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Abstract 

Automated vehicles (AVs) will likely yield a transformation of urban form, its land use and 
mobility system. This report is concerned with adapting land use and transportation 
infrastructure for automated driving. In the first part of the report, we propose an infrastructure-
based approach to close the connectivity gap for connected and automated vehicles (CAVs) in a 
mixed traffic environment. It is envisioned that roadside units can be deployed to sense vehicles 
in their coverage areas and provide the beyond-line-of-sight motion information to CAVs to 
empower them to react proactively, as they would do when following other CAVs. We thus 
develop a quantitative modeling framework to analyze the impacts of this type of roadside units 
at the strategic planning level. In the second part, we analytically examine how the parking 
locations of AVs impact the morning and evening commuting pattern, and then investigate the 
optimal AV parking supply that minimizes the total system cost. We also offer some insights 
through numerical studies regarding relationship among traffic efficiency, tolling schemes and 
AV parking supply. 
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1. Introduction 

In the foreseeable future, the traffic stream will be likely mixed with connected automated vehicles 
(CAVs) and regular vehicles (RVs). In the mixed traffic environment, when following a RV, due 
to the lack of vehicle-to-vehicle communications, it may take longer time for a CAV sense and 
react than a human driver, which results in longer time headway and reduces highway throughput. 
To address such a connectivity gap, this project investigates an infrastructure-based solution, i.e., 
the deployment of roadside units to further improve the performance of CAVs in the heterogeneous 
traffic stream. Specifically, it is envisioned that these roadside units can sense vehicles in their 
coverage areas and provide the beyond-line-of-sight motion information to CAVs to empower 
them to react proactively, as they would do when following other CAVs. Chapter 2 of this study 
is devoted to the analysis of the impacts of this type of roadside units at a strategic planning stage. 
In doing so, we first derive an analytical link performance function to capture their impact on the 
link capacity and travel time, and then develop a network equilibrium model to gauge their effect 
on travelers’ route choices and thus the flow distribution of both RVs and CAVs across the whole 
network. This modeling development will allow us to conduct a cost-benefit analysis for a given 
deployment plan of roadside units. For a fair analysis, we further develop an optimization model 
to determine the optimal deployment plan for a given budget, while focusing on the worst case of 
its impact, because the flow distribution resulting from our network equilibrium model is not 
unique. Such a model provides a conservative estimate of the benefit brought by roadside units. 
Lastly, we offer case studies to demonstrate the models and unveil the potential of such an 
infrastructure-based solution. Chapter 2 is a collaborative work with Ye Li, Central South 
University, China, and Zhibin Chen, NYU Shanghai, China. 

Chapter 3 of this study is devoted to analytically investigate the traffic dynamics of the integrated 
morning and evening commutes when daily trips are completed with automated vehicles (AVs). 
Given the parking locations of AVs resulting from the morning commute, firstly we analyze the 
evening commuting pattern, at which no traveler can reduce the individual travel cost given other 
AVs’ times of departures from the parking spaces. The equilibrium traffic pattern at the evening 
commute is then integrated with the morning commute, where equilibrium choices of departure 
time from home and parking location are derived and analyzed. We then study the integrated 
morning-evening commuting pattern at the system optimum and develop the first-best road tolling 
scheme to achieve the system optimum. Furthermore, this study analyses the optimal AV parking 
supply strategy to minimize the total system cost, which is comprised of the total social parking 
cost and the total daily travel cost under either user equilibrium or system optimum traffic pattern. 
We also illustrate the modelling insights through numerical studies regarding relationship among 
traffic efficiency, tolling schemes and AV parking supply plans. This study highlights the 
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differences in daily commuting and parking patterns between the AV situation and the non-AV 
situation, and sheds light on how traffic and parking should be managed or planned in the future. 
Chapter 3 is a collaborative work with Xiang Zhang, Wei Liu, S. Travis Waller, University of New 
South Wales, Sydney, Australia. 
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2. Deployment of Roadside Units to Overcome Connectivity Gap in Transportation Networks 
with Mixed Traffic 

2.1 Introduction 

Among many other benefits, CAVs are expected to improve safety and increase the 
throughput of highway facilities. Specifically, with vehicle-to-vehicle (V2V) communications, 
a CAV can receive the information from another CAV it follows and make decisions 
proactively. This yields much shorter sensing-perception-reaction time and consequently 
improves safety and throughput (Van et al., 2006; Shladover et al., 2012). However, as the 
popularization of CAV is expected to be a gradual process, the traffic steam will be mixed 
with CAVs and regular vehicles (RVs) for a long time. In a mixed traffic environment, when 
a CAV follows a RV, it may take longer time for the CAV to sense and react than a human 
driver, which can amplify speed variations and cause unstable traffic flow (Milanés and 
Shladover, 2014; Milanés et al., 2014). This is particularly true at the early deployment of 
CAVs when their market penetration is low and the technology is not sufficiently advanced. 
With a low market penetration of CAVs, the likelihood of a CAV following another CAV is 
low. More importantly, car manufacturers may likely configure their CAVs with a lower 
operation speed and excessive safety clearance, i.e., longer time headway, to ensure safety to 
avoid liability. Undoubtedly, the presence of these types of CAVs in the traffic stream will 
slow other vehicles down and thus compromise the efficiency of transportation systems, as 
recognized by recent studies such as Chen et al. (2017), Ghiasi et al. (2017), Seo and Asakura 
(2017) and Calvert et al., (2017). Such an efficiency degradation could last for a while until 
the market penetration of CAVs reaches a certain threshold. This period is referred as the 
“dark age” of CAV deployment by Luo et al. (2019). 

A potential solution to the above issue is to designate CAV-only facilities so that CAVs can 
make full use of the V2V communications to form a platoon with much shorter headways. 
However, such a solution improves social welfare only if the market penetration is sufficiently 
large. Ye and Yamamoto (2018) established a three-lane heterogeneous flow model to explore 
the impact of dedicated CAV lanes on the traffic flow throughput, and found that at a low 
CAV penetration rate, setting CAV dedicated lanes reduces the overall traffic flow throughput. 
Recognizing this point, Chen et al. (2016) developed a model to optimally deploy dedicated 
lanes for CAVs while considering the diffusion process of CAVs. Their model specifies when, 
where, and how many CAV lanes should be deployed in a general transportation network. 
Later, Chen et al. (2017) further extended the idea to design dedicated CAV-only zones. 
Recently, Chen et al. (2019) and Ye and Wang (2018) further integrated the idea of CAV lanes 
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with economic instruments, such as purchase subsidy and congestion pricing, to further 
increase social welfare. 

In this report, we suggest another infrastructure-based solution to close the connectivity gap 
for CAVs. The proposed solution is to deploy roadside units equipped with sensoring and 
communications devices. It is envisioned that these roadside units can sense vehicles in their 
coverage areas, and communicate the beyond-line-of-sight motion information to CAVs. Such 
a real-time information provision enable CAVs to react proactively, as they would do when 
following another CAV. Note that the roadside units of interest are conceptually similar to 
those currently deployed for connected vehicles, but with one essential difference: the 
capability of direct sensing of vehicles via, e.g., cameras. We further note that such integrated 
roadside units have started to appear on the market. Our solution falls in line with the general 
concept of infrastructure-assisted automated driving, which has been recently explored by 
other researchers. For example, the Managing Automated Vehicles Enhances Network 
(MAVEN) project is developing traffic management schemes from the infrastructure side to 
better monitor and coordinate CAVs on signalized intersections and corridors (Lu and 
Blokpoel, 2016; MAVEN, 2019; Rondinone et al., 2018; Rondinone, 2019). 

Clearly, the proposed infrastructure-based solution is costly to implement. An immediate 
question would be whether the benefit can justify its cost. To this end, this study conducts a 
cost-benefit analysis to validate the potential of such a solution. While the investment cost of 
roadside units can be easily estimated, their benefits are much more difficult to assess. The 
focus of the study is thus on the latter. Our objective is modest. We attempt to establish a 
modeling framework to offer a macroscopic, ballpark estimate of the impact of roadside units 
on the performance of a transportation network at the strategic planning stage. In doing so, we 
first start at a facility level and analytically derive a new link performance function to capture 
the impact of roadside units on link capacity and travel time. A network equilibrium model 
integrating the established link performance function is then proposed to estimate how 
roadside units will further impact travelers’ route choice and thus the system performance. 
With the proposed equilibrium model, the mixed traffic flow distribution of both CAVs and 
RVs across the road network with the presence of roadside units can be delineated, enabling 
a cost-benefit analysis for a given deployment plan of roadside units. For a fair and sensible 
analysis, we further develop an optimization model to determine the optimal deployment plan 
for a given budget, while focusing on the worst case of its impact, because the flow 
distribution resulting from our network equilibrium model is not unique. Such a model 
provides a conservative estimate of the benefit brought by roadside units. The established 
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deployment model is a nonlinear minimax problem with complementarity constraints, and a 
heuristic procedure based on the cutting-plane scheme is developed to solve the model. Lastly, 
we offer two numerical examples to demonstrate the proposed models and solution algorithm, 
and more importantly, to conduct cost-benefit analyses to make a case for the proposed 
infrastructure-based solution. 

The remaining of the chapter will be organized as follows. In Section 2.2, a new link 
performance function and a network equilibrium model are established to capture the impacts 
of roadside units on the link capacity/travel time and the network performance, respectively. 
Section 2.3 presents the deployment model that optimizes the deployment plan of roadside 
units whereby their benefit can be conservatively estimated. The solution algorithm is also 
discussed. The section is followed by case studies and cost-benefit analyses in Section 2.4. 

2.2 Capturing the Impacts of Roadside Units 

Figure 2.1 is a sketch on how roadside units work. The roadside units are used to sense 
multiple vehicles upstream and provide their motion information to the following CAV via 
vehicle-to-infrastructure (V2I) communication. The beyond-line-of-sight motion information 
will allow CAVs to respond proactively so as to improve the safety of CAVs and the traffic 
stream stability (Treiber et al., 2006; Ngoduy and Jia, 2017; Wang, 2018). It can also reduce 
the time headway of the following CAV and increase highway throughput. Below we propose 
mathematical models to capture the impacts of roadside units on the link travel time and the 
network efficiency respectively. 

Figure 2.1: Illustration of the function of roadside units 
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2.2.1 Impact on the link travel time 

The aim of this subsection is to capture the impact of roadside units on link capacity and 
travel time at the steady state for the planning purpose. Our derivation is in the same spirit 
as previous studies such as Chen et al. (2017) and Seo and Asakura (2017). As shown in 
Figure 2.2, there are totally four car-following scenarios in a heterogeneous traffic stream 
involving CAVs and RVs: CAV follows CAV or RV, and RV follows CAV or RV. As 
the critical headways are the same for a RV following a CAV or a RV, we use 𝐿𝐿𝑅𝑅 to 
denote them. For the critical headway when a CAV following a CAV or a RV, we define 
them as 𝐿𝐿𝐶𝐶 and 𝐿𝐿𝐴𝐴 , respectively. Since roadside units provide the beyond-line-of-sight 
information to the CAV when it is following a RV, the critical headway for the CAV 
(denoted by 𝐿𝐿𝐼𝐼 ) can be shorten, i.e., 𝐿𝐿𝐼𝐼 < 𝐿𝐿𝐴𝐴 . Furthermore, considering the advancement 
level of existing technologies, we assume that the relation among 𝐿𝐿𝐴𝐴 , 𝐿𝐿𝑅𝑅 , 𝐿𝐿𝐼𝐼  and 𝐿𝐿𝐶𝐶 

follows 𝐿𝐿𝐴𝐴 ≥ 𝐿𝐿𝑅𝑅 > 𝐿𝐿𝐼𝐼 > 𝐿𝐿𝐶𝐶 (Milanés and Shladover, 2014; Milanés et al., 2014). 

Figure 2.2: Illustration of car-following scenarios 

We define the proportion of CAVs in the mixed traffic on a link as 𝑝𝑝, and the proportion 
of RVs is thus 1 − 𝑝𝑝. The probability of occurrence for these four car-following scenarios 
in the traffic stream can be estimated as 𝑃𝑃(CAV follows CAV) = 𝑝𝑝 ⋅ 𝑝𝑝 , 
𝑃𝑃(CAV follows RV) = 𝑝𝑝 ⋅ (1 − 𝑝𝑝) , 𝑃𝑃(RV follows CAV) = (1 − 𝑝𝑝) ⋅ 𝑝𝑝 , and 
𝑃𝑃(RV follows RV) = (1 − 𝑝𝑝) ⋅ (1 − 𝑝𝑝). Suppose the coverage or detected length of a 
roadside unit as 𝐻𝐻, then for a link deployed with 𝑛𝑛 roadside units, the total length covered 
by roadside units is 𝑛𝑛𝐻𝐻 . To capture the effect of roadside units, the link can be 
conceptually divided into multiple sub-links, each of which is either covered by a roadside 
unit or not. As we assume that the deployment of roadside units will only affect the 
headway of CAVs following RVs, and we consider a steady state for the planning purpose 
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without capturing traffic dynamics, specific locations of these roadside units on a 
particular link will not affect the total travel time for traversing through the link. 
Therefore, all the roadside units on a link can be regarded as being deployed 
consecutively, such that the link is divided into only two sub-links, one without roadside 
units (denoted by sub-link 1), and the other one covered by roadside units (denoted by 
sub-link 2), as displayed in Figure 2.2. Suppose the length of the link is 𝐿𝐿, then the length 
of sub-link 2 (denoted by 𝐿𝐿2), as previously mentioned, would be equal to 𝑛𝑛𝐻𝐻. The length 
of sub-link 1 is 𝐿𝐿1 = 𝐿𝐿 − 𝑛𝑛𝐻𝐻. 

Given the proportion of CAVs, i.e., 𝑝𝑝, in the mixed traffic stream, the capacity of sub-
link 1 can be derived as below: 

where 𝑞𝑞𝑀𝑀1 defines the capacity of sub-link 1; 𝑣𝑣𝑀𝑀 defines the critical speed, which is 
assumed to be the same for both two sub-links (Chen et al., 2017); and ℎ𝑅𝑅 , ℎ𝐶𝐶 and ℎ𝐴𝐴 are 
the critical time headways corresponding to 𝐿𝐿𝑅𝑅 , 𝐿𝐿𝐶𝐶 and 𝐿𝐿𝐴𝐴 , respectively. In Eq. (1), 
(1 − 𝑝𝑝)𝐿𝐿𝑅𝑅 + 𝑝𝑝2𝐿𝐿𝐶𝐶 + 𝑝𝑝(1 − 𝑝𝑝)𝐿𝐿𝐴𝐴 represents the average space headway on sub-link 1. 

Similarly, we can derive the capacity of sub-link 2:   

where 𝑞𝑞𝑀𝑀2 is the capacity of sub-link 2; and ℎ𝐼𝐼 is the critical time headway corresponding 
to 𝐿𝐿𝐼𝐼 . 

Without loss of generality, the link travel time is assumed to follow the Bureau of Public 
Roads (BPR) function, so the travel times of the two sub-links can be estimated as follows: 
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where 𝑣𝑣0, 𝑥𝑥𝐴𝐴 , 𝑥𝑥𝑅𝑅 are respectively the free-flow speed, traffic flows of CAVs and RVs, 
which are the same for both sub-links; and 𝛼𝛼 and 𝛽𝛽 are positive coefficients. 

Accordingly, the travel time of the whole link can be easily derived as follows: 

where 𝑥𝑥 = 𝑥𝑥𝐴𝐴 + 𝑥𝑥𝑅𝑅 and 𝑝𝑝 = 𝑥𝑥𝐴𝐴 𝑥𝑥⁄ . Note that this travel time function is non-monotone 
and asymmetric. 

2.2.2 Impact on the network efficiency 

As mentioned in the above subsection, the presence of roadside units will impact the link 
capacity and travel time, and can thus potentially change the route choice of travelers of 
using a RV or CAV, yielding a different traffic flow distribution across the network. To 
capture such an effect, a network equilibrium model is presented in this subsection. 

Let 𝑄𝑄(𝑁𝑁, 𝐴𝐴) denote a general transportation network, where 𝑁𝑁 and 𝐴𝐴 are sets of nodes 
and links, respectively. The set of origin-destination (O-D) pairs is denoted by 𝑊𝑊 . Let 
𝑀𝑀 = {1,2} denote the set of classes, where class 1 corresponds to RVs and class 2 
corresponds to CAVs. Let ∆ be the node-link incidence matrix, and 𝑬𝑬𝑤𝑤,𝑚𝑚 be a vector 
where 𝑤𝑤 ∈ 𝑊𝑊 and 𝑚𝑚 ∈ 𝑀𝑀. The vector has two non-zero components: one has a value of 
1 corresponding to the origin of 𝑤𝑤 and the other has a value of -1 corresponding to the 
destination of 𝑤𝑤. 𝑥𝑥𝑎𝑎

𝑤𝑤,𝑚𝑚 is the link flow of class 𝑚𝑚 ∈ 𝑀𝑀 between O-D pair 𝑤𝑤 ∈ 𝑊𝑊 on link 
𝑎𝑎, and 𝑡𝑡𝑎𝑎 (⋅) is the link travel time function defined by Equation (5). 

At equilibrium, all utilized paths of the same travel mode between the same O-D pair 
share the same travel cost, while those unutilized ones possess equal or higher travel cost. 
Mathematically, the multiclass network equilibrium conditions can be written as follows:   
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where 𝝆𝝆 are auxiliary variables. 

Define 𝛀𝛀 = {𝒙𝒙|(6), (7)} . the above equilibrium conditions (6)-(9) are equivalent to 
finding 𝒙𝒙∗ ∈ 𝛀𝛀 that solves the following variational inequality (VI) problem (NE-VI):   

The equivalence is trivial to establish by comparing the optimality condition of NE-VI 
with the equilibrium conditions. The NE-VI has the following two properties: 1) There 
exists at least one solution. The feasible region of NE-VI is compact and convex, and all 
the functions are continuous. Therefore, the NE-VI problem has at least one solution as 
per Weierstrass’ theorem (Bazaraa et al., 2013). 2) Due to the non-monotone link 
performance function, there may exist multiple equilibrium flow distribution, which is 
further illustrated by the following example. 

Consider a toy network with only one O-D pair connected by two parallel links, and 
suppose the demand of CAVs and RVs between the O-D pair are 10 and 4, respectively. 
Assume 𝐿𝐿/𝑣𝑣0=1 hour, 𝛼𝛼=1, 𝛽𝛽=1, ℎ𝑅𝑅 =1.5 s, ℎ𝐴𝐴 =1.5 s, ℎ𝐶𝐶 =0.6 s and ℎ𝐼𝐼 =1.1 s, and suppose 
the two links are deployed with the same number of roadside units (denoted by 𝑛𝑛 ). 
Therefore, the link performance function of the two links can be simplified as: 
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where 𝑥𝑥𝐴𝐴1 , 𝑥𝑥𝐴𝐴2 , 𝑥𝑥𝑅𝑅1 and 𝑥𝑥𝑅𝑅2 are the flows of CAVs and RVs on link 1 and link 2, 
respectively; and 𝑝𝑝1 = 𝑥𝑥𝐴𝐴1/(𝑥𝑥𝐴𝐴1 + 𝑥𝑥𝑅𝑅1) and 𝑝𝑝2 = 𝑥𝑥𝐴𝐴2/(𝑥𝑥𝐴𝐴2 + 𝑥𝑥𝑅𝑅2). 

Suppose 𝑛𝑛 = 0.5𝐿𝐿/𝐻𝐻, then it is easy to verify that (𝑥𝑥𝐴𝐴1, 𝑥𝑥𝑅𝑅1, 𝑥𝑥𝐴𝐴2, 𝑥𝑥𝑅𝑅2) = (10, 0, 0, 4) and 
(5, 2, 5, 2) are both equilibrium flow distribution with �̃�𝑡 1 = �̃�𝑡2 = 7, and �̃�𝑡 1 = �̃�𝑡2 = 9.575. 
Actually, there is an infinite number of equilibrium flow patterns. Figure 2.3 illustrates 
the total travel times corresponding to different equilibrium flow patterns, given different 
value of 𝑛𝑛. The horizontal axis is 𝑥𝑥𝐴𝐴1, representing the CAV flow on link 1, and vertical 
axis represents the total system travel time. As evident in Figure 2.3, each roadside-unit 
deployment plan may yield an infinite number of equilibrium flow patterns in this toy 
network. 

Figure 2.3: Total travel time of different equilibrium flow patterns 

2.3. Deployment Model and Solution Algorithm 

The non-uniqueness of the equilibrium flow distribution presents a challenge for conducting 
cost-benefit analysis for a specific deployment plan of roadside units. Planners have been 
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relying on the typically unique equilibrium flow distribution as the sole estimate or forecast 
of how traffic will react to changes in the transportation system. In contrast, our model 
produces a range of possible flow distributions corresponding to a deployment. To avoid 
overestimating the benefit, it is prudent to use the one with maximum total system travel time 
for cost-benefit analysis, as it yields the minimum savings. On the other hand, it is sensible to 
assume that the investment is well spent and thus consider an optimal deployment plan. These 
two points motivate us to develop a deployment model that provides a conservative estimate 
of the benefit brought by the roadside units while considering an optimal decision making 
process. 

2.3.1 Deployment model 

We develop an optimization model to determine a deployment plan whose worst-case 
system travel time (among all potential equilibrium flow distributions) is minimized. In 
the literature, some, e.g., Ban et al., (2009), refer to the solution to this type of models as 
a risk averse solution, while others, e.g., Lou et al. (2010), call it as a robust solution. The 
robust deployment (RD) model can be readily formulated as follows: 

The objective of the above RD model is to minimize the worst-case system travel time. 
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Specifically, the inner problem identifies the worst case with the maximum total travel 
time among all possible equilibrium solutions that satisfy conditions (6)-(9); while the 
outer problem determines a deployment plan to minimize the worst-case travel time with 
the budget constraint (11) and considering the integral nature of 𝒏𝒏, i.e., constraint (12). 
The difficulty of solving the RD model is that the inner constraints (8) and (9) are affected 
by the decision variable 𝒏𝒏 in the outer problem, which are coupled constraints. Moreover, 
the coupled constraints (8) and (9), together with constraint (7), constitute 
complementarity constraints, which make the above RD model very difficult to solve.  

2.3.2 Cutting-plane scheme 

Although previous studies have proposed a number of algorithms for solving the minimax 
problem, most of them deal with decoupled problems or coupled optimization with linear 
constraints (Shimizu and Aiyoshi, 1980; Stein, 2012; Zeng, 2015). In this study, we 
develop a heuristic procedure to solve the RD model based on a cutting-plane scheme, 
which has been used to solve semi-infinite optimization problem (Lawphongpanich and 
Hearn, 2004; Lou et al., 2010). The core idea is to solve a relaxed version of the original 
problem with a subset of feasible region, and then expand the subset until the optimal 
solution is achieved. 

The RD model belongs to the coupled robust optimization problem, which has the 
following generic structure: 

where the inner problem variable ξ is determined by outer problem variable 𝝍𝝍 due to the 
constraints 𝐺𝐺 (𝝍𝝍, 𝝃𝝃) = 0. Let’s assume at this moment that there is no joint constraints 
and the problem would have the following equivalent formulation: 

CRO: 
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Next, we consider to relax the CRO problem as follows: 

CRO-R: 

where 𝚽𝚽𝑘𝑘 is the subset of 𝚽𝚽 at the 𝑘𝑘 th iteration. Let 𝝍𝝍𝑘𝑘 denote the optimal solution to 
the CRO-R model, then the inner problem turns out to be: 

CIP: 

Solving CIP can generate an optimal solution, i.e., 𝝃𝝃𝑘𝑘+1 , to 𝑚𝑚𝑎𝑎𝑥𝑥 
𝝃𝝃∈𝚿𝚿 

𝑓𝑓 (𝝍𝝍𝑘𝑘 , 𝝃𝝃) corresponding 

to the current given decision in CRO-R, i.e., 𝝍𝝍𝑘𝑘 . If the current objective value 
𝑓𝑓 (𝝍𝝍𝑘𝑘 , 𝝃𝝃𝑘𝑘+1) ≤ 𝜃𝜃, then 𝝍𝝍𝑘𝑘 and 𝝃𝝃𝑘𝑘+1 are the optimal solution to the original CRO problem, 
as any action in the inner problem cannot worsen the outcome. Otherwise, extending 𝚽𝚽𝑘𝑘 

to 𝚽𝚽𝑘𝑘+1 by adding 𝝃𝝃𝑘𝑘+1 , and solving CRO-R based on 𝚽𝚽𝑘𝑘+1 to figure out a better 
solution 𝝍𝝍𝑘𝑘+1. Repeat the above process until the object value of the inner problem is no 
greater than the one of the outer problem, i.e., 𝜃𝜃. 

However, with the presence of the coupled constraint, as the feasible set of the decision 
variable 𝝃𝝃 in the inner problem is heavily affected by the value of 𝝍𝝍𝑘𝑘 via the coupled 
constraints, the above cutting-plane algorithm is not readily applicable. Our remedy is to 
utilize a penalty function to remove the coupled constraint and reformulate the CRO 
problem as follows: 

CRO-P: 



14 

where 𝑀𝑀 is a sufficiently-large positive constant. Thus, when ‖𝐺𝐺 (𝝍𝝍, 𝝃𝝃)‖2 ≠ 0 , the 
𝜑𝜑(𝝍𝝍, 𝝃𝝃) will be sufficiently small. Accordingly, the relaxation of CRO-P problem is: 

CRO-P-R: 

Consequently, the relaxed inner problem becomes: 

CIP-R: 

As a result, the cutting-plane scheme can be used for the CRO-P problem. Below lists the 
completed solution process: 

Step0: Initialization: 𝑘𝑘 = 1, 𝚽𝚽1={𝝃𝝃1}. 

Step1: Solve the CRO-P-R with 𝚽𝚽𝑘𝑘 and let (𝝍𝝍𝑘𝑘 , 𝜃𝜃 𝑘𝑘 ) denote the optimal solution. 

Step2: Solve the CIP-R with 𝝍𝝍𝑘𝑘 and let 𝝃𝝃𝑘𝑘+1 be the optimal solution. 

Step3: If 𝒇𝒇(𝝍𝝍𝑘𝑘 , 𝝃𝝃𝑘𝑘+1 ) ≤ 𝜃𝜃 𝑘𝑘 , then stop and 𝝍𝝍𝑘𝑘 is the optimal solution of the original CRO
problem; otherwise, set 𝚽𝚽𝑘𝑘+1 = 𝚽𝚽𝑘𝑘 ∪ {𝝃𝝃𝑘𝑘+1}, and go to Step 1. 

In the RD problem, constraints (8) and (9) are the coupled constraints. To apply the 
process, we can replace the former with the following: 
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Lastly, we note that, assuming that both 𝝍𝝍𝑘𝑘 and 𝝃𝝃𝑘𝑘 +1 globally solve CRO-P-R and CIP-
R at Step 1 and 2 respectively, if the above algorithm stops at some finite iteration, the 
process generates an optimal solution to the CRO-P problem. In our computational 
experiments, we did observe that the algorithm terminated in a finite number of steps. 
However, since it is difficult to ensure the global optimality for solving CRO-P-R and 
CIP-R problems, we do not claim that we can always find global optimal solutions. We 
essentially regard the above algorithm as heuristic. 

2.4 Case Studies 

In this section, two case studies are conducted to demonstrate the proposed models and 
solution algorithm. The primary objective of the first case study, based on a hypothetical nine-
node network (Wu et al., 2011) is to validate the proposed solution algorithm while the second 
one is conducted on the South Florida network to showcase how the model can be applied to 
a realistic network. For both networks, cost-benefit analyses are offered to quantify the 
benefit-cost ratio (BCR) of the deployment of roadside units. For parsimony, we replace 𝐵𝐵 /𝜋𝜋 
in Eq. (11) with D, representing the maximum number of roadside units that could be deployed 
on the whole network given the limited budget. The common parameter settings include 𝛼𝛼 = 
0.15, 𝛽𝛽 = 4, ℎ𝑅𝑅 = 1.5 s, ℎ𝐴𝐴 = 1.5 s ℎ𝐶𝐶 = 0.6 s and ℎ𝐼𝐼 = 1.1s (Milanés and Shladover, 2014; 
Milanés et al., 2014; Li et al., 2017). 

2.4.1 Nine-node network 

Tables 2.1 and 2.2 show the O-D demand and the network characteristic, respectively. 
Suppose the coverage length 𝐻𝐻 = 1 km, Table 2.3 compares the objective function value 
of the proposed algorithm with the one resulting from enumeration, which is feasible 
when 𝐷𝐷 is small and ensures global optimality. As we can see, the result gaps are both 0 
with 𝐷𝐷 equals 1 and 2, indicating that the proposed algorithm yields the global optimal 
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solution in these two cases. While 𝐷𝐷 becomes larger than 2, as the total number of 
possible deployment plans increases exponentially, we cannot enumerate all the plans to 
verify the global optimality of the solution. Figure 2.4 illustrates the convergence pattern 
of the proposed solution algorithm for 𝐷𝐷 = 10. The detailed optimal deployment plan 
and resultant flow distribution are presented in Table 2.4. Table 2.5 presents the 
comparison between the results corresponding to 𝐷𝐷 = 0 and 𝐷𝐷 = 10. It is evident that 
the travel times of the links deployed with roadside units, such as link 2-5, 5-7 and 9-8, 
can be reduced significantly. Correspondingly, the shortest path travel time for all the 
four O-D pairs decrease by 2.55% to 4.03%. Regarding the total system travel time, the 
optimal deployment plan can reduce it by 3.32%. More specifically, the total travel time 
of RVs and CAVs are both reduced by 3.32%. It implies that deploying roadside units 
can considerably benefit the system and both types of vehicles. 

Table 2.1: O-D demand for the nine-node network 

O-D RV CAV 

1-3 6 3 

1-4 12 6 

2-3 18 9 

2-4 24 12 

Table 2.2: The characteristics of the nine-node network 

Link Number 
of Lanes 

𝐿𝐿 

𝑣𝑣0 
(min) 𝐿𝐿 (km) 𝐼𝐼𝑎𝑎 Link Number 

of Lanes 
𝐿𝐿 

𝑣𝑣0 
(min) 𝐿𝐿 (km) 𝐼𝐼𝑎𝑎 

1-5 2 5.00 10 10 6-9 5 7.00 14 14 
1-6 3 6.00 12 12 9-7 4 4.00 8 8 
2-5 6 3.00 6 6 9-8 3 2.00 4 4 
2-6 6 9.00 18 18 7-3 4 3.00 6 6 
5-6 3 9.00 18 18 7-4 4 6.00 12 12 
5-7 2 2.00 4 4 7-8 3 2.00 4 4 
5-9 4 8.00 16 16 8-3 6 8.00 16 16 
6-5 2 4.00 8 8 8-4 6 6.00 12 12 
6-8 5 6.00 12 12 8-7 6 4.00 8 8 
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Table 2.3: Optimality gap of different value of D 
D 1 2 

Objective value of proposed algorithm 6766.80 6736.08 

Objective value by enumeration 6766.80 6736.08 
Gap 0.00 0.00 

Table 2.4: Equilibrium flow and travel time with D=10 
Link RV flow CAV flow Travel time (min) Deployment (na) 
1-5 6.85 3.31 16.58 0 
1-6 11.15 5.69 26.26 0 
2-5 23.79 10.91 13.99 2 
2-6 18.21 10.09 23.67 0 
5-6 3.94 2.84 9.68 0 
5-7 13.51 4.21 41.52 4 
5-9 13.19 7.16 25.82 0 
6-5 18.69 11.09 4.00 0 
6-8 14.61 7.54 30.11 0 
6-9 13.27 9.14 16.13 0 
9-7 14.53 5.56 15.71 0 
9-8 12.59 6.26 13.97 4 
7-3 14.19 7.09 8.09 0 
7-4 11.41 5.74 22.48 0 
7-8 21.81 10.91 2.00 0 
8-3 6.85 3.31 9.83 0 
8-4 11.15 5.69 24.21 0 
8-7 0.00 0.00 4.00 0 
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Figure 2.4 The iterative solution of proposed algorithm for nine-node network 
with D=10 

Table 2.5 Comparison between the results corresponding to D=0 and D=10 
Travel time D=0 D=10 Reduction 

1-3 68.30 66.20 -3.08% 
1-4 82.69 80.58 -2.55% 
2-3 66.28 63.61 -4.03% 
2-4 80.67 77.99 -3.32% 

Total travel time 6796.98 6571.33 -3.32% 

2.4.2 South Florida network 

In addition to the above small arbitrary network, the proposed roadside-unit deployment 
model is applied to a realistic network, i.e., the South Florida network. Specifically, it 
contains 82 nodes and 234 links, as shown in Figure 2.5. Demands of 12 O-D pairs are 
considered (see Table A1 in the appendix) and the network characteristics are given in 
Table A2 of the appendix. We first solve the R-RD problem with 𝐷𝐷 = 0 and assume those 
10 links with the largest flow to be candidates for the roadside-unit deployment. Then, 
the R-RD problem with 𝐷𝐷 = 10 and 𝐻𝐻 = 1 km is solved and the results are shown in 
Table 2.6. As we can observe, compared with 𝐷𝐷 = 0, the optimal deployment of 10 
roadside units can yield a 4.07% reduction on the total travel time, from 264,825.24 to 
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254,034.47. In particular, under the optimal deployment plan, all of the roadside units are 
deployed on link 64-63. It may imply that the concentrated deployment of roadside units 
could yield better outcome. Given such a concentrated deployment plan, the shortest path 
travel time of all O-D pairs with node 64 as origin have been reduced substantially (see 
Table 2.6). 

Table 2.6: Result of deployment for the South Florida network 
Path time D=0 D=10 

1-22 135.52 135.52 
1-28 272.07 272.07 
1-64 277.75 277.75 
22-1 146.11 146.11 
22-28 139.60 139.60 
22-64 208.93 208.93 
28-1 282.07 282.07 
28-22 139.47 139.47 
28-64 329.45 329.45 
64-1 317.08 280.75 
64-22 239.03 202.70 
64-28 359.72 323.39 

Total travel time 264,825.24 254,034.47 
Reduction -4.07% 

Deployment plan 10 units on link 64-63 

2.4.3 Cost-benefit analysis 

The cost-benefit analysis is conducted for both nine-node and South Florida networks to 
answer the question of whether the benefit of deploying roadside units can justify its 
cost. To this end, we adopt the following parameter settings for the nominal case: (1) 
value of time (VOT) for RV and CAV: $0.5/min; (2) capital cost of roadside-unit 
deployment: $12,500/unit; (3) operating and maintenance cost: $3,000/unit/year; (4) 
lifetime: 10 year; (5) discount rate: 3% /year; (6) 𝐷𝐷 = 10. The volume of peak hour is 
assumed to account for 10% of average daily volume. Based on the equilibrium network 
flow distributions on the nine-node and South Florida networks before and after the 
deployment of roadside units, and the above settings, the BCRs are calculated in Table 
2.7. Specifically, the bold texts in the table represent the BCRs for the nominal case. As 
we can see, the BCRs on the nine-node and South Florida networks are 9.31 and 
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445.27, respectively. They are much higher than 1, indicating that the benefit of 
deploying roadside units is far more than its investment cost. Given that the costs for 
deploying, operating, and maintaining the roadside units are subject to uncertainty, a 
sensitivity analysis of the unit investment cost is presented in Table 2.7. We can observe 
that, although the BCRs will decrease with the increase in the investment cost of 
roadside units, they are still far larger than 1. 

Similarly, as the roadside-unit coverage length (i.e., 𝐻𝐻) may vary as the technology 
advances, Table 2.7 also provides its sensitivity analysis on the BCR (see the 4th row). 
As expected, when the coverage length increases, the BCRs increase for both networks. 
Also, they are all much higher than 1. 

Without concentrating on driving the vehicles, CAV travelers can engage on other 
activities, so their VOTs are expected to be lower than that of RV drivers. In view of 
this, another sensitivity analysis is conducted in Table 2.7 to investigate how the change 
of CAV travelers’ VOT will affect the BCRs (see the 6th row). As we can see, when the 
value of VOT increases, the BCR will increase. The increasing VOT will not affect the 
flow distribution of CAVs or RVs but yield an increase in the value of travel time 
savings. Similar to roadside unit costs, the BCRs corresponding to various CAV 
travelers’ VOT are all far greater than 1. All these results show that the benefit brought 
by the deployment of roadside units may far outweigh their investment costs. 

Table 2.7: Sensitivity Analysis of Roadside-Unit Investment Costs, Coverage 
Length 𝑯𝑯 and VOT of CAV Users on the BCR 
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3. Modelling and managing the integrated morning-evening commuting and parking patterns 
under the fully automated vehicle environment. 

3.1 Backgrounds 

Emerging technologies in communication and robotics have given rise to the prospect of AVs, 
which lead us to a new version of future transportation (Burns, 2013). Most major car 
manufacturers are racing to develop fully automated vehicles, and in the meantime, large 
metropolitan planning organizations are in the process of preparing for future automated 
transportation (Guerra, 2016). The advancements in AV technology will revolutionize 
motoring, aiming to reduce accident frequency, avert fatal crashes, achieve savings in travel 
time, relieve traffic congestion, increase fuel efficiency and improve transport accessibility. 
Since AVs can drive themselves on streets and automatically navigate multiple types of traffic 
environment contexts, direct human inputs may be no longer needed to complete daily trips. 
This means that former drivers are allowed to engage in other activities (e.g., studying or 
working) when driving, and such a dramatic transformation not only increases the utility of 
individual commutes, but also provides essential mobility to vulnerable groups, such as the 
disabled or elderly. 

In addition to the abovementioned benefits, AVs may serve as a critical solution to parking-
related problems, particularly for city centres where the level of human activity is high. In 
central business districts (CBDs) of cities, the space available for parking purposes is limited 
and costly, while a great deal of parking demand is generated by commuters every day (Van 
Ommeren et al., 2012). These traffic-related externalities impose a huge cost and 
inconvenience to commuters (Inci, 2015). Specifically, in a non-AV environment, travelers 
have to drive their cars to find a vacant parking space and walk from the parking location to 
the workplace in the morning, and then walk back to the parking location after work. In this 
process, commuters would worry about the arrival time to the workplace, given that finding a 
vacant parking space and walking to the workplace are both time-consuming in many cases. 
To resolve these issues, a large number of studies have been conducted, particularly in the 
areas of cruising for parking (Arnott and Inci, 2006; Inci and Lindsey, 2015; Liu and 
Geroliminis, 2016), parking reservation or permit schemes (Zhang et al., 2011; Yang et al., 
2013; Liu et al., 2014; Chen et al., 2015), and parking pricing (Arnott et al., 1991; Qian et al, 
2011; Qian et al, 2012; Qian and Rajagopal, 2014; He et al., 2015; Xiao et al., 2016; Ma and 
Zhang, 2017; Nourinejad and Roorda, 2017). However, all of these parking-related studies 
propose approaches for non-AV transportation systems, wherein AVs are not taken into 
account. With traditional vehicles, the limited land use for parking at CBDs and the walking 
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of commuters are two of the major concerns (e.g., Arnott et al., 1991). By contrast, in the 
context of AVs: (i) AVs can drop off commuters at the workplace and find a parking spot via 
self-driving, commuters no longer waste time on searching for parking; (ii) since AVs can 
drop off commuters at the workplace before finding a parking spot via self-driving, the parking 
location is not necessarily close to the city centre, resulting in reductions in social parking 
costs; (iii) the time spent in walking between the parking lot and the workplace can be 
completely eliminated. The above three behavior patterns may arise given the drastic 
development of communication technology and the aforementioned benefits of AVs. Indeed, 
it is predicted that owning a smart automated vehicle will become the norm for customers by 
the 2050s (Litman, 2018). We anticipate that the era of fully automated transportation will 
come up in the foreseeable future. 

Although there is a surge of academic studies related to AVs (Duell et al., 2016; Krueger et 
al., 2016; Sparrow and Howard, 2017), few research efforts have been made to analytically 
investigate and identify the commuting and parking behaviour in the era of AVs, as well as 
the corresponding traffic efficiency and planning policy. Recently, under Vickrey’s single-
bottleneck setting, van den Berg and Verhoef (2016) and Lamotte et al. (2017) examined the 
commuting equilibrium with automated vehicles and incorporated the reduced value of time 
(for AVs) and/or improved road capacity from driver-less cars. Liu (2018) modelled the joint 
equilibrium of departure time and parking location choices when commuters travel with AVs 
in the morning. This study extends the literature by integrating the morning and evening 
commutes and exploring how AVs would reshape the integrated morning-evening commute. 
This is important and necessary since behaviours of AVs are significantly different from non-
AVs during daily trips including both the morning and evening commutes. More importantly, 
morning and evening commutes are often correlated, e.g., where one parks in the morning 
would affect how one leaves in the evening, and the two commutes are not symmetric (e.g., 
Zhang et al., 2005; Zhang et al., 2008; Gonzales and Daganzo, 2013). In this context, the aims 
of this study are to answer the following two critical questions: (i) what are the key features 
of commuters’ commuting and parking patterns when the daily travel process is considered in 
a fully automated environment? (ii) what are the optimal pricing and facility planning  
strategies (e.g., tolling, parking supply) to improve AV transport system efficiency? 

To answer these questions, this study adopts a linear city modelling framework to analyze the 
AV-oriented commuting equilibrium, wherein the residential area and the city business centre 
are connected by a highway corridor (Arnott et al. 1991, Zhang et al., 2008, Li and Huang, 
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2017). The bottleneck model is adopted to capture traffic dynamics.1 As compared to the non-
AV case, the time of walking between the workplace and the parking lot will be eliminated 
and walking will be replaced by AVs’ self-driving (Liu, 2018). Also, AVs will drop off 
commuters in the morning and can pick up commuters in the evening. These behavior changes 
will lead to the major changes in the commuting equilibrium when compared to the non-AV 
situation in Zhang et al. (2008). In addition, a feasible parking lot can be located far away 
from the workplace for AVs, while this will yield an unacceptable walking distance under 
non-AV environment. 

It is noteworthy that the formulation of morning commute has accumulated a vaster literature 
than that of evening commute (De Palma and Arnott, 2012; Li and Huang, 2017). This is 
because of the assumption that the evening commuting trip is matched by a symmetric reverse 
process of the morning trip. However, the distinctions between the morning and evening 
traffic patterns have been highlighted in the relevant references, particularly in terms of 
departure/arrival patterns (De Palma and Lindsey, 2002; Zhang et al., 2008). In this study, we 
analyze bottleneck-constrained morning and evening commutes with AVs. Compared to the 
bottleneck model of non-AV trips, the location of the active bottleneck with congestion can 
be different for AV daily trips. Specifically, for AV commutes, the active bottleneck is on the 
way from home to the workplace in the morning but might be on the way from the parking 
location to the workplace during AVs’ self-driving in the evening (rather than from workplace 
to home). Compared with a recent study on morning commute under AV environment by Liu 
(2018), this study further looks into the integrated morning-evening commuting problem and 
provides a more thorough and complete investigation of day-long commutes and planning 
policies for future automated transportation. 

The remainder of this chapter is organized as follows. Section 3.2 and Section 3.3 analyze the 
morning-evening commute equilibrium under AV environment, where Section 3.2 formulates 
the equilibrium model for evening commutes given the parking locations of AVs resulting 
from the morning commute and Section 3.3 incorporates the obtained evening commute 
equilibrium from Section 3.2 into the user-equilibrium analysis considering daily travel costs. 
In Section 3.4, we analyze the AV traffic pattern at system optimum, and develop the time-
dependent tolling schemes. In Section 3.5, we investigate the optimal AV parking supply 

1 Dynamic equilibrium analysis has received considerable theoretical attention over the past 50 years. The bottleneck 

model was initially proposed by Vickrey (1969), followed by numerous extensions (Lindsey, 2004; Li et al., 2017)). 

For recent comprehensive reviews, one can refer to Li et al. (2014) and Small (2015). 
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strategy under either user equilibrium or system optimum traffic patterns. Numerical results 
are presented in Section 3.6. 

3.2 Equilibrium Analysis on Evening Commute with AVs 

In this section, we analyze the equilibrium dynamic traffic pattern with regards to the time of 
departure from AV parking spots for evening commutes, given that parking locations have 
already been determined in the morning. At equilibrium, no commuter can further reduce the 
individual travel cost by changing his or her own AV departure time after work provided that 
all the others’ departure times are given. The mathematical notations used throughout this 
study are summarised in Appendix B-1, unless otherwise specified. 

The linear city network for morning-evening commute is described in Figure 3.1. We consider 
that along the linear corridor there exist two bottlenecks: one is on the way from the residential 
area to the workplace, which is termed as “inbound bottleneck”; the other one is on the way 
from the workplace to home, which is termed as “outbound bottleneck”. Parking is located 
between the bottlenecks and home along the traffic corridor. We assume that AVs are owned 
privately by individual commuters (shared AV mobility systems are not considered here). 
Each AV will need a parking space along the corridor. We also assume that the capacities of 
the two bottlenecks are identical, which reduces the burden of tedious algebra due to 
asymmetric capacity. 

As depicted in Figure 3.1, the travelling process of evening commute follows the procedure: 
Depart from parking spots → Pass the parking area (AV self-driving) → Pass the inbound 
bottleneck (AV self-driving) → Pick up commuters at the workplace → Pass the outbound 
bottleneck → Return back home. The “flow direction for morning commute” is also indicated 
in Figure 3.1, which will be discussed in Section 3.1. As a first step to examine the evening 
commute with AVs, it is assumed that during the pick-up process at the workplace, only short-
term waiting is allowed at the city centre (i.e., only very short-term parking will be provided 
for AVs to pick up travelers) and tactical waiting of AVs is not allowed since it will be 
wasteful.2 The pick-up time duration or waiting time is constant, which is assumed to be zero. 

2 Since AVs can drive themselves, some AVs may depart from parking much in advance and wait at the pick-up 

location for commuters (start to wait much earlier than the work closure time in order to pick up the commuter 

at the earliest time) if parking is allowed at the pick-up locations. This is similar to the tactical waiting or braking 

model in the literature (Lindsey et al., 2012; Xiao et al., 2012) for step tolls. Future study will incorporate the 

tactical waiting behaviors of AVs and quantify potential efficiency loss due to this type of waiting. However, 
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In this context, one can derive that in the evening commute, only the inbound bottleneck is 
activated. This is explained as follows. The AV traffic is firstly governed by the inbound 
bottleneck when AVs run from the parking lot to the workplace by self-driving, i.e., arrival 
rate to the city centre to pick up commuters is less than or equal to capacity 𝑠𝑠. This means that 
the departure rate from the city centre or the arrival rate to the outbound bottleneck is less than 
or equal to the bottleneck capacity 𝑠𝑠. Therefore, the outbound bottleneck from the workplace 
to home will not be activated. Congestion will not occur when commuters travel from the 
workplace to home in the evening.3 

Figure 3.1 The linear city network for morning-evening commutes 

For the evening commute, some travelers might choose to leave their office immediately after 
the work closure time and wait for their AVs to come to the city centre. We assume that the 

AVs’ waiting for commuters will be different from those tactical waiting to avoid toll (or avoid a higher toll) in 

the literature. 
3 In this study, the capacities of the inbound and outbound bottleneck are assumed to be identical, which is to 

avoid tedious algebra for identifying variations in equilibrium flow patterns due to asymmetric capacity. 

However, if asymmetric bottleneck capacities are incorporated, a tandem bottleneck approach similar to 

Kuwahara (1990) can be adopted. For example, if the inbound capacity is greater than the outbound capacity, 

queuing can arise at both the inbound and outbound bottlenecks, i.e., home to work and work to parking trips in 

the morning; parking to work and work to home in the evening commute. We then have to formulate two queues 

in the travel cost formulations in Eq. (1) for evening commute and later in Eq. (12) for morning commute. 
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cost of waiting out of the office building for a unit time is greater than the penalty cost for a 
unit time of late departure from the workplace. Under this assumption, everyone would wait 
in the office until their AVs arrive at the workplace and pick them up. Below we further 
summarise the main model assumptions (some are already mentioned and please refer to 
Appendix B-1 for the notations): 

(i) The service capacities of the inbound and outbound bottlenecks in Figure 3.1 are identical.   
(ii) For each AV, the parking location 𝑥𝑥 remains the same throughout the day. The use of AVs 
for other trip purposes during the day is not considered in this study.   
(iii) The parking density (i.e. number of available parking spaces per unit distance) along the 
linear traffic corridor is constant, i.e. 𝑚𝑚(𝑥𝑥) = 𝑚𝑚. This allows analytical tractability. Note that 
a parking density of 𝑚𝑚 = 0.50 (space per meter) means that on average for each 2-meter along 
the corridor there will be one parking space. Note that the parking density 𝑚𝑚 at a location can 
be very large if a multi-story parking facility is considered. 
(iv) All parking spots are off-street, so that the parking density has no impacts on the 
bottleneck’s capacity. 
(v) No parking spot is available at the workplace (only short-term parking for pick-up); No 
employer-provided parking or underground parking around the city centre is considered. 
(vi) Early departure from the workplace is prohibited by employers. AVs’ waiting at the city 
centre are not allowed due to Assumption (v). This means that all AVs will arrive at the 
workplace no earlier than the official work closure time in the evening.4 

(vii) For early arrivals in the morning, the marginal savings in the early schedule delay cost 
by delaying a unit of time is greater than the marginal increase in the total cost of self-driving 
AV to find a parking spot in the morning and depart from the parking spot to pick up 

commuters in the evening, i.e. 𝛽𝛽1 > 2𝜆𝜆𝑤𝑤𝜆𝜆 

𝑚𝑚
. This assumption is similar to that in Liu (2018) to 

ensure that congestion exists. 
(viii) The headway of vehicles in motion is greater than the headway of parked vehicles in 

4 If early departure from work is allowed, due to the self-driving capability of AVs, AVs may pick up commuters 

earlier than the work closure time. This will create further complexity in modelling the integrated morning and 

evening commuting patterns. For simplicity and tractability, in this study, we assume that early departure from 

work is not allowed. A future study may allow early departure from work and more critically integrate this setting 

with tactical waiting of AVs discussed in footnote 2. 
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consideration of safe driving (Vogel, 2013), wherein the former can be calculated as 1
𝜆𝜆 
, and 

the latter as 𝑤𝑤 

𝑚𝑚 
, i.e. we have 1 

𝜆𝜆 
> 𝑤𝑤 

𝑚𝑚
. 

(ix) Commuters are homogeneous, and have the same official work start and closure time. 
Their schedule penalties for morning and evening satisfy the following conditions: a) 𝛾𝛾1 > 
𝛼𝛼1 > 𝛽𝛽1 and 𝛼𝛼1 > 𝜆𝜆, which are consistent with most empirical evidence in the literature; b) 
𝛾𝛾1, 𝛾𝛾2 > 𝜆𝜆, which means that the schedule delay penalty is more costly than the AV self-
driving time; c) 𝛾𝛾1 > 2𝛾𝛾2, which considers that late arrival to the workplace in the morning 
could cause a much greater loss to the company/employer than late departure from work in 
the evening. 
(x) The cost for constant free-flow travel between home and the workplace and the cost for 
traversing the segment between 𝑥𝑥 = 0 and 𝑥𝑥 = 𝑥𝑥0 without delay are assumed to be zero, 
considering that these two types of costs are the same to every commuter. 
We now can formulate the individual travel cost for evening commuting, denoted as 𝑐𝑐2(𝑡𝑡2, 𝑥𝑥) 
(the subscript ‘2’ is used to indicate ‘evening commute’). For the commuter whose AV is 
parked at the location 𝑥𝑥 and departs from the parking spot at time 𝑡𝑡2, the travel cost is 

where 𝜆𝜆 is the cost for a unit-time of AV self-driving; 𝑤𝑤 is the travel time spent in traversing 
a unit distance via AV self-driving without bottleneck congestion; and 𝑞𝑞2 represents the 
queuing length experienced in the evening. From the right-hand side, the first term is the travel 
cost of traversing the parking area. The second term is the cost of queuing delay. The third 
term represents the penalty cost of late departure from the workplace. Note that it is not 
necessary to write down the queuing time at the outbound bottleneck since it will be zero. 
We then can derive the first derivative of the individual travel cost with regards to the 
departure time 𝑡𝑡2 as follows 

The departure from the parking spot in the evening can be further divided into two stages, 
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which is analysed below (related to the first derivative of 𝑐𝑐2 (𝑡𝑡2 , 𝑥𝑥 )). 

Stage 1: 

At the very beginning of the evening commute,  𝑑𝑑𝑑𝑑2(𝑡𝑡 2) 
𝑑𝑑𝑡𝑡2

≥ 0 holds due to nonnegativity of the 

queue length, which results in the relationship 𝜕𝜕𝑐𝑐2(𝑡𝑡2,𝑥𝑥 ) 
𝜕𝜕𝑡𝑡 2

> 0. This means that a postponed 

departure would cause an increase in individual travel cost with a larger queuing delay at the 
bottleneck. Some AVs will depart from their parking spots as early as possible to pick up 
commuters. However, AVs cannot arrive at the workplace earlier than 𝑡𝑡2∗ since waiting at the 
city centre is not allowed. Hence, some AVs will arrive at the inbound bottleneck immediately 
after 𝑡𝑡2∗ at equilibrium. However, the arrival rate of these AVs at the city centre will be 
constrained by the inbound bottleneck. These AVs will form a mass queue at the inbound 
bottleneck. We assume that AVs parked closer to the city centre will be in an advantageous 
position and they are in front of AVs parked further away in the pick-up process. This means 
that for two AVs parked at 𝑥𝑥1 and 𝑥𝑥2 , with 𝑥𝑥1 < 𝑥𝑥2 , if they arrive at the inbound bottleneck 
at the same time (which means that the AV parked further away must depart from the parking 
spot earlier under this circumstance), the AV parked at 𝑥𝑥1 will be in front of the AV parked at 
𝑥𝑥2 . Under this assumption, one can verify that only those parked relatively close will arrive at 
the bottleneck at 𝑡𝑡2∗ in order to pick up commuters. The order of AVs in the mass queue is 
determined by the parking locations of the AVs. Those AVs with a relatively far away parking 
location cannot compete to pick up commuters as early as 𝑡𝑡2∗ ,  since they will be in 
disadvantageous position (in the end of the queue with a long queuing time) even if they arrive 
at the city centre or inbound bottleneck at the same time. For those AVs arriving at the inbound 
bottleneck at time 𝑡𝑡2∗ , one can verify that a delayed departure from parking (as well as arrival 
at the inbound bottleneck) will increase individual travel cost, and an earlier departure 
(resulting in arriving earlier than 𝑡𝑡2∗ ) is prohibited. 

In particular, the arrival rate to the inbound bottleneck in the evening commute is denoted as 
𝑟𝑟2 , where a further subscript (1 or 2) is added to reflect the stage. At stage 1, for AVs parked 
relatively close to the workplace, we denote the range of their parking location as , 
where   represents the location of the AV that is the furthest away from the workplace 
among all the AVs arriving at the bottleneck at time 𝑡𝑡2∗ in the evening. Since AVs can depart 
the parking earlier than 𝑡𝑡2∗ , as mentioned in the above, they will try to pick up commuters at 
𝑡𝑡2∗ . However, during the pick-up process, arrival rate to the city centre will be constrained by 
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the inbound bottleneck (to arrive at the city centre), while arrival rate to the bottleneck at time 
𝑡𝑡2∗ denoted as 𝑟𝑟2,1 will approach infinity (i.e., a queue will form quickly once the evening peak 
begins at the inbound bottleneck). This is different from the literature where commuters have 
to walk. Based on our assumption that AVs parked closer to the city centre will be in an 
advantageous position, after reaching the bottleneck at 𝑡𝑡2∗ , the queueing length experienced by 
the AV parked at the location 𝑥𝑥 is 𝑚𝑚(𝑥𝑥 − 𝑥𝑥0 ). One can verify that none of the AVs parked 
within   can further reduce the individual evening travel cost by unilaterally arriving 
earlier/later than 𝑡𝑡2∗ at the inbound bottleneck (i.e., arriving earlier than 𝑡𝑡2∗ is not allowed and 
arriving later will increase cost).5 

Stage 2: 
AVs that are parked far from the workplaces, due to a disadvantageous parking location, 
would wait at the parking place to avoid the long queue. For these commuters, the equilibrium 
queue length will decrease over time (a trade-off between queueing delay cost and schedule 
delay cost), 
𝜕𝜕𝑐𝑐2(𝑡𝑡 2,𝑥𝑥 ) 

𝜕𝜕𝑡𝑡 2 
= 0 => 𝛾𝛾2 + 𝜆𝜆 +𝛾𝛾2 

𝜆𝜆 
∙ 𝑑𝑑𝑑𝑑2(𝑡𝑡 2 ) 

𝑑𝑑𝑡𝑡 
= 0 => 𝑑𝑑𝑑𝑑2 (𝑡𝑡 2) 

𝑑𝑑 𝑡𝑡 2 
= − 

𝛾𝛾2 ∙𝜆𝜆 

𝜆𝜆+𝛾𝛾2 
. (3) 

We denote the arrival rate to the inbound bottleneck (for pick-up) for the AVs parking far 

from the workplace as 𝑟𝑟2,2 . Since 𝑟𝑟2,2 − 𝑠𝑠 = 𝑑𝑑𝑑𝑑2(𝑡𝑡 2) 
𝑑𝑑𝑡𝑡2

,  we have an arrival rate less than 𝑠𝑠 , i.e., 

𝑟𝑟2,2 = 𝜆𝜆 

𝜆𝜆 +𝛾𝛾2 
∙ 𝑠𝑠 . (4) 

In summary, we have following results. For AVs with a parking location , they arrive 
at the inbound bottleneck immediately after 𝑡𝑡2∗ (departure times from parking will be different 
for AVs); Otherwise, they depart from the parking space to produce an arrival rate to the 

inbound bottleneck equal to 𝑟𝑟2,2 = 𝜆𝜆 

𝜆𝜆 +𝛾𝛾2 
∙ 𝑠𝑠 . With the above results in mind and based on 

equilibrium condition and flow conservation constraint, we can determine the individual travel 
cost for the evening commute as follows. For , we have 𝑡𝑡2 = 𝑡𝑡2∗ − 𝑤𝑤 (𝑥𝑥 − 𝑥𝑥0 ), and  

5 If AVs parked closer to the city centre will NOT be in an advantageous position during the evening pick-up 
process, all AVs arriving at the city centre at the same time may form a mass queue with a random order, which 
is similar to that in Arnott et al. (1990) for step tolling. An expected cost for AVs in the mass similar to Arnott 
et al. (1990) might be utilized to model this case. This deserves a future study, and if possible, should be examined 
and compared to the case with tactical waiting or braking for AVs (just like Lindsey et al. (2012) did for the step 
tolling problem). 
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𝑞𝑞2 (𝑡𝑡2 ) = 𝑚𝑚(𝑥𝑥 − 𝑥𝑥0 ), and 

𝑐𝑐2 (𝑡𝑡2 , 𝑥𝑥 ) = 𝜆𝜆𝑤𝑤 (𝑥𝑥 − 𝑥𝑥0 ) + (𝜆𝜆 + 𝛾𝛾2 ) 𝑚𝑚 (𝑥𝑥 −𝑥𝑥0) 
𝜆𝜆 

; (5) 

It can be easily verified that when , the cost in Eq. (5) is equal to the cost in Eq. (6). It 
is obvious that in 𝑐𝑐2 (𝑡𝑡2 , 𝑥𝑥 ), the first part is related to the self-driving from parking to the 
inbound bottleneck, and the second part is a cost governed by the trade-off between queuing 
delay and scheduling delay. Eq. (5) and Eq. (6) also indicate that the parking location has non-
trivial impacts on the equilibrium travel cost for evening commute. This highlights the 
importance of integrating morning and evening commutes in the analysis. More specifically, 
it can be seen that when , the parking location has impacts on queuing delay costs, 
penalty costs for late departure commuters, and cost of AV-self driving to leave the parking 
area. By contrast, if , at equilibrium, the parking location can only influence the time 
spent in traversing the parking area by AV self-driving, but cannot make any difference to the 
sum of the queuing delay cost and the schedule delay cost. Therefore, AVs of these commuters 
do not necessarily depart strictly in the order that the AVs are parked. Their departure times 
(from parking) only need to produce an arrival curve 𝑄𝑄𝑄𝑄 in Figure 3.2. The above analysis is 
similar to Zhang et al. (2008) with non-AVs in the sense that there is a critical parking location 

for the evening commute. However, the behaviour patterns of AVs are significantly 
different from the behaviour patterns of non-AVs. 
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Figure 3.2 Equilibrium traffic flow pattern for evening commute 

In Figure 3.2, the area of the triangle 𝑃𝑃𝑄𝑄𝑄𝑄 represents the total time delay at the bottleneck. 
Then, the total cost of queuing delay experienced by AV self-driving, 𝑇𝑇 𝑄𝑄2 (𝐴𝐴𝐴𝐴), can be 
calculated as follows 

𝑇𝑇 𝑄𝑄2 (𝐴𝐴𝐴𝐴 ) = 0.5 
𝛾𝛾2 𝜆𝜆 𝑁𝑁 2 

𝜆𝜆 (𝜆𝜆+𝛾𝛾2 )
. (8) 

In addition, the total cost for departing from the parking space and leaving the parking area 
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by AV self-driving is 

𝑇𝑇 𝑃𝑃2 (𝐴𝐴𝐴𝐴 ) = 0.5𝜆𝜆𝑤𝑤 
𝑁𝑁 2 

𝑚𝑚 
. (9) 

In Figure 3.2, the area of the triangle 𝑃𝑃𝑃𝑃𝑄𝑄 represents the total time that is to be penalised for 
late departure from the workplace. Then, the total schedule delay cost for late departure, 𝑇𝑇𝑇𝑇2 , 
can be calculated as follows: 

𝑇𝑇𝑇𝑇2 = 0.5𝛾𝛾2 
𝑁𝑁 2 

𝜆𝜆 
. (10) 

The total evening travel cost at equilibrium then can be expressed as follows: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 = 𝑇𝑇 𝑄𝑄2 (𝐴𝐴𝐴𝐴 ) + 𝑇𝑇 𝑃𝑃2 (𝐴𝐴𝐴𝐴 ) + 𝑇𝑇𝑇𝑇2 = 0.5 
𝛾𝛾2 𝜆𝜆𝑁𝑁 2 

𝜆𝜆 (𝜆𝜆+𝛾𝛾2) + 0.5𝜆𝜆𝑤𝑤 
𝑁𝑁 2 

𝑚𝑚 
+ 0.5𝛾𝛾2 

𝑁𝑁 2 

𝜆𝜆 
. (11) 

Note that if people were allowed to depart for home before 𝑡𝑡2∗ with the penalty for early 
departure applied, the equilibrium flow pattern would change, as well as the equilibrium cost. 
Specifically, if the traffic pattern for on-time and late departures still follow Figure 3.2, the 
equilibrium cost is expected to decrease since departure times of commuters will be more 
concentrated around 𝑡𝑡2∗ , i.e., a proportion of AVs might choose early departure from work at 
equilibrium. 

3.3. Equilibrium Analysis on Integrated Morning-Evening Commute under AV Environment 

As discussed in Section 3.2, the parking location of AVs indeed can affect the departure time 
decision and travel cost of commuters in the evening commute. The parking location also 
affects commuters’ cost in the morning. For example, a closer parking to the city centre means 
a less AV self-driving time cost. In this section, we investigate the joint user-equilibrium in 
terms of departure time from home and choice of AV parking locations for the morning 
commute, considering the daily travel cost (the costs of the morning and evening commutes 
are both included). At user equilibrium, each commuter has the same individual daily travel 
cost, and no one can reduce his or her own travel cost by unilaterally adjusting the departure 
time and/or the parking location. Section 3.1 formulates the individual daily travel cost for the 
integrated morning-evening commute. Section 3.2 conducts analysis on the user-equilibrium 
traffic pattern considering the daily travel cost with regards to the departure time and the 
parking location in the morning commute. 

3.3.1 Individual daily travel cost for AV commute 

We first discuss the travel process for morning commute with AVs, which follows the 
procedure as depicted in Figure 3.1: Depart from home → Pass the inbound bottleneck 
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→ Arrive at the workplace and drop off commuters → Pass the outbound bottleneck (AV 
self-driving) → Find an appropriate parking spot (AV self-driving). In the morning 
commute, the traffic is governed by the first bottleneck encountered during the travel 
process, i.e., the inbound bottleneck. This means that after the AVs pass the inbound 
bottleneck and drop off the commuters, the traffic rate is less than or equal to the outbound 
bottleneck capacity, and there is no congestion at the outbound bottleneck. It can be seen 
that the processes for morning commute and evening commute are not simple mirror 
symmetries. Particularly, in the morning, traffic congestion occurs at the inbound 
bottleneck when travelers are driving their AVs, while in the evening, the congestion 
happens when AVs drive themselves from the parking lot to the workplace. Also, the 
outbound bottleneck is used for two types of trips: by empty AVs in the morning to access 
parking after dropping people off at work, and by occupied AVs in the evening to take 
people from the workplace to home. Based on the above analysis, yet the outbound 
bottleneck is never congested. However, if parking at the city centre is allowed, this could 
shift the road capacity constraint from the inbound bottleneck to the outbound bottleneck, 
or cause both bottlenecks to become active (depending on the number of parking at 
different locations). This is because AVs parked at the CBD are incentivised to depart 
from the workplace and drive people back home immediately after the business closure 
time, in order to minimise their penalty cost for late departure, which can lead to traffic 
congestion at the outbound bottleneck. These cases will be analysed in a follow-up study 
to further identify optimal parking supply strategies for AVs. 
We consider that in the morning, commuters have a desired arrival time at the workplace, 
which is 𝑡𝑡1∗ (we use subscript ‘1’ to indicate morning commute). Early and late arrival at 
the workplace will be penalized. The morning commute cost 𝑐𝑐1 (𝑡𝑡1 , 𝑥𝑥 ) for commuters who 
leave home at time 𝑡𝑡1 in the morning and park the AV at location 𝑥𝑥 can be calculated as 
follows: 

where [∙]+ ≡ 𝑚𝑚𝑎𝑎𝑥𝑥 {∙ ,0}. From the right-hand side of Eq. (12), the first term is the cost of 
queuing delay. The second and the third terms represent the penalty costs caused by early 
and late arrival to the workplace respectively. The fourth term is the cost of finding a 
parking space via AV self-driving. Note that in the cost formulation 𝑐𝑐1 (𝑡𝑡1 , 𝑥𝑥 ), we take all 
combinations of (𝑡𝑡1 , 𝑥𝑥 ) into account, which means that 𝑥𝑥 and 𝑡𝑡1 are independent (how 
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they are related at equilibrium will be discussed later on). 
We now formulate the individual daily travel cost in a fully automated environment, 
which is denoted as 𝑐𝑐 (𝑡𝑡1 , 𝑥𝑥 ) for commuters who leave home at time 𝑡𝑡1 in the morning and 
park the AV at location 𝑥𝑥 . Then, 𝑐𝑐 (𝑡𝑡1 , 𝑥𝑥 ) which consists of both the morning and evening 
commuting costs can be given as follows: 

𝑐𝑐 (𝑡𝑡1 , 𝑥𝑥 ) = 𝑐𝑐1 (𝑡𝑡1 , 𝑥𝑥 ) + 𝑐𝑐2 (𝑡𝑡2 , 𝑥𝑥 ).  (13) 

Based on the evening equilibrium cost in Section 3.2 and Eq. (12) and Eq. (13), we can 
derive the first derivative of the individual daily travel cost with regards to the parking 

location as follows: for , 𝜕𝜕𝑐𝑐(𝑡𝑡 1,𝑥𝑥 ) 
𝜕𝜕𝑥𝑥 

= 2 ∙ 𝜆𝜆𝑤𝑤 + (𝜆𝜆 + 𝛾𝛾2 ) 𝑚𝑚 

𝜆𝜆 
> 0 ; and for , 

𝜕𝜕𝑐𝑐(𝑡𝑡 1,𝑥𝑥 ) 
𝜕𝜕𝑥𝑥 

= 2 ∙ 𝜆𝜆𝑤𝑤 > 0. The relationship 𝜕𝜕𝑐𝑐(𝑡𝑡 1,𝑥𝑥 ) 
𝜕𝜕𝑥𝑥 

> 0 always holds. This means that, for 

AVs departing at a specific time 𝑡𝑡1 , AVs would always choose to park as close to the 
workplace as possible after dropping off commuters, in order to reduce the individual 
daily travel cost. Hence, 𝑥𝑥 is dependent on (or governed by) the departure time 𝑡𝑡1 for 
morning commute. Let 𝑥𝑥 = 𝑥𝑥 (𝑡𝑡1 ), we have 

By denoting the departure rate from home as 𝑟𝑟1 (arrival rate to the inbound bottleneck for 
morning commute) and the departure time of the first commuter as 𝑡𝑡𝜆𝜆 , we then have (AVs 
will choose the closest parking available, which is reflected by 𝑥𝑥 = 𝑥𝑥 (𝑡𝑡1 )) 

∫ 𝑟𝑟1 (𝑢𝑢 )𝑑𝑑𝑢𝑢 
𝑡𝑡 1 

𝑡𝑡 𝑠𝑠 
= ∫ 𝑚𝑚(𝑦𝑦)𝑑𝑑𝑦𝑦 

𝑥𝑥 

𝑥𝑥0 
.  (15) 

Hence, 𝑟𝑟1 (𝑢𝑢 ) = 𝑚𝑚(𝑥𝑥 ) 𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡1 

or 𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡1 

= 𝑟𝑟1(𝑢𝑢)
𝑚𝑚(𝑥𝑥 )

. Under the assumption 𝑚𝑚(𝑥𝑥 ) = 𝑚𝑚, we have 

𝑑𝑑𝑥𝑥 

𝑑𝑑 𝑡𝑡 1 
= 𝑟𝑟1(𝑢𝑢 ) 

𝑚𝑚 
.  (16) 

From the above analysis, we can find that the departure-time choice in the morning and 
that in the evening are interrelated. Specifically, the parking location is dependent on the 
departure time for morning commute under the defined equilibrium, and the departure 
pattern for evening commute is significantly influenced by the parking location as 
discussed in Section 3.2. Note that later a subscript (1, 2, or 3) is further added to 𝑟𝑟1 to 
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reflect the stage during the morning departure/arrival duration. With the above results in 
mind, we are now ready to derive the equilibrium of the integrated morning-evening 
commute.   

3.3.2 User-equilibrium AV traffic pattern for morning commute considering daily 
travel cost 

3.3.2.1 Scenario 1 

Under the assumption , for early arrivals in the morning, some of the AVs 
arriving at the workplace early in the morning will arrive at the bottleneck 
immediately after 𝑡𝑡2∗ in the evening, while the others will depart later to avoid a long 
queue; For late arrivals in the morning, all AVs will delay their departure to balance 
schedule delay cost and queueing delay cost. Hence, the traffic pattern for AV 
morning commutes can be divided into three stages, namely Stage 1, Stage 2 and 
Stage 3, and the rates of departure from home at each stage, denoted as 𝑟𝑟1,1 (𝑡𝑡1 ), 
𝑟𝑟1,2 (𝑡𝑡1 ) and 𝑟𝑟1,3 (𝑡𝑡1 ), are summarised in Table 3.1. Furthermore, we can categorize 
Scenario 1 into two cases, depending on whether or not a queue exists in the first 
stage, of which the conditions are also presented in Table 3.1. As can be seen, these 
conditions are related to values of time and AV self-driving time, schedule penalties, 
parking density, AV self-driving speed, and bottleneck capacity. For the derivation 
process for the results shown in Table 3.1, see Derivation. Scenario 1 in Appendix 
B-2. 
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Table 3.1 Summary of two cases under the Scenario 1 where x ̃<x ̅ 

Case 1 Case 2 

Condition 
2𝜆𝜆 𝑤𝑤𝑠𝑠 
𝑚𝑚 

< 𝛽𝛽1 ≤ 
2𝜆𝜆 𝑤𝑤𝑠𝑠 
𝑚𝑚

+ 𝜆𝜆 + 𝛾𝛾2 𝛽𝛽1 > 
2𝜆𝜆 𝑤𝑤𝑠𝑠 
𝑚𝑚 

+ 𝜆𝜆 + 𝛾𝛾2 

𝑟𝑟1,1 (𝑡𝑡1 ) 
𝛽𝛽1 

2𝜆𝜆 𝑤𝑤𝑠𝑠 
𝑚𝑚 + 𝜆𝜆 + 𝛾𝛾2 

𝑠𝑠 ≤ 𝑠𝑠 

𝛼𝛼1 

𝛼𝛼 1 − 𝛽𝛽 1 + 2𝜆𝜆 𝑤𝑤𝑠𝑠 
𝑚𝑚 + 𝜆𝜆 + 𝛾𝛾 2

𝑠𝑠 

> 𝑠𝑠 

𝑟𝑟1,2 (𝑡𝑡1 ) 

𝛼𝛼1 

𝛼𝛼1 − 𝛽𝛽1 + 2𝜆𝜆 𝑤𝑤𝑠𝑠 
𝑚𝑚 

𝑠𝑠 > 𝑠𝑠 𝛼𝛼1 

𝛼𝛼1 − 𝛽𝛽1 + 2𝜆𝜆 𝑤𝑤𝑠𝑠 
𝑚𝑚 

𝑠𝑠 > 𝑠𝑠 

𝑟𝑟1,3 (𝑡𝑡1 ) 
𝛼𝛼1 

𝛼𝛼1 + 𝛾𝛾1 + 2𝜆𝜆 𝑤𝑤𝑠𝑠 
𝑚𝑚 

𝑠𝑠 < 𝑠𝑠 
𝛼𝛼1 

𝛼𝛼1 + 𝛾𝛾1 + 2𝜆𝜆 𝑤𝑤𝑠𝑠 
𝑚𝑚 

𝑠𝑠 < 𝑠𝑠 

Case 1 

For Case 1, the user-equilibrium AV traffic pattern in terms of departure time and 
parking location for morning-evening commutes is depicted in Figure 3.3. The 
curves for evening commute have the same physical meaning as those in Figure 3.2. 
For morning commute, the red curve 𝑃𝑃1 𝑄𝑄1 𝑄𝑄1 𝑊𝑊1 represents the cumulative departure 
from home, i.e. the cumulative arrival at the bottleneck; the blue curve 𝑃𝑃1 𝑄𝑄1 𝑊𝑊1 

represents the cumulative flow arriving at the workplace, i.e. the cumulative 
departure from the bottleneck; the purple curve 𝑃𝑃1 𝑍𝑍1 𝐴𝐴1 represents the cumulative 
arrival at the parking lot in the morning. 
Figure 3.3 indicates that in Case 1, the inbound bottleneck does not operate at 
capacity at Stage 1 of the travel period. This is one of the main distinctions between 
Case 1 and the other cases, which will be further discussed in the following sections. 
Roughly speaking, as the penalty for early arrival is relatively small in Case 1 as 
compared to the other cases, some commuters are motivated to depart far earlier to 
ensure an advantageous parking place close to the workplace and reduce the cost of 
empty AV trips for the parking purpose. This leads to less departure concentration 
over time, resulting in the unsaturated traffic at the early stage of AV morning 
commute. The condition of Case 1 differs from the case where the bottleneck is not 
used to capacity by conventional vehicles identified by Arnott et al. (1991). This is 
primarily due to that in this study walking is replaced by AV self-driving and 
morning and evening commutes have been integrated. 
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Figure 3.3 Daily equilibrium commute pattern for Case 1 

From flow conservation and equilibrium conditions, we can determine the first and 
last departure times 𝑡𝑡𝜆𝜆 and 𝑡𝑡𝑒𝑒 as follows: 

and we can also obtain the analytical expressions of �̃�𝑡 and 𝑡𝑡 ̅ as follows 

We can calculate the total daily travel cost at equilibrium, denoted as 𝑇𝑇 𝐷𝐷𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 , for 
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Case 1 as follows: 

Particularly, the term in the square bracket represents the individual daily travel cost 
at equilibrium.   
We can also evaluate different aggregate cost components for morning commuting 
when daily traffic reaches the user equilibrium condition. We denote the area of the 
polygon 𝛺𝛺 as 𝐴𝐴𝛺𝛺 , where 𝛺𝛺 is represented by specific nodes in this section. Then, the 
total cost of queuing delay for morning commutes, denoted as 𝑇𝑇 𝑄𝑄1 , is 

The total cost of schedule delay for morning commutes, denoted as 𝑇𝑇𝑇𝑇1 , is 

where the term in the first square bracket is the total schedule delay cost for early 
arrivals, and the term in the second square bracket for late arrivals. The total cost for 
finding an appropriate parking space by AV self-driving in the morning, denoted as 
𝑇𝑇 𝑃𝑃1 (𝐴𝐴𝐴𝐴 ), is 

𝑇𝑇 𝑃𝑃1 (𝐴𝐴𝐴𝐴 ) = 𝜆𝜆 ∙ 𝐴𝐴 𝑃𝑃1 𝑄𝑄1𝑊𝑊1𝑉𝑉1𝑍𝑍1 
.  (24) 

In addition, it is evident that the relationship 𝑇𝑇 𝑃𝑃1 (𝐴𝐴𝐴𝐴 ) = 𝑇𝑇 𝑃𝑃2 (𝐴𝐴𝐴𝐴 ) must hold in this 
study. This is because, no matter where individual AV parks, from a system 

perspective, parking from 𝑥𝑥0  to 𝑥𝑥0 + 𝑁𝑁 

𝑚𝑚 
will be occupied as they are the possible 

closest parking to serve all the demand. 

Considering 𝑟𝑟1,2 > 𝑠𝑠 > 𝑟𝑟1,3 , always holds. This means 
that, in Case 1, 𝑡𝑡 ̅ is always greater than �̃�𝑡 , and consequently, the condition 

must hold. Hence, when 2𝜆𝜆𝑤𝑤𝜆𝜆 

𝑚𝑚
< 𝛽𝛽1 ≤ 

2𝜆𝜆𝑤𝑤𝜆𝜆 

𝑚𝑚
+ 𝜆𝜆 + 𝛾𝛾2 , the equilibrium traffic pattern 
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must be Case 1. 

Case 2 

For Case 2, the user-equilibrium AV traffic pattern in terms of departure time and 
parking location for morning-evening commutes is depicted in Figure 3.4. For both 
morning and evening commutes, the physical meanings of curves highlighted in 
different colors are the same as Figure 3.3. 
Similarly, we can determine 𝑡𝑡𝜆𝜆 and 𝑡𝑡𝑒𝑒 as follows: 

Based on equilibrium conditions, we can also determine �̃�𝑡 and 𝑡𝑡 ̅ as follows 

We can calculate the total daily travel cost at equilibrium (𝑇𝑇 𝐷𝐷𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 ) for Case 2: 

where the term in the square bracket represents the individual daily travel cost at 
equilibrium. In addition, different aggregate cost components for Case 2 can be 
evaluated as follows: 

We again investigate the relationship between the two critical time points 𝑡𝑡 ̅ and �̃�𝑡 by 
calculating the difference:   

The term in the first square bracket is always positive considering that 𝑟𝑟1,2 > 𝑠𝑠 > 
𝑟𝑟1,3 . To ensure that , the necessary and sufficient condition is 𝑡𝑡 ̅ > �̃�𝑡 , as 𝑥𝑥 is a 
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monotonically increasing function of 𝑡𝑡 . Hence, when 𝛽𝛽1 > 2𝜆𝜆𝑤𝑤𝜆𝜆 

𝑚𝑚
+ 𝜆𝜆 + 𝛾𝛾2 , Case 2 

will occur if in the meantime, the following condition is satisfied: 

This condition can be re-written as   

Therefore, the condition of Case 2 can be re-written as 

By comparing between Case 1 and Case 2, two clear insights can be provided. First, 
the start time of departure from home is earlier for Case 1 than that for Case 2 in the 
morning. One of the reasons is that the parking density 𝑚𝑚 tends to be relatively 
smaller for Case 1 according to the conditions of these two cases summarised in 
Table 3.1. This means that the difference in the distance of AV self-driving to find a 
parking space is larger between two consecutive arriving AVs. Furthermore, Case 1 
has a smaller penalty cost for early arrival, indicated by 𝛽𝛽1 , than Case 2. Given the 
two reasons above, in Case 1, commuters are motivated to depart earlier to park their 
AVs closer to the workplace, resulting in an earlier start of morning commuting. 
Second, by comparing the formulations of total daily travel costs for Case 1 and Case 

2, it can be seen that we have an additional term    for Case 1. 
This is primarily because the earlier start of morning commutes in Case 1 causes 
commutes to be less concentrated around 𝑡𝑡1∗ , and as a result, the corridor is not fully 
used at Stage 1 given that 𝑟𝑟1,1 (𝑡𝑡 ) ≤ 𝑠𝑠 . By contrast, in Case 2, the service rate of the 
inbound bottleneck is always at capacity from the beginning of Stage 1 through the 
end of Stage 3, which is described in Figure 3.4. Hence, the ‘wasted capacity’ in Case 
1 leads to the abovementioned additional cost term within the formulation of 
𝑇𝑇𝑇𝑇𝐷𝐷𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 . 

3.3.2.2 Scenario 2 

In Scenario 2, we have . AVs that arrive early in the morning all reach the 
inbound bottleneck immediately after the official work closure time 𝑡𝑡2∗ in the 
evening; For late arrivals in the morning, some AVs arriving relatively early will 

javascript:;
javascript:;
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depart from the parking spot early and arrive at the bottleneck immediately after the 
time 𝑡𝑡2∗ in the evening, while the others will depart later to avoid a long queue. 
Similar to Scenario 1, three stages are formed in the departure pattern. Different from 

Scenario 1, there is only one case in Scenario 2 under the condition 𝛽𝛽1 > 𝜆𝜆𝑤𝑤𝜆𝜆 

𝑚𝑚 
+ 𝜆𝜆 + 

𝛾𝛾2 , which is referred to as Case 3 in this study. In Case 3, the departure rates at 
equilibrium are summarized as follows (see Derivation. Scenario 2 in Appendix B-
2):   

𝑟𝑟1,1 (𝑡𝑡1 ) = 𝛼𝛼 1 

𝛼𝛼 1 −𝛽𝛽1+
2𝜆𝜆𝜆𝜆 𝑠𝑠 
𝑚𝑚 

+𝜆𝜆+𝛾𝛾2 
𝑠𝑠 > 𝑠𝑠 ; 𝑟𝑟1,2 (𝑡𝑡1 ) = 𝛼𝛼 1 

𝛼𝛼 1 +𝛾𝛾1+𝛾𝛾2+𝜆𝜆+ 
2𝜆𝜆𝜆𝜆 𝑠𝑠 
𝑚𝑚 

𝑠𝑠 < 

𝑠𝑠 ; 𝑟𝑟1,3 (𝑡𝑡1 ) = 𝛼𝛼 1 

𝛼𝛼 1 +𝛾𝛾1+
2𝜆𝜆𝜆𝜆 𝑠𝑠 
𝑚𝑚 

𝑠𝑠 < 𝑠𝑠 . 

(30) 

Furthermore, the relationship 𝑟𝑟1,1 (𝑡𝑡1 ) > 𝑠𝑠 > 𝑟𝑟1,3 (𝑡𝑡1 ) > 𝑟𝑟1,2 (𝑡𝑡1 ) holds. 
For Case 3, the user-equilibrium traffic pattern in terms of departure time and parking 
location for morning-evening commutes is depicted in Figure 3.5. For both morning 
and evening commutes, the physical meanings of curves in different colors are the 
same as Figure 3.3 and Figure 3.4. 
Similarly, based on the flow conservation and equilibrium conditions, we can 
determine 𝑡𝑡𝜆𝜆 and 𝑡𝑡𝑒𝑒 as follows: 

    (31) 

Similarly, we can determine �̃�𝑡 and 𝑡𝑡 ̅ as follows 

  (32) 

We can calculate the total daily travel cost at equilibrium for Case 3 

Particularly, the term in the square bracket represents the individual daily travel cost 
at equilibrium for Case 3. Similar to Case 2, we can evaluate different aggregate cost 
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Figure 3.4 Daily equilibrium commute pattern for Case 3. 

It can be easily observed that the formulations of 𝑡𝑡𝜆𝜆 , 𝑡𝑡𝑒𝑒 and 𝑇𝑇 𝐷𝐷𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 are the same for 
Case 2 and Case 3. This is because, unlike Case 1, the bottleneck is always at capacity 
with traffic congestion throughout the morning commute in Case 2 and Case 3. 
It is noteworthy that the identical mathematical formulations of 𝑡𝑡𝜆𝜆 , 𝑡𝑡𝑒𝑒 and 𝑇𝑇 𝐷𝐷𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 

for Case 2 and Case 3 do not mean that we can obtain the same computational results 
on the values of these metrics for the two cases. This is because these two cases have 
different conditions and there is no overlap in between. The condition of Case 2 has 
been explored in Section 3.3.2.1. We now further investigate the condition of Case 
3. To do this, we analyze the relationship between the two critical time points 𝑡𝑡 ̅ and 
�̃�𝑡 in Case 3 by calculating the difference:   

To ensure that   holds for Case 3, the necessary and sufficient condition is �̃�𝑡 ≥ 
𝑡𝑡 ̅. Given that the term in the first square bracket in the above equation is always 
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positive, the additional condition   must hold. 

This condition can be re-written as . Given that 

𝛽𝛽1 ≥ 
2𝜆𝜆𝑤𝑤𝜆𝜆 

𝑚𝑚 
+ 𝜆𝜆 + 𝛾𝛾2 holds for Case 3, the condition of Case 3 is 

. This condition is consistent with the condition 

of Case 2 in terms of the critical point for 𝛽𝛽1 valued at 

Furthermore, we can conclude that if , the two 
critical time points �̃�𝑡 and 𝑡𝑡 ̅ are the same (accordingly, the two critical parking 
locations   and �̅�𝑥 are the same). Under such circumstance, for all the commuters 
who arrive early or on time in the morning, their AVs will depart from parking spots 
early and arrive at the bottleneck immediately after the work closure time, while for 
all the commuters who arrive late in the morning, their AVs will delay the departure 
time after work to avoid a long queue for evening commutes. This is the boundary 
case between Case 2 and Case 3. To summarize, the conditions of all the three 
possible cases at user equilibrium are listed in Table 3.2. 

Table 3.2 Summary of conditions for Cases 1, 2 and 3. 

The comparison between Case 1 and Case 2 has been analyzed in the last section. 
We now further discuss the conditions for Case 2 and Case 3. Table 3.2 implies that 
changes of the penalty costs for early arrival and late arrival, indicated by 𝛽𝛽1 and 𝛾𝛾1 , 
can cause the switch between Case 2 and Case 3. Specifically, if 𝛽𝛽1 increases, Case 
3 is more likely to occur; if 𝛾𝛾1 increases, Case 2 is more likely to occur. The reason 
is explained as follows. Regardless of 𝛽𝛽1 and 𝛾𝛾1 , the numbers of early departure and 
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delayed departure for evening commute are respectively 𝛾𝛾2 𝑁𝑁
𝜆𝜆+𝛾𝛾2 

and 𝜆𝜆 

𝜆𝜆 +𝛾𝛾2 
𝑁𝑁 . For Case 

2, the number of early arrivals equals the number of early departures plus a 
proportion of delayed departure for evening commute. By contrast, for Case 3, the 
number of early arrivals is less, which merely equals a proportion of early departure. 
Hence, when late arrival incurs more severe punishment, i.e. 𝛾𝛾1 becomes larger, 
more commuters would choose early arrival, and therefore, Case 2 will be more 
likely. On the other hand, if early arrival becomes more costly, i.e. 𝛽𝛽1 becomes 
larger, commuters would be less likely to arrive early, which makes Case 3 more 
likely. 
It is noteworthy that 𝛽𝛽1 should be greater than 𝜆𝜆 and 𝛾𝛾2 (for Case 2 and Case 3). 
Whether this will occur or not should rely on case-by-case empirical studies for a 
city or community, which is beyond the scope of this study. As per Vickrey (1973), 
𝛽𝛽1 and 𝛾𝛾2 can be determined as the utility of home-based activities minus that of 
working for employers. The former depends on people’s productivity, while the latter 
can be regarded as a fixed value given that people usually get paid at a constant rate. 
Intuitively, 𝛽𝛽1 > 𝜆𝜆  and 𝛽𝛽1 > 𝛾𝛾2 might happen in the sense that morning time is 
valuable given that a majority of people are energetic in the morning. In this sense, 
early arrival might indicate inefficient use of valuable morning time, which can be 
more costly than AV self-driving time or waiting time caused by late departure in the 
evening when people value time less after work.  

3.3.3 Variation of user-equilibrium AV traffic pattern against the parking density 

In Section 3.3.2, we investigate the user-equilibrium traffic patterns under three 
different cases. The conditions for the occurrence of each case are related to the parking 
density. This means that parking supply could potentially affect the UE traffic pattern 
and its efficiency. To investigate the influences of 𝑚𝑚, we first identify the feasible 
region of 𝑚𝑚. 

We further summarize how the equilibrium flow pattern will change with respect to 𝑚𝑚 
and how it is related to the range of 𝛽𝛽1 in Table 3.3 (this can be verified by checking the 
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conditions in Table 3.2). 

Table 3.3 Flow patterns change with parking density 

As can be seen in Table 3.3, the equilibrium traffic pattern varies with the AV parking 
density 𝑚𝑚 in different manners under the abovementioned five situations (each situation 
has a different range of 𝛽𝛽1 ). We have several observations in Table 3.3. Firstly, when 𝛽𝛽1 

increases, i.e., Situation (i) → Situation (ii) → Situation (iii) → Situation (iv) → Situation 
(v), generally speaking, the flow pattern tends to change from Case 1 to Case 2 and then 
to Case 3. This is briefly explained as follows. When 𝛽𝛽1 is small (early arrival in the 
morning commute is relatively costless), some commuters may depart sufficiently early 
(even with no congestion delays) to secure a better parking location, i.e., Case 1. When 
𝛽𝛽1 becomes relatively large (early arrival is relatively costly), even those commuters with 
a relatively close parking location   will arrive late in the morning, i.e., Case 3. 
And Case 2 is in-between where 𝛽𝛽1 is neither too large nor too small. These results are 
consistent with our discussions for Table 3.2 (comparison of the three cases). Secondly, 
when 𝑚𝑚 increases, the flow pattern tends to change from Case 1 to Case 2 or from Case 
2 to Case 3. This is because, when 𝑚𝑚 is relatively small, i.e., parking is relatively sparse, 
commuters are more incentivised to compete for a good parking location, which results 
in Case 1 (some commuters depart sufficiently early even without congestion). When 𝑚𝑚 
is relatively large, i.e., parking is more densely distributed, departing later may still lead 
to a not very far away parking location, commuters are less incentivized to compete for a 
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closer parking, which results in Case 3 (some with a relatively close parking location 
still arrive late in the morning). Again, Case 2 is in-between. 

While the flow pattern may change with 𝑚𝑚 , the total daily travel cost at equilibrium 
always decreases with the increase of 𝑚𝑚, when all the other parameters are considered 
given. This is primarily due to the savings in the time cost for AV self-driving to find a 
parking spot in the morning and to return to the workplace in the afternoon, given that a 

larger 𝑚𝑚 results in a smaller 𝑁𝑁 

𝑚𝑚 
. This can also be verified mathematically: the relationship 

𝑑𝑑 𝑇𝑇 𝑇𝑇 𝑇𝑇 𝐶𝐶 𝑈𝑈𝑈𝑈 

𝑑𝑑𝑚𝑚 
< 0 holds for Case 1, Case 2 and Case 3; meanwhile, for Situation (ii) and 

Situation (iii), the evaluation of 𝑇𝑇 𝐷𝐷𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 goes smoothly at the transition point of 𝑚𝑚.  
It can be seen that the equilibrium daily traffic pattern of AVs is different from that of 
non-AVs (Zhang et al., 2005, 2008). We now summarize some of the major 
characteristics of commuting equilibriums with AVs. First, the walking time between the 
office and the parking spot for morning-evening commuting is eliminated when people 
travel with AVs, which can influence the arrival and departure time for work as well as 
the schedule delay cost. This leads to the different time-dependent equilibrium traffic 
pattern than the literature with non-AVs. Second, this study integrates the correlated 
morning and evening commutes. Compared to Zhang et al. (2008), for morning 
commuting, the proposed model considers both early arrival and late arrival in the 
morning. This raises three different cases for the morning traffic pattern depending on the 
value of time, schedule penalties, and parking supply (as discussed in Table 3.2 and Table 
3.3). Third, as AVs can park far away from the workplace in the morning, they must drive 
themselves back to the workplace to pick up commuters after work due to the 
unacceptable walking distance. This leads to an active inbound bottleneck on the way 
from parking lots to the city centre for evening commute with AVs, which is different 
from the non-AV situation where commuters experience congestions on the way from the 
workplace to home after work. Furthermore, in comparison to the equilibrium analysis 
considering AV morning commuting only (Liu, 2018), this study further highlights the 
importance of integrating asymmetric morning commute and evening commute for 
modelling traffic dynamics in a fully automated environment. 
Overall, the adoption of AVs substantially reshapes both the morning and evening 
commutes, which involves when, where and how congestion will occur. With such a 
distinctive AV traffic pattern derived, it is expected that the optimal tolling scheme and 
parking supply strategy for the AV daily commute will be different from those under the 



47 

non-AV environment and those when only the morning commute is considered for AVs. 
Based on the presented equilibrium analysis, the tolling scheme and the AV parking 
supply plan will be discussed in the following sections. 

3.4 System Optimum and Time-dependent Tolling Scheme for AV Traffic Behavior 

In this section, we first discuss the traffic pattern at system optimum (SO). Then, we 
investigate the congestion tolling scheme to achieve the system optimal traffic pattern. 
Generally speaking, for both morning and evening commutes, at system optimum, the 
following conditions should be satisfied: (i) traffic congestion at the bottleneck must be 
completely eliminated, i.e. the queuing delay is always zero; (ii) the schedule delay cost should 
be minimized to the largest extent, i.e. the times of arrival at and departure from the workplace 
should be respectively close to the official work start time and closure time as far as possible; 
(iii) the time cost for AV-self driving should be minimized, i.e. the selected parking location 
should be as close to the workplace as possible. Given these conditions in mind, we can then 
investigate the first-best tolling schemes for morning and evening commutes. 

3.4.1 System optimum for evening commute and tolling scheme 
For evening commute, under the system optimum conditions, the traffic pattern should 
be formed in the way that: (i) the arrival rate to the bottleneck 𝑟𝑟2 should always be equal 
to the service capacity of the bottleneck 𝑠𝑠 , which means that the bottleneck capacity is 
fully utilised without any congestion; (ii) the first AV arrives at the workplace to pick up 
commuters at the official work closure time 𝑡𝑡2∗ . We need to emphasise that under the SO 
flow pattern, the order of departures from the parking lot is not unique, which means that 
a parking location closer to the workplace does not necessarily correspond to an earlier 
departure time. An illustrative SO flow pattern for the evening commute is depicted in 
Figure 3.6(a), where AVs parked closer to the workplace will depart earlier in the 
evening. The blue solid line 𝑃𝑃𝑄𝑄 reflects both the arrival at and departure from the 
bottleneck. The green curve 𝑃𝑃𝑊𝑊 represents the time of departure from parking spots 
under the assumption that AVs parked closer to the workplace will depart earlier in the 
evening. 
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Figure 3.5 SO traffic pattern for (a) evening commute and (b) morning commute 

We denote the tolling fee for evening commute at time 𝑡𝑡 as 𝜎𝜎2 (𝑡𝑡 ), where 𝑡𝑡 represents the 
time of arrival at the inbound bottleneck. We can derive the following tolling scheme to 
achieve the SO for the evening commute depicted in Figure 3.6(a): 

where the last AV arriving at the inbound bottleneck pays the tolling fee 𝜀𝜀0 . Note that this 
evening toll is imposed at the inbound bottleneck based on the arrival time at the 
bottleneck to eliminate congestion during the pick-up process. At the SO, the individual 
travel cost for evening commute including the toll is 

𝑐𝑐2 
𝜎𝜎 (𝑡𝑡2 , 𝑥𝑥 )𝑆𝑆 𝑆𝑆 = 𝜆𝜆𝑤𝑤 (𝑥𝑥 − 𝑥𝑥0 ) + 𝛾𝛾2 𝑁𝑁 

𝜆𝜆 
+ 𝜀𝜀0 . (35)   

The individual travel cost under the SO conditions increases linearly with regards to the 
parking location 𝑥𝑥 , which is because the self-driving cost is proportional to the distance 
to the city centre. At system optimum, the total evening travel cost including road tolls is 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝜎𝜎 
𝑆𝑆 𝑆𝑆 = 0.5𝜆𝜆𝑤𝑤 

𝑁𝑁 2 

𝑚𝑚 
+ 𝛾𝛾2 𝑁𝑁 2 

𝜆𝜆 
+ 𝜀𝜀0 𝑁𝑁 . (36) 

The 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝜎𝜎 
𝑆𝑆 𝑆𝑆 is comprised of the total toll revenue for evening commute 𝑇𝑇 𝑄𝑄2 and the 

total evening travel cost excluding tolls 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 , which are given as follows: 



49 

𝑇𝑇 𝑄𝑄2 = 0.5 𝛾𝛾2 𝑁𝑁 2 

𝜆𝜆 
+ 𝜀𝜀0 𝑁𝑁 ; 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 = 0.5𝜆𝜆𝑤𝑤 

𝑁𝑁 2 

𝑚𝑚 
+ 0.5 𝛾𝛾2𝑁𝑁 2 

𝜆𝜆 
. (37) 

It is obvious that 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 = 0.5 𝑁𝑁 2𝛾𝛾2(𝑚𝑚 −𝑤𝑤𝜆𝜆 )𝜆𝜆 

𝑚𝑚𝜆𝜆 (𝜆𝜆+𝛾𝛾2 )−𝜆𝜆𝜆𝜆 2 𝑤𝑤 
> 0. 

3.4.2 System optimum for morning commute considering daily travel cost 

For morning commute, under the system optimum conditions, the traffic pattern should 
be formed in the way that: (i) the departure rate from home (arrival rate to the bottleneck) 
is equal to the bottleneck service capacity 𝑠𝑠 ; (ii) the parking area is fully occupied from 
the parking location 𝑥𝑥0 outwards, in order to minimise the system-level time cost of AV 
self-driving. It is worth noting that the parking order of AVs within the parking area has 
no impact on system efficiency. For simplicity, similar to the evening commute case, we 
target a SO where AVs with an earlier departure time is parked closer to the workplace. 
In addition, according to the standard conclusion from the literature, we have the first 

departure time 𝑡𝑡𝜆𝜆 ,𝑆𝑆 𝑆𝑆 = 𝑡𝑡1∗ − 
𝛾𝛾1 

𝛽𝛽1+𝛾𝛾1 
∙ 𝑁𝑁
𝜆𝜆 

and the last departure time 𝑡𝑡𝑒𝑒 ,𝑆𝑆 𝑆𝑆 = 𝑡𝑡1∗ + 𝛽𝛽1 

𝛽𝛽1+𝛾𝛾1 
∙ 𝑁𝑁
𝜆𝜆 

for morning commuting at system optimum. The SO traffic pattern for morning 
commuting is shown in Figure 3.6(b).  The blue curve 𝑃𝑃𝑄𝑄 represents the cumulative 
departure from home as well as the cumulative arrival at the workplace. The purple curve 
𝑃𝑃𝐴𝐴 represents the cumulative arrival at the AV parking lot. 
We denote that the tolling fee for arrival time to the inbound bottleneck 𝑡𝑡 (departure time 
from home) in the morning as 𝜎𝜎1 (𝑡𝑡 ). The following toll scheme can be derived to support 
the SO in the morning commute: 

where 𝜀𝜀0 is the constant toll for the commuters arriving at the inbound bottleneck earlier 
than or equal to 𝑡𝑡𝜆𝜆,𝑆𝑆𝑆𝑆 . It can be observed from Equation (39) that the toll at the beginning 
of the travel period is higher than that at the end. This is to compensate the late arrival 
commuters with a larger AV-self driving distance so that they have no incentive to 
compete for closer parking and additional schedule delay cost is avoided. 
At system optimum, the total daily travel cost, denoted as 𝑇𝑇 𝐷𝐷𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 can be determined as 
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follows 

𝑇𝑇 𝐷𝐷𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 = 0.5 𝛽𝛽1𝛾𝛾1 

𝛽𝛽1+𝛾𝛾1 

𝑁𝑁 2 

𝜆𝜆 
+ 𝜆𝜆𝑤𝑤 𝑁𝑁 2 

𝑚𝑚 
+ 0.5 𝛾𝛾2 𝑁𝑁 2 

𝜆𝜆 
. (39)   

We can further determine the total toll revenue for morning commutes 𝑇𝑇 𝑄𝑄1 as follows 

By comparing the total toll revenue for morning and evening commutes, it can be easily 

seen that 𝑇𝑇 𝑄𝑄1 is dependent on the AV parking density 𝑚𝑚 wherein we have 𝑑𝑑𝑇𝑇𝑅𝑅1 

𝑑𝑑𝑚𝑚
> 0, 

while 𝑚𝑚 has no influence on 𝑇𝑇 𝑄𝑄2 . The total toll revenue for daily commutes 𝑇𝑇 𝑄𝑄 can be 
determined as follows 

3.5 Optimal AV Parking Supply Strategy 

3.5.1 Evaluation of total system cost of automated transportation system 

Following Liu (2018), we further investigate the optimal AV parking supply strategies 
under either the no-toll equilibrium or system optimum traffic pattern. The objective is to 
minimise the total system cost, denoted as 𝑇𝑇𝑇𝑇𝑇𝑇 in this study, which is comprised of the 
total daily travel cost (toll excluded) and the total social parking cost. As will be shown 
later, integrating morning and evening commutes significantly complicates the optimal 
parking supply solutions, and provides additional findings against a recent study by Liu 
(2018) where only morning commute is considered. 
We consider that the social cost of a parking space is dependent on the distance between 
the parking location and the city centre, and hereby define the social cost of a unit parking 
spot at location 𝑥𝑥 as 𝜌𝜌(𝑥𝑥 ). 𝜌𝜌(𝑥𝑥 ) is a monotonic decreasing function of 𝑥𝑥 , which indicates 
that the social parking cost becomes larger when the parking location is closer to the city 
centre. We can then calculate the total social parking cost (𝑇𝑇 𝑇𝑇𝑃𝑃𝑇𝑇 ) as follows 

𝑇𝑇 𝑇𝑇𝑃𝑃𝑇𝑇 = ∫ 𝜌𝜌(𝑥𝑥 )𝑚𝑚(𝑥𝑥 )𝑑𝑑𝑥𝑥 
𝑥𝑥0+ 

𝑁𝑁 
𝑚𝑚 

𝑥𝑥0 
. (42)   

Under the assumption 𝑚𝑚(𝑥𝑥 ) = 𝑚𝑚, the above equation can be re-written as 

𝑇𝑇 𝑇𝑇𝑃𝑃𝑇𝑇 = ∫ 𝜌𝜌(𝑥𝑥 )𝑚𝑚𝑑𝑑𝑥𝑥 
𝑥𝑥0+ 

𝑁𝑁 
𝑚𝑚 

𝑥𝑥0 
. (43)   
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Hence, we can determine the total system cost at user equilibrium 𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 and at system 
optimum 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 as follows 

𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 = 𝑇𝑇 𝐷𝐷𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 + 𝑇𝑇 𝑇𝑇𝑃𝑃𝑇𝑇 ; 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 = 𝑇𝑇 𝐷𝐷𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 + 𝑇𝑇 𝑇𝑇𝑃𝑃𝑇𝑇 . 

3.5.2 Optimal AV parking supply for user equilibrium 

In this section, we investigate the optimal AV parking density 𝑚𝑚 for all the five situations 

discussed in Section 3.3.3: Situation (i), 2𝜆𝜆𝑤𝑤𝜆𝜆 

𝑚𝑚
< 𝛽𝛽1 < 𝜆𝜆 + 𝛾𝛾2 ; Situation (ii), 𝜆𝜆 + 𝛾𝛾2 ≤ 

𝛽𝛽1 < 3𝜆𝜆 + 𝛾𝛾2 ; Situation (iii), 3𝜆𝜆 + 𝛾𝛾2 ≤ 𝛽𝛽1 < 𝜆𝜆 + 𝛾𝛾2 + 𝜆𝜆 𝛾𝛾1 

𝛾𝛾2 
; Situation (iv), 𝜆𝜆 + 𝛾𝛾2 + 

𝜆𝜆𝛾𝛾1 

𝛾𝛾2
≤ 𝛽𝛽1 < 3𝜆𝜆 + 𝛾𝛾2 + 𝜆𝜆

𝛾𝛾2 
(𝛾𝛾1 + 2𝜆𝜆); and Situation (v), 𝛽𝛽1 ≥ 3𝜆𝜆 + 𝛾𝛾2 + 𝜆𝜆

𝛾𝛾2 
(𝛾𝛾1 + 2𝜆𝜆). In 

different situations, how the commuting equilibrium and system efficiency change with 
the parking density is different. 

3.5.2.1 Situation (i) 

In Situation (i) when 2𝜆𝜆𝑤𝑤𝜆𝜆 

𝑚𝑚
< 𝛽𝛽1 < 𝜆𝜆 + 𝛾𝛾2 , only Case 1 occurs even if parking density 𝑚𝑚 

can vary. We derive and examine the first derivative of 𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 with respect to the parking 
density: 

The term in the first square bracket is the marginal increase in the total daily travel cost 
under the user equilibrium conditions (negative, as discussed in Section 3.3.3). The term 
in the second square bracket is the marginal increase in the total social parking cost, which 

is positive given . This is because of the decreasing 

function of 𝜌𝜌(𝑥𝑥 ), which implies that the dense parking facility deployment closer to the 
city centre corresponds to higher land values and greater social costs.  To allow for 
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analytical tractability, we assume a constant 𝜌𝜌 ′ (𝑥𝑥 ), i.e., 𝜌𝜌 ′ (𝑥𝑥 ) = 𝜌𝜌 ′ . 
We further calculate the second derivative of 𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 : 

Firstly, if 𝜌𝜌 ′ > − 
4𝜆𝜆𝑤𝑤 𝛾𝛾1 𝛾𝛾2 

(𝛽𝛽1+𝛾𝛾1)(𝜆𝜆+𝛾𝛾2) − 
4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
, the optimal solution 𝑚𝑚𝑈𝑈𝑈𝑈 is set to approach 

infinity, or an upper bound if set; Secondly, if 𝜌𝜌 ′ < − 
4𝜆𝜆𝑤𝑤 𝛾𝛾1 𝛾𝛾2 

(𝛽𝛽1+𝛾𝛾1)(𝜆𝜆+𝛾𝛾2) − 
4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
, the optimal 

solution 𝑚𝑚𝑈𝑈𝑈𝑈 is to approach the lower bound of the feasible region, i.e. 2𝜆𝜆𝑤𝑤𝜆𝜆 

𝛽𝛽1 
if 2𝜆𝜆𝑤𝑤𝜆𝜆 

𝑚𝑚
< 

𝛽𝛽1 ≤ 2𝜆𝜆 , or 𝑤𝑤𝑠𝑠 if 2𝜆𝜆 < 𝛽𝛽1 < 𝜆𝜆 + 𝛾𝛾2 ; Thirdly, if 𝜌𝜌 ′ = − 
4𝜆𝜆𝑤𝑤 𝛾𝛾1𝛾𝛾2 

(𝛽𝛽1+𝛾𝛾1)(𝜆𝜆+𝛾𝛾2) − 
4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
: if 

𝑑𝑑 𝑇𝑇𝑆𝑆𝐶𝐶 𝑈𝑈𝑈𝑈 

𝑑𝑑𝑚𝑚 
> 0, the optimal solution is to approach the lower bound; if 𝑑𝑑 𝑇𝑇𝑆𝑆𝐶𝐶 𝑈𝑈𝑈𝑈 

𝑑𝑑𝑚𝑚 
< 0, the 

optimal solution is to approach infinity, or an upper bound if set; if 𝑑𝑑 𝑇𝑇 𝑆𝑆 𝐶𝐶 𝑈𝑈𝑈𝑈 

𝑑𝑑𝑚𝑚 
= 0, the 

optimal 𝑚𝑚𝑈𝑈𝑈𝑈 can be equal to any value within the feasible region. 
The above results are in line with Liu (2018). When the social cost of parking varies with 
distance to the city centre relatively sharp or relatively flat, we have corner solutions for 
the parking density. In particular, when parking cost decreases with the distance to the 
city centre relatively flat (a less negative 𝜌𝜌 ′ ), we should provide all the parking in the city 
centre (a larger 𝑚𝑚) to save AV self-driving cost. When the parking cost decreases sharply 
with the distance to city centre (a more negative 𝜌𝜌 ′ ), we should provide parking further 
away (a smaller 𝑚𝑚 ) to save the social cost of parking supply. However, the exact 
conditions to identify the optimal parking density are different, since the impacts of 
parking density on the morning and evening commutes are both incorporated. For 

example, the critical value of 𝜌𝜌 ′ is equal to − 
4𝜆𝜆𝑤𝑤 𝛾𝛾1 𝛾𝛾2 

(𝛽𝛽1+𝛾𝛾1)(𝜆𝜆+𝛾𝛾2) − 
4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
, which is equal to
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twice of that in Liu (2018) plus an additional term − 
4𝜆𝜆𝑤𝑤 𝛾𝛾1 𝛾𝛾2 

(𝛽𝛽1+𝛾𝛾1)(𝜆𝜆+𝛾𝛾2 ) . This will be further

explained when we compare Situation (i) with other situations in Section 3.5.2.3 (for 
short, “twice” is related to integrated consideration of evening and morning commute, 
and the “additional” is related to the capacity waster at Case 1 in the beginning of the 
morning commute). 

3.5.2.2 Situation (ii) 

Firstly, if 𝜌𝜌 ′ > − 
4𝛽𝛽1𝜆𝜆𝑤𝑤
𝛽𝛽1+𝛾𝛾1 

, the optimal solution 𝑚𝑚𝑈𝑈𝑈𝑈 is to approach infinity, or an upper 

bound if set; Secondly, if − 
4𝜆𝜆𝑤𝑤 𝛾𝛾1 𝛾𝛾2 

(𝛽𝛽1+𝛾𝛾1)(𝜆𝜆+𝛾𝛾2 ) − 
4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
< 𝜌𝜌 ′ < − 

4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
, the optimal 

solution is 𝑚𝑚𝑈𝑈𝑈𝑈 = 2𝜆𝜆𝑤𝑤𝜆𝜆 

𝛽𝛽1−𝜆𝜆−𝛾𝛾2 
; Thirdly, if 𝜌𝜌 ′ < − 

4𝜆𝜆 𝑤𝑤 𝛾𝛾1𝛾𝛾2 

(𝛽𝛽1+𝛾𝛾1)(𝜆𝜆+𝛾𝛾2) − 
4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
, the optimal 

solution 𝑚𝑚𝑈𝑈𝑈𝑈 is to approach the lower bound of the feasible region, i.e. 𝑤𝑤𝑠𝑠 ; Fourthly, 

if 𝜌𝜌 ′ = − 
4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
, we have: if 𝑑𝑑 𝑇𝑇𝑆𝑆 𝐶𝐶 𝑈𝑈𝑈𝑈 

𝑑𝑑𝑚𝑚 
> 0, the optimal solution is 𝑚𝑚𝑈𝑈𝑈𝑈 = 2𝜆𝜆𝑤𝑤𝜆𝜆 

𝛽𝛽1−𝜆𝜆−𝛾𝛾2 
; if 

𝑑𝑑 𝑇𝑇 𝑆𝑆 𝐶𝐶 𝑈𝑈𝑈𝑈 

𝑑𝑑𝑚𝑚 
< 0, the optimal solution is to approach infinity, or an upper bound if set; if 

𝑑𝑑 𝑇𝑇 𝑆𝑆 𝐶𝐶 𝑈𝑈𝑈𝑈 

𝑑𝑑𝑚𝑚 
= 0 ,  the optimal 𝑚𝑚𝑈𝑈𝑈𝑈 can be equal to any value within the region 

; Fifthly, if 𝜌𝜌 ′ = − 
4𝜆𝜆𝑤𝑤 𝛾𝛾1 𝛾𝛾2 

(𝛽𝛽1+𝛾𝛾1)(𝜆𝜆+𝛾𝛾2) − 
4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
, we determine the 𝑑𝑑 𝑇𝑇 𝑆𝑆 𝐶𝐶 𝑈𝑈𝑈𝑈 

𝑑𝑑𝑚𝑚 
by 

using Eq. (46) and then have: if 𝑑𝑑 𝑇𝑇𝑆𝑆𝐶𝐶 𝑈𝑈𝑈𝑈 

𝑑𝑑𝑚𝑚 
> 0, the optimal solution is to approach the 

lower bound, i.e. 𝑤𝑤𝑠𝑠 ; if 𝑑𝑑 𝑇𝑇 𝑆𝑆 𝐶𝐶 𝑈𝑈𝑈𝑈 

𝑑𝑑𝑚𝑚 
< 0 , the optimal solution is 𝑚𝑚𝑈𝑈𝑈𝑈 = 2𝜆𝜆𝑤𝑤𝜆𝜆 

𝛽𝛽1−𝜆𝜆−𝛾𝛾2 
; if 

𝑑𝑑 𝑇𝑇𝑆𝑆𝐶𝐶 𝑈𝑈𝑈𝑈 

𝑑𝑑𝑚𝑚 
= 0, the optimal 𝑚𝑚𝑈𝑈𝑈𝑈 can be equal to any value within the region 
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. 
The above results also share some similarities with Liu (2018). For example, when 
the social cost of parking varies with distance to the city centre relatively sharp or 
relatively flat, we have corner solutions for the parking density. This is because, 
when social cost of parking varies over space significantly (𝜌𝜌 ′ is more negative, and 

thus 𝜌𝜌 ′ < − 
4𝜆𝜆𝑤𝑤 𝛾𝛾1 𝛾𝛾2 

(𝛽𝛽1+𝛾𝛾1)(𝜆𝜆+𝛾𝛾2 ) − 
4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
), to minimise the total system cost we should 

minimise social cost of parking as much as possible. Instead, the 𝜌𝜌 ′ is less negative 
(closer to zero), parking costs at different locations differ very little, we should 
provide more dense parking at city centre to reduce total travel cost of all commuters. 
However, different from Liu (2018), when 𝜌𝜌 ′ is neither too small or too large, we 

have an interior optimal solution for 𝑚𝑚 . For example, when − 
4𝜆𝜆𝑤𝑤 𝛾𝛾1 𝛾𝛾2 

(𝛽𝛽1+𝛾𝛾1)(𝜆𝜆+𝛾𝛾2) − 

4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
< 𝜌𝜌 ′ < − 

4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
, the optimal parking density is 𝑚𝑚𝑈𝑈𝑈𝑈 = 2𝜆𝜆𝑤𝑤𝜆𝜆 

𝛽𝛽1−𝜆𝜆−𝛾𝛾2 
where the UE 

traffic pattern will be at the transition case between Case 1 and Case 2. 

3.5.2.3 Situation (iii), Situation (iv) and Situation (v) 

Despite that the UE traffic pattern varies with the parking density 𝑚𝑚 in different 
manners under Situation (iii), Situation (iv) and Situation (v) as discussed in Section 
3.3.3 (Case 2 and Case 3 might arise), the total cost formulations are identical. 
Therefore, we combine these three situations for consideration here. Similar to 
Section 3.5.2.1 and Section 3.5.2.2, we can derive the following results. 

Firstly, if 𝜌𝜌 ′ > − 
4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
, the optimal solution 𝑚𝑚𝑈𝑈𝑈𝑈 is set to approach infinity, or an 

upper bound if set; Secondly, if 𝜌𝜌 ′ < − 
4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
, the optimal solution 𝑚𝑚𝑈𝑈𝑈𝑈 is to 

approach the lower bound of the feasible region, i.e. 𝑤𝑤𝑠𝑠 ; Thirdly, if 𝜌𝜌 ′ = − 
4𝛽𝛽1𝜆𝜆𝑤𝑤
𝛽𝛽1+𝛾𝛾1 

: if 

𝑑𝑑 𝑇𝑇𝑆𝑆 𝐶𝐶 𝑈𝑈𝑈𝑈 

𝑑𝑑𝑚𝑚 
> 0, the optimal solution is 𝑚𝑚𝑈𝑈𝑈𝑈 = 𝑤𝑤𝑠𝑠 ; if 𝑑𝑑 𝑇𝑇𝑆𝑆𝐶𝐶 𝑈𝑈𝑈𝑈 

𝑑𝑑𝑚𝑚 
< 0, the optimal solution is 

to approach infinity, or an upper bound if set; if 𝑑𝑑 𝑇𝑇𝑆𝑆𝐶𝐶 𝑈𝑈𝑈𝑈 

𝑑𝑑𝑚𝑚 
= 0, the optimal 𝑚𝑚𝑈𝑈𝑈𝑈 can be 
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equal to any value within the feasible region (𝑤𝑤𝑠𝑠 , +∞). 
For Situation (iii), Situation (iv) and Situation (v), the results and reasoning are 
similar to those for Situation (i), which are also consistent with Liu (2018). However, 

a critical value of 𝜌𝜌 ′ is now equal to − 
4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
, which is exactly twice of that in Liu 

(2018) due to consideration of both morning and evening trips. However, in Situation 

(i), the critical value of 𝜌𝜌 ′ is equal to − 
4𝜆𝜆 𝑤𝑤 𝛾𝛾1𝛾𝛾2 

(𝛽𝛽1+𝛾𝛾1)(𝜆𝜆+𝛾𝛾2 ) − 
4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
. This is due to that when 

Case 1 (the equilibrium traffic pattern) arises, there is a period with costly capacity 

waste, i.e., 𝑟𝑟1,1 = 𝛽𝛽1 
2𝜆𝜆𝜆𝜆 𝑠𝑠 
𝑚𝑚 

+𝜆𝜆+𝛾𝛾2 
𝑠𝑠 ≤ 𝑠𝑠 , which is further explained as follows. By setting 

the parking density to the upper bound (or infinity), we would have the largest 𝑟𝑟1,1 

(under the largest 𝑚𝑚), indicating 𝑟𝑟1,1 is as close to 𝑠𝑠 as possible in Case 1, and the 
efficiency loss due to capacity waste in Case 1 will be smaller. This means that there 
is an additional gain of setting a larger 𝑚𝑚 in Case 1 when compared to other cases. 
Therefore, for Situation (i) (only Case 1 can arise), for a larger range of 𝜌𝜌 ′ , we should 
set 𝑚𝑚 to be infinity or the upper bound. Moreover, for Situation (ii), since both Case 
1 and Case 2 might arise, two critical values of 𝜌𝜌 ′ are involved, and the determination 
of optimal parking density is more tedious. 
We need to acknowledge that, in certain situations, the AV parking density may 
increase with the distance 𝑥𝑥 from the city centre. The consideration of a varying 
𝑚𝑚(𝑥𝑥 ) could affect the results on the optimal parking supply strategy, because: (i) the 
user-equilibrium traffic pattern will be modified, as late departure would have a less 
disadvantageous parking location with the increased parking density; (ii) the gradient 
of 𝑚𝑚 is to be added as an unknown to the above derivation process, leading to 
potential analytical intractability. These cases can be numerically solved for real-
world problems, while this study focuses on analytical insights. 

3.5.3 Optimal AV parking supply for system optimum 

In this section, we investigate the optimal parking supply scheme under the system 
optimum conditions. The total system cost at system optimum 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 can be calculated 
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as follows 

We then take the first and the second derivatives of 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 : 

From 𝑑𝑑 𝑇𝑇 𝑆𝑆 𝐶𝐶 𝑆𝑆𝑆𝑆 

𝑑𝑑𝑚𝑚 
and 𝑑𝑑 2 𝑇𝑇 𝑆𝑆 𝐶𝐶 𝑆𝑆𝑆𝑆 

𝑑𝑑 𝑚𝑚 2 , it can be verified that to minimize the 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 , we have the 

following results. Firstly, when 𝜌𝜌 ′ > −2𝜆𝜆𝑤𝑤 , the optimal solution of 𝑚𝑚, denoted as 𝑚𝑚𝑆𝑆 𝑆𝑆 , 
is to approach infinity, or an upper bound if set; Secondly, when 𝜌𝜌 ′ < −2𝜆𝜆𝑤𝑤 , the optimal 

solution 𝑚𝑚𝑆𝑆 𝑆𝑆 is to approach the lower bound, which is equal to 𝑤𝑤𝑠𝑠 if 𝛽𝛽1 > 2𝜆𝜆, or 2𝜆𝜆𝑤𝑤𝜆𝜆 

𝛽𝛽1 
if 

2𝜆𝜆𝑤𝑤𝜆𝜆 

𝑚𝑚 
< 𝛽𝛽1 ≤ 2𝜆𝜆 ; Thirdly, when 𝜌𝜌 ′ = −2𝜆𝜆𝑤𝑤 : if 𝑑𝑑 𝑇𝑇 𝑆𝑆 𝐶𝐶 𝑆𝑆𝑆𝑆 

𝑑𝑑𝑚𝑚 
> 0, the optimal solution is to 

approach the lower bound; if 𝑑𝑑 𝑇𝑇𝑆𝑆𝐶𝐶 𝑆𝑆𝑆𝑆 

𝑑𝑑𝑚𝑚 
< 0, the optimal solution is to approach infinity or 

upper bound if set; if 𝑑𝑑 𝑇𝑇𝑆𝑆𝐶𝐶 𝑆𝑆𝑆𝑆 

𝑑𝑑𝑚𝑚 
= 0, the optimal solution 𝑚𝑚𝑆𝑆 𝑆𝑆 can be set as any feasible 

value for 𝑚𝑚.   
The above results for the optimal parking density under system optimum traffic pattern 
are in line with those under user equilibrium traffic pattern and also compatible with those 
in Liu (2018), where only morning commute is considered. Furthermore, by comparing 
the optimal parking densities under UE and SO flow patterns, one can readily identify 
that the optimal solutions under UE and SO are often not identical. Particularly, when 𝜌𝜌 ′ 

has a medium value, where optimal solutions under UE and SO differ, the details are 
discussed as follows. Before providing detailed discussion, it should be noted that the 

following condition holds: − 
4𝜆𝜆𝑤𝑤 𝛾𝛾1 𝛾𝛾2 

(𝛽𝛽1+𝛾𝛾1)(𝜆𝜆+𝛾𝛾2) − 
4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
< −2𝜆𝜆𝑤𝑤 < − 

4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
(this can be 

verified based on assumptions on the schedule delay penalties). 

For Situation (i), if − 
4𝜆𝜆𝑤𝑤 𝛾𝛾1𝛾𝛾2 

(𝛽𝛽1+𝛾𝛾1)(𝜆𝜆+𝛾𝛾2 ) − 
4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
< 𝜌𝜌 ′ < −2𝜆𝜆𝑤𝑤 , we should let 𝑚𝑚 approach the 
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upper bound to minimise 𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 , but approach the lower bound to minimize 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 . This 
means, it is more likely (for a larger range of 𝜌𝜌 ′ ), we should let 𝑚𝑚 to be the upper bound 
to minimise 𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 than to minimise 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 . This is explained in the following. For 
𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 , an increasing 𝑚𝑚 (parking concentration over space) can cause the arrivals to be 
more concentrated around the official work start time and consequently, reduce the 
schedule delay for morning commute. Moreover, an increasing 𝑚𝑚 would reduce the 
efficiency loss due to capacity waste (in Case 1) under user equilibrium traffic pattern, as 
discussed before. 

For Situation (iii), Situation (iv) and Situation (v), if −2𝜆𝜆𝑤𝑤 < 𝜌𝜌 ′ < − 
4𝛽𝛽1𝜆𝜆𝑤𝑤
𝛽𝛽1+𝛾𝛾1 

, we should 

let 𝑚𝑚 approach the lower bound to minimize 𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 , but approach the upper bound to 
minimise 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 . This means that it is more likely (for a larger range of 𝜌𝜌 ′ ) we should 
set 𝑚𝑚 to be the lower bound to minimise 𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 . This is because, under user equilibrium, 
a decreasing parking density can lead to less concentrated departure rates over time for 
morning at equilibrium (smaller 𝑟𝑟1,1 , 𝑟𝑟1,2 , 𝑟𝑟1,3 ), which would lead to smaller queuing 
delays at the bottleneck. In contrast to UE traffic, the queueing delay is completely 
eliminated at system optimum, so a decreasing 𝑚𝑚 cannot result in reductions in 
congestion levels. Note that for Situation (iii), Situation (iv) and Situation (v) since there 
is no period with a capacity waste, the additional gain of setting a larger 𝑚𝑚 for Situation 
(i) does not apply here. 

For Situation (ii), if − 
4𝜆𝜆𝑤𝑤 𝛾𝛾1 𝛾𝛾2 

(𝛽𝛽1+𝛾𝛾1)(𝜆𝜆+𝛾𝛾2 ) − 
4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
< 𝜌𝜌 ′ < − 

4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
, we have a medium optimal 

solution for UE (i.e. 𝑚𝑚𝑈𝑈𝑈𝑈 = 2𝜆𝜆𝑤𝑤𝜆𝜆 

𝛽𝛽1−𝜆𝜆−𝛾𝛾2 
). By comparison, the optimal solution 𝑚𝑚𝑆𝑆 𝑆𝑆 is to 

approach either the lower bound or the upper bound, depending on the relationship 
between 𝜌𝜌 ′  and −2𝜆𝜆𝑤𝑤 , which is a mix of that for Situation (i) and for Situation (iii), 
Situation (iv) and Situation (v). 

3.6 Numerical Studies 

In this section, we present some numerical results to illustrate our analysis with AV day-long 
commuting and parking. Specifically, we analyze different aggregate cost components, tolling 
schemes and AV parking supply strategies under the no-toll user equilibrium and system 
optimum. As discussed in Section 3.3, we find that the user-equilibrium traffic pattern varies 
against the AV parking density, and we analyze five situations. To save space, only Situation 
(ii) and/or Situation (iv) are selected for numerical illustration. This is because these two 
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situations involve switching of user equilibrium traffic patterns (switching of cases), which 
are more complicated than the other situations. The parameters used for the numerical studies 
are summarized in Table 3.4. 
Based on the analysis in Section 3.3.3, with the increase in the AV parking density, the traffic 
pattern switches from Case 1 to Case 2 at the transition point 𝑚𝑚 = 3000 for Situation (ii); 
while for Situation (iv), the traffic pattern switches from Case 2 to Case 3 at the transition 
point 𝑚𝑚 = 2400 (refer to Table 3.3). 

Table 3.4 Parameters used for numerical studies 
Parameter Situation (ii) Situation (iv) 
𝛼𝛼1 ($/h) 9.91 9.91 
𝛽𝛽1 ($/h) 6.6 6.84 
𝛾𝛾1 ($/h) 17.00 10.00 
𝛾𝛾2 ($/h) 3.50 4.00 
𝜆𝜆 ($/h) 3.00 0.80 
𝑠𝑠 (veh/h) 2000 2000 
𝑤𝑤 (h/km) 0.025 0.025 
𝑁𝑁 (veh) 3,500 3,500 
𝑚𝑚 (space/km) 50~5000 50~5000 

3.6.1 Aggregate cost component 

This section investigates the impacts of the AV parking density on different aggregate 
cost components. We analyze how the total cost of queuing delay, the total cost of 
schedule delay and the total cost of AV self-driving to find a parking space in the morning 
and leave the parking area in the evening vary with the parking density. As the results for 
Situation (ii) and Situation (iv) are similar, to save space, we present the former only in 
Figure 3.7. We have the following observations. 
First, for morning commute, the 𝑇𝑇 𝑄𝑄1 is an increasing function of the parking density 𝑚𝑚, 
while the 𝑇𝑇𝑇𝑇1 is a decreasing function. This is explained as follows. A larger 𝑚𝑚 indicates 
a more concentrated distribution of parking space, which means that the difference in the 
distance between the city centre and different parking spaces is less significant. Under 
this circumstance, a commuter is less motivated to depart from home earlier to obtain a 
parking space closer to the city centre, but would try to reach the workplace as punctually 
as possible to minimize the schedule delay instead, resulting in an increase in the total 
queuing delay cost and a decrease in the total schedule delay cost for morning commutes. 
Second, unlike morning commute, both the total queuing delay cost and the total schedule 
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delay cost for evening commute is independent of the AV parking density 𝑚𝑚. For the total 
queuing delay cost, this is because, the arrival rate to the inbound bottleneck always 
follows the red curve 𝑃𝑃𝑄𝑄𝑄𝑄 as shown in Figure 3.2, whatever the distribution of AV 
parking spaces is. In other words, the arrival rates for evening commute, 𝑟𝑟2,1 and 𝑟𝑟2,2 , are 
independent of the AV parking density 𝑚𝑚, while the total queuing delay cost depends on 
𝑟𝑟1,1 , 𝑟𝑟2,2 and the total travel demand 𝑁𝑁 only (see Figure 3.2). For the total schedule delay 
cost, the reason is that the AV arrival rate to the workplace to pick up commuters is always 
equal to the bottleneck capacity 𝑠𝑠 from the official work closure time 𝑡𝑡2∗ onwards, until 
all the 𝑁𝑁 commuters are picked up at the city centre. In this process, the pick-up time and 
frequency at the workplace have nothing to do with the AV parking distribution. Hence, 
𝑚𝑚 has no impact on the total schedule delay cost for evening commute.   
Furthermore, Figure 3.7 shows that the total travel cost for finding a parking in the 
morning (AV self-driving from 𝑥𝑥0 to the parking location 𝑥𝑥 ) and the cost for leaving the 
parking area in the evening (AV self-driving from the parking location 𝑥𝑥 to 𝑥𝑥0 ) to pick 
up commuters are equal, and both are decreasing over 𝑚𝑚. This is expected as a more 
concentrated parking distribution will decrease the total distance between the location 𝑥𝑥0 

and all other parking locations 𝑥𝑥 . 

(a) Queuing delay cost (b) Schedule delay cost (c) Time cost of finding parking space 
(morning) and leaving parking area 

(evening) 
Figure 3.6 Evaluation of aggregate cost components against AV parking density 

under Situation (ii) 

3.6.2 Tolling scheme 

In this Section, we apply the first-best tolling scheme and show how the toll revenue 
varies with the AV parking density. For numerical illustration, we let 𝜀𝜀0 = 10 . In 
particular, Figure 3.8 shows the change of total toll revenues against the AV parking 
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density under the introduced first-best toll schemes for morning-evening commutes. It is 
evident that the total toll revenue for evening peak is not influenced by the AV parking 
density, while the toll revenue increases with 𝑚𝑚 for morning commute and consequently, 
the daily commute. In addition, Figure 3.8(a) shows that in Situation (ii), the traffic 
pattern in Case 2 can drive a greater total daily toll revenue than that in Case 1. Similarly, 
Figure 3.8(b) indicates that a more concentrated parking distribution can lead to a switch 
from Case 2 to Case 3 in Situation (iv), and as a result, the total daily toll revenue 
increases over 𝑚𝑚. 

(a) Situation (ii) (b) Situation (iv) 
Figure 3.7 Toll revenue against the AV parking density 

3.6.3 AV parking supply 

In this section, we investigate the sensitivity of the system-level cost to the AV parking 
supply. Specifically, we examine the total social parking cost 𝑇𝑇 𝑇𝑇𝑃𝑃𝑇𝑇 , the total system cost 
at equilibrium 𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 and the total system cost at system optimum 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 , and analyse 
how these metrics are influenced by the AV parking density 𝑚𝑚. For the social cost of 
parking units, we use the function 𝜌𝜌(𝑥𝑥 ) = −𝜑𝜑(𝑥𝑥 − 𝑥𝑥0 ) + 20 in this case study. For 
demonstration purposes, we set 𝜑𝜑 = 0.25, 0.18, 0.145, 0.05 (i.e. 𝜌𝜌 ′ (𝑥𝑥 ) = 
−0.25, −0.18, −0.145, −0.05) for Situation (ii), and 𝜑𝜑 = 0.1, 0.035, 0.02 (i.e. 𝜌𝜌 ′ (𝑥𝑥 ) = 
−0.1, −0.035, −0.02) for Situation (iv). Figure 3.9 shows the evaluations of 𝑇𝑇 𝑇𝑇𝑃𝑃𝑇𝑇 , 
𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 under different values of 𝜌𝜌 ′ (𝑥𝑥 ) for Situation (ii), and Figure 3.10 
depicts the results for Situation (iv). 
It is shown in Figure 3.9 that the total social parking cost always increases with the AV 
parking density, because the social cost of parking spaces close to the city centre is 
relatively high. Figures 3.9(a) and 3.9(d) show that when 𝜌𝜌 ′ (𝑥𝑥 ) is sufficiently small or 
large, the functions of 𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 are both monotonic with respect to the AV 
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parking density. Specifically, as shown in Figure 3.9(a), both 𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 is 
increasing with the small 𝜌𝜌 ′ (𝑥𝑥 ) (more negative) causing the optimal solution to approach 
the lower bound, which is equal to 𝑤𝑤𝑠𝑠 = 50 for both UE and SO in this numerical 
illustration. Similarly, both 𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 is decreasing with the large 𝜌𝜌 ′ (𝑥𝑥 ) (more 
positive), which drives the optimal solutions 𝑚𝑚𝑈𝑈𝑈𝑈 = 𝑚𝑚𝑆𝑆 𝑆𝑆 → +∞ (or the upper bound if 
prescribed). 
By contrast, as shown in Figure 3.9(b) and Figure 3.9(c), when 𝜌𝜌 ′ (𝑥𝑥 ) has a medium value, 
the situation is not as straightforward as the cases in Figure 3.9(a) and Figure 3.9(d). For 

both figures, we have the relationship − 
4𝜆𝜆𝑤𝑤 𝛾𝛾1 𝛾𝛾2 

(𝛽𝛽1+𝛾𝛾1)(𝜆𝜆+𝛾𝛾2) − 
4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
< 𝜌𝜌 ′ (𝑥𝑥 ) < − 

4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
. 

Because of 𝜌𝜌 ′ (𝑥𝑥 ) > − 
4𝜆𝜆𝑤𝑤 𝛾𝛾1 𝛾𝛾2 

(𝛽𝛽1+𝛾𝛾1)(𝜆𝜆+𝛾𝛾2) − 
4𝛽𝛽1𝜆𝜆𝑤𝑤 

𝛽𝛽1+𝛾𝛾1 
, the 𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 decreases under the UE traffic 

pattern of Case 1 until 𝑚𝑚 reaches line 𝑙𝑙 . Then, the traffic pattern changes to Case 2, where 

we have 𝜌𝜌 ′ (𝑥𝑥 ) < − 
4𝛽𝛽1𝜆𝜆𝑤𝑤
𝛽𝛽1+𝛾𝛾1 

, resulting in an increase in 𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 . Hence, the optimal solution 

𝑚𝑚𝑈𝑈𝑈𝑈 is equal to the value of 𝑚𝑚 at line 𝑙𝑙 , which is equal to 3000. For both figures, 𝑚𝑚𝑆𝑆 𝑆𝑆 is 
different from 𝑚𝑚𝑈𝑈𝑈𝑈 . Specifically, for Figure 3.9(b), 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 is monotonic increasing 
because of 𝜌𝜌 ′ (𝑥𝑥 ) < −2𝜆𝜆𝑤𝑤 , resulting in the optimal solution 𝑚𝑚𝑆𝑆 𝑆𝑆 → 50; for Figure 3.9(c), 
the optimal parking density approaches infinity or the upper bound if set, because 
𝜌𝜌 ′ (𝑥𝑥 ) > −2𝜆𝜆𝑤𝑤 holds. 
In practice, we may have an additional constraint on the parking density, i.e., 𝑚𝑚 is both 
bounded from below and above and 𝑚𝑚 ∈ [𝑚𝑚𝑙𝑙 , 𝑚𝑚𝑢𝑢 ] . The optimal 𝑚𝑚 is then further 
constrained by [𝑚𝑚𝑙𝑙 , 𝑚𝑚𝑢𝑢 ]. In Figure 3.9, for example, when 𝜌𝜌 ′ (𝑥𝑥 ) = −0.18 (see Figure 
3.9(b)), if we set the domain of 𝑚𝑚, denoted as [𝑚𝑚𝑙𝑙 , 𝑚𝑚𝑢𝑢 ], to the right hand of line 𝑙𝑙 , the 
𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 is increasing, and the optimal solution of 𝑚𝑚 should be equal to 𝑚𝑚𝑙𝑙 . If we set the 
domain of 𝑚𝑚 to the left of line 𝑙𝑙 , the 𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 is decreasing, and we have the optimal 
solution 𝑚𝑚𝑈𝑈𝑈𝑈 = 𝑚𝑚𝑢𝑢 . If the domain of 𝑚𝑚 is across line 𝑙𝑙 , the 𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 is first decreasing and 
then increasing, and the optimal solution is the value of 𝑚𝑚 at line 𝑙𝑙 , which is equal to 3000 
in this example. 
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Figure 3.8 Social parking cost and system cost against AV parking density under Situation (ii) 

In Figure 3.10, each curve is divided into two segments by line 𝑙𝑙 , where we have 𝛽𝛽1 = 
𝑓𝑓3 (𝑚𝑚). It shows that with the increase of 𝑚𝑚, the traffic pattern can change from Case 2 to 
Case 3. Similar to Figure 3.9, the total social parking cost expands with the increase of 
𝑚𝑚, because AV parking spaces closer to the city centre are more socially costly. It can be 
easily seen from Figure 3.10(a) that when 𝜌𝜌 ′ (𝑥𝑥 ) < −2𝜆𝜆𝑤𝑤 , the total system costs at 
equilibrium and at system optimum are both increasing with 𝑚𝑚. The optimal solutions of 
𝑚𝑚 for UE and SO are 𝑚𝑚𝑈𝑈𝑈𝑈 = 𝑚𝑚𝑆𝑆 𝑆𝑆 → 𝑤𝑤𝑠𝑠 = 50 in this numerical illustration. Similarly, 
as per Figure 3.10(c), we can obtain the optimal solutions 𝑚𝑚𝑈𝑈𝑈𝑈 = 𝑚𝑚𝑆𝑆 𝑆𝑆 → +∞ (or the 

upper bound if set) when 𝜌𝜌 ′ (𝑥𝑥 ) > − 
4𝛽𝛽1𝜆𝜆𝑤𝑤
𝛽𝛽1+𝛾𝛾1 

. Figure 3.10(b) shows that when −2𝜆𝜆𝑤𝑤 < 

𝜌𝜌 ′ (𝑥𝑥 ) < − 
4𝛽𝛽1𝜆𝜆𝑤𝑤
𝛽𝛽1+𝛾𝛾1 

, the 𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 decreases while the 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 𝑆𝑆 increases with the AV parking 

density. As a result, we have different optimal solutions for UE and SO traffic patterns, 
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which is consistent with the analysis in Section 3.5.3. 

Figure 3.9 Social parking cost and system cost against AV parking density under Situation 
(iv) 

The above numerical results suggest that the parking supply problem examined here is 
much more complicated than that in Liu (2018) after integrating both the morning and 
evening commutes. In particular, with the increase in the gradient of the social cost for a 
parking unit, the system-level cost might fluctuate in different manners under diverse 
situations, which is not observed when only morning commute is considered in the 
previous study. Specifically, by comparing between Situation (ii) and Situation (iv), we 
find that the total system cost at equilibrium is monotonically increasing or decreasing 
over the parking density under Situation (iv), while this change is not monotonic when 
the value of 𝜌𝜌 ′ (𝑥𝑥 ) is moderate under Situation (ii). Furthermore, with a moderate 𝜌𝜌 ′ (𝑥𝑥 ), 
the total system cost at system optimum is always decreasing under Situation (iv), while 
it can be either increasing or decreasing under Situation (ii). Such diversity in the cost 
pattern leads to different optimal parking supply solutions for the two studied situations. 
The finding highlights the importance of integrating the morning and evening commutes 
for management and planning issues related to AVs. This also indicates that parking 
supply strategies should be carefully determined considering parameters for the city (this 
determines the situation, where five situations can arise as discussed in Section 3.3 and 
Section 3.5) and traffic management strategies (e.g., whether tolling is implemented or 
not). 
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4. Findings and Conclusions   

This study investigates the potential of an infrastructure-based solution, i.e., the deployment of 
roadside units, to close the connectivity gap for CAVs in a mixed traffic environment, and thus 
improve the performance of the road network. The solution is evaluated at a macroscopic level for 
the strategic planning purpose. To capture the impact of roadside units on the capacity of highway 
segments, a new link performance function is firstly derived. In particular, with the presence of 
roadside units, a link can be divided into two sub-links, one deployed with roadside units while 
the other does not; the effect of roadside units on reducing the space or time headway between 
CAVs and RVs on the former sub-link can be captured by modifying the capacity of the sub-link. 
As a result, the travel time function of the whole link can be described by simple mathematical 
derivation. Integrating the established link performance function, a network equilibrium model is 
developed to delineate how the deployment of the roadside units will affect travelers’ route choices 
and thus the flow distribution across the network. As the resultant equilibrium flow distribution 
may not be unique, a deployment model is proposed to optimize the location of roadside units such 
that the total travel time under the worst scenario can be minimized. Such a deployment model 
enables a conservative benefit estimation for the roadside-unit deployment. As the deployment 
model is a minimax problem with coupled constraints, a heuristic procedure based on cutting-plane 
scheme is presented to solve the model. Case studies on two networks are conducted, and results 
illuminate the effectiveness of the proposed algorithm for solving the RD model and the significant 
impact of the deployment of roadside units on reducing the system travel time. In particular, the 
optimal location of 10 roadside units can reduce the system travel time on nine-node network and 
South Florida network by 3.32% and 4.07%, respectively. Furthermore, cost-benefit analyses are 
conducted to evaluate the potential of the deployment of roadside units. Specifically, the BCRs of 
deploying roadside units on these two networks are estimated to be 9.31 and 445.27, respectively. 
Sensitivity analyses are conducted to capture the impacts of the change of roadside-unit investment 
cost and coverage length, and CAV travelers’ VOT on the BCRs. Although the BCRs change as 
the above parameters change, they are all far greater than 1, revealing that the benefit brought by 
the deployment of roadside units far outweighs the corresponding investment cost. 

We conclude Chapter 2 by highlighting the importance of infrastructure adaptation planning for 
achieving automated mobility. While thus far the development of the CAV technology appears to 
be primarily driven by the private sector, the public sector has begun taking actions to change laws, 
policies and practices to encourage and promote the development and deployment of the 
technology. It is critical for planning agencies to modify and equip transportation infrastructure to 
support automated driving to promote the deployment of CAVs. There is a lack of systematic 
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methodology to support such policy making and planning practice. More research efforts are 
needed to fill this critical void.   

In addition, this study analyzed the morning-evening commuting and parking problem when 
people complete daily trips with AVs. Specifically, we first model the equilibrium traffic pattern 
for the evening commute, where the parking locations are considered given as they have been 
decided in the morning commute. Then, in the second stage, by incorporating the obtained 
equilibrium travel cost for the evening commute, we model the integrated user equilibrium of 
departure time and parking location choices in the morning, considering the individual daily travel 
cost. Based on equilibrium analysis, we investigate the time-dependent tolling scheme and the AV 
parking supply strategy. 

This study is the first to integrate the daily commuting and parking patterns in the context of AVs. 
It provides insights regarding strategic infrastructure planning and management with automated 
traffic. We differentiate our study from the existing literature on equilibrium commute by three 
aspects. Firstly, this study identifies the different daily travel and parking pattern for AVs against 
the literature with non-AVs (e.g., Zhang et al., 2008). For example, where and how congestion 
might occur have significantly changed. Secondly, when compared to Zhang et al. (2008), we have 
incorporated flexible morning arrival (both early arrival and late arrival are allowed) while we 
assume no early departure in the evening, and we have identified that much more complicated 
commuting pattern might arise than the case when only early arrival in the morning is considered. 
During the morning commute, there might exist a period with a capacity waste. Thirdly, by 
integrating the morning and evening commutes with AVs, we have identified new insights 
regarding the commuting pattern and the optimal parking supply that are ignored by Liu (2018) 
with the morning commute only.   
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5. Recommendations   

This study can be extended in multiple directions. First, the refueling activity can be incorporated 
into the proposed framework of equilibrium with AVs, and optimally locating refueling stations 
will be investigated (Chen et al., 2017; Zhang et al., 2018). Second, future research will consider 
the volatility in the travel demand and the highway capacity in the context of AV commutes, and 
explore the sensitivity of system efficiency to these uncertainties (Ng and Waller, 2010; Wen et 
al., 2018). Also, the AV demand variability can be influenced by the governmental policy (for 
instance, license plate restriction, AV subsidies), which will be considered in the AV system 
analysis. Third, given that a traveler might need to complete another trip in the daytime (for 
example, having lunch outside the office), inter-peak commutes with AVs can also be accounted 
for in future studies. Fourth, the constraints on the amount of time spent at work as well as the 
corresponding parking fee will be analyzed, and their significance to the equilibrium traffic pattern 
will be extensively studied. Fifthly, it is noteworthy that a mix-vehicular traffic environment 
consisting of both AVs and conventional vehicles might arise. Moreover, there may be privately-
owned and shared AVs. Commuters could have different mode choices and behavior patterns, such 
as driving privately owned AVs, taking public transit (with AVs or with traditional vehicles) and 
combining multiple modes in a trip (e.g., park-and-ride). These possibilities will be investigated 
in future studies, while this study serves as a basis for later studies to be built upon. 
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6. Outputs, Outcomes and Impacts 

This study investigates the potential of an infrastructure-based solution, i.e., the deployment of 
roadside units, to close the connectivity gap for CAVs in a mixed traffic environment, and thus 
improve the performance of the road network. The proposed modeling framework can be utilized 
to support the planning of the deployment of roadside units to support automated driving 
automation. 

This study highlights the importance of infrastructure adaptation planning for achieving automated 
mobility. While thus far the development of the CAV technology appears to be primarily driven 
by the private sector, the public sector has begun taking actions to change laws, policies and 
practices to encourage and promote the development and deployment of the technology. It is 
critical for planning agencies to modify and equip transportation infrastructure to support 
automated driving to promote the deployment of CAVs. There is a lack of systematic methodology 
to support such policy making and planning practice. More research efforts are needed to fill this 
critical void. 

The following outputs were generated during the performance of this project: 

• Li, Y., Chen, Z., Yin, Y. and Peeta, S. Deployment of Roadside Units to 
Overcome Connectivity Gap in Transportation Networks with Mixed Traffic. 
Transportation Research Part C, 111, 496-512, 2020 

• Zhang, X, Liu, W., Waller, S.T. and Yin, Y. Modelling and managing the 
integrated morning-evening commuting and parking patterns under the fully 
autonomous vehicle environment. Transportation Research Part B, 128, 380-
407, 2019 
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8. Appendixes   

TABLE A1. O-D demand for the South Florida network 

O-D RV CAV 

1-22 44 22 

1-28 63.5 31.75 

1-64 63.5 31.75 

22-1 44 22 

22-28 60 30 

22-64 62.5 31.25 

28-1 63.5 31.75 

28-22 60 30 

28-64 63.5 31.75 

64-1 72 36 

64-22 62.5 31.25 

64-28 63.5 31.75 
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TABLE A2. South Florida network characteristics 1 

Link 
Number 
of Lanes 

𝐿𝐿 

𝑣𝑣0 
(min) 𝐿𝐿 (km) 𝐼𝐼𝑎𝑎 Link 

Number 
of Lanes 

𝐿𝐿 

𝑣𝑣0 
(min) 𝐿𝐿 (km) 𝐼𝐼𝑎𝑎 Link 

Number 
of Lanes 

𝐿𝐿 

𝑣𝑣0 
(min) 𝐿𝐿 (km) 𝐼𝐼𝑎𝑎 

1-2 3 3.08 6.16 0 31-5 3 8.24 16.48 0 55-35 3 2.67 5.34 0 
1-29 2 5.64 11.28 0 31-30 2 9.00 18.00 0 55-54 3 2.16 4.32 0 
2-1 3 3.00 6.00 6 31-32 2 4.71 9.42 0 55-56 3 10.08 20.16 0 
2-3 3 10.89 21.78 0 31-51 1 2.40 4.80 0 56-11 3 3.56 7.12 0 
3-2 3 10.00 20.00 20 32-31 2 4.71 9.42 0 56-55 3 10.08 20.16 0 
3-4 5 1.33 2.66 0 32-33 3 5.06 10.12 0 56-57 3 4.00 8.00 0 

3-30 2 7.92 15.84 0 32-52 1 2.29 4.58 0 57-12 3 2.67 5.34 0 
4-3 5 1.33 2.66 0 32-82 2 1.76 3.52 0 57-56 3 4.00 8.00 0 
4-5 3 7.48 14.96 0 33-8 3 4.36 8.72 0 57-58 3 3.33 6.66 0 
5-4 3 7.48 14.96 0 33-32 3 5.06 10.12 0 58-13 4 2.29 4.58 0 
5-6 5 4.43 8.86 0 33-34 3 4.42 8.84 0 58-37 3 1.00 2.00 0 

5-31 3 8.24 16.48 0 33-53 3 2.67 5.34 0 58-38 2 8.10 16.2 0 
6-5 5 4.43 8.86 0 34-9 2 4.15 8.30 0 58-57 3 3.33 6.66 0 
6-7 5 2.56 5.12 0 34-33 3 4.42 8.84 0 59-38 3 10.60 21.20 0 

6-82 3 5.60 11.2 0 34-35 3 2.63 5.26 0 59-40 4 3.90 7.80 0 
7-6 5 2.56 5.12 0 34-54 2 2.10 4.20 0 59-65 4 5.35 10.70 0 
7-8 4 3.93 7.86 0 35-10 3 3.73 7.46 0 60-54 2 5.45 10.90 0 
8-7 4 3.93 7.86 0 35-34 3 1.99 3.98 0 60-61 2 6.11 12.22 0 
8-9 4 4.08 8.16 0 35-36 3 5.43 10.86 0 61-60 2 6.11 12.22 0 

8-33 3 4.36 8.72 0 35-55 3 2.67 5.34 0 61-62 3 6.29 12.58 0 
9-8 4 4.08 8.16 0 36-35 3 5.43 10.86 0 62-61 3 6.29 12.58 0 

9-10 4 1.94 3.88 0 36-37 3 6.21 12.42 0 62-63 4 1.85 3.70 0 
9-34 2 4.15 8.30 0 37-36 3 6.21 12.42 0 63-37 3 7.58 15.16 0 
10-9 4 1.94 3.88 0 37-38 3 8.37 16.74 0 63-62 4 1.85 3.70 0 
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10-11 5 8.86 17.72 0 37-58 3 1.00 2.00 0 63-64 3 6.00 12.00 12 
10-35 3 3.73 7.46 0 37-63 3 7.58 15.16 0 63-65 5 2.34 4.68 0 
11-10 5 8.86 17.72 0 38-37 3 8.37 16.74 0 64-63 3 6.00 12.00 12 
11-12 6 2.87 5.74 0 38-39 3 2.82 5.64 0 65-59 4 5.35 10.70 0 
11-56 3 3.56 7.12 0 38-58 2 8.10 16.20 0 65-63 5 2.34 4.68 0 
12-11 6 2.87 5.74 0 38-59 3 10.60 21.20 0 66-40 1 3.42 6.84 0 
12-13 4 2.46 4.92 0 39-17 3 4.27 8.54 0 66-41 1 3.50 7.00 0 
12-57 3 2.67 5.34 0 39-38 3 2.82 5.64 0 66-67 5 1.55 3.10 0 
13-12 4 2.46 4.92 0 39-40 2 7.62 15.24 0 67-17 5 9.68 19.36 0 
13-14 5 2.18 4.36 0 40-39 2 7.62 15.24 0 67-66 5 1.55 3.10 0 
13-58 4 2.29 4.58 0 40-41 3 3.43 6.86 0 67-68 3 2.45 4.90 0 
14-13 6 2.18 4.36 0 40-59 4 3.90 7.80 0 67-72 4 7.38 14.76 0 
14-15 6 3.99 7.98 0 40-66 4 3.42 6.84 0 68-67 3 2.45 4.90 0 
15-14 6 3.99 7.98 0 41-40 3 3.43 6.86 0 68-69 3 2.62 5.24 0 
15-16 5 1.32 2.64 0 41-42 3 2.15 4.30 0 69-18 3 4.76 9.52 0 
16-15 5 1.32 2.64 0 41-66 1 3.50 7.00 0 69-68 3 2.62 5.24 0 
16-17 4 4.00 8.00 0 42-41 3 2.15 4.30 0 69-70 2 7.50 15.00 0 
17-16 4 4.00 8.00 0 42-43 4 6.10 12.20 0 70-69 2 7.50 15.00 0 
17-18 5 3.38 6.76 0 43-42 4 6.10 12.20 0 70-71 3 3.70 7.40 0 
17-39 3 4.27 8.54 0 43-44 4 1.73 3.46 0 71-21 3 4.21 8.42 0 
17-67 5 9.68 19.36 0 43-73 3 4.47 8.94 0 71-70 3 3.70 7.40 0 
18-17 5 3.38 6.76 0 43-81 2 2.67 5.34 0 71-73 3 3.97 7.94 0 
18-19 5 2.98 5.96 0 44-43 4 1.73 3.46 0 72-67 4 7.38 14.76 0 
18-69 3 4.76 9.52 0 44-45 3 5.23 10.46 0 72-73 6 2.15 4.30 0 
19-18 5 2.98 5.96 0 44-74 3 5.33 10.66 0 73-43 3 4.47 8.94 0 
19-20 5 3.72 7.44 0 45-44 3 5.23 10.46 0 73-71 3 3.97 7.94 0 
20-19 5 3.72 7.44 0 45-46 3 2.64 5.28 0 73-72 6 2.15 4.30 0 
20-21 6 1.80 3.60 0 45-77 3 3.20 6.40 0 73-74 5 1.69 3.38 0 
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21-20 6 1.80 3.60 0 45-78 3 2.36 4.72 0 74-44 3 5.33 10.66 0 
21-22 4 2.00 4.00 4 46-45 3 2.64 5.28 0 74-73 5 1.69 3.38 0 
21-71 3 4.21 8.42 0 46-47 2 2.67 5.34 0 74-75 4 3.02 6.04 0 
22-21 4 2.00 4.00 4 46-48 5 2.00 4.00 4 75-74 4 3.02 6.04 0 
22-23 3 1.08 2.16 0 47-46 2 2.67 5.34 0 75-76 2 2.62 5.24 0 
23-22 3 1.08 2.16 0 47-77 4 1.50 3.00 0 75-77 2 3.12 6.24 0 
23-24 3 10.00 20.00 0 48-26 3 3.00 6.00 6 76-24 3 0.76 1.52 0 
24-23 3 10.00 20.00 0 48-46 5 2.00 4.00 4 76-75 2 2.62 5.24 0 
24-25 3 1.09 2.18 0 48-79 3 3.23 6.46 0 76-77 3 2.80 5.60 0 
24-76 3 0.76 1.52 0 49-26 2 3.72 7.44 0 77-45 3 3.20 6.40 0 
25-24 3 1.09 2.18 0 49-28 2 8.74 17.48 0 77-47 4 1.50 3.00 0 
25-26 3 10.01 20.02 0 50-30 2 2.93 5.86 0 77-75 2 3.12 6.24 0 
25-76 2 0.56 1.12 0 50-51 3 11.45 22.90 0 77-76 3 2.80 5.60 0 
26-25 3 10.01 20.02 0 51-31 1 2.40 4.80 0 78-45 3 2.36 4.72 0 
26-27 2 8.05 16.1 0 51-50 3 11.45 22.90 0 78-79 3 8.16 16.32 0 
26-48 3 3.00 6.00 6 51-52 2 5.45 10.90 0 78-80 2 7.74 15.48 0 
26-49 2 3.72 7.44 0 52-32 1 2.29 4.58 0 79-48 3 3.23 6.46 0 
27-26 2 8.05 16.1 0 52-51 2 5.45 10.90 0 79-78 3 8.16 16.32 0 
27-28 3 7.76 15.52 0 52-53 2 7.77 15.54 0 80-78 2 7.74 15.48 0 
28-49 2 8.74 17.48 0 53-33 3 2.67 5.34 0 80-81 1 2.28 4.56 0 
29-1 2 5.64 11.28 0 53-52 2 7.77 15.54 0 81-43 2 2.67 5.34 0 
29-30 2 10.11 20.22 0 53-54 3 5.54 11.08 0 81-80 1 2.28 4.56 0 
30-3 2 7.92 15.84 0 54-34 2 2.10 4.20 0 82-6 3 5.60 11.20 0 
30-29 2 10.11 20.22 0 54-53 3 5.54 11.08 0 82-32 2 1.76 3.52 0 
30-31 2 9.00 18.00 0 54-55 3 2.16 4.32 0 28-27 3 7.76 15.52 0 
30-50 2 2.93 5.86 0 54-60 2 5.45 10.90 0 76-25 2 0.56 1.12 0 

1 
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Appendix B.1 Mathematical notations 
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Appendix B-2. Derivations 

Derivation. Scenario 1 
In Scenario 1, we have the following three stages: 
Stage 1: 
For early arrival in the morning and immediate arrival to the inbound bottleneck after work, the 
individual daily travel cost for a representative commuter who departs from home at 𝑡𝑡1 and parks at the 
location 𝑥𝑥 is 

There are two subcases for Stage 1. Firstly, if 𝑟𝑟1,1 (𝑡𝑡1 ) > 𝑠𝑠 , we have 𝑑𝑑𝑐𝑐(𝑡𝑡 1 ,𝑥𝑥 ) 
𝑑𝑑 𝑡𝑡 1 

= 𝛼𝛼1 
𝑟𝑟1,1 (𝑡𝑡 1)−𝜆𝜆 

𝜆𝜆 
− 

𝛽𝛽1 
𝑟𝑟1,1 (𝑡𝑡 1) 

𝜆𝜆 
+ 2𝜆𝜆𝑤𝑤 

𝑟𝑟1,1 (𝑡𝑡 1) 
𝑚𝑚 

+ (𝜆𝜆 + 𝛾𝛾2 ) 𝑚𝑚 

𝜆𝜆 

𝑟𝑟1,1 (𝑡𝑡 1 ) 
𝑚𝑚 

. At equilibrium, 𝑑𝑑𝑐𝑐(𝑡𝑡 1,𝑥𝑥 ) 
𝑑𝑑 𝑡𝑡 1 

= 0. We then have 

𝑟𝑟1,1 (𝑡𝑡1 ) = 𝛼𝛼 1 

𝛼𝛼 1 −𝛽𝛽1+
2𝜆𝜆𝜆𝜆 𝑠𝑠 
𝑚𝑚 

+𝜆𝜆+𝛾𝛾2 
𝑠𝑠 . (51) 

In this case, 𝛽𝛽1 > 2𝜆𝜆𝑤𝑤𝜆𝜆 

𝑚𝑚
+ 𝜆𝜆 + 𝛾𝛾2 must hold. Hence, if 𝛽𝛽1 > 2𝜆𝜆𝑤𝑤𝜆𝜆 

𝑚𝑚
+ 𝜆𝜆 + 𝛾𝛾2 , we have 𝑟𝑟1,1 (𝑡𝑡1 ) = 

𝛼𝛼 1 

𝛼𝛼 1 −𝛽𝛽1+ 
2𝜆𝜆𝜆𝜆 𝑠𝑠 
𝑚𝑚 

+𝜆𝜆+𝛾𝛾2 
𝑠𝑠 > 𝑠𝑠 . The queue length is increasing at Stage 1. Secondly, if 𝑟𝑟1,1 (𝑡𝑡1 ) ≤ 𝑠𝑠 , no queue 

will occur at the bottleneck, i.e. 𝑞𝑞1 (𝑡𝑡1 ) = 0. We have 𝑑𝑑𝑐𝑐(𝑡𝑡1,𝑥𝑥 ) 
𝑑𝑑𝑡𝑡1

= −𝛽𝛽1 + 2𝜆𝜆𝑤𝑤 
𝑟𝑟1,1(𝑡𝑡 1 ) 
𝑚𝑚

+ (𝜆𝜆 + 𝛾𝛾2 ) 𝑚𝑚
𝜆𝜆 

𝑟𝑟1,1(𝑡𝑡 1)
𝑚𝑚

. 

At equilibrium, 𝑑𝑑𝑐𝑐(𝑡𝑡1,𝑥𝑥 ) 
𝑑𝑑𝑡𝑡1

= 0. We then have 

𝑟𝑟1,1 (𝑡𝑡1 ) = 𝛽𝛽1 
2𝜆𝜆𝜆𝜆 𝑠𝑠 
𝑚𝑚 

+𝜆𝜆+𝛾𝛾2 
𝑠𝑠 ≤ 𝑠𝑠 . (52) 

In this case, 𝛽𝛽1 ≤ 
2𝜆𝜆𝑤𝑤𝜆𝜆 

𝑚𝑚
+ 𝜆𝜆 + 𝛾𝛾2 must hold. Hence, if 𝛽𝛽1 ≤ 

2𝜆𝜆𝑤𝑤𝜆𝜆 

𝑚𝑚
+ 𝜆𝜆 + 𝛾𝛾2 , we have 𝑟𝑟1,1 (𝑡𝑡1 ) = 

𝛽𝛽1 
2𝜆𝜆𝜆𝜆 𝑠𝑠 
𝑚𝑚 

+𝜆𝜆+𝛾𝛾2 
𝑠𝑠 ≤ 𝑠𝑠 . The queue length remains zero at Stage 1. 

Stage 2: 
For early arrival in the morning and late departure after work, we have 

If 𝑟𝑟1,2 (𝑡𝑡1 ) > 𝑠𝑠 , we have 𝑑𝑑𝑐𝑐(𝑡𝑡 1,𝑥𝑥 ) 
𝑑𝑑𝑡𝑡 

= 𝛼𝛼1 
𝑟𝑟1,2 (𝑡𝑡 1 )−𝜆𝜆 

𝜆𝜆 
− 𝛽𝛽1 

𝑟𝑟1,2 (𝑡𝑡 1) 
𝜆𝜆 

+ 2𝜆𝜆𝑤𝑤 
𝑟𝑟1,2 (𝑡𝑡 1 ) 
𝑚𝑚 

. At equilibrium, 𝑑𝑑𝑐𝑐(𝑡𝑡 1,𝑥𝑥 ) 
𝑑𝑑 𝑡𝑡 1 

= 0. 

We have 

𝑟𝑟1,2 (𝑡𝑡1 ) = 𝛼𝛼 1 

𝛼𝛼 1 −𝛽𝛽1+
2𝜆𝜆𝜆𝜆 𝑠𝑠 
𝑚𝑚 

𝑠𝑠 . (53) 
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Under the assumption 𝛽𝛽1 > 2𝜆𝜆𝑤𝑤𝜆𝜆 

𝑚𝑚 
, 𝑟𝑟1,2 (𝑡𝑡1 ) = 𝛼𝛼 1 

𝛼𝛼 1 −𝛽𝛽1+ 
2𝜆𝜆𝜆𝜆 𝑠𝑠 
𝑚𝑚 

𝑠𝑠 > 𝑠𝑠 always holds, i.e., congestion exists in 

Stage 2. 

Stage 3: 
For late arrival in the morning and late departure after work, we have 

Considering that the queue has been accumulated in the previous stage(s), the first derivative of 𝑐𝑐 (𝑡𝑡1 , 𝑥𝑥 ) 
can then be determined as follows 

At equilibrium, 𝑑𝑑𝑐𝑐(𝑡𝑡1,𝑥𝑥 ) 
𝑑𝑑𝑡𝑡1

= 0. We then have 

𝑟𝑟1,3 (𝑡𝑡1 ) = 𝛼𝛼 1 

𝛼𝛼 1 +𝛾𝛾1+
2𝜆𝜆𝜆𝜆 𝑠𝑠 
𝑚𝑚 

𝑠𝑠 < 𝑠𝑠 . (56) 

Derivation. Scenario 2 
In Scenario 2, we have the following three stages: 
Stage 1: 
For early arrival in the morning and immediate arrival to the inbound bottleneck after work closure time 
in the evening, the departure rate 𝑟𝑟1,1 (𝑡𝑡 ) has the same formulation under the same condition as that of 
Stage 1 in Scenario 1, which is 

Stage 2: 
For late arrival in the morning and immediate arrival to the inbound bottleneck after work, the individual 
daily travel cost for a representative commuter who departs from home at 𝑡𝑡1 and parks at the location 𝑥𝑥 
is 

Assuming that 𝑟𝑟1,2 (𝑡𝑡1 ) > 𝑠𝑠 , we have 𝑑𝑑𝑐𝑐 (𝑡𝑡 1,𝑥𝑥 ) 
𝑑𝑑 𝑡𝑡 1 

= 𝛼𝛼1 
𝑟𝑟1,2 (𝑡𝑡 1 )−𝜆𝜆 

𝜆𝜆 
+ 𝛾𝛾1 

𝑟𝑟1,2 (𝑡𝑡 1) 
𝜆𝜆 

+ 2𝜆𝜆𝑤𝑤 
𝑟𝑟1,2 (𝑡𝑡 1) 
𝑚𝑚 

+ (𝜆𝜆+𝛾𝛾2) 
𝜆𝜆 

𝑟𝑟1,2 (𝑡𝑡1 ). 

At equilibrium, 𝑑𝑑𝑐𝑐(𝑡𝑡 1,𝑥𝑥 ) 
𝑑𝑑 𝑡𝑡 1 

= 0. Then, we have 𝑟𝑟1,2 (𝑡𝑡1 ) = 𝛼𝛼 1 

𝛼𝛼 1 +𝛾𝛾1+𝛾𝛾2 +𝜆𝜆+ 
2𝜆𝜆𝜆𝜆 𝑠𝑠 
𝑚𝑚 

𝑠𝑠 < 𝑠𝑠 . This equation contradicts 

with the assumption 𝑟𝑟1,2 (𝑡𝑡1 ) > 𝑠𝑠 . Thus, we have 𝑟𝑟1,2 (𝑡𝑡1 ) ≤ 𝑠𝑠 at Stage 2 in Scenario 2. Then, we can re-
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evaluate the individual daily travel cost as follows. 

Stage 3: 
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