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ABSTRACT1

A variety of takeover scenarios will happen in conditionally automated driving.2

Previous studies presented mixed results regarding the effects of scenarios on takeover3

performance. According to drivers’ strategies for takeover requests, this study selected4

eight representative takeover scenarios and categorized them into lane keeping and lane5

changing scenarios. To investigate the effects of scenario type and road environment6

(highway vs. urban) on drivers’ takeover performance and physiological responses, a7

driving simulation study was conducted as a mixed design with 40 participants (average8

age = 22.8 years). The results showed that in lane changing scenarios, with the same9

sensing capability, drivers on highways had deteriorated takeover performance in the10

form of harsher takeover maneuvers and higher collision risk, as well as higher arousal11

and stress, compared to urban areas. However, such effects disappeared or even12

reversed in lane keeping scenarios on the curves, where drivers on highways had13

smoother takeover maneuvers and lower arousal and stress. These findings will help us14

understand the vital roles scenario type and road environment play during takeover15

transitions. Our findings have implications for the design of advanced driver-assistance16

systems and will improve driving safety in conditionally automated driving.17

Keywords: Conditionally automated driving, takeover scenarios, road18

environment, takeover transition19



3

1. INTRODUCTION1

Automated driving promises to improve driving safety and fuel efficiency, and2

provide drivers with an opportunity to engage in non-driving-related tasks (NDRTs).3

However, SAE Level 3 automation requires drivers to resume control of the vehicle4

within a short period of time when the vehicle reaches its functional limit (Society of5

Automotive Engineers, 2018). As drivers are no longer required to monitor the6

environment actively, they may lose situational awareness and have difficulty taking7

over control of the vehicle when a takeover request (TOR) is issued (Ayoub, Zhou, Bao,8

& Yang, 2019; Du, Zhou, et al., 2020; Petersen, Robert, Yang, & Tilbury, 2019; Zhou,9

Yang, & de Winter, 2021; Zhou, Yang, & Zhang, 2019).10

Researchers have investigated the impacts of different factors on drivers’ takeover11

performance, such as driving environments (Gold, Körber, Lechner, & Bengler, 2016;12

Körber, Gold, Lechner, & Bengler, 2016; S. Li, Blythe, Guo, & Namdeo, 2018; Naujoks13

et al., 2017) and types of NDRTs (Du, Zhou, et al., 2020; Roche, Somieski, &14

Brandenburg, 2019; Wandtner, Schömig, & Schmidt, 2018; Yoon, Kim, & Ji, 2019).15

With regard to the driving environment, researchers have studied the effects of traffic16

density, road situations, and weather conditions on takeover performance. For example,17

research showed that heavy traffic density led to longer takeover time (Gold et al., 2016;18

Körber et al., 2016), more braking rather than steering (Eriksson & Stanton, 2017),19

lower minimum time to collision (Du, Kim, et al., 2020; Gold et al., 2016; Körber et al.,20

2016), more collisions (Gold et al., 2016; Körber et al., 2016), and larger maximum21

accelerations (Gold et al., 2016; Körber et al., 2016; S. Li et al., 2018). S. Li et al.22

(2018) found that city roads led to smaller resulting acceleration compared to highways23

and drivers in adverse weather conditions (i.e., snow, rain, and fog) had longer TOR24

response time, shorter minimum TTC, larger resulting acceleration, and steering wheel25

angle. Furthermore, Louw et al. (2017) found that less available visual information (i.e.,26

fog) was linked to shorter minimum distance headway and minimum TTC. However,27

some of the above-mentioned studies used the same takeover scenario in the entire28

experiment (Gold et al., 2016; Hergeth, Lorenz, & Krems, 2017; Roche et al., 2019), not29
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representing the wide range of takeover events that could happen in the real world.1

Takeover scenarios play a crucial role in shaping drivers’ responses and warrant2

significant attention from researchers.3

1.1 Takeover scenarios4

Some studies designed a variety of takeover scenarios in order to examine their5

effects on takeover performance. For example, Naujoks, Mai, and Neukum (2014)6

examined effects of TOR modality (i.e., visual vs. visual plus auditory) under three7

takeover scenarios: missing lane markings, temporary lines because of a work zone, and8

high road curvature. Results of their study showed that drivers’ lateral control was9

better with visual-auditory TORs, and such advantages were especially pronounced in10

the high road curvature scenario. Later, Naujoks et al. (2017) used the same three11

takeover scenarios and manipulated automation level (hands-on vs. hands-off vs.12

manual) and NDRT (with vs. without NDRT) in another experiment. They found that13

only in the temporary lines because of a work zone condition, engaging NDRT increased14

the self-reported situation criticality. Only in the high curvature scenario, high15

automation level increased variability of the lateral vehicle position and the16

self-reported situation criticality.17

More recently, Dogan, Honnêt, Masfrand, and Guillaume (2019) investigated the18

effects of NDRTs on takeover performance in two takeover scenarios (i.e., missing lane19

markings and obstacles ahead). Results showed that regardless of NDRT type, drivers20

had shorter TOR response time and lower mental workload in the obstacle avoidance21

scenario than in the missing lane scenario. Similarly, Wu, Wu, Lyu, and Zheng (2019)22

analyzed drivers’ takeover performance under different scenarios and NDRTs. Scenarios23

included obstacle on the left, obstacle ahead, and obstacle ahead with lead vehicle.24

NDRTs included a 1-back memory task and a letter game task. They found that drivers25

had the shortest steering response time in the obstacle ahead scenario, and longer26

minimum TTC in the obstacle ahead scenario than the obstacle ahead with lead vehicle27

scenario.28
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Treating different scenarios as distinct levels of the independent variable - takeover1

scenario - poses several challenges. Firstly, it becomes challenging to compare and2

reconcile the findings across different scenarios. Secondly, the generalization and3

scalability of the results may be limited.4

One way to address this is to categorize the scenarios first before investigating5

their effects. To our knowledge, only two studies presented below tried to extract6

underlying influential dimensions of takeover scenarios. Eriksson et al. (2018)7

attempted to categorize scenarios into lane changing and braking scenarios,8

corresponding to different augmented visual interfaces to support drivers in making a9

correct lane changing or braking reaction in takeover transitions. Although the study10

did not compare the two scenario types directly, it did emphasize the fundamental11

differences between the two types and used different augmented feedback to provide12

recommendations. Zeeb, Härtel, Buchner, and Schrauf (2017) designed two scenarios13

based on the types of takeover responses in a simulated driving study. In the14

longitudinal scenario, drivers were required to intervene with a cutting in and hard15

braking vehicle. In the lateral scenario, drivers were required to intervene with the16

drifting vehicle on the curve induced by a wind gust from the left side. They found the17

detrimental effects of increasing manual task load on response time and takeover quality18

in both scenarios, but the effects were more pronounced in the lateral scenario. High19

cognitive load deteriorated response time and takeover quality in the lateral maneuver,20

but not in the longitudinal maneuver. Notably, researchers excluded 10 drivers who21

reacted with a lane change in the longitudinal scenario from analysis because their22

behavior was not comparable to the other drivers’ reactions. However, it is common for23

drivers to brake and change lanes simultaneously in critical situations. This suggests24

that a better categorization of takeover scenarios is needed in order to study their25

effects.26
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1.2. Takeover responses1

Regarding takeover responses, existing literature mainly focused on drivers’2

driving behaviors to quantify their responses during takeover transitions (Cao et al.,3

2021; Dogan et al., 2019) to understand and model the driver’s takeover process. For4

instance, J. W. Kim and Yang (2020) employed various takeover performance5

indicators, including maximum acceleration, steering reversal rate, and standard6

deviation lateral position, to evaluate the effectiveness of different takeover alarm7

methods. Furthermore, Cao et al. (2021) conducted a comprehensive review of the8

research on takeover performance and proposed standardized metrics for measuring9

takeover performance in conditionally automated driving. While these indexes could10

help determine how efficiently and safely drivers can take over control of their vehicles,11

it is also important to know drivers’ cognitive and emotional states in responses to12

takeovers, which can be reflected by their physiological responses.13

Common metrics and measurement methods of physiological responses include eye14

movement (Huang, Yang, & Nakano, 2023), heart rate (HR) (Alrefaie, Summerskill, &15

Jackon, 2019), galvanic skin responses (GSRs) (Radhakrishnan et al., 2022), and16

electroencephalography (EEG) (Pakdamanian et al., 2020). For example, Du, Yang,17

and Zhou (2020) found that shorter TOR lead time led to inhibited blink numbers and18

larger maximum and mean GSR phasic activation, whilst heavy traffic density resulted19

in increased HR acceleration patterns than light traffic density. By examining these20

responses, researchers can better understand the underlying cognitive processes and21

emotional states experienced by drivers during the takeover process.22

1.3. The present study23

Existing studies that focused on takeover scenarios either directly treated various24

scenarios as the independent variable, resulting in the lack of generalization (Dogan et25

al., 2019; Naujoks et al., 2017), or categorized different scenarios into braking or26

changing-lane types, which overlooked the fact that it is common for a driver to brake27

and change lane simultaneously (Zeeb et al., 2017). A better categorization of takeover28
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scenarios is needed in order to study their effects. Meanwhile, existing literature mainly1

studied a single factor such as TOR lead time from the road environment in2

understanding drivers’ driving behaviors. In real-world scenarios, road features like3

curve radius and speed are highly correlated and should be investigated concurrently.4

Our study aimed to investigate the effects of scenario type and road environment5

on drivers’ takeover performance and physiological responses. Our contributions to the6

literature are outlined through several innovative aspects. First, we selected eight7

representative takeover scenarios and systematically categorized them depending on8

whether scenarios required drivers to change lanes or not (i.e., lane keeping vs. lane9

changing scenarios). As the lane keeping tasks have trivial consequences for10

non-takeover on the straight road, we chose to study the lane keeping scenarios on the11

curves which required takeovers to avoid deviation from the road. Second, we studied12

the effect of scenario type in different road environments (urban areas and highways).13

The unique characteristics of urban and highway settings, including different speed14

limits and layouts, presented an innovative approach to understanding how scenario15

types may interact with the road environment to shape drivers’ takeover responses.16

Third, we incorporated physiological responses that can reflect cognitive and emotional17

states for a comprehensive assessment of drivers’ responses during takeover transitions.18

In the lane changing scenarios, drivers need to observe the driving environments19

and then change to available lanes to avoid the object ahead. With the same sensor20

range capability, highways with high vehicle speed indicate short TOR lead time defined21

as critical event onset for failures (McDonald et al., 2019). The visible objects ahead on22

highways may trigger quicker takeover responses, worsen drivers’ takeover quality, and23

produce less desirable physiological responses. Thus, we proposed the first hypothesis:24

H1: In lane changing scenarios, compared to urban areas, drivers on highways25

would have (a) shorter takeover response time; (b) harsher takeover behaviors reflected26

by maximum resulting acceleration/jerk and standard error (SE) of steering angle; (c)27

higher collision risk measured by minimum TTC; (d) more narrow attention allocation28

reflected by horizontal gaze dispersion; and (e) higher arousal and stress indicated by29
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phasic GSR.1

In the lane keeping scenarios, drivers need to apply pedals and steering wheel to2

maintain the vehicle in the current lane. To ensure safe and controlled driving on curvy3

roads, we assume that the vehicle (mass m) has the same centripetal force (F ) no4

matter whether it is on the highway or urban curves. According to the equation5

F = mv2/r = mw2r, although the vehicle has higher speed (v) on the highway curves,6

its angular speed (w) is lower because the highway radius (r) is larger7

(Camacho-Torregrosa, Pérez-Zuriaga, Campoy-Ungría, & García-García, 2013; Porter,8

Donnell, & Mason, 2012). Lower angular speed may lead to slower takeover responses,9

better takeover quality, and trigger more desirable physiological responses.10

Hence, we proposed the second hypothesis:11

H2: In lane keeping scenarios, compared to urban areas, drivers on highways12

would have (a) longer takeover response time; (b) smoother takeover behaviors13

reflected by maximum resulting acceleration/jerk and SE of steering angle; (c) better14

lane maintenance measured by SE of road offset; (d) wider attention allocation reflected15

by horizontal gaze dispersion; and (e) lower arousal and stress indicated by phasic GSR.16

2. Method17

This research complied with the American Psychological Association code of18

ethics and was approved by the Institutional Review Board at the University of19

Michigan. Informed consent was obtained from each participant.20

2.1 Participants21

According to a power analysis through G*Power 3.1 software (Faul, Erdfelder,22

Buchner, & Lang, 2009), a sample size of 36 was necessary to achieve a statistical power23

of 0.95, with an anticipated medium effect size of 0.5 and an alpha level of 0.05. Thus,24

we recruited 40 university students (average age = 22.8 years, SD = 3.9; 20 females and25

20 males) with normal or corrected-to-normal vision (i.e., wore glasses or contacts) in26

the experiment. Participants were screened for valid US driver’s license status. All27
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participants were active drivers, with 20 driving less than 50 miles per week, 17 driving1

50-100 miles per week, and 4 driving more than 100 miles per week.2

Participants self-evaluated their susceptibility to motion sickness during3

recruitment and experienced a training session to ensure they were not susceptible to4

simulator sickness. The study lasted about 60 minutes, and each participant was5

compensated with $30 upon completion of the experiment. Participants were informed6

that they were free to withdraw from the study at any time.7

2.2 Apparatus and Stimuli8

The study was conducted in a fixed-base driving simulator from Realtime9

Technologies Inc. (RTI, Michigan). The virtual world was projected onto three front10

screens (16 feet away), one rear screen (12 feet away), and two side mirror displays. The11

simulated vehicle was controlled by a steering wheel and pedal system embedded in a12

Nisan Versa car model. The vehicle was programmed to simulate an SAE Level 313

automation, which handled the longitudinal and lateral control, navigation, and14

responded to traffic elements. Participants could press the button on the steering wheel15

to activate the automated mode, which was indicated by a green highlight on the16

dashboard. Once the AV reached its system limit, the take-over request, consisting of an17

auditory warning (“Takeover”) and disappearance of green highlight on the dashboard,18

would be issued. Meanwhile, the automated mode would be deactivated automatically19

and simultaneously, requiring the driver to take control of the vehicle. The system did20

not rely on the perception of the human driver’s input to be deactivated.21

The NDRT was a visual 2-back memory task, adapted from the study of (Jaeggi,22

Buschkuehl, Jonides, & Perrig, 2008). The task was selected to simulate drivers’23

eyes-off-the-road and hands-off-the-wheel condition in SAE Level 3 automated driving24

mode. Each stimulus, consisting of three by three squares with human figures randomly25

in two squares, was presented for 500 ms in sequence with a 2500 ms interval.26

Participants were required to press the “Hit” button when the current stimulus was the27

same as the one presented 2 back before in the sequence and press the “Reject” button28
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otherwise. The task was running on an 11.6-inch touch screen tablet mounted in the1

center console of the vehicle (See Figure 1a).2

The simulator was equipped with the SmartEye four-camera eye-tracking system3

(Smart Eye, Sweden) that provided live head-pose, eye-blink, and gaze data. The4

system was able to capture user eye-movements accurately even when they wore5

eyeglasses. The sampling rate of the eye-tracking system was 120 Hz. We used the6

Shimmer3 GSR+ unit (Shimmer, MA, USA) to collect GSR data with a sampling rate7

of 128 Hz (Figure 1b).8

(a) In-vehicle NDRT environment (b) Physiological sensors

Figure 1 . Experimental settings.

2.3 Experimental Design9

The experiment used a mixed design with scenario type as the between-subjects10

variable and road environment as the within-subjects variable. Two types of scenarios11

were designed on the basis of realistic situations and previous literature (Koo, Shin,12

Steinert, & Leifer, 2016; Lisetti & Nasoz, 2004; Miller & Ju, 2014; Rezvani et al., 2016;13

Uhrig et al., 2016; Zeeb, Buchner, & Schrauf, 2016), that is, lane keeping and lane14

changing scenarios (See Table 1 and Figure 2). Each participant went through two road15

environments: urban areas and highways, with detailed information shown in Table 2.16

We tried to minimize variance between urban and highway settings, keeping road type,17

lane width, event sensing capabilities, and traffic density the same to prevent18

confounding variables. Specifically, the AV was always in the right lane of a two-lane19

road prior to the TOR. We set the distance between the AV and obstacle/entrance of20
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the curve as 100 meters when the TOR was issued according to the range of Velodyne1

lidar (Velodyne Lidar, California). There were about 15 oncoming vehicles per kilometer2

of traffic (Gold et al., 2016). However, urban and highway areas exhibited several key3

differences in road layout to ensure safe and controlled driving. Based on the literature4

(Fitzpatrick, 2003; Poe & Mason Jr, 1995; Porter et al., 2012; Tarris, Mason Jr, &5

Antonucci, 2000), we set a highway curve radius of 600 meters with a shoulder width of6

3.4 meters and an urban curve radius of 300 meters without shoulders. The speed limit7

was 35 mph in the urban areas and 60 mph on the highway, leading to a TOR lead time8

of 6.39 seconds in urban areas and 3.73 seconds on highways. We will discuss how these9

differences led to varying results in Discussion Section.10

TABLE 1: Descriptions of takeover events
Event Scenario type Scenario descriptions
Event 1

Lane keeping

Sensor error on the left curve
Event 2 Right curve with construction zone on left
Event 3 No lane markings on the left curve
Event 4 Sensor error on the right curve
Event 1

Lane changing

Stranded vehicle ahead
Event 2 Construction zone ahead
Event 3 Construction barrier ahead
Event 4 Police vehicle on shoulder

(a) Lane keeping scenarios (b) Lane changing scenarios

Figure 2 . Top-down view of the scenarios in the experiment
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TABLE 2: Descriptions of road environments
Urban Highway

Road type Two-lane road Two-lane road
Width of each lane 3.6 meters 3.6 meters
Event sensing capability 100 m 100 m
Traffic density 15 vehicles/kilometers 15 vehicles/kilometers
Curve radius 300 meters 600 meters
Shoulder No shoulder 3.4 meters
Speed 35 mph = 15.65 m/s 60 mph = 26.8 m/s
TOR Lead time 100/15.65 = 6.39 s 100/26.8 = 3.73 s

Participants were randomly assigned to one of the scenario types. The order of the1

scenarios was counterbalanced among participants. While we were not able to present2

scenarios in random order due to the programming constraints in the driving simulator,3

the event order was counterbalanced by having half of the participants drive from4

Events 1 to 4, and the other half from Events 4 to 1 within the same scenario type.5

2.4 Dependent Measures6

We measured participants’ NDRT accuracy, takeover performance, and7

physiological responses after TORs. Takeover performance consists of takeover8

timeliness (TOR response time) and takeover quality (maximum resulting acceleration9

and jerk, minimum time to collision, SE of steering angle and road offset) (Du, Zhou, et10

al., 2020; Engström, 2010; Feng et al., 2017). According to the literature (Cao et al.,11

2021; Q. Li et al., 2023; Weaver & DeLucia, 2022), these metrics are robust to estimate12

takeover performance regardless of road layout and speed. Drivers’ physiological13

responses include their horizontal gaze dispersion and phasic GSR (Gold et al., 2016;14

Merat, Jamson, Lai, & Carsten, 2012; Reimer, Mehler, Coughlin, Roy, & Dusek, 2011;15

Wintersberger, Riener, Schartmüller, Frison, & Weigl, 2018).16

TOR response time was calculated as the time between TOR and start of the17

maneuver. The start of the maneuver was defined as changes above 2° of the steering18

wheel angle and/or 10% of the brake pedal position (Gold et al., 2016). Following prior19

research (Du, Zhou, et al., 2020), we calculated driving variables that measured20

takeover quality within the time window between the TOR and the end of the takeover21

action. For the lane changing scenarios, the takeover action ended when the vehicle’s22



13

center of gravity reached the boundary of the neighboring lane. For the lane keeping1

scenarios, the takeover action ended when the driver passed the exit point of the curve.2

However, participants were instructed to re-engage the vehicle as long as they thought3

the vehicle was able to drive on its own. Hence, the takeover action ended earlier if4

participants re-engaged the vehicle before they reached the end point. To infer the5

smoothness of the maneuver, we used maximum resulting acceleration/jerk and SE of6

steering wheel (Du, Zhou, et al., 2020; Hergeth et al., 2017; Okada, Sonoda, & Wada,7

2019). We used SE of road offset to describe the dispersion of the lateral lane position8

and a larger value of road offset SE represented worse lane maintenance performance9

(H. J. Kim & Yang, 2017; Mok et al., 2015; Mok, Johns, Yang, & Ju, 2017; Naujoks,10

Purucker, Wiedemann, & Marberger, 2019). Time to collision (TTC) was defined as the11

time taken for two objects to collide if maintaining their present speeds and headings12

(Hayward, 1972). A larger value of minimum TTC represented lower collision risk. Five13

crashes happened in lane changing scenarios, four on the highways and one in the urban14

areas. Participants either hit the objects or changed lanes on the shoulder during the15

collision. Under such situations, minimum TTC was treated as “not applicable”.16

Consistent with existing literature (Du, Yang, & Zhou, 2020), we calculated17

physiological responses within the time window between the TOR and the time when18

drivers re-engaged the vehicle. Drivers’ horizontal gaze dispersion was defined as the19

standard deviation of gaze heading and could indicate their attention allocation (Louw,20

Kountouriotis, Carsten, & Merat, 2015; Merat et al., 2012; Wang, Reimer, Dobres, &21

Mehler, 2014). GSR phasic components were extracted from raw GSR signals using the22

continuous decomposition analysis (CDA) via Ledalab in Matlab (Benedek &23

Kaernbach, 2010). We calculated mean GSR phasic activation to indicate drivers’24

arousal and stress in response to TORs (Wintersberger et al., 2018).25

2.5 Experimental procedure26

Upon arrival, participants signed an informed consent and filled out a27

demographic form. Experimenters attached two GSR electrodes to the participants’ left28
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foot. After the sensor calibration, participants received a 5-minute training session,1

where they practiced how to keep lanes, change lanes and engage the automated driving2

mode by pressing a button on the steering wheel. They were asked to comply with all3

the traffic laws (e.g., speed limit) when they drove manually. Next, they started the4

NDRT and encountered an unexpected takeover event. The takeover event was the5

scenario where the traffic lights at the intersection did not work and required the driver6

to observe the surroundings and drive manually. Participants were told to re-engage the7

AV once they thought they had negotiated the situation for the AV. By providing8

feedback and correcting participants’ wrong responses, the experimenter made sure that9

all participants were sufficiently acclimatized with the simulator and the system after10

the training.11

Next, participants completed two experimental drives, with each drive consisting12

of two 4-minute scenarios and lasting approximately 11 minutes in total. As shown in13

Figure 3, each drive began with the command to activate the automated driving mode.14

Then there was an NDRT phase where participants were asked to do a visual 2-back15

memory task. The participants were informed that there was no need to actively16

monitor the environment when the AV was in automated driving mode. Once a TOR17

was issued, participants were required to take over control of the vehicle immediately.18

They could hand back the control to the AV after they negotiated the driving situation19

for the AV. The whole experiment lasted about 50 minutes.20

Figure 3 . Sequence of takeover events in the experiment.
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2.6 Data Analysis1

Each participant experienced 4 events, resulting in 160 takeover events. Due to2

simulator and sensor malfunction, we excluded 9 events for driving behavior data3

analysis and 15 events for physiological data analysis. We used the linear mixed models4

to analyze the main effects of the road environment, scenario type, and their interaction5

effects on the dependent variables. The scenario type, road environment, and their6

two-way interactions were set as fixed effects. We used random intercept (participants7

had their own intercepts) but not random slope (participants did not have their own8

slopes) in the model development. α was set at .05 for results to be reported as9

significant. The individual-specific error terms were significant for all the dependent10

variables except minimum TTC.11

3. RESULTS12

Table 3 summarizes the mean and SE of objective takeover performance and13

physiological measurements. Within each scenario type, we did not find any significant14

differences among the four events on all the dependent variables, indicating the validity15

of the scenario categorization.16

TABLE 3: Mean and SE values of dependent measures
Lane keeping scenarios Lane changing scenarios

Urban Highways Urban Highways
NDRT accuracy 0.90 ± 0.02 0.92 ± 0.02 0.85 ± 0.02 0.84 ± 0.02
TOR response time (s) 2.87 ± 0.21 3.24 ± 0.28 support H2a 2.05 ± 0.09 1.78 ± 0.08 not support H1a
Resulting accmax (m/s

2 ) 3.79 ± 0.27 2.70 ± 0.18
support H2b

3.44 ± 0.53 6.56 ± 0.53
support H1bResulting jerkmax (m/s

3 ) 13.3 ± 3.9 10.2 ± 2.3 76.2 ± 17.4 97.3 ± 17.3
SE of steering angle (°) 0.56 ± 0.05 0.11 ± 0.01 0.33 ± 0.04 1.03 ± 0.13
SE of road offset (cm) 0.89 ± 0.08 1.10 ± 0.16 not support H2c 2.41 ± 0.09 2.63 ± 0.12
Time to collisionmin (s) NA NA 1.63 ± 0.15 0.41 ± 0.10 support H1c
Horiz gaze disper (radian) 0.19 ± 0.01 0.15 ± 0.01 not support H2d 0.22 ± 0.01 0.21 ± 0.01 not support H1d
Mean phasic GSR (µS) 0.31 ± 0.06 0.21 ± 0.03 support H2e 0.29 ± 0.05 0.43 ± 0.07 support H1e

3.1 NDRT accuracy17

Participants’ average accuracy of 2-back memory task was 87.6% with a standard18

deviation of 8.4%, indicating strong engagement in the NDRT during automated19

driving. There were no occasions where participants took over before the takeover20

request was made. There was a significant main effect of scenario type on NDRT21
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accuracy (F (1, 38) = 9.85, p = .003, η2
p = .21). Drivers had better NDRT accuracy1

before lane keeping scenarios than lane changing scenarios. No other significant effects2

were found.3

3.2 Takeover performance4

TOR response time. As shown in Figure 4, drivers reacted to takeover events5

sooner in lane changing scenarios (F (1, 38) = 14.79, p < .001, η2
p = .28). The interaction6

effect between scenario type and road environment (F (1, 111) = 5.08, p = .026, η2
p = .04)7

was significant. A simple effect analysis showed that, in lane keeping scenarios, drivers8

had shorter TOR response time in the urban areas than on highways (p = .046). No9

other significant effects were found.10

Figure 4 . TOR response time (s) in different conditions. ***Difference is significant at
the 0.001 level; **Difference is significant at the 0.01 level; *Difference is significant at
the 0.05 level. Error bar indicates one standard error (The same for all the figures
below).

Maximum resulting acceleration/jerk. There were significant main effects11

of scenario type (F (1, 38) = 8.58, p = .006, η2
p = .18) and road environment12

(F (1, 110) = 15.49, p < .001, η2
p = .12) on maximum resulting acceleration. Figure 5a13

shows that lane keeping scenarios and urban areas both led to a smaller maximum14

resulting acceleration. In addition, the interaction effect between scenario type and road15

environment (F (1, 110) = 61.6, p < .001, η2
p = .36) was significant. Drivers had larger16

maximum resulting acceleration in urban areas when scenarios were lane keeping17

(p = .006) but smaller maximum resulting acceleration in urban areas when scenarios18
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were lane changing (p < .001). Regarding maximum resulting jerk, as shown in Figure1

5b, only the main effect of scenario type was significant (F (1, 38) = 16.14, p < .001,2

η2
p = .30). Lane changing scenarios led to larger maximum resulting jerk compared to3

lane keeping scenarios.4

(a) Maximum resulting acceleration (m/s
2) (b) Maximum resulting jerk (m/s

3)

Figure 5 . Driving smoothness

SE of steering angle. As shown in Figure 6a, the SE of steering angle in lane5

changing scenarios was larger than in lane keeping scenarios (F (1, 32) = 22.49,6

p < .001, η2
p = .41). The main effect of the road environment was not significant.7

Meanwhile, there was a significant interaction effect between scenario type and road8

environment (F (1, 108) = 65.37, p < .001, η2
p = .38). Drivers had a larger SE of steering9

angle in urban areas when scenarios were lane keeping (p < .001) but a smaller SE of10

steering angle in urban areas when scenarios were lane changing (p < .001).11

SE of road offset. The main effects of scenario type (F (1, 37) = 78.67,12

p < .001, η2
p = .68) and road environment (F (1, 110) = 4.98, p = .028, η2

p = .04) were13

significant. As indicated in Figure 6b, drivers had a smaller SE of road offset in urban14

areas and lane keeping scenarios. However, their interaction effect was not significant.15
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(a) Standard error of steering angle (degree) (b) Road offset (centimeter)

Figure 6 . Driving smoothness and lane maintenance

Minimum TTC. When the TOR was issued, the TTC was 3.73 seconds on1

highways and 6.39 seconds in urban areas. As shown in Figure 7, there was a significant2

main effect of road environment (F (1, 54) = 62.27, p < .001, η2
p = .54) on minimum TTC3

in lane changing scenarios. The minimum time to collision was shorter on highways4

than in urban areas.5

Figure 7 . Minimum TTC (s) in different road environments.

3.3 Physiological measurements6

Gaze behaviors. The main effects of scenario type (F (1, 37) = 12.09,7

p = .001, η2
p = .25) and road environment (F (1, 108) = 6.11, p = .015, η2

p = .05) on8

horizontal gaze dispersion were significant. In general, drivers had wider horizontal gaze9

dispersion in urban areas than on highways. Lane keeping scenarios led to narrower10
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horizontal gaze dispersion than lane changing scenarios (Figure 8a). The interaction1

effect between scenario type and road environment on horizontal gaze dispersion was2

also significant (F (1, 108) = 4.88, p = .029, η2
p = .04). Horizontal gaze dispersion was3

wider in urban areas in lane keeping scenarios (p = .001), but was similar regardless of4

road environment in lane changing scenarios (Figure 8a).5

(a) Horizontal gaze dispersion (radian) (b) Mean GSR phasic activation (µS)

Figure 8 . Physiological responses

GSRs. As shown in Figure 8b, there was only a significant interaction effect6

between scenario type and road environment on drivers’ mean GSR phasic activation7

(F (1, 106) = 25.24, p < .001, η2
p = .19). Compared to urban areas, drivers’ mean GSR8

phasic activation on highways was significantly higher in lane changing scenarios9

(p < .001), but significantly lower in lane keeping scenarios (p = .001).10

4. DISCUSSION11

4.1 NDRT and Takeover performance12

In conditionally automated driving, once the driver hears the TOR, s/he is13

expected to terminate the NDRT and use perceptual-motor calibration to take over14

control of the vehicle (Mole et al., 2019). In lane changing scenarios, the perception of15

the objects ahead triggers quick and reflexive motor behaviors such as hands/feet back16

on the wheel/pedals at a moment’s notice. In lane keeping scenarios, however, curves17

are not as visible as the objects ahead and there are no other obvious contextual cues18
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that require immediate motor control. This may be the main reason why drivers had1

better NDRT accuracy before lane keeping scenarios than lane changing scenarios.2

We found that drivers’ TOR response time was shorter in urban areas than on3

highways for lane keeping scenarios, but similar in both road environments for lane4

changing scenarios. The results supported H2a, which can possibly be explained by the5

geometric design of roads. Highway curves in lane keeping scenarios were not as curvy6

as urban curves (Aashto, 2001) and thus slowed down drivers’ reaction of vehicle control7

at the time of TOR. Yet, H1a was not supported. This might be because the visible8

objects that appeared 100 meters away from the vehicle made the lane changing9

scenarios critical enough no matter where the AV was driving. Such urgent situations10

activated drivers’ reflexive and equally quick takeover responses in both road11

environments.12

Drivers’ specific takeover actions differed depending on the scenario types. For the13

lane changing scenarios, drivers were supposed to check the neighboring lanes and then14

rotate the steering wheel to change lanes for object avoidance. Braking was necessary to15

reduce the distance from ahead objects to ensure safety distance and gain more time for16

decision making, while acceleration was necessary to facilitate the lane changing17

process. Yet, in the lane keeping scenarios, drivers just needed to focus on the current18

lane and adjust the steering wheel to maintain lanes on the curvy road, although brake19

and acceleration may be applied for better adjustment and vehicle dynamics.20

Regarding driving smoothness, highways led to smoother maneuvers reflected by21

smaller maximum resulting acceleration and SE of steering angle in lane keeping22

scenarios, but harsher maneuvers represented by larger maximum resulting acceleration23

and SE of steering angle in lane changing scenarios. The results supported H1b and24

H2b. Since the distance between the AV and ahead objects/curve entrance was the25

same in all conditions at the time of TOR, highways with high speed limit indicated26

short TOR lead time. Our results aligned with the existing literature on the effects of27

TOR lead time on driving smoothness (Du, Kim, et al., 2020; Wan & Wu, 2018). In28

lane changing scenarios, highways engendered less time for lane changing behaviors and29



21

might lead to drivers’ harsh usage of pedals and wheels to ensure safe distance to ahead1

objects and change lanes sharply (Gold, Happee, & Bengler, 2018). In lane keeping2

scenarios, although drivers had higher vehicle speed on the highway curves, their3

angular speed was lower compared to urban curves. With lower angular speed on4

highway curves, drivers adjusted pedals and steering wheel less frequently and5

maintained lanes more smoothly.6

In lane changing scenarios, highways led to smaller minimum TTC, implying7

higher collision risk. In lane keeping scenarios, high speed led to larger SE of road8

offset, indicating worse lane maintenance performance. The results supported H1c,9

which was consistent with findings of previous studies (Du, Kim, et al., 2020; Roche &10

Brandenburg, 2019; Wan & Wu, 2018). Yet, the results did not support H2c. Although11

highway curves were less curvy and drivers controlled the vehicle more smoothly, drivers12

still had worse lane maintenance performance on highway curves. The possible13

explanation is that vehicle’s deviation from the center of the lane on the curves was14

more related to vehicle speed rather than angular speed.15

4.2 Physiological responses16

Our results on drivers’ horizontal gaze dispersion did not support H1d and H2d.17

In lane changing scenarios, drivers had similarly wide gaze dispersion in both road18

environments. This may be explained by their scanning strategies: drivers not only19

needed to look at the forward roadway, but also look around to check neighboring lane20

availability in lane changing scenarios. Such mechanisms may make the effects of the21

road environment negligible. Highways were associated with narrow horizontal gaze22

dispersion in lane keeping scenarios, suggesting limited monitoring span in rapidly23

dynamic environments (Engström, Johansson, & Östlund, 2005; Lemercier et al., 2014).24

Compared to urban areas, drivers’ had larger GSR phasic activation on highways25

in lane changing scenarios but smaller GSR phasic activation in lane keeping scenarios.26

The findings supported H1e and H2e and were aligned with previous studies (Du,27

Yang, & Zhou, 2020). As we described before, in lane changing scenarios, highways28
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represented short TOR lead time and made scenarios more urgent. Thus, drivers had1

high arousal and stress on highways in lane changing scenarios. In contrast, highways2

were coupled with high speed, lower angular speed, and less curvy roads in lane keeping3

scenarios. As situations looked less critical, drivers had low arousal and stress on4

highways in lane keeping scenarios.5

4.3 Limitations and implications6

There are several limitations that should be taken into consideration in the future7

as research opportunities. First, as a simulated driving study, there was no real threat8

to driver safety and we were not able to randomly present scenarios due to the9

programming constraints. The effects of scenarios on takeover performance could differ10

in real-world settings. On-road testing with fake objects in the test facility can be11

conducted in the future to increase the ecological validity of results. Second, only12

young adults (university students) were recruited as participants. Future research can13

recruit participants with different individual characteristics such as age, driving14

frequency, and AV experience to explore potential variations in results. Thirdly, while15

we devised 8 takeover scenarios rooted in real-world tests and existing literature, and16

these scenarios align with common urban and highway situations, it is essential to17

acknowledge the existence of additional scenarios in daily driving. Moreover, urban and18

highway conditions can exhibit variations in curve radius, shoulder characteristics, lane19

length, and other factors. These variations may impact the generalizability of our20

findings. Future studies can enhance generalizability by incorporating a more extensive21

range of takeover scenarios, exploring additional variations in driving environments22

(e.g., higher speed conditions on highways), and systematically examining their effects.23

The findings of this study can provide design implications for future advanced24

driver-assistance systems (ADASs). We recommend that ADASs should provide drivers25

with adaptive support according to scenario type and road environment. When the26

vehicle encounters a lane changing scenario on the highway or a lane keeping scenario27

on the urban curve, haptic shared control systems and collision warning systems can be28



23

initiated to smooth drivers’ behaviors and reduce collision risk since such conditions1

lead to drivers’ harsher takeover maneuvers and higher collision risk as proven by our2

study. In contrast, when the vehicle encounters a lane keeping scenario on the highway3

curve or a lane changing scenario in urban areas, drivers could exhibit good takeover4

performance based on our results. The ADAS can provide encouragement and make5

drivers confident of incoming maneuvers. Future research could investigate the content6

and format of the adaptive support in ADASs to enhance user experience and driving7

safety.8

5. CONCLUSION9

Our study selected eight representative takeover scenarios and categorized them10

into lane keeping and lane changing scenarios. We found that scenario type interacted11

with road environment to influence drivers’ takeover performance and physiological12

responses to TORs. Our results showed that in lane changing scenarios, with the same13

sensing capability, drivers on highways had deteriorated takeover performance in the14

form of harsher takeover maneuvers and higher collision risk, as well as higher arousal15

and stress, compared to urban areas. However, such effects disappeared or even16

reversed in lane keeping scenarios on the curves, where drivers on highways had17

smoother takeover maneuvers and lower arousal and stress.18

Our study is critical to understanding how scenario type and road environment19

influence drivers’ takeover performance and physiological responses in conditionally20

automated driving. The findings of this study will add to the knowledge base on the21

role of different takeover scenarios in conditionally automated driving. It will help22

address safety concerns during takeover transitions and facilitate the adoption of23

automated vehicles.24
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