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‭Abstract:‬
‭As a result of current climate change, flooding events are becoming more frequent and lasting‬
‭longer, resulting in temporal floods in areas that have not historically experienced this disturbance.‬
‭One critical aspect of forest dynamics that could be significantly impacted by increasing flooding‬
‭is tree species recruitment. While adult trees may be able to survive temporary flooding,‬
‭establishing seedlings with shallow root systems may not. A single flooding event could jeopardize‬
‭decades of recruitment if seedlings are unable to survive the anaerobic conditions imposed by‬
‭higher water levels. Despite the potential impact of flooding on forest dynamics, there is little‬
‭information on seedling recruitment patterns after exposure to flooding.‬

‭To understand how flooding conditions could possibly be impacting forest recruitment, we‬
‭conducted a field observational study across seven temperate forests. We gathered data on seedling‬
‭abundance and diversity in areas with signs of recent flooding, as well as in nearby control (dry)‬
‭areas. After controlling for the proximity of seed sources, our findings revealed a significant‬
‭disparity between control and flooded plots in terms of seedling numbers and diversity, with‬
‭control plots consistently exhibiting higher seedling abundance and species diversity. Decreases in‬
‭seedling abundance ranged from 66% to 88%. This trend was consistent across most forests,‬
‭except one with a historical prevalence of flooding. Species diversity was higher in control plots,‬
‭with one or two species more. When comparing between native and invasive species, native‬
‭seedlings tended to be more abundant in dry versus flooded plots, while invasive seedlings‬
‭exhibited similar abundance under both conditions. These results document the adverse effects‬
‭flooding conditions have on temperate forest recruitment dynamics, providing insights into how‬
‭tree recruitment might be impacted by shifts in flooding patterns.‬
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‭1.‬ ‭Introduction:‬
‭Climate change is predicted to drive changes in forest composition across ecosystems via both‬
‭gradual and abrupt changes in growing conditions (Smith and Lazo 2001, Morin et al. 2018,‬
‭Albrich et al. 2020​​). In particular, extreme events, such as heat waves, droughts, and flooding, may‬
‭lead to rapid shifts in forest structure and composition (Weed et al. 2013, Fei et al. 2017), mostly‬
‭acting via impacts in recruitment (Grubb 1977, Connell and Green 2000). One understudied‬
‭extreme event that is likely to increase with global warming is flooding (Chappell 2006, Margrove‬
‭et al. 2015, Rogger et al. 2017). Localized increases in flooding frequency and intensity have been‬
‭broadly predicted across the globe (Kundzewicz et al. 2014, Hirabayashi et al. 2013), potentially‬
‭creating a novel ecological filter at the recruitment stages. Due to their extensive root systems,‬
‭adult trees may be able to survive the anaerobic conditions of the upper soil layers during the‬
‭flood; however, seedlings with much shorter roots may not (Glenz et al. 2006; Fig. 1). Despite its‬
‭potential impact, the effect of these flooding events is rarely accounted for when predicting future‬
‭forest communities.‬

‭Models predicting future weather patterns indicate extreme precipitation events will increase, both‬
‭in frequency and magnitude (Meresa et al. 2022). As a result, areas that historically did not‬
‭undergo flooding as part of their natural disturbance regime may now experience it (Wang et al.,‬
‭2023). This could lead to unadapted forest communities having to endure flooding conditions on a‬
‭regular basis. Nevertheless, there is little information on how forests will respond to these shifts in‬
‭the hydrological regime (Xu et al. 2018), even if flooding events can significantly impact forest‬
‭dynamics if the recruitment layer is affected (Kozlowski 2002, Guilherme et al 2004, Myster‬
‭2007).‬

‭Individuals are most vulnerable to the impacts of flooding at the seedling stage since they do not‬
‭have the physiological and morphological adaptations to withstand inundated conditions (Glenz et‬
‭al., 2006, Da Silva et al. 2023). For example, due to the temporary lack of oxygen, flooding can‬
‭detrimentally impact seedlings’ height, stem diameter, and total biomass, altering leaf nitrogen‬
‭content, photosynthetic rate, and even stomatal conductance (‬‭Martínez-Alcántara et al. 2012,‬
‭Kreuzwieser and Rennenberg, 2014, Liu et al. 2014,  Mozo et al. 2021). Studies in the Amazon‬
‭comparing dry ‘terra firme’ and flooded areas saw evidence that periodic flooding negatively‬
‭impacted tree recruitment (Polanía et al. 2020). However, studies in riparian zones point to both a‬
‭negative impact of flooding on forest recruitment (Berthelot et al. 2014, Sarneel et al 2019) and a‬
‭beneficial effect via facilitating the recruitment of flood-tolerant species (Rood et al. 1998). This‬
‭flood tolerance has been attributed to traits like the ability to transpire during flooding and to‬
‭dynamic root systems (Parolin and Wittman 2010, Kreuzwieser and Rennenberg 2014, Pan et al.‬
‭2022). Still, these tree species adapted to temporary waterlogging conditions may have to endure‬
‭longer periods of flooding under climate change, and it is not entirely clear how changing flooding‬
‭regimes will affect them (Niinemets and Valladares 2006, Gee et al. 2014, Saint-Laurent et al.‬
‭2019).‬
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‭Over the years, tree populations accumulate a seedling bank ready to respond to openings in the‬
‭canopy (Pakeman and Small 2005). However, we know little about the long-term consequences of‬
‭changes in the seedling bank. If flooding affects the seedling layer (Ismail et al. 2009, Wang and‬
‭Komatsu 2022) and flooding events become more prevalent in areas where tree species are not‬
‭adapted to those conditions, then tree recruitment could be jeopardized (Lee et al. 2014).‬
‭Furthermore, in forest communities facing flooding conditions, there will likely be intraspecific‬
‭variation in how species respond and withstand such conditions (Rodríguez et al. 2020). A‬
‭meta-analysis of the literature on this topic has shown that species like willows (‬‭Salix spp‬‭) are‬
‭more successful in surviving and persisting in such environments, while other hardwood species‬
‭and conifers are not as well adapted (Glenz et al. 2006). Moreover, European willows, which are‬
‭pioneer floodplain species, have invaded riparian zones in South America by exploiting a vacant‬
‭niche along rivers due to hydrological alterations (Lewerentz et al. 2019). Generalist forest species‬
‭also seem to dominate flooded areas when compared to specialist species (Glaeser and Wulf,‬
‭2009). Therefore, flooding conditions could provide space for certain species to outcompete others‬
‭at the recruitment stage (O’Briain et al. 2023). Understanding which species could or could not‬
‭persist in flooding conditions will be critical to forecasting the structure and functioning of forests‬
‭now exposed to flooding.‬

‭To better assess the potential impacts of flooding in temperate forest ecosystems, we conducted an‬
‭observational study across forest stands. In a forest, there is often a level of topographic‬
‭heterogeneity that, after intense precipitation events, can result in patches of localized flooding‬
‭(Fig. 1). These areas can be used to make inferences about the effects of flooding on woody‬
‭species recruitment and how it might compare to not flooded environments (Teodoro de Oliveira et‬
‭al. 2014). After accounting for seed sources, we compared recruitment data between plots that did‬
‭not show any indication of having been flooded vs. plots that have been recently flooded (Fig. 1).‬
‭Our research was aimed at answering the following: 1) do flooded areas (i.e., high soil water‬
‭levels) have an impact on tree seedling abundance and richness when compared to non-flooded‬
‭environments? 2) do flooded areas differentially affect the recruitment of co-occurring tree‬
‭species? Answering these questions will inform assessments of the impact of flooding on forest‬
‭dynamics, information that could then be included in vegetation models of future forest‬
‭performance as well as accounted for in the development of conservation and management plans.‬

‭2.‬ ‭Methods‬
‭Study Areas -‬‭We collected field data from forests‬‭located at two different latitudes in Michigan’s‬
‭Lower Peninsula, USA (Fig. 2). The forests in northern latitudes are described as Laurentian‬
‭Mixed Forests; the growing season is short relative to other areas, 122 days long, with snow being‬
‭present on the ground throughout winter. At the southern latitude, Midwest Broadleaf Forests‬
‭(McNab et al. 2007, Hatfield et al. 2015), the growing season period is around 173 days, and snow‬
‭only covers the ground part of the winter. Using flood risk maps (‬‭Stay Dry v3.1 kmz‬‭,‬‭FEMA‬
‭NFHL v3.2 kmz‬‭) we considered the hydrologic flooding‬‭history of the area and excluded sites with‬
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‭historical seasonal or prolonged flooding when selecting sampling locations. We selected eight‬
‭forest forests, six in the south and two forests in the north (Fig. 2, Appendix 1 Table S1). Two‬
‭forests, the Goodrich Preserve and Horner Woods, spatially compose a continuous forest and,‬
‭therefore, were analyzed as one, making a total of 7 forests for analysis. Within each forest, we‬
‭visually assessed locations that had been recently flooded. We monitored for characteristics such as‬
‭concave depressions and compressed litter layers as signs of recent and potential flooding (Fig. 1).‬
‭We then paired these areas with control, no signs of flooding, and areas that were in close‬
‭proximity to reduce confounding factors affecting recruitment.‬

‭Data collection -‬‭Data collection occurred between‬‭the period of June 9th to July 28th, 2022, after‬
‭the growing season. Within each sampled forest, we outlined transects, 4 m wide and 8-42 m long,‬
‭in areas with signs of flooding and paired them with transects in control areas. For each forest, we‬
‭collected data from multiple transects for each treatment for a total of 34 transects ranging between‬
‭2-5 pairs of transects per forest. We divided each transect into 1 m‬‭2‬ ‭plots, where we identified tree‬
‭and other woody plant seedling species and recorded their abundances (number of seedlings/m‬‭2‬‭);‬
‭plants were considered seedlings if they were 50 cm tall or lower. We also outlined a perimeter‬
‭around the transect stemming 10 meters from its edges to gather data on adult tree basal area (a‬
‭proxy for the abundance of seed sources) and richness (a proxy for the diversity of seed sources).‬
‭In this area, we identified and measured the trunk diameter of all adult trees with diameters > 5 cm‬
‭(diameter at breast height [1.35 m], dbh); we then used these measurements to calculate adults'‬
‭basal area per unit of forest area (BA, cm‬‭2‬‭/m‬‭2‬‭) for‬‭each transect.‬

‭Environmental Variables‬‭- Since environmental conditions‬‭are known to affect tree recruitment in‬
‭these forests (e.g., Lee and Ibáñez 2021, Ibáñez et al. 2017), we recorded soil moisture and light‬
‭intensity within our transects at the time of the seedling sampling. We measured volumetric soil‬
‭moisture content‬ ‭with a FieldScout TDR 350 soil moisture probe to‬( ‭𝑣𝑜𝑙𝑢𝑚𝑒‬‭ ‬‭𝑜𝑓‬‭ ‬‭𝑤𝑎𝑡𝑒𝑟‬‭ ‬(‭𝑐𝑚‬‭3‬)

‭𝑣𝑜𝑙𝑢𝑚𝑒‬‭ ‬‭𝑜𝑓‬‭ ‬‭𝑠𝑜𝑖𝑙‬‭ ‬(‭𝑐𝑚‬‭3‬) )‭ ‬

‭quantitatively assess the differences in soil moisture-paired transects. We observed light‬
‭availability for each subplot using a light meter probe to measure the light intensity (μmols/m‬‭2‬‭s).‬
‭We measured light availability in the center of our plots at 50 cm above the ground to reflect light‬
‭conditions for seedlings. Because environmental measurements were taken on different days across‬
‭forests, to be able to make comparisons between paired transects, we standardized each forest’s‬
‭measurements independently (e.g., at 1 m‬‭2‬ ‭plot‬‭i‬‭standardized‬‭Light‬‭i‬ ‭= (Light‬‭i‬‭-meanLight‬‭forest(i)‬‭)/‬
‭SDLight‬‭forest(i)‬‭).‬

‭Statistical Analysis‬‭- We first analyzed seedlings‬‭abundance, all tree species combined, as a‬
‭function of being in control or flooded transects but also as a function of other factors affecting‬
‭seedling density, i.e., adult tree density (BA, our proxy for seed sources), and standardized light‬
‭intensity since light levels might have affected the establishment and early survival (Ibáñez and‬
‭McCarthy-Neumann 2016)‬‭.‬‭Each 1 m‬‭2‬ ‭plot‬‭i‬‭was modeled‬‭using a Poisson likelihood:‬

‭𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒‬
‭𝑖‬
‭~‬‭𝑃𝑜𝑖𝑠𝑠𝑜𝑛‬(λ

‭𝑖‬
)
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‭With process model:‬
‭𝑙𝑛‬‭⁡‬(λ

‭𝑖‬
) = α

‭𝑓𝑜𝑟𝑒𝑠𝑡‬ ‭𝑖‬( ),‭𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡‬ ‭𝑖‬( )
+ β

‭1‬
‭𝐵𝐴‬

‭𝑖‬
+ β

‭2‬
‭𝑙𝑖𝑔ℎ𝑡‬

‭𝑖‬
+ ω

‭𝑖‬

‭Parameter ω was included to account for the overdispersion of the data (i.e., variance > mean).  We‬
‭analyzed seedling species richness (i.e., number of species) following the same approach but used‬
‭adult tree species richness as a predictor instead of BA. We carried out a third set of analyses for‬
‭species for which we had sufficient data across surveyed forests. These include two native species:‬
‭Acer rubrum‬‭L., red maple, and‬‭Acer saccharum‬‭Marshall,‬‭sugar maple; one native genus,‬
‭Fraxinus‬‭species, which included‬‭Fraxinus americana‬‭L.‬‭,‬‭white ash‬‭, Fraxinus nigra‬‭Marshall‬‭,‬
‭black ash,‬ ‭Fraxinus pennsylvanica‬‭Marshall‬‭,‬‭green‬‭ash‬‭,‬‭and‬‭Fraxinus quadrangulate‬‭Michx.‬‭,‬‭blue‬
‭ash; invasive buckthorns: grouped as‬‭Rhamnus‬‭, including‬‭Frangula alnus‬‭Mill., glossy buckthorn,‬
‭and‬‭Rhamnus cathartica‬‭L., common buckthorn; and an‬‭invasive genus,‬‭Lonicera‬‭species‬‭,‬
‭Lonicera maackii‬‭(Rupr.) Herder, Macks honeysuckle,‬‭Lonicera tatarica‬‭L., Tartarian‬
‭honeysuckle.‬

‭Based on our ecological understanding of these systems,‬‭A. rubrum‬‭and those within the‬‭Fraxinus‬
‭genus can recruit in areas under temporarily inundated conditions (Anella and Whitlow 1999,‬
‭Anella and Whitlow 2000, Vreugdenhil et al. 2006). Meanwhile, species like A.‬‭saccharum‬‭do not‬
‭survive in waterlogged areas long term (Carpenter and Mitchell 1980, Hauer 2021).‬‭Lonicera‬
‭species are a genus of focus due to their capacity to become a matter of concern in disturbed‬
‭waterlogged sites, specifically‬‭L. Maackii‬‭(Langley‬‭2016). For the‬‭Rhamnus‬‭group, studies have‬
‭reported‬‭R. cathartica‬‭individuals being able to tolerate‬‭flooding conditions and, to a certain‬
‭extent,‬‭F. alnus‬‭being able to persist in these same‬‭environments as‬‭R. cathartica‬‭(Kurylo et al.‬
‭2015, Kalkman et al, 2019).‬

‭For each species, seedling abundance was analyzed as:‬
‭𝑆𝑝𝑒𝑐𝑖𝑒𝑠‬‭ ‬‭𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒‬

‭𝑖‬
‭~‬‭𝑃𝑜𝑖𝑠𝑠𝑜𝑛‬(λ

‭𝑖‬
)

‭The process model is:‬
‭𝑙𝑛‬‭⁡‬(λ

‭𝑖‬
) = α

‭𝑓𝑜𝑟𝑒𝑠𝑡‬ ‭𝑖‬( ),‭𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡‬ ‭𝑖‬( )
+ ω

‭𝑖‬

‭All parameters were estimated from non-informative distributions,‬α
*,*

, β
*
‭~‬‭𝑁𝑜𝑟𝑚𝑎𝑙‬ ‭0‬, ‭1000‬( ), ‭ ‬‭ ‬

‭, and‬ ‭.‬ω
*
‭~‬‭𝑁𝑜𝑟𝑚𝑎𝑙‬ ‭0‬, σ‭2‬( ) ‭1‬

σ‭2‬ ‭~‬‭𝐺𝑎𝑚𝑚𝑎‬(‭0‬. ‭001‬, ‭0‬. ‭001‬)

‭Analysis was conducted using OpenBUGS (version 3.2.3); for the analysis, we ran three MCMC‬
‭chains for 10,000 iterations until convergence was reached. The posterior parameter means,‬
‭standard deviations, and 95% credible intervals were then estimated across 50,000 iterations.‬
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‭3.‬ ‭Results‬
‭In total, we surveyed 34 transects, 17 pairs across seven forests; transects ranged from 8 to 24 m in‬
‭length, yielding 588 subplots for the analyses. Soil moisture comparisons between flooded and‬
‭non-flooded transects in each forest show that flooded plots were more humid than control plots,‬
‭with the average difference in soil moisture content being around 79% (Appendix 1 Table S1).‬
‭Across control plots, abundance ranges between 0 and 72 individuals/m‬‭2‬‭, with a mean abundance‬
‭of 16.04 individuals/m‬‭2‬‭. The range of species richness‬‭for control plots was between 0 and 8‬
‭species/m‬‭2‬‭, with a mean richness of approximately‬‭3.27 species/m‬‭2‬‭. The range of abundance for‬
‭flooded plots was between 0 and 25 individuals/m‬‭2‬‭,‬‭with a mean abundance of 4.33 individuals/m‬‭2‬‭.‬
‭The range of species richness for flooded plots was between 0 and 6 species/m‬‭2‬‭, with a mean‬
‭species richness of approximately 1.48/m‬‭2‬‭. Parameter‬‭values for all analyses can be found in‬
‭Appendix 4 Table S3.‬‭Our abundance model had a goodness‬‭of fit (predicted‬‭vs.‬‭observed; R‬‭2‬‭) of‬
‭0.994, and the diversity model had an R‬‭2‬ ‭value of‬‭0.44. For our species-specific models, the‬
‭Fraxinus model had an R‬‭2‬‭value of 0.891, 0.944 for‬‭A. saccharum,‬‭and 0.99 for‬‭A. rubrum‬‭. For our‬
‭invasive species, the Rhamnus model had an R‬‭2‬‭value‬‭of 0.993, while the Lonicera model had a‬
‭value of 0.99 (Appendix Fig.5a-g).‬

‭Seedling abundance‬
‭Five out of the seven forests had significantly more seedlings per m‬‭2‬ ‭in the control plots than in the‬
‭flooded plot (Fig. 3a). Decreases in seedlings abundance ranged between 31 % (back-transformed‬
‭values) and 88.5%. Both basal area (BA) and standardized light were positively associated with‬
‭higher seedlings abundance (coefficients mean±SD: 0.001±0.00005 for BA and 0.035±0.016 for‬
‭light).‬

‭Seedling richness‬
‭Overall richness was higher in control plots, statistically different in four out of the seven forests‬
‭(Fig. 3b). Differences in the average number of species/m‬‭2‬ ‭between flooded and control range‬
‭between 1 and 4 (back-transformed values in Fig. 3b). Adult richness was negatively associated‬
‭with seedling richness (coefficient value[mean±SD]: -0.042±0.019), while higher light levels were‬
‭positively associated with seedling richness (0.00012±0.00004)‬

‭Species-specific seedling abundance‬
‭When analyzing individual species or genera, abundance results were more variable (Fig. 4).‬
‭Abundance of‬‭A. rubrum‬‭seedlings was higher in control‬‭plots in one of the four forests analyzed,‬
‭for‬‭A. saccharum,‬‭the differences were statistically‬‭significant; abundance was higher in control‬
‭plots, for two out of four forests.‬ ‭Fraxinus‬‭abundance‬‭was not different between treatments across‬
‭six forests and higher under drier conditions in one forest. For the two invasive groups,‬‭Rhamnus‬
‭and‬‭Lonicera‬‭, abundance was similar between treatments‬‭across forests.‬
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‭4.‬ ‭Discussion‬
‭An increase in the frequency and magnitude of precipitation events is one of the forecasts‬
‭associated with current climate change (Kundzewicz et al. 2014, Hirabayashi et al. 2013). Such‬
‭events are likely to increase the area and duration of forest land exposed to flooding conditions.‬
‭Although flooding may only be temporary, its effects on the recruitment layer could strongly‬
‭affect the population dynamics of many tree species since seedlings may not be able to cope with‬
‭anaerobic soil conditions.‬

‭In order to gain a more general understanding of how climate change-driven flooding may‬
‭impact temperate forests, we studied temperate forest recruitment dynamics in flooded and‬
‭non-flooded environments. We compared the abundance and richness of woody species between‬
‭forest areas that have recently experienced flooded conditions and nearby areas that did not‬
‭experience flooding. Our results show that, in forests that are outside the boundaries of‬
‭experiencing regular or seasonal flooding regimes, flooding conditions were associated with a‬
‭decrease in seedling abundance and richness. There were 66% to 88% decreases in abundance‬
‭and 28% to 58% decreases in diversity across sites.  Furthermore, native species were identified‬
‭to persist more effectively in drier environments, while invasive species persisted similarly in‬
‭both flooded and dry conditions. These associations and patterns suggest that the occurrence of‬
‭flooding in forests where inundation does not commonly take place will likely have adverse‬
‭effects on that forest's recruitment dynamics.‬

‭Global climate change is expected to alter forest dynamics either through abrupt or gradual‬
‭changes in environmental conditions. These alterations will likely eventually lead to forest‬
‭composition and structure changes (Smith and Lazo 2001, Kramer et al. 2020, Albrich et al.‬
‭2020​​). Despite its potential relevance to forest communities, there is little information on how‬
‭these novel flooding events may affect forest recruitment patterns (Kramer et al. 2008, Evans et‬
‭al. 2022). In this study, we observed how flooding conditions were a mechanism for these‬
‭alterations as we documented reduced forest recruitment, in abundance and richness, across‬
‭several temperate forests under flooded conditions. Recent research has pointed out that flooding‬
‭could hamper forest recruitment dynamics when compared to drier environments (Saint-Laurent‬
‭et al. 2019, Flores and Staal 2022). This may indicate that flooding is operating as an ecological‬
‭filter at the community level in forest areas, especially in forests that do not experience a regular‬
‭flooding regime (Polanía et al. 2020).‬

‭In our study, we also examined how temperate forest species may be performing in both‬
‭environments and found that tree recruitment was more likely to be significantly more abundant‬
‭and diverse in drier conditions. However, Eberwhite and Millennium Park showed either no‬
‭significant difference or flooded environments had greater overall abundance (Figure 3a). For‬
‭Millennium Park (Figure 1), the mean abundance in flooded plots was greater than that of control‬
‭(dry), which, subsequently, the natural history of the location can explain. Millennium Park's soil‬
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‭type and hydrologic history suggest that the environment has experienced an active flood regime.‬
‭Thus, the forests would be more adapted to support flood-tolerant species that persist better in‬
‭flooded soils (‬‭Appendix 1 Table S1)‬‭. For Eberwhite‬‭woods, our research revealed the high‬
‭presence of adult Elm (‬‭Ulmus spp‬‭) and species of Ash‬‭(‬‭Fraxinus spp‬‭)‬‭,‬‭suggesting the soils at‬
‭Eberwhite are regularly mesic, and these species are likely utilizing this recruitment niche‬
‭through measurable recruitment abundance (Schwinning & Kelly 2013).‬

‭At the population level, we also examined how native and non-native species may be‬
‭performing in both environments and found that native species were more likely to be‬
‭significantly more abundant in drier environments. However, there were forests that did have‬
‭mean abundances greater in flooded plots versus control for‬‭Fraxinus spp‬‭and‬‭A. rubrum‬‭.‬
‭Notwithstanding, this can be attributed to the capacity of these species to adapt to flooding‬
‭(Walls et al, 2005, Keller et al 2023). We can see this capacity through Fraxinus's genus-level‬
‭analysis (Fig. 4a).‬‭Fraxinu‬‭s is considered to be a‬‭water-tolerant species, with species like‬‭F.‬
‭pennsylvanica‬‭growing mainly in swamp-like environments.‬‭Species like‬‭F. americana‬‭and‬‭F.‬
‭nigra‬‭have also been observed to persist in inundated‬‭conditions to some capacity as well‬
‭(Robertson et al. 1978, Tardif and Bergeron 1999, Saint-Laurent et al. 2019). Thus, our results‬
‭highlight this capability for‬‭Fraxinus‬‭species to‬‭be as abundant in inundated conditions as they‬
‭are in drier conditions. A species-level analysis of‬‭Acer‬‭species also confirms well-known natural‬
‭history features. Sugar maple,‬‭A. saccharum,‬‭was more‬‭abundant in drier conditions than flooded‬
‭across all sites where they were present (Fig. 4b ). This coincides with our understanding that‬
‭this species does not tolerate waterlogged conditions effectively and will perform better in drier‬
‭environments (Carpenter and Mitchell 1980, Hauer 2021). Red maple,‬‭A. rubrum‬‭, is believed to‬
‭be able to survive and tolerate inundated environments where they are recruited (Anella and‬
‭Whitlow 1999, Anella and Whitlow 2000); therefore, our findings support this notion. However,‬
‭we did see environments where‬‭A. rubrum‬‭was more abundant‬‭in drier environments, although‬
‭this could be due to localized competition or forest dynamics between generalist and specialist‬
‭species (Glaeser and Wulf, 2009). This study supports that further investigation into‬
‭species-level dynamics in relation to flooding conditions is required to garner a more effective‬
‭understanding of this matter and determine whether these results can be replicated.‬

‭Our analysis of non-native species, in this case invasive, (‬‭Lonicera spp‬‭,‬‭Rhamnus spp‬‭),‬
‭showed similar recruits in flooded environments as in the drier transects. This is in line with‬
‭previous studies' conclusions of invasive species invading and out-competing other plant species‬
‭in environments involving varying hydrological regimes (Lewerentz et al. 2019). This could‬
‭indicate that novel flooding can pose as the catalyst for invasive seedling species to invade‬
‭flooded environments through its disturbance (Orbán et al 2021). In addition, past studies‬
‭suggest that flooded environments are able to maintain invasive populations due to decreased‬
‭competition (O’Briain et al., 2023). In our case, the negative impacts we observed under flooding‬
‭conditions on forest recruitment dynamics could take place via both a more detrimental‬
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‭environment for seedling survival and higher competition by non-native species, imposing a‬
‭notable threat to the persistence of native species in inundated-prone sites in the future.‬

‭Conclusions‬
‭It is at the seedling stage when plants are most vulnerable to environmental stressors (Harper‬
‭1977,‬‭Silvertown and Charlesworth 2001,‬‭Eriksson and‬‭Ehrlén 2008). As a result, patterns of tree‬
‭seedling recruitment determine forest composition (Ribbens et al. 1994, Clark et al. 1999, Slik et‬
‭al. 2008). Quantifying tree recruitment is thus essential to accurately predict future forest‬
‭composition, structure, and function (Caspersun and Saprunoff, 2005, Qiu et al. 2021, Wang et‬
‭al. 2023). In the context of current climate change, the increasing incidence of extreme events is‬
‭leading to novel environmental stressors, such as flooding events that may influence tree‬
‭recruitment patterns (Menezes-Silva et al. 2019). In this study, we leverage the occurrence of‬
‭flooded areas across seven temperate forests to assess the potential effects on tree seedling‬
‭recruitment. From our analyses, we found that flooding conditions adversely impact tree‬
‭recruitment. We observed that seedling abundance and biodiversity are lower under flooding‬
‭conditions versus control, drier plots. In addition, these effects were more pronounced in native‬
‭species than in invasive species. Overall, our results point out a detrimental effect of flooding in‬
‭these forests that disproportionately affects native species over introduced ones. As extreme‬
‭precipitation events become more common, tree seedling recruitment may be jeopardized in‬
‭forests where flooding has not been part of the historical disturbance regime. The importance of‬
‭forest recruitment processes and how flooding may affect these patterns could have significant‬
‭implications for future forest compositions as they may shift to different structures due to‬
‭flooding. Hereafter, studies could utilize field data from studies such as this to model changes to‬
‭forests in relation to hydrologic and climatic regimes. Determining long-term changes that could‬
‭occur due to flooding should be a research focus moving forward, as well as monitoring invasive‬
‭species abundance in flooded areas for invasive management, as the dynamics observed in this‬
‭study could have implications for future forest structure and composition predictions.‬
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‭Figure 1.‬‭Visualization of the topographic differences‬‭that could occur in forests and how‬
‭these characteristics can lead to localized flooded conditions.‬
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‭Figure 2.‬‭Map of the Eastern United States and the‬‭locations of Forests sampled in Michigan’s lower peninsula.‬
‭QGIS.org (2023).‬‭QGIS Geographic Information System.‬‭Open Source Geospatial Foundation Project.‬
‭http://qgis.org‬
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‭Figure 3. Model coefficients associated with seedlings abundance (left pane) and seedling‬
‭richness (right panes) across the surveyed forest in control (red triangles) and flooded (blue‬
‭circles) plots. Asterisks indicate significant differences between the two treatments.‬
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‭Figure 4.‬‭Species, genus, or group level analyses‬‭of seedlings abundance of native and invasive woody plants.‬
‭Asterisks indicate a significant difference in the number of seedlings between the two treatments (control: red‬
‭triangles; flooded: blue circles).‬
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‭Supplemental Information‬

‭Appendix 1 –‬‭Information on the forests sampled in‬‭this study.‬

‭Table S1.‬ ‭Location, climate, forest and soil type‬‭,‬‭flood risk, and forest stand area surveyed.‬

‭25‬

‭Forest‬
‭N: north‬
‭S: south‬

‭Latitude‬
‭N‬

‭Longitud‬
‭e W‬

‭Climate‬ ‭Forest‬
‭Type‬

‭Soil Type‬ ‭Flooding‬
‭Risk‬

‭Forest‬
‭Stand‬
‭Area‬

‭S:Eberwhi‬
‭te‬
‭Woods‬

‭42.27,‬
‭-83.76‬

‭Hot-summer‬
‭humid‬
‭continental‬

‭Oak,‬
‭Hickory,‬
‭Elm, Ash‬

‭Loamy‬
‭soils‬
‭underlain‬
‭by sand &‬
‭gravel‬

‭No measurable‬
‭flood risk‬

‭31 Acres‬

‭S:Scio‬
‭Woods‬

‭42.26,‬
‭-83.81‬

‭Hot-summer‬
‭humid‬
‭continental‬

‭Oak,‬
‭Hickory,‬
‭Maple,‬
‭Beech‬

‭Loamy‬
‭soils‬
‭underlain‬
‭by sand &‬
‭gravel‬

‭No measurable‬
‭flood risk‬

‭90 Acres‬

‭S:Goodric‬
‭h‬
‭Preserve‬

‭42.32,‬
‭-83.67‬

‭Hot-summer‬
‭humid‬
‭continental‬

‭Oak,‬
‭Hickory,‬
‭Maple,‬
‭Beech‬

‭Loamy‬
‭soils‬

‭Low to‬
‭Moderate‬
‭Flood risk‬

‭45.2 Acres‬

‭S:Horner‬
‭Woods‬

‭42.32,‬
‭-83.67‬

‭Hot-summer‬
‭humid‬
‭continental‬

‭Oak,‬
‭Hickory,‬
‭Maple,‬
‭Beech‬

‭Loamy‬
‭soils‬

‭Low to‬
‭Moderate‬
‭Flood risk‬

‭98.6 Acres‬

‭S:Millenni‬
‭um Park‬

‭42.94,‬
‭-85.74‬

‭Warm-summ‬
‭er humid‬
‭continental‬

‭Maple-Ash‬ ‭Clay‬
‭dominated‬
‭Soils‬

‭High risk‬ ‭1,400‬
‭Acres‬

‭S:Johnson‬
‭Park‬

‭42.92,‬
‭-85.77‬

‭Warm-summ‬
‭er humid‬
‭continental‬

‭Maple-Beec‬
‭h, Oak‬

‭Wet‬
‭Organic &‬
‭Loamy‬
‭Soils‬

‭Low to‬
‭Moderate risk‬

‭160 Acres‬

‭N:Aspen‬
‭Forest‬

‭45.56,‬
‭-84.72‬

‭Warm-summ‬
‭er humid‬

‭Maple-Beec‬
‭h‬

‭Sandy soils‬ ‭Low to‬
‭Moderate risk‬

‭117 Acres‬
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‭continental‬

‭N:Hardwo‬
‭od Forest‬

‭45.56,‬
‭-84.68‬

‭Warm-summ‬
‭er humid‬
‭continental‬

‭Maple-Beec‬
‭h‬

‭Sandy soils‬ ‭Low to‬
‭Moderate risk‬

‭190 Acres‬



‭Appendix 2. Summary statistics for soil moisture and seedlings abundance and richness data.‬

‭Table S2.‬‭(a) Cumulative comparisons of soil moisture (‬‭Volumetric soil water content =‬
‭), (b) Abundance (number of individuals per plot), and (c) species richness‬‭𝑣𝑜𝑙𝑢𝑚𝑒‬‭ ‬‭𝑜𝑓‬‭ ‬‭𝑤𝑎𝑡𝑒𝑟‬‭ ‬(‭𝑐𝑚‬‭3‬)

‭𝑣𝑜𝑙𝑢𝑚𝑒‬‭ ‬‭𝑜𝑓‬‭ ‬‭𝑠𝑜𝑖𝑙‬‭ ‬(‭𝑐𝑚‬‭3‬)

‭(number of species per plot).‬
‭a.‬ ‭Soil Moisture‬

‭Treatment‬ ‭Minimum‬ ‭Maximum‬ ‭Std.‬
‭Deviation‬

‭Mean‬ ‭Mean Percent‬
‭Difference‬

‭Flooded‬ ‭40.50‬ ‭82.20‬ ‭8.76‬ ‭55.96‬
‭79%‬

‭Control (Dry)‬ ‭4.10‬ ‭47.00‬ ‭12.37‬ ‭24.26‬

‭b.‬ ‭Abundance‬

‭Treatment‬ ‭Minimum‬ ‭Maximum‬ ‭Std.‬
‭Deviation‬

‭Mean‬ ‭Mean Percent‬
‭Difference‬

‭Flooded‬ ‭0‬ ‭25.00‬ ‭5.32‬ ‭4.33‬
‭114.9%‬

‭Control (Dry)‬ ‭0‬ ‭72.00‬ ‭14.94‬ ‭16.04‬

‭c.‬ ‭Species Richness‬

‭Treatment‬ ‭Minimum‬ ‭Maximum‬ ‭Std.‬
‭Deviation‬

‭Mean‬ ‭Mean Percent‬
‭Difference‬

‭Flooded‬ ‭0‬ ‭6‬ ‭1.20‬ ‭1.48‬
‭17.57%‬

‭Control (Dry)‬ ‭0‬ ‭8‬ ‭1.65‬ ‭3.27‬

‭27‬



‭Appendix 3. Model code for the seedling abundance analysis.‬
‭OpenBUGS model code for the seedling abundance analysis, code for species richness, and‬
‭species-specific analyses is similar to this one.‬

‭model{‬
‭for(i in 1:N){‬

‭#likelihood‬
‭NoSlings[i]~dpois(lambda[i])‬
‭#predicted‬
‭NoSlings.pred[i]~dpois(lambda[i])‬
‭#process model‬

‭log(lambda[i])<-alpha[forest[i],treat[i]]+beta[1]*BA[i]+beta[2]*lightS‬
‭[i]+omega[i]‬

‭#overdispersion term‬
‭omega[i]~dnorm(0,tau)‬

‭}‬

‭#priors‬
‭for(i in 1:7){ #number of forests‬

‭for(t in 1:2){  #number of treatments‬
‭alpha[i,t]~dnorm(0,0.0001)‬
‭}‬
‭dif[i]<-alpha[i,1]-alpha[i,2] #differences between treatments‬
‭}‬
‭for(i in 1:2){beta[i]~dnorm(0,0.0001)}‬
‭tau~dgamma(0.01,0.01)‬
‭}‬
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‭Appendix 4. All analysis parameter values‬

‭Table S3. Parameters’ posterior means, SD, and 95% credible intervals from the abundance‬
‭and richness data analyses. Different letters indicated statistically significant differences (95% CI‬
‭do not overlap) between control and flooded plots in each forest. Bold parameters indicate‬
‭statistically significant coefficients (95% CI does not overlap with zero) of the covariates.‬

‭All species abundance, parameter :‬
‭Forest‬ ‭treatment‬ ‭parameter‬ ‭mean‬ ‭SD‬ ‭2.5 % quantile‬ ‭97.5 % quantile‬

‭1‬ ‭flooded‬ ‭α‬‭1,control‬ ‭-0.190575‬ ‭0.1652397‬ ‭-0.507957072‬ ‭0.140149705‬ ‭a‬

‭1‬ ‭control‬ ‭α‬‭1,‬ ‭flooded‬ ‭0.187304‬ ‭0.1803553‬ ‭-0.150717489‬ ‭0.538440666‬ ‭a‬

‭2‬ ‭flooded‬ ‭α‬‭2,control‬ ‭0.56596‬ ‭0.1843194‬ ‭0.21382788‬ ‭0.908534675‬ ‭a‬

‭2‬ ‭control‬ ‭α‬‭2,‬ ‭flooded‬ ‭2.026329‬ ‭0.1582078‬ ‭1.7320285‬ ‭2.337965383‬ ‭b‬

‭3‬ ‭flooded‬ ‭α‬‭3,control‬ ‭0.612765‬ ‭0.2028012‬ ‭0.21578107‬ ‭1.007009105‬ ‭a‬

‭3‬ ‭control‬ ‭α‬‭3,‬ ‭flooded‬ ‭1.887687‬ ‭0.1404863‬ ‭1.617037246‬ ‭2.165472186‬ ‭b‬

‭4‬ ‭flooded‬ ‭α‬‭4,control‬ ‭1.435829‬ ‭0.2169112‬ ‭1.014564576‬ ‭1.851098758‬ ‭a‬

‭4‬ ‭control‬ ‭α‬‭4,‬ ‭flooded‬ ‭3.601693‬ ‭0.1382247‬ ‭3.335376506‬ ‭3.860433226‬ ‭b‬

‭5‬ ‭flooded‬ ‭α‬‭5,control‬ ‭2.14191‬ ‭0.2037038‬ ‭1.73365695‬ ‭2.543920937‬ ‭a‬

‭5‬ ‭control‬ ‭α‬‭5,‬ ‭flooded‬ ‭1.793828‬ ‭0.1538227‬ ‭1.476186891‬ ‭2.088934319‬ ‭a‬

‭6‬ ‭flooded‬ ‭α‬‭6,control‬ ‭0.476359‬ ‭0.2150394‬ ‭0.051086462‬ ‭0.886219009‬ ‭a‬

‭6‬ ‭control‬ ‭α‬‭6,‬ ‭flooded‬ ‭2.173198‬ ‭0.1872985‬ ‭1.797354503‬ ‭2.550615515‬ ‭b‬

‭7‬ ‭flooded‬ ‭α‬‭7,control‬ ‭1.220121‬ ‭0.1462501‬ ‭0.939331204‬ ‭1.512666505‬ ‭a‬

‭7‬ ‭control‬ ‭α‬‭7,‬ ‭flooded‬ ‭2.322888‬ ‭0.1814949‬ ‭1.973775799‬ ‭2.670428104‬ ‭b‬

‭Basal Area‬ ‭β‬‭1‬ ‭0.00016‬ ‭5.11E-05‬ ‭5.44E-05‬ ‭0.000259324‬

‭Light‬ ‭β‬‭2‬ ‭0.035004‬ ‭0.0169303‬ ‭0.001438269‬ ‭0.067856739‬

‭Overdispersion‬ ‭1/‬‭σ‬‭2‬

‭0.490494‬ ‭5.3325958‬ ‭0.413397023‬ ‭0.59385988‬
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‭Richness:‬

‭Forest‬ ‭treatment‬ ‭parameter‬ ‭mean‬ ‭SD‬ ‭2.5 % quantile‬

‭97.5 %‬

‭quantile‬

‭1‬ ‭flooded‬ ‭α‬‭1,control‬ ‭0.1118371‬ ‭0.2088799‬ ‭-0.29871911‬ ‭0.496806803‬ ‭a‬

‭1‬ ‭control‬ ‭α‬‭1,‬ ‭flooded‬ ‭0.6105974‬ ‭0.1874597‬ ‭0.244883455‬ ‭0.978409511‬ ‭b‬

‭2‬ ‭flooded‬ ‭α‬‭2,control‬ ‭0.5535315‬ ‭0.2134407‬ ‭0.130024064‬ ‭0.962749991‬ ‭a‬

‭2‬ ‭control‬ ‭α‬‭2,‬ ‭flooded‬ ‭1.367371‬ ‭0.1654329‬ ‭1.041752132‬ ‭1.684478708‬ ‭b‬

‭3‬ ‭flooded‬ ‭α‬‭3,control‬ ‭0.7433839‬ ‭0.2050922‬ ‭0.345697943‬ ‭1.12802551‬ ‭a‬

‭3‬ ‭control‬ ‭α‬‭3,‬ ‭flooded‬ ‭1.4626515‬ ‭0.1445043‬ ‭1.168513227‬ ‭1.742403042‬ ‭b‬

‭4‬ ‭flooded‬ ‭α‬‭4,control‬ ‭0.592385‬ ‭0.2099925‬ ‭0.171701768‬ ‭0.986745292‬ ‭a‬

‭4‬ ‭control‬ ‭α‬‭4,‬ ‭flooded‬ ‭1.3288007‬ ‭0.1252057‬ ‭1.087808606‬ ‭1.572132269‬ ‭b‬

‭5‬ ‭flooded‬ ‭α‬‭5,control‬ ‭0.9984942‬ ‭0.2139504‬ ‭0.56253903‬ ‭1.393630791‬ ‭a‬

‭5‬ ‭control‬ ‭α‬‭5,‬ ‭flooded‬ ‭1.3296008‬ ‭0.1863599‬ ‭0.977568501‬ ‭1.697552645‬ ‭a‬

‭6‬ ‭flooded‬ ‭α‬‭6,control‬ ‭0.4386456‬ ‭0.1973797‬ ‭0.022607235‬ ‭0.800698513‬ ‭a‬

‭6‬ ‭control‬ ‭α‬‭6,‬ ‭flooded‬ ‭1.3258088‬ ‭0.1571253‬ ‭1.009674394‬ ‭1.609843384‬ ‭b‬

‭7‬ ‭flooded‬ ‭α‬‭7,control‬ ‭0.7675728‬ ‭0.1617378‬ ‭0.45500518‬ ‭1.074366787‬ ‭a‬

‭7‬ ‭control‬ ‭α‬‭7,‬ ‭flooded‬ ‭1.2671404‬ ‭0.1555739‬ ‭0.948243997‬ ‭1.55394944‬ ‭b‬

‭Adult richness‬ ‭β‬‭1‬ ‭-0.048602‬ ‭0.0192005‬ ‭-0.08577018‬ ‭-0.012992619‬

‭Light‬ ‭β‬‭2‬ ‭0.0001283‬ ‭4.48E-05‬ ‭3.98E-05‬ ‭0.00021682‬

‭Overdispersio‬

‭n‬ ‭1/‬‭σ‬‭2‬

‭0.0056371‬ ‭0.0102266‬ ‭0.002298972‬ ‭0.019741939‬

‭Acer rubrum‬‭seedling abundance:‬

‭Forest‬ ‭treatment‬ ‭parameter‬ ‭mean‬ ‭SD‬ ‭2.5 % quantile‬

‭97.5 %‬

‭quantile‬
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‭3‬ ‭flooded‬ ‭α‬‭3,control‬ ‭-0.34574477‬ ‭0.928709624‬ ‭-2.437424933‬ ‭1.246810817‬ ‭a‬

‭3‬ ‭control‬ ‭α‬‭3,‬ ‭flooded‬ ‭0.273095289‬ ‭0.227916201‬ ‭-0.167018842‬ ‭0.709143894‬ ‭a‬

‭5‬ ‭flooded‬ ‭α‬‭5,control‬ ‭1.879568164‬ ‭0.221876747‬ ‭1.428908561‬ ‭2.303665188‬ ‭a‬

‭5‬ ‭control‬ ‭α‬‭5,‬ ‭flooded‬ ‭1.369685923‬ ‭0.164151653‬ ‭1.037476092‬ ‭1.67707819‬ ‭a‬

‭6‬ ‭flooded‬ ‭α‬‭6,control‬ ‭1.096710125‬ ‭0.269413631‬ ‭0.585179956‬ ‭1.612404477‬ ‭a‬

‭6‬ ‭control‬ ‭α‬‭6,‬ ‭flooded‬ ‭2.382180668‬ ‭0.124140444‬ ‭2.148193814‬ ‭2.637379628‬ ‭b‬

‭7‬ ‭flooded‬ ‭α‬‭7,control‬ ‭0.701541604‬ ‭0.305443803‬ ‭0.094665036‬ ‭1.290656284‬ ‭a‬

‭7‬ ‭control‬ ‭α‬‭7,‬ ‭flooded‬ ‭-0.21877694‬ ‭0.48062685‬ ‭-1.235910859‬ ‭0.641973466‬ ‭a‬

‭Overdispersio‬

‭n‬ ‭1/‬‭σ‬‭2‬

‭0.515079378‬ ‭2.791779788‬ ‭0.366129635‬ ‭0.749914283‬

‭Acer saccharum‬‭seedling abundance:‬

‭Forest‬ ‭treatment‬ ‭parameter‬ ‭mean‬ ‭SD‬ ‭2.5 % quantile‬

‭97.5 %‬

‭quantile‬

‭1‬ ‭flooded‬ ‭α‬‭1,control‬ ‭-0.323791577‬ ‭0.911238975‬ ‭-2.42854421‬ ‭1.262418095‬ ‭a‬

‭1‬ ‭control‬ ‭α‬‭1,‬ ‭flooded‬ ‭0.140983315‬ ‭0.226189999‬ ‭-0.304564614‬ ‭0.56039‬ ‭a‬

‭2‬ ‭flooded‬ ‭α‬‭2,control‬ ‭0.390662517‬ ‭1.004323696‬ ‭-1.784276792‬ ‭2.119496779‬ ‭a‬

‭2‬ ‭control‬ ‭α‬‭2,‬ ‭flooded‬ ‭1.385924884‬ ‭0.13047339‬ ‭1.128954624‬ ‭1.639835666‬ ‭a‬

‭4‬ ‭flooded‬ ‭α‬‭4,control‬ ‭1.420849283‬ ‭0.212451724‬ ‭1.01976117‬ ‭1.835997418‬ ‭a‬

‭4‬ ‭control‬ ‭α‬‭4,‬ ‭flooded‬ ‭3.638955425‬ ‭0.107340719‬ ‭3.425668683‬ ‭3.848149922‬ ‭b‬

‭7‬ ‭flooded‬ ‭α‬‭7,control‬ ‭0.665941523‬ ‭0.272138274‬ ‭0.110882484‬ ‭1.18600314‬ ‭a‬

‭7‬ ‭control‬ ‭α‬‭7,‬ ‭flooded‬ ‭2.449115484‬ ‭0.090465906‬ ‭2.268240211‬ ‭2.625413536‬ ‭b‬

‭Overdispersio‬

‭n‬ ‭1/‬‭σ‬‭2‬

‭0.321663262‬ ‭1.860719469‬ ‭0.233595813‬ ‭0.459846577‬

‭Fraxinus‬‭spp seedling abundance:‬

‭31‬



‭Forest‬ ‭treatment‬ ‭parameter‬ ‭mean‬ ‭SD‬ ‭2.5 % quantile‬

‭97.5 %‬

‭quantile‬

‭1‬ ‭flooded‬ ‭α‬‭1,control‬ ‭0.187312397‬ ‭0.212121682‬

‭-0.21755995‬

‭9‬ ‭0.612178692‬ ‭a‬

‭1‬ ‭control‬ ‭α‬‭1,‬ ‭flooded‬ ‭0.055749371‬ ‭0.315785367‬

‭-0.59705751‬

‭2‬ ‭0.626779305‬ ‭a‬

‭2‬ ‭flooded‬ ‭α‬‭2,control‬ ‭0.727948973‬ ‭0.19691238‬ ‭0.347639194‬ ‭1.099914902‬ ‭a‬

‭2‬ ‭control‬ ‭α‬‭2,‬ ‭flooded‬ ‭1.692138761‬ ‭0.098402088‬ ‭1.496721487‬ ‭1.88768807‬ ‭b‬

‭3‬ ‭flooded‬ ‭α‬‭3,control‬ ‭1.156883538‬ ‭0.172348517‬ ‭0.812595168‬ ‭1.488730673‬ ‭a‬

‭3‬ ‭control‬ ‭α‬‭3,‬ ‭flooded‬ ‭1.114329308‬ ‭0.10229906‬ ‭0.913379667‬ ‭1.312013015‬ ‭a‬

‭5‬ ‭flooded‬ ‭α‬‭5,control‬ ‭1.701418116‬ ‭0.12318557‬ ‭1.461927455‬ ‭1.939310239‬ ‭a‬

‭5‬ ‭control‬ ‭α‬‭5,‬ ‭flooded‬ ‭1.292094027‬ ‭0.128665027‬ ‭1.022914746‬ ‭1.534916588‬ ‭b‬

‭6‬ ‭flooded‬ ‭α‬‭6,control‬ ‭1.223926947‬ ‭0.191086201‬ ‭0.866092866‬ ‭1.606847561‬ ‭a‬

‭6‬ ‭control‬ ‭α‬‭6,‬ ‭flooded‬ ‭1.100111322‬ ‭0.141287743‬ ‭0.823216687‬ ‭1.372689348‬ ‭a‬

‭7‬ ‭flooded‬ ‭α‬‭7,control‬ ‭1.661655003‬ ‭0.108424522‬ ‭1.431875036‬ ‭1.874469468‬ ‭a‬

‭7‬ ‭control‬ ‭α‬‭7,‬ ‭flooded‬ ‭1.331666674‬ ‭0.097773978‬ ‭1.142483433‬ ‭1.50786061‬ ‭b‬

‭Overdispersio‬

‭n‬ ‭1/‬‭σ‬‭2‬

‭0.20965769‬ ‭1.200045431‬ ‭0.150326231‬ ‭0.292287944‬

‭Lonicera‬‭spp seedling abundance:‬

‭Forest‬ ‭treatment‬ ‭parameter‬ ‭mean‬ ‭SD‬

‭2.5 %‬

‭quantile‬

‭97.5 %‬

‭quantile‬

‭1‬ ‭flooded‬ ‭α‬‭1,control‬

‭-0.547187‬

‭076‬

‭1.4674723‬

‭68‬

‭-3.800046‬

‭846‬

‭1.9284571‬

‭06‬ ‭a‬

‭1‬ ‭control‬ ‭α‬‭1,‬ ‭flooded‬

‭1.8569469‬

‭98‬

‭0.3355430‬

‭45‬ ‭1.2005557‬

‭2.4911225‬

‭33‬ ‭a‬

‭2‬ ‭flooded‬ ‭α‬‭2,control‬

‭0.2723655‬

‭6‬

‭0.3097110‬

‭15‬

‭-0.351448‬

‭591‬

‭0.8552624‬

‭97‬ ‭a‬

‭2‬ ‭control‬ ‭α‬‭2,‬ ‭flooded‬

‭0.2094641‬

‭63‬

‭0.4222588‬

‭28‬

‭-0.622425‬

‭293‬

‭1.0333264‬

‭59‬ ‭a‬

‭32‬



‭3‬ ‭flooded‬ ‭α‬‭3,control‬

‭0.1324832‬

‭47‬

‭0.4312828‬

‭63‬

‭-0.721097‬

‭456‬

‭0.9470511‬

‭32‬ ‭a‬

‭3‬ ‭control‬ ‭α‬‭3,‬ ‭flooded‬

‭1.2462269‬

‭88‬ ‭0.1795973‬

‭0.8651459‬

‭58‬

‭1.5744825‬

‭82‬ ‭b‬

‭6‬ ‭flooded‬ ‭α‬‭6,control‬

‭-0.581780‬

‭533‬

‭1.4820493‬

‭25‬

‭-4.021587‬

‭386‬

‭1.8294413‬

‭11‬ ‭a‬

‭6‬ ‭control‬ ‭α‬‭6,‬ ‭flooded‬

‭1.3434085‬

‭78‬

‭0.3114591‬

‭07‬

‭0.6939441‬

‭84‬

‭1.9403470‬

‭29‬ ‭a‬

‭7‬ ‭flooded‬ ‭α‬‭7,control‬

‭-0.608354‬

‭156‬

‭1.4885843‬

‭6‬

‭-4.080096‬

‭429‬

‭1.8814340‬

‭63‬ ‭a‬

‭7‬ ‭control‬ ‭α‬‭7,‬ ‭flooded‬

‭-0.306199‬

‭217‬

‭0.7704883‬

‭3‬

‭-1.912691‬

‭381‬

‭1.0636990‬

‭86‬ ‭a‬

‭Overdispers‬

‭ion‬ ‭1/‬‭σ‬‭2‬

‭0.5592177‬

‭04‬

‭2.2340788‬

‭31‬

‭0.3543978‬

‭01‬

‭0.9239289‬

‭9‬

‭Rhamnus‬‭group seedling abundance:‬

‭Forest‬ ‭treatment‬ ‭parameter‬ ‭mean‬ ‭SD‬ ‭2.5 % quantile‬

‭97.5 %‬

‭quantile‬

‭1‬ ‭flooded‬ ‭α‬‭1,control‬ ‭-0.4893203‬

‭1.5790250‬

‭7‬ ‭-4.1257472‬

‭2.4051254‬

‭5‬ ‭a‬

‭1‬ ‭control‬ ‭α‬‭1,‬ ‭flooded‬

‭0.1136616‬

‭5‬

‭0.9055542‬

‭1‬ ‭-1.73139‬

‭1.8296508‬

‭7‬ ‭a‬

‭2‬ ‭flooded‬ ‭α‬‭2,control‬ ‭-0.3764618‬

‭1.0453557‬

‭4‬ ‭-2.5916625‬

‭1.5255900‬

‭1‬ ‭a‬

‭2‬ ‭control‬ ‭α‬‭2,‬ ‭flooded‬ ‭-0.5524682‬

‭1.5574221‬

‭2‬ ‭-4.0219648‬

‭2.0462324‬

‭4‬ ‭a‬

‭3‬ ‭flooded‬ ‭α‬‭3,control‬

‭1.0352792‬

‭1‬

‭0.3171919‬

‭8‬

‭0.3802513‬

‭1‬

‭1.6546879‬

‭1‬ ‭a‬

‭3‬ ‭control‬ ‭α‬‭3,‬ ‭flooded‬

‭1.6262972‬

‭4‬

‭0.1917746‬

‭3‬

‭1.2600797‬

‭2‬

‭1.9982058‬

‭9‬ ‭a‬

‭5‬ ‭flooded‬ ‭α‬‭5,control‬ ‭-0.6403351‬

‭1.5914269‬

‭4‬ ‭-4.1475225‬

‭2.2156754‬

‭7‬ ‭a‬

‭5‬ ‭control‬ ‭α‬‭5,‬ ‭flooded‬

‭0.4811033‬

‭7‬

‭0.2515095‬

‭9‬

‭0.0148689‬

‭8‬

‭0.9710430‬

‭7‬ ‭a‬

‭33‬



‭Overdispersio‬

‭n‬ ‭1/‬‭σ‬‭2‬

‭0.7799550‬

‭4‬ ‭3.1051924‬

‭0.5028830‬

‭7‬

‭1.3690184‬

‭7‬

‭34‬



‭Appendix 5. Goodness of fit.‬
‭Figure S1. Predicted vs. Observed plots for the overall analyses of seedlings abundance (a),‬
‭richness (b), and the analyses of specific species, genera, and groups, (c)‬‭A. rubrum‬‭, (d)‬‭A.‬
‭saccharum‬‭, (e)‬‭Fraxinus‬‭, (f)‬‭Lonicera‬‭, and (g)‬‭Rhamnus‬‭.‬

‭A.‬ ‭B.‬

‭C.‬ ‭D.‬

‭E.‬ ‭F.‬

‭35‬



‭G.‬

‭36‬



‭Appendix 6 Total Seedling and Adult Species Abundance‬
‭Table S4. Cumulative (a) Seedlings and (b) Adult Species observed and their abundances across‬
‭all sites.‬

‭A.‬

‭Common Name‬ ‭Scientific Name‬ ‭Seedling Abundance‬

‭1.‬ ‭Ash group‬

‭2.‬ ‭Red Oak Group‬
‭3.‬ ‭White Oak Group‬

‭4.‬ ‭Bitternut Hickory‬
‭5.‬ ‭Pignut Hickory‬
‭6.‬ ‭Shagbark Hickory‬

‭7.‬ ‭Sugar Maple‬
‭8.‬ ‭Black Maple‬
‭9.‬ ‭Red Maple‬
‭10.‬‭Norway Maple‬
‭11.‬‭Striped Maple‬

‭12.‬‭Choke Cherry‬
‭13.‬‭Black Cherry‬

‭14.‬‭American Elm‬
‭15.‬‭Siberian Elm‬

‭16.‬‭Dogwoods‬

‭17.‬‭Serviceberrys‬

‭18.‬‭American Basswood‬

‭19.‬‭Yellow Birch‬

‭20.‬‭Aspens‬

‭21.‬‭Ironwood‬

‭22.‬‭Musclewood‬

‭23.‬‭Beech‬

‭Fraxinus americana,‬
‭Fraxinus nigra, Fraxinus‬

‭pennsylvanica‬

‭Quercus sect. Erythrobalanus‬
‭Quercus sect.‬‭Leucobalanus‬

‭Carya cordiformis‬
‭Carya glabra‬
‭Carya ovata‬

‭Acer saccharum‬
‭Acer nigrum‬
‭Acer rubrum‬

‭Acer platanoides‬
‭Acer pennsylvanica‬

‭Prunus virginiana‬
‭Prunus serotina‬

‭Ulmus americana‬
‭Ulmus rubra‬

‭Cornus spp‬

‭Amelanchier spp‬

‭Tilia americana‬

‭Betula alleghaniensis‬

‭Populus grandidentata,‬
‭Populus deltoides‬

‭Ostryaya virginiana‬

‭Carpinus caroliniana‬

‭Fagus grandifolia‬

‭1456‬

‭77‬
‭48‬

‭36‬
‭13‬
‭84‬

‭2359‬
‭4‬

‭387‬
‭25‬
‭27‬

‭207‬
‭54‬

‭41‬
‭1‬

‭25‬

‭173‬

‭8‬

‭1‬

‭3‬

‭186‬

‭40‬

‭32‬

‭37‬



‭24.‬‭Witch-hazel‬

‭25.‬‭Winterberry‬

‭26.‬‭Multiflora rose‬

‭27.‬‭Northern Hackberry‬

‭28.‬‭Hawthorn‬

‭29.‬‭Viburnum‬

‭30.‬‭Gray alder‬

‭31.‬‭European Spindle tree‬

‭32.‬‭Black locust‬

‭33.‬‭Honeysuckles‬

‭34.‬‭Buckthorns‬

‭Hamamelis virginiana‬

‭Ilex virginiana‬

‭Rosa multiflora‬

‭Celtis occidentalis‬

‭Crataegus spp‬

‭Viburnum spp‬

‭Alnus incana‬

‭Euonymus europaeus‬

‭Robinia pseudoacacia‬

‭Lonicera spp‬

‭Rhamnus spp‬

‭31‬

‭12‬

‭2‬

‭1‬

‭8‬

‭10‬

‭60‬

‭2‬

‭3‬

‭1433‬

‭386‬

‭38‬



‭B.‬

‭Common Name‬ ‭Scientific Name‬ ‭Adult Abundance‬

‭1.‬ ‭Ash group‬

‭2.‬ ‭Red Oak Group‬
‭3.‬ ‭White Oak Group‬

‭4.‬ ‭Bitternut Hickory‬
‭5.‬ ‭Pignut Hickory‬
‭6.‬ ‭Shagbark Hickory‬

‭7.‬ ‭Sugar Maples‬

‭8.‬ ‭Red Maple‬
‭9.‬ ‭Striped Maple‬

‭10.‬‭Black Cherry‬

‭11.‬‭American Elm‬
‭12.‬‭Siberian Elm‬

‭13.‬‭Dogwoods‬

‭14.‬‭Serviceberrys‬

‭15.‬‭American Basswood‬

‭16.‬‭Yellow Birch‬

‭17.‬‭Aspens‬

‭18.‬‭Ironwood‬

‭19.‬‭Musclewood‬

‭20.‬‭Beech‬

‭21.‬‭Witch-hazel‬

‭22.‬‭Hawthorns‬

‭23.‬‭Viburnums‬

‭F. americana, F nigra, F‬
‭pennsylvanica, Fraxinus‬

‭quadrangulata‬

‭Quercus sect. Erythrobalanus‬
‭Quercus sect.‬‭Leucobalanus‬

‭Carya cordiformis‬
‭Carya glabra‬
‭Carya ovata‬

‭Acer saccharum, Acer‬
‭saccharum var. nigrum‬

‭Acer rubrum‬
‭Acer pennsylvanica‬

‭Prunus serotina‬

‭Ulmus americana‬
‭Ulmus rubra‬

‭Cornus spp‬

‭Amelanchier spp‬

‭Tilia americana‬

‭Betula alleghaniensis‬

‭P. grandidentata, P. deltoides‬

‭Ostryaya virginiana‬

‭Carpinus caroliniana‬

‭Fagus grandifolia‬

‭Hamamelis virginiana‬

‭Crataegus spp‬

‭Viburnum spp‬

‭65‬

‭94‬
‭68‬

‭30‬
‭64‬
‭85‬

‭490‬

‭156‬
‭9‬

‭18‬

‭76‬
‭2‬

‭3‬

‭9‬

‭50‬

‭15‬

‭42‬

‭237‬

‭16‬

‭63‬

‭2‬

‭37‬

‭10‬

‭39‬



‭24.‬‭Gray alder‬

‭25.‬‭Honeysuckles‬

‭26.‬‭Buckthorns‬

‭Alnus incana‬

‭Lonicera spp‬

‭Rhamnus spp‬

‭60‬

‭50‬

‭13‬

‭40‬


