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Abstract—While personal characteristics influence people’s
snapshot trust towards autonomous systems, their relationships
with trust dynamics remain poorly understood. To address this
gap, we conducted a human-subject experiment involving 130
participants performing a simulated surveillance task aided by
an automated threat detector. A comprehensive pre-experimental
survey gathered participants’ personal characteristics measured
in 12 constructs and 28 dimensions. We clustered participants’
trust dynamics into three groups, namely Bayesian decision-
makers, disbelievers, and oscillators. Subsequently, we identified
their distinctive attributes regarding personal characteristics. Re-
sults showed that the clusters differ in seven personal character-
istics (masculinity, positive affect, extraversion, neuroticism, in-
tellect, performance expectancy, high expectations). Our findings
provide implications for designing specialized trust prediction
algorithms tailored to each type of trust dynamics and trust-
aware agents.

Index Terms—trust dynamics, personal characteristics, clus-
tering, human-autonomy interaction, human-robot interaction

I. INTRODUCTION

The increasing adoption of automated and autonomous sys-
tems in various domains, including transportation, healthcare,
education, and defense, has led to a growing interest in
understanding how trust develops between humans and these
systems [1], [2]. Early work on trust in automation/autonomy1

is focused on identifying antecedents of trust. Numerous
factors have been identified as influencing trust (see [4]–[9] for
reviews). These factors can be categorized into those related to
the human, the automated/autonomous system, and the context
or environment [5]. In these early works, a person’s trust
in automation is measured at specific time points (snapshot
trust), predominately at the end of an experiment after a
series of interactions and/or sometimes at the beginning of
an experiment.

More recently, acknowledging that a person’s trust can
change dynamically while interacting with autonomous tech-
nologies, there is a shift of research focus from snapshot
trust to trust dynamics - how humans’ trust in autonomy
forms and evolves due to moment-to-moment interaction with
autonomous technologies [10]–[12].

1To be consistent with early literature, we use the two terms automation and
autonomy interchangeably in this paper while acknowledging the difference
between the two [3].

One line of research on trust dynamics explores how trust is
formed, violated, and recovered when humans interact with au-
tonomous and robotic agents [10], [11], [13]–[15]. Numerous
studies have demonstrated the effectiveness of different trust
repair strategies aimed at restoring trust following violations
[16], including apologies [17]–[19], denials [18], explanations
[17], [20], [21], and promises [22]. The second line of research
is focused on developing real-time trust prediction models and
clustering trust dynamics [23]–[30]. Several studies revealed
the existence of different types of trust dynamics [24], [25],
[27], [28].

Despite existing research efforts on trust dynamics, one
significant research gap remains. Most of the studies about the
association between personal characteristics and trust center
on post-experimental trust (measured at the end of a series of
interactions) [31]–[34] and/or a person’s trust propensity (i.e.,
an individual’s inherent tendency to trust automation) [35]–
[37]. While the importance of investigating trust dynamics
over snapshot trust has been recognized [10], [12], [38], there
is limited knowledge concerning the relationships between
trust dynamics and personal characteristics. This gap makes
it challenging to comprehend which personal characteristic
factors impact trust dynamics the most, how they do so, and
how diverse individuals exhibit distinct trust dynamics.

To address this gap, in this study, we conducted a human-
subject experiment involving a total of 130 participants per-
forming a simulated surveillance task aided by an imperfect
automated threat detector. Based on key literature review
studies on trust in automation, we constructed a comprehensive
list of 12 personal characteristics constructs and 28 dimensions
that could potentially influence a person’s trust dynamics
when interacting with autonomous agents. The survey was
administered before the experiment. During the experiment,
participants’ dynamic trust when interacting with the auto-
mated threat detector was recorded. With the experimental
data, we first performed clustering analysis and obtained
three clusters of trust dynamics: Bayesian decision-maker,
disbeliever, and oscillator. Subsequently, Analyses of Variance
(ANOVAs) were conducted to explore differences across the
three trust dynamics clusters.
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II. METHOD

We conducted a human-subject experiment where partici-
pants engaged in a simulated surveillance task with the help
of an imperfect automated threat detector. The research studies
complied with the American Psychological Association code
of ethics and were approved by the institutional review board.

A. Participants

We gathered data from 130 individuals (average age=22.6
years, SD=3.5). All participants had normal or corrected-
to-normal vision. None of them had previously taken part
in a similar study or had any prior experience with the
specific testbed used in the current research. Participants were
compensated with $20 upon completion of the experiment. Ad-
ditionally, there was an opportunity to receive a performance-
based bonus ranging from $2.5 to $10.

B. Apparatus and stimuli

During the experiment, the participants worked with a
swarm of drones to perform a surveillance task at 100 sites (i.e.
100 trials). Each trial lasted for 10 seconds. During a trial, the
participants had to perform two tasks simultaneously. They had
to maintain a level flight of the drones, which was essentially a
compensatory tracking task, while detecting potential threats
from the photo feeds captured by the drones (Figure 1). At
the beginning of each trial, participants started on the tracking
display. They had access to either the tracking task or the
detection task display at any given time and needed to switch
between the two displays.

(a) Tracking task (b) Detection task

Fig. 1: Simulated surveillance task consisting of the (a) track-
ing task and the (b) detection task

Tracking task. For each trial, participants engaged in a
tracking task that persisted for 10 seconds. Using a joystick,
participants had to control the movement of a green circle,
which randomly drifted on the screen. The goal was to
maneuver the circle towards a crosshair positioned at the center
of the display (Figure 1(a)) and thereby minimize the distance
between the green circle and the crosshair.

The performance of the tracking task was assessed based
on the average distance between the circle’s position and the
center. This measurement captured how effectively participants

could control the circle and maintain its proximity to the
crosshair during the 10-second duration of each trial.

Detection task. In addition to the tracking task, participants
were responsible for detecting threats. Each trial involved
participants receiving a new set of four static images from
the drones for threat detection. The images were presented
as shown in Figure 1(b). The threat being detected was
represented by a person, as illustrated in Figure 2(a), and
only one threat appeared among the four images. There were
no distractors included in the images so that the participants
did not have to determine whether the person depicted was a
friend or foe. The distribution of threats across the four images
followed a uniform distribution, ensuring randomness.

(a) Images with threats

(b) Images without threats

Fig. 2: Examples of a threat

An imperfect automated threat detector assisted the partic-
ipants in performing the threat detection task. If the detector
identified a threat, an immediate visual and auditory alert in the
form of a red “Danger” signal and a synthetic “Danger” sound
were triggered at the beginning of each trial. Participants were
expected to accurately and promptly identify the presence of
the threat by pressing the “Report” button on the joystick. On
the other hand, in cases where the detector did not identify any
threat, the alert signal was “Clear”, presented in green, with
an auditory notification as well. Participants were not required
to report the absence of a threat; their expected action was to
take no action when there was no threat.

In both cases, participants had the option to either follow the
decisions of the threat detector blindly or personally examine
the images and make their own judgments. The performance
of the detection task was assessed based on three metrics:
detection time, detection accuracy, and detection score.

C. Experimental Design

The experimental data was collected under five different
automation reliability levels: 62%, 64%, 66%, 68%, and 70%.
Participants were randomly assigned to one of the five levels.



The number of each case (Hit, False alarm, Miss, Correct re-
jection) was configured using Signal Detection Theory (SDT)
[39]. Benchmarking prior literature [40], the criterion c was set
at -0.29, and the sensitivity d′ was set to 1.09. Subsequently,
the occurrences of each case were calculated and rounded, as
presented in Table I.

TABLE I: Occurrences of hits, misses, false alarms, and
correct rejections in each reliability level

Reliability Alert Threat No Threat
62% Danger 8 36

Clear 2 54
64% Danger 16 32

Clear 4 48
66% Danger 24 28

Clear 6 42
68% Danger 32 24

Clear 8 36
70% Danger 40 20

Clear 10 30

D. Measures

In our study, we collected a range of subjective, behavioral
and performance data.

Dynamic Trust. As mentioned before, there were 100 trials
in the experiment. After each trial, participants’ subjective trust
rating was measured using a visual analog scale [11], [14],
[38], [41]. The scale had “I don’t trust the detector at all”
as the leftmost anchor to “I absolutely trust the detector” as
the rightmost anchor. The ratings provided by participants on
the visual analog scale were then automatically converted to
a value between 0 and 1.

Blindly Following and Crosschecking Behaviors. In each
trial, participants could blindly follow the recommendation
provided by the automated threat detector without crosscheck-
ing the detection display, or they could choose to check the
detection display themselves. The two types of behaviors were
referred to as blindly following and crosschecking.

Personal Characteristics. We collected a diverse set of
personal characteristics of the participants. To identify relevant
factors that affect users’ trust in autonomy, we conducted a
thorough review of key literature review and meta-analysis
papers [4]–[9]. From these papers, we compiled all personal
characteristics previously shown to be associated with trust in
autonomy. As a result, we had a list of 12 distinct constructs,
encompassing a total of 28 dimensions that related to personal
characteristics. For each construct, we utilized well-established
surveys to gather data (Table II).

Post-experiment Survey. In addition to the trust ratings
obtained after each experimental trial, we also measured
participants’ subjective evaluations of the automated threat
detector after completing the entire experimental trial. We
asked for their overall trust, satisfaction, and understanding
of the detector. Furthermore, we inquired about their self-
confidence regarding their performance.

TABLE II: List of personal characteristics and measurement
scales

Construct Reference
Measures of culture CVScale [42]

Measures of attentional control ACS [43]
Measures of mood PANAS [44]

Personality Mini-IPIP [45]
Risk propensity RPS [46]

Decision-making style GDMS [47]
Reasoning test CRT [48]

Propensity to trust PTS [49]
Measures of negative attitude
towards autonomous systems NARS [50]

Measures of expectancy
towards autonomous systems

UTAUT [51]
Questions from [52]

Self-efficacy
towards autonomous systems Computer efficacy beliefs [53]

Perfect automation schema PAS [54]

E. Experimental procedure

Upon arrival, participants were asked to provide informed
consent and fill out a pre-experiment survey, including the
demographics and the personal characteristics surveys. After
that, participants received a training and practice session on
the tasks. The practice session consisted of 30 trials with
only the tracking task and eight trials combining both the
tracking and detection tasks. The eight trials involved equal
numbers of hits, misses, false alarms, and correct rejections,
enabling participants to experience all possible cases. Partic-
ipants were informed that the automated threat detector used
during the practice was solely for illustration purposes and
that the detector’s reliability would not be the same during
the experimental trials. The actual experiment consisted of a
total of 100 trials, with a five-minute break after the 50th trial.
After completing all trials, participants were asked to respond
to the post-experiment survey.

III. DATA ANALYSIS AND RESULTS

In this study, we performed trust prediction for the 130
participants, followed by a clustering analysis. After assigning
each participant to specific cluster groups based on the clus-
tering analysis, we conducted ANOVA to investigate if there
were any significant differences between the clusters.

A. Predicting Temporal Trust and Clustering Trust Dynamics

We employed the Beta random variable model [12], [24],
[25] to predict a human’s temporal trust. This model has been
shown to outperform other models [23], [55] in prediction
accuracy. Additionally, it provides good model explainability
and generalizability because it complies with three properties
of trust dynamics identified from empirical studies.

• Continuity: Trust at the current moment i is significantly
associated with trust at the previous moment i− 1.

• Negativity bias: Negative experiences exert a stronger
influence on trust compared to positive experiences.

• Stabilization: Over time, a person’s trust tends to stabilize
during repeated interactions with the same system.



After an autonomous system completes the ith task, the
human’s temporal trusti follows a Beta distribution. The
predicted trust ˆtrusti is calculated by the mean of trusti

trusti ∼ Beta(αi, βi) (1)

ˆtrusti = E(trusti) =
αi

αi + βi
(2)

αi =

{
αi−1 + ωs, if performancei = 1 (agent′s success)

αi−1, if performancei = 0 (agent′s failure)
(3)

βi =

{
βi−1 + ωf , if performancei = 0 (agent′s failure)

βi−1, if performancei = 1 (agent′s success)
(4)

where
• performancei: Performance of the autonomous system

on the ith interaction
• αi, βi: Parameters of the Beta distribution after the ith

interaction
• ωs: Gains due to the human’s positive experience toward

the autonomous system after its success
• ωf : Gains due to the human’s negative experience toward

the autonomous system after its failure
After n tasks/interaction, the system succeeds in ns tasks

and fails nf tasks. Then

trusti ∼ Beta(α0 + nsws, β0 + nfwf ) (5)

ˆtrusti = E(trusti) =
α0 + nsws

α0 + nsws + beta0 + nfwf
(6)

where α0 and β0 represent a person’s a priori positive and
negative experience with autonomy in general.

In this study, we personalized the trust model for each
participant and learned the parameters

{
α0, β0, w

s, wf
}

using
their self-reported trust ratings as the ground truth labels.
Additionally, since each participant reported their trust rating
after every trial, we utilized each rating to iteratively update the
model’s parameters. The learned parameters were then used to
predict ˆtrusti. For a detailed description of the model, please
refer to [12], [24], [25].

Clustering based on trust dynamics. We applied k-means
clustering to the participants within each reliability level.
Following prior studies [12], [24], [25], the clustering was
based on two factors: Average logarithm trust and RMSE (Root
Mean Square Error). The average logarithm trust represents
participants’ overall levels of trust, and the RMSE measures
the deviation between the self-reported ground truth and the
predicted trust value, indicating how closely the participant’s
trust dynamics follow the abovementioned properties of trust
dynamics.

The two input features were calculated as follows:

Average logarithm trust =
1

100
Σi=100

i=1 log Trusti (7)

RMSE =

√
1

100
Σi=100

i=1 (Trusti − ˆtrusti)2 (8)

where Trusti is the participant’s self-reported trust toward
the autonomous system after the ith task and ˆtrusti is the
predicted trust score.

The number of clusters was determined using the elbow
rule, which decides on the optimal number of clusters that best
capture the patterns in the data. Consistent with prior literature
[12], [24], [25], the k-means clustering resulted in three
distinct clusters: Bayesian Decision Makers (BDMs, n = 91),
disbelievers (n = 25), and oscillators (n = 14). The Bayesian
decision makers update their trust in a Bayesian manner, the
disbelievers display constantly low trust in autonomy, and the
oscillators’ trust fluctuates dramatically (Figure 3).

(a) BDM (b) Disbeliever (c) Oscillator

Fig. 3: Three distinct clusters of trust dynamics: Bayesian
decision maker (BDM), disbeliever, and oscillator.

B. Association between Trust Dynamics, Personal Character-
istics and Behaviors

We conducted Analyses of Variance (ANOVAs) to examine
differences among the three clusters. For this study, our
focus was on the personal characteristics measures collected
through the pre-experiment survey. Table III presents the mean
and standard deviation (SD) values for the dimensions of
personal characteristics that displayed differences across the
three cluster groups.

TABLE III: Mean and Standard Deviation (SD) of the three
different clusters for key personal characteristics

Dimension BDM Disbeliever Oscillator
Masculinity (/5) * 1.81 (0.67) 1.68 (0.77) 2.38 (1.12)
Positive affect (/5) * 2.80 (0.71) 2.75 (0.76) 3.37 (0.65)
Extraversion (/5) * 2.99 (0.95) 2.74 (0.96) 3.54 (1.08)
Neuroticism (/5) * 2.67 (0.73) 3.09 (0.83) 2.61 (0.90)
Intellect (/5) * 3.77 (0.72) 3.57 (0.93) 4.23 (0.46)
Performance expectancy (/7) ** 5.73 (0.70) 5.24 (1.39) 6.07 (0.68)
PAS-High expectations (/5) ** 1.88 (0.57) 1.55 (0.54) 2.14 (0.79)

Personal Characteristics. Results revealed significant dif-
ferences in seven personal characteristics dimensions: mas-
culinity (F (2, 127) = 4.21, p = 0.02), positive affect
(F (2, 127) = 4.11, p = 0.019), extraversion (F (2, 127) =
3.06, p = 0.050), neuroticism (F (2, 127) = 3.16, p = 0.046),
intellect (F (2, 127) = 3.63, p = 0.029), performance ex-
pectancy (F (2, 127) = 4.76, p = 0.010), and PAS-high



expectations (F (2, 127) = 5.08, p = 0.008). With respect to
masculinity, the oscillator group scored significantly higher
than the BDM (p = 0.029) and disbeliever groups (p = 0.019).
Similarly, for positive affect, the oscillators had significantly
higher scores than BDMs (p = 0.021) and disbelievers (p =
0.032). Concerning extraversion, oscillators had higher ratings
than disbelievers (p = 0.045). For neuroticism, the disbeliever
group had the highest scores, and its difference between that of
BDM showed marginal significance (p = 0.053). In terms of
intellect, the oscillator showed the highest mean score, which
is larger than the BDM (p = 0.095) and disbeliever groups
(p = 0.025). For performance expectancy, the disbeliever
group had significantly lower scores compared to both BDM
(p = 0.041) and oscillator (p = 0.015). Likewise, regarding
PAS-High expectations, the mean value of disbelievers was
the lowest compared to BDMs (p = 0.041) and oscillators
(p = 0.010).

IV. DISCUSSION AND CONCLUSION

The objective of the current study was to explore the
relationships between personal characteristics and trust dy-
namics in the context of human-autonomy interaction. To
achieve this, we conducted a laboratory experiment to collect
trust dynamics data from 130 participants as they engaged in
a simulated surveillance task aided by an automated threat
detector. Additionally, we gathered comprehensive personal
characteristic data from participants through a survey, along
with post-experiment subjective ratings. The analysis of the
trust dynamics data revealed three distinct trust dynamics
clusters: Bayesian Decision Maker (BDM), disbeliever, and
oscillator. Subsequently, we conducted ANOVA and found
seven personal characteristics that were significantly different
across the three groups: masculinity from the measures of cul-
ture, positive affect from the measures of mood, extraversion,
neuroticism and intellect from the personality measures, per-
formance expectancy from the measures of expectancy towards
autonomous systems, high expectations from the measures of
perfect automation schema.

In contrast to prior research focusing on snapshot trust,
our study delved deep into trust dynamics and employed
a relatively large participant sample (n = 130). We first
predicted a person’s trust in real-time employing the Beta
random variable model and clustered the trust dynamics. In
contrast to other studies that utilized features associated with
participants’ behavior for clustering trust dynamics [27], [28],
our approach focused solely on metrics derived from trust
ratings. This emphasis aligns with the definition of trust –“the
attitude that an agent will help achieve an individual’s goals
in a situation characterized by uncertainty and vulnerability
[6]”. Consequently, our goal was to center the analysis on
this attitude itself. This led to the identification of three
distinct cluster groups, each exhibiting unique trust dynamics
characteristics. It’s worth noting that the clustering outcomes
and their distribution exhibited similarities with those reported
in [24], [25]. Our study benefits from a larger sample size

(n = 130) and further proves the generalizability of the three
clusters of trust dynamics across multiple datasets.

In addition, the study shed light on the existence of a group
of individuals whose trust exhibits significant fluctuations over
time (oscillator). Their trust dynamics made it very difficult
to accurately predict their trust using the Bayesian inference
model. This finding presents both a limitation and a future
research avenue, suggesting the need for a more robust trust
prediction model specifically designed to address the unique
behavior of the oscillator group.
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