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Abstract

We present a methodology for subtyping of persons with a common clinical symptom com-

plex by integrating heterogeneous continuous and categorical data. We illustrate it by clus-

tering women with lower urinary tract symptoms (LUTS), who represent a heterogeneous

cohort with overlapping symptoms and multifactorial etiology. Data collected in the Symp-

toms of Lower Urinary Tract Dysfunction Research Network (LURN), a multi-center obser-

vational study, included self-reported urinary and non-urinary symptoms, bladder diaries,

and physical examination data for 545 women. Heterogeneity in these multidimensional

data required thorough and non-trivial preprocessing, including scaling by controls and

weighting to mitigate data redundancy, while the various data types (continuous and cate-

gorical) required novel methodology using a weighted Tanimoto indices approach. Data

domains only available on a subset of the cohort were integrated using a semi-supervised

clustering approach. Novel contrast criterion for determination of the optimal number of clus-

ters in consensus clustering was introduced and compared with existing criteria. Distinc-

tiveness of the clusters was confirmed by using multiple criteria for cluster quality, and by

testing for significantly different variables in pairwise comparisons of the clusters. Cluster

dynamics were explored by analyzing longitudinal data at 3- and 12-month follow-up. Five

clusters of women with LUTS were identified using the developed methodology. None of the
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clusters could be characterized by a single symptom, but rather by a distinct combination of

symptoms with various levels of severity. Targeted proteomics of serum samples demon-

strated that differentially abundant proteins and affected pathways are different across the

clusters. The clinical relevance of the identified clusters is discussed and compared with the

current conventional approaches to the evaluation of LUTS patients. The rationale and

thought process are described for the selection of procedures for data preprocessing, clus-

tering, and cluster evaluation. Suggestions are provided for minimum reporting require-

ments in publications utilizing clustering methodology with multiple heterogeneous data

domains.

Introduction

Complex diseases, such as obesity, diabetes, atherosclerosis, Alzheimer’s disease, major depres-

sive disorder, and cancer result from multiple genetic, epigenetic, and environmental factors,

and importantly, interactions between these factors [1–3]. Important differences between

patients with these complex diseases and disorders may exist at multiple levels, including: (a)

symptoms, subjective experiences, and adaptive behaviors; (b) characteristics of the physical

state of the organism, including comorbidities; (c) characteristics of organs and systems; and

(d) characteristics at the cellular or molecular level. The extent of these differences suggests

that some complex diseases, disorders, and symptom complexes are better represented by sub-

types, each of which can potentially have different etiologies, mechanisms, and outcomes, and

require different approaches to treatment. Subtype identification is therefore a potentially

important aspect to understanding and treating complex diseases and disorders. Specifically,

extracting patient characteristics at each level and grouping patients based on these character-

istics allows for comprehensive clinical phenotyping and provides necessary information for

discovery and implementation of personalized treatments. Characteristics at each level are rep-

resented by variables of different types (continuous, categorical, and binary), scales, and differ-

ent level of relevance or impact for the disease of interest. This data heterogeneity requires

thoughtful preprocessing and novel approaches to data integration.

Lower urinary tract symptoms (LUTS) is a general term representing a heterogeneous

group of symptoms or symptom complex with sometimes unclear etiology, high economic

and social costs, and significant effects on patients’ quality of life. LUTS can include frequent

urination during day and night (nocturia), urinary urgency (a sudden urge to urinate), stress

and urgency urinary incontinence (UI), and bladder emptying symptoms such as straining,

hesitancy (delay to start to urinate), weak urine stream, and post-void dribbling. None of the

symptoms is pathognomonic for a particular diagnosis, and many persons have more than one

symptom. The prevalence of LUTS in the United States (US) ranges between 45% and 70%

and increases with age [4,5]. Given the aging population in the US, the prevalence of LUTS is

expected to increase in the coming years [6]. Medical expenditures for LUTS have been

reported to be as high as $65 billion per year [7], yet many therapeutic options for the treat-

ment of LUTS do not provide long-term symptom relief. Many patients experience a combina-
tion of symptoms, so treatment that focuses on a single symptom may result in suboptimal

care. To improve treatment outcomes for patients with LUTS, it is necessary to sort out the

heterogeneity of this population, increase the understanding of different subtypes of LUTS

and their underlying mechanisms.

One way to better understand a complex disease, disorder, or symptom complex is to use

an unbiased, data-driven unsupervised clustering approach to identify subtypes of individuals
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with the disease. This method uses data to identify groups, or clusters, such that members of

each cluster are as similar as possible to others within their cluster, but as different as possible

from those in other clusters [8]. Subtypes identified in this manner are based on similarities

and differences within the data, remaining agnostic to clinical definitions or diagnostic

categories.

Clustering methodologies have generated important contributions to the analysis of health-

related data and are becoming increasingly valuable tools as the field of precision medicine

progresses. These methods represent a burgeoning field of research [9–15]. Many unsuper-

vised classification or clustering methods have been developed, from commonly used k-means

clustering, hierarchical clustering, and self-organizing maps (SOM) [16–18] to algorithms

developed in specific areas for specific applications [19–21]. An important problem in unsu-

pervised clustering is determining the optimal number of clusters. Currently available criteria

include Calinski-Harabasz, Davies-Bouldin, Dunn, Gap, Silhouette indices, and others [22–

26]; however, the optimal number of clusters may vary by the criterion applied. Therefore,

another critical issue is to validate the clustering results, that is, to gain confidence about the

clinical significance of the putative clusters, both in terms of cluster numbers and cluster

assignments.

Disease subtyping by clustering “-omics” data of certain types, mostly gene expression data,

has been extensively published [27–30]. More recent studies have subtyped complex diseases

by clustering heterogeneous data that included patient health questionnaires and other clinical

data. These research studies include subtyping asthma by using questionnaires, physiological

tests, and lab tests [31]; subtyping type 2 diabetes by using body mass index (BMI), age at

onset of diabetes, homoeostasis model assessment estimates, and insulin resistance [32]; and

subtyping sepsis using demographics, vital signs, biomarkers of inflammation, and organ dys-

function or injury [33].

Resampling based consensus clustering initially proposed for clustering gene expression

data [34] is gaining popularity and has been used for subtyping complex diseases using hetero-

geneous data [33,35]. Multiple random resampling of patients followed by k-means clustering

generates probabilities that each pair of patients appear in the same cluster, which can be

treated as a pairwise distance between patients and used for determination of cluster member-

ship through hierarchical clustering [34]. This method ensures the clustering results are robust

to sampling errors.

Previous studies aiming to identify subtypes of LUTS in an unbiased manner include Epi-

demiology Urinary Incontinence and Comorbidities (EPIC) and Boston Area Community

Health (BACH) projects [36,37], which performed clustering of LUTS patients based on a rela-

tively small number of self-reported symptom data in community-dwelling cohorts. Another

study used only BMI and bladder diary variables for clustering community-dwelling women

with LUTS [38].

The Symptoms of Lower Urinary Tract Dysfunction Research Network (LURN) Observa-

tional Cohort Study is a multi-center study that collected self-reported symptoms, 3-day blad-

der diaries, physical examination, neuroimaging and sensory testing data, and biological

samples in over 1000 care-seeking men and women across six tertiary care centers. LURN is

focused on defining patient-reported outcomes in people with lower urinary tract dysfunction

(LUTD), conducting deep phenotyping of such individuals, and identifying biomarkers that

are associated with symptoms of LUTD [39,40]. In our previous study [41], we performed clus-

tering of 545 women from the LURN Observational Cohort Study using baseline self-reported

urinary symptom data, captured with the LUTS Tool [42,43] and the American Urological

Association Symptom Index (AUA-SI) [44]. Four distinct clusters were identified. Women in

cluster F1 (n = 138) were continent, but reported post-void dribbling, frequency, and voiding

PLOS ONE Subtyping complex disorders by clustering heterogeneous data

PLOS ONE | https://doi.org/10.1371/journal.pone.0268547 June 10, 2022 3 / 38

https://doi.org/10.1371/journal.pone.0268547


symptoms. Cluster F2 (n = 80) reported urgency urinary incontinence, as well as urinary

urgency and frequency, and minimal voiding symptoms. Cluster F3 (n = 244) included

women reporting all types of urinary incontinence, urgency, frequency, and mild voiding

symptoms. Women in cluster F4 (n = 83) reported all LUTS at uniformly high levels. These

subtypes of LUTS were based solely on the above two questionnaires and require further

refinement, followed by clinical verification.

The current report describes the methodology and results of refining the female LUTS

symptom-based clusters by integrating multiple data domains collected in LURN: demograph-

ics, non-urinary symptoms, history, and physical examination data, as well as intake and void-

ing patterns captured in 3-day bladder diaries. We discuss preprocessing of heterogeneous

data and combination of continuous and categorical data using our novel weighted Tanimoto

indices approach. We use resampling-based consensus clustering [34] combined with a modi-

fied semi-supervised clustering approach [45,46] to make use of data available on only a subset

of participants. Then we determine the optimal number of clusters using our novel contrast

criterion (CC) developed for consensus clustering, and compare it with other consensus clus-

tering criteria: proportion of ambiguous clustering (PAC) [47], and consensus score (CS) [35],

as well as with the established quality of clustering criteria, such as Calinski-Harabasz, Davies-

Bouldin, Dunn, and Silhouette [22–26]. We identify distinct clusters of women with LUTS

and show superiority of these clusters to our published symptom-based clusters [41], in terms

of the percentage of significantly different variables in pairwise comparisons of the clusters

and the confidence level in the determined cluster membership. Dynamics of the clusters in

12-month follow-up, as well as clinical relevance of the clusters, are discussed.

In the Methods section, we describe the analytical pipeline we developed and used for sub-

typing women with LUTS. We provide the rationale for our choices of methods for data pre-

processing, integration, clustering, and cluster evaluation, as well as review of other available

options. We demonstrate that the developed pipeline allowed for identification of distinct and

robust refined clusters, with a higher percentage of significantly different variables across the

clusters than those previously published, and validate cluster distinctiveness by analyzing bio-

marker data. Finally, we review the methodological information needed to assess subtyping via

clustering and propose a set of reporting requirements that should ideally be included in all

clustering reports. We finish by calling for the clustering community effort to develop mini-

mum requirements for clustering publications. We believe this paper would be of interest for

clinicians and researchers involved in subtyping of common complex diseases and disorders

using heterogeneous and multidomain data.

Materials and methods

LURN data used for subtyping of LUTS

Data on women with LUTS. Data for LUTS subtyping were obtained from the LURN

Observational Cohort Study [39,40], which included 545 women seeking care for LUTS at six

tertiary care centers. Baseline data collection included demographic information, medical his-

tory, physical examination findings, 3-day bladder diaries [48], and self-report questionnaires

of urologic and non-urologic symptoms. Urologic symptoms were collected using the LUTS

Tool [42–43] and the AUA-SI [44]. The LUTS Tool contains 44 items, including questions on

the frequency of occurrence and degree of bother for each urinary symptom. Possible answers

to the LUTS Tool questions were ranked from zero to four, zero indicating absence of the

symptom, and four indicating the most severe level of the symptom. The AUA-SI has eight

items, including a single overall bother question. Responses to the first seven questions of the

AUA-SI range from zero to five, zero indicating “none” or “not at all”, and five indicating
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“almost always”. The final question in the AUA-SI ranges from zero (delighted) to six (terri-

ble). Participants also completed patient-reported outcome (PRO) questionnaires from the

Patient-Reported Outcomes Measurement Information System (PROMIS). We used question-

naires related to bowel function (PROMIS gastrointestinal constipation, diarrhea, and bowel

incontinence subsets) [49], psychological health (PROMIS Depression and Anxiety Short

Forms [50], Perceived Stress Scale [51], PROMIS Sleep Disturbance Short Form [52]), urologic

pain (Genitourinary Pain Index [GUPI]) [53], and pelvic floor function (Pelvic Floor Distress

Inventory [PFDI]) [54]. Demographics included: age, race, ethnicity, employment status, edu-

cation level, and marital status. Physical examination data included: weight, waist circumfer-

ence, BMI, post-void residual volume, pelvic organ prolapse (using the Pelvic Organ Prolapse

Quantification [POP-Q] system that measures the location of selected landmarks on the vagina

and cervix [55]), and presence of pathology findings at the introitus, urethra, vagina, uterus, or

rectum. Medical history data included Functional Comorbidity Index (FCI) [56], additional

individual comorbidities, as well as information on history of urinary tract infections (UTI),

pregnancy, vaginal deliveries, alcohol, smoking, recreational drug use, and medication use.

Individual comorbidities and medication use are categorial variables that were transferred into

binary variables, e.g., comorbidity A (present or absent, 1 or 0), medication B (used or not

used,1 or 0), and then clustered using the Tanimoto indices approach, described in the ‘Clus-

tering Pipeline’ section below.

Bladder diaries included data on timing and volume of each beverage intake and urinary

void during a 72-hour period. Completeness and accuracy of bladder diaries collected in

LURN are described in [57]. Only 193 women (35%) returned bladder diaries deemed com-

plete. For clustering purposes, we used the following five bladder diary variables from those

193 women: number of intakes and voids, total volumes of intakes and voids, and maximum

voided volume (serving as a proxy for bladder capacity).

In total, 185 variables were used for subtyping women with LUTS; 27 demographic vari-

ables, 55 medical history variables, 33 physical exam variables, 52 urinary symptoms variables

(LUTS Tool and AUA-SI), 13 non-urinary PRO variables, and 5 bladder diary variables. Vari-

ables were continuous (n = 83) or categorical (n = 102). S1 Table in S1 File presents an over-

view of these variables for 545 women with LUTS used in the analysis. Although all variables

were deemed important or possibly important in subtyping persons with LUTS, not all the var-

iables are of equal importance, relevance, and non-redundancy; therefore, scaling and weight-

ing of the variables was implemented as described below.

Data on non-LUTS controls. Our preprocessing procedure, described in more detail in

the next section, includes scaling of variables by standardizing their values using means and

standard deviations (SDs) in non-LUTS controls. The LURN study included 55 control

women, who were not necessarily healthy but did not report LUTS. Unfortunately, not all the

variables of interest were collected for these non-LUTS controls (e.g., physical examination,

bladder diary). As a source of bladder diary data for non-LUTS controls, we used bladder dia-

ries of 32 non-LUTS controls from the Establishing Prevalence of Incontinence (EPI) commu-

nity study of women in Southeastern Michigan [58]. For other variables of interest not

collected for non-LUTS controls, we used population data from literature sources indicated in

S1 Table in S1 File.

Biological samples collected and analyzed in LUTS cases and non-LUTS

controls

The LURN study collected numerous biological samples, including whole blood, serum,

plasma, and urine at baseline and at 3- and 12-month follow-up visits [39,40]. Of these
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samples, 230 baseline serum samples of women with LUTS and 30 serum samples of non-

LUTS controls were analyzed using the targeted proteomics approach–Proximity Extended

Assay (PEA) by Olink Proteomics (Uppsala, Sweden). Three Olink panels (cardio metabolic,

inflammation, neurology) were used to quantify abundances of 276 proteins. These data were

not used for clustering in the current report; however, they served as an additional orthogonal

approach for evaluation of the quality of the identified clusters. We compared the abundances

of 276 proteins in women with LUTS and in controls and tested for significantly differentially

abundant proteins in each of the identified clusters versus controls adjusted for multiple com-

parison using the false discovery rate (FDR) correction (FDR<0.05) [59]. Note that assays

were performed in a subset (n = 230, 42%) of women.

Ethical guidelines and consent

The authors confirm all relevant ethical guidelines have been followed, and all research has

been conducted according to the principles expressed in the Declaration of Helsinki. Informed

written consent has been obtained from participants. Institutional Review Board (IRB)

approval has been obtained from: Ethical and Independent Review Services (E&I) IRB, an

Association for the Accreditation of Human Research Protection Programs (AAHRPP)

Accredited Board, Registration #IRB 00007807.

Overview of the clustering pipeline

The clustering pipeline implemented in this paper contains multiple steps of data preprocess-

ing, integration, clustering, and cluster evaluation. In this subsection, we present an overview

of the sequence of steps in the pipeline shown in Fig 1. Details and rationale for each of the

steps are provided in the rest of the subsections of the “Materials and Methods” section below.

The pipeline is implemented using MATLAB (MathWorks, Natick, MA) and is publicly avail-

able through the Dryad repository (https://datadryad.org).

Data preprocessing

Multiple imputation. Due to missing data (up to 10% in self-report questionnaires of

urologic and non-urologic symptoms), multiple imputation was performed. The imputation

used a sequential regression technique and was implemented using IVEware version 2.0

[60,61]. Ten imputed data sets were constructed, and each was preprocessed as described

below. The k-means step of the resampling-based consensus clustering was performed on each

of the data sets separately, resulting in ten pairwise probabilities of being in the same cluster

for each pair of participants. Finally, hierarchical clustering on the mean of ten probabilities

(pairwise distances) was performed to determine cluster membership.

Scaling of continuous variables. Scaling variables prior to clustering is an important and

often overlooked step. Clustering algorithms group objects in a way that minimizes the sum of

the pairwise distances between participants within the cluster, where the distance is composed

of the distances between all variables calculated using Euclidian, Manhattan, or other suitable

metrics [9]. Since each variable is measured using its own scale, the distances and optimal par-

tition of the objects depend on these scales. As stated in [62], the problem with unscaled,

unstandardized data is the inconsistency between cluster solutions when the scale of some of

the variables is changed, which is a strong argument in favor of standardization. It is especially

important in the case of heterogeneous data, where scales of variables in the raw data can be

very different and completely unrelated. A common form of conversion of variables to stan-

dard scores (or z-scores) entails subtracting the mean and dividing by the SD for each variable.

However, subtracting the cohort mean and dividing by the cohort SD would mask the subtype
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Fig 1. Flowchart of the pipeline for subtyping of a common complex disease or disorder by integrating heterogeneous data

as used for subtyping of LUTS. Three types of data are imputed. Continuous variables are scaled using controls, weighted,

normalized, and then clustered using consensus k-means clustering. Categorical data is transformed into binary and then

clustered using weighted Tanimoto indices approach. Matrices of pairwise distances for three types of data are then integrated to

maximize contrast criterion (CC) and proportion of core cluster members (PCC). Identified clusters are evaluated using several

clustering criteria and testing for significantly different variables in the pairwise comparison of the clusters.

https://doi.org/10.1371/journal.pone.0268547.g001
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differences, since it ignores whether the within-cohort variance is caused by the natural biolog-

ical variability of the subjects or by differences in disease subtypes, which increase the within-

cohort variance due to multimodal distributions along certain variables. Using z-scores along

such variables will unduly reduce their weight and will mask the presence of the subtypes.

Therefore, standardization using z-scores is not suitable for our task of identifying disease sub-

types. The solution to this problem is standardization by the mean and SD of a reference popu-

lation that does not have the disease of interest, in this case, controls without LUTS. Following

this approach, we define standardized variables Sin [63]:

Sin ¼ ðAin � AiCÞ=siC ð1Þ

where Ain–ith unstandardized variable for participant n, AiC-mean value of ith variable

across control subjects without disease of interest, σiC–SD of ith variable in control subjects

without disease of interest. A simulated example illustrating the benefits (substantially lower

misclassification error) of clustering using variables standardized according to equation (Eq

1), versus unstandardized variables and z-scores, is presented in Supplemental Material text in

S1 File.

Weighting variables to mitigate the redundancy. Clustering results can be skewed by

including variables reflecting redundant information. An obvious and extreme case example

will be including into the data set the same or highly correlated variables multiple times, which

will result in the dominating role of these variables in the overall sum of squared distances,

and therefore in the clustering decision. To mitigate this, we used weighting, so that the highest

weight was attributed to the least correlated variable (i.e., the variable with the smallest average

correlation with all other variables) and the lowest weight to the most correlated variable

[41,64]. The weights wi were defined by Eqs (2–4):

wi ¼
1

1þ ci=cw
ð2Þ

ci ¼
Xm

j¼1;j6¼i

rij=ðm � 1Þ ð3Þ

cw ¼
Xm

i¼1

Xm

j¼1;j6¼i

rij=mðm � 1Þ ð4Þ

where m -number of variables and rij Pearson correlation coefficients of variables i and j.
Row normalization for continuous variables. Initial attempts to cluster un-normalized

urinary symptoms data led to identification of two clusters that differed by overall severity of

LUTS, not subtypes of symptoms. To avoid clustering predominantly by the overall severity of

LUTS, in [41,64] and here, we normalized the data by the participant’s overall severity of dis-

ease. For each participant, the weighted Euclidean length of the vector composed of all 78 con-

tinuous variables used for clustering was calculated as Ln ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P78

i¼1 ðwi � SinÞ
2

q

, where Sin is the

scaled ith variable for the nth participant and wi is the weight of ith variable defined by Eqs (2–

4). Each continuous variable was then normalized by Ln, the Euclidean length of the partici-

pant’s vector, resulting in normalized continuous variables Vin ¼ wi �
Sin
Ln

. This normalization

strategy allowed for clustering based on the direction rather than the length of the vector repre-

senting each subject.
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Consensus clustering using continuous variables

Clustering was performed using a resampling-based consensus clustering method introduced

by Monti et al [34]. We performed 1000 instances of random resampling, each selecting a sub-

set including 80% of participants. The same procedure was repeated for each of the ten multi-

ply imputed data sets, resulting in 10,000 subsets. We then partitioned each of the subsets into

clusters using a k-means clustering algorithm implemented as k-means MATLAB function

(with option ‘number of replicates’ = 8, see [63] for the explanation on the need of this option);

with number of clusters K scanned from 2 to 12. Let Qnq denote the number of times partici-

pants n and q were assigned by k-means into the same cluster. Let Inq denote the number of

times participants n and q were both selected in the random sampling. The probability of par-

ticipants n and q belonging to the same cluster could be calculated as Qnq/Inq. We could thus

obtain ten probabilities for a pair of participants from the ten imputed data sets. The average

of these probabilities represented the final consensus index Mnq for participants n and q. A 545

by 545 consensus matrix M (Fig 2) was constructed to visualize these average probabilities as a

heat map. Probability is color-coded: bright yellow represents probability close to one and

dark blue probability close to zero. The indices of participants were reordered so that the par-

ticipants belonging to the same clusters were grouped together. To reorder the indices of par-

ticipants in the consensus matrix, we employed hierarchical clustering (using clustergram
MATLAB function) with 1−M as distance matrix so that participants belonging to the same

clusters were grouped together, depicted as bright yellow blocks along the diagonal of consen-

sus matrix.

Fig 2. Consensus matrix. Consensus (545x 545) matrix is presented as a heat map, where the probabilities Mnq for

each pair of participants to be in the same cluster are shown by color-coded elements; bright yellow represents

probability close to one and dark blue probability close to zero. Five yellow squares along the diagonal represent 5

clusters of participants with LUTS.

https://doi.org/10.1371/journal.pone.0268547.g002
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Clustering using categorical variables

Of 185 variables used for clustering women with LUTS, 102 (55%) are categorical. K-means is

not an appropriate method for categorical variables, so resampling-based consensus clustering

with multiple runs of k-means algorithm, which we used for continuous variables, cannot be

directly used for categorical variables.

k-prototype approach. One way to combine continuous and categorical variables is to use

the k-prototype algorithm introduced by Z. Huang [65]. According to [65], the distance

between two objects X, Y, described by p continuous variables and m-p binary variables, is rep-

resented as:

dðX;YÞ ¼
Pp

j¼1
ðxj � yjÞ

2
þ g
Pm

j¼pþ1
dðxj; yjÞ ð5Þ

where δ is Kronnecker symbol describing simple matching and γ is the weight introduced in

[65] to “avoid favoring either type of attribute” (continuous vs. categorical). The goal of the k-

prototype algorithm is to minimize the sum of the distances (defined by Eq 5) between objects

within the cluster. Limitations of the k-prototype algorithm include lack of scaling of categori-

cal variables and use of the same weight γ for all categorical variables, regardless of their rele-

vance to the disease of interest or their redundancy. A later version of the algorithm [66]

attempted to overcome some of these limitations by defining the distance between an object

Xn and the centroid Zk of the kth cluster as:

dðZk;XnÞ ¼
Pp

j¼1
ðxnj � ZkjÞ

2
þ
Pm

j¼pþ1
φðZkj; xnjÞ ð6Þ

where φ Zkj; xnj

� �
¼

1; if Zkj 6¼ xnj

1 �
Ckjr

Ck
; otherwise

8
><

>:
, and Ck is the number of objects in cluster k, while

Ckjr is the number of objects in this cluster with the categorical value ar
j of the jth attribute, e.g.,

participants with blue eyes in cluster k. Such definition of distance makes sense; for instance, if

the number of participants in cluster k is 100, and 51 of them have blue eyes, then for a person

with brown eyes, distance from the centroid along this dimension is 1, but for a person with

blue eyes, it is 1–0.51 = 0.49. Now, if 99 participants have blue eyes, then for them, the distance

from the centroid is 1–0.99 = 0.01, while for the only one with brown eyes, it is still 1. Thus,

such a definition of distance makes certain attributes more important (defining) for the cluster

if the majority of objects have the same value of this attribute. An algorithm using such a defi-

nition of distance between objects would strive to make clusters as homogeneous as possible

with regard to both its continuous and categorical variables. This approach, however, does not

distinguish between categorical variables relevant and irrelevant to the disease of interest.

To distinguish between relevant and irrelevant variables, we suggest using the same

approach as for continuous variables, i.e., compare them with controls without the disease or

symptom complex of interest. For the categorical variables transformed into binary variables,

we suggest scaling by comparison of the frequencies of these binary variables in LUTS Fj and

in controls FjC by using the following function:

gj ¼ log
� Fj

FjC

�
�
�
�
�
�

�
�
�
�
�

ð7Þ

where |x| is absolute value of x.

If, for a certain binary variable, frequencies in LUTS and non-LUTS controls are equal, e.g.,

prevalence of blue eyes is the same in LUTS and non-LUTS, then this variable will get weight
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γj = 0 and would not affect clustering decision, essentially excluding the variable from cluster-

ing. However, if the frequency of this variable in LUTS is higher or lower than in controls,

then γj>0, and this, relevant to disease variable, will affect clustering decisions. To accommo-

date this scaling together with weighting of the variables based on their correlation with other

variables described by Eqs (2–4), one needs to modify Eq (6):

dðZk;XiÞ ¼
Pp

j¼1
wjðxij � ZjkÞ

2
þ
Pm

j¼pþ1
wjφðZkj; xijÞgj ð8Þ

Unfortunately, none of the available implementations of k-prototype algorithm in standard

software (R and SAS [67,68]) easily allows for such modification, and therefore, an alternative

simpler approach was used.

Weighted Tanimoto indices approach. A simpler approach to clustering categorical vari-

ables is based on Tanimoto indices or Tanimoto similarity measure [69]. For two objects a and

b described by m binary variables, Tanimoto similarity is defined as:

T ¼
Pm

j¼1
aj � bj

Pm
j¼1
ða2

j þ b2
j � aj � bjÞ

ð9Þ

For instance, if a and b are 5-dimensional binary vectors a = [1, 1, 0, 0, 0] and b = [1, 0, 1, 0,

0], then T = 1/(2+2–1) = 1/3. Note that common “ones” but not common “zeros” are counted

in this definition of similarity, which is especially useful in case of multiple binary variables

formed from one categorical variable. Think, for example, of the categorical variable ‘eye color’

transformed into several binary variables: ‘blue eyes’ (yes, no), ‘brown eyes’ (yes, no), ‘green

eyes’ (yes, no), etc. Tanimoto similarity between two persons with blue eyes will not depend

on whether you add ‘hazel eyes’ to the list of options or not.

Not all of the categorical variables are equally relevant to the disease of interest, so we want

to be able to assign weights reflecting the level of relevance for each variable by comparing its

frequency in LUTS with its frequency in non-LUTS controls. We also want to compensate for

redundancy in the variables by using weights defined by Eqs (2–4). Importantly, we want to

make sure that no categorical variable, even if it is much more frequent in disease than in con-

trols, has overwhelmingly high weight and makes the role of differences in other variables neg-

ligible. To attain this goal, we introduce a weighed Tanimoto similarity measure as:

T ¼
Pm

j¼1
aj � bj � w2

j � ðerfðgjÞÞ
2

Pm
j¼1
ðða2

j þ b2
j � aj � bjÞ � w2

j � ðerfðgjÞÞ
2
Þ
; ð10Þ

where wj is the weight defined by Eqs (2–4), using the appropriate correlation coefficients of

the variables. Coefficient γj is defined by Eq (7) and minimizes the role of binary variables

equally prevalent in disease and controls. Function erfðxÞ ¼ 2ffiffi
p
p

R x
0
expð� t2Þdt ensures that the

weight of each binary variable is smaller or equal to one, even for the high values of γj, since |

erf(x)|�1. Note that maximum value of T is equal to one when all the categorical variables in a
and b are the same, and minimum value is zero when all the categorical variables are different.

Now we can use Eq (10) to define distance between any pair of participants described by J
binary variables as:

d Xn;Xq

� �
¼ 1 � Tnq ¼ 1 �

PJ
j¼1

Xjn � Xjq � w2
j � ðerfðgjÞÞ

2

PJ
j¼1
ððX2

jn þ X2
jq � Xjn � XjqÞ � w2

j � ðerfðgjÞÞ
2
Þ

ð11Þ
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Combining continuous and categorical variables

Note the similarity of the pairwise distance 1−Tnq between two participants based on the cate-

gorical variables describing them (Eq 11), and pairwise distance 1−Mnq between these partici-

pants based on their continuous variables. The former is equal to zero when all the categorical

variables describing these two participants are the same, while the latter is equal to zero when

the two participants always were assigned to the same cluster by the 10,000 instances of k-

means in the resampling-based consensus clustering. Similarly, the former is equal to one

when all the categorical variables describing the two participants are different, while latter is

equal to one when these participants always were assigned to the different clusters in resam-

pling-based consensus clustering. This similarity allows combining continuous and categorical

pairwise distances into a single distance measure Dnq, with a minimum value of zero and maxi-

mum value of one using the weighted Euclidean length approach:

Dnq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðð1 � MnqÞ
2
þ m2 � ð1 � TnqÞ

2
Þ=ð1þ m2Þ

q

; ð12Þ

where μ is the weight representing the relative role of the distances based on categorical vari-

ables and on continuous variables. We set it equal to the ratio of the number of non-redundant

categorical and continuous variables: m ¼
P102

j¼1
wjcat=

P78

j¼1
wjcont, where wj are determined by

Eqs (2–4) using correlation coefficients appropriate to the distributions of the variables.

Semi-supervised clustering using bladder diary data

Of 545 women in the Observational Cohort of LURN, 193 (35%) returned complete bladder

diaries without missing volumes of voids and intakes. These data were deemed clinically

important to the subtyping of women with LUTS. One way to integrate data domains only

available on a subset is by using semi-supervised clustering methods [70,71]. If class member-

ship for the members of the subset is known, then the objective function in the clustering of

the whole cohort should be modified as follows:

WCSS ¼
Pp

j¼1

PNk
n¼1

PNk
q¼1
ðxnj � xqjÞ

2
þ
PNsk

n¼1

PNsk
q¼1

hnq; ð13Þ

where WCSS—within cluster sum of squared distances, p–number of variables, n6¼q, Nk—

number of cohort participants in the given cluster k, Nsk—number of the participants in clus-

ter k that were present in the subset. The values of hnq = −h are negative (reward, decreasing

the within-cluster-sum-of-squares [WCSS]) if participants n and m belong to the same cluster

according to subset classification, and is positive hnq = h (punishment, increasing WCSS) if

participants n and q belong to the different classes of the subset. This approach known as

“must-link, cannot-link” allows for using labels known from classification of the subset to

influence clustering of the cohort. The limitation of this approach, however, is that it does not

allow for different level of confidence in subset cluster membership, i.e., participants n and q
are either in the same subset cluster or not. In our case, additional data available for the subset

of participants do not provide 100% confidence in cluster membership for this subset; further-

more, the number of participants in the subset is lower than in the whole cohort, making the

subset clusters less robust. There is a measure of similarity, however, that is quantitative and

reflects the confidence in cluster membership; it is the pairwise distance between members of

the subset. We suggest using this measure to modify the pairwise distance defined by Eq 12 by

taking into account the similarity between members of the bladder diary (BD) subset:

Gnq ¼ max ððDnq þ r � ðBDnq � mBDÞÞ; 0Þ ð14Þ
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where Dnq is defined by Eq 12, BDnq is the pairwise distance between members of the subset,

mBD is the mean pairwise distance between members of the subset, ρ is a parameter deter-

mined as described in the below sections. If either participant n or q, or both of them are not

members of the subset, their pairwise distance is not known and is assumed equal to the mean

pairwise distance within the subset mBD. For these participants, the second term of Eq 14 is

equal to zero; while, for members of the subset, it is either negative or positive depending on

whether BDnq is smaller or larger than mBD. Note that, since the second term might be nega-

tive, for some large values of ρ, the sum of the two terms is negative as well. However, the pair-

wise distance between the objects cannot be negative, and is therefore set to zero for these

cases.

We used five variables (number of intakes and voids, total volumes of intakes and voids,

and maximum voided volume) from the bladder diaries of the 193 participants to refine the

values of their pairwise distances. These five variables were scaled using bladder diary data for

controls [58] and then added to the 78 other continuous variables to calculate pairwise dis-

tances BDnq refined with bladder diary variables, as described in the subsection on consensus

clustering using continuous variables. Then it was introduced into Eq 14 to get the refined

matrix of the pairwise distances Gnq. The value of the coefficient ρ was determined by optimiz-

ing the quality of clusters, as defined in the following subsections.

Determining the number of clusters

Determining the number of clusters is an important step in any clustering process. In parti-

tioning algorithms like k-means, it is necessary to decide on the number of clusters K prior to

running the algorithm. In agglomerative algorithms like hierarchical clustering, it is possible

to decide on the number of clusters when the dendrogram based on the distances between

objects is already created. It is common to try several values of K and then to compare the

resultant clusters by using various quality of clustering criteria, including Calinski-Harabasz,

Davies-Bouldin, Dunn, Gap, and Silhouette indices [22–26]. Quite often, these criteria dis-

agree on the value of K that optimizes the quality of the clusters.

Resampling-based consensus clustering, introduced in [34] and subsequently applied to

our data set, is a combination of multiple instances of k-means clustering followed by hierar-

chical clustering on the pairwise distances between objects derived at the first stage. The value

of K in k-means is typically scanned (in our case from 2 to 12), and then the optimal value of K
is determined using criteria developed specifically for consensus clustering algorithm

[34,35,47]. In both [34] and [47], the determination of the number of clusters is based on anal-

ysis of the cumulative distribution function (CDF) of consensus index values Mnq (defined in

the “Consensus clustering using continuous variables” subsection of this paper). The main

idea of this analysis is that, in case of ideal clustering, there are only two possible values of con-

sensus index Mnq = 1, when a pair of objects n and q are in the same cluster, and Mnq = 0,

when they are in the different clusters. Therefore, the ideal CDF should consist of two vertical

lines and a horizontal (flat) line between them. The length of the first vertical line will be equal

to the number of pairs with Mnq = 0 and the length of the second vertical line to the number of

pairs with Mnq = 1. However, if the value of K used in clustering is different from the true

value of K, then the shape of the CDF curve differs from the idealized curve described above.

In [34], the optimal K is defined as the one for which the change in the area under the CDF

(relative to area at K-1 and K+1) is the largest (“elbow” of the AUC vs. K curve). Analysis in

[47] demonstrates several examples when the criterion of [34] does not work and suggests an

alternative criterion named proportion of ambiguously clustered pairs (PAC) equal to the

number of pairs with 0<Mnq<1 over the total number of pairs. Obviously, in the real-world
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situation of biological variability and noisy measurements, almost all of the pairs will fall into

this category, so some more liberal lower and upper boundaries for Mnq need to be introduced,

e.g., 0.1 and 0.9, as in [47]. It raises a question, however, whether these boundaries should be

different for different values of K, since potential ambiguity increases with the increased num-

ber of clusters.

A more straightforward approach to determine the number of clusters is used in [35] by

introducing mean consensus score (CS) calculated as the mean value of consensus indices Mnq

within the clusters. The value of K that results in the highest CS is considered optimal. The

problem with CS is that it favors the high number of clusters, e.g., CS could reach its maximum

when K = N/2 and each cluster contains only a pair of most similar objects with highest values

of Mnq.

Below, we introduce a pair of complementary criteria, i.e., contrast criterion (CC) and pro-

portion of the core clusters (PCCs), which we used in our clustering pipeline. We believe they

combine the advantages of PAC and CS and are free of some of their limitations, especially

when used as a complementary pair. The below sections introduce the CC and PCCs based on

the analysis of consensus matrix derived by k-means clustering of the multiple resampling

instances of the data set; however, these criteria can be used with any matrix of pairwise dis-

tances between the objects.

Contrast criterion. The idea of the CC is derived from visual representation of the con-

sensus matrix as a heat map presented in Fig 2. Each pixel of the heat map represents the value

of Mnq probability of two objects to be together in the same cluster. Each bright yellow square

along the diagonal of the matrix represents a cluster. Next, we compared the “bright yellow-

ness” of this diagonal square with the “color” of the rest of the row in which the diagonal

square is located; therefore, the term “contrast criterion” (CC). The larger the difference

between these two measures, the further the situation from the case where all Mnq except for

n = q are equal, and the heat map is uniformly yellowish (single uniform cluster case), in

which case the contrast is zero. We consider number of clusters K and cluster membership

optimal when CC is maximized.

When analyzing the properties and behavior of clustering criteria, it is necessary to com-

pare the clusters identified using certain clustering algorithms and clustering criteria of inter-

est with the “true” clusters. Unfortunately, “true” clusters are not known in real life, and

therefore, one needs to simulate them and then evaluate misclassification error resulting from

the clustering algorithm and criteria of interest. Such an approach was used in [63] to compare

several popular clustering algorithms, and was applied for the case of resampling-based con-

sensus clustering with CC and PAC criteria (see Supplemental Material text and S2-S10 Figs in

S1 File). Here, we concentrate on the general analysis of CC and its properties. In this analysis,

we need to introduce the term “alleged clusters”, which are different from “true clusters” and

“identified clusters”. “Alleged clusters” are determined for each value of K tried by clustering

algorithm, while “identified clusters” are those maximizing the value of clustering criteria of

interest, and “true clusters” are specified by the simulation.

To define CC explicitly, let us first look at the most typical case where the number of alleged

clusters is not equal to the number of objects, is not equal to one, and none of the clusters

includes just one object. Note that we are not making any assumptions or imposing any

restrictions on the properties of the “true” clusters.

For K 6¼ N;K 6¼ 1;Nj 6¼ 1; CC ¼
PK

k¼1

PNk
n¼1

PNk
q¼1;q6¼n Mnq

NkðNk � 1Þ
�

PK
i¼1;i6¼k

PNk
n¼1

PNi
q¼1

Mnq

NkðN � NkÞ

( )

=K; ð15Þ

where K is the number of alleged clusters, N is the number of the clustered objects, Nk and Ni
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are the numbers of objects in kth and ith clusters. As intended, the first term in the brackets of

Eq (15) represents the average “bright yellowness” of the diagonal square, while the second

term in the brackets represents the average “yellowness” of the rest of the row in which the

diagonal square is located.

Note that we defined CC as an averaged contrast across alleged K clusters independently of

the size of the clusters. Other approaches are possible, e.g., a weighted average based on the

sizes of the clusters, or minimax approach, where the contrast for the “worst” (least contrast

cluster) is maximized. Clearly, the best choice of combining contrasts of each of the clusters

into one overall depends on many factors, including the goal of the clustering, expected sizes

of the clusters, and the number and distribution of the variables. It is an interesting topic; how-

ever, it is outside of the scope of this paper.

Another choice made in defining CC by Eq (15) is omitting of the diagonal terms Mnn,

which are always equal to one. The percentage of diagonal terms in each square representing

an identified cluster is
Nk
N2
k
¼ N � 1

k , or 100%, 50%, 33%, 25% for Nk = 1, 2, 3, 4. Since Mnn = 1,

Mnq<1, inclusion of diagonal terms in the definition of CC would favor smaller clusters over

larger clusters by assigning higher CC to the smaller clusters, irrespective of similarities of

objects within the clusters. Therefore, we do not include diagonal terms in the definition of

CC, as shown in Eq 15. Note that Eq (15) does not work if K = 1, K = N, or Nj = 1. For these

special cases, CC is defined and discussed in Supplemental Material text in S1 File.

There are certain similarities between our contrast criterion CC and consensus score (CS)

of [35]. Although the exact definition of CS is not provided, it appears that CS is similar to the

first term of Eq (15). However, it is unclear if the diagonal terms Mnn are omitted or included

and how CS for K clusters are combined to derive the overall CS. Nevertheless, it is of interest

to compare the behavior of CS and CC in some simple idealized cases. In case of ideal cluster-

ing, both CS and CC reach their maximum possible value of 1. The worst-case scenario for

both criteria is the case where K>1 clusters are alleged, when in reality, there are no “true”

clusters, and all objects are described by a unimodal random distribution of their attributes

(variables). Now, if the number of alleged clusters K>1, there is an equal probability for the

object to end up in any of K clusters, so the mean value of Mnq is 1/K, which makes the mini-

mal possible value for CC equal to zero and minimal possible value for CS equal to 1/K. The

rather limited range of values from 1/K to 1, together with the dependence of the minimal

value on the number of alleged clusters, are the limitations of the CS criterion, which are

absent in case of CC, where the range is from 0 to 1 irrespectively of K. Therefore, we consider

the use of CC advantageous for determining the optimal number of clusters.

Core clusters. When analyzing the quality of alleged clusters, it is important to know the

confidence with which cluster membership is determined. Clearly, one would prefer clusters

where the probability of objects to belong to a particular cluster is 0.9 rather than 0.3. The

knowledge of consensus matrix allows for calculating the probability for each object n belong-

ing to a particular cluster k:

pnk ¼

PNk
q¼1q6¼n Mnq

Nk � 1
ð16Þ

Note that it is different from the probability averaged across the cluster that was used to cal-

culate CS and CC in the previous subsection. Importantly, within the same cluster, some

objects might have probability (confidence) as high as πnk = 0.9999. . ., or as low as πnk = 1/K
+0.001, assuming that it is lower for any other cluster i6¼k. We will call the nth object the core

member of cluster k if πnk>0.5, which means that, for this object, the probability to be in clus-

ter k is higher than probability to be in all other clusters combined. The rest of the members of
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the cluster do not belong to the core; for them, the probability to belong to the kth cluster is

just higher than to be in any other given cluster. The number of core members divided by the

total number of objects in the cluster provides a useful measure that we named proportion of

the core cluster (PCC). As with the contrast criterion CC, one can use several approaches to

derive overall PCC from the PCCs for each cluster, i.e., take the average across all clusters,

weighted average based on the size of the clusters, or minimax by looking at the PCC in the

worst cluster. PCC provides a measure of overall confidence in the alleged cluster membership

and of the uniformity of the alleged clusters. Unlike contrast CC, PCC favors smaller size of

the clusters and reaches its maximum when K = N/2 and each cluster contains just a pair of

objects. PCC reveals information similar to the proportion of ambiguously clustered pairs

(PAC) [47], for which 0.1<Mnq<0.9; however, PCC is easier to interpret and does not include

unjustified upper and lower boundaries 0.1 and 0.9.

Using CC and PCC to determine optimal number of clusters K. We used a combination

of CC and PCC to determine the optimal number of clusters K. Note that Eq 14 contains unde-

fined coefficient ρ. Therefore, we have two parameters ρ and K to determine and two criteria

to meet. We determined ρ and K as the values maximizing CC and corresponding to an elbow

(point of diminishing returns) for PCC. A clustering procedure was run for 24 values of ρ
from 0.05 to 1.2 using the single-program multiple data sets (spmd) function of MATLAB Par-

allel Computing Toolbox; K values were scanned from K = 2 to K = 12. The determined opti-

mal values were ρ = 0.3 and K = 5. The resultant consensus matrix together with the values of

CC and PCC for K scanned from 2 to 12 are presented in Fig 3. As seen in Fig 3, contrast crite-

rion CC and percent of core cluster members PCC both have maxima for number of clusters

K = 5. As shown in Table 1, other quality of clustering criteria also confirm K = 5 as an optimal

number of clusters for our cohort of women with LUTS.

Fig 3. Determination of the optimal number of refined clusters. (A) Consensus matrix heat map demonstrates five clusters of participants (named W1-W5)

grouped together based on the pairwise distances Gnq (Eq 14). (B) Contrast criterion (CC Eq 15) for K = 2,. . .,12. (C) Proportion of core cluster members (PCC

Eq 16) for K = 2,. . .12. Both CC and PCC have maxima at K = 5, justifying the selection of five clusters.

https://doi.org/10.1371/journal.pone.0268547.g003

Table 1. Other quality of clustering criteria, confirming K = 5 as an optimal number of clusters.

K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

Calinski-Harabasz (") 1382.26 346.13 676.29 1126.25 567.83 398.02 309.93 234.52 180.57

Davies-Bouldin (#) 0.4328 0.8175 0.6045 0.4720 0.5692 0.9178 1.0809 1.1498 1.1678

Dunn (") 0.0167 0.0072 0.0290 0.0485 0.0496 0.0455 0.0273 0.0754 0.0590

Point-Biserial (#) -4.801 -2.728 -3.25 -3.849 -2.515 -2.081 -1.855 -1.621 -1.409

Silhouette (") 0.6896 0.4565 0.5731 0.6857 0.5955 0.4821 0.3723 0.3143 NaN

https://doi.org/10.1371/journal.pone.0268547.t001
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Evaluation of the quality of the identified clusters

We used multistep procedure to evaluate the quality of identified clusters and compare with

the potential alternative clusters. The first step was examination of CC and PCC for each of K

clusters (Fig 3). Next, we calculated other established quality of clustering criteria, including

Calinski, Davies-Bouldin, Dunn, Point-Biserial, Silhouette [22–26], etc. (Table 1). Then, we

performed pairwise comparison of the clusters using Wilcoxon rank sum tests and chi square

tests, where appropriate, to determine which variables used for clustering were significantly

different in the pairwise comparison. All pairwise comparisons were adjusted using an FDR

correction for multi-testing [59].

Visualization of the results

We used several tools to visualize the results of our analyses. Heat maps representing the con-

sensus matrices were generated using the clustergram MATLAB function. Properties of the

identified clusters were illustrated by radar plots, built-in using SAS statistical graphics panel

(sgpanel) scatter, polygon, and vector procedures. Comparison of cluster membership in the

refined clusters versus previously identified symptom-based clusters was performed using San-

key diagrams, built with the googleVis package.

Results and discussion

Description of the clusters

Five distinct clusters of women with LUTS were identified by clustering 545 participants of the

LURN Observational Cohort Study using 185 variables. We call these clusters W1-W5, in

order to distinguish them from clusters F1-F4, described previously [41]. Demographic data

for each cluster are presented in Table 2. Some demographic characteristics were different

across the clusters, including age, ethnicity, menopausal status, obesity, prevalence of hysterec-

tomy, percentage of participants with at least one vaginal birth, education level, and employ-

ment status. No significant differences across the clusters were observed for race, smoking,

and alcohol use.

Importantly, all urinary symptoms and many other clinical variables were significantly dif-

ferent across the clusters. Table 3 presents the comparison of urinary symptoms (collected

with LUTS Tool and AUA-SI), bladder diary variables, and other 37 significantly different

clinical variables across clusters W1-W5. For clarity, we describe these significantly different

variables while discussing signatures of the clusters in the text following Table 3. Table 2, and

especially Table 3, illustrate the distinctiveness of the identified five clusters of women with

LUTS.

Properties of the five clusters are visualized in Fig 4. Each column represents one of five

clusters. Radar plots in the first row illustrate urinary symptoms measured by LUTS Tool and

AUA-SI; the second row illustrates demographics, clinical measurements, and non-urinary

PROs; the third row shows categorical data on comorbidities and anomalies identified during

the physical exam; the fourth row shows intake and voiding pattern variables collected in blad-

der diaries. Radar plots represent mean values of the raw variables across members of each of

the clusters. None of the clusters could be characterized by a single symptom, but rather by a

combination of symptoms with various levels of severity. Women in all five clusters reported

higher than normal frequency of voiding (with the highest frequency in W3 and W5). Women

in all clusters except W1 reported urinary urgency and some level of incontinence.

Women in cluster W1 (n = 77) reported minimal urinary incontinence, but had mostly

voiding and post-micturition symptoms (post-void dribbling, trickling, straining, hesitancy,
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and incomplete bladder emptying). They were younger than the average across the LURN

female cohort, had a lower than average weight, number of pregnancies, and vaginal births.

They had less comorbidities and abnormal findings in the physical exam. Women in cluster

W2 (n = 64) reported mild urinary symptoms, including mild urinary incontinence. They pre-

sented clinically significant anterior vaginal wall prolapse (mean POP-Q point B anterior [Ba]

= 1.24 cm, which is outside the introitus), apical prolapse (mean POP-Q point C = -2.38 cm),

and the most severe pelvic organ prolapse symptoms (with the highest Pelvic Organ Prolapse

Distress Inventory [POPDI-6] values of 20.60). They were on average older (66 vs. 53 years

old), and had a higher number of pregnancies (2.9 vs. 1.8) and vaginal births (1.47 vs. 0.92)

than women in cluster W1. They also had the highest post-void residual urine volume (75 mL)

across the clusters. Women in cluster W3 (n = 144) reported high urinary frequency, urinary

urgency, and urgency urinary incontinence. They had increased weight, had larger waist cir-

cumference, and higher functional comorbidity index (FCI) than women in W1, W2, and W4.

Table 2. Demographic data for clusters W1-W5.

W1 W2 W3 W4 W5 P-Value

N 77 64 144 95 165

Age (median IQR) 53 (36–60) 66 (51–71) 60 (50–70) 51 (42–63) 59 (51–67) <0.0001

Race 0.221

White 66 (86%) 60 (94%) 116 (81%) 80 (84%) 130 (79%)

Black 8 (10%) 2 (3%) 22 (15%) 8 (8%) 26 (16%)

Asian 3 (4%) 2 (3%) 3 (2%) 5 (5%) 3 (2%)

Other 1 (1%) 2 (3%) 3 (2%) 3 (3%) 6 (4%)

Ethnicity 0.016

Non-Hispanic/Latino 74 (96%) 57 (89%) 138 (96%) 84 (88%) 159 (96%)

Hispanic or Latino 1 (1%) 5 (8%) 3 (2%) 10 (11%) 2 (1%)

Unknown 2 (3%) 2 (3%) 3 (2%) 1 (1%) 4 (2%)

Obese 23 (30%) 15 (23%) 72 (50%) 38 (40%) 99 (60%) <0.0001

Post-menopausal 35 (46%) 46 (73%) 102 (71%) 47 (49%) 117 (72%) <0.0001

Had a hysterectomy 17 (22%) 9 (14%) 49 (34%) 25 (26%) 64 (39%) 0.0013

At least one vaginal birth 35 (45%) 60 (94%) 91 (63%) 75 (79%) 128 (78%) <0.0001

Alcoholic drinks per week 0.0706

Never 10 (13%) 5(7%) 20 (14%) 15 (17%) 40 (25%)

0–3 drinks per week 55 (72%) 46 (73%) 89 (62%) 65 (68%) 100 (61%)

4–7 drinks per week 8 (11%) 9 (14%) 21 (15%) 13 (14%) 15 (9%)

More than 7 drinks per week 0 (0%) 3 (4%) 8 (6%) 2 (2%) 5 (3%)

Smoking status 0.1746

Never smoker 50 (67%) 43 (68%) 99 (69%) 64 (67%) 92 (56%)

Former smoker 21 (28%) 19 (30%) 33 (23%) 28 (29%) 52 (32%)

Current smoker 3 (4%) 1 (2%) 10 (7%) 3 (3%) 18 (11%)

Education 0.0058

Less than Associate degree 40 (30%) 24 (30%) 89 (30%) 27 (28%) 76 (47%)

Associates or Bachelor’s degree 32 (43%) 25 (40%) 58 (41%) 45 (47%) 61 (38%)

Graduate degree 23 (31%) 19 (30%) 41 (29%) 23 (24%) 24 (15%)

Employment 0.0350

Full-time 35 (47%) 27 (42%) 50 (35%) 44 (46%) 51 (31%)

Part-time 13 (17%) 5 (8%) 20 (14%) 17 (18%) 21 (13%)

Unemployed (looking or not looking for work) 27 (36%) 32 (50%) 73 (51%) 34 (36%) 90 (56%)

https://doi.org/10.1371/journal.pone.0268547.t002
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Table 3. Urinary symptoms, bladder diary variables, non-urinary symptoms, and clinical variables across clusters W1-W5.

Cluster W1 Cluster W2 Cluster W3 Cluster W4 Cluster W5 P-Value

N 77 64 144 95 165

Frequency 1.92 1.72 2.65 1.67 2.70 <0.001

Daytime frequency 1.67 1.44 2.09 1.37 2.13 <0.001

Nocturia 1.85 1.16 1.89 1.22 2.06 <0.001

Incomplete emptying 1.76 1.16 1.20 0.86 2.37 <0.001

Trickle/dribble 1.69 1.07 1.28 1.11 2.56 <0.001

Urgency 1.10 1.47 2.88 1.76 2.73 <0.001

Hesitancy 1.18 0.72 0.34 0.27 1.26 <0.001

Intermittency 1.12 0.73 0.32 0.28 1.28 <0.001

Straining 1.04 0.49 0.16 0.11 1.09 <0.001

Weak stream 0.84 0.79 0.43 0.22 1.52 <0.001

Spraying 0.87 0.60 0.46 0.45 1.55 <0.001

Urgency with fear of leakage 0.56 1.34 2.85 2.05 2.69 <0.001

Bladder pain 0.94 0.50 0.34 0.34 1.42 <0.001

Burning with urination 0.44 0.24 0.10 0.12 0.72 <0.001

Urinary incontinence (UI) 0.59 1.24 2.39 2.81 2.96 <0.001

Post-void UI 0.74 0.65 0.71 1.44 2.31 <0.001

Urgency UI 0.37 1.06 2.61 2.00 2.71 <0.001

Stress UI (laughter) 0.55 1.03 1.26 2.86 2.57 <0.001

Stress UI (exercise) 0.46 0.78 0.90 2.94 2.35 <0.001

UI with sleep 0.10 0.35 0.73 0.88 1.64 <0.001

UI with sex 0.16 0.33 0.12 0.75 0.80 <0.001

UI no reason 0.21 0.56 0.89 1.66 2.13 <0.001

Nocturia (AUA-SI) 2.37 1.77 2.18 1.57 2.37 <0.001

Frequency (AUA-SI) 3.15 2.25 2.96 2.26 3.13 <0.001

Intermittency (AUA-SI) 1.74 1.12 0.53 0.41 1.95 <0.001

Weak stream (AUA-SI) 1.25 1.12 0.60 0.36 2.09 <0.001

Straining (AUA-SI) 1.44 0.57 0.12 0.16 1.08 <0.001

Incomplete emptying (AUA-SI) 2.18 1.28 1.04 0.79 2.67 <0.001

Urgency (AUA-SI) 1.59 2.17 3.63 2.18 3.53 <0.001

QOL (AUA-SI) 3.68 3.57 4.46 4.66 4.88 <0.001

Weight (Kg) 75.58 75.47 82.62 80.58 87.64 <0.001

Waist circumference (Cm) 94.74 97.13 100.59 95.58 106.35 <0.001

Systolic blood pressure 122.42 131.00 130.92 124.29 130.17 <0.001

Post-void residual volume (mL) 55.43 75.04 41.29 29.09 39.94 0.012

POP-Q: Ba result -2.65 1.24 -2.23 -1.78 -1.86 <0.001

POP-Q C result -6.85 -2.38 -6.52 -6.54 -5.85 <0.001

POP-Q D result -7.96 -4.43 -7.79 -7.42 -6.79 <0.001

Number of pregnancies 1.80 2.90 2.01 2.48 3.07 <0.001

Number of vaginal births 0.92 2.43 1.47 1.72 2.02 <0.001

Functional Comorbidity Index Total 1.66 1.74 2.48 1.24 3.64 <0.001

GUPI pain 5.09 4.15 3.70 2.23 6.84 <0.001

GUPI urine 4.71 3.40 3.67 2.49 5.67 <0.001

GUPI QOL 5.78 5.68 6.85 7.60 8.70 <0.001

POPDI-6 14.50 20.60 7.57 7.25 30.22 <0.001

Colorectal-anal distress inventory (CRADI-8) 12.98 18.03 14.76 10.99 33.50 <0.001

Urinary distress inventory (UDI-6) 24.42 25.44 36.27 39.58 63.67 <0.001

(Continued)
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They most frequently reported “urgency with fear of leakage” (2.85), but did not report any

substantial post-voiding symptoms. Women in cluster W4 (n = 95) reported multiple symp-

toms associated with stress urinary incontinence, as well as urgency urinary incontinence, and

some post-void urinary incontinence. They were younger (mean 51 years), had less medical

comorbidities (FCI = 1.24), and had a higher level of physical functioning (PROMIS T-

score = 53.2) than others in the cohort. Women in W5 (n = 165) reported higher frequencies

and severities of LUTS for all symptoms. For 27 out of 30 urinary symptoms, they reported the

highest levels across all five clusters. These women were heavier (87.6 Kg), had the lowest level

of physical functioning (PROMIS T-score = 42.2), had more medical comorbidities

(FCI = 3.64), and more pregnancies (3.07) than the rest of the cohort. They also reported

higher psychosocial difficulties in depression, anxiety, and perceived stress, as well as sleep dis-

turbance. Clusters W2 and W4 had higher percent of Hispanic or Latino women than three

other clusters.

The presence of multiple significantly different variables across the clusters demonstrates

that clusters W1-W5 meet the concise definition of clustering given by Liao as: “The goal of

Table 3. (Continued)

Cluster W1 Cluster W2 Cluster W3 Cluster W4 Cluster W5 P-Value

Perceived stress scale 12.09 9.29 11.89 11.29 16.44 <0.001

PROMIS constipation T-score 50.30 48.68 49.00 49.89 55.80 <0.001

PROMIS depression T-score 48.91 44.63 48.67 46.61 53.93 <0.001

PROMIS anxiety T-score 49.84 46.78 48.61 48.11 54.75 <0.001

PROMIS sleep disturbance T-score 53.48 49.08 52.17 51.52 56.83 <0.001

PROMIS diarrhea T-score 45.70 46.37 48.43 45.17 53.98 <0.001

PROMIS physical functioning T-score 50.44 49.85 46.84 53.19 42.24 <0.001

Arthritis diagnosis 23 (30%) 29 (46%) 64 (45%) 20 (21%) 94 (58%) <0.001

Asthma diagnosis 12 (16%) 7 (11%) 29 (20%) 7 (7%) 49 (30%) <0.001

Chronic obstructive pulmonary disease (COPD) diagnosis 1 (1%) 5 (8%) 6 (4%) 1 (1%) 19 (12%) 0.001

Diabetes diagnosis 4 (5%) 8 (13%) 22 (15%) 5 (5%) 36 (22%) 0.004

Upper gastrointestinal disease diagnosis 19 (25%) 15 (24%) 34 (24%) 12 (13%) 71 (44%) <0.001

Depression diagnosis 17 (22%) 9 (14%) 53 (37%) 27 (28%) 79 (49%) <0.001

Anxiety or panic disorder diagnosis 13 (17%) 8 (13%) 35 (24%) 20 (21%) 62 (38%) <0.001

Degenerative disc disease diagnosis 10 (13%) 7 (11%) 29 (20%) 10 (11%) 57 (35%) <0.001

History of pelvic pain 15 (20%) 3 (5%) 7 (5%) 11 (12%) 37 (23%) <0.001

Sexual activity with the last month 41 (54%) 27 (43%) 54 (38%) 58 (61%) 56 (34%) <0.001

History of hypertension 20 (26%) 21 (33%) 61 (43%) 23 (24%) 80 (49%) <0.001

History of hyperlipidemia 14 (18%) 24 (38%) 44 (31%) 22 (23%) 67 (41%) 0.009

History of sleep apnea 9 (12%) 10 (16%) 21 (15%) 9 (9%) 45 (28%) 0.005

History of a psychiatric diagnosis 32 (42%) 11 (17%) 55 (38%) 41 (43%) 93 (57%) <0.001

Past surgical procedure for LUTS 4 (5%) 6 (10%) 23 (16%) 11 (12%) 36 (22%) 0.008

No abnormal vaginal findings on physical exam 57 (75%) 35 (56%) 101 (72%) 78 (82%) 124 (77%) 0.004

No abnormal uterus findings on physical exam 50 (68%) 45 (71%) 83 (60%) 69 (73%) 87 (54%) 0.009

No notation of tenderness on physical exam 44 (59%) 50 (79%) 108 (77%) 84 (88%) 131 (81%) <0.001

Average number of voids in 24 hours 7.6 7.5 8.4 7.1 8.6 0.0023

Average voided volume in 24 hours (mL) 1827.0 1717.5 1786.6 1786.6 1813.5 0.6728

Average number of intakes in 24 hours 6.5 6.4 6.3 6.3 6.4 0.7081

Average volume of intakes in 24 hours 1902.8 1682.9 1813.3 1813.3 1810.1 0.3028

Max voided volume 531.9 543.2 473.4 473.4 519.0 0.2134

https://doi.org/10.1371/journal.pone.0268547.t003
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clustering is to identify structure in an unlabeled data set by objectively organizing data into

homogeneous groups where the within-group-object dissimilarity is minimized and the

between-group-object dissimilarity is maximized” [8]. Fig 5 visually illustrates results of pair-

wise comparisons of the clusters in a matrix form. Fig 5A provides cluster comparisons by

LUTS Tool variables. Elements on the diagonal of the matrix present the level of severity for

each LUTS Tool question, i.e., the severity urinary symptom signature of the cluster. The trian-

gle of boxes above the diagonal demonstrates variables significantly different in the pairwise

comparison of the clusters; each colored bar indicates a significantly different variable. As

seen, the majority of symptoms are significantly different in the pairwise comparison of the

clusters. Elements in the lower triangle of the matrix present the difference in symptom sever-

ity levels; e.g., the first (upper) element in the triangle represents the difference between symp-

tom severity levels in cluster W2 and cluster W1, indicating that urgency symptoms are more

severe in cluster W2, while voiding and pain symptoms are more severe in cluster W1 than in

cluster W2. Similarly, Fig 5B and 5C provide the results of pairwise comparison of the clusters

for other variables from Tables 2 and 3, demonstrating multiple significantly different non-

Fig 4. Radar plots illustrating mean values of urinary symptoms, demographics, clinical measurements, non-urinary PROs, comorbidities, and bladder

diary variables for identified five clusters of women with LUTS. First row–urinary symptoms (LUTS Tool). Second row–clinical, non-urologic PRO, and

demographic variables. Third row–comorbidities and anomalies identified by physical examination. Fourth row- bladder diary variables. Urinary symptoms

are color-coded: Green = frequency; blue = post-micturition; purple = urgency; dark blue = voiding; red = pain; orange = incontinence.

https://doi.org/10.1371/journal.pone.0268547.g004
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urologic symptoms, physical examination, clinical and demographic variables. In summary, clus-

ters are distinct and significantly different, not only by their urinary symptom signatures, but by

multiple non-urologic variables as well. Importantly, these significant differences are demon-

strated by omnibus test (Tables 2 and 3) and by pairwise comparison of the clusters (Fig 5).

Differential protein abundance in serum of women with LUTS versus non-

LUTS controls

Fig 6 presents the volcano plots comparing abundances of 276 proteins in baseline serum sam-

ples of women with LUTS versus non-LUTS controls. Fig 6A compares the abundances for all

230 women with LUTS to 30 controls, while Fig 6B–6F provide similar comparisons for mem-

bers of the identified clusters W1-W5 for whom proteomics data was available (n1 = 37,

n2 = 38, n3 = 53, n4 = 42, n5 = 60). S3 Table in S1 File provides the lists of significantly

Fig 5. Results of the pairwise comparison of clusters W1-W5. (A) LUTS Tool variables. (B) Demographic and

clinical variables. (C) Physical examination and comorbidities data. Boxes above the diagonal demonstrate significantly

different variables in the pairwise comparison of the clusters. Each colored bar represents a significantly different

variable. Boxes on diagonal are similar to radar plots and demonstrate the “signatures” of the clusters. Boxes below

diagonal present the difference in the values of variables for each pair of clusters. Clusters are distinct and significantly

different, not only by their urinary symptom signatures, but by multiple non-urologic variables, and comorbidities as

well.

https://doi.org/10.1371/journal.pone.0268547.g005

Fig 6. Volcano plots demonstrating differentially abundant proteins in women with LUTS vs. controls for 230 participants representing. (A) the whole

cohort; and (B-F) for each of identified clusters W1-W5. Volcano plots allow for identification and visual representation of the differences in the data sets. Each

small circle on volcano plots (A-F) represents mean abundance of one of 276 proteins in women with LUTS compared to non-LUTS controls. Horizontal axis

represents mean fold-change on the logarithmic scale, while vertical axis represents p-value on the logarithmic scale. The higher the circle, the more

significantly different its abundances in LUTS versus controls. The further the circle from zero on the horizontal axis, the larger the fold-change.

https://doi.org/10.1371/journal.pone.0268547.g006
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differentially abundant proteins for each of the comparisons. Multiple differentially abundant

proteins are observed in the serum samples of women with LUTS versus non-LUTS controls,

both overall and between each cluster and controls. While some of these have been shown [72]

to be associated with LUTS (e.g., tumor necrosis factor [TNF], interleukin-10 [IL-10], mono-

cyte chemotactic protein [MCP], and transforming growth factor [TGF]), the remainders are

novel. The highest number of the differentially abundant proteins of 70 (29 after FDR correc-

tion for multiple testing) is observed for cluster W5, which demonstrated the highest level of

all urinary symptoms and comorbidities. Note that overlap between the lists of differentially

abundant proteins is quite low, meaning that clusters W1-W5 are “biochemically” different.

The highest overlap of 18 differentially abundant proteins is observed for cluster W5 and clus-

ter W3, defined mainly by high urinary frequency, urinary urgency, and urge urinary inconti-

nence. Interestingly, the lowest number of differentially abundant proteins (n = 10) are

observed in clusters W2 (characterized by the presence of pelvic organ prolapse) and W4

(characterized by the presence of stress urinary incontinence), which are presumably driven

by anatomic abnormalities, rather than biochemical changes. Without going into the detailed

interpretation of these results, which are outside the scope of this paper, we think the observed

differences in the differentially abundant proteins across W1-W5 clusters serve as important

independent confirmation of the distinctiveness of the identified clusters.

Comparison of clusters W1-W5 with our previously published urinary

symptom-based clusters F1-F4

Comparing quality of the clusters. Previously, we identified four clusters (F1-F4) by ana-

lyzing data on the same 545 women with LUTS using only urinary symptoms data collected

via the LUTS Tool and AUA-SI (total of 52 variables) [41]. Since the same resampling proce-

dure was performed when generating W1-W5 and F1-F4, both cluster structures are equally

robust to the random variations of the cohort composition.

Distinctiveness, as determined by pairwise comparisons, was higher for the refined clusters

compared with the previously published clusters (Tables 4 and 5). The proportion of signifi-

cantly different variables in pairwise comparison of the clusters ranged from 27% to 83%

(mean 52%) for the refined clusters, compared with a range of 27% to 58% (mean 43%) for the

Table 4. Proportion of significantly different variables in clusters W1-W5 and F1-F4.

W1 W2 W3 W4 W5 F1 F2 F3 F4

W1 27% 46% 58% 64% F1 34% 47% 58%

W2 27% 39% 37% 83% F2 34% 27% 51%

W3 47% 27% 34% 66% F3 47% 27% 39%

W4 58% 37% 34% 69% F4 58% 51% 39%

W5 64% 83% 66% 69%

Mean 52.3% Mean 42.7%

https://doi.org/10.1371/journal.pone.0268547.t004

Table 5. Proportion of core clusters in W1-W5 and F1-F4.

PCC PCC

W1 88% F1 40%

W2 73% F2 74%

W3 89% F3 51%

W4 93% F4 83%

W5 92%

Mean 87% Mean 62%

https://doi.org/10.1371/journal.pone.0268547.t005
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previous clusters. The proportion of core clusters was also higher for W1-W5, compared with

F1-F4; it ranged from 73% to 93% (mean 87%) for the refined clusters, compared with a range

of 40% to 83% (mean 62%) for the previous clusters. Summarizing, there are more significantly

different variables across refined clusters (W1-W5) than across our previously published clus-

ters (F1-F4), and the refined clusters contain a higher percentage of core members for whom

the probability to be in the given cluster is higher than the probability to be in all other clusters

combined. Therefore, the refined clusters identified in the current paper by using additional

urinary and non-urinary variables (total of 185 variables) are substantially more distinct than

our previously published clusters based only on urinary symptoms measured by the LUTS

Tool and AUA-SI (52 variables).

Comparing cluster membership. The Sankey diagram in Fig 7 serves to compare cluster

membership in W1-W5 and in F1-F4. Refined cluster W1 is mostly composed of the members

of cluster F1 without prolapse. Cluster W2 is formed by the members of cluster F1 with pelvic

organ prolapse and includes some members of other clusters having prolapse and moderate

urinary symptoms. Cluster W3 is mainly composed of members of F2 and F3 with urgency

urinary incontinence. Cluster W4 is predominantly formed by members of F3 with stress uri-

nary incontinence. Cluster W5 includes nearly all members of F4 and approximately 30% of

F3 who have both urgency urinary incontinence and stress urinary incontinence symptoms.

Comparing radar plots. Fig 8 provides comparison of radar plots for the urinary symp-

tom signatures of refined clusters W1-W5 and symptom-based clusters F1-F4. There are sub-

stantial similarities in the urinary symptom signatures of our previously published clusters,

and of the refined clusters. Radar plots for W5 and F4 are similar in presenting all urinary

symptoms at a uniformly high level. Signatures of W4 and F3 are similar in presenting the

combination of stress urinary incontinence, urgency, and voiding dysfunction symptoms. W3

and F2 present urinary urgency, urgency urinary incontinence, and mild voiding problems.

Symptom signatures of W1 and F1 are similar, presenting mostly voiding and post-micturition

problems. The signature of cluster W2 presents mild LUTS and is mostly defined by clinically

significant pelvic organ prolapse. The observed similarity of the clusters’ LUTS signatures con-

firms that additional variables did not result in radical changes, but rather in incremental

changes that allowed for identification of the refined clusters, which are built upon, but are

more distinct and uniform than, our previously published ones. We believe this is further evi-

dence of the stability of the identified clusters. Urinary symptom data captured by the LUTS

Tool and AUA-SI provided the foundation for data-driven subtyping of LUTS, while the

remaining urinary and non-urinary variables allowed for identifying refined clusters that differ

not only by urinary symptoms, but by other PRO, demographic, and clinical variables as well

(Table 3, Figs 5, 6B and 6C). Importantly, cluster refinement enhanced the distinctiveness and

uniformity of the clusters, as well as the confidence in cluster membership, by increasing the

overall proportion of core clusters from 62% to 87%.

Evolution of refined clusters W1-W5 in 3- and 12-month follow-up

Fig 9 presents radar plots of the urinary symptom signatures of refined clusters W1-W5 at 3-

and 12-month follow-up. As seen, the shapes of the radar plots are conserved, while their areas

representing overall severity of LUTS are decreased due to improvement in urinary symptoms

for some participants. The percentage of improvers varied across the clusters (Table 6).

Improvers were defined as having a ½ SD or greater improvement between baseline and 12

months on the calculated LUTS Tool Summary Score (including all 22 LUTS Tool severity var-

iables). We view stability of the urinary symptom radar plot signatures’ shapes as additional

evidence of robustness of the identified clusters.
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Potential clinical significance of the identified clusters

The current paradigm for managing patients with LUTS is to assign a diagnosis based on a

pre-defined symptom complex, such as overactive bladder (OAB), or based on a single pre-

dominant symptom, such as nocturia or stress urinary incontinence. Treatments are then

administered based on these diagnoses [73,74]. Conventional classification of LUTS includes

such partially overlapping groups as OAB wet, OAB dry, continent, stress urinary inconti-

nence, urgency urinary incontinence, mixed urinary incontinence, underactive bladder, and

bladder outlet obstruction. As stated in [39–41], there are limitations to this paradigm, as

patients frequently present with multiple other urinary symptoms in addition to those being

Fig 7. Sankey diagram comparing cluster memberships in W1-W5 and F1-F4. Cluster memberships in the refined cluster W1-W5 and

previously published [41] urinary symptom-based clusters F1-F4 are compared. The new cluster W2 emerged, in which urinary symptoms are

complicated by the presence of anterior vaginal wall prolapse. See text for more details on cluster comparison and properties of refined clusters

W1-W5.

https://doi.org/10.1371/journal.pone.0268547.g007
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treated, and these combinations of symptoms may be relevant to treatment selection. Diagno-

sis and treatment based solely on patients’ chief complaints may be unsatisfactory, as they dis-

regard other presenting symptoms. Mechanistic studies reveal that a functional impairment to

a specific organ in the urinary tract may cause more than a single symptom. For example, a

weak urethral sphincter is associated with both stress and urgency urinary incontinence

[58,75]. This may explain why mixed incontinence is so common. This raises the question of

how current diagnostic paradigms correspond with biological changes of the continence sys-

tem and how symptoms occur in women seeking treatment, which was the main rationale for

the unbiased data-driven subtyping of women with LUTS in LURN. As seen, none of the clus-

ters W1-W5 identified in our analysis could be characterized by a single symptom, but rather

by a combination of symptoms with various levels of severity, which are in concert with the

clinical observations mentioned above [58,75]. The more detailed comparison of our refined

clusters W1-W5 with the conventional LUTS groups and subtypes of LUTS identified by other

researchers [36–38,76] is provided in Supplemental Material text in S1 File.

Clustering methodologies reported in studies on subtyping LUTS and

other common diseases and disorders

Previous research on subtyping of diseases and disorders provides various levels of detail

regarding the clustering methodologies that were employed. Below, we provide examples of

high-quality studies using clustering methodologies for subtyping of common complex dis-

eases, disorders, and symptom complexes within and outside of urologic domain. For instance,

Coyne et al [36] provided detailed information on the 14 LUTS questions used for clustering

and indicated that all the variables were scaled from 0 to 1. They took care of the robustness of

clusters to the variation in composition of the cohort by performing clustering on the random

50% subset of participants first, and then by extending it to the whole cohort. They used k-

means algorithm for clustering and scanned the number of clusters K from 3 to 7. They

Fig 8. Comparison of radar plots of the urinary symptom signatures for clusters W1-W5 and F1-F4. Urinary symptom signatures (shapes of the radar

plots) demonstrate pairwise similarities between the clusters F1-W1, F2-W3, F3-W4, F4-W5.

https://doi.org/10.1371/journal.pone.0268547.g008
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reported that the decision on the number of clusters was made by evaluating “each cluster

model based on the clinical relevance and distinctiveness of each cluster, as well as the amount

of variance accounted for by the cluster solution.” However, they did not provide the names or

values of criteria used for cluster evaluation. They provided detailed and informative descrip-

tive statistics, but unfortunately, did not provide any tests on significantly different variables in

pairwise comparison of the identified clusters.

Similarly, Hall et al [37] provided detailed information on the 14 LUTS questions and scal-

ing. K-means clustering was performed with random 50% split of the cohort (split-half valida-

tion) similar to [36]. Detailed descriptive statistics and omnibus tests are provided across

identified clusters and asymptomatic controls for significant difference in the variables not

used for clustering, including demographics, comorbidities, risk factors, and lifestyle factors.

Fig 9. Evolution of the urinary symptom signatures in 3- and 12-month follow-up. First row–urinary symptom signatures for members of clusters W1-W5

at 3-month visit. Second row–urinary symptom signatures for members of clusters W1-W5 at 12-month visit. Note that the shape of the radar plots is

conserved (similar to the radar plots in Figs 4 and 8), while the area of the radar plots is decreased due to symptoms improvement in some of the patients

shown in Table 6.

https://doi.org/10.1371/journal.pone.0268547.g009

Table 6. Percentage of improvers in cluster W1-W5 in 12-month follow-up.

Cluster N patients with 12-month follow-up N (%) Improvers at 12 months

Cluster W1 50 23 (46%)

Cluster W2 51 23 (45%)

Cluster W3 106 57 (53%)

Cluster W4 70 49 (70%)

Cluster W5 119 69 (58%)

https://doi.org/10.1371/journal.pone.0268547.t006
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However, no information on significant differences in the 14 LUTS variables used for cluster-

ing, and no information on pairwise comparison of the clusters is provided. Summarizing,

these two LUTS clustering papers provide a reasonable level of details on scaling of the vari-

ables and on the clustering procedure, but unfortunately do not provide enough information

on evaluation of the quality of the identified clusters.

In contrast, Miller et al [38] provided all necessary information on pairwise comparison of

the identified clusters, both for six variables used for clustering, and for eight other variables

collected but not used for clustering. Unfortunately, the authors did not perform any scaling of

variables used for clustering. As stated in the paper, “the six clustering variables were (a) num-

ber of voids during daytime hours, (b) number of voids during nighttime hours, (c) daytime

modal output volume in milliliters, (d) total 24-hour output volume in milliliters, (e) total

24-hour beverage intake in milliliters, and (f) BMI (a variable that was speculated to be related

to intake).” If the volumes of related variables c, d, e were not scaled but entered into clustering

in milliliters (values can be as high as 500), then these variables will provide the domineering

contribution (compared with the number of daytime voids, typically < 20) to the 6-dimen-

sional Euclidean distance between clustered objects, and will serve as drivers determining clus-

ter membership. The contribution of these variables to the Euclidean distance would be much

lower if they were entered in liters instead of milliliters, which would change the cluster mem-

bership. This is the problem indicated by Hair et al [62], with unscaled, unstandardized data of

the inconsistency between cluster solutions when the scale of some variables is changed, which

is a strong argument in favor of standardization. To our mind, the best solution of the problem

is the use of the variables scaled by comparison with controls, as we described in the Methods

section. Proper scaling is especially important when using heterogeneous data combining

dimensionless and dimensional variables measured in different units, as in [38], where fre-

quencies, volumes (mL), and BMI units (kg/m2) are combined.

A broader look outside the LUTS domain shows that previous data on subtyping other

common complex diseases provide different level of details on the clustering procedure and

cluster evaluation as well. Table 7 below summarizes methodological information reported in

the clustering papers [31–33] subtyping patients with asthma, diabetes, and sepsis, as well as in

the LUTS papers [36–38] discussed above. More details on methodological information

reported in [31–33] are provided in Supplemental Material text in S1 File.

Thoughts on minimal requirements for clustering publications

As shown above, publications using clustering for disease subtyping provide different levels of

details on data preprocessing, clustering procedure, and cluster evaluation. In particular, infor-

mation on scaling and weighting of the variables, values of criteria used for selection of the

number of clusters, pairwise comparison of the clusters, and level of confidence in cluster

membership are often not provided. This missing or hard-to-find information is important for

better understanding of the papers’ results, for comparison of the proposed phenotypes with

previous and future classifications, and for potential refinement. With this in mind, and

guided by the principles of FAIR data (findability, accessibility, interoperability, and

reusability) [77,78], we think it is time for the clustering community to develop minimum

requirements for clustering reports (MICRo), similar to minimum information about a prote-

omics experiment (MIAPE), developed by the proteomics community [79], and minimum

information about a microarray experiment (MIAME), developed by the transcriptomics com-

munity [80]. We strongly believe that everybody, including the authors of this paper, would

benefit from a collective consensus decision on the minimal information required for cluster-

ing publications.
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Exact guidelines for the minimal requirements for clustering publications should result

from the clustering community discussion. Here, we would like to call for such discussion and

propose the below items that we believe are important for future guidelines:

1. Complete list of variables used for clustering.

2. Explicit information on scaling and weighting of clustering variables.

3. Clustering algorithm used (name of the function with options and parameter values, or

code).

4. Exact definition of criteria used to determine the number of clusters. Values of criteria for

the selected and alternative number of clusters. Preferably, more than one criterion should

be presented.

5. Results of pairwise comparison of the clusters, with the indication of clinically meaningful

and significantly different variables in the pairwise comparison–for all variables used

for clustering, and for selected important variables not used for clustering (e.g.,

demographics).

6. Information on the level of confidence in cluster membership.

Table 7. Methodological information provided in the clustering papers.

Paper Variables Preprocessing Clustering algorithm Number of clusters

determination

Cluster evaluation

Moore

et al [31]

34 variables derived

from initial 726.

Only list of 34

variables provided.

No info on scaling of 17

continuous variables; 17

composite variables ranked

0–10.

Agglomerative hierarchical

clustering, Wards linkage.

Dendrogram demonstrates 5–6

groups. Five clusters selected due

to small size of the sixth group. No

other criteria.

Omnibus tests (analysis of

variance [ANOVA], Kruskal-

Wallis, chi-square) used on

demographic, clinical, medication

use, health care utilization, and

biomarker variables. No pairwise

comparisons of clusters.

Ahlqvist

et al [32]

List of six variables

used for clustering is

provided.

Five variables standardized

as z-scores. Presence of

glutamic acid decarboxylase

antibodies (GADA) binary

variable.

Patients with GADA

grouped into separate

cluster. K-means with

resampling for patients

without GADA.

Schwarz’s Bayesian criterion to

determine number of clusters

k = 4.

Box plots comparing 5 continuous

variables used for clustering.

Pairwise comparisons of clusters

for multiple variables not used for

clustering. Cluster validation in 3

independent cohorts.

Seymour

et al [33]

List of 29 variables

used for clustering is

provided.

Variables standardized as z-

scores.

Resampling-based

consensus k-means

clustering.

Consensus matrix heat map. Area

under the CDF curve [34].

Pairwise comparison of variables

clusters for variables used and not

used for clustering. Validation in

an independent cohort.

Coyne

et al [36]

List and description

of 14 EPIC LUTS

questions used for

clustering is

provided.

Variables scaled from 0 to

1.

k-means clustering with

split-half randomization.

Values of k scanned from 3

to 8.

No names or values for criteria

provided.

Descriptive statistics on variables

both used and not used for

clustering, but no tests for

significance.

Hall et al

[37]

List and description

of 14 BACH LUTS

questions used for

clustering is

provided.

Variables scaled from 0 to

1.

Hierarchical clustering and

k-means clustering, split-

half validation.

Pseudo F and t2

statistics were used to determine

number of clusters. However,

values of statistics are not

provided.

Omnibus tests (ANOVA, chi-

square) on variables used and not

used for clustering. No pairwise

comparisons of clusters.

Miller

et al [38]

List of six variables

used for clustering is

provided.

No explicit information on

scaling.

Agglomerative hierarchical

clustering, Wards linkage.

Dendrogram demonstrates 3–4

groups. Three groups selected

based on visual examination of

separation on canonical variables

plane. No other criteria provided.

Pairwise comparison of clusters

on six variables used for clustering

and 8 variables not used for

clustering. ANOVA for

continuous and chi-square test for

categorical data.

https://doi.org/10.1371/journal.pone.0268547.t007
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Limitations of the current study

Our paper carries some limitations. First, there are limitations in terms of the cohort, which

included only treatment-seeking (e.g., potentially more difficult to treat patients) and predom-

inantly white participants, some of whom (43%) received treatment prior to entering the

study. Our analysis only contains women. Preliminary data analysis confirmed that sex is the

major determinant of LUTS subtypes; therefore, sex-specific clustering was performed. We

previously published the results of urinary symptom-based clustering of male participants

[64]. Cluster refinement of male clusters, along the same lines as described in the current

paper, is underway; the resulting refined subtypes will be compared with those found in the

female cohort. Our control group used for scaling of the variables was relatively small (55 par-

ticipants) but commensurate with the size of identified clusters. Not all data elements collected

for the cases were available for the controls, so we used some literature data for general popula-

tion and bladder diary data from a different study (EPI).

Second, there are limitations in terms of data elements used for clustering. Some objective

measures that can be used in the diagnosis of LUTS in women, such as urodynamic testing,

were not available. Urodynamics is clinically indicated in selected, but not all, LUTS patients

due to the invasiveness of the procedure. Genomics data were not used so far. We do not

expect that genomics data will produce dramatic effect on clustering results since LUTS is a

highly prevalent common disease, especially in older age. Nevertheless, genotyping of the

LURN participants is underway, which would allow for future cluster refinement by including

the binary single nucleotide polymorphism (SNP) data using our novel weighted Tanimoto

indices approach. Proteomics data are available for approximately 40% of the cohort and were

not yet used for cluster refinement. However, they were used to demonstrate the presence of

multiple significantly different proteins, indicating the refined symptom-based clusters are

biochemically different.

Third, we developed methodology and a pipeline for integrating heterogeneous continuous

and categorical data for clustering women with LUTS. We cannot claim that this is the prefera-

ble methodology for other data sets since data and research questions are different in different

studies. However, we explicitly described our preprocessing and clustering procedures, as well

as criteria used for determination of the number of clusters, cluster evaluation, and confidence

level in cluster membership. We compared our methodology with alternative approaches and

demonstrated that our methodology allows for combining heterogeneous continuous, categor-

ical, and binary data, and that our refined clusters are more distinct than the previous urinary

symptom-based clusters. Detailed description of the methodology, and comparison with the

alternative approaches, allows interested readers to decide if it is suitable for their data and

research questions. Availability of the pipeline source code allows for modifications, if needed.

Fourth, and most importantly, clinical significance of the identified clusters has yet to be

determined. We already demonstrated the distinctness of our clusters, but now we need to

establish their usefulness in clinical practice. This should be done through clinical trials, where

treatments and outcomes of patients classified into the identified clusters would be compared

with the standard treatment without the knowledge of cluster membership. Our preliminary

analysis of 276 serum proteins in women with LUTS corroborated that the identified clusters

are biochemically different. Further analysis of the affected biochemical pathways (potentially

using even more comprehensive targeted proteomics assays, such as Olink Explore [3072 pro-

teins] and/or new SomaScan assay [7000 proteins]), and their longitudinal dynamics as related

to symptom trajectories, will follow with the goal to enhance understanding of different etiolo-

gies of the identified subtypes and potentially establishing more effective subtype-specific

treatments. Further research will also include development of a software tool allowing for
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classification of the “real-world” patient into one of the identified subtypes of LUTS and deter-

mination of the minimal set of variables sufficient for classification of patients with LUTS into

identified subtypes in clinical practice. We hypothesize that the knowledge of cluster member-

ship for a given patient would help clinicians to select an efficient treatment. This hypothesis

could be tested in a study, where participants are randomized into two groups. The first group

would be treated “as usual”, while the second group would be classified into the identified sub-

types of LUTS, with the information provided to the clinicians prescribing treatment. To clar-

ify, we are not suggesting performing such a clinical study immediately. Cluster-specific

treatments are yet to be determined. We believe that identification and further refinement of

the LUTS subtypes with the omics and clinical data will improve our understanding of subtype

etiologies and assist with identification of cause-specific and cluster-specific treatments. At

that point, a clinical trial with cluster-specific treatments would be warranted, even if such

treatments are identified not for all of the subtypes, but for some of them. We view subtyping

not as a panacea, but as an important step in the development of personalized medicine.

Conclusion

A novel clustering pipeline for subtyping of common complex diseases, syndromes, and symp-

tom complexes using heterogeneous continuous and categorical data was developed. The

advantages of scaling variables by comparison with the controls without the disease of interest

were discussed and illustrated by the simulated example. The novel weighted Tanimoto indices

approach to integrate multiple binary variables into the clustering procedure was developed. A

cluster refinement procedure using data available only for the subset of participants through

semi-supervised clustering was proposed. A novel contrast criterion (CC) for resampling-

based consensus clustering was proposed and compared with existing criteria for consensus

clustering, i.e., consensus score (CS) and proportion of ambiguously clustered pairs (PAC). A

simulated example demonstrated the advantages of CC over CS and PAC.

Information provided in the literature on subtyping common complex diseases and disor-

ders was reviewed and shown to be often incomplete, especially with regard to data prepro-

cessing, clustering procedures, and cluster evaluation. Suggestions for the minimum

requirements for clustering publications were formulated, and the community effort to work

on creating such requirements following the principles of FAIR data was called for.

Five distinct clusters of women with LUTS were identified by using 185 variables, including

demographics, physical exam, LUTS and non-LUTS questionnaires, and bladder diary vari-

ables. The quality of the clusters was evaluated using established criteria (Calinski-Harabasz,

Davies-Bouldin, Dunn, Point-Biserial, and Silhouette [22–26]), as well as novel contrast crite-

rion (CC) and percentage of core members of the clusters (PCC). Distinctiveness of the clus-

ters was confirmed by multiple significantly different variables in pairwise comparison of the

clusters. Refined clusters W1-W5 were compared with our previously published urinary symp-

tom-based clusters F1-F4, and were shown to be more distinct by having a higher percentage

of significantly different variables and a higher percentage of the core members of the clusters.

Importantly, targeted proteomics data confirmed that our refined clusters based on clinical

data are biochemically different. Identification of the clinically and biochemically distinct sub-

types of LUTS has provided a foundation for studies of subtype-specific etiologies and treat-

ments. However, the results of the study should not be overgeneralized. Further refinement of

subtypes is necessary and is coming both from new, more diverse cohorts (e.g., LURN 2 study)

and from this cohort through inclusion of proteomic, genomic (grants ancillary to LURN),

and neuroimaging data. Our paper provides methodology and a pipeline for such refinement

and data integration.
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