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ABSTRACT
The rapid deployment of security robots across our society calls
for further examination of their acceptance. This study explored
human acceptance of security robots by theoretically extending
the technology acceptance model to include the impact of auton-
omy and risk. To accomplish this, an online experiment involving
236 participants was conducted. Participants were randomly as-
signed to watch a video introducing a security robot operating
at an autonomy level of low, moderate, or high, and presenting
either a low or high risk to humans. This resulted in a 3 (auton-
omy) × 2 (risk) between-subjects design. The findings suggest that
increased perceived usefulness, perceived ease of use, and trust en-
hance acceptance, while higher robot autonomy tends to decrease
acceptance. Additionally, the physical risk associated with security
robots moderates the relationship between autonomy and accep-
tance. Based on these results, this paper offer recommendations for
future research on security robots.
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1 INTRODUCTION
The advancement of robotics has paved the way for autonomous
systems in various aspects of our lives, with one such domain being
security [3, 54, 56, 92]. In the context of this paper, an autonomous
system is one that has the ability to act independently to accomplish
its task. Security robots, equipped with sophisticated sensors, intel-
ligent algorithms, and decision-making capabilities, have emerged
as a promising solution to address the growing complexities of
safeguarding private and public spaces [54, 81]. However, their
deployment is not without challenges. As security robots become
increasingly autonomous, the intricate relationship among their
autonomy, risk, and acceptance becomes a focal point of inquiry,
necessitating an examination of the concerns that underpin their
deployment.

The escalating autonomy of security robots presents a dual-
edged sword – on one hand, it promises improved efficiency, adapt-
ability, and precision in security operations; on the other, it raises
intricate questions about liability, decision-making transparency,
and the potential for unintended consequences [54, 92]. These con-
cerns are becoming all the more pressing in light of the increasing
role security robots play in our lives [90, 92]. As these autonomous
agents become more prevalent in our surroundings, it is imperative
to examine not only their technical capabilities but also the intricate
interplay between their autonomy and the level of acceptance they
garner from the broader society [78, 80].

To address these issues, we focused on three levels of auton-
omy: low autonomy with full human control; moderate autonomy
with hybrid control, with human monitoring and takeover when
needed; and high autonomy with a fully autonomous robot. We
also focused on two levels of risk: low risk, with the robot observ-
ing and reporting only; and high risk, with the robot physically
intervening to stop criminal activity. We propose a research model
that extends the traditional Technology Acceptance Model (TAM)
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and trust to include risk and level of robot autonomy in predicting
the acceptance of security robots. In addition, the research model
theorizes that the risk of danger moderates the impact of a security
robot’s autonomy on acceptance. We empirically examined this
model using a 3 × 2 between-subjects online experiment involving
236 participants. Results indicate that over and above traditional
TAM and trust constructs, the levels of robot autonomy and risk
impact the acceptance of security robots.

This study contributes to the literature on human interaction
with security robots in several ways. First, the findings from this
study extend the literature on security robot acceptance by extend-
ing the traditional TAM and trust construct on the acceptance of
security robots. Second, the findings highlight the importance of
risk in understanding the relationship between security robot au-
tonomy and the robot’s acceptance. Finally, the study highlights the
need to further contextualize existing theories to represent security
robots specifically.

2 BACKGROUND
2.1 Robot Autonomy
Robot autonomy represents the degree of self-sufficiency and in-
dependence the robot has in carrying out tasks without human
involvement [5]. These autonomy levels dictate a robot’s ability to
function independently and make decisions without human guid-
ance. Fully autonomous robots are capable of performing tasks
without any human intervention, in contrast to teleoperated robots,
which rely heavily on human control and intervention for their
operation and task execution [5, 14, 79].

Robot autonomy has been extensively studied to investigate its
impact on human-robot interactions. For example, Stapels et al.
[80] examined how varying levels of robot autonomy influence
human attitudes and emotional states, discovering that attitudes be-
come more ambivalent when interacting with autonomous robots
compared to teleoperated ones. Meanwhile, Choi et al. [14] ex-
plored different autonomy levels, such as autonomous and tele-
operated robots, to understand how they affect human emotional
engagement and perceived intelligence. Their research indicated
that robots with high autonomy levels and the ability to convey
emotions are perceived as more intelligent by humans. Złotowski
et al. [97] delved into the influence of robot autonomy on social
acceptance and attitudes. Their findings revealed that exposure
to autonomous robots leads to stronger negative attitudes toward
robots in general and increased opposition to robotics research
compared to exposure to non-autonomous robots. Schwarz et al.
[76] investigated autonomy levels in handheld user interfaces for
personal robots, including body, skill, and task control. They con-
cluded that interfaces with adjustable autonomy empower users to
select the appropriate level of control based on task complexity and
robot capabilities. Overall, it becomes evident that robot autonomy
impacts both direct and indirect aspects of human interactions with
robots.

2.2 Security Robot Acceptance
Robot acceptance has been an important topic in the field of human-
robot interaction (HRI) [1, 4, 13, 23, 33, 41, 46, 61, 71]. It can be gener-
ally defined as the extent of people’s intention or willingness to use

a robot [12, 18, 59]. As a human-related variable, researchers adopt
robot acceptance as an important measure of dynamic human-robot
relationships. For example, Babel et al. [4] used human acceptance
to measure the impact of conflict resolution strategies and compli-
ance behavior in service robots. Choi et al. [13] investigated the
impacts of intergroup relations and body zones on human accep-
tance of a vacuum cleaning robot. Lin et al. [46] explored the effects
of robot designs on consumer acceptance. Heerink [33] focused on
social assistive robots, examining how demographic factors like
age, gender, and education influence robot acceptance among older
adults. Additionally, Esterwood et al. [23] delved into the impact
of human personality on robot acceptance. Overall, it is critical
for technologies such as security robots to gain public acceptance
in order to facilitate their deployment in public spaces and foster
successful security operations.

Existing literature has explored specific factors that influence the
acceptance of security robots, including factors related to humans
and factors associated with the security robots and their application
domain [27, 37, 50–52, 74, 92, 95]. Human-related factors include
gender [27, 54, 95], personality [51], and affection [37]. For example,
individuals who self-identify as females have a significantly higher
intention to use a security robot than those who self-identify as
males in hospital and college campus settings [27]. Lyons et al. [51]
discovered that personality traits such as extroversion, agreeable-
ness, intellect, and high expectations are significantly correlated
with people’s public use intentions and military use intentions of se-
curity robots. Jessup et al. [37] found that people who experienced
positive affect were more likely to accept security robot technology.

Robot-related factors include autonomy [50], robot gender [74],
robot type [92], and stated social intent [50]. Yet, to the best of
our knowledge, these elements have only been examined in their
respective individual studies, and most have been found to exert a
non-significant impact on security robot acceptance. For example,
robot autonomy was examined in only one study [52], which found
that whether a security robot is fully autonomous or not does not
significantly change people’s desire to use the robot. This was also
the only study [52] that reported the influence of a security robot’s
stated social intent on acceptance, finding it to be non-significant in
affecting people’s desire to use the robot. Little attention has been
directed at examining those important security robot factors. This
may partly be because of the complexity and ethical considerations
associated with conducting such research [2]. Considering the pro-
found importance of understanding security robot acceptance, it is
vital to delve more deeply into attributes such as robot autonomy.

Simultaneously, it is important to consider the boundary con-
ditions impacting security robot autonomy, with risk being a po-
tentially significant factor. Risk can be defined as the potential
negative consequences or dangers to humans that may arise from
the deployment of, operation of, or interaction with a security ro-
bot. During actual deployments, security robots may pose varying
degrees of risk to humans depending on their actual tasks. Some
tasks might mitigate the risk by avoiding direct physical contact,
thereby reducing the danger, while others involving direct contact
could pose a greater risk. Marcu et al. [54] conducted a qualita-
tive study to understand people’s perceptions of security robots
in public spaces and identified a primary concern as “the risk of
malfunction or hacking threatening physical safety.” Compared to
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Figure 1: Autonomy Acceptance Model (AAM)

information security threats, the researchers found that physical
security threats were a more pressing concern to participants be-
cause of the more imminent and evident dangers. Participants also
expressed particular apprehension about their physical safety in
the presence of highly autonomous security robots. Given that the
degree of risk could be an important moderator in human-robot
interaction [94], it becomes necessary to explore the potential role
of risk as a moderating factor in evaluating robot autonomy.

3 RESEARCH MODEL AND HYPOTHESES
In our study, we propose the Autonomy Acceptance Model (AAM),
delineating how factors such as trust, perceived usefulness, and
perceived ease of use increase the acceptance level toward the
robot, and robot autonomy decreases this acceptance. Also, the
relationship between autonomy and acceptance is moderated by
the risk of danger. A condensed overview of these arguments is
displayed in Fig. 1.

3.1 Technology Acceptance and Trust
Perceived usefulness and perceived ease of use are the two major
determinants of when technologies are accepted [19]. These factors
are the primary components of the technology acceptance model
(TAM) [18, 19, 32, 39]. TAM has gained prominence across several
disciplines for both its parsimony [32, 39] and general validity
and its predictive power [6, 40]. Central to TAM is the idea that
perceived usefulness and ease of use act as two beliefs that lead
humans to establish a specific attitude toward using technology.
This attitude determines when humans will engage in actual use
[18, 19, 32, 39].

Perceived usefulness is defined as “the degree to which a person
believes that using a particular system would enhance his or her job
performance” [18, P.320]. The perceived usefulness of a technology
is theorized to significantly influence its acceptance, with higher
perceived usefulness increasing the likelihood of a technology being
accepted and used [19]. Perceived ease of use, on the other hand,
is defined as “the degree to which a person believes that using a
particular system would be free of effort” [18, P.320]. Similar to

perceived usefulness, the greater perceived ease of use a technology
garners, the more likely said technology is to be accepted and used
[19]. Together these perceptions make up the core components of
TAM, but they are not the only factors that can lead humans to
accept and use technologies.

Trust is another factor associated with technology acceptance,
often accompanied by perceived ease of use and usefulness [11,
28, 66, 68, 87, 91]. Trust can be defined as the “willingness of a
party to be vulnerable to the actions of another party based on the
expectation that the otherwill perform a particular action important
to the trustor, irrespective of the ability to monitor or control that
other party” [55, P.712]. Trust has been observed as an important
predictor of technology acceptance [28, 83, 96]. This is because trust
allows humans to simplify the potential consequences of use by
subjectively ruling out undesirable yet possible outcomes [28]. This
results in people who do not trust technologies tending to disuse
them which, in turn, indicates a lack of acceptance and prevents
use [43, 96].

In the context of security robot acceptance, the proposition that
perceived usefulness, ease of use, and trust predict acceptance has
yet to be directly assessed. Instead, scholars have primarily exam-
ined factors that lead to trust/trustworthiness and/or use intention
directly [9, 27, 47, 49, 52, 64, 74, 84]. This, however, assumes that
TAM or related acceptance constructs are as consistent in the secu-
rity robot domain as they appear in other technological domains.
For example, [27] and [51] examined how human gender and per-
sonality can impact subjects’ desire to use and their trust in security
robots. Their findings indicated that both humans’ gender and their
agreeableness and intellect/imagination have significant impacts on
trust and the desire to use security robots. In addition, [74], [9], and
[84] examined how a security robot’s gender may influence trust
and acceptance of said security robot. Generally, both [74] and [9]
found that gender was not significantly influential. [84], however,
showed that subjects’ had a higher perception of usefulness, ease
of use, and overall acceptance of male signaling security robots
than female signaling security robots. This study nor any others
we identified in the security robot literature, assessed the implicit
assumptions of TAM. Instead, these studies have mostly assumed
that perception of usefulness and ease of use, as well as trust more
broadly, are predictive of acceptance.

In general this common assumption – that perceived usefulness
and ease of use along with trust predicts acceptance – is reasonable.
This is the case because numerous findings across the technology
acceptance literature support this theoretical framework [11, 18, 19,
28, 32, 39, 66, 68, 87, 91]. Indeed, the results of a meta-analysis on
TAM conducted by [91] indicated that across 136 studies examining
various technologies that the core constructs of perceived ease of
use and usefulness are indeed significant predictors of acceptance.
In addition to these constructs, trust also appeared as significantly
predictive, lending additional support to its inclusion in technology
acceptance frameworks [91]. Indeed, findings in HRI related to
socially assistive robots for older adults also generally validate this
approach with perceived usefulness, ease of use, and trust each
appearing as significant facets of acceptance [34]. Based on these
works and broader support across the acceptance literature, we
therefore hypothesized the following:
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H1: Greater (a) perceived usefulness, (b) perceived ease
of use, and (c) trust increase security robot acceptance.

3.2 Autonomy and Acceptance
Based on prior literature, we assert that security robot autonomy
should decrease robot acceptance. Increases in autonomy would
decrease acceptance primarily because of concerns about poten-
tial errors and the human’s diminishing sense of being in control
[26, 85]. In scenarios where human well-being is affected by un-
predictable elements within the surroundings, such as highly au-
tonomous robots, people’s confidence in their power to control the
environment would decrease [42]. Norman [62] also posited that
the presence of highly autonomous agents can elicit negative emo-
tions by fostering a sense of lost control. In addition, autonomous
robots can be perceived as threatening, posing both realistic and
identity-based threats [24, 97]. Therefore, as security robot auton-
omy increases, so should fears and concerns humans have over
their use.

Previous literature has shown a strong negative relationship with
the acceptance of highly autonomous technology [16, 30, 35, 73, 97].
For example, research has found a general reluctance to accept
vehicles as their degree of autonomy increases [35, 73]. This is
because humans are concerned about possible malfunctions and a
lack of human supervision to prevent or handle these malfunctions.
This issue is of particular concern for security robots. For instance,
the New York Police Department canceled its contract with Boston
Dynamics in response to backlash from the use of its Digidog,
an autonomous security robotic dog that sparked fears from the
general public [63]. Similarly, Knightscope security robots deployed
at LaGuardia Airport led to both passenger and security personnel
reporting concerns about their “creepy” use [60]. Therefore, we
hypothesized:

H2: Increasing the degree of security robot autonomy
decreases security robot acceptance.

3.3 Risk, Autonomy, and Acceptance
The third hypothesis predicts that robot autonomy will decrease
the acceptance of security robots and possibly increase negative
attitudes toward them [97]. In this section, we propose that the po-
tential risk imposed by the robot through observation (low risk) and
intervention (high risk) can moderate the impact of robot autonomy
on robot acceptance.

One critical factor that significantly influences our acceptance
of robots is the concept of risk [22]. Robots, particularly those
with varying levels of autonomy, introduce a spectrum of risks.
This tension between the allure of technological advancement and
the fear of unintended consequences lies at the heart of the risk-
acceptance dynamic in human-robot interaction. Risks associated
with robots encompass the potential for physical harm that robots
can pose through either mechanical failures or accidents [93]. These
risks include physical safety concerns such as the potential for
accidents and collisions [58].

The interaction between robot autonomy and the actual risk of
danger plays a pivotal role in shaping the acceptance of robots. This
dynamic relationship can be explained by considering how humans
evaluate and respond to robots with varying levels of independence.

When individuals face a low risk of danger in the robot’s activities,
they may be more accepting of higher levels of robot autonomy
because they believe the consequences of errors are minimal or
manageable. However, when the risk of danger is high, individuals
become more cautious, and higher levels of autonomy are likely to
reduce acceptance. In these cases, humans may prefer robots with
lower autonomy levels that they can easily control or intervenewith
if necessary. This moderation effect underscores the significance
of context and task-specific risk assessments in determining the
acceptance of robots, particularly in applications where safety and
security are paramount.

H3: The degree of risk moderates the impact of auton-
omy on security robot acceptance, such that the negative
impact of autonomy on acceptance is stronger in higher-
risk situations than in lower-risk situations.

4 METHOD
To examine our hypotheses, we conducted a 3 (autonomy level: low
or moderate or high) × 2 (risk of danger: low or high) between-
subjects online experiment. In the experiment, participants were
randomly assigned to one of six conditions. Participants needed to
watch a video clip about a security robot and respond to survey
items related to the robot. This study was approved by a university
institutional review board.

4.1 Participants
We recruited 240 participants from CloudResearch’s Connect plat-
form [15]. Participants were asked to finish an online questionnaire,
which takes 6 – 15 minutes to complete. Participants received com-
pensation of $ 4.50 (USD) on average, but those who took longer
to complete the survey received up to $ 5. All participants met the
inclusion criteria: at least 18 years old, fluent English speakers, and
based in the United States. Four participants were excluded from
the final analysis because their overall questionnaire scores devi-
ated more than 2.5 standard deviations from the mean. This left us
with a valid sample of 236 participants, comprising 117 females, 113
males, 3 identifying as gender variant/non-conforming, 1 opting
not to self-describe, 1 transgender female, and 1 transgender male.
Participants’ ages spanned 18 – 72 years (M = 37, SD = 11.82). Geo-
graphically, participants hailed from various US regions: 37% from
the South, 18% Midwest, 24% West, and 21% Northeast. Ethnically,
the sample was diverse with 13% identifying as Asian or Asian
American, 14% Black or African American, 8% Hispanic or Latin
American, and 64% White or Caucasian.

4.2 Stimuli, Task, and Procedure
During the experiment, participants first completed a preliminary
questionnaire to provide demographic information. Following this,
theywatched a two-minute video about a security robot, Knightscope
K5 (see Fig. 2). This video featured a news report where a reporter
and a hotel manager introduced Robbie, a new security robot de-
ployed in the hotel’s parking lot. The video showcased Robbie’s
functions and daily operations.

We produced six distinct videos, which were edited from a news
clip [38], each corresponding to a unique combination of variables
(videos are provided: https://anonymous.4open.science/r/paper-

https://anonymous.4open.science/r/paper-C41E
https://anonymous.4open.science/r/paper-C41E
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Figure 2: Security robot in the experimental video

C41E). Depending on the condition to which the participant was
randomly assigned, the reporter’s description of the security robot
varied in the videos. Each participant viewed a video with one of six
study scripts (provided in Table 1). The reporter’s background audio
was consistently recorded by the same researcher. Immediately
after the video, participants were given a written description of the
autonomy and risk associated with the security robots as presented
in the video. They were then prompted to answer questions about
Robbie, the security robot they had just observed. Participants were
free to withdraw from the study at any time and for any reason.

4.3 Experimental Design
The study manipulated two independent variables: the autonomy
level and the risk of danger associated with the security robot. Table
1 offers an intuitive display of the research design.

4.3.1 Autonomy. Participants were exposed to one of three levels
of robot autonomy. Each level was initially introduced in the video
and subsequently reinforced in a written description provided after
the video. In the high autonomy condition, the robot was described
as fully autonomous. In the moderate autonomy condition, the
robot was portrayed as semi-autonomous, with a human operator
monitoring and potentially taking control of the robot. In the low
autonomy condition, the robot was not autonomous and relied
entirely on a human operator’s control.

4.3.2 Risk of Danger. Participants were presented with one of
two risk conditions, both in the video’s background narrative and
the subsequent written description. In the high-risk condition, the
robot could intervene and engage in physical contact with humans
if needed. Conversely, in the low-risk setting, the robot acted as an
observer, reporting emergencies and requesting assistance when
appropriate.

4.4 Measures
4.4.1 Manipulation Check Measures. To assess the efficacy of the
manipulation, each participant was questioned about the autonomy
level of the security robot before answering video-related inquiries.
All participants accurately identified the robot’s autonomy, con-
firming the successful manipulation of autonomy. Furthermore, we
evaluated participants’ perceived risk to verify the manipulation
of the risk of danger. The perceived risk was assessed using a 4-
item scale adapted from [77] and [69]. Example items include “I

believe that there could be negative consequences when using se-
curity robots.” and “Security robots will have defects in technology
and machines.” The reliability of this 5-point scale was confirmed
(𝛼 = 0.85). We employed analysis of variance (ANOVA) to study
the influence of risk conditions on perceived risk. The alpha level
was set at 0.05 for all statistical tests. Results indicated that the
perceived risk among participants was significantly higher in the
high-risk condition (𝑀 = 2.84, 𝑆𝐷 = 0.90) compared to the low-risk
condition (𝑀 = 2.47, 𝑆𝐷 = 0.99) (𝐹 = 8.77, 𝑝 = .003, 𝜂2𝑝 = 0.036).

4.4.2 Control Variables. We gathered demographic data including
participants’ age, gender, region, and ethnicity.

4.4.3 Dependent Variables. We assessed trust using a 3-item 7-
point Likert scale questionnaire adapted from [72]. Perceived use-
fulness was gauged using a 5-item, 7-point Likert scale derived from
[88]. Perceived ease of use was evaluated with a 4-item, 7-point
Likert scale adapted from [18].

We utilized an adapted version of the active use scales created
by [67] to gauge participants’ acceptance of the security robots.
Participants rated each statement on a 7-point Likert scale, spanning
from "strongly disagree" (1) to "strongly agree" (7). The phrasing
of the items was modified to refer to robots instead of individuals.
These items included: “I will interact with security robots in the
future if possible,” “I am not reluctant to interact with security
robots if possible,” “I will acquire a security robot if the opportunity
presents itself,” and “I am open to utilizing security robots as part
of my security measures if possible.”

5 RESULTS
In this section, we detail the findings of our study. We employed
Partial Least Squares Path Modeling (PLS-PM) utilizing SmartPLS 4
[70], to evaluate the hypotheses. Partial Least Squares Path Model-
ing (PLS-PM) is a statistical technique within Structural Equation
Modeling (SEM). It serves as a path analysis model, depicting rela-
tionships among latent variables by illustrating directed dependen-
cies [21, 31]. This modeling approach not only traces the influence
of an independent variable on a dependent one but also evaluates
the relative strength of this impact [48, 70].

The variable measuring autonomy was ordinal, with values rang-
ing from 1 to 3. Age, gender, region, and ethnicity were found to
be non-significant factors and were excluded from the final model.
Figure 3 presents detailed results for the final model, including
standardized path coefficients (𝛽) for each respective path and the
variance explained (𝑅2) for the variable.

5.1 Measurement Validity
We utilized factor analysis to assess structural validity and found
that all items loaded at 0.7 or above on their corresponding con-
structs except a reverse-coded item (the third item from the ease-of-
use questionnaire) and a low factor loading item (the second item
from the acceptance questionnaire), which were therefore removed.

To evaluate both discriminant and convergent validity, we uti-
lized the square root of the Average Variance Extracted (AVE) values.
As proposed by the Fornell-Larcker criterion [25], an AVE value
surpassing 0.5 signifies good convergent validity of the variables.
Moreover, to establish discriminant validity, the correlations among

https://anonymous.4open.science/r/paper-C41E
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Table 1: Research design and study scripts

Risk (Low):
Observe and report

Risk (High):
Intervene and engage in physical contact if needed

Autonomy (Low):
Not autonomous;
Human
remote-operated

“Robbie is not autonomous; instead, it is remotely operated by
a human operator. The human operator controls the robot to
detect threats and take action when they feel necessary. The
robot is controlled to continuously monitor the surroundings
for any potential risks. Anytime threats are detected, the
operator controls the robot to promptly report the on-site
situation to the security firm and request assistance. The
operator determines when to act. The robot is incapable of
completing actions independently.”

“Robbie is not autonomous; instead, it is remotely operated
by a human operator. The human operator controls the
robot to detect threats and take action when they feel
necessary. The robot is controlled to continuously monitor
the surroundings for any potential risks. Anytime threats
are detected, the operator controls the robot to intervene
immediately and, if needed, even engage in physical contact.
The operator determines when to act. The robot is incapable
of completing actions independently.”

Autonomy (Moderate):
Semi-autonomous;
The human operator
monitors and takes
over

“Robbie is semi-autonomous and monitored by a human
operator. It has the capability to detect threats on its own
and request the operator to take over control and initiate
action. It continuously monitors its surroundings. Anytime
it detects threats, the robot requests the operator to assume
control, allowing it to promptly report the on-site situation
to the security firm and request assistance. The operator can
take control of the robot at any time and decide when to act,
while the robot performs actions under the guidance and
supervision.”

“Robbie is semi-autonomous and monitored by a human
operator. It has the capability to detect threats on its own
and request the operator to take over control and initiate
action. It continuously monitors its surroundings. Anytime
it detects threats, the robot requests the operator to assume
control, allowing it to intervene immediately and, if needed,
even engage in physical contact. The operator can take
control of the robot at any time and decide when to act,
while the robot performs actions under the guidance and
supervision.”

Autonomy (High):
Fully autonomous;
Independent from
the human operator

“Robbie is fully autonomous. It has the capability to detect
threats on its own and take action when it deems them
necessary. It continuously monitors its surroundings for any
potential risks. Anytime it detects a threat, the robot promptly
reports the on-site situation to the security firm and requests
assistance. The robot determines when to act and completes
these actions independently from a human operator.”

“Robbie is fully autonomous. It has the capability to detect
threats on its own and take action when it deems them
necessary. It continuously monitors its surroundings for any
potential risks. Anytime it detects threats, the robot can
intervene immediately and, if needed, even engage in physical
contact. The robot determines when to act and completes
these actions independently from a human operator.”

Table 2: Correlation matrix

Variable Mean Std. Deviation Reliability 1 2 3 4 5

1. Acceptance 4.27 1.61 0.90 (0.91)
2. Perceived Ease of Use 4.88 1.27 0.86 0.59** (0.89)
3. Perceived Usefulness 5.46 1.32 0.97 0.67** 0.53** (0.94)
4. Trust 4.14 1.67 0.91 0.72** 0.63** 0.68** (0.92)
5. Autonomy 2.01 0.81 N/A -0.07 -0.11 0.02 -0.05 (N/A)

Notes: 1. Values on the diagonals within the parentheses represent the square root of the Average variance extracted (AVE).
2. Significance of correlations: *p < .05; **p < .01.
3. N = 236.

constructs ought to be less than the square root of the respective
construct’s AVE. Our data illustrated that the AVEs for acceptance,
perceived ease of use, perceived usefulness, and trust stood at 0.83,
0.79, 0.88, and 0.85 respectively, all exceeding the 0.50 threshold,
thereby indicating good convergent validity. Concurrently, as de-
picted in Table 2, the correlations among the variables were below
the square roots of their individual AVE values, which denoted
adequate discriminant validity.

Moreover, we evaluated the reliability of the measures and dis-
covered that all the questionnaires’ Cronbach’s 𝛼 values exceeded
the recommended 0.7 benchmark [10], denoting high reliability:
trust (𝛼 = 0.91), perceived usefulness (𝛼 = 0.97), perceived ease of
use (𝛼 = 0.87), and acceptance (𝛼 = 0.90).

5.2 Hypothesis Testing
Hypothesis 1 posited that the factors of (a) usefulness, (b) ease of use,
and (c) trust would each contribute to an increase in the acceptance

of security robots. Our results demonstrated a significant positive
impact of perceived usefulness (𝛽 = 0.29, 𝑝 = .001), a significant
positive impact of perceived ease of use (𝛽 = 0.18, 𝑝 = .039), and
a significant positive impact of trust (𝛽 = 0.42, 𝑝 < .001) on the
acceptance of security robots. Therefore, H1 was fully supported.

Hypothesis 2 suggested that the degree of security robot auton-
omy decreases security robot acceptance. Our data indicated that
autonomy does indeed have a significant negative impact on the
acceptance of security robots (𝛽 = −0.12, 𝑝 = .024). Consequently,
H2 was also fully supported.

Finally, Hypothesis 3 hypothesized that the degree of risk would
moderate the impact of security robot autonomy on its accep-
tance. Our model illustrated a significant interaction effect be-
tween the risk of danger and robot autonomy (𝛽 = 0.16, 𝑝 =

.038). Specifically, as delineated in Figure 4, the risk of danger
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Figure 3: Results of PLS analysis
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Figure 4: Simple slope plot

significantly moderated the impact of autonomy on robot accep-
tance [20]. Simple slope tests indicated that in the low-risk condi-
tion increases in security robot autonomy significantly decreased
acceptance(𝑡 (116) = −2.25, 𝑝 = .025) while in the high-risk condi-
tion increases in security robot autonomy had no significant impact
on acceptance(𝑡 (116) = 0.10, 𝑝 = .92). Table 3 provides a summary
of the results from hypothesis testing.

6 DISCUSSION
In this study, we aimed to understand human acceptance of secu-
rity robots by expanding upon the TAM and trust frameworks to
incorporate autonomy and risk as factors. On one hand, our re-
sults indicated that the perceived usefulness, ease of use, and trust
in robots enhanced the acceptance of security robots. The more
users trust these robots, perceive them as useful, and find them
easy to use, the greater their acceptance of the security robot. This
discovery aligns with prior findings in the TAM literature [18, 77].

On the other hand, this study identified a significant negative
influence of robot autonomy on the acceptance of security robots,
moderated by the risk of danger. This contrasts with earlier re-
search suggesting security robots’ autonomy has non-significant
impact on human acceptance [50]. This conflicting result could
be attributed to our additional consideration of physical risk as

a moderator. Specifically, [50]’s study only considered high-risk
security robots authorized to deploy nonlethal weapons against
unauthorized individuals. Participants in that study were also ex-
posed to a video depicting a scenario where unauthorized visitors
were potentially harmed by these weapons. Our results imply that
such non-significant findings regarding robot autonomymight stem
from the robot’s high risk of danger, as autonomy’s impact only
existed for low-risk tasks.

Next, the paper delves further into our contributions to the litera-
ture, theoretical implications, and study limitations in the following
section.

6.1 Contributions
First, this study’s findings theoretically extend the literature on
security robot acceptance by augmenting the traditional TAM and
trust constructs in relation to security robot acceptance. In doing
so, this study not only confirms the importance of TAM and trust
in the context of security robots but also goes over and above this
by identifying the significance of autonomy and risk. As one of
the most researched acceptance models [53], TAM has been vali-
dated and extended in different HRI contexts, such as autonomous
vehicles [29, 35, 65], service robots [45, 77, 82], and collaborative
robots [8]. However, no study examined these constructs in secu-
rity robots. This study for the first time examined and verified the
significant antecedent role of perceived usefulness, perceived ease
of use, and trust in the acceptance of security robots. Additionally,
this study examined two crucial factors related to robots, autonomy
and risk, emphasizing their significance in understanding the ac-
ceptance of security robots. Notably, the effect of the risk of danger,
for the first time, was assessed in the context of security robots
and found to have a significant moderating effect on the impact of
autonomy on acceptance, while not directly impacting acceptance.
Future research could further investigate the potential relationships
in the security robot acceptance construct and explore additional
potential influencing factors to enrich the current AAM.

Second, this study underscores the significance of physical risk
in grasping the connection between security robot autonomy and
acceptance. On one hand, we confirmed initial assertions that as se-
curity robot autonomy decreases, the acceptance of security robots
increases. However, this was only for low-risk tasks. On the other
hand, for high-risk tasks, the level of security robot autonomy had
no impact on acceptance. In the domain of security robots, the
impact of autonomy was only examined in one previous study, and
it was found to be non-significant for human acceptance [50]. Our
results offer new insights into the relationship between autonomy
and acceptance with additional consideration of physical risk. This
underscores the importance of considering the role of physical risk
in identifying boundary conditions, especially in the security con-
text. At the same time, previous TAM extensions’ consideration of
risk mainly focused on non-physical risks, such as risk associated
with financial loss in the context of e-commerce-related activities
[44, 86]. However, risk associated with physical harm is a different
concept. Such physical risk is becoming more prevalent and signifi-
cant, considering the increasing future interactions between robots
and humans in real life. Given that future security robots could
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Table 3: Results of Hypothesis Testing

Hypothesis Results

H1) Greater (a) perceived usefulness, (b) perceived ease of use, and (c) trust increase security robot acceptance. Supported
H2) Increasing the degree of security robot autonomy decreases security robot acceptance. Supported
H3) The degree of risk moderates the impact of autonomy on security robot acceptance, such that the negative impact
of autonomy on acceptance is stronger in higher-risk situations than in lower-risk situations.

Partially Supported

be deployed in various settings, the potential physical risk associ-
ated with security robots could also vary based on their specific
security task execution. The future design of autonomy to promote
acceptance of security robots should consider the specific risk of
danger. Future HRI studies should also consider the potential role
of physical risk to better explore the underlying influencing factors.

Finally, the study emphasized the importance of adapting ex-
isting theories to the context of robots. Take robot acceptance as
an example: given the different circumstances and contexts of use,
people’s evaluations of robot acceptance can change as they derive
from varying understandings and expectations of the robot’s role
[57]. Robots in different contexts may have unique and important
factors that can lead to potentially varying results compared to gen-
eral HRI theories. For instance, autonomy is generally believed to
decrease acceptance [16, 30, 35], but it was found to have no effect
on security robot acceptance under low-risk conditions. Further,
[52] strengthened the importance of looking into HRI factors such
as acceptance and trust of robotic systems in the security domain.
Future research should consider generalizing existing HRI theories
to accommodate specific robot types and task contexts, taking into
account their respective unique characteristics, in order to gain a
better understanding of HRI relationships.

6.2 Limitations and Future Research
Our study has several limitations. First, the entire study relied on an
online experiment using pre-recorded videos to manipulate differ-
ent conditions, which could constrain the study’s external validity.
Participants’ experiences and attitudes toward robots could be dif-
ferent when they interact with a security robot in person. Therefore,
future studies could consider conducting lab or field research in-
volving real robots to study human-security robot interaction more
comprehensively.

Second, our study only examined acceptance during short-term
interactions. The entire experiment took only 8–14 minutes, al-
lowing us to assess people’s initial impressions of security robots.
However, future studies should consider longitudinal research, de-
ploying security robots in real-life situations, to measure people’s
long-term acceptance and gain a comprehensive understanding of
human acceptance over time.

Third, this study focused solely on a single type of risk, physical
danger. However, risk is usually identified as a multidimensional
concept that includes other types of risk such as psychological
risk, social risk, and time risk, among others [36, 75]. Given the
significance of risk, future studies could explore the potential in-
fluence of different risks in more detail, rather than only one facet.
Additionally, other risk-related factors should also be examined,

such as risk-taking propensity [7, 89], which could help in better
understanding people’s reactions toward risk.

Fourth, our study exclusively recruited participants from the
United States. Nevertheless, we acknowledge that culture could
potentially be an influencing factor. Previous research has shown
that individuals from diverse cultural backgrounds could exhibit
different attitudes toward interaction with robots [17, 49]. There-
fore, further research could be conducted to investigate the impact
of cultural differences and validate the findings of this study across
a broader population.

Finally, our study only considered active use as a measure of
acceptance. Although active use is one of the most common forms
of acceptance, we believe it is also important for future research
to assess another less common form of acceptance — passive use.
People’s interactions with security robots can be indirect; some-
times, individuals simply walk by a security robot and have no
direct interaction with it, or they are aware that a security robot
is deployed in the same location but never actually see or interact
with it. This form of acceptance should include the measurement
of people’s acceptance of the robot being deployed in a specific
area and their acceptance of others using the robot, even if it is
not directly related to themselves. Abrams et al. [1] explored a
similar concept, "existence acceptance," in the context of delivery
robots. More research could consider incorporating this indirect
acceptance to comprehensively understand HRI acceptance.

7 CONCLUSION
As the proliferation of security robots continues to reshape our soci-
ety, it becomes increasingly imperative to gain deeper insights into
their acceptance. The results of this study shed light on the complex
dynamics of human acceptance of security robots. Nonetheless, fu-
ture research is needed to build on these findings and expand our
understanding of security robot acceptance.
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