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The theory of mind 
and human–robot trust repair
Connor Esterwood 1* & Lionel P. Robert 1,2

Nothing is perfect and robots can make as many mistakes as any human, which can lead to a 
decrease in trust in them. However, it is possible, for robots to repair a human’s trust in them after 
they have made mistakes through various trust repair strategies such as apologies, denials, and 
promises. Presently, the efficacy of these trust repairs in the human–robot interaction literature has 
been mixed. One reason for this might be that humans have different perceptions of a robot’s mind. 
For example, some repairs may be more effective when humans believe that robots are capable 
of experiencing emotion. Likewise, other repairs might be more effective when humans believe 
robots possess intentionality. A key element that determines these beliefs is mind perception. 
Therefore understanding how mind perception impacts trust repair may be vital to understanding 
trust repair in human–robot interaction. To investigate this, we conducted a study involving 400 
participants recruited via Amazon Mechanical Turk to determine whether mind perception influenced 
the effectiveness of three distinct repair strategies. The study employed an online platform where 
the robot and participant worked in a warehouse to pick and load 10 boxes. The robot made three 
mistakes over the course of the task and employed either a promise, denial, or apology after each 
mistake. Participants then rated their trust in the robot before and after it made the mistake. Results 
of this study indicated that overall, individual differences in mind perception are vital considerations 
when seeking to implement effective apologies and denials between humans and robots.

Humans and robots are increasingly expected to trust one another in order to accomplish tasks and achieve 
shared  goals1–3. As a result, work arrangements between humans and robots has begun to resemble human work 
collaborations. In particular, humans are engaging in collaborative work settings with robots, which requires 
them to trust their robotic collaborators to effectively perform their  job4. This is visible across an ever increasing 
range of domains from  defense5,6, to  logistics7–9, to  retail10,11, and even to fast  food12. In the case of logistics, 
warehouse robots search for and move goods while humans are tasked with verifying the goods retrieved in order 
to accomplish the shared goal of fulfilling  orders7,8. This places robots in roles traditionally occupied by humans 
and largely leads to new collaborative work arrangements. Trust and maintaining it in a robot collaborator, 
which remains universally vital for work collaborations, is an especially important dynamic in these new work 
 arrangements13–17.

Although trust is vital, it is not static but instead dynamic and changes based on whether or not the trustee 
has fulfilled their duties to the trustor. Trust can be defined as the “willingness of a party to be vulnerable to 
the actions of another party based on the expectation that the other will perform a particular action important 
to the trustor, irrespective of the ability to monitor or control that other party”18,]. Trust is dynamic in that it 
can increase when trustees are successful at performing tasks and meeting expectations. Alternatively, trust 
can decrease when trustees make mistakes or fail to meet their  expectations19. This is true not only for humans 
but also for robots and  AIs19–23. In the case of robots and AIs failures can occur for many reasons ranging from 
violating social norms to simply failing to retrieve a desired  object24. Recent developments in the field, however, 
have increased the recoverability of robots across many different scenarios as it is now possible for robots and 
AIs to learn from their mistakes and adapt their behaviors to avoid future  mistakes25,26. While this holds great 
promise, the initial decrease in trust caused by early errors often leads to disuse or an altogether rejection of 
robots and AIs as potential work  collaborators27. This limits the possible benefits of deploying robots in work 
environments overall but also reduces the positive impacts that advances in learning and error recovery have 
on the efficacy of human–robot teams.

Fortunately, various trust repair strategies can be used to repair trust between humans and robots, namely, 
apologies, denials, and  promises22,28. Apologies are expressions of remorse or  regret19,29,30. For example, the 
phrase “I’m sorry” is an apology. Apologies largely rely on emotions and  affect19,29,31–33 and are hypothesized to 
repair trust by changing the way that a trustor (individual bestowing trust) views a trustee (individual receiving 
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trust)30,34,35. Apologies do so by acting as a form of social ritual that seeks to improve the social standing of the 
trustee, reestablish social expectations, and show respect to the  trustor36. Denials are rejections of culpability 
coupled with one or more external reasons as to why a violation of trust was  committed20,]. Denials are 
hypothesized to repair trust by changing the locus of causality associated with a trust  violation30,37. In doing so, 
they shift blame for a negative event in order to clear a trustee of any wrongdoing thus bypassing the negative 
consequences of a trust violation. The third trust repair strategy, promises, are assertions by a trustee designed to 
convey positive intentions about future  acts38. An example of a promise is the statement: “I promise I’ll do better 
next time.” Similar to apologies, promises are hypothesized to repair trust by changing the way that a trustor 
views a trustee, but, promises are distinct because they directly seek to change how the trustee is expected to 
act in the  future30,34–36,39,40.

The effectiveness of each trust repair strategy in the human–robot interaction literature has been  mixed22 and 
the degree of mind perception may help to explain why. Mind perception is the ascription of mental capacities 
by humans to other  entities41. These entities can be non-humans such as animals, gadgets, and importantly 
 robots42–45. Generally, mind perception can be considered a type of  mentalizing42,46 and acts as a form of “pre-
attributional process, identifying the kinds of causes that might explain or predict another’s behavior”42,]. In the 
context of trust repair, mind perception can influence the effectiveness of a trust repair strategy. Mind perception 
impacts the mental capacities that humans believe a particular agent  possesses42,43,47–52. Therefore, it is possible 
that the degree of mind perceived can influence which trust repair strategies are seen as genuine or believable.

Hypotheses
According to various works of literature, humans intuitively divide mind perception into at least two different 
categories: conscious experience and intentional  agency42,43,49–53. Conscious experience—sometimes referred to as 
experiential  mind51—encompasses the perception that an agent has the capacity for emotions. These can include 
emotions such as regret, sympathy, pride, or  joy54,55. Conscious experience also encompasses the capacities for 
basic psychological states such as fear, hunger, thirst, and  pain41,42,49. Intentional agency—sometimes referred to 
as agentic  mind51—relates to the perception that an agent has the capacity to engage in goal-directed behavior, 
reasoned action, self-control, learning, and, strategic  planning42,49,50.

The two dimensions of mind perceptions are not mutually exclusive and agents can be perceived as possessing 
various degrees of one with various degrees of the  other42,49,50. In particular, robots have traditionally been 
ascribed to have lower levels of agency and experience when compared to  humans41,49–51. Recent shifts in the 
designs of robots, however, have the potential to shift these ascriptions. In particular, humans can individually 
vary in the degree to which they see the same robot as possessing both intentional agency and conscious 
 experience51,56–58. This has implications not only for how humans respond to robots overall but also for trust 
repair.

Conscious experience and trust repair. A robot’s perceived capacity for conscious experience is likely 
to moderate the efficacy of various trust repair strategies as it sets the boundary for whether or not a particular 
repair strategy is seen as believable or valid from an emotional or affective standpoint. This is because, to a certain 
extent, all trust repairs rely on some degree of emotional  appeals19,28,29,31–33. As such, this requires humans to 
believe that the robot is emotionally upset for violating the human’s trust. One main determinant of if a robot is 
capable of emotions relates directly to the perception of the robot’s ability to have conscious  experiences50,51,54,55. 
More specifically, for a human to see a robot as capable of emotion, they must first ascribe that robot’s mind as 
possessing the capacity for conscious  experience50,51,54,55. In doing so, this signals to the human the degree of 
sincerity attached to the robot’s message or in other words, to what degree the robot actually meant what it said. 
This is because, without the capacity for conscious experience, the robot will not be seen as being genuinely upset 
for violating the human’s trust. This will likely render any attempt at repairing trust appear ingenuine, making 
such attempts much less  effective31,32,59. Therefore, for robots to be capable of effectively deploying trust repairs 
that rely on emotional or affective mechanisms—such as apologies—they must first be ascribed the capacity for 
conscious experience. This leads us to our first hypothesis:

H1 Trust repair strategies will be more effective when robots are seen as possessing higher rather than lower 
degree of conscious experience.

Intentional agency and trust repair. A robot’s perceived capacity for intentional agency is likely to 
moderate the efficacy of different trust repair strategies as it sets the boundary for which of these repairs is seen 
as believable or valid from an intentionality standpoint. This is because to some extent all trust repair strategies 
rely on the perception that the agent seeking to restore trust has the intentionality to change their  behavior32,38. 
One of the major determinants of if a robot is seen as possessing intentionality is the human’s perception of the 
robot’s mind. In particular, for a human to see a robot as capable of intentionality, they must first believe that 
robot’s mind as possessing the capacity for international  agency42,49–51.

To be clear, the intention or agency of an agent speaks to the effort or motivation directed by an agent to 
change their behavior rather than the ability of an agent to actually perform better. An agent’s increase in effort 
can relate to but is distinct from the agent’s ability. In the case of human–robot trust repair, the effectiveness of 
any repair strategy relies on the degree to which a human believes that the robot has its own intentions. In cases 
where the human does not believe the robot has intentionality, trust repair strategies are likely to be interpreted 
as trite or meaningless automatic responses. This can ultimately lead to trust repair strategies being much less 
 effective38,60. Therefore, for robots to be capable of deploying trust repairs that rely on intentions—such as 
promises—they must first be ascribed the capacity for intentional agency. This leads us to our second hypothesis:
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H2 Trust repair strategies will be more effective when robots are seen as possessing a high rather than low 
degree of intentional agency.

Methods
Task and scenario. To investigate the above hypotheses, this study used an open-source immersive virtual 
environment developed in the Unreal Engine 4.23 and deployed  online61. Within this environment, participants 
were positioned behind a small table containing two computer monitors (see Fig.  1). From this position, 
participants engaged in 10 box-sorting and loading tasks where a human and robot worked as part of a team to 
process a series of boxes onto a nearby truck. Participants took on the role of “checker” and robots the role of 
“picker” for all 10 boxes. In these roles, the robot would pick a box from a nearby stack of boxes, present it to the 
human, and the human would determine whether this box was correct. Boxes were deemed correct if the serial 
number on the box matched the serial number displayed on a monitor. This monitor also displayed the amount 
of time taken to process these boxes as well as the participant’s score. In cases where the serial numbers matched, 
participants were instructed to approve the selected box, which triggered the robot to move the box to a nearby 
conveyor belt. In these instances, participants were granted 1 point. In cases where the serial numbers were 
different, participants were instructed to reject the selected box, which triggered the robot to place the box in a 
separate stack to the robot’s left. In such cases, participants were granted 1 point for catching the robot’s error. 
In cases where participants approved an incorrect box or rejected a correct box, they lost 1 point and the boxes 
were moved into the same stack as any previously rejected boxes.

Overall, 10 boxes were processed in the manner described, with the robot picking the wrong box at three 
evenly distributed trust violation events (box 3, box 6, and box 9). This produced a reliability rate of 70% based 
on previous  work62. We included three errors based on the assumption that imperfect robots are likely to make 
mistakes more than once over the course of repeated interactions. The relatively short intervals between these 
mistakes was selected under a similar assumption that repeated failures would occur frequently when a robot is 
attempting something new and is engaged in learning or adaptation. Participants’ scores were used principally 
as a way to motivate them to engage in and complete the tasks and as a result a bonus payment of $5.00 was 
advertised and paid to participants who earned the most points during this study. In addition, these points also 
acted as a way of making trust violations more consequential which in turn makes trusting behaviors more 
salient. This was the case as trust violations could lead to points being deducted and no bonus payment being 
given. A visual illustration of the different ways in which boxes could be processed and their impact on the 
participant’s scores is visible in figure S1 in the supplemental materials associated with this paper.

This task and scenario was inspired by modern warehouse robots that pick goods based on orders and 
transport those goods (correct or incorrect) to humans for final packaging and quality  assurance7,63. While we 
do not directly reproduce these interactions we do emulate the general flow of this work process and one possible 
place errors can occur within it. This was done to reduce the potential confounds that a direct reproduction of 
such interactions may have produced. Regardless, we feel that the results of this research in terms of empirical 
results could be applied in such environments.

Experimental design. In this paper we designed and implemented a between-subjects study comprised 
of three experimental conditions and two control conditions. These conditions contained 80 subjects per cell. 
The experimental conditions differed by repair strategy where the robot deployed either apologies, promises, or 
denials after each time it provided an incorrect box to a participant (box 3, box 6, and box 9). This allowed us to 
measure the impact of these repairs over multiple violations as well as on average. In our two control conditions, 
the robot either performed perfectly at the task and always presented the correct box (no error condition) or 
remained silent during the study and deployed no trust repairs (no repair condition). These control conditions 

Figure 1.  Environment and robot used from participants’ perspective.
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allowed us to measure the impact of the failures and use these data in the manipulation checks. A visual 
representation of our study’s design is presented in Fig. 2.

Independent variables. The independent variables used in this study were the repair condition that 
participants were assigned to and human’s perceptions of the robot’s intentional agency and conscious experience. 
The different repair conditions used in this study were either apologies, denials, or promises. In the apology 
condition, the robot stated, “I’m sorry I got the wrong box that time.” In the denial condition, the robot stated, 
“I picked the correct box that time so something else must have gone wrong.” In the promise condition, the 
robot stated, “I’ll do better next time and get the right box.” Repair strategies varied by the assigned condition, 
and each participant was assigned to only one repair condition. These repairs were developed based on previous 
 work21,28 and were designed to be the simplest form of an individual repair strategy rather than a combination 
of multiple strategies. In addition, these strategies were selected due to their wide application and popularity in 
the HRI and Human–Human  literature22. Each strategy was deployed after the robot failed at processing the 3rd, 
6th, and 9th box.

Intentional agency and conscious experience were measured via a set of questionnaire items developed by 
Shanke et al.51. This measure was adopted for its relative simplicity, high overall reliability, and domain specific 
application to artificial agents. As a result, items were only minimally modified for this study and were found to be 
sufficiently reliable at α = 0.84 for intentional agency and α = 0.97 for conscious experience. This questionnaire 
consists of 6 items related to intentional agency and 11 items related to conscious experience. As visible in Fig. 3, 
we deployed this questionnaire after a brief training scenario that introduced participants to the environment, 
task, and robot they would be interacting with in the study. The specific items used in this measure are listed in 
the supplemental materials associated with this paper. By using this measure we were able to establish the degree 
to which each subject perceived the robot’s mind as possessing intentional agency and conscious experience.

Co‑variates and random effects. The co-variate used in this study was trust propensity. We included 
trust propensity in this fashion as it is likely to impact subjects’ pre-existing perspectives and will likely be linked 
to their willingness to trust in this study. We measured this as part of the pre-test survey and used an adapted 
6-item instrument based  on64. The specific items used in this measure are visible in the supplemental materials 
associated with this paper and were acceptable at α = 0.6965. As a result, this measure was included in our 
analysis but not as a parameter/predictor and instead as a covariate (i.e. nuisance variable) that seeks to absorb 
elements of the variance inherent within the model.

Random effects are variables that “capture random or stochastic variability in the data that comes from 
different sources, such as participants”66,]. The random effect in this study was subject identification (ID). Subject 
IDs were assigned to participants randomly and each participant possessed a single unique ID. In linear mixed-
effects models, subject ID represents a type of non-numerical blocking variable that defines which observations 
share a commonly realized random effect. This is possible as observations with the same subject ID come from 
the same subject allowing for a partial accounting of the variance across subjects. Importantly, subject ID in a 
linear mixed-effects model does not represent the outcome variable being simply regressed on the subject ID 
the way it does when employing generalized linear models. Instead, subject ID is simply used in the output to 
label the random effects due to the individual.

Dependent variables. The dependent variable of interest in this study was participants’ trust change. We 
calculated this by subtracting the trust prior to a violation from the trust after the violation and repair. By 
examining trust change as opposed to trust at each of the six time points, we were able to establish the impact 
of a given repair strategy at a specific time. This then allows us to compare not only across time points where 

Figure 2.  Flowchart illustrating study progression and timeline.
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trust was expected to change but also between repairs and to determine if one repair strategy was more or less 
effective than another. To do this, we relied on a 3-item scale to measure trust adapted from Robert et al.67. In 
particular, we reworded three items from Robert et al.67 to better apply to the context of HRI. Two of these items 
stemmed from trusting intentions and one from trusting belief. These items collectively measured trust (not 
trustworthiness) and were found to possess sufficient reliability ( α = 0.84 ) and have been validated in previous 
 work21. We deployed this scale as a questionnaire at six points during the study, accompanied by attention-
check questions. While other measures specific to robots exist (See:68), this measure was used instead due to 
the repeated measures aspect of this study and the desire to minimize interruption during tasks with longer 
questionnaires. Figure 3 illustrates when our selected trust measure was deployed while the items contained 
within the measure are listed in the supplemental materials associated with this paper.

Participants. In total, we recruited 400 participants for this study. These participants were assigned to one 
of five conditions (four experimental and one control). Fifty-four percent (217) were male and the average age 
across participants was 36 years (standard deviation [SD] = 10.4 years). Participants were recruited via the 
Amazon Mechanical Turk platform and were required to be located in the United States of America and were 
compensated at a rate of $15/h, with the studies taking 15–25 min to complete. Amazon Mechanical Turk was 
used instead of in-person subjects due to various limitations at the time of the study and the impact of the 
COVID-19 pandemic. This research complied with the American Psychological Association Code of Ethics and 
was approved by the institutional review board at the University of Michigan, Ann Arbor (HUM00192093). 
Informed consent was gathered upon participants’ acceptance of the task on Amazon Mechanical Turk.

Procedure. After participants were recruited, they were directed to participate in our training scenario. 
In this training scenario, participants were familiarized with the virtual environment. The training scenario 
demonstrated the box task used in this study by giving them one correct box and one incorrect box accompanied 
by tutorial dialogue boxes. The tutorial dialogue boxes communicated what button to press when the box was 
correct and what button to press when it was incorrect and explained the consequences of each action for the 
participant’s score. After this training scenario, participants were given the pre-test survey that gathered their 
basic demographic information and the degree to which they perceived the robot they interacted with during 
the training and would continue to interact with during the study as possessing intentional agency and conscious 
experience.

After they completed the training and pre-test questionnaire, participants were assigned one of our five 
conditions (no repair, no error, apology, denial, or promise) and progressed through the 10-box picking and 
checking task. After participants had completed processing all 10 boxes, they were asked to enter their worker ID 
for payment, which concluded their participation in the experiment. Throughout this process, we implemented 
quality and attention-check questions. These took the form of randomly placed questions requesting a specific 
response from participants. If participants provided incorrect responses to these questions, their participation 
was immediately ended, and their data were excluded from our analysis. This occurred for 296 subjects across 
our conditions in total. Subjects excluded from analysis were then replaced by new subjects until the desired 
sample size (80 per condition with 400 total) was met. The overall timeline of the study is summarized in Fig. 3.

Figure 3.  Flowchart illustrating measurement timeline.
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Data analysis. Data were exported directly from the survey platform used (Qualtrics), cleaned via Tableau 
Prep, and read into R via R studio. Analysis relied principally on the lme4, stats, jtools and emmeans 
packages in  R69–72. The manipulation check was conducted via three pairwise t tests with a Bonferroni adjustment 
using the stats package. Specifically, we compared trust change after the first, second, and third violations in 
the no repair and no error conditions. Pairwise t tests are a specific type of pairwise comparison that calculates 
pairwise comparisons between group levels with corrections for multiple  testing69. The specific adjustment used 
in this case was a Bonferroni adjustment which multiplies the p-values produced in the pairwise comparison 
by the number of comparisons in order to reduce the probability of identifying significant results that do not 
 exist69,73. Given that this analysis involved conducting multiple pairwise t tests this correction was deemed 
appropriate.

For the main analysis, we constructed and compared the five mixed linear effects models. Mixed linear effects 
models are extensions of traditional linear models that allow for the examination of both between-subjects effects 
(i.e. fixed effect) and within-subjects effects (i.e. random effects)66,70,73. Furthermore, mixed linear effects models 
also permit the exploration of alternative covariance structures on which one can model data with between and 
within subjects  effects73,]. We opted to use this statistical approach as it is capable of encompassing more than 
just fixed effects consistent with our design and goals of this study. We developed these models using lme470 and 
compared them via a likelihood ratio test in emmeans to select the most appropriate model for this analysis. 
Likelihood ratio tests are “standard statistical test for comparing the goodness of fit of two nested models”66,]. 
These allow for the comparison of nested mixed linear effects models and the selection of the most appropriate of 
these models rather than risking “cherry picking” the best model for a specific set of hypotheses based on a range 
of different parameters. We opted to use this form of model comparison as each subsequent model—Baseline 
Model, Reduced Model 1, Reduced Model 2, etc.—included elements of the previous model (i.e. were nested).

After a comparison of these models, we examined the first reduced model’s two-way interaction between 
perceptions of a robot’s conscious experience and trust repair strategy via a simple slopes analysis and interaction 
plot. This model was selected as all subsequent models did not produce a significantly better fit for the data (See: 
Model Comparisons in Table 2). Simple slopes analyses are a method by which one can probe interaction effects 
in a linear  regression71,74. In particular, one can construct confidence intervals for simple slope estimates that can 
indicate if slopes are significantly different from  zero75,76. Often this includes the production of an interaction 
plot which displays one variable on the x axis, a dependent variable on the y axis and draws one or more line 
for the means of each level of one additional (often categorical)  variable77. Both approaches relied on the use of 
jtools in  R71. After this we also conducted a pairwise comparison of slopes via the emmeans package in  R72. 
This allowed us to compare the slopes to each other and determine if significant differences emerged between 
slopes rather than only if those slopes were significantly different from  zero72.

In sum, the approach outlined above allowed us to explore the interactions of interest in this paper that were 
produced by the mixed linear effects model that best suited the data. The data used in our analysis and associated 
code can be located at https:// zenodo. org/ record/ 80508 85. Furthermore, the simulation and associated UE4 
resources used are currently available for future researchers at no cost under a non-commercial license  (see61). 
The following section presents the results of this analysis.

Results
Manipulation check. We conducted a manipulation check in this study with the goal of verifying that the 
trust violations used in this study did indeed violate trust. This was necessary as only when trust is effectively 
violated can the efficacy of a given trust repair be assessed. To do this, we compared trust change in a condition 
without violations (no error) to trust change in a condition with violations but no repairs (no repair). Results 
indicated that our manipulations were effective at all three trust change events, as shown in Fig. 4. This was 
the case as trust in the no error condition was significantly higher ( P < 0.005 ) than trust in the no repair 
condition across all three time points. From this we can conclude that the presence of trust violations decreased 
trust therefore allowing us to explore how this decrease can be mitigated via different repair strategies and the 
potential moderating effect of mind perception.

Trust repairs and mind perception over multiple violations. After determining whether our 
manipulations were effective, we began the process of testing our hypotheses by constructing five mixed linear 
models, namely 1 baseline model, 3 reduced models, and 1 full model. Table 1 details the composition of these 
models and their results are fully detailed in the supplemental documentation associated with this publication. 
By constructing multiple models we facilitated the comparison of these models and selection of only the most 
appropriate model for our data and subsequent analysis. To accomplish this, we used likelihood ratio tests to 
compare nested mixed effects models to determine which of the possible models presented was a best fit for 
the data. This is often done to determine which specific parameters (i.e. predictors) one should include in their 
model and prevents over-fitting or under-fitting the data by including too many or too few of these  parameters78. 
This allows us to select a model on the basis of fit rather than “cherry picking” a model most suited to our 
hypotheses or one that has the most statistically significant results.

For the likelihood ratio test used in this study, we compared the nested baseline model to the first reduced 
model, the first reduced model to the second reduced model, and finally the third reduced model to the full 
model. We did this to determine whether the inclusion of the additional interaction terms significantly improved 
the model performance (i.e. fit). Results of these comparisons are presented in Table 2. These results indicated that 
the additional terms present in the first reduced model (reduced model 1) led to a better fit ( χ2 ) than the baseline 
model. However, subsequent models did not outperform the first reduced model. The model comparisons 
indicated that the first reduced model (reduced model 1) should be used for analysis and probing interactions. 

https://zenodo.org/record/8050885
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As a result, we used reduced model 1 for the remainder of our analyses. Within this model a significant effect 
for violation event was observed ( p = 0.02 ) where trust change at the second violation event was significantly 
different from change at the first violation event. Additionally, a significant two-way interaction effect between 
apologies and perceived conscious experience ( p = 0.03 ) was also observed. These results are further examined 
in the subsequent sections of this paper and are fully detailed in Table 3.

Conscious experience and apologies. Given the significant two-way interaction effect between apologies 
and perceptions of a robot’s conscious experience for reduced model 1 in Table  2, we conducted a series of 
additional statistical tests to probe this interaction. To do so we first conducted a simple slopes analysis. Simple 
slopes analysis allows us to determine whether any of the slopes within an interaction are significantly different 
from zero. Results of this analysis indicated that the slopes of the denial ( p < 0.001 ), and apology ( p < 0.001 ) 
conditions were significant. Next, we compared slopes across repair strategies. To do this we conducted a 
pairwise comparison of slopes for apologies, denials, and promises with a Tukey  adjustment72,79,80. Results of 
this analysis showed a significant difference between the slopes of apologies and promises ( p = 0.01 ) but no 
significant difference between the slopes of denials and promises ( p = 0.06 ). Overall these results support our 
first hypothesis but only partially. Specifically, apologies and denials appear to be more effective when subjects 
ascribed the robot greater levels of conscious experience and less effective when subjects ascribed the robot 
lower levels of conscious experience. Figure 5 illustrates these interactions while Table 4 summarizes the results 
of the simple slopes analysis, and Table 5 summarizes the results of our pairwise comparison.

Discussion
Overall the results of this study provide valuable insights into the relationship between mind perception and trust 
repair in human–robot interaction. In particular, this study highlighted that perceptions of a robot’s conscious 
experience moderate the impact of apologies and denials. In doing so, this study helps to explain when apologies 
and denials are likely to be effective at repairing trust for robots providing a significant contribution to the 
existing literature. This, in combination with careful assessments of  timing81,82 and violation  type83,84, could lead 
to more effective HRI trust repair. Contrary, the study found no evidence that perceptions of a robot’s intentional 
agency influence the effectiveness of any trust repair strategy. Below we discuss the implications for existing 
theories related to trust repair and mind perception in robots.

First, this paper demonstrates the theoretical distinctions between mind perception as conscious experience 
and mind perception as intentional agency, and their unique impacts on human–robot trust repair. Specifically, 
conscious experience enhances the effectiveness of apologies and denials, while intentional agency does not. The 
increased effectiveness of apologies and denials due to conscious experience may be attributed to the perception 
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Figure 4.  Box plots showing results of manipulation check across all three trust change events.
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that the robot is more sincere. Previous research has established a connection between mind perception and 
perceptions of  sincerity85. Sincerity has also been shown to be a crucial factor in the efficacy of trust repair 
 strategies86–90. For instance, apologies from individuals perceived as sincere have a more positive impact 
compared to those perceived as less  sincere38,86–89,91. Similarly, denials from individuals perceived as sincere 
are also more likely to be believed and therefore  effective19,90. To this end, this study reveals the theoretical 
importance of separating the dimensions of mind perception to understand their influence on HRI trust repair.

Conversely, in the case of intentional agency, we did not observe any significant interaction. One possible 
explanation for this could be found in prior research that has established a link between intentional agency, 
attribution of blame, and moral  responsibility43,92. Specifically, if a robot is perceived as possessing higher levels 
of intentional agency, it may be viewed as more responsible for a trust violation. Moreover, increased perceptions 
of intentional agency could be counterproductive, as it may reduce perceptions of  sincerity92. Therefore, in the 
context of HRI trust repair, intentional agency could be recognized as a potential obstacle to overcome, rather 
than an advantage to leverage. However, it is important to note that intentional agency may actually enhance 
trust when the robot fulfills its expectations, rather than violates them. This is because humans are also likely to 

Table 1.  Table summarizing the composition of the models compared in this study.

Main effects Interaction effects Covariates Random effects

Baseline model

Repair strategy Trust propensity Subject ID

Intentional agency

Conscious experience

Violation event

Reduced model 01

Repair strategy Repair strategy × Intentional agency Trust propensity Subject ID

Intentional agency Repair strategy × Conscious experience

Conscious experience

Violation event

Reduced model 02

Repair strategy Repair strategy × Intentional agency Trust propensity Subject ID

Intentional agency Repair strategy × Conscious experience

Conscious experience Violation event × Intentional agency

Violation event Violation event × Conscious experience

Reduced model 03

Repair strategy Repair strategy × Intentional agency Trust propensity Subject ID

Intentional agency Repair strategy × Conscious experience

Conscious experience Violation event × Intentional agency

Violation event Violation event × Conscious experience

Repair strategy × Violation event

Full model

Repair strategy Repair strategy × Intentional agency Trust propensity Subject ID

Intentional agency Repair strategy × Conscious experience

Conscious experience Violation event × Intentional agency

Violation event Violation event × Conscious experience

Repair strategy × Violation event

Repair strategy × Intentional agency × Violation event

Repair strategy × Conscious experience × Violation event

Table 2.  Results of likelihood ratio test comparing the models constructed for this study.

Model comparisons

Model npar AIC LL χ
2 df p

Baseline 11 2698.8 − 1338.4 NA NA NA

Reduced 1 vs. baseline 17 2697.9 − 1331.9 12.95 6 0.04

Reduced 1 vs. reduced 2 21 2701.3 − 1329.6 4.58 4 0.33

Reduced 2 vs. reduced 3 27 2706 − 1326 7.32 6 0.29

Reduced 3 vs. full model 39 2710 − 1316 19.74 12 0.07
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Table 3.  Results of reduced model 1 predicting trust change. Significant values are in [bold].

Reduced model 01

Predictors Estimates CI p

(Intercept) 0.48 − 0.73 to 1.69 0.432

Repair [denial] − 0.59 − 2.16 to 0.98 0.463

Repair [apology] 0.05 − 1.32 to 1.42 0.944

Repair [promise] 0.1 − 1.41 to 1.62 0.895

Intentional agency 0.07 − 0.22 to 0.35 0.636

Conscious experience 0.15 − 0.03 to 0.32 0.108

Violation event [2] 0.14 0.02 to 0.26 0.02

Violation event [3] 0.07 − 0.04 to 0.19 0.21

Trust propensity − 0.38 − 0.55 to − 0.22 <0.001

Repair [denial] × Intentional agency − 0.08 − 0.48 to 0.31 0.675

Repair [apology] × Intentional agency − 0.25 − 0.63 to 0.13 0.198

condition [promise] × Intentional agency 0.12 − 0.31 to 0.55 0.583

Repair [denial] × Conscious experience 0.17 − 0.06 to 0.41 0.147

Repair [apology] × Conscious experience 0.29 0.04 to 0.54 0.025

Repair [promise] × Conscious experience − 0.16 − 0.45 to 0.13 0.276

Random effects

σ
2 0.57

τ00 Sub ID 0.71

ICC 0.55

N Sub ID 320

Observations 960

Marginal/conditional R2 0.185/0.637

−2

−1

0

2 4 6

Conscious Experience

Tr
us

t C
ha

ng
e

Condition

No_Repair

Denial

Apology

Promise

Figure 5.  Visual representation of slopes for three-way interaction between conscious experience, repair 
strategy, and violation event.
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attribute the robot’s successful performance to the robot itself when they perceive that the robot has intentional 
agency.

The results of this study can be leveraged by robot designers and developers to make specific trust repair 
strategies like apologies and denials more effective by encouraging humans to see them as possessing greater 
degrees of conscious experience. Past research has identified several approaches to encourage humans to 
view robots as possessing greater degrees of conscious experience. For example, Cuccinielo et al.93 compared 
how a robot’s behavioral style can impact a human’s perception of a robot’s mind. Their findings indicated 
that when robots adopted a friendly behavioral style humans viewed them as having a greater capacity for 
conscious  experiences93. Previous research has shown that manipulating the way one presents and describes 
robots can encourage humans to view them as capable of having conscious experiences. For instance, Wang and 
 Krumhuber94 found that promoting perceptions of a robot’s social value increased the degree to which humans 
perceived the robot as possessing conscious experience. Researchers have also shown that by manipulating a 
human’s perceptions of a robot’s capacity for “hunger, fear, and other emotions” designers can encourage humans 
to view the robot as having more capacity for having a conscious  experience58,]. Future research can explicitly 
examine the link between these manipulations and the effectiveness of trust repair strategies, however, questions 
remain about whether this approach is deceptive. Designing robots to encourage humans to view them as capable 
of having conscious experiences.

Designing robots to encourage humans to view them as capable of having conscious experiences can be 
viewed as a type of deception to be avoided rather than encouraged. There are ongoing debates about the 
problems associated with deceptive  robots95–97. For example, scholars have argued that robots are genuinely 
incapable of possessing emotion and that encouraging humans to see them as having this capacity via conscious 
experience is dishonest and  deceptive96,98–100. Additionally, there is the possibility that trust repair can be used 
inappropriately. For example, if a robot is not capable of performing a task better and should not be trusted 
but offers an effective trust repair humans are likely to trust them when they should not. This can lead to wide-
ranging issues in terms of appropriate use and reliance which pose not only psychological risks but also physical 
risks. This mirrors ongoing debates in the area of explainable AI where tension exists between increasing the 
communicative efficacy of technology at the expense of deceiving humans about the actual capability of the 
 technology101–104. As a result, it is important for designers of robots to consider ethical perspectives related to 
deception and the inappropriate use of such approaches. That being said, ethical questions around if or when to 
use such approaches are too nuanced and context-specific to put forth one simple rule of thumb for all situations.

The study findings contribute to the existing literature by identifying a boundary condition where trust 
repair strategies remain effective despite multiple trust violations. In this study, we investigated the robustness of 
trust repair strategies relative to mind perception in the context of multiple trust violations. This is particularly 
relevant because robots are prone to making multiple rather than one error. Prior research has suggested that the 
effectiveness of trust repair strategies may diminish with repeated trust violations, rendering them  ineffective28. 
It would be valuable to determine not only when a trust repair strategy loses effectiveness, but also at what 
particular trust violation this occurred. As shown in the supplemental material accompanying this paper, our 
findings contradict previous literature, indicating that when conscious experience is high both apologies and 
denials remain effective even after multiple trust violations (see Supplementary Fig. S1). This suggests that 
conscious experience may play a crucial role in establishing conditions for resilient trust repair over multiple 
trust violations.

This study’s findings also have implications in the field of human–machine communication in two ways. 
First, the existing literature acknowledges the need for machines to express emotions and sincerity to be 
effective  communicators105–107. This is particularly important when machines are attempting to restore or repair 
relationships with humans after  violations106,108,109. Scholars have sought to design robots to display emotions 

Table 4.  Results of simple slope analysis examining slopes of the two-way interaction between perceptions of 
a robot’s conscious experience and repair condition.

Condition Trend SE df t.ratio p value

No_Repair 0.15 0.09 307 1.61 0.11

Denial 0.32 0.08 307 4.00 < 0.001

Apology 0.44 0.09 307 4.68 < 0.001

Promise − 0.01 0.12 307 − 0.12 0.91

Table 5.  Results of a pairwise comparison of slopes for the two-way interaction between perceptions of a 
robot’s conscious experience and repair condition.

Contrast Estimate SE df t.ratio p value

Denial–apology − 0.12 0.13 230 − 0.91 0.64

Denial–promise 0.33 0.15 230 2.28 0.06

Apology–promise 0.45 0.16 230 2.90 0.01
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during communications with humans to overcome this  issue110. Nonetheless, other scholars have argued that even 
with added design features machines are still likely to be perceived as being incapable of feeling or  thinking106,111. 
The results of this study, however, bridge the gap between these two opposing views. In particular, individuals’ 
perceptions of a robot’s conscious experience can help explain when humans see robots as capable of having 
emotions and as a result are more effective communicators.

Second, these findings can be interpreted as evidence that supports the extension of the expectancy violation 
theory (EVT) to human–machine communication. EVT is a theory of communication that seeks to explain 
how individuals respond after experiencing unexpected violations of social norms and  expectations112. These 
violations can be either positive or negative  violations113. Under EVT, an apology from a robot can be viewed 
as a positive violation because humans do not expect robots to engage in trust repair strategies. The impact of a 
violation is dependent on the communicator’s reward valence. The communicator’s reward is the degree to which 
the communicator provides the recipient with what they want or  need112. These wants or needs could be positive 
or negative. Positive valence rewards include emotional support, attention, and other indications of engagement. 
According to Bippus and  Young86, sincerity can be viewed as a type of communicator’s reward valence in the act of 
trust repair. The findings of our study provide support for EVT in the context of human–machine communication 
and by doing so hold theoretical implications outside of only trust repair in HRI but also for theory in the HMC 
domain.

Limitations and future work
This paper provides useful insights into the relationships between the effectiveness of trust repairs and human 
perceptions of robot minds. Regardless, no study is all encompassing and there are several limitations of this 
work that provide opportunities for future work. First, this study used an online distribution method and an 
immersive virtual environment. This methodology was adopted as it allowed the study team to overcome 
numerous limitations related to conducting human subjects research during the COVID-19 pandemic. These 
included local and federal policies around in-person gatherings, and other legal and health oriented barriers to 
conducting user studies.

It is possible, however, that a more naturalistic and less controlled environment may have resulted in 
different trusting behaviors. This is subject to an ongoing debate but, there is increasing support for the use of 
virtual representations of robots for HRI  research114–120. Specifically, Deb et al.114 found that subjects in virtual 
environments still interacted similarly to how they did in the real world. Additionally,117 directly compared 
human’s response to physically present robots to human’s responses to virtual representations of robots in multiple 
forms. Their results indicated no significant differences between physically present and virtually represented 
robots for eeriness, likability, and purchase intention but did find that human’s perceptions of robot immediacy 
significantly differed and saw mixed results for human-likeness.

These results are echoed by Gittens et  al.119 who also compared physically present robots to virtual 
representations of robots. Their results indicated no significant differences in human’s experience with, perception 
of, and attitude towards robots between these two interaction modalities. From this they concluded in subsequent 
work that “there was nothing inherently detrimental to performing HRI user studies online”120,]. Nonetheless, 
we acknowledge this as a potential limitation and future work is needed. Such work should seek to replicate 
our findings with physical robots in a real-world setting but more generally to also directly compare the use of 
physically and virtually present robots from a methodological standpoint.

Second, the HRI literature has observed that different tasks, environments, and robots can influence trust 
between humans and  robots121,122. As a result, it is possible that with a different task, environment, and robot our 
results may have been different. The degree of this difference, however, has yet to be fully examined. Additional 
research is needed to consider how different tasks, environments, and robots might impact this paper’s results. 
This study also focused primarily on how mind perception impacts trust repair after a specific type of trust 
violation. Notably, there also exists a range of different types of trust violations. Likewise, future research could be 
conducted that specifically examines how the type of trust violation (i.e. mistakes) might impact mind perception 
and the efficacy of different trust repair strategies over time.

Third, our measure of trust propensity was found to be reliable at an α of 0.69. This reliability is acceptable 
based  on65 but, the specific cutoff thresholds for reliability often differ between disciplines with an α > 0.7 
preferred in other  domains123. Give, however, the recommendations  of65, the variance among thresholds across 
disciplines, the conceptual links between trust and trust propensity, and that α = 0.69 is within 0.01 of the 
stricter threshold of α > 0.7 , the authors of this paper feel that the reliability of α = 0.69 justifies the inclusion 
of trust propensity in our analysis. Regardless, future work may wish to consider an alternative measure of trust 
propensity or consider modification to this existing measure.

Fourth, it is important to note that different definitions and measures of trust exist in the literature. In this 
study, we focused our examination on how repairs impact trust as opposed to trustworthiness. To measure trust 
we used a short 3-item measure originating from the human–human literature but validated for use in HRI and 
with virtual  robots21. This measure was selected due to the repeated measures nature of our study’s design. It is 
worth acknowledging, however, that ongoing debates are present regarding the parity of measures developed 
for HRI and those developed for human–human  interaction124,125. Regardless, there is support for adapting 
human–human trust measures for use in HRI based on the computers as social actors (CASA)  paradigm126–130. 
Regardless, using an HRI-specific measure such as the multi-dimensional measure of trust (MDMT)68 or similar 
measures may have further strengthened our findings. Therefore, future work in the HRI domain should consider 
employing more complex conceptualizations of trust and HRI-specific measurement instruments to build upon 
the results presented in this study. Such studies could leverage the findings within this paper and contribute to 
the further development of the field of HRI.
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Fifth, we should acknowledge that mind perception can be both conceptualized and measured in many 
different ways. For example, mind perception has been conceptualized as a uni-dimensional  construct131 as well 
as a three-dimensional  construct132. Furthermore, recent work has also showcased implicit measures of mind 
perception as alternatives to explicit  measures133. In this study, we adopted the more commonly implemented 
2-dimensional approach to mind perception and examined these dimensions with explicit measures. We did 
so due to the widely accepted use of this approach across a range of literature in both the human–human and 
human–robot  domain42–44,51,134–136. This in turn allows our findings to be directly compared to the existing 
literature on mind perception.

Conclusion
This study examines the relationship between mind perception and trust repair in human–robot interaction. 
Results of this study indicated that overall, individual differences in mind perception are vital considerations 
when seeking to implement effective apologies and denials between humans and robots. From a broader 
perspective, this contributes to the growing body of literature on trust repair in HRI by building on existing 
work examining individual differences and reinforcing not only that individual differences can impact trust 
repair but that they may do so differently based on what repair strategy is deployed.

Data availibility
All data generated or analyzed during this study are included in this published article [and its supplementary 
information files].

Received: 7 September 2022; Accepted: 13 June 2023

References
 1. Savela, N., Kaakinen, M., Ellonen, N. & Oksanen, A. Sharing a work team with robots: The negative effect of robot co-workers 

on in-group identification with the work team. Comput. Hum. Behav. 115, 106585 (2021).
 2. Haidegger, T. et al. Applied ontologies and standards for service robots. Robot. Auton. Syst. 61, 1215–1223 (2013).
 3. Esterwood, C. & Robert, L. Robots and Covid-19: Re-imagining human–robot collaborative work in terms of reducing risks to 

essential workers. ROBONOMICS J. Autom. Econ. 1, 9–9 (2021).
 4. You, S. & Robert, L. P. Subgroup formation in human–robot teams: A multi-study mixed-method approach with implications 

for theory and practice. J. Assoc. Inf. Sci. Technol. 74, 323–338 (2022).
 5. Barnes, M. & Jentsch, F. Human–Robot Interactions in Future Military Operations 1st edn. (CRC Press, 2010).
 6. Aliotta, J. US army tests ground robotics in multinational exercise (2022).
 7. Redman, R. Inside look at Kroger’s first Ocado robotic warehouse (2021).
 8. McFarland, M. Amazon wants to ship you anything in 30 minutes. It’s going to need a lot of robots (2019).
 9. Post, T. W. The battle of humans vs. robots reaches a ’turning point’ (2022).
 10. Turmelle, L. Don’t worry, stop and shop cleans Marty (2020).
 11. Edwards, D. Revenues from robotics implemented in retail stores to cross $8.4 billion by 2030 (2022).
 12. Lucas, A. Why restaurant chains are investing in robots and what it means for workers (2022).
 13. You, S. & Robert, L. Teaming up with robots: An IMOI (inputs–mediators–outputs–inputs) framework of human–robot 

teamwork. Int. J. Robot. Eng. 2, 003 (2018).
 14. Lyons, J. B., Wynne, K. T., Mahoney, S. & Roebke, M. A. Trust and human–machine teaming: A qualitative study. In Artificial 

Intelligence for the Internet of Everything (eds Lawless, W. et al.) 101–116 (Elsevier, 2019).
 15. Esterwood, C. & Robert, L. P. Human robot team design. In Proceedings of the 8th International Conference on Human–Agent 

Interaction 251–253 (2020).
 16. Robert, L. P. Behavior-output control theory, trust and social loafing in virtual teams. Multimodal Technol. Interact. 4, 39 (2020).
 17. Wiese, E., Shaw, T., Lofaro, D. & Baldwin, C. Designing artificial agents as social companions. In Proceedings of the Human 

Factors and Ergonomics Society Annual Meeting, Vol. 61, 1604–1608 (SAGE Publications Sage CA, 2017).
 18. Mayer, R. C., Davis, J. H. & Schoorman, F. D. An integrative model of organizational trust. Acad. Manag. Rev. 20, 709–734 (1995).
 19. Lewicki, R. J. & Brinsfield, C. Trust repair. Annu. Rev. Organ. Psych. Organ. Behav. 4, 287–313 (2017).
 20. Baker, A. L., Phillips, E. K., Ullman, D. & Keebler, J. R. Toward an understanding of trust repair in human–robot interaction: 

Current research and future directions. ACM Trans. Interact. Intell. Syst. 8, 1–30 (2018).
 21. Esterwood, C. & Robert, L. P. Having the right attitude: How attitude impacts trust repair in human–robot interaction. In 

Proceedings of the 2022 ACM/IEEE International Conference on Human–Robot Interaction, HRI ’22 332–341 (IEEE Press, 2022).
 22. Esterwood, C. & Robert, L. P. A literature review of trust repair in HRI. In Proceedings of 31th IEEE International Conference on 

Robot and Human Interactive Communication, ROMAN ’22 (IEEE Press, 2022).
 23. Cominelli, L. et al. Promises and trust in human–robot interaction. Sci. Rep. 11, 1–14 (2021).
 24. Honig, S. & Oron-Gilad, T. Understanding and resolving failures in human–robot interaction: Literature review and model 

development. Front. Psychol. 9, 861 (2018).
 25. Grollman, D. H. & Billard, A. G. Robot learning from failed demonstrations. Int. J. Soc. Robot. 4, 331–342 (2012).
 26. Lesort, T. et al. Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges. Inf. 

Fusion 58, 52–68 (2020).
 27. Lewis, M., Sycara, K. & Walker, P. The role of trust in human–robot interaction. In Foundations of Trusted Autonomy (eds Abbass, 

H. A. et al.) 135–159 (Springer, 2018).
 28. Esterwood, C. & Robert, L. P. Do you still trust me? Human–robot trust repair strategies. In 2021 30th IEEE International 

Conference on Robot & Human Interactive Communication (RO-MAN) 183–188 (IEEE, 2021).
 29. Waldron, V. R. Encyclopedia of human relationships. In Apologies 1st edn, Vol. 3 (eds Reis, H. T. & Sprecher, S.) 98–100 (Sage 

Publishing Inc., 2009).
 30. Tomlinson, E. C. & Mayer, R. C. The role of causal attribution dimensions in trust repair. Acad. Manag. Rev. 34, 85–104 (2009).
 31. Lewicki, R. J., Polin, B. & Lount, R. B. Jr. An exploration of the structure of effective apologies. Negot. Confl. Manag. Res. 9, 

177–196 (2016).
 32. Esterwood, C. & Robert, L. P. Three strikes and you are out! The impacts of multiple human–robot trust violations and repairs 

on robot trustworthiness. Comput. Hum. Behav. 142, 107658 (2023).
 33. McCullough, M. E., Worthington, E. L. Jr. & Rachal, K. C. Interpersonal forgiving in close relationships. J. Personal. Soc. Psychol. 

73, 321 (1997).



13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9877  | https://doi.org/10.1038/s41598-023-37032-0

www.nature.com/scientificreports/

 34. Bies, R. J. The predicament of injustice: The management of moral outrage. In Research in Organizational Behavior (eds Lewicki, 
R. J. et al.) (JAI Press, 1987).

 35. Cody, M. J. & McLaughlin, M. L. Interpersonal accounting. In Handbook of Language and Social Psychology (eds Giles, H. & 
Robinson, P.) 227–255 (Wiley, 1990).

 36. Bachmann, R., Gillespie, N. & Priem, R. Repairing trust in organizations and institutions: Toward a conceptual framework. 
Organ. Stud. 36, 1123–1142 (2015).

 37. Bies, R. J. & Shapiro, D. L. Interactional fairness judgments: The influence of causal accounts. Soc. Justice Res. 1, 199–218 (1987).
 38. Schweitzer, M. E., Hershey, J. C. & Bradlow, E. T. Promises and lies: Restoring violated trust. Organ. Behav. Hum. Decis. Process. 

101, 1–19 (2006).
 39. Tomlinson, E. C. Cheap Talk, Valuable Results? A Causal Attribution Model of the Impact of Promises and Apologies on Short-Term 

Trust Recovery (The Ohio State University, 2004).
 40. Tomlinson, E. C., Nelson, C. A. & Langlinais, L. A. A cognitive process model of trust repair. Int. J. Conf. Manag. 32, 340–360 

(2020).
 41. Gray, K., Young, L. & Waytz, A. Mind perception is the essence of morality. Psychol. Inq. 23, 101–124 (2012).
 42. Epley, N. & Waytz, A. Mind perception. In Handbook of Social Psychology (eds Fiske, S. T. et al.) (Wiley, 2010).
 43. Waytz, A., Gray, K., Epley, N. & Wegner, D. M. Causes and consequences of mind perception. Trends Cogn. Sci. 14, 383–388 

(2010).
 44. Saltik, I., Erdil, D. & Urgen, B. A. Mind perception and social robots: The role of agent appearance and action types. In Companion 

of the 2021 ACM/IEEE International Conference on Human–Robot Interaction 210–214 (2021).
 45. Stafford, R. Q., MacDonald, B. A., Jayawardena, C., Wegner, D. M. & Broadbent, E. Does the robot have a mind? Mind perception 

and attitudes towards robots predict use of an eldercare robot. Int. J. Soc. Robot. 6, 17–32 (2014).
 46. Frith, U. & Frith, C. D. Development and neurophysiology of mentalizing. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 358, 

459–473 (2003).
 47. Tharp, M., Holtzman, N. S. & Eadeh, F. R. Mind perception and individual differences: A replication and extension. Basic Appl. 

Soc. Psychol. 39, 68–73 (2017).
 48. Gray, K., Jenkins, A. C., Heberlein, A. S. & Wegner, D. M. Distortions of mind perception in psychopathology. Proc. Natl. Acad. 

Sci. 108, 477–479 (2011).
 49. Li, Z., Terfurth, L., Woller, J. P. & Wiese, E. Mind the machines: Applying implicit measures of mind perception to social robotics. 

In 2022 17th ACM/IEEE International Conference on Human–Robot Interaction (HRI) 236–245 (IEEE, 2022).
 50. Gray, H. M., Gray, K. & Wegner, D. M. Dimensions of mind perception. Science 315, 619–619 (2007).
 51. Shank, D. B., North, M., Arnold, C. & Gamez, P. Can mind perception explain virtuous character judgments of artificial 

intelligence?. Technol. Mind Behav.https:// doi. org/ 10. 1037/ tmb00 00047 (2021).
 52. Yam, K. C. et al. Robots at work: People prefer—and forgive—service robots with perceived feelings. J. Appl. Psychol. 106, 1557 

(2020).
 53. Matsui, T. & Yamada, S. Two-dimensional mind perception model of humanoid virtual agent. In Proceedings of the 5th 

International Conference on Human Agent Interaction 311–316 (2017).
 54. Demoulin, S. et al. Dimensions of “uniquely’’ and “non-uniquely’’ human emotions. Cogn. Emot. 18, 71–96 (2004).
 55. Leyens, J.-P. et al. Emotional prejudice, essentialism, and nationalism the 2002 Tajfel lecture. Eur. J. Soc. Psychol. 33, 703–717 

(2003).
 56. Martini, M. C., Gonzalez, C. A. & Wiese, E. Seeing minds in others-can agents with robotic appearance have human-like 

preferences?. PLoS ONE 11, e0146310 (2016).
 57. Appel, M., Izydorczyk, D., Weber, S., Mara, M. & Lischetzke, T. The uncanny of mind in a machine: Humanoid robots as tools, 

agents, and experiencers. Comput. Hum. Behav. 102, 274–286 (2020).
 58. Gray, K. & Wegner, D. M. Feeling robots and human zombies: Mind perception and the uncanny valley. Cognition 125, 125–130 

(2012).
 59. Tomlinson, E. C., Dineen, B. R. & Lewicki, R. J. The road to reconciliation: Antecedents of victim willingness to reconcile 

following a broken promise. J. Manag. 30, 165–187 (2004).
 60. Wan, L. & Zhang, C. Responses to trust repair after privacy breach incidents. J. Serv. Sci. Res. 6, 193 (2014).
 61. Esterwood, C., Robert, L. et al. The warehouse robot interaction sim: An open-source HRI research platform. In ACM/IEEE 

International Conference on Human–Robot Interaction (2023).
 62. Rein, J. R., Masalonis, A. J., Messina, J. & Willems, B. Meta-analysis of the effect of imperfect alert automation on system 

performance. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 57, 280–284 (SAGE Publications 
Sage CA, 2013).

 63. Paris, M. How amazon’s $100 billion investment in r &d is paying off this holiday season (2020).
 64. Jessup, S. A., Schneider, T. R., Alarcon, G. M., Ryan, T. J. & Capiola, A. The measurement of the propensity to trust automation. 

In International Conference on Human–Computer Interaction 476–489 (Springer, 2019).
 65. Ursachi, G., Horodnic, I. A. & Zait, A. How reliable are measurement scales? External factors with indirect influence on reliability 

estimators. Procedia Econ. Finance 20, 679–686 (2015).
 66. Singmann, H. & Kellen, D. An introduction to mixed models for experimental psychology. In New Methods in Cognitive 

Psychology (eds Spieler, D. H. & Schumacher, E.) 4–31 (Routledge, 2019).
 67. Robert, L. P., Denis, A. R. & Hung, Y.-T.C. Individual swift trust and knowledge-based trust in face-to-face and virtual team 

members. J. Manag. Inf. Syst. 26, 241–279 (2009).
 68. Ullman, D. & Malle, B. F. Measuring gains and losses in human–robot trust: Evidence for differentiable components of trust. In 

2019 14th ACM/IEEE International Conference on Human–Robot Interaction (HRI) 618–619 (IEEE, 2019).
 69. R Core Team. R: A Language and Environment for Statistical Computing (2013).
 70. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
 71. Long, J. A. jtools: Analysis and Presentation of Social Scientific Data (2022). R package version 2.2.0.
 72. Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. r 

package version 1 (2018) (2021).
 73. Salkind, N. J. Encyclopedia of Research Design Vol. 1 (Sage, 2010).
 74. Bauer, D. J. & Curran, P. J. Probing interactions in fixed and multilevel regression: Inferential and graphical techniques. Multivar. 

Behav. Res. 40, 373–400 (2005).
 75. Cohen, P., West, S. G. & Aiken, L. S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (Psychology 

Press, 2003).
 76. Jaccard, J. & Turrisi, R. Interaction Effects in Multiple Regression 72 (Sage, 2003).
 77. Lane, D. Online Statistics Education: A Multimedia Course of Study (Association for the Advancement of Computing in Education 

(AACE), 2003).
 78. Luke, S. G. Evaluating significance in linear mixed-effects models in r. Behav. Res. Methods 49, 1494–1502 (2017).
 79. Allen, M. Post Hoc Tests: Tukey Honestly Significant Difference Test (SAGE Publications, 2017).
 80. Midway, S., Robertson, M., Flinn, S. & Kaller, M. Comparing multiple comparisons: Practical guidance for choosing the best 

multiple comparisons test. PeerJ 8, e10387 (2020).

https://doi.org/10.1037/tmb0000047


14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9877  | https://doi.org/10.1038/s41598-023-37032-0

www.nature.com/scientificreports/

 81. Robinette, P., Howard, A. M. & Wagner, A. R. Timing is key for robot trust repair. In International Conference on Social Robotics 
574–583 (Springer, 2015).

 82. Kox, E. S., Kerstholt, J. H., Hueting, T. F. & De Vries, P. W. Trust repair in human-agent teams: The effectiveness of explanations 
and expressing regret. Auton. Agents Multi-Agent Syst.https:// doi. org/ 10. 1007/ s10458- 021- 09515-9 (2021).

 83. Sebo, S. S., Krishnamurthi, P. & Scassellati, B. “I don’t believe you”: Investigating the effects of robot trust violation and repair. 
In 2019 14th ACM/IEEE International Conference on Human–Robot Interaction (HRI) 57–65 (IEEE, 2019).

 84. Zhang, X. “Sorry, It Was My Fault”: Repairing Trust in Human–Robot Interactions. Thesis, University of Oklahoma (2021).
 85. Bosco, F. M. & Gabbatore, I. Sincere, deceitful, and ironic communicative acts and the role of the theory of mind in childhood. 

Front. Psychol. 8, 21 (2017).
 86. Bippus, A. M. & Young, S. L. How to say “i’m sorry:’’ Ideal apology elements for common interpersonal transgressions. West. J. 

Commun. 84, 43–57 (2020).
 87. Bachman, G. F. & Guerrero, L. K. Forgiveness, apology, and communicative responses to hurtful events. Commun. Rep. 19, 

45–56 (2006).
 88. Levi, D. L. The role of apology in mediation. N. Y. Univ. Law Rev. 72, 1165 (1997).
 89. Ebesu Hubbard, A. S., Hendrickson, B., Fehrenbach, K. S. & Sur, J. Effects of timing and sincerity of an apology on satisfaction 

and changes in negative feelings during conflicts. West. J. Commun. 77, 305–322 (2013).
 90. Iwai, T. & Carvalho, J. V. F. Denials and apologies: Pathways to reconciliation. RAUSP Manag. J. 57, 332–346 (2022).
 91. Knight, J. G., Mather, D. & Mathieson, B. The key role of sincerity in restoring trust in a brand with a corporate apology. In 

Marketing Dynamism & Sustainability: Things Change, Things Stay the Same... Proceedings of the 2012 Academy of Marketing 
Science (AMS) Annual Conference 192–195 (Springer, 2015).

 92. Ohtsubo, Y. Perceived intentionality intensifies blameworthiness of negative behaviors: Blame-praise asymmetry in intensification 
effect 1. Jpn. Psychol. Res. 49, 100–110 (2007).

 93. Cucciniello, I., Sangiovanni, S., Maggi, G. & Rossi, S. Mind perception in HRI: Exploring users’ attribution of mental and 
emotional states to robots with different behavioural styles. Int. J. Soc. Robot. 15, 867–877 (2023).

 94. Wang, X. & Krumhuber, E. G. Mind perception of robots varies with their economic versus social function. Front. Psychol. 9, 
1230 (2018).

 95. Sætra, H. S. Social robot deception and the culture of trust. Paladyn J. Behav. Robot. 12, 276–286 (2021).
 96. Sharkey, A. & Sharkey, N. We need to talk about deception in social robotics!. Ethics Inf. Technol. 23, 309–316 (2021).
 97. Carli, R. Social robotics and deception: Beyond the ethical approach. In Proceedings of BNAIC/BeneLearn 2021 (2021).
 98. Sharkey, A. & Sharkey, N. Children, the elderly, and interactive robots. IEEE Robot. Autom. Mag. 18, 32–38 (2011).
 99. Johnson, D. G. & Verdicchio, M. Why robots should not be treated like animals. Ethics Inf. Technol. 20, 291–301 (2018).
 100. Coeckelbergh, M. Are emotional robots deceptive?. IEEE Trans. Affect. Comput. 3, 388–393 (2011).
 101. Scheutz, M. The affect dilemma for artificial agents: Should we develop affective artificial agents?. IEEE Trans. Affect. Comput. 

3, 424–433 (2012).
 102. Pusztahelyi, R. et al. Emotional ai and its challenges in the viewpoint of online marketing. Curentul Jurid. 81, 13–31 (2020).
 103. Calvo, R. A., D’Mello, S., Gratch, J. M. & Kappas, A. The Oxford Handbook of Affective Computing (Oxford Library of Psychology, 

2015).
 104. Stark, L. & Hoey, J. The ethics of emotion in artificial intelligence systems. In Proceedings of the 2021 ACM Conference on Fairness, 

Accountability, and Transparency 782–793 (2021).
 105. Fischer, K. Why collaborative robots must be social (and even emotional) actors. Techné Res. Philos. Technol. 23, 270–289 (2019).
 106. Beattie, A. J. & High, A. C. I get by with a little help from my bots: Implications of machine agents in the context of social support. 

Hum. Mach. Commun. 4, 151–168 (2022).
 107. Van Kleef, G. A. How emotions regulate social life: The emotions as social information (EASI) model. Curr. Dir. Psychol. Sci. 

18, 184–188 (2009).
 108. Hu, Y., Min, H. & Su, N. How sincere is an apology? Recovery satisfaction in a robot service failure context. J. Hosp. Tour. Res. 

45, 1022–1043 (2021).
 109. Pompe, B. L., Velner, E. & Truong, K. P. The robot that showed remorse: Repairing trust with a genuine apology. In 2022 31st 

IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) 260–265 (IEEE, 2022).
 110. Xu, J. & Howard, A. Evaluating the impact of emotional apology on human–robot trust. In 2022 31st IEEE International 

Conference on Robot and Human Interactive Communication (RO-MAN) 1655–1661 (IEEE, 2022).
 111. Applegate, J. L. Person-and position-centered teacher communication in a day care center: A case study triangulating interview 

and naturalistic methods. Stud. Symb. Interact. (1980).
 112. Burgoon, J. K. Expectancy violations theory. In The International Encyclopedia of Interpersonal Communication (eds Berger, C. 

R. et al.) 1–9 (Wiley, 2015).
 113. Afifi, W. A. & Burgoon, J. K. The impact of violations on uncertainty and the consequences for attractiveness. Hum. Commun. 

Res. 26, 203–233 (2000).
 114. Deb, S. et al. Development and validation of a questionnaire to assess pedestrian receptivity toward fully autonomous vehicles. 

Transp. Res. Part C Emerg. Technol. 84, 178–195 (2017).
 115. Heydarian, A. et al. Immersive virtual environments versus physical built environments: A benchmarking study for building 

design and user-built environment explorations. Autom. Constr. 54, 116–126 (2015).
 116. Jayaraman, S. K. et al. Pedestrian trust in automated vehicles: Role of traffic signal and av driving behavior. Front. Robot. AI 6, 

117 (2019).
 117. Mara, M. et al. User responses to a humanoid robot observed in real life, virtual reality, 3d and 2d. Front. Psychol. 12, 633178 

(2021).
 118. Liang, N. & Nejat, G. A meta-analysis on remote HRI and in-person HRI: What is a socially assistive robot to do?. Sensors 22, 

7155 (2022).
 119. Gittens, C. L. Remote HRI: A methodology for maintaining Covid-19 physical distancing and human interaction requirements 

in HRI studies. Inf. Syst. Front.https:// doi. org/ 10. 1007/ s10796- 021- 10162-4 (2021).
 120. Gittens, C. L. & Garnes, D. Zenbo on zoom: Evaluating the human–robot interaction user experience in a video conferencing 

session. In 2022 IEEE International Conference on Consumer Electronics (ICCE) 1–6 (IEEE, 2022).
 121. Hancock, P. A. et al. A meta-analysis of factors affecting trust in human–robot interaction. Hum. Factors 53, 517–527 (2011).
 122. Hancock, P., Kessler, T. T., Kaplan, A. D., Brill, J. C. & Szalma, J. L. Evolving trust in robots: Specification through sequential and 

comparative meta-analyses. Hum. Factors 63, 1196–1229 (2021).
 123. Lavrakas, P. J. Encyclopedia of Survey Research Methods (Sage Publications, 2008).
 124. Edwards, C., Edwards, A. P., Albrehi, F. & Spence, P. R. Interpersonal impressions of a social robot versus human in the context 

of performance evaluations. Commun. Educ. 70, 165–182 (2020).
 125. Westerman, D. K., Edwards, A. P., Edwards, C., Luo, Z. & Spence, P. R. I-It, I-Thou, I-Robot: The perceived humanness of AI in 

human–machine communication. Commun. Stud. 71, 393–408 (2020).
 126. Nass, C., Steuer, J. & Tauber, E. R. Computers are social actors. In Proceedings of the SIGCHI Conference on Human Factors in 

Computing Systems 72–78 (1994).
 127. Nass, C. & Moon, Y. Machines and mindlessness: Social responses to computers. J. Soc. Issues 56, 81–103 (2000).

https://doi.org/10.1007/s10458-021-09515-9
https://doi.org/10.1007/s10796-021-10162-4


15

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9877  | https://doi.org/10.1038/s41598-023-37032-0

www.nature.com/scientificreports/

 128. Alarcon, G. M., Gibson, A. M., Jessup, S. A. & Capiola, A. Exploring the differential effects of trust violations in human–human 
and human–robot interactions. Appl. Ergon. 93, 103350 (2021).

 129. Küster, D. & Swiderska, A. Seeing the mind of robots: Harm augments mind perception but benevolent intentions reduce 
dehumanisation of artificial entities in visual vignettes. Int. J. Psychol. 56, 454–465 (2021).

 130. Lee, S. K. & Sun, J. Testing a theoretical model of trust in human–machine communication: Emotional experience and social 
presence. Behav. Inf. Technol.https:// doi. org/ 10. 1080/ 01449 29X. 2022. 21459 98 (2022).

 131. Tzelios, K., Williams, L. A., Omerod, J. & Bliss-Moreau, E. Evidence of the unidimensional structure of mind perception. Sci. 
Rep. 12, 18978 (2022).

 132. Malle, B. How many dimensions of mind perception really are there? In CogSci 2268–2274 (2019).
 133. Li, Z., Terfurth, L., Woller, J. P. & Wiese, E. Mind the machines: Applying implicit measures of mind perception to social robotics. 

In 2022 17th ACM/IEEE International Conference on Human–Robot Interaction (HRI) 236–245, https:// doi. org/ 10. 1109/ HRI53 
351. 2022. 98893 56 (2022).

 134. Xu, X. & Sar, S. Do we see machines the same way as we see humans? A survey on mind perception of machines and human 
beings. In 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) 472–475 (IEEE, 
2018).

 135. Shank, D. B. & DeSanti, A. Attributions of morality and mind to artificial intelligence after real-world moral violations. Comput. 
Hum. Behav. 86, 401–411 (2018).

 136. Wiese, E., Weis, P. P., Bigman, Y., Kapsaskis, K. & Gray, K. It’sa match: Task assignment in human–robot collaboration depends 
on mind perception. Int. J. Soc. Robot. 14, 141–148 (2022).

Acknowledgements
The authors are extremely thankful to the editorial staff and anonymous reviewers for their suggestions and 
feedback during the review process. We would also like to thank the Emerging Technologies Group (DMC) at 
the University of Michigan. In particular, we wish to thank Stephanie O’Malley and Sara Eskandari for their help 
in the development of our experimental platform.

Author contributions
C.E.: Conceptualization, Methodology, Software, Validation, Formal Analysis, Investigation, Resources, Data 
Curation, Writing—Original Draft, Writing—Review andEditing, Visualization, Project Administration.  L.P.R.: 
Conceptualization, Methodology, Validation, Resources, Data Curation, Writing—Review and Editing, Project 
Administration, Supervision, Funding Acquisition.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 37032-0.

Correspondence and requests for materials should be addressed to C.E.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1080/0144929X.2022.2145998
https://doi.org/10.1109/HRI53351.2022.9889356
https://doi.org/10.1109/HRI53351.2022.9889356
https://doi.org/10.1038/s41598-023-37032-0
https://doi.org/10.1038/s41598-023-37032-0
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	The theory of mind and human–robot trust repair
	Hypotheses
	Conscious experience and trust repair. 
	Intentional agency and trust repair. 

	Methods
	Task and scenario. 
	Experimental design. 
	Independent variables. 
	Co-variates and random effects. 
	Dependent variables. 
	Participants. 
	Procedure. 
	Data analysis. 

	Results
	Manipulation check. 
	Trust repairs and mind perception over multiple violations. 
	Conscious experience and apologies. 


	Discussion
	Limitations and future work
	Conclusion
	References
	Acknowledgements


