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Gain-of-function (GOF), the most malicious oncogenic activity of a cancer-promoting protein, is well illustrated to three hotspot

p53 mutations at R248, R175, and R273 with distinct molecular mechanisms. Yet, less is known about another hotspot p53

mutant, R249S (p53-R249S). p53-R249S is the sole hotspot mutation in hepatocellular carcinoma (HCC) that is highly associated

with chronic hepatitis B virus (HBV) infection and dietary exposure to aflatoxin B1 (AFB1). Its GOF is suggested by the facts that

this mutant is associated with earlier onset of HCC and poorer prognosis of cancer patients and that its overexpression drives

HCC proliferation and tumorigenesis. By contrast, simply knocking in this mutant in normal mice did not show apparent GOF activ-

ity. Hence, the GOF activity for p53-R249S and its underlying mechanisms have been elusive until recent findings offered some

new insights. This review will discuss these findings as well as their clinical significance and implications for the development of

a strategy to target multiple molecules as a therapy for p53-R249S-harboring HCC.
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Introduction of hepatocellular carcinoma

Liver cancer is the second most lethal cancer worldwide with

∼700000 annual deaths globally in recent years (The Cancer

Genome Atlas Research Network, 2017). This accounts for

nearly 70% of cancer deaths in developing countries: western

and central Africa, east and south-east Asia (Ferlay et al., 2015).

As the most common primary malignancy of the liver, hepatocel-

lular carcinoma (HCC) is the fifth most common cancer world-

wide in men, and seventh among women (Mittal and El-Serag,

2013). Because of the lack of symptoms in the early stages and

the rapid growth rate of tumors, most cases of HCC are diag-

nosed at an advanced stage. The 5-year survival rate for HCC

individuals is <5% (Mikhail et al., 2014).

There are a number of etiological risk factors for liver cancer,

including Hepatitis B virus (HBV), hepatitis C virus (HCV), and

hepatitis D virus (HDV) (Ghouri et al., 2017). Also, AFB1

exposure has been shown to be highly related to the increasing

incidences of liver cancer (Kew, 2013). Chronic HBV infection

combined with dietary exposure toxin in the high-risk regions,

such as central Africa and southeast Asia, is the main reason for

the geographic distribution of much higher incidences of HCC.

Interestingly, these two risk factors (high AFB1 exposure and/or

HBV infection) are also highly associated with the high inci-

dence of a missense mutation of TP53 in HCC patients (Gouas

et al., 2012; Weng et al., 2017). This mutation is a single base

substitution at the third base of codon 249 (AGG to AGT), result-

ing in the amino acid substitution of serine for arginine (p53-

R249S). More interestingly, p53-R249S is the main hotspot

mutant identified in overall 30% of HCCs that contain p53 muta-

tions, and in >96% of HCCs in the high-risk regions (Hsu et al.,

1991; Staib et al., 2003; Hussain et al., 2007; Qi et al., 2015).

These epidemiological results suggest that p53-R249S must

play an important role in the development, progression and

metastasis of HCCs with positive HBV infection and AFB1 expos-

ure, which will be further described below.

Can p53-R249S be a biomarker for HCC?

Although HCC surveillance programs have been implemented

in specific high-risk populations, early diagnosis of HCC is still a
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challenging task due to the low sensitivity of current screening

methods (Bruix and Sherman, 2011). For instance, serum α-
fetoprotein (AFP) is the most widely used biomarker in the

screening of liver cancer, but its sensitivity is 40%–60% for all

stages with the sensitivity for early liver cancer being 40%–50%
(Trevisani et al., 2001; Moriya et al., 2013). Therefore, there is

an urgent need for more sensitive biomarkers specific for the

early diagnosis of HCC.

Like other cancers, HCC also harbors some drastic alterations

in the human genome (Jones and Baylin, 2002; Vogelstein and

Kinzler, 2004; Ozen et al., 2013). The identification of DNA mod-

ifications in HCC, including mutation and methylation, could be

utilized for diagnosis of liver cancers. As mentioned above, one

of the highly representative alterations in HCC is the mutation

of the tumor suppressor gene TP53 at codon 249 (Gouas et al.,

2009). In the high incidence areas of HBV infection and AFB1

exposure, the TP53 mutation occurred in >50% of the cases,

among whom there is a high proportion of HCC patients with

p53-R249S (Szymańska and Hainaut, 2003). This mutation

accounts for 26% of the TP53 mutations described in liver can-

cer, but is surprisingly rare (<2%) in other types of human can-

cers (Szymańska et al., 2004).

Epidemiological studies have shown that p53-R249S is by far

the predominant mutation in the areas of high HCC incidence,

such as Egypt, Brazilian, Gambia, Mexico, Nigeria, Senegal,

Turkey, Thailand, Southern India, as well as Guangxi and

Qidong from China (Coursaget et al., 1993; Soini et al., 1996;

Kirk et al., 2000; Stern et al., 2001; Huang et al., 2003; Kuang

et al., 2005; Hosny et al., 2008; Igetei et al., 2008; Nogueira

et al., 2009; Ozdemir et al., 2010; Pandima Devi et al., 2010). It

has been shown that aflatoxin metabolites can induce this

mutation in vitro and in vivo (Hainaut and Vahakangas, 1997;

Mace et al., 1997). It has also been suggested that p53-R249S

might promote carcinogenesis in liver (Szymańska and Hainaut,

2003), but not in other tissues. This raises the possibility of

using p53-R249S as a biomarker for diagnosis of HCC in the

above high-risk areas. Earlier studies using patients’ cancer tis-

sues and blood samples showed that free plasma DNA often

contains mutated DNA originated from the tumor lesions (Anker

et al., 1999). Thus, it has been attempted to examine plasma

DNA for p53-R249S mutation from HCC patients. In the Gambian

study, the incidence of p53-R249S mutation in plasma DNA

increased with the severity of liver diseases, and this supports

the idea that p53-R249S is selected during hepatocarcinogen-

esis associated with AFB1 exposure (Szymańska et al., 2004).

This study also showed that the p53-R249S mutation could be

detected in the plasma DNA of 38% of the patients with liver

cancer (Szymańska et al., 2004). Another study detected plasma

R249S-mutated DNA prior to HCC diagnosis in a small number

of HCC patients from Qidong, a high-incidence area in China

(Jackson et al., 2003). In addition, quantitative studies demon-

strated a strong correlation between the high copy number of

R249S mutation in plasma and HCC in Gambian patients, as

there were >2500 copies of R249S/ml in plasma for ∼50% of

these HCC patients (Lleonart et al., 2005). It was also found that

HCC is closely correlated with the R249S-containing plasma DNA

level with >10000 copies/ml (Lleonart et al., 2005). Taken

together, these studies suggest that p53-R249S mutation

detected in plasma DNA could serve as one biomarker for HBV-

and AFB1-associated HCC that harbor this p53 mutant.

Why is p53-R249S solely selected in HCC?

It has been puzzling why HBV infection and AFB1 exposure

specially select the p53-R249S mutation. One possibility would

be that AFB1 might selectively target the codon 249 of TP53.

AFB1 is a toxin produced by fungi called Aspergillus flavus that

grows on improperly stored grain, and metabolized by cyto-

chrome P450 in the liver. It generally causes DNA damage by

forming covalent and promutagenic DNA adducts. Specifically,

AFB1 metabolites could cause the G→T transversion at the

codon 249 of TP53, leading to transfer from AGG to AGT in 50%

(Africa) to 90% (Qidong of China) of HCC patients in highly

exposed AFB1 region (Bressac et al., 1991; Hsu et al., 1991;

Aguilar et al., 1993; Shen and Ong, 1996), which was not

detected in other hotspot mutation regions of TP53. Supporting

this is an in vitro study showing that the context of AGG

sequence is a favorable adductive site for AFB1 metabolites

(Besaratinia et al., 2009). Hence, this specificity suggests that

p53-R249S might have a selective advantage in the develop-

ment of liver cancer. Then, how is this mutation highly asso-

ciated with HBV infection in HCC?

It is possible that p53-R249S might also be picked up via a

biological selection in HBV-associated HCC. Previous studies

suggested that HBV-encoded x protein (HBx) might promote

HCC proliferation and growth by interplaying with p53-R249S

(Gouas et al., 2010; Kew, 2011), as silencing either p53-R249S

or HBx in HCC cells that harbor both of the proteins retarded

cell proliferation and growth. Also, HBx could form a complex

with p53-R249S. These results suggest that HBx might execute

its oncogenic function by specifically binding to this p53 mutant.

However, HBx can also promote cell cycle progression and HCC

growth by suppressing and interacting with other negative

growth regulators, such as wild-type p53. Thus, the specificity

for selecting p53-R249S mutation in HBV-infected HCC could not

be interpreted by the interaction of HBx with this p53 mutant.

Another explanation is that HBV infection might endorse the

formation of AFB1-induced 249 codon mutation. Chronic inflam-

mation caused by viral replication and infection, such as HBV

infection, can lead to oxidative stress in hepatocytes. This might

be related to the mutation load of TP53’s codon 249 in hepato-

cytes (Hussain et al., 1994). Also, since the expression of CYP

450 enzyme that metabolizes and activates AFB1 is elevated in

HBV surface antigen (HBsAg) transgenic mice (Kirby et al.,

1994), the mutagenic ability of this chemical carcinogen would

be more drastically potentiated by HBV infection. Consistent

with this conjecture is that the concentration of AFB1 adducts in

children and adolescents infected with chronic HBV in Gambia is

greater than that of those without this infection (Kew, 2003).

Moreover, HBV may boost the mutation rate through indirect

mechanisms, such as by inducing chronic inflammation, thereby
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increasing the transformation rate of hepatocytes and the risk

of obtaining mutations, such as TP53-R249S (Gouas et al.,

2009). Although all of these possibilities discussed above seem

reasonable, the evidence supporting these speculations is indir-

ect, descriptive, and less convincing. Thus, it still remains mys-

terious about why HBV infection and AFB1 exposure solely

select p53-R249S, rather than other hotspot mutations of p53,

in HCC.

Does p53-R249S possess gain-of-function activity in HCC?

Similar to other hotspot p53 mutants, p53-R249S displays

both loss of function (LOF) and dominant negative (DN) effects

crucial for HCC cell proliferation (Goh et al., 2011; Lee et al.,

2012). However, unlike R175, R273 and R248 that clearly dis-

play their gain-of-function (GOF) in each of their knockin mouse

models (Sigal and Rotter, 2000; Hanel et al., 2013; Muller and

Vousden, 2013), genetic knockin of mouse R246S (equivalent to

human R249S) only showed LOF and DN effects on tumor develop-

ment in mice (Lee and Sabapathy, 2008; Lee et al., 2012). In the

R246S knockin study, TP53R246S/wt, TP53−/−, and TP53R249S/R249S

mice showed similar survival rates, and homozygous mutations of

p53 at this amino acid, unlike R172H, did not promote further

tumorigenesis (Lee et al., 2012). Also, expressing different levels

of R246S in the presence of wild-type p53 in mice displayed

marked DN effect on acute p53 activation and radiosensitivity in

cell-specific and dose-dependent manners (Lee et al., 2012).

Clearly, p53-R249S did not show GOF in its knockin mice, although

previous studies suggested that p53-R249S might possess a GOF

activity in human HCC cells (Lee et al., 2000; Gouas et al., 2010).

Perhaps, p53-R249S might exert its GOF activity in a context

dependent manner (Lee et al., 2012), because the increase of

mutant p53 level simply due to Mdm2’s absence or DNA damage

in tumors is insufficient to convey GOF activity to this mutant p53.

Also, the failure of the R249S mutant to inhibit p73 seems to be

one of the reasons for its lack of GOF. Finally, p53-R249S does not

exhibit GOF properties in other cell types, both in the primary and

transformed tissues, and even in the absence of Mdm2. Hence, it

remains questionable if p53-R249S possesses a GOF activity key

for proliferation, growth, and tumorigenesis of HCC cells. If so,

what would be the underlying molecular mechanism, and why its

GOF could not be found in p53-R249S knockin mice (Lee and

Sabapathy, 2008; Lee et al., 2012)? To address these questions,

recent studies offered some new insights as further described

below.

SETDB1 methylates p53-R249S and enhances its GOF activity

Earlier on, p53-R249S was shown to be regulated by a

methyltransferase called SETDB1 (SET domain bifurcated 1, SET

domain in the C-terminal region) (Fei et al., 2015). SETDB1 was

originally thought to be a protein containing a SET domain

(Harte et al., 1999), and its gene is located on human chromo-

some 1q21.3 with 38.6Kb. It belongs to the family of SET-

domain (Su(var)3–9, E(z), Trithorax) protein methyltransferase

(Schultz et al., 2002). There are two main functional domains:

The N-terminal Tudor domain involved in the interaction of

proteins and the central MBD domain that mediates the binding

of methyl with CpG. It has been shown that SETDB1 can mediate

trimethylation of H3K9, leading to gene silencing or transcrip-

tional suppression of some tumor suppressors, such as

RASSF1A and p53-binding protein 2 (P53BP2), and thus to play

an important role in promoting tumor initiation and progression

(Wang et al., 2003; Lu et al., 2016). Although it has been shown

that SETDB1 is a possible target for early treatment of

Huntington’s disease and associated with embryonic develop-

ment (Matsui et al., 2010), it is also often up-regulated in

human HCCs through multiple mechanisms, such as at chromo-

somal (amplification), transcriptional and post-transcriptional

levels (Wong et al., 2016). Through a set of bioinformatics, cel-

lular, molecular, and biochemical studies, it has been shown

that SETDB1 can regulate p53-R249S stability as well (Fei et al.,

2015).

Interestingly, the high copy number and RNA level of the

SETDB1 gene were well correlated with the p53-R249S status in

HCC tissues. The proportion of p53-R249S mutation increased

significantly in HCC specimens that carried more SETDB1 copies

or higher RNA levels as examined by exon sequencing, human

SNP array 6.0, and RNA expression microarrays. Also, SETDB1

was required for the growth of HCC cells that harbor p53-R249S.

R249S, but not wild-type, p53, determined the cell growth sensi-

tivity to SETDB1 knockout, and also rendered HCC cells more

dependent on SETDB1. Additionally, SETDB1 tended to form

more complexes with p53-R249S than with wild-type p53 as

determined by immunoprecipitation. Remarkably, SETDB1 could

di-methylate p53-R249S at K370 and stabilize the mutant p53

perhaps by preventing its MDM2-mediated ubiquitination and

degradation, whereas the attenuation of SETDB1 activity

reduced the level of p53-R249S K370me2 and enhanced MDM2-

facilitated proteasomal turnover of this mutant p53 (Fei et al.,

2015). This study revealed SETDB1 as an upstream regulator of

p53-R249S, whose activity for p53 methylation is likely required

for the GOF activity of the mutant p53 in HCC (Figure 1).

However, this study does not address how this mutant p53 exe-

cutes its GOF activity in HCC.

p53-R249S acquires its GOF activity through a wide array of

molecules

That issue has remained unaddressed until a more recent study

(Liao et al., 2017) unveiled a unique signaling pathway involving

multiple proteins for p53-R249S to execute its GOF activity in HCC

cells. Remarkably, all of these proteins have been shown to be

involved in tumorigenesis of various cancers either as an oncopro-

tein, such as CDK4/cyclin D1, Pin1 or c-Myc, or as a tumor sup-

pressor, such as FBW7a (Wang et al., 2012).

CDK4 plays a key role in the G1/S phase of the cell cycle by

forming a complex with cyclin D or A family (Johnson and

Walker, 1999). The CDK4/cyclin D1 complex is often utilized by

tumor cells for their survival and growth advantages, as it is

highly expressed in various human cancers (Sherr, 1996;

Malumbres and Barbacid, 2009). One of the important target

substrates for this cell cycle-regulated kinase is Rb that is a
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tumor suppressor and can suppress the progression of the cell

cycle by inhibiting the transcriptional activity of E2F or its ana-

logs (Giacinti and Giordano, 2006). By phosphorylating Rb,

CDK4/cyclin D1 inhibits its activity toward E2F, thus boosting

the cell cycle progression and proliferation (Kitagawa et al.,

1996). In addition, CDK4/cyclin D1 promotes the cell cycle pro-

gression and inhibits cell senescence and apoptosis by phos-

phorylating other proteins as well (Sheppard and McArthur,

2013). It is through the influence on the cell cycle progression

CDK4/cyclin D1 can drive tumorigenic events, including hepato-

cellular carcinogenesis (Asghar et al., 2015). Interestingly, HBx

has also been shown to increase CDK4 activity in the develop-

ment of HBV-related liver cancer (Kremsdorf et al., 2006;

Gearhart and Bouchard, 2010).

c-Myc is a nuclear transcription factor that is very important

for the proliferation and renewal of stem cells as well as the sur-

vival of cancer (stem) cells (Bouchard et al., 1998; Takahashi and

Yamanaka, 2006; Gordan et al., 2007; Kim et al., 2010). One key

function of c-Myc is to activate the expression of genes involved

in ribosomal biogenesis and protein synthesis (Grandori et al.,

2005). This oncoprotein is highly expressed in nearly 80% of

human cancers (Dang, 2012) via multiple mechanisms, including

chromosomal translocation, rearrangement, gene amplification,

and so on (Chen et al., 2014). It also plays a more global role in

regulation of gene transcription crucial for cell proliferation

and survival as well as tumorigenesis (Fernandez et al., 2003;

Li et al., 2003; Lin et al., 2012). Hence, c-Myc is an important

oncoprotein essential for the growth and progression of various

types of cancer cells including HCC. This oncogenic activity of

c-Myc is prevented by FBW7a, a tumor suppressor protein with

an intrinsic E3 ubiquitin ligase activity, which can ubiquitinate

the former and lead to its degradation (Yada et al., 2004).

Pin1, which is also highly expressed in human cancer, plays a

carcinogenic role by converting inactive proteins into active

oncoproteins, such as p53 mutants or c-Myc (Yeh and Means,

2007; Girardini et al., 2011; Farrell et al., 2013). Pin1 possesses

a peptidyl-prolyl cis-trans isomerase activity (Lu et al., 1996),

through which it can convert a target protein from its cis con-

formation to its trans conformation by binding to a phosphory-

lated Ser-Pro motif (Albert et al., 1999; Arevalo-Rodriguez et al.,

2000; Hsu et al., 2001). It is through this activity Pin1 could

modulate multiple cellular events, including nuclear import,

gene regulation, RNA processing, cell proliferation, and differen-

tiation, thus promoting cell proliferation, survival and tumori-

genesis. Intriguingly, it has been shown that Pin1 also

interplays with HBx and promotes the development of HBV-

associated HCC (Datta et al., 2007).

Amazingly, the study by Liao et al. (2017) connected all of the

aforementioned cancer-related proteins in one single pathway that

leads to the ‘materialization’ of p53-R249S’s GOF activity in HCC.

Interestingly, mutation of Arg249 to Ser249 in p53 converted this

cancer-derived serine residue to a substrate specific for CDK4/cyc-

lin D1, but not for other cell cycle-regulated kinase complexes, dur-

ing the G1 phase of the cell cycle of HCC cells. Once

phosphorylated, p53-R249S became a preferred target with a

phosphor-Ser249-Pro250 motif for Pin1, and the latter then bound

to p53-R249S at this motif and facilitated its nuclear import. More

interestingly, the nuclear-phosphorylated p53-R249S bound to

FBW7a and c-Myc and prevented the interaction between the latter

two. As a result, p53-R249S inhibited FBW7a ubiquitination of c-

Myc, stabilized the latter, and activated its activity, consequently

augmenting c-Myc-dependent cell proliferation and survival.

Hence, these cellular and biochemical studies unravel that these

proteins work in concert to form a unique signaling pathway that

equips p53-R249S with a new GOF activity critical for HCC prolifer-

ation and growth (Figure 1).

Indeed, this signaling pathway has been confirmed in primary

human HCC tissues (Liao et al., 2017). First, higher protein levels

of p53-R249S were detected in all of the eight HCC tissues that

were HBV positive. Correspondingly, c-Myc, CDK4, and Pin1 levels,

as well as p53-R249S phosphorylation, were also relatively higher

than that in HCC tissues without the p53-R249S mutation. Notably,

the p53-R249S–CDK4–c-Myc complex was also detected in these

p53-R249S-harboring HCC tissues. These results demonstrate a

Figure 1. A schematic showing how p53-R249S may acquire its GOF activity in HCC. Arrows indicate activation, while bars indicate

suppression.
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novel and unique CDK4/cyclin D1–Pin1–p53-R249S–c-Myc pathway

that is crucial for HCC proliferation, survival and carcinogenesis in

the HBV-infected environment.

Ending remarks

Since the identification of p53-R249S as the sole hotspot

mutation of TP53 in human HCCs that are highly associated with

HBV infection and AFB1 exposure in 1991 (Bressac et al., 1991;

Hsu et al., 1991), a great progress has been made to better

understand why this mutant is specifically selected in this spe-

cific type of HCCs and how it executes its GOF activity in the

HCC (Hussain et al., 1994; Kirby et al., 1994; Besaratinia et al.,

2009; Gouas et al., 2009, 2010; Kew, 2011, 2013; Fei et al.,

2015; Liao et al., 2017). Despite the fact that p53-R249S exhi-

bits its GOF characteristics in a context dependent manner (Lee

et al., 2012), from a series of epidemiological, genetic, biochem-

ical, cellular and bioinformatics studies (Bressac et al., 1991;

Hsu et al., 1991; Aguilar et al., 1993; Coursaget et al., 1993;

Shen and Ong, 1996; Soini et al., 1996; Anker et al., 1999; Kirk

et al., 2000; Stern et al., 2001; Huang et al., 2003; Jackson

et al., 2003; Szymańska et al., 2004; Kuang et al., 2005;

Lleonart et al., 2005; Hosny et al., 2008; Igetei et al., 2008;

Nogueira et al., 2009; Ozdemir et al., 2010; Pandima Devi et al.,

2010; Fei et al., 2015; Liao et al., 2017), we have now learned

that p53-R249S indeed acquires its GOF activity via specific

chemical targeting of R249S by AFB1, biological selection by

HBV that creates a microenvironment or molecular environment

and reprograms oncogenic signaling pathways leading to

unusual posttranslational modifications, such as methylation at

K370 by SETDB1 (Fei et al., 2015) and phosphorylation at S249

by CDK4/cyclin D1 (Liao et al., 2017) (Figure 1). However, there

are still several outstanding issues that remain to be addressed.

First, would K370 methylation and S249 phosphorylation cross

talk with each other in implementing the GOF activity of p53-

R249S in HCC (Figure 1)? Also, would p53-R249S indeed be able

to drive HCC development and progression in a more biological

setting, such as in an animal model system? Would the CDK4/

cyclin D1–Pin1–p53-R249S–c-Myc signaling pathway be more

prevalent in a much larger HCC population in China or Africa?

Would the GOF activity of p53-R249S play a role in metastasis

and drug resistance of late-stage HCCs harboring this mutant

p53? If so, this would lead to the last question, i.e. is it possible

to co-target them as a combined strategy to develop more

effective therapies for HCCs that harbor this p53 mutant, such

as co-targeting mutant p53 and CDK4, or even triple-targeting

c-Myc, CDK4, and Pin1, and so on? Addressing these issues will

certainly further advance our knowledge about the role of p53-

R249S in HCC development and provide us with more useful

information for developing therapies for this type of cancer,

beneficial to human health.
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