. Summing 

the number of species within a particular disturbance class at a particular location gives a measure of agreement 

among species about disturbance level. Twenty-five of the 35 species that occurred >100 times in the dataset 

were native to Lake Erie, six were established exotics, one was extirpated (Cisco), and three never occurred in 

Lake Erie (Bloater, Pygmy Whitefish, and Round Whitefish). Discarding species with parabolic models and 

those absent or extirpated, 25 species models remained for each of the disturbance gradients. Thus, if all 

species’ responses indicated the same level of  disturbance at a particular location, the agreement measure 
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would be 25, the maximum number of species that could agree. Counts of species’ agreement were determined 

for each of the seven disturbance classes for each disturbance gradient. For example, if 20 species’ model 

predictions indicated that the most degraded watershed disturbance conditions existed within a spatial cell near 

Buffalo, NY (orange patches on Fig. 10b) and five indicated less degraded conditions, then the agreement 

measure is 20 and 80% of the species indicate that conditions are highly degraded. Computation of agreement 

was completed for each of the nearly 10 million 30-m spatial cells composing the Lake Erie nearshore zone for 

each disturbance class for each disturbance gradient, and mapped. This created 14 maps of the spatial 

distribution of fish disturbance throughout Lake Erie’s nearshore zone (Figs. 9, 10, and Suppl. Fig. S15-S19).  

The greatest degree of agreement among species occurred for the most highly degraded disturbance 

class (-3). Agreement among species about where in-lake disturbances were worst, ranged from 0 to 20 (Fig. 

10a). Between 18 and 20 species indicated that conditions were highly disturbed in Maumee Bay, off the mouth 

of the Raisin River, MI, and large sections along the south shore of the lake from Cedar Point, OH to Presque 

Isle, Pennsylvania, as well as in areas near Buffalo, NY; agreement was greatest closest to the shoreline and 

decreased moving offshore. Fewer than four species’ predictions indicated highly disturbed conditions 

throughout most of the open waters of the western ALU, western half of the Canadian nearshore zone, and 

sections along the PA and western NY coasts. 

Agreement among species about where watershed-derived disturbances were worst (-3) ranged from 0 to 

23 (Fig. 10b). Nearly all species’ predictions indicated highly disturbed conditions along the western end of the 

lake from Cedar Point, OH to the mouth of the Detroit River and in a small area adjacent to Cleveland, OH. 

More than 17 species indicated that conditions were highly disturbed in large sections along the south shore of 

the lake, as well as in areas near Buffalo, NY; agreement was greatest closest to the shoreline and decreased 

rapidly moving offshore from the western end.  

Maps of species agreement counts for lesser degrees of disturbance (classes -2 and -1) showed similar 

patterns, but with different areal extents for different classes of species agreement (Figs. S9 and S15-S16). A 

general reversal of patterns was observed for agreement among species about where habitat was hyperoptimal 

(+1, +2, and +3). As many as 19 species’ models agreed that conditions offshore in the western ALU were 

much less disturbed than preferred. Some species’ model results identified present conditions in parts of the 

lake to be appropriate (Figs. S5 and S11), but there was less agreement among model results where disturbance 

levels were optimal (Fig. 11). Agreement about optimal in-lake disturbances ranged from 0 to 13, with >10 

species’ models agreeing on areas within bands somewhat offshore in the western ALU, along the eastern half 

of the north shore, and in small areas scattered along the south shore (Fig. 11a). There was even less agreement 

among species’ models about where watershed-derived disturbances were optimal (0), ranging from 0 to 9, with 
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>6 species agreeing on only relatively few, small areas scattered throughout the nearshore zone of the lake (Fig. 

11b).  

4 DISCUSSION 

That fish populations respond to both natural conditions and anthropogenic disturbance factors is well 

known. An extensive body of research shows that fish have organs to sense their environments and use that 

ability to select preferred conditions. Therefore, fish are expected to occur more frequently and in greater 

relative abundances in environments they perceive as desirable, among those that are available and accessible 

(Magnuson et al. 1980). The preferred conditions will be in habitat to which they are best adapted, for a given 

life cycle stage, with possible restrictions due to competition or predation risk, and those best conditions vary by 

species (Werner and Hall 1976; Magnuson et al. 1979,1980; Sharp 1995). Magnuson et al. (1980) highlight the 

importance of fishes’ perceptions of their environment to their distributions, emphasizing each species’ different 

perception of their world and the human biases that hinder our understanding of those perceptions. They also 

suggest the use of ordination to standardize the effects of multiple variables on fish habitat selection, as we have 

done here with CCA. Anthropogenic disturbances are the primary focus of fishery managers, because they are 

typically both the causes of ecological problems that affect fish populations and the controllable aspects of the 

environment. To best identify the disturbances that significantly affect fish populations, one must first separate 

out natural effects. Examination of extensive databases of fish abundances, habitat, and anthropogenic 

disturbance conditions revealed differences in Great Lakes fish sensitivities and preferences for various levels 

of human-perceived disturbances, allowing us to develop predictive models of fish abundances as functions of 

in-lake- or watershed-derived disturbance. As a result of differential responses to disturbance and prevalence of 

multispecies fish assemblages that share habitat, a spatial mosaic of agreement on species-specific responses to 

the degree of disturbance existed within the nearshore zones of the Great Lakes. 

4.1 Regionwide fish communities 

The regionwide ordination (full CCA) of nearshore Great Lakes fish assemblages, constrained by natural 

environmental conditions, confirms that there are relatively distinct fish assemblages in each of the Great Lakes 

(Riseng et al. 2010). That is not to say that there is not overlap of ranges and wide distributions of many species, 

but that conditions within each lake are optimal for identifiable subsets of the Great Lakes fish fauna. The five 

most influential environmental variables (cumulative degree-days, distance to nearest tributary mouth, mean 

summer wave height, ice duration, and water depth) were sufficient to explain this general gradient, although 

more than 20 additional variables contributed to fish distributions. Conditions optimal for Lake Superior (the 

largest, most northern lake) fishes were associated with the lowest annual heating, and the greatest distance to 

rivers, wave heights, ice cover, and depth, while the southern and smallest (by area) Lake Ontario, was warm 

and at the opposite end of the ice and river distance gradients. Lake Erie was moderate for many environmental 
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factors, but is shallowest and smallest in volume, and was set apart along the depth, wave height, and river 

distance gradients (among others). While White Sucker and Trout-perch are found throughout the region (their 

optima were near the ordination origin, indicating preference for average conditions), most other species were 

more clearly associated with conditions in a particular lake. Fish optima associated with Lake Superior were 

dominated by cold-loving species, including the native Coregonine species. Non-native and stocked species 

(e.g., Alewife, Chinook Salmon (Oncorhynchus tshawytscha), and Brown Trout (Salmo trutta)) were prominent 

in the Lake Ontario assemblage, which also included American Eel (Anguilla rostrata), a native species unique 

within the Great Lakes to Lake Ontario. Conditions in Lake Erie were associated with the most diverse 

assemblage of species optima (29). 

In the Great Lakes, the many different types of disturbances largely come from two sources, within the 

Great Lakes proper (in-lake) and adjacent watersheds. Partial CCA filtered out the effects of “natural” habitat 

conditions and revealed the influences of anthropogenic disturbances derived from integrated variables of in-

lake, watershed, and shoreline perturbations on fish abundances. While the composite variables (CCA 

constructed) each combine all three original disturbance indices, the dominance of in-lake (GLEAM) factors 

explaining most variation (Axis 1) and the greatest influence (longest environmental vector) by watershed 

(Wehrly index) factors, with a lesser universal influence by shoreline alterations, was clear. The overlap of 

sample points and species optima, regardless of the lake from which they were collected, suggests that 

disturbance effects on fish abundances were similar in all lakes (Fig. 4). Species optima in the ordination space 

indicate conditions associated with maximum abundance and peak of a unimodal response to disturbance. 

Optima were widely scattered along the two primary disturbance gradients, with a dense cluster near the center 

of the hyperspace, where disturbance conditions are essentially average.  

Unimodal responses to environmental conditions are common in nature (Gause 1930, Whittaker 1956, 

ter Braak 1995) and quadratic models represented the responses of fish abundances to disturbance variables 

well for the vast majority of species modeled. Because this is an empirical study, based on direct observations, 

the response models are statistical representations of the correlation between sampled abundance and 

disturbance gradients, a surrogate for fish perception of conditions.  The four different forms of quadratic 

responses (and the linear responses) highlight differences in perception of disturbance by each species, with 

some species having optimal conditions within a disturbance gradient (unimodal) and others having optima at 

(or beyond) one disturbance extreme or the other. The studies producing the original disturbance indices, and 

others examining effects of stressors, typically take the human perspective of more disturbance is more 

detrimental to fish. However, our results clearly show that not all fishes are adversely affected by increases in 

anthropogenic disturbances and other disturbance studies note this in one form or another, e.g., reports of high 

abundances or species richness in areas of relatively high disturbance (Danz et al. 2007, Kovalenko et al. 2018). 
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Monotonically decreasing fish abundance with increasing disturbance matches the general human perception of 

the effects of anthropogenic degradation on fish populations. However, both linear and monotonically 

increasing patterns and the increasing component of unimodal responses clearly indicate preference for more, 

rather than less, disturbed conditions by some species. Unimodal responses indicate a perception of optimal 

conditions within a disturbance gradient, with “poorer” conditions at both lower and higher disturbance values. 

Thus,  our results suggest that the human assumption of universal decline of fish abundance with increasing 

anthropogenic disturbance is too simplistic. Numerous aspects of each species’ adaptations could explain these 

differences and our analysis revealed a weak preference by pelagic species for less disturbed conditions. As 

Magnuson et al. (1980) recommend, laboratory experimentation could clarify species’ responses to these and 

other disturbance factors (or at least some of them).  

Clearly, each species has a different perception of ideal habitat conditions and what constitutes 

disturbance, and because fish populations occur in multispecies assemblages sharing habitat at particular times, 

the fish community perception of disturbance will vary from place to place. There were different patchy 

mosaics of disturbance conditions throughout the nearshore zone of Lake Erie for each species. However, some 

broad trends occurred. Disturbance was generally greater in shallow waters near the shorelines and was less 

offshore, which has been previously noted in the Great Lakes (Beeton and Edmondson 1972). The distribution 

of highly disturbed conditions in the western ALU and along parts of the southern shore and generally least 

disturbed conditions along the northern shore (Figs. S7, S8, and S3-S14) was reflected in the perceptions of 

many of the common species modeled here. A minority of species perceived nearly opposite conditions. 

However, there was wide variability in those perceived distributions and the extent of patches of various quality 

habitat. Some species were clearly more sensitive to high levels of disturbance and perceived much of the lake 

to be unsuitable (e.g., Lake Whitefish and Nine-spine Stickleback (Pungitius pungitius)), while others perceived 

large areas of the lake to be far too pristine to be suitable (e.g., Channel Catfish and Smallmouth Bass). The 

distributions of those perceived conditions were also different between in-lake- and watershed-derived 

disturbances for most species. More species appear to be sensitive to elevated levels of watershed disturbance 

than those sensitive to in-lake disturbance. A few species (e.g., Alewife [in-lake response] and Channel Catfish 

[watershed response], Fig. S7 and S13) preferred high anthropogenic disturbance conditions and their spatial 

distribution of perceived disturbance was generally opposite to that displayed by most other species. However, 

even these species showed different perceptions of the effects of disturbance from the two different sources. 

Yellow Perch and Smallmouth Bass provide illustrations of contrasting responses to disturbances with Yellow 

Perch being sensitive to both types of disturbance and Smallmouth Bass preferring disturbed conditions.  

Combining these species-specific estimates of perceived disturbance, produced indications of agreement 

among species about the degree of disturbance at any nearshore location and the extent of those areas. Maps of 
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that agreement provide visual estimates of how many species may benefit (or suffer) from conservation of 

present conditions or rehabilitation of “degraded” conditions in specific locations or regions. For example, more 

than a dozen species indicated that conditions were highly degraded along the western and southern coasts of 

Lake Erie, again generally reflective of the distribution of known anthropogenic disturbance conditions. 

Concomitantly, few species perceived highly degraded conditions along the northern shore or open water areas 

of the western ALU. However, fine-scale details of these distributions show differences between human and 

fish perceptions of disturbance.  

4.2 Environmental drivers and land-lake connections  

Anthropogenic changes to the landscape affect physical structure, water quality, hydrology, thermal 

conditions, and sediment load of receiving waters (Paul and Meyer 2001; Wang and Lyons 2003; Stanfield and 

Kilgour 2006). These changes been shown to alter the structure and function of aquatic communities (e.g., Karr 

and Chu 1999; Wang et al. 2003; Stanfield and Kilgour 2006; Wang et al. 2006a). The increasing development 

of the landscape highlights the need to better understand how landscape change influences the ecology of the 

Great Lakes and the implications for effective conservation and management of fish and fisheries (Wehrly et al. 

2013). Approaches to landscape assessment and influences of landscape change on large water bodies like the 

Great Lakes, assume that the intensity of anthropogenic activities in watersheds and open waters will relate in a 

definable way to local habitat degradation levels and the biological communities dependent upon those habitats 

(Allan 2004, Esselman et al. 2011). Our results support this supposition, but also show that it is not a simple 

one-to-one relationship. 

There is extensive research into natural environmental influences and anthropogenic stressors on fish 

and fish assemblages of the Great Lakes (McKenna and Castiglione 2010; Johnson et al. 2016; Uzarski et al. 

2017; Wehrly et al. 2012, 2013; Fetzer et al. 2017; Kovalenko et al. 2018, for example). Those studies highlight 

the adverse effects of anthropogenic disturbance on fish, but also the dominant effects of differences in natural 

conditions. For example, Riseng et al. (2010) conducted ecological assessment of aquatic systems of the Great 

Lakes within Michigan identifying conditions and sources of ecological impairment that cut across taxonomic 

groups. Danz et al. (2007) showed that increasing amounts of anthropogenic stress were strongly related to 

increasing concentrations of water pollutants, and associated with shifts in lentic fish community composition 

towards non-native, turbidity-tolerant species, and to increasing proportions of urban landuse. Wehrly et al. 

(2012) found that fish species patterns and landscape-scale environmental data in Michigan lakes were related, 

and distinct assemblage types associated with climatic conditions. Recently, Kovalenko et al. (2018) used 

GLAHF, GLEI, and GLCWM data (and programs upon which they are built) to identify key habitat factors in 

the Great Lakes associated with several coastal fish species, and community metrics. The diversity of responses 

is notable. 
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A practical definition of disturbance is change to any aspect of habitat that results in a state that is less 

suitable for the persistence of a healthy native species community or population of particular management 

interest (Esselman et al. 2011). While change to a single aspect of habitat may render it unsuitable, multiple 

interacting environmental stresses are common in aquatic and marine systems, and in combination with effects 

of natural conditions, complicate management (Magnuson et al. 1980, Allan et al. 2013, Smith et al. 2017, 

Sherman 2017). A landscape (or lakescape) perspective provides an understanding of the effects of broad-scale 

and local disturbances on Great Lakes habitat and biotic communities (Wehrly et al. 2013). Previous studies 

detecting changes in Great Lakes fish assemblages associated with natural and/or disturbed conditions have 

produced numerous indices of disturbance variables that affect fish.  The multiple stressors of the GLEAM and 

Wehrly indices capture overall disturbance from open lake and watershed sources, respectively (Allan et al. 

2013, Wehrly et al. 2013). Disentangling the effects of natural or anthropogenic influences is challenging and 

ordination has been widely used for that purpose in studies of aquatic habitat stressors (Brazner et al. 2007, 

Croft and Chow-Fraser 2007, Seilheimer and Chow-Fraser 2007, Kovalenko et al. 2018, for example). Partial 

CCA has been used to separate local vs. watershed influences (Esselman et al. 2011) and anthropogenic 

stressors from general habitat type and ecoprovence by lake (Danz et al. 2007). In this study, we explicitly 

accounted for effects of natural influences and were able to focus on the specific effects of anthropogenic 

disturbances (as represented by the composite index of the GLEAM, Wehrly, and coastal modification indices) 

on fish abundances, revealing the diversity of species-specific responses to the same disturbance gradients.  

Quantitative expression of anthropogenic disturbance over large geographic areas provides important 

tools for both research and management (Danz et al. 2007). Among previous Great Lakes studies, the focus has 

typically been lakewide or regional throughout all the lakes. Several studies have focused on fish assemblages 

of the coastal zone, which is at the interface between upland and lake processes (Johnson et al. 2016, Kovalenko 

et al. 2018, Uzarski et al. 2017). However, the nearshore zone is used by 80% of Great Lakes fishes for some or 

all of their life cycles and anthropogenic disturbance can have major impacts on these nearshore fishes (Lane et 

al. 1996, Wehrly et al. 2013); cumulative stress can be greatest in nearshore habitats and may threaten 

ecosystem services (Allan et al. 2013). Our findings show the sensitivity of nearshore zone fishes to 

anthropogenic disturbances from both watershed and within the Great Lakes proper. While applicable 

throughout the Great Lakes, we focused on Lake Erie, with its wealth of data, and because several studies have 

shown it suffers from the greatest disturbance (Hartman 1972, Wehrly et al. 2013, Allan et al. 2013); changes in 

Yellow Perch populations in Lake Erie have been attributed to alterations of the prey base associated tributary 

loadings of nutrients (Hayward and Margraf 1987; Tyson and Knight 2001). Our species-specific response 

models provide the capability to predict habitat conditions that are most likely to support common species 

within Lake Erie’s nearshore zone, and allows modeling of changes in abundances as a function of disturbance 
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remediation. Also, our multiscale representation (30-m cell to region) of fish responses to disturbance improves 

on previous broad-scale tools and provides managers with location specific indications of protection and 

restoration needs. 

4.3 Statistical fish perception and data limitations 

We speak figuratively here about the “perception” of disturbance by fish. Our observations of apparent 

perception are based on statistical responses of fish abundances to different levels of anthropogenic disturbance, 

and the assumption that fish can perceive their environment and select the best available habitats (e.g., 

Magnuson et al. 1980). Fish are mobile creatures and have multiple sense organ. Numerous experiments have 

shown that fish can select (or avoid) certain conditions (Werner and Hall 1976, McKim 1977, Magnuson et al. 

1979, Atchison et al. 1987, for example). Fish distributions have been linked to temperature and oxygen 

conditions and these have been used to describe niche dimensions (Magnuson et al. 1979, for example). Salmon 

are famous for homing based on olfaction (and other cues) (Stabell 1984, Bett and Hinch 2016). Thus, we 

assume that preferred environments will be the highest quality habitat (perceived by a given species), and that 

fish will be more abundant in locations with those conditions than in locations with other conditions. We are 

confident that these statistical representations reflect differential ecological relationships of fish abundances to 

anthropogenic disturbance, given limitations of sampling gear. The fish were collected with trawls, which may 

not accurately represent the relative abundances of the various species in Great Lakes nearshore habitats. For 

example, those species preferring the shallowest waters or areas of rugged bottom may not be as effectively 

collected as those from smoother bottom areas.  

Sampling in many aquatic habitats is difficult and many previous studies of fish community responses to 

anthropogenic stresses rely upon fish presence and absence data, especially when focused on changes in 

community metrics, like diversity (i.e., species richness). That approach detects effects of disturbance on 

assemblage richness and is particularly good for examining losses or persistence of rare species (Danz et al. 

2007, Esselman et al. 2011, Infante and Allan 2010, Kovalenko et al. 2018, for example). However, where 

available, fish abundance data have the great advantage of being able to detect optimal and marginal habitats, as 

well as unsuitable habitats, and can be associated with continuous trends in habitat conditions (McKenna et al. 

2013, McKenna and Castiglione 2014, McKenna and Kocovsky 2020). The use of standardized abundance data 

extends that capability to detecting changes in species-specific populations in response to both natural and 

anthropogenic disturbances. Studies such as McKenna and Castiglione (2010) used abundance data to identify 

environmental conditions associated with various fish assemblages in the Western Lake Erie ALU. McKenna 

and Kocovsky (2020) showed the association of Silver Chub abundance with natural environmental conditions 

and the effects of selected disturbance factors in Western Lake Erie. We extend previous work by examining the 

associations of high and low abundances of fishes within Great Lakes assemblages with both “natural” 
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(anthropogenic resistant) conditions and anthropogenic disturbances, and determining species-specific 

responses of abundance to disturbances. 

The full ordination used data for all species from all of the Great Lakes, but limitations of the 

disturbance dataset and computational capabilities dictated the present focus on Lake Erie. However, our 

methods may be applied to all of the Great Lakes and other habitat zones. Using only species with at least 100 

occurrences in the data set ensured that statistical responses would be detectable and included the species 

responsible for most of the biomass and mass and energy flows within the Great Lakes community. However, 

rare species often constitute a substantial portion of species diversity. Our approach can be expanded to include 

less common species, but model responses will become weaker as species occurrences decrease. Thus, the 

present analysis has limited application to biodiversity questions about the relatively common species of Great 

Lakes fish communities. Also, life stages were lumped together in this analysis and results may differ greatly by 

life stage. Addressing questions about specific life stages would require more fish data by both location and 

stage and disturbance data on a seasonal basis. 

The fish species examined clearly responded to changes in the multimetric disturbance index values. 

Most, but not all quadratic models were unimodal, identifying optimal conditions at specific points along the 

multimetric disturbance gradients; monotonic models identified here might have optima beyond the extent of 

the observed disturbance gradients or may be monotonic throughout. However, we believe that the disturbance 

gradients used here represent the range of anthropogenic disturbance conditions in the Great Lakes well 

(Hilllyer 1996, Wehrly et al. 2013, Allan et al. 2013).  Association of specific disturbance factors with each 

species’ response was beyond the scope of this research and dissection of the indices may not be very helpful. 

Managers are likely to have the best understanding of the important anthropogenic disturbances in their districts 

and which may feasibly be manipulated to improve conditions.  

4.4 Potential applications 

Recognizing the species-specific differences in responses to anthropogenic disturbances is critical to 

effective management of fish habitat. Clearly, while some species are sensitive to different types of 

anthropogenic disturbances, not all species are adversely affected by those disturbances and a few appear to 

require (or prefer) disturbed conditions (at least within the range of disturbance conditions observed for this 

study). This species-specific response has far reaching implications for managers attempting to “improve” 

habitat conditions for enhancement or recovery of selected species. Not all species will respond positively to 

reduced disturbance.  

The species-specific aspects of this research also provide managers with information relevant to species-

specific management plans for fisheries and/or species of concern. Notable among the particularly sensitive 

species are the native Coregonine species (Loftus and Regier 1972). Only Lake Whitefish exists in Lake Erie, 
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but Cisco once supported an enormous commercial fishery (Hartman 1972, Oldenburg et al. 2007). Our results 

indicate that optimal watershed-derived disturbance conditions perceived by Cisco existed in narrow bands and 

patches throughout the nearshore zone. However, Cisco perception of in-lake disturbance indicated that the 

entire nearshore zone was degraded.  

Estimating the number of species likely to benefit or suffer from changes to habitat conditions can help 

managers evaluate the costs and benefits of changing habitat conditions in particular areas and to what degree 

changes must be made (Regier and Loftus 1972). The perceived degree of disturbance and agreement among 

species about the degree of disturbance clearly varies within the nearshore zone of Lake Erie and the spatial 

distribution of that agreement gives an indication of where conditions are best, worst, or moderate and their 

spatial extents. Areas with the worst conditions might seem to be the best targets for rehabilitation and they are 

frequently the focus of current restoration efforts (Allan et al. 2013). However, focus on those worst areas might 

require unreasonable investment of restoration resources and might not benefit many species, or the most 

desirable fisheries species. In some cases, moderately degraded areas might be better restoration options and 

indicators of marginal disturbance (in addition to greatly and weakly disturbed conditions) to multiple species 

may be valuable decision-support to mangers (Suppl. Figs. S14 – S17). Optimal targeting of restoration efforts 

involves consideration of the range of stressors and their differential effects, the species intended to benefit 

from a given action and their perception of disturbed conditions, and the number of species that may benefit (or 

suffer) from the action(s). Fine scale predictions and complete spatial distributions of both in-lake and 

watershed anthropogenic disturbance levels perceived by each species provides a powerful tool to managers. 

The extent of “natural” conditions suitable for each species may also be limited. The full CCA showed 

the great difference in optimal conditions for many species and the best combination of those natural factors 

may not exist in all parts of nearshore zones. Thus, even areas indicated as having optimal disturbance 

conditions might not have ideal (or even suitable) natural conditions for a given species. Thus, comparisons 

between the distributions of naturally suitable habitat conditions and perceived disturbance conditions identify 

overlap between optimal natural and disturbance conditions (McKenna 2022. in press).  

4.4.1 Conclusions 

By examining the response of each species’ relative abundance to increasing values of composite 

disturbance indices, we extend the work of previous researchers and provide an improved understanding of the 

perception of anthropogenic disturbances by fish and the diversity of their responses to such disturbances (e.g., 

Loftus and Regier 1972). Managers are faced with allocating limited resources (which vary among political 

districts) to protection or restoration of habitats supporting critical life stages of fishery species, forage species, 

or other species of concern, as well as ecological issues concerning ecosystem services (Allan et al. 2013). They 

may ask, how many species will benefit from applying those resources in a particular area or region? Our 
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quadratic models, particularly those with a unimodal response, reveal two important pieces of information, 1) 

the fact that human understanding of disturbance is at times different from fish population response (Magnuson 

et al. 1980), and 2) species-specific information about “ideal” (or best available) versus both degraded and 

hyperoptimal habitat conditions can be useful for managers to identify the best locations for protection or 

restoration activities. Overlay of species-specific maps of fish perceptions of disturbance in any particular 

location indicates where habitat restoration or protection may benefit the most species, and which species are 

most strongly affected by multiple disturbances in those areas. The species agreement measures can help 

provide answers to the above management question at multiple spatial scales. For example, counts within the 

most degraded disturbance class (-3) showed where numerous species agreed that disturbance conditions were 

their worst. However, as mentioned above, that estimate may include habitats that are beyond the ability of 

available resources to rehabilitate and the distribution of slightly or moderately disturbed conditions for many 

species may provide more practical guidance. Also, the agreement maps provide an indication of how many 

species may be adversely affected by habitat changes intended to improve conditions for other species in 

restoration areas, this includes decisions to increase “disturbance” in an area to enhance conditions for some 

species. The species adversely affected were revealed by the maps, as are nuisance or invasive species that may 

benefit from the changes. 

Our approach may be expanded to other aquatic and marine systems, with appropriate data. More 

investigation at particular locations and comparison with our results would test model prediction reliability and 

the broader applicability of this method to natural conditions. Application of our findings will work best in 

comparison with predictions of the distributions of natural conditions likely to support each species or 

assemblage (McKenna 2022 in press).  
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Tables 
 
Table 1. Summary of full and partial Canonical Correspondence Analysis (pCCA) ordination results using all available habitat and disturbance 
variables and matching fish abundances throughout the Great Lakes within the nearshore zone. The pCCA ordination used explanatory 
environmental variables of the full CCA as co-variables and disturbance indices as explanatory variables.  

Analysis Axis 
Total 

variation 
Explained 
variation 

Adjusted 
Explained 
variation Eigenvalues 

Cumulative 
explained 
variation 

pseudo-
canonical 

correlation 

Cumulative 
explained 

fitted 
variation 

Axis 
weighting 

Full CCA All 7.77597 18.60% 18.11%      

 Axis 1    0.7062 9.08% 0.9604 48.82%  

 Axis 2    0.3813 13.99% 0.8652 75.18%  

 Axis 3    0.0662 14.84% 0.6207 79.76%  

 Axis 4    0.0561 15.56% 0.5814 83.64%  
Partial CCA All 6.33966 0.56% 0.49%      

 Axis 1    0.019 0.3% 0.3459 53.86% 53.86% 

 Axis 2    0.011 0.47% 0.2947 84.34% 30.48% 
 Axis 3    0.0055 0.56% 0.2299 100%  

 Axis 4    0.2846 5.05% 0   
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Table 2. Composite variable weightings by partial Canonical Correspondence Analysis (pCCA)axis. GLEAM is the Great Lakes Environmental 
Assessment Mapping disturbance index (Allen et al. 2013) and Wehrly is the watershed disturbance index (Wehrly et al. 2013), and Coastline 
Modification is the shoreline disturbance index (Hillyer 1996). 

Index Axis 1 Axis 2 
GLEAM 1.9675 0.1937 
Wehrly -0.1488 1.4048 
Coastline Modification -0.0684 -0.33211 
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Table 3. Quadratic model response pattern, 0ptimum, tolerance, and each parameter value (significance p values) for each species and disturbance 
gradient. Model column values indicate the Akaike Information Criterion (AIC)-determined best model, with L representing linear and Q 
representing quadratic; NULL indicates that no model could be successfully fit to the data. The F-stat column provides the F-test statistic for 
significance of the associated model. A double asterisk (**) after an F statistic indicates an associated probability of <0.001. A single asterisk (*) 
after a parameter value (Constant, X term, or X2 term) indicates a significant t-test (DF=4329, |t| > 2.81) for that parameter of the associated model.  
Response pattern indicates pattern manifested by the fitted model, "I" is monotonically increasing, "D" is monotonically decreasing, "O =x" is 
optimum with maximum within 0.05 units of the disturbance mean, "O <x" is optimum with maximum less than 0.05 disturbance units less than the 
mean, "O >x" is optimum with maximum more than 0.05 disturbance units greater than the mean, and "P" is concave up parabolic. General habitat 
use (B = benthic or demersal, P = pelagic, U = unknown) and native status (N = native, E = exotic, A = absent, X = extirpated, and U = unknown) 
for Lake Erie shown parenthetically after each species name. Species code name followed by "†" indicates unimodal model with optimum beyond 
the range of the axis. The a superscript indicates a non-significant linear model, but significant quadratic model. Non-significant t values are shown 
after each associated parameter estimate. In all cases model DF were 1, 2, or 3 (quadratic being 3) and respective residual DF were 4331, 4330, or 
4329. A † after a species codes indicates that the species optimum was outside the range of the ordination axis. Species codes are defined in 
Appendix I. 
Disturbance 

gradient Species (Classes) Model Response Pattern F-stat (p) constant1 x_term1 x^2_term1 Optimum Tolerance 
In-Lake GOBY (B, E) Q Decreasing 46.68 ** 2.44206 * -0.164 * 0.017 * -- -- 

 LKHR (P, X) Q Decreasing 2081.36 ** -0.311699 * -0.512 * 0.243 * -- -- 

 PWHF (U, A) L Decreasing 16.29 ** -2.45238 * -0.2 * -- -- -- 
 RWHF (U, A) L Decreasing 193.73 ** -3.75738 * -1.077 * -- -- -- 
 STK9 (P, N) Q Decreasing 14.72 ** 2.0211 * -0.591 * 0.013 * -- -- 

 WFSH (B, N) Q Decreasing 1161.93  ** -0.709247 * -0.54 * 0.232 * -- -- 
 JOHN (B, N) Q Optimum < mean 126.20 ** 0.491404 * -0.484 * -0.101 * -2.39 2.22 
 CCAT (B, N) Q Optimum < mean 18.53 ** -1.55261 * -0.216 * -0.104 * -1.04 2.19 

 PRCH (B, N) Q Optimum < mean 15976.47 ** 3.11589 * -0.335 * -0.546 * -0.306 0.957 
 BLOT (B, A) Q Optimum < mean 2180.12 ** 0.788259 * -0.481 * -0.822 * -0.293 0.78 
 SPOT (P, N) Q Optimum < mean 3875.07 ** 2.4115 * -0.044 * -0.262 * -0.083 0.0134 

 WALL (B, N) Q Optimum = mean 606.62 ** 0.301618 * 0.012a (t=0.610) -0.321 * 0.019 1.25 

 QUIL (B, N) Q Optimum = mean 15.84 ** -2.43089 * 0.025a (t=0.350) -0.261 * 0.048 1.38 

 WBAS (P, N) Q Optimum > mean 15209.92 ** 2.44858 * 0.155 * -1.247 * 0.062 0.633 
 DRUM (B, N) Q Optimum > mean 7587.96 ** 1.84445 * 0.16 * -1.033 * 0.077 0.696 
 SCHB (P, N) Q Optimum > mean 682.01 ** -0.741045 * 0.358* -1.411 * 0.127 0.595 

 WHPR (P, E) Q Optimum > mean 76169.33 ** 4.45914 * 0.181 * -0.629 * 0.144 0.892 
 TRPR (B, N) Q Optimum > mean 3686.84 ** 3.22384 * 0.039 * -0.134 * 0.145 1.93 
 GIZZ (P, N) Q Optimum > mean 2676.06 ** 1.96329 * 0.122 * -0.263 * 0.232 1.38 
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 BLUE (B, N) Q Optimum > mean 202.37 ** -2.19838 * 1.026 * -1.888 * 0.272 0.515 

 PUNK (B, N) Q Optimum > mean 665.00 ** -1.07937 * 1.206 * -2.22 * 0.272 0.475 
 EMRL (P, N) Q Optimum > mean 41899.43 ** 4.3272 * 0.238 * -0.261 * 0.455 1.38 
 MIMC (P, N) Q Optimum > mean 575.50 ** -1.5389 * 1.946 * -1.66 * 0.586 0.549 

 SBAS (B, N) Q Optimum > mean 14.30 ** -3.06389 * 0.629 * -0.167 * 1.88 1.73 
 SPON† (B, N) Q Increasing 6.12 (0.013) -2.17353 * 0.885 * -0.046 (t=-2.406) 9.6 -- 
 ALEW† (P, E) Q Increasing 100.01 ** 5.41749 * 0.339 * -0.005 * 34.52 -- 

 LSUK (B, N) Q Increasing 70.77 ** -2.7163 * 0.051 (t=1.185) 0.163 * -- -- 
 SMLT (P, E) Q Increasing 31722.37 ** 5.0608 * 0.163 * 0.087 * -- -- 
 WSUK (B, N) Q Increasing 10.00 (0.002) -2.19353 * 0.265 * 0.06 * -- -- 

 BURB (B, N) Q Parabolic 74.04 ** -3.59879 * -0.091a (t=-1.701) 0.221 * -- -- 

 DSCL (B, N) Q Parabolic 25.67 ** -2.43205 * -0.223 * 0.111 * -- -- 
 LTRT (B, N) Q Parabolic 23.51 ** -1.40258 * 0.02 (t=0.757) 0.067 * -- -- 

 SLIM (B, N) Q Parabolic 120.82 ** 0.0502333 * 
-0.075a (t=-

6.293) 0.098 * -- -- 
 STK3 (P, E) Q Parabolic 4151.00 ** 1.79766 * -0.217 * 0.15 * -- -- 
 CARP (B, E) NULL -- -- -- -- -- -- -- 

Watershed Species (Classes) Model Response Pattern F-stat (p) constant2 x_term2 x^2_term2 Optimum Tolerance 

 ALEW (P, E) L Decreasing 2381.94 ** 5.468 * -0.049 * -- -- -- 
 BLOT (B, A) L Decreasing 6909.12 ** -0.011 (t=-0.708) -1.014 * -- -- -- 
 DRUM (B, N) Q Decreasing 486.48 ** 1.171 * -0.461 * 0.05 * -- -- 

 PRCH (B, N) Q Decreasing 5.16 (0.023) 2.777 * -0.258 * 0.003 (t=2.321) -- -- 
 PUNK (B, N) L Decreasing 40.07 ** -1.829 * -0.274 * -- -- -- 
 QUIL (B, N) L Decreasing 11.12 ** -2.664 * -0.216 * -- -- -- 

 WHPR (P, E) Q Decreasing 3082.92 ** 4.006 * -0.252 * 0.028 * -- -- 
 WSUK (B, N) L Decreasing 11.34 ** -2.066 * -0.159 * -- -- -- 
 WFSH (B, N) Q Optimum < mean 300.41 ** -0.393 * -1.295 * -0.21 * -3.09 1.54 

 SCHB (P, N) Q Optimum < mean 11.68 ** -1.404 * -0.466 * -0.076 * -3.05 2.56 
 EMRL (P, N) Q Optimum < mean 18190.66 ** 4.13 * -0.679 * -0.298 * -1.14 1.3 
 PWHF (U, N) Q Optimum < mean 36.51 ** -2.343 * -0.707 * -0.407 * -0.868 1.11 

 WBAS (P, N) Q Optimum < mean 1059.55 ** 1.911 * -0.324 * -0.197 * -0.821 1.59 
 MIMC (P, N) Q Optimum < mean 51.16 ** -1.824 * -0.57 * -0.368 * -0.774 1.17 
 LKHR (P, X) Q Optimum < mean 1079.29 ** 0.4 * -1.056 * -0.778 * -0.679 0.802 

 SMLT (P, N) Q Optimum < mean 78652.40 ** 5.383 * -0.285 * -0.495 * -0.287 1 

 RWHF (U, N) Q Optimum < mean 16.89 ** -2.892 * -0.371a (t=-2.294) -0.829 * -0.224 0.777 
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 STK3 (P, N) Q Optimum < mean 47186.09 ** 3.024 * -2.266 * -10.31 * -0.11 0.22 

 DSCL (B, N) Q Optimum = mean 36.71 ** -1.993 * -0.057a (t=-0.577) -0.774 * -0.037 0.804 

 STK9 (P, N) Q Optimum = mean 1278.74 ** 2.309 * 0.001 (t=0.175) -0.124 * 0.005 2 

 LTRT (B, N) Q Optimum = mean 101.97 ** -1.043 * 0.077a (t=1.246) -0.828 * 0.047 0.777 
 JOHN (B, N) Q Optimum > mean 7573.60 ** 1.327 * 1.901 * -6.954 * 0.137 0.268 
 SLIM (B, N) Q Optimum > mean 877.17 ** 0.385 * 0.436 * -0.611 * 0.357 0.905 

 TRPR (B, N) Q Optimum > mean 4615.44 ** 3.154 * 0.229 * -0.114 * 1.01 2.09 
 SPON (B, N) Q Optimum > mean 175.09 ** -1.75 * 0.935 * -0.422 * 1.11 1.09 
 LSUK (B, N) Q Optimum > mean 46.21 ** -2.365 * 0.531 * -0.237 * 1.12 1.45 

 GOBY (B, N) Q Optimum > mean 3533.33 ** 2.471 * 0.489 * -0.067 * 3.66 2.74 
 CCAT (B, N) Q Increasing 7.06 (0.008) -1.707 * 0.185 * 0.015 (t=2.70) -- -- 
 SBAS (B, N) L Increasing 16.60 ** -3.149 * 0.208 * -- -- -- 

 CARP (B, E) Q Parabolic 5.36 (0.005) -3.493 * -0.179a (t=-2.072) 0.045 * -- -- 

 GIZZ (P, N) Q Parabolic 1094.84 ** 1.684 * -0.209 * 0.039 * -- -- 
 SPOT (P, N) Q Parabolic 529.56 ** 2.171 * -0.069 * 0.022 * -- -- 
 WALL (B, N) Q Parabolic 151.82 ** 0.002 (t=0.126) -0.166* 0.034 * -- -- 

 BLUE (B, N) NULL -- -- -- -- -- -- -- 
 BURB (B, N) NULL -- 1.59 (0.207) -- -- -- -- -- 

† These species have optima outside the range of the Axis       
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Table 4. Type of response of each species to each disturbance gradient. Parabolic models were excluded. See 
Appendix I for species scientific names. The pCCA is partial Canonical Correspondence Analysis.  

Disturbance Gradient 
Response Type In-lake dominated (pCCA Axis 1) Watershed dominated (pCCA Axis 2) 

 

Linear decreasing 
 

Pygmy Whitefish, Round Whitefish Alewife, Bloater, Pumpkinseed, Quillback,           
White Sucker 

 

Monotonic 
decreasing 

 

Round Goby, Cisco, Nine-spine 
Stickleback,             Lake Whitefish 

Freshwater Drum, Yellow Perch, White 
Perch 

 

Optimum < mean 
 

Channel Catfish, Johnny Darter 
Lake Whitefish, Silver Chub, Emerald 

Shiner,      Pygmy Whitefish, White Bass, 
Mimic Shiner, Cisco 

Optimum near 
mean 

Yellow Perch, Bloater, Spottail Shiner, 
Walleye, Quillback, White Bass, 

Freshwater Drum, Silver Chub, White 
Perch, Trout-perch, Gizzard Shad, 

Bluegill, Pumpkinseed, Emerald Shiner 

Rainbow Smelt, Round Whitefish, Three-
spine Stickleback, Deepwater Sculpin, 
Nine-spine Stickleback, Lake Trout, 

Johnny Darter, Slimy Sculpin 

 

Optimum > mean 
 

Mimic Shiner, Smallmouth Bass Trout-perch, Spoonhead Sculpin, 
Longnose Sucker, Round Goby 

 

Monotonic 
increasing 

 

Alewife, Longnose Sucker, Rainbow 
Smelt, Spoonhead Sculpin, White 

Sucker 
Channel Catfish 

 

Linear increasing 
 

 Smallmouth Bass 
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Figures 
 
Fig. 1. Map of fish collection within the nearshore zone of each of the Great Lakes and boundaries of the 

Aquatic Lake Units (fine gray lines subdividing the interior of each lake). Each point represents multiple 
sample locations in that general vicinity that are indistinguishable at this map scale. The shaded 
polygons represent the Aquatic Lake Units (ALU) within the Great Lakes (McKenna and Castiglione 
2017). 

Fig. 2 Flowchart summarizing the methodological process used to develop species-specific models of 
abundance response to disturbance conditions. Each parallelogram represents data and each rectangle 
represents a product generated at each step of the process. Blue polygons at the top of the diagram 
indicate steps accomplished using only data from locations where fish collections were made. Gold 
polygons at the bottom of the diagram indicate steps accomplished using disturbance data from every 
30-m spatial cell within the nearshore zone. Arrows indicate the direction of process flow and are 
numbered to indicate the order of process steps All flow pathways were followed and the "&" symbol 
indicates that both flow pathways of a given step must be executed. Information in the ovals explains the 
action taken at each step. CCA is Canonical Correspondence Analysis. 

Fig. 3. Hyperspace of the first two full Canonical Correspondence Analysis (CCA) axes using all environmental 
variables identified as significant by forward selection testing. Species optima are indicated by open 
triangles. Samples within each Great Lake are indicated by a different symbol and enclosed by color 
shaded polygons, Lake Erie with open black circles, Lake Huron with open green diamonds (dashed 
line), Lake Michigan with open blue squares, Lake Ontario with brown Xs, and Lake Superior with solid 
yellow circles. Red arrows show the direction in which each environmental variable increase in value 
within the plane depicted by the first two CCA axes (each of which is a variable that is a linear 
combination of all the environmental variables). Species codes are provided in Appendix I and 
environmental vector codes are provided in Appendix II. A cluster of unlabeled species optima within 
the Lake Erie group include, BUFF, BULL, CCGF, CRAP, DRUM, EMRL, GIZZ, GLDF, GRED, 
LOGP, MIMC, MUSK, PUNK, QUIL, RHSP, SAND, SAUG, SBUF, SCHB, SHRH, SLMP, WALL, 
WBAS, WCRP, WHPR, and YBUL. The optima for Bluegill (BLUE), Brook Trout (BROK), 
Largemouth Bass (LBAS), and Lake Whitefish (WFSH) are indicated by blue arrows. 

Fig. 4. Hyperspace of partial Canonical Correspondence Analysis (pCCA) diagram of first two ordination axes 
showing distribution of locations of species optima (triangles) and disturbance vectors indicating relative 
influence and direction of increasing effect within the hyperspace (arrows), after influence of habitat 
variables were removed. An example unimodal response for Eastern Sand Darter as a function of the 
Axis 1 composite is shown by a dashed line. Species codes are provided in Appendix I. The unlabeled 
species optima include, AEEL, ALEW, BBUL, BLOT, BLUE, CARP, CCGF, CRAP, DRUM, DSCL, 
GIZZ, JOHN, LCHB, LKHR, LSUK, LTRT, MIMC, PUNK, QUIL, RHSP, SCHB, SFSH, SHRH, 
SIST, SLIM, SLMP, SMLT, SPOT, STK3, STK9, TRPR, WALL, WBAS, WFSH, WHPR, and WSUK 

Fig. 5. Illustration of quadratic response models and disturbance class units showing selected curves of 
predicted fish abundances as functions of the watershed disturbance gradient and lines marking 
boundaries of class units. The thin, solid vertical line with tic marks indicates the “average” disturbance 
gradient value of zero and is the ordinate for fish abundances, except for Yellow Perch (Perca 
flavescens). a.) tolerance classes of two different unimodal responses where the solid curve (green) 
represents predicted Emerald Shiner (Notropis atherinoides) abundance Catch per Unit Effort (CPUE) 
and the dashed curve (brown) represents predicted Round Goby (Neogobius melanostomus) abundance 
(CPUE). Vertical lines indicate disturbance values three tolerance units from the optimum value (yellow 
dotted lines), two tolerance units from the optimum (green dashed lines), and one tolerance unit from the 
optimum (black dash-dot lines); legend labels for Emerald Shiner tolerance boundary lines are followed 
by an “S” and those for Round Goby are followed by a “G”. Note that the -3t line for Round Goby is 
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nearly coincident with the -0.5t line for Emerald Shiner and that the labels for the Round Goby +2 and 
+3 disturbance classes overlap with Emerald Shiner classes and are not shown. Optimum disturbance 
occurred where predicted abundance was maximum and is indicated by a black arrow. Disturbance class 
labels are provided within each interval (+3, +2, +1, 0, -1, -2, -3), with negative code values indicating 
perceived degradation and positive values indicating hyperoptimality. b.) Percentile classes of two 
different monotonic responses, where the solid curve (yellow) represents predicted Yellow Perch 
abundance (CPUE) and the dashed curve (purple) represents predicted Smallmouth Bass (Micropterus 
dolomieu) abundance (CPUE).  Vertical lines indicate disturbance values at the 80-percentile class 
(yellow dotted lines), the 40-percentile (green dashed lines), and the 20-percentile (black dash-dot lines); 
legend labels for Smallmouth Bass percentile boundary lines are followed by a “B” and those for Yellow 
Perch are followed by a “P”. Disturbance class labels are the same as for the unimodal responses; +3 is 
associated with Smallmouth Bass and -3 is associated with Yellow Perch. The inset chart shows the 
parabolic response for Walleye abundance as a function of watershed disturbance.  

Fig. 6. Spatial distributions of composite partial Canonical Correspondence Analysis (pCCA) disturbance 
variables for a.) Axis 1 (in-lake dominated) and b.) Axis 2 (watershed dominated) in Lake Erie.  

Fig. 7. Relative disturbance preferences, based on optimal (unimodal model) or maximal slope (monotonic) 
disturbance value associated with each species for which a successful non-parabolic model was 
available for both disturbance gradients. Species codes are defined in Appendix I.  

Fig. 8. Maps of predicted Yellow Perch (Perca flavescens) perception of disturbance throughout the nearshore 
zone of Lake Erie based on quadratic models of abundance as a function of a) in-lake disturbance and, 
b) watershed-derived disturbance. Disturbance classes range from the most degraded (-3) through 
optimal (0) to the most hyperoptimal (+3). The palest blue area was outside of the nearshore zone and 
not considered here. The inset shows the associated quadratic model of Yellow Perch abundance as a 
function of the disturbance gradient.  

Fig. 9. Maps of predicted Smallmouth Bass (Micropterus dolomieu) perception of disturbance throughout the 
nearshore zone of Lake Erie based on quadratic models of abundance as a function of a) in-lake 
disturbance and, b) watershed-derived disturbance. Disturbance classes range from the most degraded (-
3) through optimal (0) to the most hyperoptimal (+3). The palest blue area was outside of the nearshore 
zone and not considered here. The inset shows the associated quadratic model of Yellow Perch 
abundance as a function of the disturbance gradient.  

Fig. 10. Maps of the distribution of agreement among species that disturbance conditions are perceived as the 
most degraded (-3) in each 30-m spatial cell of the Lake Erie Nearshore zone due to a) in-lake 
dominated disturbance or b) watershed dominated disturbance. Ranges of the number of species in 
agreement compose each color-coded class, with the greatest agreement shown in red and no agreement 
shown in gray.  

Fig. 11. Maps of the distribution of agreement among species that disturbance conditions are perceived as 
optimal (0) in each 30-m spatial cell of the Lake Erie Nearshore zone due to a) in-lake dominated 
disturbance or b) watershed dominated disturbance. Ranges of the number of species in agreement 
compose each color-coded class, with the greatest agreement shown in red and no agreement shown in 
gray.  
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Appendices 
 
Appendix I. Fish species code names, common names, scientific names, and frequencies of occurrence in the 
Great Lakes nearshore fish dataset. Boldface species occurred at least 100 times and were used in the evaluation 
of disturbance effects on Great Lakes nearshore zone fishes. 
 

Species 
code Common Name Scientific Name Frequency of occurrence 
SMLT Rainbow Smelt Osmerus mordax 2672 
TRPR Trout-Perch Percopsis omiscomaycus 1836 
PRCH Yellow Perch Perca flavescens 1765 
ALEW Alewife Alosa pseudoharengus 1507 
WHPR White Perch Morone americana 1477 
GOBY Round Goby Neogobius melanostomus 1308 
SPOT Spottail Shiner Notropis hudsonius 1110 
EMRL Emerald Shiner Notropis atherinoides 1026 
SLIM Slimy Sculpin Cottus cognatus 913 
WBAS White Bass Morone chrysops 909 
WALL Walleye Sander vitreus 901 
DRUM Freshwater Drum Aplodinotus grunniens 880 
STK9 Nine-spine Stickleback Pungitius 733 
GIZZ Gizzard Shad Dorosoma cepedianum 719 
LTRT Lake Trout Salvelinus namaycush 665 
WFSH Lake Whitefish Coregonus clupeaformis 455 
JOHN Johnny Darter Etheostoma nigrum 379 
WSUK White Sucker Catostomus commersonii 375 
CCAT Channel Catfish Ictalurus punctatus 361 
LKHR Lake Herring Coregonus artedi 361 
STK3 Threespine stickleback Gasterosteus aculeatus 308 
BLOT Bloater Coregonus hoyi 283 
SCHB Silver Chub Macrhybopsis storeriana 258 
SPON Spoonhead Sculpin Cottus ricei 256 
DSCL Deepwater Sculpin Myoxocephalus thompsonii 253 
PUNK Pumpkinseed Lepomis gibbosus 182 
QUIL Quillback Carpiodes cyprinus 177 
LSUK Longnose Sucker Catostomus 173 
BURB Burbot Lota 168 
PWHF Pygmy Whitefish Prosopium coulterii  150 
CARP Common Carp Cyprinus carpio 133 
BLUE Bluegill Lepomis macrochirus 126 
SBAS Smallmouth Bass Micropterus dolomieu 108 
RWHF Round Whitefish Prosopium cylindraceum 105 
MIMC Mimic shiner Notropis volucellus 100 
LOGP Logperch Percina caprodes 99 
ROCK Rock Bass Ambloplites rupestris 96 
BBUL Brown Bullhead Ameiurus nebulosus 83 
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KING Chinook Salmon Oncorhynchus tshawytscha 71 
MINI Minnow spp. Cyprinidae spp. 69 
AEEL American Eel Anguilla rostrata 56 
SIST Siscowet (fat lake trout) Salvelinus namaycush  40 
BTRT Brown Trout Salmo trutta 39 
SHRH Shorthead Redhorse Moxostoma macrolepidotum 37 
KIYI Kiyi Coregonus kiyi  35 
RUFF Ruffe Gymnocephalus cernua  18 
SJCS Shortjaw Cisco Coregonus zenithicus  15 
LAMP Sea Lamprey Petromyzon marinus 14 
YBUL Yellow Bullhead Ameiurus natalis 14 
CRAP Black Crappie Pomoxis nigromaculatus 9 
GLDF Goldfish Carassius auratus 7 
LBAS Largemouth Bass Micropterus salmoides 7 
STRG Lake Sturgeon Acipenser fulvescens 7 
WCRP White Crappie Pomoxis annularis 6 
LCHB Lake Chub Couesius plumbeus 5 
BROK Brook Trout Salvelinus fontinalis 4 
GRED Golden Redhorse Moxostoma erythrurum 4 
SBUF Smallmouth Buffalo Ictiobus bubalus 4 
COHO Coho Salmon Oncorhynchus kisutch 3 
SPLK Splake BrookTrout x Lake Trout 3 
TGOB Tubenose Goby Proterorhinus marmoratus 3 

CCGF 
Common Carp x Goldfish 
hybrid Cyprinus carpio x Carassius auratus 2 

SLMP Silver Lamprey Ichthyomyzon unicuspis 2 
SRDH Silver Redhorse Moxostoma anisurum 2 
STON Stonecat Noturus flavus 2 
ATLS Atlantic Salmon Salmo salar 1 
BUFF Bigmouth Buffalo Ictiobus cyprinellus 1 
BULL Black Bullhead Ameiurus melas 1 
COMM Common Shiner Luxilus cornutus 1 
LDRT Least Darter Etheostoma microperca 1 
MOTT Mottled Sculpin Cottus bairdii 1 
MUSK Muskellunge Esox masquinongy 1 
OSUN Orangespotted Sunfish Lepomis humilis 1 
PIKE Northern Pike Esox lucius 1 
RAIN Rainbow Trout Oncorhynchus mykiss 1 
SAND Sand Shiner Notropis stramineus 1 
SAUG Sauger Sander canadensis 1 
SDRT Eastern Sand Darter Ammocrypta pellucida 1 
SFSH Spotfin Shiner Cyprinella spiloptera 1 
STIK Brook Stickleback Culaea inconstans 1 

 
 
 
  



51 
 



52 
 



53 
 

Appendix II. Habitat and disturbance variable code names used in ordination figures. Boldfaced variables were identified by forward Selection as 
having significant influence of fish abundances in the nearshore zone of the Great Lakes and were used as co-variables in the partial CCA of 
disturbance effects on Great Lakes nearshore fishes. 
 

Code Definition 
CDDSST Cumulative degree-days from mean daily surface water temperature, base 0C. 
Depth bathymetry depth (m) standardized to 30m grid in meters. 
DIRWETDELTA direction to delta wetland 
DIRWETOPEN direction to open wetland 
DIRWETPROTECT direction to protected wetland 
DISTRVRMTH Distance to nearest GLHD pour point, in meters 
DISTRVRMTH5 Distance to nearest river mouth with a Strahler order >= 5, in meters. 
DISTWETDELTA distance to delta wetland (m) 
DISTWETOPEN distance to open wetland (m) 
DISTWETPROTECT distance to protected wetland (m) 
Fetch_ GLAHF calculated fetch in meters weighted by direction of wind frequency. CM and NS zones only. 
GAP_Depth GLGAP depth (m) 
GAP_Fetch GLGAP fetch distance (m) 
GAP_gl_sst_jun GLGAP mean surface water temperature for June 
GAP_RivDens GLGAP river density 
GAP_RIVDIR GLGAP direction to rivermouth 
GAP_RIVDIST GLGAP distance to rivermouth 
GAP_SINUOSITY GLGAP sinuosity 
GAP_SUBST GLGAP substrate 
GAP_WETDELDIR GLGAP direction to delta wetland 
GAP_WetDeltaDist GLGAP distance to delta wetland 
GAP_WETOPDIR GLGAP direction to open wetland 
GAP_WetOpenDist GLGAP distance to open wetland 
GAP_WETPRODIR GLGAP direction to protected wetland 
GAP_WetProtDist GLGAP distance to protected wetland 
ICEDUR Ice duration in days, where the ice concentration >= 10%. 
KM9NEAR03 % of shoreline nearshore type "03 (sand/gravel lag over clay) in the KM9 the point falls inside. Shoreline geomorphology layer from th     
KM9NEAR05 % of shoreline nearshore type "05" (bedrock [non-resistant]) in the KM9 the point falls inside. Shoreline geomorphology layer from th     
KM9NEAR06 % of shoreline nearshore type "06" (unclassified) in the KM9 the point falls inside. Shoreline geomorphology layer from the EC/ACOE ~19   
KM9PROTECT04 % of shoreline protected type "4" (no protection: <15% of reach/segment is protected) in the KM9 the point falls inside. Shoreline geo        
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KM9SHOREGEOMORPH02 % of shoreline geomorph type "2" (high [>15m] bluff with beach) in the KM9 the point falls inside. Shoreline geomorphology layer fro      
KM9SHOREGEOMORPH13 % of shoreline geomorph type "13" (open shoreline wetlands) in the KM9 the point falls inside. Shoreline geomorphology layer from t     
KM9SHOREGEOMORPH14 % of shoreline geomorph type "14" (semi-protected-wetlands) in the KM9 the point falls inside. Shoreline geomorphology layer from     
KM9SHOREGEOMORPH16 % of shoreline geomorph type "16" (unclassified) in the KM9 the point falls inside. Shoreline geomorphology layer from the EC/ACOE ~19       
KM9SHOREGEOMORPH99 % of shoreline geomorph type "99" (Unclassified [coded by compiler]) in the KM9 the point falls inside. Shoreline geomorphology layer f      
MECHENG GLAHF classification mechanical energy variable (1 = low REI, 2 = moderate REI, 3 = high REI, 4 = 
REI Lake bottom relief for a 3 cell by 3 cell area, in meters, derived from bathymetry. 
RELIEF relief calculated from bathymetry 
RVRDENS River density for # of closest river mouths from the GLHD. 
RVRDENS5 River density for # of closest river mouths with a Strahler order >= 5.  Units are "# of points per sq. kilometer". 
SINUOSITY GLAHF shoreline sinuosity in values scaled from 1 (straight) to 0 (extremely sinuous).  Shoreline used was the GLAHF compiled high re                 
SSTSPRCV Spring surface water temperature CV (between years 1995-2008). 
SSTSPRMN Mean spring vertical water temperature for the 0-20m water column, in degrees Celsius. 
SUBSTRATE GLAHF compiled substrate from multiple data sources and USACEs 2012 and EC 1990s shoreline material classifications extended to th                     
TRIBINFL3 GLAHF classification tributary influence variable, classes are 1 = minimal influence; 2 = moderate influence; and 3 = high influence. CM     
UPWELL Upwelling from surface temperature, an annual index, units are in days. 
VWT20MSPRCV Spring vertical water temperature CV for the 0-20m water column. 
VWT20MSPRMN Mean spring vertical water temperature for the 0-20m water column, in degrees Celsius. 
VWT20MSUMMN Mean summer vertical water temperature for the 0-20m water column, in degrees Celsius. 
WVHGHTMNSUM Mean summer wave height in meters. 
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Appendix III. Disturbance variables composing the GLEAM, Wehrly, and Coastal Protection indices. See Allen 
et al. 2013 for complete descriptions of each GLEAM variable, Wehrly et al. 2013 for each Wehrly Index 
variable, and Hilllyer 1996 for Coastal Protection Index variables  

 
 
 

Source Disturbance variable 
GLEAM Index Hypoxia 
 Industrial ports and harbors 
 Light pollution 
 Marinas/boating 
 Shipping lanes 
 Shoreline extensions 
 Shoreline hardening 
 Dams (altered flow, nutrient, and sediment regimes) 
 Changing water level 
 Decreasing ice cover 
 Warming water temperature 
 Coastal development 
 Coastal mines 
 Coastal power plants 
 Coastal recreational use 
 Coastal road density 
 Aquaculture 
 Commercial fishing 
 Native fish stocking 
 Non-native fish stocking 
 Recreational fishing – charter 
 Ballast risk 
 Invasive fish 
 Invasive mussels 
 Invasive wetland plants 
 Sea lampreys 
 CSOs 
 N loading 
 P loading 
 Sediment loading 
 AOCs 
 Metals – biomagnifying 
 Metals – non-biomagnifying 
 Organics – biomagnifying 
Wehrly Index Amount of land in agricultural land uses 
 Amount of land in urban land uses 
 Human population numbers 
 Length of roads 
 Number of dams 
Coastal Protection Index % of shoreline highly protected type "1" (highly protected: 70-100% of 

reach/segment protected)  
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