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ABSTRACT
In the evolving landscape of human-robot interactions, tour-guide
robots are increasingly being integrated into various settings. How-
ever, the existing paradigm of these robots relies heavily on pre-
recorded content, which limits effective engagement with visitors.
We propose to address this issue of visitor engagement by trans-
forming tour-guide robots into dynamic, adaptable companions
that cater to individual visitor needs and preferences. Our primary
objective is to enhance visitor engagement during tours through a
robotic system capable of assessing and reacting to visitor prefer-
ence and engagement. Leveraging this data, the system can calibrate
and adapt the tour-guide robot’s content in real-time to meet indi-
vidual visitor preferences. Through this research, we aim to enhance
the tour-guide robots’ impact in delivering engaging and personal-
ized visitor experiences by providing an adaptive tour-guide robot
solution that can learn from humans’ preferences and adapt its
behaviors by itself.
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• Human-centered computing→ Scenario-based design; Sys-
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Figure 1: An overview of the proposed adaptive content plan-
ner (ACP) based on visitor engagement for a personalized
tour-guide robot system.

1 INTRODUCTION
Tour-guide robots have been under development for more than
two decades. One of the early examples was introduced in 1998 for
museum tours [8]. Since then, several tour robot systems have been
introduced, such as MINERVA [26], Robotinho [11], Lindsey [9],
and GidaBot [19]. Themain objective of these tour-guide robots is to
guide visitors through complex environments, provide information,
and enhance the overall visitor experience [24]. The advancements
in artificial intelligence have enabled more recent developments in
this field to offer a more personalized experience. Contemporary
tour-guide robots are increasingly capable of adapting their infor-
mation delivery based on visitor responses instead of delivering
static information to the visitors, which limits the educational and
informational impact of these robots [6]. A typical example is that
Boston Dynamics turned its robot dog into a talking tour guide
with large language models (LLM). They trained its four-legged
bot to answer questions and generate responses about its facilities,
which utilized humans’ spoken language to adapt robots’ behavior.
However, a real-time interaction primarily relying on human voice
input might not be feasible during many tours, where the visitors
prefer to listen to the guide rather than keep talking. A self-learning
system that adapts to the user’s preferences is required[25]. There-
fore, there still exist limitations to tour-guide robots’ understanding
of visitors’ engagement and the reactions to this understanding.
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To address this limitation, various types of interaction have
been investigated on the tour-guide robots, such as spatial interac-
tion [14], non-verbal interaction [3, 11, 15], and verbal interaction
[21]. Spatial interaction refers to the robot and human sharing and
reasoning about the same physical space. Non-verbal interaction
emphasizes the interaction methods without speaking. To address
the limitation mentioned above, we focus on the verbal interaction
of the tour guide robot. Moreover, another intriguing avenue of
the tour-guide robot field is the integration of learning technology
[2, 9]. Although learning technology has been applied in guide ro-
bot design [23], it is still uncertain which is the best way to leverage
this kind of technology to personalize the robot’s behavior [20]. By
employing machine learning and artificial intelligence techniques,
the tour robots should have the potential to continually refine their
interaction strategies, tailoring each tour to the unique charac-
teristics of the audience. Therefore, we conclude that there exists
a literature gap about how to combine learning technology and
human-robot interaction methods in tour-guide robots for highly
personalized and engaging tours.

To bridge this gap, we propose to develop a personalized ro-
bot tour framework to dynamically adjust the guide script content
provided by the tour-guide robot based on measured visitor engage-
ment. The architecture of this robot system is shown in Fig. 1. The
definitions of variables in this system are provided in section III.

2 RELATEDWORKS
2.1 Defining of Engagement
Engagement with an agent is typically referred to as social engage-
ment including an affective component, such as emotion, workload,
and entertainment. One way in which it is being used is to capture
the inner state of a participant and the value they attribute to the
interaction [16]. Youssef et al. [4] used several levels of engagement
annotation including head rotation and eye gaze. In addition to
the affective component, humans’ attention and cognitive engage-
ment matter in the engagement annotation as well. Biancardi et al.
[5] combine affective- with attention- and cognitive engagement
components in their detection model. Based on these statements
about the definition of engagement, we define engagement as the
attention and value the visitors attribute to the tour.

2.2 Measuring Engagement
Prior research has explored various engagement measurement
methods in human-robot interactions. Post-interaction question-
naires were used in [22] to evaluate the engagement level of the
humans. Pattar et al. [17] developed a module integrated with facial
recognition, and speech recognition to measure engagement and en-
able personalized interaction. Some researchers took advantage of
behavioral observations to measure the engagement level. Duchetto
et al. [10] developed an engagement detector to measure visitor’s
engagement from their eye features captured from a robot’s ego
camera.

2.3 Calibrating Engagement
Studies have shown that adaptive robot behavior can enhance en-
gagement, including speech patterns and communication strategies.
Sidner et al. [22] improved visitor engagement by designing a robot

(a) High engagement level (b) Low engagement level

Figure 2: Examples of the engagement detector results: (a)
High engagement with the robot when visitors look at the
tour-robot platform or the exhibit being discussed, (b) Low
engagement with the robot when visitors pay no attention
to the exhibit being discussed.

to mimic human conversational gaze behavior. Oerte et al. [16]
found that, in robot-user interaction, users are sensitive to the ro-
bot’s gaze and gestures. Therefore, there are also some research
works exploring aspects of gesture. Kanda et al. [13] proposed a
robot architecture for implementing a large number of behaviors
to entice people to relate to it interpersonally. Breazeal et al. [7]
presented a biologically inspired framework for emotive commu-
nication and interaction between robots and humans with robot
gesture designs. Velentza et al. [27] also found that the cheerful
robot with more funny facial expressions and smiles could improve
the visitors’ engagement. Apart from the facial expressions, they
manipulated the robots in terms of their voice and storytelling style.
More cheerful voices and storytelling styles have a positive impact
on the visitors’ engagement as well.

Based on our literature review, although there were some re-
search works exploring engagement measures and enhancing en-
gagement in human-robot interaction, there still exists a literature
gap about how to enhance the engagement level in real-time based
on a comprehensive assessment of the visitors’ preference and
engagement with a tour-guide robot.

3 ADAPTIVE CONTENT PLANNER BASED ON
VISITOR’S ENGAGEMENT

Our proposed solution is an adaptive content planner (ACP) that is
specifically designed to enhance visitor engagement during tours
led by tour-guide robots. The ACP takes into account visitors’ initial
preferences for short or long tour that indicates their interest in this
tour, and real-time engagement levels to estimate their interest in
the content being presented. Based on the visitors’ interest and real-
time engagement, the ACP adjusts the content and the length of the
guide scripts, helping the visitors remain interested and engaged
throughout the robot tour. By doing so, we aim to provide a more
personalized and enjoyable experience for visitors.

3.1 Measuring Preference and Engagement
As shown in Fig. 1, the ACP utilizes two inputs, initial preference
(𝑥1) and engagement (𝑥2), to adjust the features of guide scripts dur-
ing the interaction. The robot asks each visitor for their preferences
for a short or long tour at the beginning of the tour. The visitor’s
response is recognized by speech recognition [29] and converted
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into the initial preference input 𝑥1 for the ACP. For example, if the
visitor chooses the long tour, a higher value (0.6) will be assigned
to 𝑥1 because they expect to spend more time on this tour, which
indicates a relatively higher interest and value they attribute to this
tour.

Gaze is an important cue involved in assessing engagement in
human-robot interaction [1], which shows humans’ attention to the
robot. To measure real-time engagement from visitors, the robot
observes the behaviors of the visitor with its camera and estimates
the engagement level. We apply an existing deep learning-based
engagement detector to estimate engagement levels during the tour-
robot’s explanations for each spot in the tour[10]. The engagement
detector is built using the TOur GUide RObot (TOGURO) dataset,
a collection of videos recorded at the museum, and annotated by
humans. The engagement level is highest when the visitor is looking
directly at the robot’s head and behind the robot, medium when
they are looking around within the robot camera view, and lowest
when the visitor is not within the robot’s camera view. According to
their results in [10], Spearman’s Correlation 𝜌 of predictions with
the ground-truth values annotated by three annotators is 0.758
for single-party interaction. Our tour-guide robot measures real-
time visitor engagement using their engagement detector while
discussing the exhibit at each spot. The average of the engagement
values is considered as the engagement input 𝑥2 for the ACP. The
results of the engagement detector software tool with high and low
engagement values are presented in Fig. 2.

3.2 Adjusting Contents Based on Visitors’
Preference and Engagement

The ACP algorithm determines whether to ask the visitor to con-
tinue the explanation for the current spot or move to the next spot
based on their preference and engagement. To make this decision,
we used a linear threshold algorithm as shown in Eq. 1. It takes into
account two inputs, namely the visitor’s initial preference (𝑥1) and
the measured engagement during the explanation (𝑥2).

𝑓 (𝑥) = 𝑤1𝑥1 +𝑤2𝑥2 (1)

As shown in Fig. 1, the algorithm assigns a weight (𝑤1 and𝑤2)
to each input respectively and compares the result to a threshold
value (𝜃 = 0.5) to determine whether to ask the visitor to continue
or not. The output of the algorithm is a request for the visitor to
continue or end the interaction.

The reason why we set the weights𝑤1 and𝑤2 is the uncertainty
of the relative importance of input 𝑥1 and 𝑥2 in assessing engage-
ment. The initial preference 𝑥1 indicates the guide robot system is
adaptable (e.g., the users can choose the exercises by themselves).
In contrast, the real-time engagement level input 𝑥2 indicates our
system is adaptive (e.g., the system chooses exercises for the users
by itself). Previous works show that users evaluate the adaptive
robots as more competent, warm, and report a higher alliance[20].
To optimize both the engagement assessment and user experience,
we set the weights𝑤1 and𝑤2 to make a reasonable balance between
these two kinds of inputs. At this stage, the numerical values of
𝑥1,𝑤1,𝑤2 and 𝜃 are set by iterative experiments. Several values of
these variables and parameters were tested to optimize the adaptive
interaction.

Spot 3

Spot 4
Spot 1 Basic: Welcome to MAVRIC Lab. 

-----------------------------
Advanced: We study on HRI  ~ …
-----------------------------
Application: We utilized it for ~ …

<Content script>

<Grid Map with 2D LiDAR-based SLAM>

Spot 2

Figure 3: The experiment environment and tour spots. White
paper icon represents an example of the guide scripts includ-
ing basic, advanced, and application introductions.

4 PRELIMINARY EXPERIMENT AND RESULTS
We designed a robot-tour scenario at a lab space to validate the
functionality of the proposed ACP. The mission of the tour guide
robot is to introduce our lab research based on lab facilities. There
is a supplementary video at https://youtu.be/WvgnWXWxLwk that
explains the details of this robot-guide tour experiment.

4.1 Tour-guide Robot System
The tour-robot platform used in this experiment is Toyota Human
Support Robot (HSR) [28], a mobile manipulator platform capable
of navigating in the indoor environment. The HSR features various
functions necessary for tour guide, such as robot speaking and
speech detection. To easily integrate HSR functions with our ACP
algorithm, we utilized the Robot Operating System (ROS) [18].

For the robot navigation through predefined spots, we built a grid
map with Simultaneous Localisation and Mapping (SLAM) using
gmapping package [12], and validated the mobility of the tour-
robot navigation to avoid obstacles and dynamic visitors during the
tour guide. Fig 3 shows the lab environment and grid map used in
the tour-robot navigation, in which the red dash line indicates the
robot’s trajectories and the blue dot indicates the tour spots from
Spot 1 to Spot 4.

4.2 Experiment Scenario
Spot 1 to Spot 4 are the predefined spots for robot navigation, as
illustrated in Fig. 3. Spot 1 is the beginning and end spot of the tour.
Spot 2 to Spot 4 are the locations of the lab facilities. Each spot
has three levels of introduction content in the corresponding guide
script: basic, advanced, and application. The basic script contains
basic information for the research facility, such as name, specifi-
cation, and research objectives. The advanced script covers more
technical details about the facility and research work. And, the ap-
plication script focuses on the practical applications and real-world
implications of the research work.

In our experiment scenario, at Spot 1, the tour robot first gave
a brief introduction of our lab, then asked the visitor’s preference
on the tour mode (i.e., short or long tour) via robot voices (“Would
you prefer short tour? Please answer after Beep sound. Beep!” ). After
“Beep” sound, the speech recognition algorithm of the HSR platform

https://youtu.be/WvgnWXWxLwk
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(a) HSR Robot’s camera view

(b) Estimated engagement level during experiment

Figure 4: One of the preliminary experiment’s results: The top image displays the HSR’s camera views, and the bottom image
shows the estimated engagement level during the robot tour. The gray box indicates the tour-guide robot’s explanation of the
content from Spot 1 to Spot 4.

detects the visitor’s answer which becomes input 𝑥1 in the ACP.
Then, the robot moved to the next spot to continue the robot tour.
As the tour robot leads visitors to each spot from Spot 2 to 4, it
firstly provides the basic information. While explaining the basic
content script, the robot measures the visitors’ engagement level
values with a 10 Hz sampling rate from the robot camera views
mounted on the HSR head. When the basic explanation finishes,
the mean value of these engagement level values is considered as
input 𝑥2. Based on the APC result, the robot decides whether to
continue explaining more details of the current spot. This process
repeats during the robot-guide tour.

4.3 Alpha Test and Results
We conducted alpha tests to verify the functioning of the tour robot
system and ACP algorithm. The robot led a tour for one visitor each
time. During the tests, participants were instructed to pay attention
to the robot guide or not at different spots. We presented one of
the test results in Fig. 4, in which Fig. 4b displays the engagement
levels during the test and Fig. 4a shows the camera view from the
HSR platform.

During the robot explanation at Spot 2, the participant showed
disinterest in the tour by looking around. At Spot 3, the participant
showed interest in the robot by closely eye-contacting with the
robot and watching the lab facility. As a result, the robot should ask
the participants if they want to learn more about the current spot
at Spot 2. On the other hand, at Spot 3, the robot should continue
with the advanced script to cover more details without asking the
participant. Under this circumstance, each tour took around 5 min
with around 300 words spoken. It takes around 15 sec for the robot
to go from one spot to another. Most of the alpha tests showed
the same results as we expected, which validated that the robot
system can adjust the content based on the visitor’s engagement.
However, sometimes the system did give some unexpected response.
For example, the system might ask the visitor if they would like to

continue with an advanced script even if the visitor felt engaged at
that time.

5 CONCLUSIONS AND FUTUREWORK
We proposed a new interactive system for tour-guide robots that is
capable of measuring visitors’ engagement and using this data to
customize the content provided by the tour-guide robot according
to individual needs. To implement this system, we used the Toyota
HSR platform to navigate predefined spots in our experimental
environment (i.e., the lab space). We demonstrated the system’s
performance and capabilities in playing a tour-guide role, such as
speech recognition, measuring visitor engagement from the robot’s
camera view, and explaining the spot with three levels of guide
scripts based on the visitor’s preferences and real-time engagement
level.

However, there are some limitations in our proposed primary
experiment. Firstly, we did not deeply consider optimizing the
values of variables and parameters in the ACP algorithm. Therefore,
it will be necessary to adjust and standardize these values, including
the conversion from visitor’s preference to input 𝑥1, the weights of
preference and engagement values (𝑤1 and𝑤2), and the threshold
of the engagement level. Secondly, we did not validate the proposed
ACP algorithm with multiple human visitors. As we consider real-
world scenarios, it is highly likely that multiple visitors will be
present in the environment simultaneously. Lastly, we assumed
the visitor was not interested in the tour when the visitor kept
looking around or leaving the robot’s view in the alpha tests. But
this hypothesis might not be always valid.

In the future, we plan to overcome the aforementioned limita-
tions and conduct a user experiment to thoroughly validate the
proposed ACP algorithm. Furthermore, we intend to investigate
the impact of dynamic content adaptation on visitor engagement
and test the proposed system via user experiments.
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