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Abstract 

 

With the rapid advancement of artificial intelligence (AI) technology, Computer-Assisted 

Diagnosis (CAD) has emerged as a prominent player in modern medical diagnostics, 

revolutionizing the way diseases are detected, diagnosed, and assessed. Despite the enthusiasm 

surrounding CAD, however, there is a noticeable gap in the research landscape - to be specific, a 

scarcity of thorough studies that rigorously compare its diagnostic capabilities and viewpoints 

with those of medical experts. This study aims to fill this void by subjecting the innovative fuzzy 

method, designed to replicate the methodologies of ophthalmologists in diagnosing diabetic 

retinopathy (DR), one of the leading causes of blindness. 

Using general case studies, a comprehensive review is conducted regarding the 

advantages and limitations inherent in each respective methodology. Through this process, the 

current problem of diagnosis is identified, and by using multiple diagnostic criteria for diabetic 

retinopathy, a diagnosis system based on a fuzzy inference system is created. Testing using 

FGADR and APTOS datasets acquired an accuracy of 77.59% and 98% respectively – overall 

achieving an accuracy of 87.04%. Although its value is lower in comparison to state-of-the-art 

performance (sensitivity of 91.9% and specificity of 91.3%), the advantages it could provide show 

promising alternatives that could be researched. While testing through datasets, edge case testing is 

conducted to check whether the proposed system correctly identifies misidentified data, 

validating the objectives of the research. 



xi 

 

This study will provide fresh insights into critically analyzing both the traditional 

diagnostic approach by human ophthalmologists and the innovative next-generation diagnostic 

technologies driven by AI, within their respective contexts. The availability of technology that 

mimics human doctors’ decision-making will ultimately facilitate the analysis of the current state 

of the technology. 

 

Keywords: Diabetic Retinopathy, Fundus Photography, Computer-Assisted Diagnosis, 

Fuzzy Inference Systems 
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CHAPTER 1 Introduction 

 

This chapter concentrates on elucidating the intricate structures of the fundus, delineating 

the manifestations of diabetic retinopathy, and emphasizing its global significance in ocular 

health. Subsequently, the discussion turns to the distinctive attributes of fundus photography, 

chosen as the primary diagnostic modality for this study. The chapter navigates through the 

rationale behind this selection, encompassing factors such as accessibility, cost-effectiveness, 

and its established role in clinical practice. The overarching aim is to contribute substantial 

insights to the domain of ophthalmology, enriching our understanding of diabetic retinopathy for 

the betterment of clinical outcomes. 

1.1 Understanding Fundus Anatomy 

 

Figure 1.1: Basic Anatomy of Human Eyes [1]
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Although we take it for granted, the human eye is a complex organ. Understanding the 

role of its parts, especially organs that are located within the fundus (e.g., retina, macula) is 

crucial for understanding the diagnosis and treatment of eye diseases. 

The fundus in ophthalmology refers to the interior surface of the eye opposite the lens, as 

shown in Figure 1.1. This region comprises intricate components for visual function, including 

the retina, optic disc, macula, and blood vessels that supply the retina.  

At the back of the eye lies the retina, a layer of tissue containing photoreceptor cells that 

convert light into neural signals. The retina plays a critical role in vision, as it is responsible for 

transmitting visual information to the brain. 

The macula, a small central area of the retina, is responsible for sharp, detailed vision. It 

contains a high concentration of photoreceptor cells called cones, which are responsible for color 

vision and visual acuity. The macula is essential for activities such as reading, driving, and 

recognizing faces. 

1.2 Manifestation of Diabetic Retinopathy 

Diabetic retinopathy, a complication stemming from diabetes, exerts its impact on ocular 

health by primarily targeting the small blood vessels. The escalation of blood sugar levels in 

uncontrolled diabetes contributes to the thickening and fragility of these vessels, leading to 

vessel leakage or blockage. In the early stages of diabetic vascular damage, microaneurysms 

emerge as small, round, red dots, signifying protrusions in the retinal capillaries. Additionally, 

exudates such as cotton wool spots or hard exudates manifest, serving as indicators of localized 
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areas of retinal ischemia induced by nerve fiber layer infarcts. To make matters worse, the 

damaged blood vessel may result in the growth of new, abnormal blood vessels on the surface of 

the retina, potentially leading to retinal detachment and blindness, also known as 

neovascularization, as shown in Figure 1.2. 

 

Figure 1.2: Difference between Normal Retina and Diabetic Retinopathy Fundus Image [2] 

 

1.2.1 Stages of Diabetic Retinopathy 

There are multiple ways of staging the severity of diabetic retinopathy. In this thesis, we 

mainly used the diagnostic criteria for diabetic retinopathy according to the International Clinical 

Diabetic Retinopathy (ICDR) Severity Scale for DR. The ICDR not only successfully combines 

the findings of the Early Treatment of Diabetic Retinopathy Study (ETDRS) and the Wisconsin 

Epidemiologic Study of Diabetic Retinopathy (WESDR), but it’s also the standard scale that is 

used widely for the staging of the disease. Table 1.1 shows the ICDR Severity Scale for DR. 
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Proposed disease 

severity level 
Findings observable by dilated ophthalmoscopy 

No diabetic retinopathy No abnormalities 

Mild NPDR Microaneurysms only 

Moderate NPDR 
More than just microaneurysms but less than severe NPDR diabetic 

retinopathy 

Severe NPDR 

Any of the following: 

- more than 20 intraretinal hemorrhages in each of 4 

quadrants; definite venous beading in 2 quadrants. 

- Prominent intraretinal microvascular abnormalities in 1 

quadrant and no signs of proliferative retinopathy 

PDR 

One or more of the following:  

- Neovascularization 

- vitreous/pre-retinal hemorrhage 

Table 1.1: ICDR Severity Scale for Diabetic Retinopathy [3] 

 

1.3 Significance of the Problem 

Diabetic Retinopathy stands as a formidable global concern, ranking prominently among 

the major causes of blindness. It holds the distressing distinction of being a leading contributor to 

visual impairment and blindness in adults on a worldwide scale. As a progressive complication 

of diabetes, this ocular ailment can initiate a cascade of pathological changes within the delicate 

structures of the eye's retina. If left unchecked, it has the potential to compromise visual acuity to 

a profound extent, ultimately culminating in significant vision loss or even complete blindness. 

A case study from TensorFlow showed that diabetic retinopathy is one of the fastest-growing 

causes of blindness, as over 415 million people suffer from diabetes [4]. 

This alarming prevalence underscores the pressing need for early detection, vigilant 

management, and ongoing monitoring to counteract its potentially devastating impact on visual 

health. Thankfully, a nationwide diabetic eye screening (DES) program was carried out in the 
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United Kingdom, and its result proved that extensive screening plays a pivotal role in the 

prevention and treatment of DR-induced blindness [5]. 

In the next chapters, two main methodologies employed in DR diagnosis – human DR 

diagnosis and CAD – and its pros and cons will be examined. With it, a solution to remedy the 

cons of each side will be proposed.
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CHAPTER 2  

Literature Review of Diabetic Retinopathy and its Diagnosis Methods 

 

In this chapter, a comprehensive exploration of the landscape surrounding DR is 

undertaken, tracing its historical trajectory to lay a foundation for subsequent discussions. The 

literature review will provide valuable insight into the evolution of understanding of DR. 

Following the historical overview, a critique of human DR diagnosis and CAD is undertaken, 

dissecting its merits and demerits in detecting DR. A novel approach is then suggested to 

maximize the benefits of both methods while minimizing the drawbacks of both methods. 

 

2.1 History of Diabetic Retinopathy Diagnosis 

Despite the suspicion that the relationship between diabetes and retinopathy was 

suggested in the 1850s, it was 1968 when the Airlie House Symposium evaluated the knowledge 

of diabetic retinopathy (DR), and established the first standards for defining one quantitatively 

[12]. Some studies indicate that early pioneering work on screening for DR was conducted in the 

Baltic Sea region of Northern Europe in the late 1900s [13]–[15]. Such standards spread 

throughout Europe starting from the UK to USA and Singapore. 

In the past decade, the steady increase in diabetes cases worldwide fueled the 

advancement of automated screening systems – many of which leverage AI technology. Early AI 
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software in diagnosing retinopathy was focused on identifying specific image features, such as 

microaneurysms [16]. However, as extracting vessels before detecting DR with machine learning 

is time-inefficient in both preparing the dataset for training and diagnosing and as the field of 

machine learning has experienced tremendous growth over time in both algorithms and 

hardware, another paradigm of AI arose – a data-driven deep learning AI system which 

distinguishes severity of DR by using nothing but retinal images without performing vessel 

segmentation. A wide variety of deep learning methods (e.g., transfer learning [17] or multi-layer 

convolutional neural networks (CNN) [18]–[20]) have been applied for DR detection, 

diagnosing, and staging [6]. On top of that, various preprocessing methods (e.g., normalization, 

data augmentation) were performed to further enhance the accuracy of the diagnosis. 

A state-of-the-art review of CAD in the detection of DR in 2023 revealed that from 2020 

and beyond, there is a significant drop in the number of studies that use preprocessing, as shown 

in Figure 2.2 [21]. The study pointed out that the advancement of CNN architectures allowed the 

model to track the minor details within the image without the need for preprocessing overall.  

 

Figure 2.1: The Number of Entries That Had Preprocessing Stage Implemented [21] 

 

In the same research with comparative studies ranging from 2016 to 2020, an accuracy 

ranging from 85.96% to 99.49% has been claimed. However, it is noteworthy that the author also 
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pointed out that the quantitative comparisons of accuracy do not conclude one model 

outperforms the other, as there remain many degrees of freedom involved in testing. This study 

shows that the area of diagnosis in DR is everchanging, and numerous attempts are being made 

not only to improve accuracy but also to improve the efficiency and ease of use of the diagnosis 

system. 

Unequivocally, the modern cutting-edge methods for diabetes screening demonstrate 

impressive accuracy and efficiency in identifying individuals at risk or those already affected by 

this chronic condition. However, like any approach, they are not without their limitations. In the 

following sections, we will delve into the various challenges and drawbacks associated with 

these cutting-edge technologies. By examining these limitations, the study aims to gain a 

comprehensive understanding of the evolving landscape of diabetes screening and the pressing 

need for different approaches in making a diagnosis. 

 

2.2 Advantages of Human Diabetic Retinopathy Diagnosis 

One of the biggest advantages of human diagnosis comes from human interaction. 

Human diagnosticians excel at interpreting unstructured data, such as patient narratives, 

emotional cues, and context. Each patient is unique in their way, and so must be their diagnosis 

and treatment; in this sense, unstructured information can be vital in diagnosis but poses a 

challenge for the general CAD system to fully utilize in the diagnosing process. 
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2.3 Limitations of Human Diabetic Retinopathy Diagnosis 

Despite the efforts, the human DR diagnosis poses many challenges to overcome. Firstly, 

ophthalmologists and medical practitioners often employ a multifaceted diagnostic approach to 

ensure accurate detection and assessment of the condition. This usually ensures a more accurate 

diagnosis and assessment of the given condition, but such a multifaceted approach might not 

only increase the overall difficulty in diagnosis but also require more time and resources, which 

could impact the efficiency of diagnosis and treatment. Research from Dr. Yin showed that the 

low rate of fundus examination due to limitations of medical resources delays the diagnosis and 

treatment of diabetic retinopathy – which validates the need for an automated diabetic 

retinopathy screening system. 

Moreover, there are multitudes of tables that ophthalmologists can use to reference for 

diagnosing, which leads to a rather vague diagnosing system. Although there was an attempt to 

create an international clinical DR scale, some discrepancy remains, as different treatments may 

be required even though they are categorized in the same severity [22]. 

On top of that, certain studies discuss that ophthalmologists are inconsistent with their 

diagnosis. In the case study of TensorFlow in Medicine, Dr. Peng noted that even the most 

renowned doctors are surprisingly variable when it comes to categorizing the stages of DR. 

Despite the contestants being US board-certified ophthalmologists and well-known guidelines do 

exist, the lack of conciseness was evident in the study as shown in Figure 2.2. He did point out 

that there were good agreements amongst the experts about normal and PDR, but in between, 

there were many variabilities, disagreements, and fuzziness about where each disease should be 

categorized [4]. 
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Figure 2.2: Case Study: TensorFlow in Medicine - Retinal Imaging [4] 

 

2.4 Advantages of the Computer-Assisted Diagnosis in Diabetic Retinopathy Diagnosis 

The utmost advantage of using CAD comes from its speed, availability, and consistency. 

Computer-assisted diagnosis systems can process and analyze vast amounts of data quickly while 

adhering to clinical guidelines, and the diagnoses deducted from it can be easily accessed from 

places where human experts aren’t present. For instance, the automated system implemented 

during the study in Portugal showed the potential for a human grading burden reduction of 

48.42% [23]. 

Additionally, with the advent of neural networks, through large-scale modeling and data 

analysis, AI-powered CAD systems can identify certain patterns and correlations that weren’t 

evident in experts’ observations, which may lead to finding additional diagnosis factors, 

improving the accuracy of the diagnosis. 
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2.5 Limitations of the Computer-Assisted Diagnosis in Diabetic Retinopathy Diagnosis 

One of the biggest and most prominent issues of using CAD systems for diagnosis is that 

computers lack clinical judgment from critical thinking. Therefore, if healthcare professionals 

grow excessive reliance on CADs, it may result in deskilling them, potentially leading to 

increased misdiagnosis, especially if the conditions display rare or unusual conditions that were 

non-existent in the CAD database. Food and Drug Administration (FDA) Guidance on Non-

Device Clinical Decision Support recommends that the medical information, including the output 

of CAD software, provide a list of preventive, diagnostic, or treatment options with logic or 

methods to provide such options in plain language description rather than providing a specific 

diagnostic or treatment plan [24], [25]. 

2.6 Types of Medical Image Modalities 

Various medical imaging modalities crucial for the diagnosis and management of DR 

exist as shown in Figure 1.3. These modalities offer unique perspectives on ocular structures, 

aiding clinicians in comprehending the intricacies of the disease progression. 

 

Figure 2.3: Medical Image Modalities for the Detection/Diagnosis/Staging of DR and AMD [6] 
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Fundus Photography (FP) stands as a fundamental modality, capturing detailed images of 

the retina. FP provides a comprehensive view of the ocular fundus, highlighting abnormalities 

such as hemorrhages, microaneurysms, and exudates. FP is valued for its non-invasive nature, 

widespread availability, and cost-effectiveness. However, its limitations include surface-level 

insights with restricted in-depth information, and an inability to visualize minuscule vascular 

changes, making it less suitable for detailed assessments. 

In such a situation, Fundus Fluorescein Angiography (FFA) stands out for its ability to 

visualize blood flow dynamics and identify vascular abnormalities. The invasive nature of FFA, 

involving the injection of a fluorescent dye, is a significant drawback. Additionally, the 

procedure carries the risk of potential allergic reactions, which is another trade-off between 

diagnostic capability and patient discomfort. 

Due to the invasive nature of FFA, Fundus Autofluorescence Imaging (FAF) introduces a 

non-invasive alternative by capturing the natural fluorescence emitted by the retinal pigment 

epithelium (RPE). Its non-invasive nature and widespread availability are significant advantages. 

However, limitations might include a reduced ability to provide detailed vascular information 

compared to other modalities. 

Unlike the previous methodologies, Optical Coherence Tomography (OCT) offers 

distinctive cross-sectional images with high-resolution structural information, allowing precise 

assessments of retinal layers and providing precise assessment of retinal layers. However, since 

OCT relies on light waves, certain conditions such as vitreous hemorrhage, dense cataracts, or 

corneal clouding can introduce media opacities, thereby constraining the effectiveness of the 
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OCT scan in such cases [7]. One must keep in mind, however, that methods such as FP also get 

impacted by such symptoms. 

Ocular Ultrasound, though less commonly used for DR, can be employed to evaluate the 

posterior segment of the eye. This is especially relevant in cases where other modalities may be 

challenging, such as in the presence of dense cataracts. 

Table 1.2 shows the Pros and Cons of Ophthalmological Medical Image Modalities. 

 

Imaging Modality Pros Cons 

Fundus Photography 

(FP) 

• Non-invasive 

• Widespread availability 

• Cost-effective 

• Limited in-depth 

information 

• Inability to visualize 

miniscule vascular changes 

Fluorescein 

Angiography (FFA) 

• Visualizes blood flow 

• Easily identify vascular 

abnormalities 

• Invasive 

• Potential allergic reaction 

Fundus 

Autofluorescence 

Imaging (FAF) 

• Non-invasive: no external 

dye used 

• Non-invasive 

• Widespread availability 

Optical Coherence 

Tomography (OCT) 

• Cross-sectional images 

• High-resolution structural 

information 

• Precise assessment of 

retinal layers 

• Distinctive in comparison 

to other modalities 

• Can be clouded by certain 

conditions 

Ocular Ultrasound • Dynamic Imaging • Limited resolution 

Table 2.1: Pros and Cons of Ophthalmological Medical Image Modalities 

 

2.6.1 Why Fundus Photography? 

Fundus photography, also known as fundoscopy or ophthalmoscopy, has emerged as a 

critical tool for diagnosing a wide range of ophthalmologic conditions. Due to its widespread 
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availability, it is increasingly being employed in CAD using AI. There are several compelling 

reasons why fundus photography has become an area of interest. 

First and foremost, fundus photography allows for non-invasive visualization and 

documentation of the retina, optic nerve head, and surrounding vasculature.  

It provides an overview of color image of the back of the eye in good resolution, allowing 

for detailed examination of the retina and its blood vessels. Moreover, its nature of non-

invasiveness allows its procedure to be painless, making it adequate for a wide range of patients. 

Fundus photography’s capability to capture an overview of the eye also signifies that it 

provides a permanent record of the eye’s appearance, which can be used for comparison with 

future images to monitor changes over time. This can be especially useful for tracking the 

progression of certain eye conditions and assessing the effectiveness of treatments. The 

availability of visual documentation leads to empowering patients to understand their current 

condition, and the importance of the treatment, successfully enhancing their commitment to 

managing their blood sugar levels in a healthy range and ultimately lowering the overall risk [8]. 

Research from the International Journal of Ophthalmology showed that fundus 

fluorescein angiography outperforms fundus photography in detection accuracy [9]. Due to the 

nature of differences in angiography and photography, it is quite natural that angiography shows 

better results in diseases where blood vessel assessment is crucial. However, many non-

numerical indicators, including but not limited to the cost, complexity of the procedure as well as 

the level of patient discomfort show that fundus photography has its advantages.  
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Overall, fundus photography is a valuable tool for ophthalmologists in the diagnosis and 

management of various eye conditions, and its non-invasive nature makes it a safe and patient-

friendly procedure. 

 

2.7 Proposed Solution 

To merge the benefits of both human diabetic retinopathy and CAD as can be seen from 

similar studies that were mentioned earlier, fuzzy logic and FIS are widely used in medical 

classification/staging methods.  

The core concept of integrating fuzzy logic in diagnosis is to model the imprecise aspects 

of the behavior of the system through fuzzy sets and fuzzy rules [26]. Unlike conventional logic 

sets with crisp boundaries, a fuzzy set allows a gradual transition between two different sets, 

characterized through membership function. These characteristics are advantageous for 

diagnosing medical conditions for several reasons: 

• Medical diagnosis often involves experts (ophthalmologists in our case) making medical 

decisions based on their knowledge and experience. Fuzzy logic is useful in emulating 

those human reasoning processes. 

• Fuzzy logic can handle uncertainties and variabilities that can exist in the patient data 

effectively, ultimately resulting in more robust diagnoses. 

• Fuzzy logic is suitable for adapting to changes in patient data and adjusting its 

diagnostic decisions accordingly. 

 

2.7.1 Design Process for the Proposed Solution 
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Unlike other typical FIS, the proposed solution introduces two key design innovations 

aimed at enhancing the efficiency and credibility of the diagnostic system.  

 

Figure 2.4: Difference in Scope of Proposed FIS in comparison to the Typical FIS 

 Firstly, the incorporation of simple logic alongside the conventional fuzzy logic in the 

inputs allows a notable reduction in the number of fuzzy rules. In addition, the system employs a 

cross-validation mechanism that compares the output of two distinct classification stages, 

successfully increasing credibility and validity while maintaining a low number of rules, as 

shown in Figure 2.3. 

 All these efforts result in a judiciously low number of rules. Only 63 rules were required 

to fully implement the system, which is 98.43% lower rules than the theoretical maximum 

number of rules available – 4000 (10 classifications of IRH * 10 classifications of MA * 2 

classifications of HE * 5 classifications of IRMA * 2 classifications of CWS * 2 classification of 

NV/VH/PRH). This low number of rules will not only ease the difficulty of maintaining the 

system for doctors but also let patients easily understand the reasoning behind their diagnosis. 
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2.8 Previous Attempts 

A few similar studies have been conducted and published for diagnosing DR accurately. 

In 2017, the Diabetic Retinopathy Detection System (DRDS) based on the Mamdani fuzzy 

inference system (FIS) was created [10], while in 2020, fuzzy based decision-making system for 

the Detection of Diabetic Retinopathy was proposed [11]. However, the implementation of 

DRDS utilized different inputs that are more related to the cause of diabetes such as visual field, 

fasting blood sugar, HDL, and LDL. In the case of the study in 2020 as well, the study used 

glucose levels in blood, intra-ocular pressure, etc. Both of those studies’ input parameters require 

additional testing other than FP itself.  

Unlike these approaches, our aim is to devise a diagnostic system whose decisions rely solely on 

parameters extractable from a single fundus photograph, making it a valuable resource for 

healthcare professionals. Attempting to make a diagnosis system whose decisions are based on 

parameters, all of which can be acquired from a single image, with human-explainable reasoning 

from professionals, will prove to be an asset in the future of the diagnosis system.
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CHAPTER 3  

DATASETS AND METHODS 

 

This chapter introduces the foundational elements of the datasets and methods used in 

creating and evaluating the proposed diagnostic solution. An overview of the Fuzzy Inference 

System (FIS) will first be provided with a detailed explanation of the fuzzy subsystem that lies 

within. Afterwards, the parameters of the inputs and outputs for the system will be briefly 

explained. Two different datasets – FGADR and APTOS – will then be introduced, explaining 

why they were suitable for testing the overall system. The goal of this chapter is to establish a 

clear and transparent understanding of the technical aspects involved in the development and 

assessment of the system. 

 

3.1 Fuzzy Inference System 

To simulate the human ophthalmologists’ diagnoses, the dataset was modified to have 

additional data required for diagnosis.  

The proposed FIS model consists of a few fuzzy logic sub-systems, with generic inputs 

that can be acquired from the FP. Like the Patient-Reported Outcome Measure (PROM) 

questionnaires that are generally used in hospitals for triage, the inputs are numerically done, 

from the lowest being mild to the highest being severe. The FIS inputs are defined in Appendix 

A (Diagnostic Questionnaire for Fuzzy Inference System).
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The rubrics are inspired by incorporating common aspects of DR severity scale tables [3], 

[22]. Note that the following inputs and categories are tentative and can be altered with the 

consultation of the experts, as with the betterment of the technology, research occurs that 

questions the validity of the table itself, while proposing a newer scale system. 

 

Figure 3.1: FIS Tree Model of Implemented System 

 

The proposed fuzzy inference system (FIS) tree model consists of two simple logics – 

“DR_Check_Prolif” and “DR_MaH”, and four fuzzy logics – “DR_Fuzzy_Division”, 

“NPDR_Fuzzy_Classify_Mod”, “NPDR_ Fuzzy_Classify_Severe”, and “DR_Fuzzy_MakeDiag” 

as shown in Figure 3.1. 

“DR_Check_Prolif” checks if the current state of DR is proliferative or non-proliferative. 

Based on the ICDR severity scale for DR [3], a DR is considered proliferative if the image shows 

NV or VH / PRH, no matter what other symptoms imply.  
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“DR_Fuzzy_Division” serves as the foundational layer of the diagnostic process, vaguely 

categorizing the current stage of the eye into 4 different membership outputs as division – 

normal, mild, moderate, and severe. This sets up the groundwork of subsequent fuzzy logic for 

more detailed diagnosis. Table 1 shows the fuzzy rules for the “DR_Fuzzy_Division”.  

# Fuzzy Rule of DR_Fuzzy_Division Weight 

1 
IRH==absent & MA==absent & HE~=present & IRMA==absent & 
CWS~=present => Division=normal 

1 

2 
IRH==absent & MA==present in 1 quad & HE~=present & IRMA==absent & 
CWS~=present => Division=mild 

1 

3 
MA==present in 4 quads | IRMA==present in 4 quads as mild or 1 quad as 
prominent => Division=severe 

1 

4 
IRH==present in 1 quad & MA==absent & HE~=present & IRMA==absent & 
CWS~=present => Division=mild 

0.5 

5 
HE==present | IRMA==present in 1 quad as mild | CWS==present => 
Division=moderate (0.5)" 

0.5 

6 
HE==present | IRMA==present in 1 quad as mild | CWS==present => 
Division=severe 

0.5 

7 IRH==present in 2 quads | MA==present in 2 quads => Division=moderate 1 

8 IRH==present in 3 quads | MA==present in 3 quads => Division=moderate 0.5 

9 IRH==present in 3 quads | MA==present in 3 quads => Division=severe 0.5 

10 IRH==present in 4 quads | MA==present in 4 quads => Division=severe 1 

11 IRH==present in 3 quads & MA==present in 1 quad => Division=severe 1 

12 IRH==present in 1 quad & MA==present in 3 quads => Division=moderate 1 

Table 3.1: Fuzzy Rule of Logic "DR_Fuzzy_Division" 

 

Rules 1-3 show the base case of normal/mild/severe division respectively based on the 

ICDR severity scale.  

• If there are no symptoms at all, the eye is normal.  
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• If there are only microaneurysms (MA) and no other abnormalities, the eye has a 

mild NPDR. 

• If the 4-2-1 rule is met (MA is prominent in four quadrants or intraretinal 

microvascular abnormalities (IRMA) are found in one of the quadrants of the 

retina), the eye has a severe NPDR. 

Rule 4-6, 8, and 9 fill in the gap within Rule 1-3 for symptoms that can present in 

multiple stages of severity. For instance, if only intraretinal hemorrhage (IRH) is shown in one of 

the quadrants, it is diagnosed as mild based on the scale, but only given a weight of 0.5 instead of 

1, as IRH usually is discoverable together with MA. This is because the weakened walls of the 

retinal blood vessels by MA usually induce the IRH as DR progresses. 

Rule 7, 10-12 denotes the diagnostic cases based on the severity of MA and IRH of the 

eye. This is because the proliferation of the MA and IRH are directly related to diagnosing the 

severity of moderate NPDR to severe NPDR. Moreover, as the scale of MA and IRH is set much 

finer (0-10) in comparison to other metrics, more rules were defined to avoid random edge cases 

which result in misdiagnosis. 

Using the output from “DR_Fuzzy_Division” together with necessary inputs for further 

classification, 2 fuzzy logic subsystems have been created – “NPDR_Fuzzy_Classify_Mod” and 

“NPDR_ Fuzzy_Classify_Severe”. Each system has the output of “DR_Fuzzy_Division” as a 

foundation of finer diagnosis. In the case of “NPDR_ Fuzzy_Classify_Severe”, several inputs 

other than necessary inputs for fine diagnosis have been pruned to ensure that the number of 

rules required for the diagnosis is reduced while maintaining all the necessary functions. The 

detailed diagnosis is branched out from the initial elementary diagnosis based on the table 

provided in Review of Optometry [22]. 
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The fuzzy rules for the “NPDR_Fuzzy_Classify_Mod” and “NPDR_Fuzzy_Classify_ 

Severe” can be found in Tables 3.2 and 3.3, respectively. In the case of 

“NPDR_Fuzzy_Classify_Mod”, the output parameters have been specified and pruned into 

normal, mild, moderate, moderately severe, and beyond moderate. By doing so, we were able to 

effectively reduce the number of rules needed, while effectively segmenting the symptoms into 

finer categories. 

# Fuzzy Rule of NPDR_Fuzzy_Classify_Mod Weight 

1 
Division==normal & IRH==absent & MA==absent & HE~=present & 
IRMA==absent & CWS~=present => Classification=normal 

1 

2 
Division==mild & IRH==present in 1 quad & MA==absent & 
HE~=present & IRMA==absent & CWS~=present => Classification=mild  

1 

3 
Division==mild & IRH==absent & MA==present in 1 quad & 
HE~=present & IRMA==absent & CWS~=present => Classification=mild 

1 

4 
Division==mild & IRH==absent & MA==absent & HE==present & 
IRMA==absent & CWS~=present => Classification=normal 

1 

5 
Division==mild & IRH==present in 1 quad & MA==present in 1 quad & 
HE~=present & IRMA==absent & CWS~=present => Classification=mild 

0.5 

6 
Division==mild & IRH==present in 1 quad & MA==absent & 
HE==present & IRMA==absent & CWS~=present => Classification=mild 

0.5 

7 
Division==mild & IRH==absent & MA==present in 1 quad & 
HE==present & IRMA==absent & CWS~=present => Classification=mild 

1 

8 
Division==mild & IRH==present in 1 quad & MA==present in 1 quad & 
HE==present & IRMA==absent & CWS~=present => Classification=mild 

0.5 

9 
Division==moderate & MA==present in 2 quads => 
Classification=moderately severe 

0.5 

10 
Division==moderate & IRMA==present in 2 quads as mild => 
Classification=moderately severe 

1 

11 
Division==moderate & MA==absent & HE~=present & IRMA==present 
in 1 quad as mild => Classification=moderate 

1 

12 
Division==moderate & MA==absent & HE==present & IRMA==absent 
=> Classification=moderate 

1 

13 
Division==moderate & MA==present in 1 quad & HE~=present & 
IRMA==absent => Classification=moderate 

1 
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14 
Division==moderate & MA==absent & HE==present & IRMA==present 
in 1 quad as mild => Classification=moderate 

0.5 

15 
Division==moderate & MA==present in 1 quad & HE~=present & 
IRMA==present in 1 quad as mild => Classification=moderate 

0.5 

16 
Division==moderate & MA==present in 1 quad & HE==present & 
IRMA==absent => Classification=moderate 

0.5 

17 
Division==moderate & MA==present in 1 quad & HE==present & 
IRMA==present in 1 quad as mild => Classification=moderate 

0.25 

18 
Division==moderate & IRH==present in 2 quads => 
Classification=moderately severe 

1 

19 
Division==moderate & IRH==present in 1 quad & MA==absent & 
HE~=present & IRMA==absent & CWS~=present => Classification=mild 

0.5 

20 
Division==normal & IRH==absent & MA==present in 1 quad & 
HE~=present & IRMA==absent & CWS~=present => Classification=mild 

0.25 

21 
Division==normal & IRH==absent & MA==absent & HE==present & 
IRMA==absent & CWS~=present => Classification=mild 

0.25 

22 
IRH==present in 3 quads | MA==present in 3 quads | IRMA==present in 3 
quads as mild => Classification=beyond moderate 

1 

23 
IRH==present in 4 quads | MA==present in 4 quads | IRMA==present in 4 
quads as mild or 1 quad as prominent => Classification=beyond moderate 

1 

Table 3.2: Fuzzy Rule of Logic "DR_Fuzzy_Classify_Mod" 

 

Rules 1 and 4 allow the system to diagnose the current state as normal when there are no 

symptoms present. This may sound unorthodox since all the normal states must be diagnosed by 

“DR_Fuzzy_Division” beforehand. However, this is to prevent any potential false trues occurring 

when new rules are added to the “DR_Fuzzy_Division”. 

For symptoms that were directly listed in the ICDR scale, a fuzzy rule with a weight of 1 

has been designated. This includes rules 2, 3, and 7 for mild NPDR, rules 4, 11-13 for moderate 

NPDR, 10 for moderately severe, and rules 22 and 23 for beyond moderate NPDR. 

The rest of the rules are for the symptoms that could be categorized into more than two 

categories at the same time. In such cases, multiple rules with the equivalent condition have been 
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created with lower weights. This not only allows a natural transition between the categories but 

also enables finer, consistent diagnosis for the images with niche symptoms which are hard to 

diagnose with the currently available severity scales.  

Similarly, in “NPDR_Fuzzy_Classify_Severe”, the output has been altered from standard 

normal, mild, moderate, and severe into below severe, moderately severe, severe, and extremely 

severe. Since the MA and IRH are virtually considered as a single parameter for diagnosing 

severe NPDR in the ICDR severity scale, the status of MA and IRH has been combined through 

a simple OR statement within the simple logic of “DR_MaH”. By doing this, we can effectively 

half the number of rules needed for “NPDR_Fuzzy_Classify_Severe”. 

# Fuzzy Rule of NPDR_Fuzzy_Classify_Severe Weight 

1 
IRMA==present in 2 quads as mild (1 VB) => Classification=moderately 
severe 

1 

2 
MaH==present in 4 quads | IRMA==present in 4 quads as mild or 1 quad 
as prominent (multiple VB) => Classification=severe 

1 

3 
IRMA==present in 4 quads as mild or 1 quad as prominent (multiple VB) 
=> Classification=extremely severe 

1 

4 MaH==present in 4 quads & IRMA==present in 4 quads as mild or 1 

quad as prominent (multiple VB) => Classification=extremely severe 
1 

5 
IRMA==present in 4 quads as mild or 1 quad as prominent (multiple VB) 
=> Classification=extremely severe 

1 

6 
IRMA==present in 4 quads as mild or 1 quad as prominent (multiple VB) 
=> Classification=extremely severe 

1 

7 
Division==moderate & MaH==present in 3 quads => 
Classification=moderately severe 

0.5 

8 Division==severe & MaH==present in 3 quads => Classification=severe 1 

9 
Division==less than moderate & MaH==present in 1 quad => 
Classification=below severe 

1 

10 
Division==moderate & MaH==present in 1 quad & IRMA==absent => 
Classification=below severe 

1 

11 
Division==less than moderate & MaH==absent & IRMA==absent => 
Classification=below severe 

1 
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12 
Division==less than moderate & MaH==absent & IRMA==absent => 
Classification=below severe 

1 

Table 3.3: Fuzzy Rule of Logic "DR_Fuzzy_Classify_Severe" 

 

Finally, “DR_Fuzzy_MakeDiag” makes a final diagnosis based on the output of 

“DR_Check_Prolif”, “NPDR_Fuzzy_ Classify_Mod”, and “NPDR_Fuzzy_Classify_Severe”. 

While doing so, “DR_Fuzzy_MakeDiag” also checks the validity of the diagnosis – although it is 

almost impossible to have an invalid diagnosis since both “NPDR_Fuzzy_Classify_Mod” and 

“NPDR_Fuzzy_Classify_Severe” use similar inputs, it is a good practice to have a model to 

cross-validate the diagnosis. This becomes more evident when medical experts expand the model 

by adding more fuzzy inputs and their linguistic values, increasing the chance of misdiagnosis. 

Table 3.4 shows the fuzzy rules for “DR_Fuzzy_MakeDiag”. 

# Fuzzy Rule of DR_Fuzzy_MakeDiag Weight 

1 
Class_Mod==normal & Class_Severe==below severe => 
Diagnosis=normal, Validity=valid 

1 

2 Is_Prolif==present => Diagnosis=proliferative, Validity=valid 1 

3 
Class_Mod==moderately severe & Class_Severe==moderately severe & 
Is_Prolif~=present => Diagnosis=moderately severe, Validity=valid 

1 

4 
Class_Mod==beyond moderate & Class_Severe==severe & 
Is_Prolif~=present => Diagnosis=severe, Validity=valid 

1 

5 
Class_Mod==beyond moderate & Class_Severe==extremely severe & 
Is_Prolif~=present => Diagnosis=extremely severe, Validity=valid 

1 

6 
Class_Mod==moderate & Class_Severe==below severe & 
Is_Prolif~=present => Diagnosis=moderate, Validity=valid 

1 

7 
Class_Mod==beyond moderate & Class_Severe==below severe => 
Validity~=valid 

0.25 

8 Class_Mod==normal & Class_Severe~=below severe => Validity~=valid 1 

9 Class_Mod==mild & Class_Severe~=below severe => Validity~=valid 0.5 

10 
Class_Mod==moderate & Class_Severe~=below severe => 
Validity~=valid 

0.25 
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11 
Class_Mod~=beyond moderate & Class_Severe==moderately severe => 
Validity~=valid 

0.25 

12 
Class_Mod~=beyond moderate & Class_Severe==severe => 
Validity~=valid 

0.5 

13 
Class_Mod~=beyond moderate & Class_Severe==extremely severe => 
Validity~=valid 

1 

14 
Class_Mod==normal & Is_Prolif==present => Diagnosis=normal, 
Validity~=valid 

1 

15 
Class_Mod==mild & Class_Severe==below severe & Is_Prolif~=present 
=> Diagnosis=mild, Validity=valid 

1 

16 
Class_Mod==mild & Class_Severe==below severe & Is_Prolif~=present 
=> Diagnosis=mild, Validity=valid 

1 

Table 3.4: Fuzzy Rule of Logic "DR_Fuzzy_MakeDiag" 

 

 Rules 1-6, 15, and 16 cover the case where the output of “NPDR_Fuzzy_ Classify_Mod”, 

and “NPDR_Fuzzy_Classify_Severe” points towards the same direction in diagnosis. On the 

other hand, rules 7-14 cover the case where the two outputs show a discrepancy, signifying the 

diagnosis can’t be trusted. The bigger the discrepancy is, the higher the assigned weight is for 

those rules. 

3.1.1 Implementation and Membership Functions 

The entire system has been implemented through MATLAB. The implementation starts 

with reading the subsystems using “readfis()” Each subsystem was implemented based on the 

ruleset provided in chapter 3.1, and its actual implementation can be viewed in Appendix B.  

• “DR_Fuzzy_Division” 

o HE and CWS are crisp input that go into the system. Henceforth, it has a shape of 

step function. 
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o IRH and MA have a shape of trapezoid, as the categorization of the progress of 

IRH and MA are both linear. 

o IRMA, on the other hand, uses Gaussian membership function, for the diagnose 

of each category shows distinctive features. 

o The membership functions of the output will form a shape of trapezoid, as the 

progress of disease itself is linear. However, notice that the early stages of disease 

have their output much denser. That’s because the accurate, precise classification 

of the early stages of disease matters a lot more in comparison to later stages in 

the disease, where the treatment becomes vital instead. 

• “NPDR_Fuzzy_Classify_Mod” & “NPDR_Fuzzy_Classify_Severe” 

o An output of “DR_Fuzzy_Division” is directly parsed as an input, together with 

other inputs used in the “DR_Fuzzy_Division” for reduction in number of rules, 

as stated in the end of chapter 2.6. 

o The outputs are in the form of Gaussian function instead of linear functions such 

as trapezoid or triangular, since the based rubric used to create this system 

employed crisp categorization, and changing it abruptedly into linear output 

resulted in increased error. This has been mitigated through using narrow 

Gaussian membership functions with increased numbers of categories. 

• “DR_Fuzzy_MakeDiag” 

o A new crisp input, Is_Prolif, comes into play to check if the disease is 

proliferative or not. This is because PDR has distinct symptoms in comparison to 

NPDR and removing them in the staging process vastly reduces the number of 

rules and unnecessary complexity. 
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o Other than diagnosis, additional linear S-shaped function “Validity” is outputted 

to check if the output generated makes sense. 

 

Afterwards, all necessary connections for each fuzzy subsystem are made. Using the 

specified inputs and outputs, a FIS tree is created using “fistree()”. 

 

Figure 3.2: FIS implementation in MATLAB  

 

 Now that the FIS tree is created, an input from each dataset is parsed through the system, 

and its output is saved for analysis.  
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Figure 3.3: Code Snippet for Testing FGADR Dataset 

 

 

Figure 3.4: Code Snippet for Testing APTOS Dataset 

 The detailed functions of membership functions within each .fis files and its justification 

can be found in Appendix B. Now that the FIS tree is created, an input from each dataset is 

parsed through the system, and its output is saved for analysis.  
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3.2 Parameters 

For diagnosis, 6 different parameters were set as an input, listed as follows: 

• Microaneurysm (MA) 

• Intraretinal Hemorrhage (IRH)  

• Hard Exudates (HE) 

• Intraretinal Microvascular Abnormality (IRMA) 

• Cotton Wool Spots (CWS, also known as Soft Exudates) 

• Neovascularization (NV) or Hemorrhage (VH or PRH) 

A detailed explanation of each parameter is demonstrated in Appendix A. 

The proposed Fuzzy Inference System (FIS) tree model consists of a few Fuzzy Logic 

sub-systems, with generic inputs that can be acquired from the FP. Like the Patient-Reported 

Outcome Measure (PROM) questionnaires that are generally used in hospitals for triage, the 

inputs are numerically done, from the lowest being mild to the highest being severe. The FIS 

inputs are defined in Appendix A. 

The rubrics for interpreting FIS outputs are the following: 

• Around 0: Normal. 

• Around 0.5: Mild.  

• Around 1: Moderate. 

• Around 1.5: Moderately Severe. Starting from here, a minimum of two or four months’ 

follow-up with retinal referral is advised. 

• Around 2: Severe. 
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• Around 2.5: Extremely Severe. 

• 3 or higher: Proliferative. A retinal referral in one week is advised. 

 

3.3 Dataset Used 

The system is tested through some of the images from the Fine-Grained Annotated 

Diabetic Retinopathy (FGADR) dataset [27]. This dataset was suitable for validating our system, 

as each image showed good consistency while having its grading labels annotated by three 

ophthalmologists. To increase the credibility, each annotation was doubly checked after 

processing the images through fuzzy-based retinal image contrast enhancement, and any missing 

or mislabeled lesions were redefined properly [28]. To simulate the human ophthalmologists’ 

diagnoses, the dataset was modified to have additional data required for diagnosis. 

To provide analysis with a more generally available dataset, an Asia Pacific Tele-

Ophthalmology Society (APTOS) dataset was utilized [29]. As the APTOS dataset successfully 

provides a diverse and comprehensive collection of well-annotated retinal images, it’s been 

widely used in the research community, promoting the comparability between different studies. 

For both datasets, similar number of images were chosen for testing. This is to prevent 

any bias in accuracy that may occur in testing, as the system may outperform in certain datasets 

over others, based on how well they follow the ICDR severity scale. 

Also, images with the key features that showed good correlation but weren’t present in 

the ophthalmologists’ DR scales were not included in the system. A good example is images 

with previous laser marks (PLM) caused by pan-retinal photocoagulation (PRP). As almost every 

image with PLM was diagnosed proliferative additional rules might have been set to classify 
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those edge cases. However, those are excluded for a few different reasons. Firstly, the PLM 

signifies that PRP has already been performed on the patient’s eye, which is followed by the 

diagnosis. Therefore, using this system to diagnose an eye that already has been diagnosed by the 

experts and treatment is practiced wouldn’t make logical sense. Secondly, PLM was not 

discussed as part of the observable findings in the ICDR severity scale for DR. Finally, different 

datasets took different approaches in diagnosing such images – some asserted that such images 

must diagnosed as PDR since it was proliferative before the procedure, whereas others asserted 

that such images must be diagnosed as NPDR as it is no longer proliferative after the procedure. 

It is possible to edit the proposed fuzzy rules based on the diagnosis made by each dataset but to 

prevent confusion, such images were omitted. 
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CHAPTER 4  

ACCURACY ANALYSIS OF INDUCTED FUZZY CLASSIFIERS 

 

In this chapter, we conduct a numerical evaluation of the proposed system’s diagnostic 

capabilities. Subsequently, we transition to an analysis of the edge cases, where diagnostic 

inaccuracies manifest. Here, we scrutinize specific instances where the diagnosis of the proposed 

system deviates from the ground truth provided by the expert and attempt to dissect the origins of 

those discrepancies in classification. 

 

4.1 Numerical Evaluation of the Proposed Fuzzy System 

4.1.1 FGADR 

Out of 58 images randomly chosen within the dataset for the test, 45 images were 

diagnosed correctly within the error range of 0.5 (77.59% accuracy), and 52 images were 

diagnosed correctly within the error range of 1 (89.66% accuracy). Detailed data has been 

provided in Appendix C. 

Undoubtedly, the level of accuracy observed in this system does not surpass that of other 

contemporary state-of-the-art DR diagnosis systems. It is noteworthy, however, that the error can 

be caused by the discrepancy with the diagnostic scale the ophthalmologists have chosen during 

the annotation, and its error ranges are further increased due to the fuzzification. In other words, 
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some of the “errors” found are technically not an error, but an adjustment to make a fine 

judgment about the state of the eye.  

 

4.1.2 APTOS 

Out of 50 images randomly chosen, 49 images were diagnosed correctly within the error 

range of both 0.5 and 1 (98% accuracy). Amongst the 49 images, 1 of the images accurately 

reported that the result has low validity. Most of this discrepancy originated from distinguishing 

between mild and moderate NDPR, and its details will be explained in the next section. Detailed 

data has been provided in Appendix D. 

Dataset Total Images Accuracy (Error Range 0.5) Accuracy (Error Range 1) 

FGADR 58 45/58 (77.59%) 52/58 (89.66%) 

APTOS 50 49/50 (98.00%) 49/50 (98.00%) 

FGADR + APTOS 108 94/108 (87.04%) 101/108 (93.52%) 

Table 4.1: Combined Accuracy Analysis for Datasets FGADR and APTOS 

 

Overall, an accuracy of 87.04% has been achieved, with 93.52% accuracy within the 

error range of 1 as shown in Table 4.1. It is noteworthy that the inaccuracy from the testing 

simply signifies that its diagnosis differed from the opinion of experts. In other words, the 

proposed system could shed light on the grey areas where the diagnosis may differ from doctor 

to doctor. A detailed explanation with examples is covered in the next section. 
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4.2 Analysis of the Edge Cases 

The main reason behind the diagnostic inaccuracy comes from the discrepancy in 

classification standards within the dataset. Both images in Figure 4.1 display signs of exudates 

(marked as a red circle). Though minuscule, such findings should result in a classification of 

moderate or higher based on the ICDR Severity Scale (Table 1.1). However, unlike the standard 

scale, the APTOS dataset classified both images as 1.  

 

Figure 4.1: Sample Images of Misdiagnosed APTOS Images 

 

This does not signify either the ground truth of the APTOS dataset or the ICDR Severity 

Scale is wrong – it instead displays that the experts who diagnosed the ground truth for the 

APTOS dataset put more variables into consideration when diagnosing the images (i.e., the 

severity of CWS/HE). Analysis was conducted to figure out the similarities between the outliers 

that the system had trouble diagnosing, as shown in Table 4.2. 
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Input that was classified 

inaccurately 
IRH MA HE IRMA CWS 

NV/VH/ 

PRH 

#1 1 0 0 0 0 0 

#2 1 0 1 0 0 0 

#3 3 1 1 0 0 0 

#4 1 0 1 0 0 0 

#5 1 1 0 0 0 0 

#6 3 1 1 0 0 0 

#7 1 2 1 1 0 0 

#8 2 1 0 0 0 0 

#9 1 1 0 0 0 0 

Table 4.2: Input Parameters of APTOS Images Which had a Mild Error (< 0.5) 

 

A few notable similarities were speculated through the analysis of the data that were 

misdiagnosed. 

• No signs of severe symptoms (IRMA or NV/VH/PRH) were found. 

• Early stages of IRH/MA were detected. 

• Exudates were present, but very local and not widespread through the retina. 

Through minor adjustments in fuzzy rules regarding IRH/MA and by subdividing 

HE/CWS membership functions more specifically, better results customized to the classification 

of APTOS classification standards may be yielded.  

Similarly, the FGADR dataset may have different scales utilized for diagnosing the 

severity of the DR in the image. 
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Figure 4.2: FGADR Ground Truth Compared to the Output of Proposed System 

 

As depicted in Figure 4.2, it is quite evident that the diagnosis made in FGADR tended to 

mark the condition of the eyes as more serious. 
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CHAPTER 5  

DISCUSSION 

 

In this chapter, we delve into a comprehensive discussion that navigates the 

improvements the proposed diagnostic system achieved. We then pivot into discussing objective, 

transparent analysis of the challenges inherent in its design and application. With it, a discussion 

of potential countermeasures will be made, laying down the groundwork for strategies to 

mitigate limitations and addressing critical perspectives. 

5.1 Comparison with the State of the Art 

Based on the leaderboard available for APTOS 2019 in Kaggle, the strategy and accuracy 

acquired are as follows: 

Ranking Strategy Accuracy 

1 Neural Network using Generalized Mean Pooling 
Public: 0.850 

Private: 0.936 

2 

Neural Network with Preprocessing (Crop + Resize) and 

Augmentation (Blur, Flip, RandomBrightnessContrast, 

ShiftScaleRotate, ElasticTransform, Transpose, GridDistortion, 

HueSaturationValue, CLAHE, CoarseDropout) 

Public: 0.841 

Private: 0.936 

4 

Neural Network with Preprocessing (Crop + Image Type 

Categorization) and Augmentation (Dihedral, RandomCrop, 

Rotation, Contrast, Brightness, Cutout, PerspectiveTransform, 

CLAHE) 

Public: 0.840 

Private: 0.933 

Table 5.1: Strategy and Accuracy of Leaderboard Competitors in APTOS 2019 Blindness 

Detection Competition  [29]
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It is important to note that those accuracies cannot be the direct comparison of the 

proposed system, as the APTOS 2019 Blindness Detection Competition conducted by Kaggle 

only provides image data to achieve the results. As any methods proposed in this competition 

rely solely on image recognition and classification, their resultant accuracy is naturally lower 

than that of the proposed system, which relies on experts’ perspectives on the image as input to 

begin with. Nonetheless, it is noteworthy that the overall accuracy that our system obtained 

(87.04% in FGADR + APTOS, 98.00% for APTOS only) is competitive when compared to a few of the 

best methods proposed out there.  

When the scope is broadened for more direct comparison, the state-of-the-art DR detection 

methods show much more impressive accuracy overall. A systematic review and meta-analysis conducted 

in 2020 demonstrated a pooled sensitivity of 91.9% (95% CI: 89.6% to 94.3%) and specificity of 91.3% 

(95% CI: 89.0% to 93.5%) over 24 studies using the Rutter and Gatsonis hierarchical summary receiver 

operating characteristics (HSROC) model [30]. This shows that our proposed model has room for further 

improvements in improving the overall accuracy of diagnosis. However, there were certain advantages 

that no other models presented in the study could replicate. 

 

5.2 Improvements 

The proposed model offers a set of advantages. First and foremost, the usage of fuzzy 

logic enables gradient changes in the severity of the diagnosis. Usage of the crisp diagnosis scale 

had inconsistencies within the same categories – despite being classified as the same stages of 

the same disease, some sample data showed relative differences in the severity of the disease. 

The usage of the FIS tree not only allows experts to have crisp categorizations, but through a 
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simple change in the defuzzification methods, experts can also acquire detailed severity of the 

disease within the same category. Figure 5.1, which displays how the diagnosis is made when all 

the processed inputs are entered at the final fuzzy subsystem, exemplifies how a diagnosis can be 

“smooth”, in comparison to other diagnostic tables usually used by ophthalmologists which can 

be found in Table 1.1 [3]. 

 

Figure 5.1: Diagram of “DR_Fuzzy_MakeDiag” When “Is_Prolif” Is Not Present. The Area 

Marked Red Is Where the Validity Is Low. 

In Figure 5.2, both images are classified as mild NPDR in the APTOS Dataset – which is 

equivalent to 1 in the proposed system. However, the proposed system employs a finer 

granularity in its classification, assigning the final classification of the left image as 1.057, and 

the right image as 0.954, as the left image showed more widespread dot hemorrhages overall. 

The enhanced sensitivity of the proposed system allows for a nuanced evaluation, capturing 

minor details that contribute to a more refined and precise classification of DR severity. 
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Figure 5.2: Images That Are Diagnosed Exactly Same in APTOS, but Differently in the Proposed 

System 

 

The proposed methodology not only ensures a meticulous evaluation of retinal images 

but also facilitates the detection of potential diagnostic errors that might be overlooked by human 

practitioners. For instance, both images in Figure 5.3 are classified as moderate NPDR in the 

APTOS dataset. The rule-based analysis of the system, however, diagnoses the left image as 

more severe, with a point of 2.005, in comparison to the right image, with a point of 0.954. 

Although these variances might initially appear as significant inaccuracies, closer scrutiny 

reveals that the left image exhibits more severe symptoms, such as hard/soft exudates and 

widespread hemorrhages in comparison to the right image. 
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Figure 5.3: Images That Are Diagnosed Same in APTOS, but Found to be a Potential Diagnostic 

Error in the Proposed System 

 

Another standout feature of the proposed model is its ability to incorporate an expert’s 

diagnosis into the model. The customizable nature of the FIS ensures that the FIS remains a 

relevant and effective diagnostic tool in the dynamic landscape of healthcare while promoting 

transparency in the results. Healthcare providers and patients can better understand how a 

diagnosis is reached, as the model's decision-making process is based on clearly defined rules, 

enhancing trust in the diagnostic outcomes. Although many studies used CAD to improve the 

accuracy of diagnosis, only a few kept an eye on expert recognizability, as the nature of modern 

neural networks allowed diagnosis based on numerous correlations that cannot be distinguished 

normally in human eyes. 

Additionally, a noteworthy feature of the proposed FIS tree is its usability – thanks to its 

easily customizable yet transparent nature while providing real-time support. As each logic 

within the model employs a fuzzy rule-based approach (FRBS), ophthalmologists can easily 

modify and refine the rules through programmers to adapt to ever-evolving medical knowledge 
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and criteria, while not hindering both the experts and the patients in understanding how a 

diagnosis is reached after an update.  

This could be even more useful if hospitals can utilize the patients’ private data that can’t 

be publicly shared but obtained through medical procedures to add further correlation, leading to 

improvement in diagnostic accuracy overall. The prime example is the analysis conducted in 

chapter 4.2 – despite not being aware of the set of rules used for diagnosis in the APTOS dataset 

specifically, a proper hypothesis was deduced based on analysis conducted on the outliers. 

On top of that, although it may not be as fast as, or as accurate as other state-of-the-art 

AI-driven CAD systems, the proposed model is still capable of providing real-time decision 

support with reasonable accuracy, addressing the pressing need for timely interventions and 

improved patient care in the actual field. Such features combined ensure that the model remains 

relevant in the industry longer. Moreover, the proposed system can be valuable in the fields of 

academia as well as industry due to the aforementioned reasons as well. 

 

5.3 Limitations and Countermeasures 

The biggest limitation of the proposed system currently is, paradoxically, the need for 

expert availability. Both proper operation and maintenance require experts to attend aside. For 

instance, there is no doubt that the FIS tree-based models are very expandable. However, as the 

model is relevant to medical industries, far more rigorous validation and testing must be 

practiced beforehand, as the standard requirement of accuracy in those fields is crucial. While 

trying to meet the accuracy and tuning the weights of the fuzzy logic, one might face an 
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overfitting issue, and some might end up adding too many fuzzy rules, eventually hindering not 

only the accuracy but also the efficiency of the system. 

To minimize such limitations, and for continuous improvement in the system, fostering a 

collaborative feedback loop between ophthalmologists and AI scientists will be crucial. Medical 

practitioners can provide constant feedback about the system, while the AI scientists work on 

updating the model based on real-world clinical outcomes. 

Input having a range of severity can also induce niche problems. Although having a 

gradient input allows output to be more intricate and precise rather than a giant category, each 

doctor may have different standards in deciding the severity of the symptoms and lesions in 

numerical values. This may even lead to some doctors modifying the input value slightly so that 

they can get the desired outcome out of the system, which is easier to do in comparison to other 

CAD systems due to the transparency, modifiability, and dependency it offers to the doctors. 

However, such problems can, and must be resolved through proper ethics training of the experts. 

Another drawback of the model is that it shares many constraints that FP has. Some of 

the information, such as checking whether a malformation of blood vessel seen in the FP is a 

prominent IRMA or NV, or inspecting if the red dots that are shown in the image are MA, IRH, 

or device noise. 
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Figure 5.4: Images of Several Microaneurysms, One of the Observable Findings Used for DR 

Diagnosis [31] 

 

  

Figure 5.5: Two Figures Each Displaying Similarities of Distinct Symptoms. Microaneurysms 

(Black Arrowheads) and Dot Hemorrhages (White Arrows) in FP (Left) [6], Sample Image 

Which Contains All Intermediate-Level DR Features (Right) [32]  

 

In the case of Figure 5.4, it is quite evident that some of the microaneurysms are barely 

visible to human eyes. Some may argue that doctors are trained to distinguish such findings, but 
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it is unequivocal that such issues may lead to misdiagnosis. In the left image of Figure 5.5, 

microaneurysms and dot hemorrhages are detected by fluorescein angiography and optical 

coherence tomography angiography (OCTA), both of which show a more precise discrepancy in 

blood vessel assessment at the cost of its price and complexity. However, in FP, two different 

features are both shown as nearly identical red dots. Similarly, in the right image of Figure 5.5, 

microaneurysms and hemorrhages, or cotton wool spots and hard exudation, both showed 

striking similarities.  

Unlike some of the more advanced examination methods such as fluorescein 

angiography, fundus photography has some limitations in acquiring enhanced visualization of 

blood flow and vascular abnormalities at the cost of its convenience. To further improve the 

accuracy of diagnosis and reduce human error, preprocessing of the fundus photography is 

highly advised.  

One can also use other examination methods such as fluorescein angiography or optical 

coherence tomography (OCT) when a more precise assessment is required. For instance, IRMA 

blood vessels are patent, whereas neovascular vessels are occluded. In these cases, the usage of 

angiography will ensure only IRMA blood vessels exhibit fluorescence [33].  

On top of that, one study shows that microaneurysms and dot hemorrhages are clinically 

indistinguishable, so they are referred to as hemorrhages and/or microaneurysms (H/Ma) as well 

[34]. Correlation analysis in the proposed model, depicted in Figure 5.6, supports this fact as 

IRH and MA show similar outcomes in making classification – IRH is considered a slightly 

more severe symptom, but misclassification of it will not result in drastic diagnostic error. This 

not only proves that some features are not as important as other features in the staging of DR but 

also opens new possible studies – as FIS is relatively easy to modify, it will allow clinicians to 
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edit or merge the inputs for hemorrhages and microaneurysms as one using simple or fuzzy 

logic, while diversifying types of hemorrhages, utilizing them as a new parameter for improving 

diagnosis. This validates how the proposed system mimics how human diagnosticians would 

describe and make their decisions. 

 

Figure 5.6: Diagram of the Correlation Analysis of IRH and MA in Output of 

“NPDR_Fuzzy_Classify_Mod” 

 

Finally, since the proposed system is rule-based, the system failed to diagnose images 

with symptoms that are not ruled in the system. A good example of this is images with PLM 

caused by PRP treatment or images with marks on the retina which can signify other possible 

diseases, such as vein occlusion, macular degeneration, non-diabetic retinopathy, etc. 

Although it may seem like a big issue, it is also easily fixed. PRP is a treatment that 

comes “after” the diagnosis of DR. In other words, images containing the PLM imply that the 

patient has been diagnosed with DR before, and treatment has been made, which means that the 

patient already has the medical record at the hospital. Moreover, if the correlation of PLM and 
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the severity of the PRP is found, one can simply add it to the system – in the current model, the 

PLM has not been considered as input, as its data was inaccessible from the FGADR dataset yet
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CHAPTER 6  

CONCLUSIONS 

 

In this thesis, we have developed a novel FIS method that allows accommodating 

experts’ opinions and understandings while maintaining the consistency and reproducibility of 

the CAD system. The proposed system was able to acquire an overall accuracy of 87.04%. 

Through ongoing refinement and collaboration, we hope the proposed model to make a 

meaningful impact in both the healthcare industry and academic research. 

The future works that can be added is to attempt replicating an agreeable severity scale 

that could be utilized locally based on the doctors’ inputs, or creating a system that allows 

patients to diagnose themselves with the help of smartphone fundus photography in the poor 

countries where both the equipment and the doctors are scarce [35].
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APPENDIX A. 

Diagnostic Questionnaire for Fuzzy Inference System 

This is the PROM questionnaire that was utilized to acquire a numerical dataset from the 

image-based dataset. This table is given to personnel who were responsible for data acquisition 

after training on how to identify each symptom within the image. The people who were 

responsible for processing the data had ample experience in converting real-life data into 

quantitative data through their experience in the AI lab, and to promote fairness, they were not 

told what the purpose of this data refining was, or any information regarding the proposed FIS. 

 

(Intraretinal) Hemorrhage (IRH) 0~10:  

0 = absent 

1~3 = present in 1, over 20 hemorrhage major per quad (>5 in image) 

4~6 = present in 2 quads, over 20 major hemorrhages per quad (>10 in image) 

7~8 = present in 3 quads, over 20 major hemorrhages per quad (>15 in image) 

9~10 =present in 4 quads, over 20 major hemorrhages per quad (>20 in image) 

 

Microaneurysm (MA): 0~10 

0 = absent 

1~3 = present in 1 quad  

4~6 = present in 2 quads  

7~8 = present in 3 quads  

9~10 = present in 4 quads 
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Hard Exudates (HE): 0, 1 

0 = absent 

1 = present 

 

Intraretinal Microvascular Abnormality (IRMA): 0~4 

0 = absent 

1 = present in 1 quad 

2 = present in 2 quads, or vascular beading (VB) in 1 quad 

3 = present in 3 quads 

4 = present in 4 quads, VB in 2 quads, or prominently present in 1 quad 

 

Cotton Wool Spots (CWS, Soft Exudates): 0, 1 

0 = absent 

1 = present 

 

Neovascularization (NV) or Hemorrhage (VH or PRH): 0, 1 

0 = absent 

1 = present 
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APPENDIX B. 

Fuzzy Subsystems Implemented in MATLAB 

1. DR_Fuzzy_Division 
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2. NPDR_Fuzzy_Classify_Mod 
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3. NPDR_Fuzzy_Classify_Severe 
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4. DR_Fuzzy_MakeDiag 
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APPENDIX C. 

Dataset - FGADR 

# H MA HE IRMA CWS 
NV/VH/ 

PRH 
Ground 
Truth 

Modified 
Ground 
Truth 

Output Validity 

1 3 1 1 0 0 0 2 1 0.95 0.99 

2 7.5 2 0 0 0 0 3 2 1.99 0.96 

3 1 1 0 0 0 0 2 1 0.95 0.99 

4 5 3 1 0 1 0 4 3 1.06 0.92 

5 5 2 1 0 0 0 2 1 1.06 0.92 

6 0 1 0 0 0 0 1 0.5 0.60 0.98 

7 7 1 0 0 0 0 2 1 1.99 0.96 

8 8 2 1 0 0 0 4 3 1.99 0.96 

9 3 7 1 2 0 0 3 2 1.93 0.92 

10 5 2 0 0 1 0 2 1 1.03 0.94 

11 1 1 0 0 1 0 2 1 0.95 0.99 

12 10 3 1 0 1 0 3 2 2.04 0.99 

13 7 4 1 0 0 0 3 2 1.93 0.92 

14 2 5 0 0 0 0 2 1 1.34 0.90 

15 7 4 1 0 0 0 3 2 1.93 0.92 

16 7.5 1 1 1 1 0 3 2 1.99 0.96 

17 10 5 1 2 1 0 3 2 1.97 0.94 

18 1 1 0 0 0 0 3 2 0.95 0.99 

19 0 1 1 0 0 0 2 1 0.95 0.99 

20 7.5 3 1 0 0 0 2 1 1.99 0.96 

21 3 2 1 0 0 0 2 1 0.95 0.99 

22 2.5 0 1 0 1 0 4 3 0.95 0.99 

23 0 2 1 0 0 0 2 1 0.95 0.99 

24 8 7 1 0 1 0 3 2 1.97 0.94 

25 9 3 1 0 1 0 3 2 2.04 0.99 

26 8 3 1 0 0 0 3 2 1.99 0.96 

27 8 5 1 0 1 0 3 2 1.93 0.92 

28 0 0 0 0 0 0 0 0 0.06 0.99 

29 1 1 1 0 1 0 2 1 0.95 0.99 

30 2.5 2 1 0 0 0 2 1 0.95 0.99 

31 8 4 1 0 1 1 4 3 3.00 0.99 

32 8.5 3 1 0 1 1 4 3 3.00 0.99 

33 5 2 1 0 0 0 3 2 1.06 0.92 
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34 0 0 0 0 0 0 2 1 0.06 0.99 

35 0 0 0 0 0 0 0 0 0.06 0.99 

36 0 0 0 0 0 0 1 0.5 0.06 0.99 

37 0 1 0 0 1 0 2 1 0.95 0.99 

38 7 2 1 0 0 0 3 2 1.99 0.96 

39 8 3 1 0 0 0 3 2 1.99 0.96 

40 5.5 3 1 0 1 0 3 2 1.06 0.92 

41 0 0 0 0 0 0 0 0 0.06 0.99 

42 1 2 1 0 0 0 2 1 0.95 0.99 

43 9 4 1 0 0 0 4 3 2.04 0.99 

44 5.5 2 1 2 0 0 3 2 1.50 0.90 

45 5 0 0 2 1 0 3 2 1.50 0.90 

46 1 1 0 0 0 0 1 0.5 0.95 0.99 

47 3 2 1 0 0 0 3 2 0.95 0.99 

48 5 7 1 0 1 0 3 2 1.93 0.92 

49 7 6 1 3.5 0 0 4 3 1.93 0.92 

50 3 5 0 4 0 0 4 3 2.25 0.94 

51 1 2 1 2 0 0 3 2 1.50 0.90 

52 2 0 1 0 0 0 3 2 0.95 0.99 

53 0 1 0 0 0 0 1 0.5 0.60 0.98 

54 7 5 1 2 0 0 3 2 1.93 0.92 

55 0 0 1 2 0 0 3 2 1.50 0.90 

56 3 3 0 0 0 0 2 1 0.95 0.99 

57 7 5 1 0 0 0 3 2 1.93 0.92 

58 5 2 1 2 1 0 3 2 1.50 0.90 

5.  
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APPENDIX D. 

Dataset - APTOS 

# H MA HE IRMA CWS 
NV/VH/ 

PRH 
Ground 
Truth 

Modified 
Ground 
Truth 

Output Validity 

1 3 1 1 0 0 0 2 1 0.95 0.99 

2 7.5 2 0 0 0 0 3 2 1.99 0.96 

3 1 1 0 0 0 0 2 1 0.95 0.99 

4 5 3 1 0 1 0 4 3 1.06 0.92 

5 5 2 1 0 0 0 2 1 1.06 0.92 

6 0 1 0 0 0 0 1 0.5 0.60 0.98 

7 7 1 0 0 0 0 2 1 1.99 0.96 

8 8 2 1 0 0 0 4 3 1.99 0.96 

9 3 7 1 2 0 0 3 2 1.93 0.92 

10 5 2 0 0 1 0 2 1 1.03 0.94 

11 1 1 0 0 1 0 2 1 0.95 0.99 

12 10 3 1 0 1 0 3 2 2.04 0.99 

13 7 4 1 0 0 0 3 2 1.93 0.92 

14 2 5 0 0 0 0 2 1 1.34 0.90 

15 7 4 1 0 0 0 3 2 1.93 0.92 

16 7.5 1 1 1 1 0 3 2 1.99 0.96 

17 1 1 1 0 0 0 4 3 0.95 0.99 

18 10 5 1 2 1 0 3 2 1.97 0.94 

19 1 1 0 0 0 0 3 2 0.95 0.99 

20 0 1 1 0 0 0 2 1 0.95 0.99 

21 7.5 3 1 0 0 0 2 1 1.99 0.96 

22 3 2 1 0 0 0 2 1 0.95 0.99 

23 2.5 0 1 0 1 0 4 3 0.95 0.99 

24 0 2 1 0 0 0 2 1 0.95 0.99 

25 8 7 1 0 1 0 3 2 1.97 0.94 

26 9 3 1 0 1 0 3 2 2.04 0.99 

27 8 3 1 0 0 0 3 2 1.99 0.96 

28 8 5 1 0 1 0 3 2 1.93 0.92 

29 0 0 0 0 0 0 0 0 0.06 0.99 

30 1 1 1 0 1 0 2 1 0.95 0.99 

31 2.5 2 1 0 0 0 2 1 0.95 0.99 

32 8 4 1 0 1 1 4 3 3.00 0.99 

33 8.5 3 1 0 1 1 4 3 3.00 0.99 
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34 5 2 1 0 0 0 3 2 1.06 0.92 

35 0 0 0 0 0 0 2 1 0.06 0.99 

36 0 0 0 0 0 0 0 0 0.06 0.99 

37 0 0 0 0 0 0 1 0.5 0.06 0.99 

38 0 1 0 0 1 0 2 1 0.95 0.99 

39 7 2 1 0 0 0 3 2 1.99 0.96 

40 8 3 1 0 0 0 3 2 1.99 0.96 

41 5.5 3 1 0 1 0 3 2 1.06 0.92 

42 0 0 0 0 0 0 0 0 0.06 0.99 

43 1 2 1 0 0 0 2 1 0.95 0.99 

44 9 4 1 0 0 0 4 3 2.04 0.99 

45 5 3 1 0 1 0 4 3 1.06 0.92 

46 5.5 2 1 2 0 0 3 2 1.50 0.90 

47 5 0 0 2 1 0 3 2 1.50 0.90 

48 1 1 0 0 0 0 1 0.5 0.95 0.99 

49 3 4 1 0 1 0 4 3 1.34 0.89 

50 3 2 1 0 0 0 3 2 0.95 0.99 
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