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DEDICATION

To my family and friends, who exhibit each in their own ways how to imagine and show up

for a better future.

“Inside the word ‘emergency’ is ‘emerge’; from an emergency new things come forth. The

old certainties are crumbling fast, but danger and possibility are sisters.”

-Rebecca Solnit, Hope in the Dark
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ABSTRACT

Access to essential services determines individuals’ ability to meet health, safety, and social

needs that enable them to thrive in their daily lives. But such access is not evenly distributed

across populations and disparities in access can be exacerbated when a community is faced

with a disruption, like a natural hazard. How such access varies over populations, space,

time, and in response to events is valuable for evaluating equity.

Opportunistically collected location-based services (LBS) data available from cell phones

offers new opportunities to evaluate access to essential services. LBS data reveals regular

mobility patterns of cell phone users over time. These mobility patterns can reveal regular

visits to home, workplaces, and essential services facilities like supermarkets and schools.

Deviations from those patterns may indicate a disruption, and how long individuals experi-

ence that disruption is impacted by how long it takes to meet essential needs. Data science,

risk analysis, and urban planning offer tools to quantify those deviations and evaluate the

factors contributing to recovery.

In this dissertation, I utilize LBS data with methods spanning data science, risk analysis,

and urban planning to quantify the relationship between access and resilience in Southwest-

ern Florida in the period surrounding Hurricane Irma in September 2017. In Chapter 2, I

present a large-scale data-driven method to identify when facilities experience a change in

visit patterns that may indicate change in access following a disruptive event, reflecting the

actual closure of the facility or other barriers to access such as lack of supply or disruptions

to the connecting transportation network. I demonstrate my approach by analyzing loss

of access to supermarkets, schools, health care facilities, and home improvement stores in

Southwest Florida both visually and using machine learning anomaly detection. Next, in

Chapter 3 I present a novel Bayesian network based method for estimating recovery periods

in LBS user’s home and work appearances to show differences in household and workplace re-

covery over space and time. Results show the proportion of users experiencing an anomalous

period and the average length of recovery consistent with the storm’s path, with more users

experiencing a workplace disruption but with home disruptions lasting longer on average. I

validate these results against available survey results on evacuation. Finally, in Chapter 4 I

statistically model the relationship between these estimated recovery periods and travel time

xiii



to available essential services facilities, along with variables representing storm parameters,

utility outages, and socioeconomic variables. Through highly accurate random forest models

estimating the state of a user’s recovery on a given day, I show the importance of measures of

access to essential services before and after an event for household and workplace recovery.

Power, cell service, and school outages all rank highly in importance, followed by measures of

the change in travel time to essential service facilities following Irma’s landfall. Importantly,

I demonstrate in these models that measures of access rank as more important for estimating

recovery status than Social Vulnerability Index measures, which are currently incorporated

into measures of community resilience. This may be attributed to access measures cap-

turing both social and infrastructure drivers of recovery, as compared to the static values

represented in index measures. Together, the methods described in Chapters 2-4 of this

dissertation form a framework for assessing access to essential services before, during, and

after a disruptive event that can inform interventions for facilitating recovery and building

more resilient communities.
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CHAPTER 1

Introduction

1.1 Motivation

Disasters are recurring in the United States and across the globe. Globalization, climate

change, aging infrastructure, and economic activity clustered towards the coasts increase

the occurrence of such disasters and intensify their impacts [1, 2, 3]. These disasters do not

discriminate, but the paths to recovery do based on the geographic, social, environmental,

and economic characteristics of a household or community [2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

Vulnerabilities in these characteristics exacerbate the risks associated with natural and

man-made hazards, with the most vulnerable communities presenting greater challenges

throughout all phases of the disaster cycle: mitigation, preparation, response, and recovery

[3, 9, 12, 13, 14, 15, 16]. Equity is the consideration of the extent to which costs, risks, and

benefits are distributed fairly (or unfairly) across groups [17, 18]. Equitable outcomes may

require different treatments and interventions across groups to compensate for pre-existing

inequities within a system [11, 19]. Equity is inherently tied to risk, as the ”weakest link” in a

system defines the mitigative capacity of that system [12]. For a community facing a hazard,

inequities carried over from times of stability may compound with those introduced by the

hazard itself as well as recovery efforts that may reinforce previous inequities or introduce

new ones through maladaptation [11, 12, 14, 20, 21, 22].

Resiliency planning offers the opportunity to transform this paradigm. Resilience repre-

sents the capacity of a system to absorb changes and return to a previous state of progress or

adapt to a new normal [17, 20, 22, 23, 24, 25, 26, 27]. Community resilience includes infras-

tructure, people, cultural facilities, and anything else that enables a system and all within

it to thrive [12, 16, 22, 27, 28]. Achieving community resilience must integrate technical

and social approaches to fully evaluate and mitigate risk across the distribution community

members, infrastructure, and institutions [10, 11]. The qualities that define a community

are inherently specific and hazards are unpredictably unique which complicates risk analysis
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to guide decision making in preparation for or in response to an event. Moreover, cities

in particular face challenges associated with urbanization, climate migration, and housing

shortages while public utilities and infrastructure must serve larger populations over smaller

geographies; these factors in turn contribute to more people affected by failures occurring

within a smaller space. But urban spaces can also offer increased access to critical resources

such as food, healthcare, and economic opportunities in the form of density and transporta-

tion options besides private car ownership. Such access could be critical at all stages of

disaster planning–preparation, response, and recovery– and thus can reflect and contribute

to the resilience of a community [28]. Incorporating access into resiliency planning can also

promote transformation, or a systemic change of an existing system, through mitigative and

adaptive measures to avoid resiliency traps that often reinstitute inequities when commu-

nities strive to recover to an already un-resilient baseline [2, 20, 24, 28]. Quantifying the

relationship between access and community resilience could contribute to motivating im-

provement in access at every stage of the hazard cycle for the households and communities

who need it most.

At the same time, data representing human interactions with the built environment are

more available than ever, including smartphone location data, open data portals from gov-

ernment agencies, and internet of things sensors [29, 30, 31, 32, 33, 34]. Advances in complex

systems planning and machine learning methods enable intelligent and efficient use of such

data, but require a transdisciplinary approach to operationalize for effective application.

Through the methods described in this dissertation, I integrate tools spanning data science,

operations research, urban planning, risk analysis, and civil engineering to utilize Location

Based Services (LBS) data from cell phones to evaluate impacts of hazards on access to es-

sential services and community recovery. With this research, I present methods that I hope

can contribute to the design of more accessible and resilient communities.

1.2 Background

Location data generated by cell phones have revolutionized understanding of human mobility

[35]. Historically, mobility analysis relied on expensive and labor-intensive surveys to provide

snapshots of travel patterns [36, 37]. Using this method to understand changes in travel

patterns in response to an event requires administration of surveys prior to and following

the event, or for participants to adequately report their pre-event patterns in the post-event

survey. In contrast, widespread ownership of mobile phones enables passive and ongoing

collection of location data to supplement intensive household travel surveys with real-time

data and larger sample sizes at relatively low cost. At this point, the utility of cell phone
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traces versus travel surveys is well understood and cell phone location data are considered

to be well suited for supplementing existing survey and mobility analysis methods [38, 39].

Now, LBS data are regularly used for commercial and research purposes in the development

of travel demand models [40, 41].

In this dissertation, I consider resilience as the capacity of a community to absorb and

recover from a disruption, or return to normal, including any adaptations or transformations

that result in a new normal [17, 20, 23, 24, 25, 26]. When transportation networks are

disrupted, LBS data can show changes in behaviors prior to and following the disruption that

reveal adaptation and recovery previously only quantifiable by surveys. Changes in access

impact the recovery, adaptation, and resilience of the affected community [28, 42]. Literature

states that disruptions such as those from transit strikes, bridge closures, special events, and

earthquakes result in behavioral changes in route choice, departure time, and travel mode

[43]. This appraisal is consistent with analysis of major road closures due to the Northridge

Earthquake in 1994 which also revealed that transportation network redundancy and the

ability for travelers to choose between a variety of adjustments led to more rapid recovery

[44]. In the New York City metropolitan area following superstorm Sandy, the probability of

altering normal behavior showed the differences in adaptability to the transportation network

disruption was based on transit dependence, number of children, and ability to telecommute

[45]. These studies all suggest that access facilitated by transportation networks following a

disruptive event can result in quicker adaptation and recovery.

Access to essential services such as power, food, childcare, and medical care is necessary for

individuals to recover from disruptive events to adapt and eventually return to stability [27,

46, 47]. But these essential services are not available at the same standard across all members

of a community. High mobility and access are linked to socioeconomic development including

higher income and education rates as well as lower deprivation and unemployment rates

[48]. Access extends beyond spatial proximity, but is also a function of attributes of service

provision such as availability, affordability, accommodation, acceptability, and awareness [49,

50]. The ability to identify home, work, and other stay locations from LBS data offers new

opportunities to evaluate access on the individual level by evaluating household proximity

and travel times to essential services.

Previous assessment of access relies on metrics or distributions from a single point, like

a centroid, to represent census tracts or counties [47]. This prohibits the ability to distin-

guish differences in access within those geographies, which may strengthen or weaken the

observed relationships between socio-economic factors contributing to vulnerability. When

individual-level access data are coupled with data representing the changing availability and

affordability of those services, such as closures of public schools or of grocery stores ac-
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cepting food assistance, these nuances of accessibility can be better quantitatively captured.

Social vulnerability is also influenced by features of the built environment, so understanding

accessibility more precisely allows simulation and scenario analysis of how interventions in

that built environment might affect accessibility when exposed to various hazards [27, 46].

This can contribute to better quantification of resilience and the development of indices

representing vulnerability as a function of exposure, sensitivity, and adaptive capacity [47].

1.3 LBS Data

Veraset LLC, a company specializing in gathering and consolidating cellular phone location

data from mobile applications, generously provided the LBS data for this research effort

[51]. Work with this data was reviewed by This study was reviewed an approved by the

University of Michigan Institutional Review Board as study number HUM00143302 and was

determined to be exempt and not regulated.

Each data point represents any interaction of a phone with a cellular network or Wi-Fi,

including calls and data activities. Each point includes a de-identified user identification

code, latitude, longitude, timestamp, accuracy measure, and the device type. Starting with

250 GB of user data spanning August 1, 2017 through October 3, 2017 across Florida,

Georgia, Alabama, and South Carolina, I identified the home locations of over 1.5 million

users, with 500,000 of those users also having identifiable workplaces. I applied additional

filtering to identify households with both home and work places in Florida that were home

at least 80% of dates in the study period and appeared at home within the week prior to

Hurricane Irma’s landfall, resulting in four weeks of observations of LBS data for 123,445

households across Florida.

Importantly, LBS data are collected opportunistically, so users may next ping seconds

or days following their previous data point. So, LBS data does not capture a complete

mobility profile of a user, but can reveal patterns when aggregated over time and geography.

Surveys are still valuable for capturing daily activity diaries as well as risk perception,

socioeconomic information, and other factors influencing decision making, but the scale

of LBS data offers additional analysis beyond the scope of post-event household surveys.

Following Hurricane Irma, even the largest scale surveys received fewer than 1000 responses

to try to characterize state-wide behavior [52, 53], less than 1% of the number of users whose

behaviors can be observed through this LBS data. Further, while surveys may be targeted

toward underrepresented groups, long timelines and declining response rates among younger

and difficult-to-reach populations means that surveys must trade-off between breadth and

inclusion. The ubiquity of cell phones and availability of LBS data may free up resources for
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surveys to capture more nuanced experiences for critical analysis of local disaster response.

Other technologies, like social media posts and drone coverage, offer additional value for

evaluating behavioral responses to disasters, but the geographic and temporal scale and

specificity of LBS data offers unique opportunities for large-scale data-driven approaches for

evaluating disaster response and recovery.

It is critical to also consider when LBS data are not useful. LBS data provides access

to large volumes of user data over large geographies, but is not comparable to collecting

highly localized data that describes the human experience of a specific community. Such

local data remains critical to account for local context to evaluate and address specific risks

in the preparation and response stages. Furthermore, LBS data’s observational frequency

varies vastly by user, so portions of mobility patterns may be missing at highly different

rates across users. LBS data are not attached to any demographic information, and do not

necessarily capture fully representative data, particularly over small geographic scales for

older populations and minority groups [54]. Using LBS data to support decision making for

policy development and resource allocation should proceed with caution to avoid dispropor-

tionately harming these populations. Finally, the use of LBS data necessitates a conversation

about data privacy and mass surveillance. While the provided LBS are fully anonymized, it

may be possible to determine sociodemographic and political groups of users, or even their

identities [32, 55, 56]. Institutions and researchers are responsible for enacting and uphold-

ing policies and practices that protect privacy of individual users, including de-identification

that prohibits re-identification, safe data sharing protocols, and only publishing results in ag-

gregate [57, 58]. For this reason, I report and visualize only data aggregated over geographic

space or time. The use of LBS data for research also contributes to the normalization of

mass surveillance and should acknowledge the potential of such data to be used as means of

control [59, 60, 61]. I understand surveillance as existing on a continuum between care and

control [61, 62] and I hope that my contributions to data-driven planning within and beyond

this dissertation always fall on the side of care. With these ethical dimensions in mind, I

present these LBS-based methods only as tools to be used in collaboration with many other

approaches for understanding how hazards impact communities.
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1.4 Research Objectives

1.4.1 Using LBS Data to Evaluate In-access of Essential Services

Following Hazards

In Chapter 2, I present a novel data-driven method for identifying facility closures following a

natural hazard or other disruptive event. I describe location-based data and their utility for

human mobility analysis, particularly for recognizing behavioral changes following disruptive

events. A functional closure refers to a change in access to a facility, due to actual facility

closure, power outage, transportation network disruption, or other barrier rendering a facility

unavailable. This definition is inclusive of all reasons a facility might become inaccessible,

such transportation barriers, perceived safety, and lack of supplies, thus capturing multiple

dimensions of access.

I present an approach for segmenting LBS data based on desirable facility location foot-

prints, effective analytical time periods, and users of interest to determine when a facility

is functionally unavailable. I demonstrate the effectiveness of this method on location data

from Southwest Florida in the weeks surrounding the landfall of Hurricane Irma in Septem-

ber, 2017 using samples of supermarket, primary school, secondary school, urgent care, and

home improvement facilities in Collier County and Key West, Florida. I then demonstrate

how anomaly detection methods may be used for automating the detection of functional

closures through LBS data. Periods of disruption are visible in the resulting time series of

individual facilities, but machine learning can more precisely determine periods of functional

closures at across a much larger number of facilities (e.g., all grocery stores in a state). I also

present the use anomaly detection methods to automatically detecting functional closure

periods.

This chapter describes a method for detailed, facility-level closure detection that can easily

scale to identifying facility closures over large regions for large-scale analysis of communities’

responses to disruptions. Each step of identifying facilities and aggregating data over users

and time periods can be easily adapted for any type of facility and user group of interest,

for any type of disruption. Because LBS data is collected continuously, this method can also

be replicated for comparative analysis between two communities facing the same disaster, or

for comparing the same community’s response to multiple disruptive events. More broadly,

this chapter presents and promotes the use of location-based services data for hazards and

resilience researchers for understanding relationships between human behavior and disruptive

events.
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1.4.2 Using LBS Data for Quantifying Large-scale Household-level

Disaster Recovery

LBS data has the capacity to reveal frequently visited user locations, including households

and workplaces. In Chapter 3, I developed a place-finding algorithm for identifying home and

work based on standards consistent with relevant literature [40, 63]. Commuter behavior in

particular follows regular patterns so that disruption is detectable and reflects economic and

social disturbances. Return-to-productivity based on changes in home and work appearances

can be used as a metric for assessing a community’s recovery. Return-to-productivity is

typically understood only after a disruption via surveys that capture how commuter behavior

changed [45]. Using machine learning on LBS data, I detect behavioral changes from before,

during, and after a disruption that can quantify return-to-productivity periods at household

levels.

I design a Bayesian-network based anomaly detection method for both home and work

appearances to detect disruptions in home and work appearance patterns in Florida following

Hurricane Irma in 2017. This approach goes beyond merely tracking the return to homes; I

quantify recovery by considering the restoration of normal visit behaviors both at home and

work, thus expanding the definition of recovery to be more inclusive of the variety of human

experiences after a disruptive event.

Results of this method include maps showing recovery patterns across all Florida counties

as well as across census tracts for the two most impacted counties, Monroe and Collier. I also

present recovery curves for each county and the empirical cumulative distribution functions

for total estimated recovery duration for home and work. Finally, I validated results against

a survey of evacuation rates during to Irma. This data-driven method can be utilized with

LBS data spanning other disruptive events and geographies to identify spatial and temporal

trends in household and workplace recovery, beyond the scope of typical household post-event

surveys. Broader representation of the diverse experiences of recovery could reveal patterns

by community or hazard type to deepen understanding of the social and infrastructure drivers

of recovery.

1.4.3 Quantifying the Relationship between Access to Essential

Services and Household Disaster Recovery

From Chapter 3, the length of anomalies serves as a proxy for household- level resilience based

the amount of time it takes users to resume their normal patterns or return-to-productivity.

I use this period as a dependent variable for a statistical model evaluating the influence of

various access measures on resilience. I capture proximity by using routing tools such as
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OpenTripPlanner to evaluate travel times by various modes between an individual and their

workplace as well as the nearest supermarkets, healthcare facilities, schools, gas stations,

and libraries. I incorporate availability using the facility closure detection method described

in Chapter 2. I also add data on power and cell network outages, public school closures,

and storm variables, including wind and storm surge. I also integrate census-tract-level

data from the Social Vulnerability Index (SoVI), including household income, car ownership

rates, and percentage of population insured. From this dataset, I construct random forest

models to estimate recovery status of home and workplaces for each day in September 2017 to

capture the month surrounding Hurricane Irma’s landfall on September 10, 2017. The results

of these models reveal quantified and interpretable importance rankings of the included

variables, revealing power, cell service, and school outages all rank highly in importance,

followed by measures of the change in travel time to essential service facilities following

Irma’s landfall. Measures of access rank as more important for estimating recovery status

than Social Vulnerability Index measures, which are currently incorporated in many hazard

recovery models. This work demonstrates the importance of including measures of access

when estimating recovery and evaluating community resilience.
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CHAPTER 2

Using LBS Data to Evaluate In-access of

Essential Services Following Hazards

Natural hazards bring about changes in the access to essential services such as grocery

stores, health care, schools, and day care because of facility closures, transportation system

disruption, evacuation orders, power outages, and other barriers to access. Understanding

changes in access to essential services following a disruption is critical to ensure equitable

recovery and more resilient communities. However, past approaches to understanding facility

closures and inaccessibility such as surveys and interviews are labor-intensive and of limited

geographic scope. In this chapter I develop an approach to understanding facility-level

inaccessibility across a broad geographic area based on location-based services (LBS) data

collected from cell phones. This approach supplements current approaches and helps both

researchers and emergency response planners better understand which communities lose

access to essential services and for how long. I demonstrate my approach by analyzing loss

of access to supermarkets, schools, health care facilities, and home improvement stores in

Southwest Florida leading up to and following the landfall of Hurricane Irma in 2017.

Keywords: access; community resilience; location-based data; natural hazards

Note: The research presented in this chapter has been published in Risk Analysis.

Citation: Swanson, T, & Guikema, S (2023). Using mobile phone data to evalu-

ate access to essential services following natural hazards. Risk Analysis, 00, 1– 24.

https://doi.org/10.1111/risa.14201

2.1 Introduction

Access to essential services such as food, healthcare, day care, and materials needed to re-

store damage to homes determines individuals’ ability to meet health, safety, and social
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needs that enable them to thrive in their daily lives and after a natural hazard [28, 64].

However, access relies on buildings and infrastructure networks that are vulnerable to signif-

icant damage following natural and human-caused hazards [65]. For example, damage from

Hurricane Sandy reduced subway and bus service that particularly affected those reliant on

public transportation [45]. Similarly, the COVID-19 pandemic induced reduced access to

schools and childcare that led to potential loss of productivity and income for those with

young children [66]. Access to essential services inherently relates to whether households and

organizations can adequately prepare for a hazard before it strikes and then recover from

them afterward. Hence, understanding impacts of the change in access and inequities in

access is critical for hazard and resilience management and should be a significant consider-

ation for households’ and communities’ capacity to prepare for, mitigate, and recovery from

disruptive events. Quantifying how such access varies over populations, space, time, and in

response to events is necessary for evaluating and improving equity of community resilience.

Such quantification is especially difficult in the periods surrounding hazardous events as

essential service providers are hard to reach at scale and often do not necessarily record their

recovery status for future evaluation. While knowing when essential services facilities were

closed or inaccessible (due to transportation barriers, for example) is critical for planning

emergency response and recovery activities, gathering this information has been problem-

atic, especially for commercially-provided services such as healthcare, food, child care, and

home restoration supplies. The closure status of these facilities is not typically available in

an aggregated manner and is perishable data. Unless collected in real time (through, for

example, calling individual facilities or scraping facility web pages) information on which fa-

cilities were closed and for how long is not available for future research or emergency response

planning. In addition, facility closure data does not capture broader issues with accessibility

of the facility that may be caused by disruptions to other services or infrastructure, such as

transportation network closures. While accessibility data for these types of facilities may be

collected through surveys or manually calling each facility, these approaches do not scale well

to capture both neighborhood-level and state-level analysis and, are subject to recall bias

when conducted after an event. More robust and scalable methods are needed for assessing

when facilities are functional and accessible to support both hazard research and improved

community resilience planning.

Opportunistically collected location-based services (LBS) data available from cell phones

offer new opportunities to evaluate accessibility of essential services. LBS data consists of

cell phone locations over time that are captured opportunistically from apps on smartphones

for which the user has opted-in to having their location recorded. These location “pings” are

collected and anonymized by data aggregators who then provide the anonymized locations
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or aggregated access to specific locations as a commercial product, thought was provided for

this research in its unaggregated but anonymized form. It is important to note that this data

are (1) available only in anonymized form and (2) is not available commercially in real-time.

A typical use case for this data is to help a company understand the volume and temporal

patterns of foot traffic at a location at which they are considering opening a facility such

as a restaurant. In this chapter I develop a way to use this data for a different purpose:

to understand the temporal patterns of access to critical services at a facility level across a

broad geographic scale without relying exclusively on manually contacting each facility or

post-event surveys.

Over time and at different levels of aggregation, LBS data reveals visit patterns at specific

facilities. I present a novel method to evaluate deviations from pre-event visit patterns

to detect substantial changes in access to critical facilities during the periods surrounding

a hazard event. I term this a functional closure. This could occur because the facility

has declared itself to be closed (e.g., due to direct damage, lack of employees, or loss of

infrastructure services such as water or power), because it is inaccessible due to disruption

to transportation system, or because few are trying to access the facility because the area has

been evacuated. My approach allows the accessibility of essential services to be estimated at a

temporal and spatial specificity that has not been possible with previous approaches, at least

at a broad geographic scope (e.g., county-wide or state-wide). This provides a significant

advance for enabling detailed, facility-level estimates of functional closures that can scale to

entire states and regions for broader analysis for evaluating disaster response and recovery.

LBS-based approaches provide substantially more detailed information on the locations of

anonymized individuals over much broader samples of the population than surveys do, but

do not allow one to ask other critical questions about motivations or reasons for movements.

Surveys and focus groups remain indispensable for understanding the underlying causal

reasons for changes in mobility and access. I present this approach to supplement more

traditional methods such as surveys.

2.2 Background

Access is the degree of fit between a system and the users of that system [49]. Specifically,

access consists of the interdependent dimensions of proximity, availability, acceptability,

affordability, adequacy, and more recently included, awareness [49, 50]. This access concept

historically features in medical contexts, but access literature also includes examples of

evaluating access to nutritious food, green space, and first responders [33, 67, 68]. Access to

essential services, including healthcare, childcare, food, and cultural amenities are necessary
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for individuals to recover and adapt to disruptive events [28, 64, 69]. COVID-19 stay at home

orders, flooding of New York’s subway system, and large-scale power outages following winter

storms in Texas all exemplify the potential for drastic and unexpected changes in access to

essential services that result in economic, physical and mental health, and social consequences

[45, 66]. However, the relationship between access and resilience is not easy to quantify and

analyze [28]. Identifying and collecting data capturing the dimensions of access across any

one service is complex even under every-day, non-hazard circumstances. For just one facility,

accounting for multiple dimensions of access includes (but is not limited to) investigating

whether the facility is operating, is safe, has the necessary goods and services in stock at an

affordable price, is open appropriate hours, and is reachable in a reasonable amount of time

through usable transportation modes [49]. Furthermore, a household’s ability to recover

from a disruptive event typically involves access to a combination of multiple facilities that

provide essential services [64], and so conceptualizing community resilience as related to

access to services requires evaluating all such facilities within that community, presenting

data collection and scalability difficulties.

Location data generated by cell phones present an opportunity to overcome these data

collection and scaling difficulties to identify when facilities are and are not accessible. Since

becoming available to researchers, LBS data have transformed the understanding of human

mobility and travel behavior [35, 70]. LBS data has already been demonstrated to reveal how

users interact with their built environment consistent with prior data collection methods.

Historically, mobility analysis relied on expensive and labor-intensive surveys to provide

snapshots of travel patterns [36, 37, 70]. For understanding disaster response, surveys must

be administered prior to and following the event, or for participants to adequately report

their pre-event patterns in retrospect. Now, widespread ownership of mobile phones enables

passive and ongoing collection of large sample sizes and relatively lower costs of mobility

data to supplement intensive household travel surveys [71].

Several studies have compared the utility of cell phone traces versus travel surveys and

revealed the promising advancement of cell phone location data for supplementing exist-

ing survey and mobility analysis methods [38]. An abundance of commercial and research

applications rely on LBS to identify stay locations such as home and work, create origin-

destination matrices and even infer trip purposes to feed transportation forecasting mod-

els [40, 41, 70, 72]. As smartphone app-based data collection increases in proliferation and

improves in accuracy, researchers are increasingly able to access LBS data through licenses

with providers for applications from transportation to pandemic epidemiology [73, 74, 75].

Beyond conventional transportation planning, LBS data has contributed to evaluating and

simulating evacuation scenarios to understand population-level response to natural hazards
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[76, 77]. Understanding responses to hazards is crucial to understanding resilience in terms

of recovery and adaptation [23, 25, 26]. Whether a facility is open or closed is critical for

measuring the availability component of access, but current hazards research methods rely

on awaiting and aggregating FEMA reports, resident surveys, and individual-facility-based

investigations [70, 76]. These traditional methods are laborious, time-consuming, and do

not always provide detailed, facility-level information with fine temporal resolution for all

relevant facilities, rendering them impractical for some research and policy questions seeking

to evaluate all individual facilities across a large geographic region.

Other technologies like social media sources or drones are also becoming more utilized for

hazard response [30, 31, 78], but are limited in their ability to capture the same relationships

between people and their built environment as LBS and so are not sensible for assessing access

to essential services. For example, Twitter lacks the same geographic specificity as LBS data

and geographically enabled tweets have a much lower permeation rate across populations and

so are not representative for smaller geographies necessary to evaluate individual essential

services facilities [79]. Aerial footage and other data available from drones is useful for

risk assessment and identifying damage, but are limited by coverage areas and endurance

for larger scale disasters like hurricanes or earthquakes, do not capture human behavior

over time, and present interference issues with other aircraft involved with response [80].

When infrastructure networks and access to essential facilities are disrupted, LBS data can

enable a large-scale data-driven approach to evaluate changes in human behaviors prior

to and following a disruption beyond just population level evacuation movements without

formidable data collection efforts to capture household and facility-level trends across an

entire county or state [59, 81]. While LBS data are anonymous, users’ frequent locations can

be aggregated and reconciled with census and travel survey data [40, 73]. These methods can

enable evaluation of differences in disaster response and recovery behaviors by geographies

as granular as census tracts. Understanding these differences may reveal systemic gaps in

recovery and contribute to understanding of interdependencies between access to physical

facilities, infrastructure, and social vulnerability.

Changes in behavior detectable through LBS can indicate if a facility is closed, but also

if that facility is rendered inaccessible for some other reason such as a lack of inventory, high

prices, or transportation system disruptions. These behavioral changes can indicate changes

in some of the dimensions of access without having to query individual facilities about

their operational status and service availability over time. For selected communities and

facilities, methods for detecting behavioral anomalies can be automated and scaled to observe

community-, county-, or even state- level patterns in accessibility and recovery [76]. Anomaly

detection methods for time series data are common in many systems to identify unexpected
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observations or sequences of observations within time series data [82]. Anomaly detection can

identify changes in regular patterns, such as those captured by sensors monitoring systems

from an individual’s personal health to quality control in manufacturing to the air quality

of an entire community [82]. Simple models can identify anomalous behavior when new

data falls outside of the range of data seen before. Machine learning models ranging in

complexity from linear regression to neural networks can identify anomalous points from

univariate or multivariate data when a new observation is too far off from what the model

predicted [83, 84, 85]. I show how coupling anomaly detection methods with LBS data

can facilitate the large-scale data-driven identification of anomalous periods experienced by

essential services facilities during and following a disruptive event.

2.3 An LBS Data Approach to Identifying Change in

Access

I present the following method for addressing the challenge of identifying functional closures

resulting from a hazardous event. For a given facility in a given time period, a large change

in the number of unique user appearances at that facility likely indicates some change in

facility policies or accessibility. By counting unique user appearances at a facility, raegular

visit patterns emerge. Identifying deviations from those patterns of user appearances enables

the detection of changes in facility policies or access.

2.3.1 Data

LBS data for this analysis was provided by Veraset LLC, a company that collects and

aggregates cell phone location data from mobile phone applications. Each data point, or

ping, represents a phone’s interaction with a cellular network or Wi-Fi. These interactions

include intentional user activities as well as passively collected data via background processes

in smartphone applications. The data for each interaction includes an anonymized user

identifier, timestamp, latitude, longitude, the geohash code, the horizontal accuracy (a radius

of error around the location), and the device type (Android versus iOS). Table 2.1 illustrates

a synthetic version of the LBS data:
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User Latitude Longitude Timestamp Accuracy (m) Device type

ax295 28.385390220048 81.564435515210 1501596000 50 iOS

ax295 28.123456789878 81.564435515225 1501597200 50 iOS

ax295 27.645848484243 81.564435515228 1501597500 50 iOS

... ... ... ... ... ...

xx874 24.999999999999 82.128485517854 1501596120 60 android

yz101 21.248486542137 84.551521048888 1501597020 15 iOS

yz101 20.918438111351 84.762632159876 1501597035 12 iOS

Table 2.1: Synthetic LBS data

Critical data for this analysis includes only phone identifiers and timestamped locations,

consistent with other mobile phone-based data-sets. It is important to note that pings are

not necessarily collected at regular time intervals– a single user’s inter-ping times could range

from seconds to hours depending on the active versus background applications on the indi-

vidual phone. Further, horizontal accuracy ranges from 2 meters to over 2000 meters (75%

of points are under 30 meters of error, 95% are under 110 meters). With these limitations in

mind, LBS data does not capture a complete or precise profile of an individual’s mobility or

all locations visited. For this reason, I consider patterns within the data when aggregated

by users, time periods, and geography. How the data are aggregated is the subject of the

remainder of this chapter.

2.3.2 General Approach

My approach consists of the key steps shown in Figure 2.1, each of which will be described

in more detail with examples from a case study below:
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Figure 2.1: Approach for identifying functional closures from LBS data

2.4 Case Study: Hurricane Irma in Southwest Florida

Hurricane Irma made landfall in the Florida Keys as a category 4 hurricane on the morning

of Sunday, September 10, 2017. Irma subsequently travelled up the Gulf coast of Florida

making landfall on the mainland that evening as a category 3 hurricane and travelling into

northern Florida into the morning of Monday, September 11, 2017 [86].

Figure 2.2 below (from [87]) shows the corresponding time of landfall for the Keys early

Sunday morning and Collier County by Sunday evening and indicates both regions sustained

wind speeds over 110 miles per hour.
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Figure 2.2: 3-day forecast track, initial wind field and watch/warning graphic from NOAA
National Hurricane Center IRMA Graphics Archive

Weather forecasts up to five-days prior to landfall consistently predicted Irma’s threat to

Southern Florida, allowing time for evacuation planning and stocking up on supplies that

ultimately resulted in grocery stores running out of food and water while gas stations ran

out of fuel up to two days before landfall [86, 88]. Over 6.5 million people across South

Florida were ordered to evacuate, with evacuation orders in place on September 6 for the

Florida Keys and September 8 and 9 for Collier County [89, 90].

Hurricane Irma resulted in 7 direct and 77 indirect known casualties in the state of Florida

and an estimated 50 billion USD in damages [86]. FEMA estimated about 90% of houses

in the Keys sustained damage, with 25% of buildings totally destroyed [86]. In Southeast

Florida over 90% of customers lost power for over a week [88]. Collier County Public Schools

were closed to students September 7 and reopened September 25 [91] while Key West schools

were closed September 6 and reopened September 27 [92]. I use Walt Disney World Resort

in Orlando, Florida to highlight my methodology as Hurricane Irma forced the theme parks

to close for only the sixth time in its history, from September 10 to 11, 2017 (though the

17



hotels remained operational) [93].

2.4.1 Define Facility

“Facilities” may range from units such as storefronts or schools to larger geographical entities

such as shopping centers or commercial business districts. Following identifying a facility

of interest, I next define the geographic footprint of that facility. A simple method for

defining a footprint, shown in Figure 2.3a using Disney World Orlando as an example, is

to set a degree- based grid around a facility and filter out cell phone pings outside of the

latitudinal and longitudinal range of that grid boundary. A constant distance from the

centroid of a facility could also define a facility, as in Figure 2.3b, where all pings within

a desired distance are included. These methods are simpler, requiring only one latitude

and longitude as input (the location of the marker in Figures 2.3a and 2.3b) along with a

distance parameter (the length of the dashed line in Figures 2.3a and 2.3b) and so may be

suitable where rough estimates of user throughput are enough to show a pattern change. For

example, for a big-box store like Walmart or Lowe’s with a large parking lot, demand could

be captured well-enough by a large box or circle footprint, as large changes in demand are

easily discernible even if the footprint leaves out some corners of the store or includes part

of a road.

(a) Grid based method (b) Radius method (c) Facility footprint method

Figure 2.3: Facility definition for Walt Disney World Resort, Orlando, FL with OSM Stan-
dard base map

However, the grid-based or constant-distance methods may not suit denser communities

or facilities in close proximity to highly-trafficked transportation routes, as properties are

often not defined by rectangles or circles and imprecision may risk including or excluding

too many points to detect changes in visit patterns to that facility. Consider an elementary
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school on a snow day next to a park with a popular sledding hill. If the grid- or radius-based

outline designed to capture school visits includes too much of the park, the decline in school

visits may be offset by the increase in park visits such that the disruption to school visits is

undetectable. When precision is necessary for the intended analysis, cartographic resources

such as OpenStreetMap (OSM) [94] or satellite imagery can provide APIs to extract exact

facility footprints, exhibited in Figure 2.3c. Generating and storing the precise facility foot-

print is more computationally expensive and so may not be necessary when rough estimates

will do.

2.4.2 Define Time Steps

The next step involves specifying the time step of interest, i.e., the temporal resolution.

All activity within a time step aggregates to a single data point. That is, the data will

be aggregated to a count of unique visitors within each time step. The time step must be

substantial enough to include a sufficient number of user appearances, but small enough to

capture time-variant nuances in human behavior. Thus, time periods largely depend on the

application of interest. For example, a food bank or transit station may exhibit anomalies at

the hourly scale that would not be apparent at a daily scale, whereas students and teachers

spend similar hours at a school every day, so investigating behaviors at a daily time step

may be sufficient.

To show the impact of this parameter choice, Figure 2.4 shows the sum of all LBS points

collected within Disney World Orlando (using a 0.07 degrees-wide grid-based facility foot-

print) at 2.4a monthly, 2.4b weekly, 2.4c daily, and 2.4d hourly intervals over August through

September 2017.

(a) Monthly users (b) Weekly users (c) Daily users (d) Hourly users

Figure 2.4: Comparing time period aggregation for visits to Walt Disney World Resort,
Orlando, FL

Figure 2.4 shows that the LBS data aggregated at the monthly and weekly levels show

a decline in appearances between August and September, but the closure period aligning
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with landfall of Hurricane Irma is more distinct when the data are aggregated at the daily

or hourly level. The hourly data are much noisier with daily patterns showing more pings

during daytime operational hours and fewer pings at night as many users leave the park

while a fraction stay in on-site hotels. This noise may cloud the appearance of a noticeable

closure on September 10 and 11, 2017. These plots together showcase how the results of

this analysis may vary with the time- period parameter choice, thus highlight the need to

consider the context of the hazard event and the facility use for determining this parameter.

2.4.3 Define User Appearance Criteria

The third step is to define what is required to classify a user as having visited a facility. An

appearance may include a unique user entering the boundaries of the facility at least once

during a specified time period. Stricter policies may require multiple pings from individual

users within in a time period, perhaps to eliminate pedestrians or car traffic that crosses

through a facility footprint. Multiple pings from a unique user in a single facility can estimate

a length of time a user stays in a facility, so minimum length of stay could also define a unique

user’s appearance. There is a trade-off between two types of errors here. On the one hand,

setting too loose of criteria would tend to include passersby who did not actually spend time

at the facility. On the other hand, setting too strict of criteria would exclude users who

did visit but whose phones only pinged occasionally while there. Figure 2.5 shows visits to

Disney World in August and September 2017, aggregated to include 2.5a all pings, 2.5b only

unique users, 2.5c only unique users with a detectable duration over 8 hours.

(a) Daily pings (b) Daily unique users (c) Daily 8+ hours users

Figure 2.5: Comparing user appearance criteria for identifying visits to Walt Disney World
Resort, Orlando, FL

For the most part, the time series at these different levels of aggregation show similar

patterns, though at different scales. When aggregated to include all points as in 5a, some
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users with high ping frequencies are over-represented. Further, during a disaster period, users

may actively use their devices or the apps that collect their location data more frequently,

resulting in a smaller proportional decrease in all points as seen in 5a compared to the decline

visible when looking at unique users visits in 5b. When imposing a stricter constraint of

users who spent over 8 hours a day in the facility as in 5c, I capture fewer visitors making

day trips to the park while still including all visitors who stayed in resort hotels. As resort

hotels remained open during Hurricane Irma, imposing this stricter criterion fails to show

the full extent of the disruption from the resort closing its attractions.

2.4.4 Assess Anomalies

The final step is to assess whether or not there has been a substantial deviation in visit

patterns. This can be done qualitatively and graphically (e.g., by examining graphs of visits

over time) or through formal statistical anomaly or changepoint detection algorithms. In

some cases qualitative methods are sufficient, for example just from looking at the daily

unique visits to Disney World Orlando in Figure 2.5, one may reasonably identify the func-

tional closure period on September 10 and 11, 2017. However, if there are many facilities

(e.g., examining changes in access to all grocery stores in Florida) then automated anomaly

detection algorithms can be utilized.

While assessing all anomaly detection methods that could be applied to time series gen-

erated from LBS data are out of the scope of this chapter, I walk through the process of

selecting an anomaly detection algorithm for the Disney World Orlando daily unique visits

time series. Given there are only 64 days in the data-set, it is not suited for a deep learning

algorithm like a neural network. Further, I am examining the data retrospectively and as

a complete set—that is I am not identifying incoming observations as they stream in. This

means I can utilize an “offline” method that utilizes all of the available observations, includ-

ing those after the anomaly, to identify an anomalous period. Offline methods contrast with

“online” methods that follow observations chronologically to identify anomalies, thus only

incorporating the observations prior to the anomalous period. Finally, I am only looking at

one variable—the number of unique daily visits—and so should choose a univariate anomaly

detection method. If additional data was available for the same location at the same tempo-

ral scale, for example weather or the previous year’s visit totals, one may incorporate that

additional data into multivariate methods. To quantify uncertainty around the start and

end points of the recovery periods, some anomaly detection methods incorporate uncertainty

quantification as a measure of how similar the anomalous data are to that previously seen

[95, 96]. Uncertainty about the anomalous period could also be quantified by applying dif-
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ferent anomaly detection methods to the same data to identify how consistently dates in the

study period are identified as anomalous.

Binary segmentation is a popular approximate method that involves detecting a change

in a specified statistic (such as mean or variance) within a time series and splitting the series

around that point, repeating for a defined number of points or to maximize an objective

with some penalty for each additional changepoint [97]. As this data set is only 64 days, I

utilize an exact method called PELT [98] available through the ‘changepoint’ R package [99]

to determine changepoints based on a Poisson distribution, as the unique user appearances

represent discrete counts and so would expect changepoints to represent a statistically signif-

icant change in both mean and variance. This dynamic programming method optimizes the

maximum log-likelihood for Poisson distributions fit to the data separated by each possible

changepoint minus a specified penalty value to avoid overfitting (in this case, I used the

default setting of the modified Bayes information criterion, or MBIC).

Figure 2.6 shows changes in Disney Resorts (normalized) appearances over the study

period along with the results of the PELT changepoint detection method. This closure

period is consistent with the theme parks closing September 10 and 11.
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Figure 2.6: Daily unique user appearances for Walt Disney World Resorts in Orlando, Florida
showing functional closure impacts of Hurricane Irma August 1, 2017- October 3, 2017

2.5 Functional Closures of Essential Services

I apply this method to a number of other facilities to further demonstrate the approach

and its utility for evaluating access to essential services following a hazard. I identified

a set of geographically distinct facility locations including supermarkets, primary schools

(grades K-5), secondary schools (grades 9-12), urgent care facilities, and home improvement

stores around Naples, Marco Island, and Key West. I selected these locations based on their

proximity to the path of Hurricane Irma and their vulnerability to prolonged infrastructure

damage due to wind and storm surges. Supermarket locations come from the USDA Food

and Nutrition Service Supplemental Nutrition Assistance Program (SNAP) list to identify

locations meeting the USDA’s staple food requirements [100]. I identified primary and

secondary schools based on Collier County Public Schools in Naples and Marco Island and
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Monroe County Public Schools as well as Charter Schools in Key West. I identified urgent

care facilities from a 2014 data-set from the Florida Department of Health, and confirmed

they were still in operation as of January 2021 [101]. I included Lowes and Home Depot stores

around the selected cities to represent area home improvement facilities as these companies

are known to facilitate emergency response and residential restoration following disasters.

All selected locations and sources are listed and mapped by category in Appendix A.

As I conducted this analysis for demonstrative purposes, I used the simple grid-based

facility specification method (as shown in Figure 2.3a). For each location in Southwest

Florida on each day from August 1, 2017 through October 3, 2017, I identify all unique users

passing within a .0005 degree-wide (approximately 50 meters) grid-based geographic area

around the centroids of the facilities. I define appearances as any unique user pinging at

least once in the facility grid and I aggregate the data to generate a daily time series for all

facilities other than the schools, for which I generate time series only from weekdays.

2.5.1 Sample Facility Results

The following plots in Figure 2.7 show changes in appearances at select facilities before,

during, and after Hurricane Irma’s landfall on September 10, 2017.
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Figure 2.7: Daily unique user appearances at select facilities showing functional closure
impacts of Hurricane Irma August 1, 2017- October 3, 2017

The uppermost plot shows supermarket appearances with an approximate functional clo-
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sure period coinciding with evacuation periods and hurricane landfall. Interestingly, several

of the facilities indicate upticks in appearances immediately prior to and/or immediately

following the period of closure. This observation aligns with expectations of increased sales

in the days immediately prior to and following a hazard event as households stock up on

food and emergency supplies in the days before a hazard threat and/or purchase or re-stock

those supplies immediately following landfall [102].

The second plot in Figure 2.7 shows that Lowes and Home Depot stores experienced

increases in appearances in the days preceding and immediately following Hurricane Irma

landfall, again consistent with expectations representing stock-up and restock behaviors.

Based on Figure 2.7, the Key West Home Depot in particular seems to suffer from a longer

functional closure period, but also experiences a prolonged increase in appearances through

the end of the study period in early October. This closure could reflect physical damage or

power outage at the facility, but could also reflect a lack of needed supplies due to disruption

to the supply chain. This reflects the prolonged closure and reconstruction period faced

by the Florida Keys as the Keys suffered significantly more damage and are more isolated

compared to the rest of South Florida [86]. The extended increase in visits to the Key West

Home Depot may also reflect visits by the same users over multiple days as merchandise

came back in stock, which could be further investigated through this method by defining

user appearance criteria (as described in 2.4.3) as users appearing in the facility more than

once in the days following landfall. Urgent Care facility appearance activity at the Key West

and Naples facilities is also consistent with Hurricane Irma landfall dates, while the Marco

Island facilities do not reveal enough demand in the pre-hazard period to identify deviance

from the norm following Irma’s landfall. The declines in appearances at both Key West

facilities relatively earlier than the declines visible in the Naples facilities’ appearances align

with the earlier evacuation orders in Key West.

The final two plots in Figure 2.7 show appearances at primary and secondary schools

on weekdays. The upward trends from the beginning of August align with a ramp up

to school starting for teachers on August 9 and for students August 16. A steep drop

in appearances on August 28 coincides with Collier County school closures on August 28

due to flooding followed 22 by another low-appearance day coinciding with Labor Day on

September 4, 2017. The low sample of appearances in primary schools follows expectations

of low cell phone ownership and school-day operation rates for that age group; the unique

users who do appear may include pedestrians due to the loose definitions of footprints and

user appearances used for this particular analysis. Thus, there is not enough data to properly

evaluate primary school facilities. The larger magnitude of high school appearances shows

the functional closure periods more reliably than primary schools. Key West High School
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enters a functional closure period before other schools and reopens after the other school

closures, consistent with the closure dates of the various school districts. Somerset Island

Preparatory High School appears to reopen earlier than all schools, indicating a potential

private school policy differing from the county school systems.

Interestingly, Lely High School was opened as a shelter for Collier County [90] and Key

West High Schools as a shelter for Key West [103]. As shown in Figure 2.8 below, these

facilities show anomalously high appearances during the weekend days September 9 and

10. This result highlights the utility of this LBS data-based approach to identifying other

anomalous facility appearance behaviors that characterize hazard response beyond facility

closures. This example also demonstrates the criticality of thoughtful parameter selection as

these appearances only appear anomalous with the context of expected school appearances

on weekends versus weekdays.

Figure 2.8: Weekend appearances at Key West and Lely high schools showing anomalous
use as shelter facilities

2.5.2 Anomaly Detection

While from the above figures I can see the start dates, end dates, and periods of disruption

are visible through plots on an individual facility basis, statistical methods can automatically
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determine periods of functional closures at a much larger scale. Figure 2.9 shows the PELT

changepoint detection method applied to the same data-set for the Walmart near Marco

Island and the Publix facility and Key West, with the red lines indicating subseries delineated

by each changepoint.

Figure 2.9: Examples of machine learning applied to identify change in access periods

These example results show a number of changepoints in the data that align with changes

in user behavior, including a functional closure period. At the Walmart facility, a functional

closure is detected on September 7, 2017 with reopening indicated on September 14, 2017,

consistent with Irma’s landfall on September 10. For Key West’s Publix, this method detects

a decline in activity on August 28, followed by a functional closure September 6, 2017, a slow

return on September 14, and finally a return to normal on September 19. These example

results align with the earlier evacuation period of the Keys and the greater damage sustained

there [86] that would result in longer facility closures. These methods can easily scale to

include all facilities of interest with any number of changepoints to detect the periods of

functional closure as well as any periods of ramp up or decline in user appearances that may

indicate change in access by assessing the mean value of each segment. I show the closure

durations detected by applying the PELT method for each facility in Table 2.2, further

summarized by location in Table 2.3 and facility type in Table 2.4. I share the PELT plots

and additional closure period details of all selected essentials services facilities in Appendix
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A.

Location Facility Category Duration (days)

Key West Publix Supermarket 7

Key West Winn Dixie Supermarket 7

Marco Island Walmart Supermarket 6

Marco Island Winn Dixie Supermarket 3

Naples Aldi Supermarket 6

Naples Publix Supermarket 4

Key West Key West High School Secondary School 21

Key West Somerset Island Prep Secondary School 14

Marco Island Lely High School Secondary School 18

Naples Naples High School Secondary School 18

Naples Lorenzo Walker Technical Secondary School 18

Key West Advanced Urgent Care 8

Key West Key West Urgent Care Inc. Urgent Care 8

Marco Island Physicians Regional Urgent Care NA*

Marco Island NCH Healthcare Urgent Care NA*

Naples Redi-Med Urgent Care 5

Naples Advance Medical Urgent Care 6

Key West Home Depot Home Improvement 9

Marco Island Lowes Home Improvement 2

Naples Home Depot Home Improvement 3

Naples Lowes Home Improvement 4
∗not enough unique users in sample

Table 2.2: Sample facility recovery duration

Location Average Duration (days)

Key West 10.6

Marco Island 7.25

Naples 8

Table 2.3: Facility functional closure duration by location
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Category Average Duration (days)

Supermarket 5.5

Secondary school 17.8

Urgent Care 6.75

Home Improvement 4.5

Table 2.4: Facility functional closure duration by category

While this sample of facilities are small and not representative of all facilities in a given

location or of a given type, the results in Table 2.3 are consistent with Key West bearing

more damage during Hurricane Irma, thus leading to longer recovery. For facility types,

Table 2.4 reveals access to these select supermarkets and home improvement stores seems to

return sooner, while secondary schools remain closed much longer. Extending this method

to include all facilities of interest in a region is necessary to fairly interpret these results,

but these results may indicate that access to food and home improvement was prioritized

over schools, or that supermarket and home improvement facilities benefit from being part of

national private chains, versus public school systems operated by local county administrators.

2.6 Discussion

The results above show clear periods of lack of access to facilities, whether due to facility

closure, transportation complications, cellular network outages, power outages, or other

possible barriers. I show that in addition to identifying access in terms of facility closures,

LBS data can provide even more utility including identifying when a facility is repurposed

(as when schools were reopened as shelters) and detecting changes in supply or need as users

exhibit behavioral anomalies in the days before and after disruptive events as well.

2.6.1 Validation

I validate these results with known public-school closure dates. Figure 2.10 shows multi-

ple other known open and closure dates for secondary school facilities in the time periods

surrounding Hurricane Irma without rolling-average smoothing. This plot shows a stark

increase in appearances on the first day of school (August 16), closure due to flooding prior

to Hurricane Irma (August 28), and closure on Labor Day (September 4) [91]. Students

returned to school on September 25 in Naples and Marco Island and September 27 in Key

West [91, 92]. These results validate this approach for other facility types where closure and

reopening dates are not explicitly known.

30



Figure 2.10: Daily unique user appearances for secondary schools showing additional known
closure and opening dates for validation

The results for home improvement locations in particular highlight the utility in detecting

human behavioral changes through LBS data for identifying deviations such as stock-ups,

closures, and restocks, as well as how those deviations may vary between individual facilities

or communities based on the differences in hazard experience.

2.6.2 Limitations

Like survey-based hazards response analysis, LBS data comes with its own risks and limi-

tations regarding representation, bias, and privacy. Ensuring representativeness of relevant

study areas and populations is a key step in LBS data processing to reduce data-collection

bias [59]. Further, while this method is useful for a generalized measure of access like “func-

tional closure”, I cannot infer the specific dimension rendering a facility inaccessible. That

is, I cannot conclude if reduced appearances indicate a facility is closed, as changes in be-

havior could also indicate the facility is too expensive, is out of supplies, is unsafe, or is just

difficult to get to because of transportation network damage. LBS data may not be useful

for childcare, elementary schools, elder care facilities or anywhere else a population would

have a low share of smart phones or poor cell phone coverage. These methods may also not
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be suitable for facilities in close proximity to other facilities or residences that would render

appearances specific to that facility indiscernible, though for some purposes such specificity

may not be necessary and anomalies in user appearances across multiple facilities may still

be detectable and useful. LBS data include only intermittent timestamped locations that

may indicate a change in behavior, but do not include a complete profile of any individual

user or contain information on the mechanisms underlying behavioral patterns. Thus, care-

ful attention and diligence is required for understanding apparent behavioral changes from

LBS data. Finally, LBS data are at high risk of misemployment that could intentionally or

unintentionally abuse sensitive user information. Institutions and researchers are responsible

for enacting and upholding policies and practices that protect privacy of individual users,

including de-identification that prohibits re-identification, safe data sharing protocols, and

only publishing results in aggregate [57, 58].

2.6.3 Implications for Risk Analysis

Risk analysis seeks to understand what the potential scenarios area, the outcomes and con-

sequences or each scenario, and the uncertainties about the scenarios, outcomes, and conse-

quences [23, 28]. In the context of natural hazards risk analysis, there has been significant

development of methods for estimating direct damage and losses to building stock, infras-

tructure, and economies. There remain ongoing challenges in estimating changes in access

to essential services after a hazard due to a lack of data as access, damage, and recovery

vary greatly between households and hazards may impact vast geographies and populations.

However, as [28] point out, this access is essential to recovery and community resilience. The

approach I develop and demonstrate in this chapter provides a new way to assess access at

an individual facility-level across a wide geographic area such as a state or region. This com-

plements more geographically-limited survey-based approaches and provides risk analysts

with an approach for creating a broader understanding of post-event access recovery at the

individual essential services facility level. Evaluating the overlapping recovery periods of all

facilities of a certain type (e.g. supermarkets) across a geographic area (e.g. census tract)

can generate resilience curves that can then be compared to resilience curves of other facility

types or communities to evaluate relative resilience. A community’s resilience can also be

quantified based on the distance to nearest essential services facilities [28] so accounting for

which facilities are open on a given day can show how access to an essential service may

change over time. Finally, these access measures can be evaluated in conjunction with other

resilience measures like time to return from evacuation, time to return to work, and vulnera-

bility indices to identify how access to facilities may be correlated with these measures. Such
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knowledge of the community-specific impacts of access (and in-access) to essential services

facilities can empower local resilience planning and expedite recovery [65].

While I demonstrate these methods on essential services facilities, they could be extended

to any other pertinent location for measuring behavioral response to service changes. For

example, changes in user appearances at traffic intersections may show changes in the trans-

portation network in response to flooding, evacuation, or other disruptions. Similarly, these

methods could be applied to show behavioral response to non-hazard induced service changes,

such as adoption of a new transit station, or induced demand of added highway lanes. As

useful as these methods are for analyzing response to individual hazards or events, they are

all the more valuable for analyzing broader research questions that may rely on comparing

closure and activity behaviors across different communities, hazards, and time periods as

LBS data is collected constantly and opportunistically. For example, this analysis could be

used to compare behavioral responses between Hurricane Matthew, which struck Florida in

2016, and Hurricane Irma to see if a community that experienced both hazards changed

their behaviors or experienced different recovery patterns between those two events. Or, this

analysis could be used to compare neighboring communities experiencing the same hazard to

identify differences in access and recovery. Such comparisons can reveal communities partic-

ularly vulnerable to loss of access to essential services, empowering infrastructure and policy

design during non- hazard times to support those vulnerable populations and build more

resilient communities. Further, this work can demonstrate how simultaneous accessibility

of certain services may contribute to resilience. For example, pharmacies may be able to

compensate for some need if urgent care facilities are inaccessible longer, or communities

may be worse off if both supermarkets and gas stations are closed at the same time. Finally,

with information around individual facility access, there are opportunities for optimizing the

reopening of facilities strategically to support community-level access to essential services

following a disaster [104]. These sample results demonstrate the potential for LBS data to

supplement approaches such as survey-based or individual facility-based data collection to

evaluate changes in access during a period of disruption.

2.7 Conclusion

This chapter presents a novel data-driven approach for identifying facility closures following

a hazard event using LBS data. Transportation researchers and professionals widely trust

LBS data as an accessible research resource and ongoing hazards researchers continue to

demonstrate the potential of LBS data for understanding human behavior in response to

hazards. LBS analysis has value in standalone analysis or to supplement survey efforts and
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pertains to any type of disruptive event to enable more efficient, broad, and comprehensive

assessment of community-wide access to essential services. This analysis could be applied

to other episodic disruptions like earthquakes, flooding, or power failures [6] or to assess

broader-scale mobility changes like mobility responses to COVID-19 pandemic policies [74]

that resulted in inconsistent access to essential services [105].

I show how LBS data enables large-scale quantification of the impacts on facility of haz-

ards on facility availability. Quantifying these impacts across disasters and communities can

allow planners and decision makers to understand the criticality of various essential services

facilities and the infrastructure that connects them to populations. This quantification of

disaster response from LBS data can facilitate the design of infrastructure and policy inter-

ventions to support equitable access before, during, and after disruptive events, contributing

to developing and sustaining equitable and resilient communities.
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CHAPTER 3

Using LBS Data for Quantifying Large-scale

Household-level Disaster Recovery

Disruptions such as natural disasters may result in evacuation orders, transit or road

closures, power outages, school closures, and other deviations from routine that affect the

ability of members of an affected household to maintain their typical behaviors. Visits to

home and work, or commuter behavior, follows regular patterns on a daily or weekly basis

so that disruption is detectable and has economic and social implications. However, data on

how many people lost access to their home or work and how long it took people to resume

their typical home and work schedules is sparse and disconnected, and, because of this,

cannot show the extent of recovery across a large set of households with diverse experiences

of the disruption. I show how to use location-based services data from smartphones to

capture patterns in users’ home and work appearances and deviations from those patterns

that may indicate disruption and then recovery from a disruptive event, while maintaining

anonymity. I introduce a Bayesian belief network-based anomaly detection method to

identify anomalous periods indicating household-level recovery in response to Hurricane

Irma in 2017. I present results showing the proportion of users experiencing an anomalous

period and the average length of recovery consistent with the storm’s path and validated

against available survey results on evacuation. These large-scale data-driven results on

household recovery can contribute to further analysis on the impacts of the hazard and

social vulnerability on recovery at home and workplaces.

Keywords: location-based services data; disaster recovery; anomaly detection

Note: The research presented in this chapter was an invited submission for the journal

Computers, Environment, and Urban Systems for the special issue GeoAI and Location Big

Data for Smart Cities. The corresponding manuscript was submitted July 17, 2023 with

co-author Seth Guikema and is currently under review.
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3.1 Introduction

Social vulnerabilities exacerbate harm from disasters and inhibit the ability to recover due

to lack of economic resources [2, 106, 107, 108]. Additionally, systemic inequalities and dis-

criminatory housing policies, such as “redlining” in which race and ethnicity were explicitly

used as exclusion criteria for property loans, result in vulnerable populations disproportion-

ately relegated to neighborhoods that are particularly prone to hazards and lack access to

the essential services necessary for preparation and recovery [8, 19, 28, 108]. Post-disaster

infrastructure restoration has also been shown to be disproportionately lengthier for socioeco-

nomically vulnerable communities [2, 5, 108, 109, 110]. Understanding inequities in recovery

is necessary to design better preparation and response to bolster community equity and re-

silience, but current survey methods are cost and labor-intensive and so are not suitable for

capturing the full scope of recovery experiences across a large region. There is a need for

large-scale data collection to supplement surveys to capture household level recovery across

a large region’s full diversity of households and varying exposures to the hazard.

Location-based services (LBS) data from smartphones opportunistically captures human

mobility patterns. When integrated with infrastructure networks, such data can reveal

how users interact with the built environment, providing valuable insight for transportation

planners and policymakers [37, 39, 41]. LBS data has already been demonstrated to show

transportation behavior consistent with prior data collection methods [37, 38, 70, 72, 111].

Now, LBS data is consistently used to supplement cost and labor-intensive household travel

surveys for applications beyond transportation ranging from evaluating partisan impacts on

family ties and risk perception [40, 112] and modeling infectious disease [74, 75]. LBS data

has been used to evaluate disaster recovery through tracking disaster evacuations [7, 63, 76,

77, 113], facility closures [76], and inequities in recovery [6]. Results from these studies show

the promise of utilizing LBS data for understanding disaster response, but do not capture

the full spectrum of recovery including those who do not evacuate and return to previous

activities, such as work.

Commuter behavior as reflected in visits to home and work follows regular patterns on

a daily or weekly basis that could be identifiable in LBS data [35, 114, 115, 116, 117, 118].

Following a disruptive event, commuting behavior is inevitably included in any affected

household’s change in routine. Return-to-productivity after a disruption is typically under-

stood via surveys that capture how commuter behavior changed, such as through differences

in route choice, mode choice, departure time, or working from home patterns [45]. Detect-

ing anomalous behavior in home and work appearances reflected in LBS data can thus be

used to identify return-to-productivity and assess a community’s recovery time following a
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disruption. This allows for much larger sample sizes than survey-based approaches, provides

better coverage of the population in terms of both geography and specific sub-populations

represented in the data, and reduces response time bias as behaviors are captured as they

occur rather than relying on human memory days or weeks after the event.

Anomaly detection involves identification of unexpected observations or sequences of ob-

servations within time series data [82, 119]. Such deviation from expectation can be local

(anomalous relative to neighboring data) or global (anomalous relative to the entire dataset)

and is significant enough that the observation or series appears generated by a different

mechanism [120]. Anomaly detection can identify changes in regular patterns, such as those

captured by sensors monitoring systems from an individual’s personal health to quality

control in manufacturing to the air quality of an entire community [82, 119]. Simple linear

regression models can identify anomalous behavior when receiving data outside of recognized

ranges. Model complexity increases as the anomaly appears as a collection of observations

rather than a single point [119, 121], as is the case for evaluating human behavior in the

days surrounding a disruptive event. Unsupervised machine learning models including long

short-term memory neural networks and self-organizing maps can identify and predict human

behavior at fine time scales, but require vast amounts of data to define “normal” behavior

[121, 122, 123]. Multivariate anomaly detection methods typically introduce even more data

requirements to capture every combination of variables that may occur under “normal” cir-

cumstances [124]. Bayesian belief networks offer an unsupervised anomaly detection method

suitable for coarse time scales while still including conditional dependencies between ob-

served variables [125, 126]. Bayesian belief networks have been successfully implemented in

water monitoring [127], healthcare [128, 129], and internet of things [126, 130] domains with

relatively short time scales.

In this chapter, I present a novel application of Bayesian belief networks to estimate

recovery and return-to-productivity times at the household level from LBS data spanning

Hurricane Irma in Florida. Hurricane Irma made landfall as a category 4 hurricane in the

Keys the morning of September 10, 2017 and as a category 3 hurricane in mainland Florida

later that evening [86], following a trajectory shown in Figure 3.1 from [87]. All 67 Florida

counties were qualified under a Major Presidential Disaster Declaration [131].
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Figure 3.1: 3-day Forecast track, initial wind field and watch/warning graphic from NOAA
National Hurricane Center IRMA Graphics Archive

Evacuation orders started for the Keys on September 6 and mandatory evacuations were

issued in 42 Florida counties. Over 6 million Floridians are estimated to have evacuated

over the next five days, one of the largest evacuations in U.S. history [52, 86]. Hurricane

Irma resulted in an estimated 50 billion USD in damages, the most expensive storm in

Florida’s recorded history at the time [86]. Southeastern Florida sustained most of the wind

damage impacts, while North Florida experienced widespread flooding of most rivers [131].

Almost every county suffered some period of power outages, with over 90% of Southeast

Florida customers without power for over a week [88]. Access to the western Keys remained

closed until a week after landfall still with intermittent power, sewer, and water access [132].

Public schools in Lee, Collier, and Monroe counties remaining closed for over two weeks after

landfall. All of these environmental and infrastructure factors contributed to vastly variable

recovery times across the state.

In the remainder of this chapter I describe a large-scale, data-driven method for estimating

recovery from Hurricane Irma using LBS data and Bayesian belief networks. I describe
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the dataset in detail in Section 3.2.1 and in Section 3.2.2 I explain how to identify user’s

home and work places from LBS data in August 2017. I then generate binary sequences

based on users’ daily appearances at their home and work locations and apply a novel

Bayesian network-based anomaly detection method which is detailed in Section 3.2.3. From

the anomaly detection results I heuristically estimate recovery duration for both home and

work behaviors as a proxy for return-to-productivity, illustrated in Section 3.2.4. I present

the results geographically and validate the estimates against an available survey in Section

3.3. I conclude this chapter with Section 3.4 discussing the limitations and possibilities of

this novel method using LBS data to estimate hazard response and recovery.

3.2 Methods

3.2.1 Data

The LBS data was provided by Veraset LLC, a private company that collects and aggregates

LBS data from a portfolio of mobile phone applications [51]. A ping, (i.e. data point)

represents any exchange between the phone and a cellular network or Wi-fi, including from

applications running in the background. Pings are not consistently collected at regular time

intervals but vary based on the applications running on a given phone. Each ping includes

an anonymized user identifier, UTC timestamp, latitude, longitude, estimate of horizontal

accuracy, and device type (Android versus iOS). The horizontal accuracy ranges from 2 to

2000 meters of estimated maximum error, with 75% of points under 30 meters and 95%

under 110 meters.

3.2.2 Home and Work Finding

From consistent enough LBS pings, I can identify frequently visited places, including home

and work. I adapt a method for identifying home and locations from [133], who identified

home and Thanksgiving visit locations from similar LBS data to identify relationships be-

tween political partisanship and family ties. First, I filter LBS data by time of day—for home

I identify the most frequently visited location visited between 9pm and 6am and for work I

identify frequently visited locations visited between 10am and 3pm on weekdays, defined as

midday by [134]. I filter out any users who do not make appearances in those time windows

at least 10 unique days within the 61 days included in the LBS dataset.

We overlay a 5e-5 degrees latitude by 5e-5 degrees longitude grid over the remaining

points and generate clusters from points in neighboring grid cells, resulting in 1.5e-4 by 1.5e-

4 degree overlapping clusters (the exact area varies slightly depending on the latitude of the
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coordinates, ranging from approximately 54.8 ft by 44.0 ft to 54.8 ft by 49.6 ft). I ascertain

the clusters visited the greatest number of unique days, and among those locations identify

the cluster with the highest duration spent, where duration is calculated based on sequential

appearances in the same cluster [63]. For any user where the workplace is within 0.0015

degrees (about 0.1 miles) of home, I identify the second-best location that still matches the

criteria, or filter out the user if there is no distinguishable workplace that fits the previous

criteria. I show this process in Figure 3.2 below (adapted from [63]).

Figure 3.2: Estimating home and work coordinates

We filter out any users with a horizontal accuracy less than 1 mile (0.1% of remaining

users) as well as any users who do not appear at their home a week prior to landfall (42%

of remaining users). Finally, I filter out users who appear in the data set fewer than 80% of

the days in August and September, 2017 (19% of remaining users), as I want to be sure I am

excluding short-term visitors and that I have enough daily data to identify visit patterns. In

the end, there are 123,445 unique users with an identified home and workplace. I validate the

home locations based on the state of Florida 2017-2021 American Community Survey five-

year population estimates. I validate workplace locations against the most recent data from

the Census Tract Planning Products (CTPP) program tabulation of worker flows published

in 2017. The methods and results of this validation are described further in Appendix B.

3.2.3 Bayes Network Probabilities

Of the 123,445 unique Florida users with a home and workplace, I classify all of their pings

as appearing within “home” or “work” if they were within 0.0015 degrees of that location. I

classified the remaining points as laying within “home county”, or “other” which encapsulates
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all of a user’s unclassified pings within the rest of Florida. Very few users had points in their

“work county” that were outside of “work” or “home county” classification and so I did

not distinguish “work county” separately from the “other” category. As I am interested the

number of days to recovery, any other temporal patterns within users’ data add noise to

this detection. For example, hourly variations in when users went to work during the day

can make it more difficult for a model to identify “typical” behavior over the 61 days of

data when I am only interested in if they appear at work or not. Additionally, I do not

expect users to spend their free time consistently –some evenings users may spend time at

the house while others they may spend doing work or leisure activities away–so I do not want

to design a model with the potential high hourly variation when I am ultimately interested in

daily appearances. Furthermore, the irregular inter-ping times within and across user data

means that gaps in time series due to users simply not using their phones would be more

prevalent. Within an hour it may not be abnormal for a user’s phone to not ping if they are

not actively using their phone or they set it to airplane mode during work, leisure, or sleep

activities, but given the user filtering process, I would expect users to ping at least once a

day unless they are outside of the geographic study area. So, I aggregate these classified

points to binary sequences, with a point representing whether the user appeared in that

place on that day or not. This aggregation resulted in 61 data points for each classification

(“home”, “work”, “home county”, “other Florida”) for each day in August and September,

2017. I present examples of this aggregated data for a sample of anonymized individuals in

Figure 3.3, where Hurricane Irma’s first landfall in Florida is marked by a vertical line. For

context Monroe County is made up of the Florida Keys as well as the uninhabited Everglades

National Park on the mainland; Collier County is the next most southwestern county and

contains Naples; Miami-Dade County is the most southeastern county as well as the most

populous and contains Miami; Palm Beach County is north of Miami on the east coast of

the state and is the third most populous county in Florida, containing West Palm Beach and

Boca Raton.
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Figure 3.3: Sample daily aggregated user data
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We can see regular, but unique patterns emerge from these example users in Figure 3.3

as well as a change in patterns coinciding with Hurricane Irma’s landfall. The user from

the Keys appears at home every night (except August 18), at work five to six days a week,

elsewhere in their home county nearly every day, and leaves their county for another location

within Florida for 13 days aligning with evacuation from the islands for Hurricane Irma. They

return to their home eight days after landfall, and eventually to work on Monday, September

25. The Collier County user appears at home every night in August except one, when they

also appear in another county in Florida for three days, perhaps indicative of a brief work or

leisure trip. This user appears at work almost every Monday through Friday and August and

has more variability in their home county appearances. They seem to leave their home on

Sunday, September 10, the day before landfall on the mainland and perhaps lose cell service

or leave the state, though they do have an appearance in Collier County on September 13

before returning home on September 16 and the to work on September 25. I observe more

variability in the Miami user’s time series, where they spend several nights away from home

in August, appear at work anywhere from two to five days a week, and visit another county

in Florida for a weekend. Despite this variation in appearance behavior, I can identify a clear

period away from their county September 7-12, perhaps attributable to the hurricane. This

user returns to their home county on September 12 and resumes workplace appearances

the next day, though does not appear at home again until September 16 indicating they

temporarily stayed in a hotel or with family or friends which may denote a power or water

outage at their home while their workplace remained accessible. The user in Palm Beach

appears at home every night and did not seem to have home appearances disrupted by the

hurricane, but their visits to work and other locations within their county pause in the days

surrounding Irma’s landfall.

While such patterns for these particular users are straightforward to see, for others with

high variability in appearance behavior I may not be able to distinguish hurricane response

from normal behavior. Still, for those with such discernable disruptions, I would like to be

able to use this LBS data to estimate hurricane response and recovery. With 123,445 unique

users, I cannot expect to parse through each user’s unique data as I did in the above examples

to estimate recovery periods. But with such limited data in each user’s time series, I also

cannot expect a deep-learning model to effectively identify spatial and temporal patterns

specific to each user. I would like to develop a model that builds in the intuition about

which time-based variables may impact an individual’s likelihood of appearing at home,

work, or elsewhere in their home county or Florida on a given day. Specifically, I want

to build in the assumptions that day of week, weekend or holiday status, appearances on

previous days, and appearances in other locations affect the probability of a user appearing
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at home and/or work each day.

Bayesian belief networks offer a suitable method for integrating the contextual knowledge

with limited user data to estimate the joint probability of an appearance conditional on these

features. I do not want to assume all random variables are conditionally independent, as with

Näıve Bayes classification, but I do not have enough data from each individual to calculate

conditional probability for every combination of events. I therefore design a Bayesian belief

network as an intermediary between a fully conditional and a fully independent probabilistic

model. Figure 3.4 below demonstrates an example probabilistic graphical model where I

assume a conditional probability between a home appearance and day of week, weekend,

and the previous 3 days as well as independent relationship with appearances elsewhere

within their home county and state.

Figure 3.4: Bayesian belief network for probability of home appearance

This network can also be described through Equation 3.1 to determine the probability of

each user’s (u) variable values on each day as:
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PD
u = P ((EH&EC&EF )|D)

= P (EH) ∗ P (EC) ∗ P (EF ) ∗ P (Td|EH) ∗ P (Tw|EH) ∗
L∏

t=1

P (E−t
H |EH)

(3.1)

where L is the number of previous days, ]or lag days, expected to impact the likelihood

of EH and D is the set of available data {EH , EC , EF , Td, Tw, E
−t
H } ∀ 1 ≤ t ≤ L. EH ,

EC , and EF are binary representations of whether an appearance occurs that day or not,

Td is a categorical variable for each day of the week, and Tw is a binary variable indicating

whether the day is a weekend or not. I also indicate the U.S. federal holiday Labor Day as a

weekend variable, which fell on Monday, September 4, 2017 in the study period. I calculate

these probability distributions separately for home and work appearances to garner separate

estimates for return-home and return-to-work recovery estimates.

We determine these probabilities for all user’s August data as a prior distribution to prob-

abilistically model inherent normal-condition variability in patterns across the population. I

then create an individual model for each user based on only their August data. I update each

individual’s probability distributions with the population-wide prior distribution weighted by

some number of days W . For example, for W = 7 the prior would be worth a week’s worth of

population-wide data supplementing each user’s individual August data. Then for each user,

I calculate the daily joint probability of the realized variables from Equation 3.1 for each day

in September. Unlikely or previously unseen combinations of values will then have relatively

low probabilities, which I can identify as anomalous based on some determined threshold. I

avoid zero-probability events by incorporating the prior, which ensures any combination of

events observed in August across all users has a greater than zero probability.

We define a threshold for defining an anomaly au for each user based on their previous

relative probabilities. Such a threshold must be robust enough to account for some users

having more variable home and work appearances than others. For example, for users with

very regular or steady behaviors, like appearing at home every day and at work the same

five days every week, deviations from those norms like missing a day at home or missing

three days in a row at work will result in extremely low relative probabilities that I can more

easily identify as anomalous. For users with more variable behaviors, such as those who were

out of town for a couple weekends in August or perhaps have a less rigid work schedule, the

probability of being away from home in the days around landfall may resemble their previous

August departures, so I design a threshold that will only detect behavior as anomalous if it

falls far enough away from each user’s previously seen data.

To select the model parameters and au value, I tested this Bayesian network-based

anomaly detection framework with various combinations of input variables, lag-day values
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in L ={0, 1, 3, 7}, and prior weights in W ={1, 7, 14, 28}. I compared different anomaly

thresholds:

au = min(PD
u ∀D ∈ August) (3.2)

as well as:

au = mean(PD
u ∀D ∈ August)− S ∗ std(PD

u ∀D ∈ August) (3.3)

for S ∈ {2, 3, 4}. That is, I tested thresholds set to the minimum of each user’s August day

probability PD
u in addition to thresholds set to two, three, or four standard deviations from

the average probability seen in August. I evaluated the sensitivity of the model to each of

these parameters which I share in Appendix C.

3.2.4 Defining Anomalous Periods

The results from the Bayesian network probability estimation indicates if each day is anoma-

lous or not. I use these results to estimate the total anomalous period that could be attributed

to Hurricane Irma. I set the earliest start date for a hurricane-related anomaly to Wednesday,

September 6, 2017 to avoid capturing behavior related to labor day on Monday, September

4, 2017. I set the latest start date to Wednesday, September 13, 2017 to account for users

who do not have observable deviations from typical behaviors until three days after landfall

for those who may typically be away from home or work up to three days in a row prior to

the disruption. Within this range of start dates, I identify the first anomalous day to start

the anomalous period. I define the end of the anomalous period as the last anomalous day

before three non-anomalous days in a row. This is to account for users who may typically

take one to two days away from home or work, such as weekends, which may be recorded as

non-anomalous but precede a continuing anomalous period. If there are multiple anomalous

periods with a start date within the stated range, I define the anomalous period as that with

the longest duration. These defined anomalous periods are then used as the measure of the

recovery time for home and work.

3.3 Results

3.3.1 Sample Individuals

To showcase the estimation capabilities and limitations of this model, I present the same

example individuals as in Figure 3.3 along with their anomaly detection results using the 3

standard deviation threshold for home and work in Figure 3.5.
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Figure 3.5: Sample daily aggregated user data with shaded home and work recovery periods

For the Monroe County user, I identify a home recovery period that lasts from their

first appearance in another Florida county to two days after their return, likely do to the

three-day lag variable in the network and the lack of variability in the home data prior to

September 6. The work recovery period spans all missed work days, ending on a Saturday

as the model is able to determine this user does not typically appear at work on Saturdays

and Sundays. For the Collier County user, I see a similar effect of the three-day lag variable

home recovery estimation resulting in the recovery period ending two days past when the
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user first appears at home. The Collier County work recovery period starts several days

after their last appearance at work, as the model determines it is typical for this user to miss

several days of work. The Miami-Dade County user has more variability in their home and

work appearances in the training data, and so the model is attuned to pick up only when

this user does not appear in their home county as a work anomaly while their home recovery

period starts two days after their previous home appearance. The Palm Beach user has a

home recovery period that seems to be defined by their lack of appearances in their home

county during landfall and their appearance in another county a few days later. As they

rarely miss work, their work recovery period continues for two days after their first work

appearance due to the influence of the three-day lag variable.

While these results do not perfectly align with first and last home and work appearances,

this Bayesian belief network captures does capture the changes in user behaviors. For users

appearing at home or work every day, this method is sensitive to the lag-day variable, as

observable in the sensitivity analysis reviewed in Appendix C. I elected to keep the three-

day lag variable to better capture users who do have regular gaps in their home and work

appearances in August, as I assume many users may take some days away from the defined

locations for work or leisure activities. Due to this sensitivity, I may be overestimating the

duration of recovery periods for users with low variability. About 43% of users appear at

home every day in August and would be most sensitive to this parameter. In Appendix C I

show that this 43% is evenly distributed across counties and so I assume this source of bias

is consistent across counties. With this in mind, I discuss all duration results in aggregate

and relative terms, rather than using the absolute, individual values guide the findings.

3.3.2 County-level Recovery

We plot the proportion of users with any detected anomaly in Figure 3.6 based on the

combination of parameters W = 7 and L = 3, and an anomaly threshold based on users’

relative daily probabilities three standard deviations from the observed August mean:
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(a) Home (b) Work

Figure 3.6: Proportion of users with detected recovery period

Figure 3.6a shows the proportion of users detected as experiencing a disruption to their

daily home appearance behaviors follow the storm’s trajectory as shown in Figure 3.1. Com-

pared to Figure 3.6a, Figure 3.6b shows that I identify more users experiencing an anomaly

in daily work appearances.

Figure 3.7 plots the average duration of 3.7a and 3.7b work recovery periods across all

Florida counties of the users who experienced a detectable disruption.

(a) Home (b) Work

Figure 3.7: Duration of recovery period of users who experienced disruption

Figure 3.7 shows the average number of days of estimated recovery for home and work

in Monroe County, which includes Key West, is almost two weeks, which mirrors the long

periods of power outages particularly experienced in Monroe County. Further, the period of
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disruption for those who had a detectable home appearance recovery period is longer than

the estimated recovery period for work places.

The results in Figure 3.6 indicate that more people experience disruptions in their work-

place appearance patterns than at home, while Figure 3.7 indicates that the average recovery

period for home disruptions was longer than recovery periods from work places. This makes

sense as I can assume that many of those users with longer detected home disruptions either

evacuated or faced sustained damage to their home or surrounding infrastructure networks,

while those who did not face any home disruptions still may have had to miss work due to

evacuation orders, power outages, or other infrastructure damage. Workplaces in Florida

are also more concentrated in dense areas due to zoning policies and shared infrastructure

needs, and dense areas generally see faster response times from utility companies.

In Figure 3.8b and 3.8c I visualize home and work recovery estimated duration periods

through empirical cumulative distributions of total recovery time for example counties across

the state, highlighted in Figure 3.8a. I include Monroe, Collier, and Lee Counties for their

proximity to the storm path; I show Miami-Dade, Broward, and Palm Beach Counties as the

most populous counties in Florida and for their location on the southeast side of the state;

finally, I select Hendry, Okeechobee, and Bradford Counties as a sample of inland coun-

ties that experienced significant flooding following Irma. The data represented for Florida

includes all counties in the state.

50



(a) Select Florida counties

(b) ECDF home recovery duration (c) ECDF work recovery duration

Figure 3.8: Empirical cumulative distributions of recovery time by county

Bearing in mind the model’s sensitivity to the number of lag days parameter, I can evaluate
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these county-aggregated durations relative to one another rather than as exact duration

periods. Figure 3.8 shows that 50% of Florida users faced some kind of home recovery, with

about 80% of users recovered within five days. I see that about 70% of Florida faced some

sort of work recovery, though the recovery duration curves across all counties are steeper,

consistent with the discussion from Figure 3.6 and Figure 3.7. Only about 25% of Monroe

County residents and workers resumed their previous appearance behaviors in five days, with

around 25% of users still unrecovered after two weeks.

These CDFs from Figure 3.8 show that even after 25 days, counties do not necessarily

reach 100% recovery, particularly Bradford, Collier, and Monroe Counties for home recovery

and Monroe County for work recovery. As the LBS dataset extends only through September

30, 2017, I am not able to identify users who return to their home and work patterns after

September 28, 2017 as they do not exhibit at least three days of “normal” behavior to

mark their return. While some of these users may return shortly after the study period,

I can estimate many are users who face long-term displacement. In Figure 3.9 I show the

proportion of users without a return date from the algorithm.

Figure 3.9: Proportion of users without detected return home
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Monroe and Collier Counties again stand out by this metric, with 13.1% of Monroe County

and 5.9% of Collier still unaccounted for by the end of the study period. One month after

Irma’s landfall, the Monroe County Mayor estimated the county would lose 15 to 20 percent

of its population in the long term [135], which is supported by this 13.1% estimate. Bradford

County in Northeast Florida also stands out, with around 6.5% of the 155 users not returning

home by the end of the study period. Bradford County experienced the highest cumulative

rainfall of the state, with 11.5 inches flooding the New River and Lake Samson, causing long

term displacement in the surrounding communities [131].

3.3.3 Recovery Over Time

In addition to looking at total duration, these recovery results can be plotted by date to

portray resilience curves, as shown in Figure 3.10.

Figure 3.10: User recovery over time by county

Again, given the model’s sensitivity to the lag days variable, these aggregate results should
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be evaluated relative to one another and are necessarily representative of exact recovery

dates. Figure 3.10 shows more about the unique user experiences of recovery based on home

and work counties over time. Monroe County recovery periods start earlier, consistent with

evacuation orders starting September 6, while mainland counties started evacuating days

later [136, 137]. Work recovery generally starts and ends earlier for all counties, though

has greater maximum magnitudes of recovering users for all counties except the hardest hit

Southwestern counties Monroe, Collier, and Lee. A smaller proportion of users with homes in

the inland counties Bradford, Hendry, and Okeechobee face recovery, but those who do see it

later and have longer durations than those in the more coastal and densely populated Miami-

Dade, Broward, and Palm Beach Counties. This suggests these users faced longer impacts of

flooding and power outages, perhaps because repairs were prioritized for more populated and

dense communities. Further, large-scale utilities and denser communities are more capable of

investing in resiliency and storm-preparation measures that would facilitate faster recovery

[5]. Decision makers can utilize such recovery curves at different geographic scales to compare

communities and possible identify discrepancies in recovery for sub-populations that may be

worthy of additional investigation. For example in Fig. 3.10, Bradford county appears to

have fewer residents facing household recovery than other counties, but towards the end of

the month up to 5% of those residents remain unrecovered. Further investigation shows

that Bradford county faced inland flooding and long-term damage of a significant number

of homes, even though the county is quite inland and did not face the eye of the storm,

and so may otherwise go unnoticed if surveys are focused only on the hardest hit locations.

Further, this plot shows differences in home versus workplace recovery– those counties for

which home recovers faster than work may require different interventions than those with

workplaces recovering faster than homes. This sort of data is not typically available in

surveys, particularly over a large population and geography, and so is another unique benefit

of using LBS data for hazards recovery analysis.

3.3.4 Census Tract-level Recovery

Using LBS data facilitates finer-scale analysis to gain insight into community-level response.

In Figure 3.11, I show the proportion of recovering users and average detected home recovery

duration for census tracts in Monroe County (The Keys) with at least 10 users.
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(a) Proportion of users with detected recovery period for home

(b) Duration of home recovery period of users who experienced disruption

Figure 3.11: Florida Keys recovery by census tract

In Figure 3.11a the proportion of users experiencing detected recovery varies somewhat

across the county, with the 11 census tracts with over 90% recovering user population dis-

tributed across the county. In Figure 3.11b, though, there is a noticeable pattern of the tracts

east of Long Key taking an average of eight-ten days to recover, while those western tracts
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average 12-16 days of recovery time. This reflects the reopening timeline of the Keys where

access to the upper Keys (Key Largo to Islamorada) was reopened on Tuesday, September

12, 2017 [138], while access the lower Keys was not permitted until a week after landfall on

Sunday, September 17 [132].

We show the same metrics in Figure 3.12 for Collier County, the southwestern most county

in mainland Florida that includes the Naples and Marco Island communities that faced storm

surge up to 10 feet.
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(a) Proportion of users with detected recovery period for home

(b) Duration of home recovery period of users who experienced disruption

Figure 3.12: Collier County recovery by census tract

No obvious spatial patterns stand out in Figure 3.12a or 3.12b, but there is perceptible

difference in how these smaller neighborhoods and communities experienced recovery. This

suggests the dynamics driving disruption and recovery that cannot be reduced to proximity

to the coast or urban versus rural areas, but other possible drivers such as socioeconomic
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vulnerabilities, power or water outages, and access to essential services like supermarkets

and home improvement stores [28].

3.3.5 Survey Validation

As stated previously, the ability to assess large-scale localized disaster recovery is out of

scope for household survey methods, and so data available for validation is scant. For

Hurricane Irma in Florida, I am able to compare these results to regional evacuation data

from survey analysis conducted by [52]. In Table 3.1 I compare the survey’s report of percent

evacuated from 645 responses from the survey defined regions shown in Figure 3.13, to the

corresponding proportion of LBS users with a detectable home recovery period when I set

parameters toW = 7 and L = 3, and an anomaly threshold of three standard deviations from

users’ observed August means (au = mean(PD
u ∀D ∈ August)− 3 ∗ std(PD

u ∀D ∈ August)).

Figure 3.13: Map of regions survey defined regions
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Region Survey LBS %

% Sample % Evacuated % Sample % Evacuated Difference

Northeast/

Central-East

54.7% 46.2% 36.2% 46.3% 0.3%

Central-West 2.9%∗ 73.7% 20.1% 51.4% 30%

Southwest 32.6% 72.4% 12.8% 64.0% 11%

Southeast 9.8% 61.9% 30.9% 60.1% 3%

Total 100% 57.1% 100% 53.9% 6%
∗This sample size is deemed by the survey team as too small for providing descriptive statistical conclusions

Table 3.1: Survey evacuation versus LBS home recovery

Other than the Central-West region, which does not have a large enough sample size

from the survey, the LBS estimates are close to the survey evacuation values, particularly

the Northeast/Central-East region where the survey had the most responses. I compare these

survey results to additional model results with other anomaly thresholds in Appendix D, but

based on these results identify that au = min(PD
u ∀D ∈ August) and au = mean(PD

u ∀D ∈
August)− 3 ∗ std(PD

u ∀D ∈ August) most closely align with this survey’s results.

While I cannot validate these results at a more granular level than these large survey-

defined regions, this method is effective at providing estimates for household and workplace

recovery that align with the few aggregated survey values reporting evacuation. To truly

evaluate the parameter choices and results of the model, household and workplace recovery

periods should be compared to survey results with the same definition of “recovery period”

for a representative sample across the state of Florida. In lieu of such data, the results

provide a baseline estimate for evaluating the relative recovery periods across communities

at a finer spatial scale than available survey results.

3.4 Discussion and Conclusions

This work demonstrates the ability to estimate household level and return-to-work recovery

periods for large regions, such as the state of Florida. I show how to estimate behavioral

probabilities using a Bayesian network with only two months of LBS data and how to sub-

sequently identify anomalous behavior that may correspond to a hazardous event. These

results show how this method can be used to identify spatial and temporal trends from

local census tract to state-wide scales, beyond the scope of typical household post-event

surveys. Thus, this methodology can supplement surveys to evaluate recovery periods along
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with storm parameters and social-vulnerability indicators to assess the localized factors con-

tributing to a household or workplace’s ability to recover from a disruptive event.

This methodology is limited by its overarching definition of “recovery period” that does

not indicate the cause of the anomaly. In the case of hurricane response, a user may present

an anomalous period if they evacuate, experience power or telecommunications outages,

or conveniently left for vacation during the same time as landfall. For Hurricane Irma in

particular, the time-based heuristic for identifying an anomalous period is susceptible to

the concurrence of Labor Day the week before landfall. The selected parameters defining a

recovery period may undercount those who perhaps evacuated their homes prior to Labor Day

and did not return after the storm. I may be overcounting recovering households by including

those who were not appearing at home or at work because they had planned vacation time

even before news of Irma’s path. From the sensitivity analysis shared in Appendix C, I also

know this model is sensitive to the number of previous days’ data included in calculating

the conditional probabilities. With more days of data capturing users’ normal behaviors,

this model could be more attuned to those typical behaviors and thus better at identifying

anomalies, but I show how to estimate recovery with only one month of pre-event data.

Further, the results of this model are sensitive to the definitions of home and work that

may not be inclusive of all daily behaviors that are disrupted by a hazard. These definitions

of home and work do not include populations without a smartphone, houseless populations,

incarcerated populations, and/or those employed at a job not regularly attended during the

prescribed time period on weekdays. These populations may exhibit different responses than

those captured by the algorithms, but are still critical for evaluating community recovery.

For all of these reasons, I present this method as a large-scale data-driven approach to

supplement surveys that can include more diverse populations and capture more detailed

metrics related to household and workplace recovery.

This method of identifying household and work place recovery following disruptions can

be applied for evaluating any hazard that may include evacuations, power outages, or trans-

portation network closures that require large portions of the population to alter their home

and work routines. Applying anomaly detection to LBS data expands the literature on

anomaly detection for stochastically collected spatiotemporal data as well as extending

Bayesian network and anomaly detection methodologies to an urban informatics setting.

Quantifying recovery through LBS data offers new opportunities for assessing risk and re-

sponse at the household level. With this kind of quantification, I can analyze recovery

periods by geography, socioeconomic status, and access to essential services to evaluate pos-

sible inequities in recovery to better understand the characteristics that lead to a resilient

community.
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CHAPTER 4

Access and Recovery

Access to essential services, including water, power, healthcare, education, food, and

cultural amenities are necessary for individuals to recover and adapt to disruptive events.

Identifying the dimensions of access across these services is complex in and of itself, in

addition to the task of collecting relevant data across a swath of service providers. Thus, the

relationship between access and resilience is not easily quantified. I develop random forest

models estimating recovery based on household measures of access to essential services prior

to and in the days following landfall of Hurricane Irma in southwest Florida demonstrate

the impact of access or in-access on communities’ resilience, or capacity to recover. First,

I estimate recovery periods of individual households and essential services facilities from

cell phone data. I then use open source routing software to collect travel times by car,

transit, and walking from households to identify proximity to the nearest open essential

services facility in the days following the hurricane’s landfall. I incorporate affordability

by including social vulnerability index (SoVI) variables representing household income and

housing prices for an individual’s home census tract as well as car ownership and population

insured. Finally, I incorporate storm impact parameters including wind speed, storm surge,

and cell network and power outages. The outputs of my random forest models reveal

interpretable and quantified measures of importance between observed access to essential

services facilities, storm damage, SoVI metrics, and estimated recovery time. Power, cell

service, and school outages all rank highly in importance, followed by measures of access to

essential service facilities following Irma’s landfall. These results reveal the importance of

including access metrics, even over currently used SoVI measures, in estimating community

recovery and resilience. This work also contributes to literature on evaluating access beyond

proximity, but by incorporating multiple dimensions including travel time across modes,

amenity availability, and economic access to essential services to capture the more complex

but more realistic household recovery experiences across these intersections.

Keywords: location-based services data; disaster recovery; machine learning; access
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4.1 Introduction

4.1.1 Disaster Recovery and Resilience

According to the United Nations Office for Disaster Risk Reduction’s 2022 Global Assess-

ment Report, “risk creation is outstripping risk reduction” [1]. The frequency and impact

of natural and man-made disasters are increasing annually along with climate change and

growing economic inequality [2]. The concept of resilience involves the capacity of a sys-

tem to absorb, recover from, and transform after a disruptive event [17, 20, 23, 24, 25, 26].

Frameworks for evaluating resilience rely on on quantifying the disruption and recovery of

a system, historically to its prior state [47, 139, 140, 141]. More recently, understanding

resilience also includes capturing mitigative and adaptive transformations following a dis-

ruption to avoid “resilience traps” of exacerbating inequality and vulnerability that were

inherent to the pre-disaster state [20, 108, 140, 142]. Furthermore, conversations about re-

silience typically fall into two distinct approaches: evaluating community capacity versus

infrastructure functionality. Understanding resilience based on community capacity relies

on indicators representing qualities that enable a community to mitigate, prepare for, re-

spond to, recover from, and adapt following a disruption [27, 46]. Such qualities include

generalizing the population, economic assets, housing infrastructure, governance, and envi-

ronmental characteristics of a community, as reported through the Social Vulnerability Index

(SoVI) [106, 143, 144, 145]. Though SoVI is highly relied upon for emergency management

and disaster response, it has been criticized for internal and theoretical inconsistencies and

falls short in actually helping predict or plan for disaster outcomes [146, 147, 148]. Further-

more, the direct relationship between such indicators and disaster recovery are difficult to

quantify, particularly in response to discrete disruptive events rather than over long time

horizons. Infrastructure resilience is often modeled in terms of the built environment, speci-

fying individual buildings or systems such as power or transportation networks that may lose

functionality during a disruption [139, 141, 149, 150]. While these models have a physical

basis for evaluating resilience, they do not capture the social consequences that impact a

community when function is lost. There is need for multi-disciplinary approach to quantify

resilience that captures the inter-dependencies across infrastructure, social, and economic

system recovery and transformation.

4.1.2 Access

Access to essential services is proposed as a solution to integrate community vulnerability and

engineering infrastructure-based methods for evaluating community resilience [28]. Access

63



is defined as the degree of fit between a system and the users of that system and extends

beyond spatial proximity, but is also a function of attributes of service provision such as

availability, affordability, accommodation, acceptability, and awareness [49, 50]. Access to

essential services, including water, power, healthcare, education, food, and cultural amenities

are necessary for individuals to recover and adapt to disruptive events [27, 28, 46, 47, 69].

These essential services are not available at the same standard across all members of a com-

munity even outside of disastrous periods [151, 152, 153, 154, 155, 156]. High mobility and

access are linked to socioeconomic development including higher income and education rates

as well as lower deprivation and unemployment rates [48, 152]. When buildings, infrastruc-

ture, and transportation networks are damaged by a disruptive event, access declines and

decision makers do not necessarily prioritize equity in their restoration efforts [5]. Hence, ac-

cess is inherently connected to community capacity and vulnerability as well as the physical

infrastructure that enables access.

Identifying the dimensions of access across all these services is complex in and of itself,

in addition to the task of collecting relevant data across a swath of service providers before,

during, and after a disruptive event. Thus, the direct relationship between resilience and

access is not easily quantified, particularly beyond aggregated populations even though access

is experienced at the individual level [33, 65]. There is a need to understand what services

should be considered essential at what stages of recovery, relative to the timeline of the

disaster and other recovery efforts.

4.1.3 LBS Data

Location based services (LBS) data from cell phones offers opportunity to capture the rela-

tionship between behavioral responses to disruptions and access to essential services facilities

before, during, and after a disruptive event. Historically, understanding behavioral response

to disasters has relied on surveys [36, 37]. But capturing diverse experiences of a disaster

over a time horizon that captures all preceding and following dynamics requires an extensive

sample size or focus on a very specific community as well as either the foresight to initiate

a survey months in advance or reliance on retroactive reporting, which is subject to recall

bias. LBS data comes from opportunistically collected user locations from cell phone in-

teractions with a network or WiFi, thus providing a mobility profile of all included users

with a sample size several orders of magnitude larger than can be feasibly obtained by sur-

veys. Furthermore, LBS data has been demonstrated to be sufficiently representative of

large populations and so can capture diverse users across a large geography, socioeconomic

distribution, and path of a disruptive event despite not including any user demographic data
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[7, 38, 40, 63, 76, 77, 112]. Such a vast number of observations is conducive to statistical

modeling even with a large number of features, enabling new possibilities of inferential and

predictive modeling to understand the underlying behaviors captured in the data.

4.1.4 Contribution

In this chapter I utilize LBS data from Veraset, LLC spanning August 1- October 3, 2017

in the Southwestern Florida counties: Collier, Hendry, Lee and Monroe. On September 10,

2017, Hurricane Irma made landfall in Southwest Florida as a Category 4 Hurricane, dev-

astating the Keys in particular but causing widespread power outages and facility closures

throughout the state [53]. Power restoration took up to three weeks in some communities

and schools in Monroe County closed for three weeks, from September 6 until September 27

[92]. I identify essential services facilities from OpenStreetMaps that include supermarkets,

libraries, convenience stores, gas stations, pharmacies, clinics, hospitals, and home improve-

ment stores [94]. I apply an LBS-based functional closures algorithm to identify when the

facilities were closed or otherwise inaccessible during the period surrounding Hurricane Irma

as described in Chapter 2 and [157]. I also apply an LBS-based algorithm to identify user

home and work locations as presented in Section 3.2.2 with validation described in Appendix

B, and a Bayesian-network based anomaly detection algorithm to estimate when users expe-

rienced recovery from their home and work visit patterns as described in Section 3.2.3 and

Section 3.2.4. I then calculate the travel times between each home and work location and the

previously identified essential services facilities using OpenTripPlanner [158]. From these re-

sults, I determine each user’s travel time from their home and workplace to the nearest open

essential services facilities each day in the month of September 2017 to capture changing

access to these essential services facilities. Finally, I build out a database to include these

daily access metrics and recovery status as well as socioeconomic and SoVI data from user’s

home and work census tracts, storm variables capturing wind and storm surge, and utility

data including power and cellular network outages. From this database I develop a statistical

model to estimate the impact of all of these variables on recovery status to demonstrate the

role of access to essential facilities on recovery over time.

4.2 Methods

4.2.1 Facility Closures

I first identify facilities that may have closed or otherwise became inaccessible as when access

was restored. Lack of access may result from the facility declaring itself to be closed (e.g., due
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to direct damage, lack of employees, or loss of infrastructure services such as water or power),

from disruption to the connecting transportation system, or from so few people accessing

the facility because of nearby evacuation or stay-at-home orders. Using OpenStreetMap [94]

and the OSMnx Python package [159], I select all facilities in the state of Florida tagged

with the following categories: supermarket, school, pharmacy/chemist, hospital, doityourself

(e.g. home improvement and hardware stores), and library. To include as many locations

as possible, I downloaded all facilities represented by points, polygons, and multi-polygons

in the year 2023, which include 34% more locations within those categories as in 2017,

the year of Irma’s landfall. To generate a footprint for the facilities represented as points, I

calculated the average footprint area of the polygons and multi-polygons that were available.

I calculated a radius for each category to apply a buffer around the associated points that

would create a footprint equal to that category’s average area. Note that if there is a bias

in the OSM data, like if smaller facilities are more likely to be recorded as points, then

this may introduce a systematic error like overestimating the footprints of smaller facilities.

Next, I applied the LBS-base functional closure detecting algorithm (as described in Chapter

2 and [157]) to these footprints to generate a time-series of unique users appearing within

the footprints on each day in August 1- October 3, 2017. I filtered out any facilities that

did not have 10 or more users on at least 19 days in the study period (e.g. had regular

users at least three days per week prior to landfall). This filter removed 37% of convenience

stores, 28% of coded libraries and clinics, and 25% of gas stations. As library locations are

centrally published on county web pages, I wanted to ensure their inclusion and so manually

added locations for seven libraries not included in the OSM data. Through this filtering

process, any facilities that were constructed after 2017 would not have enough detectable

visit patterns, and so would be discarded through the algorithm. Any facilities that were

repurposed after 2017 may be misrepresented in the locations data and so may be a source

of error in subsequent analyses.

To identify closure periods, I applied a pruned exact linear time (PELT) anomaly detection

method [98] available through the ‘changepoint’ R package [99] to each facility time series,

excluding schools (given county-level data on closure dates was available for public schools,

I encoded school closure periods manually). PELT is a dynamic program that identifies

changepoints within a time series based on a statistically significant change in the linear

parameters of the series. For a Poisson distribution, like these time series counting user

appearances, this means a statistically significant difference in both the mean and variance of

neighboring segments. I applied the PELT algorithm and flagged all segments that contained

September 10, 11, or 12. I determined a closure period as a flagged segment that had a mean

less than both the prior and following segments and that started between September 3, 2017
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and September 12, 2017. Only 24 of the 626 non-school facilities had no detected closure,

zero of which were in Monroe County and only six of which were in Collier County. Of

those six, four were hospitals that each showed an increase in visits in the immediate days

surrounding landfall, indicating continued access to these facilities.

Below in Figure 4.1 I show a histogram of the detected percent change on either side of

the identified closure segment for all facilities. The percent change is consistently quite large

(greater than 40%), which instills confidence that this algorithm is successfully identifying

periods of remarkably lower access to these facilities.

Figure 4.1: Percent change from previous and following changepoint segments for essential
service facilities time series

I show in Figure 4.2 a histogram of the duration of the closure segments by county.

Monroe County appears to consistently have longer closure periods.
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Figure 4.2: Duration of facility closure by county

4.2.2 Household Recovery

I utilized the household and workplace recovery periods as determined in Chapter 3. As

described in Chapter 3, I determined the locations of homes and workplaces from LBS data

using an algorithm developed by [63], using most frequently visited places between 9pm and

6am for determining homes and between 10am and 3pm for determining workplaces. For

each user, I generated time series based on whether they appeared at home, work, somewhere

else in their home county, or“other” for somewhere else in Florida. I developed a Bayesian

belief network incorporating day of week, whether the day was a weekend, and appearances

on previous days and at other locations to estimate the probability of an appearance at home

(or work) on a given day. Using each user’s August data to train this probability distribution,

I then applied the model to each user’s September data. Any extremely low probability event

(three standard deviations from users’ observed August mean) was identified as anomalous

and I classified series of anomalous points as anomalous segments. I then designated recovery

periods as the longest of those segments with a start date between September 6, 2017 (the

first day of evacuation notices) and September 13, 2017.
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4.2.3 Travel Time

From every household and workplace, I found the travel time by car, walking, and transit

to every facility within 30 miles using the open source routing software OpenTripPlanner

(OTP) [158]. I obtained the Florida road network from OSM [94]. I sourced transit route

and schedule data from General Transit Feed Specification (GTFS) files from Collier Area

Transit [160], LeeTran [161], Miami-Dade Transit [160], and City of Key West [162]. Note,

Hendry County did not have an operating fixed-route system in 2017. For each household

(or workplace) and facility pair, I determined the travel time at 12:00pm on a Wednesday.

For transit, I also determined travel times for 12:15pm, 12:30pm, and 12:45pm to account for

fixed schedules. I allowed up to a mile of walking for transit riders and required a minimum

of two minutes to allow for any transfers. I also calculated the travel time between each

user’s home and workplace. From this same data, I calculate the minimum travel time by

each mode to each service type and the number of each type of essential services facility that

is available within 10, 20, 30, 40, 50, and 60 minutes from each home and workplace.

I overlay the daily functional closures results to find the nearest (by travel time) open

essential services facilities over time. In Figure 4.3 I show empirical cumulative distribution

plots (ECDF) of how travel time to each type of essential facility changes from prior to

landfall versus September 11, 2017 by each mode.
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(a) Car travel time (min) (b) Walking travel time (min)

(c) Transit travel time (min)

Figure 4.3: Empirical cumulative distributions of travel time by mode

From Figure 4.3, it is clear that access in terms of travel time and availability drastically

decreases the day following Irma’s landfall. Even before Irma, transit travel times for most

individuals were very high, with only about 25% of home and workplaces within 60 minutes

of a supermarket, gas station, convenience store, or pharmacy and fewer than 10% of home

and workplaces within 60 minutes of a library. Notably, the increase in transit travel time

following Irma’s landfall does not account for transit services being closed. Walking to

essential services is also notably inaccessible even before landfall, as walking more than 60

minutes is not an accessible for most individuals for most trips. About 50% of users have a

gas station, supermarket, pharmacy, or convenience store within 30 minutes, but libraries,

hospitals, and clinics are much further.

I show the change over time of the mean travel time to each facility type by each mode
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type in Figure 4.4.

Figure 4.4: Travel time recovery curves by facility type and travel mode

Figure 4.4 shows how access to each facility type recovers in the days following Hurricane

Irma’s landfall, with gas stations showing the least decrease in access and quickest recov-

ery, while libraries had relatively long recovery periods. Walking access had the greatest

change between pre-and post- landfall travel times, tripling for most facility types. Recovery

curves broken dine by facility type and travel mode can show decision makers differences in

how access is being restored, which may be useful for determining priorities for recovering

individual facilities and connections in the transportation network.

4.2.4 Statistical modeling

In order to evaluate the importance of access to essential services and recovery, I built out a

dataset where each observation represented one day for each user in the month of September

to estimate whether that user was in recovery that day, or not. Features included the travel

time to the nearest facility by each mode and the total number of each facility type by each

mode within 10, 20, 30, 40, 50, and 60 minutes. I also generated a variable to represent
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the pre-landfall travel time and for the difference between the travel time to a facility on a

given day and the pre-landfall travel time. Other variables include the travel time between

the user’s home and workplace, days since landfall (positive for days before September 10,

negative for following days), whether public schools in that county were closed, the day

of week, whether the location was home or work, the density of the census tract, whether

the location was defined as urban or not based on the Florida DOT classification [163], the

evacuation status of the user based on Florida evacuation zones and orders [164], and the

county (Monroe, Collier, Lee, and Hendry). I also included variables for the previous day’s

state for that user and the state of the user’s other location (home or work). I obtained

power outage data from [165] to determine variables representing each county’s service level

at noon, as well as variables for time until power was restored for 25%, 50%, 75%, 90%,

95%, and 99% of the population in units of days and hours. I also included daily county-

level cellular outage data (in %) based on the FCC’s Hurricane Irma communications status

reports [166]. I obtained variables for each location’s wind exposure in terms of maximum

gust wind speed, maximum sustained wind speed, gust duration, sustained duration, and

maximum 3-second gust wind speeds from [167]. I also obtained storm surge estimates for

Collier and Monroe Counties in the form of variables representing maximum flow speed,

maximum significant wave height, maximum force per length, maximum unit discharge,

and maximum depth from [168]. Finally, I incorporated variables from the CDC’s 2018

SoVI [106, 145] including raw values as well as percentage estimates, percentile estimates

(relative to all census tracts in the United States),“flag” variables for denoting the variable

is the 90th percentile, and aggregate “rank” variables that aggregate percentile scores across

the themes: socioeconomic, household composition/disability, minority status/language, and

housing type/transportation. A table of all of the included variables along with their variable

name, units, and source is included in Appendix F along with the associated correlation

matrix.

To model the relationship between the aforementioned variables and the state of recovery,

I opted to develop a random forest model. Random forest classification is an ensemble

decision-tree based modeling method that involve estimating the outcome from “majority

vote” determined by n individual trees. Each individual tree is developed from a random

bootstrap sample of observations from the dataset, then for each branch the a random subset

of features is selected and the optimal split feature is selected from that subset. Random

forests are known to be highly accurate and highly interpretable. While they do not output

a coefficient estimate for each input variable, they can produce the importance of individual

variables relative to the other features in addition to partial dependence plots, which show

the overarching relationship of each feature with the predicted outcome. Random forests are
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well suited for high dimensionality data as they account for high correlation and are robust

to overfitting due to their inherent random selection involved in selecting observations and

features for each tree. As this dataset includes 373 variables and many of the access variables

are highly correlated with each other, a random forest is advantageous for estimating the

importance of the included access measures for predicting recovery.

To develop a random forest model, I used a random holdout method for cross-validation.

For each model scenario, I trained the model on 90% of the data (training set), then evalu-

ated its performance on the other 10% of the data (testing set) using outputs for accuracy,

precision, recall, AUC-ROC, F1, and brier-score as well as a confusion matrix and variable

importance ranking. I repeated this 10 times, where the assignment of the data to the train-

ing or testing set was random each time. I compared model scenarios based on the average

across the 10 iterations.

As I only have storm surge estimates for Collier and Monroe Counties, some tested sce-

narios include only those counties. Other scenarios include Lee and Hendry Counties, as

well, but exclude the storm surge variables. Because the observed recovery states data are

zero-inflated (about five times as many 0s as 1s), I also tested various class balancing meth-

ods including manually weighting the 1s observations by five or by 25, and a “balanced

subsampling” method, which balances the class observation each tree’s random selection of

observations. Finally, I evaluated the inclusion of different variable combinations. In some

scenarios I removed all variables representing the number of facilities within 10, 20, 30, 40,

50, and 60 minutes as they are highly correlated with each other and with the travel time

measures. I also experimented with removing the power variables for restoration times up to

some % of the population time, as they were highly correlated with the variable representing

% outage at noon. In some scenarios, I removed all transit variables, as transit access was

fairly limited across most users and did not include transit service closures. Finally, in some

scenarios I removed the aggregated SoVI values, including percentiles and flags as well as

any raw values that were redundant of percentage estimates. These scenarios are cataloged

in Appendix G along with the output evaluation measures.

4.3 Results and Discussion

Cross-validation results were consistently highly accurate across all tested scenarios, with

average test set accuracy ranging from 94.3% to 94.5%. The confusion matrices revealed

the main discrepancy between values was their accuracy with predicting 1 values, as all

models predicted “recovered” (0) correctly about 96% of the time, while predictions for

“recovering” (1) were correct between 86% and 89% of the time. This slight discrepancy
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makes sense, given the higher volume and variability of the “recovered” observations (which

include pre-disruption observations) but is still a promising result for predicting “recovering”

observations. The models that included only Monroe and Collier Counties performed slightly

better in terms of ROC-AUC than those including all four counties, but again the range

was small from 0.979 to 0.984. Models that used balanced subsample weighting tended

to perform slightly better than the other weighting methods. For both the two-county

and four-county results, removing all of the designated groups of variables yielded better

accuracy for “recovering” predictions as measured by the F1 scores. With these results in

mind, I trained a model using the full dataset for just Monroe and Collier Counties with

balanced subsampling and without the within-x minutes, transit access, time to % power,

and aggregate and percentile SoVI features. The importance ranking of this model is plotted

in Figure 4.5.
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Figure 4.5: Importance for random forest model including only Monroe and Collier Counties
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The importances of previous state and the user’s other location state stand out, followed

by power outages, cell network outages, school closures, and days since landfall. These

variables are then followed by several access measures denoting the change in access from

pre-event travel times. Wind variables are ranked 20, 21, and 22 followed by many more

access variables until evacuation status is 57th in importance, then down further are variables

representing day of week and whether the location was home or work. The storm surge

variables all had very low importance, followed by the SoVI values.

As the storm surge variables are ranked relatively low in importance (perhaps due to

correlation with the wind and power variables, see Appendix F), I expanded the model to

the additional two counties and removed the storm surge features to see how the importance

measures might change with the additional observations. The importance ranking for this

model is shown in Figure 4.6.

76



Figure 4.6: Importance for random forest model including Monroe, Collier, Lee and Hendry
Counties
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When expanding the dataset to include Lee and Hendry Counties, school outages become

more important, moving to the third highest importance ranking over power outages and

cell phone outages. The access variables shift around slightly, but for the most part have a

similar importance value whether estimating all counties or only Monroe and Collier. The

partial dependence plots for this model are shared in Appendix H to demonstrate the impact

of each individual variable on the model’s estimation.

As the importance rankings are dominated by the previous state and the user’s other

location state variables, I test the sensitivity to excluding each of these variables from the

previously described model with all four counties. I include the cross validation results from

these sensitivity testing scenarios in Appendix G. The importance values generated from

excluding previous state features are shown below in Figure 4.7 and the importance values

generated from excluding other location state feature in addition to previous state feature

are shown in Figure 4.8.

78



Figure 4.7: Importance for random forest model including Monroe, Collier, Lee and Hendry
Counties and excluding previous state feature
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Figure 4.8: Importance for random forest model including Monroe, Collier, Lee and Hendry
Counties and excluding previous state and other location state features
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When excluding the previous state variable, the accuracy goes down to around 91% and

the ROC-AUC value decreases by 0.019. Still, the ranking order shifts relatively little other

than wind gaining slightly more importance and access measures are still positioned much

higher than the SoVI measures. When the other state variable is excluded, the ROC-AUC

value decreases by 0.037, but again the ranking metrics stay relatively similar other than

the wind variables shifting up in importance ranking. These results instill confidence in the

predictive contributions of all other included features.

Finally, I tested sensitivity to the inclusion of aggregated and percentile SoVI features

instead of raw percentage estimates. The cross validation results for these sensitivity tests

are shared in Appendix G. The importance rankings for this scenario are in Figure 4.9
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Figure 4.9: Importance for random forest model including Monroe, Collier, Lee and Hendry
Counties with aggregated SoVI measures
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The difference across all evaluative metrics was less than 0.01 and the importance rankings

did not change, so including the aggregated measures of social vulnerability does not change

their role relative to the included access measures.

Finally, I conducted statistical comparison of the full model versus a version without SoVI

variables and another without access variables. A two-sample t-test comparing the ROC-

AUC values for 10 cross validation sets for each model revealed a statistically significant,

though slight, increase in performance when SoVI variables were excluded (p-value = 0.021).

When access variables were excluded, there was a much larger and statistically significant

decrease in performance (p-value < 0. 001). These results are shared in Fig. 4.10 below.

Figure 4.10: Comparison of ROC AUC performance for models with and without SoVI and
access variables.

Fig. 4.11 shows the comparison of F1 scores from the 10 cross validation sets for each

model. Again, the model including access variables but excluding SoVI variables performed

statistically significantly better (p-value < 0. 001). The model excluding access variables
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but including SoVI variables did not have statistically different F1 scores from the full model

(p-value = 0.10).

Figure 4.11: Comparison of F1 performance for models with and without SoVI and access
variables.

These results indicate the value of including access variables over more traditional social

vulnerability measures. These results do not discount the impact of social vulnerability on

hazard experience. But, as static values that are not location nor hazard specific, perhaps

SoVI values do not provide helpful information for predicting recovery. The relative contribu-

tions of any social vulnerability characteristic to resilience and recovery may vary drastically

by location and by hazard [148]. The household and vulnerability in one community may

not even be consistent with other communities in the same region [148, 169], and so these

metrics are not useful for quantitatively evaluating resilience and recovery. Meanwhile, ac-

cess variables capture the systemic inequities that manifest as difference in access that may

be specific to a given community. For example, racial disparities in food access are prevalent

in many communities, but race not consistently a good predictor of hindered food access
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everywhere [68, 170]. Access measures captured the realized impacts of social vulnerability

specific to a location and provide actionable steps for decision makers during all phases of

a hazard. During the preparation phase, knowing the communities with already low access

or with high likelihood of diminished access can help with prioritizing the distribution of

supplies prior to an event. In the recovery phase, access metrics can guide decision making

around the restoration of infrastructure and essential services facilities, as well as guide where

to create temporary pop-ups for providing supplies for immediate needs. Over the long term,

hazard mitigation and adaptation may involve long-term planning around equitable access

to essential services through prioritizing facility openings and transportation options based

on how they contribute to improved community resilience.

4.3.1 Limitations

This method is limited by the available data and tools. These results rely on open source data

and software, including OpenStreetMaps and OpenTripPlanner, which may be incomplete

and suboptimal. The functional closures algorithm only serves as a proxy for what facilities

were inaccessible and when, the true closure periods of those facilities and of transportation

networks are not known. Furthermore, this model does not currently incorporate access to

shelters or pop-up suppliers that are known to provide emergency assistance in the days

following a disrupted event. Restoration timelines of infrastructure networks varied highly

within communities [5] but I only include power and cell network outages estimated at the

county level and so cannot speak to the more granular impacts of infrastructure damage and

outages on recovery. Finally, the exclusion of transportation and transit network outages

is a critical missing component in this study, particularly for estimating travel times as the

shortest route to an open facility as estimated by OpenTripPlanner may not be available.

These limitations encourage support for enhancing open data and software platforms to

achieve greater precision and accuracy, as well as for agencies and utilities to disseminate

local outage and closure data throughout the duration of their restoration efforts.

4.3.2 Future Opportunities

This research inspires opportunities for developing these ideas and models further. Addi-

tional time and effort could be spent on tuning the hyper-parameters of the random forest

models, such as the number of trees and the number of features considered at each node

split. These models could be expanded to include interactions between variables, or could

be segmented further by estimating recovery separately for home versus workplaces, urban

versus suburban versus rural households, majority minority census tracts, and low car own-
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ership census tracts. Workplaces could also be classified further based on the land-use of the

location, especially in states or counties where land-use is highly regulated. Other access

measures could also be incorporated, like the availability and accessibility of supermarkets

accepting SNAP and WIC as an additional measure of affordability. Finally, this work could

be extended to capture the relationship between access to essential services and recovery

for other geographic regions and hazardous events. Of special interest are communities with

higher transit dependence and transit service levels, which would be expected to include other

behavioral responses to disruption, as was the case with transit use and recovery following

Hurricane Sandy [45].

4.4 Conclusion

To help risk analysts, planners, and emergency management offices better define and act

on resilience, I propose access to essential services as a critical contributor to recovery.

These results presented in this chapter showcase the high importance of access measures

over SoVI data in estimating recovery from Hurricane Irma in Southwest Florida. While

these presented results do not differentiate much between the importance of different facility

types or between walking and driving, they show that change in access may play a critical

role in recovery for some communities. These results support incorporating access measures

into disaster planning efforts, considering both access to essential services before an event as

well as subsequent loss and recovery of access over time.

Part of the promise of reframing resilience around access to essential services is the po-

tential for action. Mapping access necessarily incorporates infrastructure networks and the

layout of a community, providing spatially explicit support for decision making [28]. With the

development of digital-twins for cities, hazards simulation models, and improved forecasting

models for predicting damages to the built environment comes opportunities to simulate and

forecast changes in access. Such modeling can help identify communities that are particularly

vulnerable to changes in access or isolation and empower planners to take action to reduce

that vulnerability before hazards strike. Following a hazard, measuring and tracking access

to essential services in a community can help with the prioritization of reopening [104]. Prop-

erly attributing the crucial role of access in enabling recovery is imperative for distributing

funding and resources to bolster resilience and transform communities both before and after

a disruptive event takes place.
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CHAPTER 5

Conclusion

5.1 Summary of Contributions

Overall, this dissertation contributes to the greater machine learning literature for modeling

human behavior and developing data-driven solutions for urban planning. Advances in

complex systems planning and machine learning methods enable intelligent and efficient use

of data such as LBS, but require a transdisciplinary approach to operationalize for effective

application. My work expands literature on machine learning methods and applications

for stochastically collected spatiotemporal data while drawing on urban planning and risk

analysis to characterize the highly localized, dynamic, and reciprocal relationship between

social vulnerability and the built environment.

For Chapter 2, I developed a novel data-driven approach for identifying facility closures

following a hazard event using LBS data. I explained the process of identifying facility

locations, time periods, and users of interest to generate time series from LBS data. I

demonstrated this approach on a sample of supermarket, school, home improvement, and

urgent care facilities in the months surrounding thee landfall of Hurricane Irma in Southwest

Florida in 2017. I applied the PELT anomaly detection method to automatically identify

extremely low visit patterns in those time series that corresponded with Irma’s landfall. I

termed these anomalous periods as functional closures to indicate in-access to the facility

by LBS users, whether due to the facility itself being closed or other barriers in access, such

as disruptions to the transportation network, low inventory, or perceived lack of safety. All

of these barriers contribute to residents being unable to meet their resource needs, and so

are important to evaluate to restore access to the communities who need it most when they

need it most. I also applied this method to all clinics, convenience stores, gas stations, home

improvement facilities, hospitals, libraries, pharmacies, and supermarkets available through

OpenStreetMap for the state off Florida. I mapped the proportion of facilities experiencing

closures and the duration of closures by county to show spatial and temporal patterns of
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in-access across the state. This large-scale data-driven approach can complement smaller-

scale surveys to provide broader coverage of analysis of facility availability. Knowing when

facilities are available and when is a key step in evaluating resilience in terms of access to

essential services facilities [28]. Such knowledge of the community-specific impacts of the

availability to essential services facilities can empower local and region-wide decision making

for strategic restoration of services [65, 104].

In Chapter 3 I described a method for identifying household and workplace recovery

periods from LBS data using a novel Bayesian network approach. I constructed a Bayesian

probabilistic network based on geographic and time-based variables to identify extremely low

probability user appearance behaviors that may indicate a period of recovery from Hurricane

Irma in 2017. I scaled this algorithm to include user households and workplaces across the

state of Florida to reveal county-level patterns of recovery prevalence and duration as well

as census tract-level analysis of Collier and Monroe counties, beyond the scope of current

household post-event survey methods. This method could be applied to identify recovery

periods for any sort of large-scale disruptive event that would impact infrastructure networks,

public health and safety, or other factors that would lead members of a population to alter

their routine home and work appearances. Quantifying household recovery through LBS

data offers new opportunities for assessing risk and response at the household level based

on geography, socioeconomic status, and access to essential services to evaluate possible

inequities in recovery and to better understand the characteristics that lead to a resilient

community.

In Chapter 4 I utilize the methods described in Chapters 2 and 3 to build out a dataset

including travel time to available essential services facilities and household and workplace

recovery periods. I also include data for power and cell network outages, modeled storm

surge and wind speed variables, and census-tract level Social Vulnerability Indices (SoVI)

metrics [46]. With this dataset and using cross validation and variable selection processes, I

developed highly accuratee random forest models to predict recovery status for every house-

hold and workplace each day during the month of September, 2017. The results from these

models, in the form of variable importance rankings, indicate that travel time to the near-

est available essential services facilities (including clinics, convenience stores, gas stations,

home improvement facilities, hospitals, libraries, pharmacies, and supermarkets) were more

important predictors of recovery than evacuation status, wind duration, storm surge, den-

sity, and every single SoVI variable. I conducted statistical comparisons of the full random

forest model against a model without SoVI variables and a model without access variables,

and found no statistically significant difference in performance when SoVI variables were

excluded, but a statistically significant reduction in performance when access variables were
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excluded. These results do not indicate that social vulnerability should be disregarded in

understanding recovery, but that in their current form, these index values are not helpful

for estimating the drivers of recovery. These indices are static in nature and are not hazard

specific, and the relative contributions of any one of these variables to resilience and recovery

may vary drastically by location and by hazard impacts [148]. Vulnerability is contextual

to location, time, and event and for regional-level single-event analysis, these measures do

not necessarily capture the differences in hazard experiences across vulnerable groups, as

what constitutes vulnerability in one community may not even be consistent with other

communities in the region [148, 169]. Access, however, provides a metric that captures the

vulnerability of households in terms of their ability to get to resources they need when they

need them. Access varies over geography and time and is operational, so decision makers

can actually change the access measures of a community through mitigation and adaptation

efforts before a hazard, and restoration plans during the recovery phase. The work in this

chapter motivates including access measures in hazards and resilience planning.

The interpretations from each of these facility closure detection, return-to-work detection,

and inferential modeling methods can shed new light on how various dimensions of access

to different essential services influence recovery. This work contributes to literature on eval-

uating access beyond proximity by incorporating multiple dimensions including travel time

across modes, amenity availability, and economic access to essential services to capture the

more complex but more realistic individual experiences across these intersections. Quantifi-

ably demonstrating the relationship between access and community resilience can motivate

improvement in access for the communities who need it most before, during, and after a

disaster. These methods and results from using LBS data present opportunity to translate

theory on access to essential services into quantitative modeling for localized, evidence-based,

and data-driven planning around community resilience.

5.2 Future Research

Future work could involve extending these methods to sensor and internet-of-things technol-

ogy data to integrate data feeds and capture more dimensions of human behavior to identify

more behavioral responses to disruptive events. These methods can also extend beyond dis-

aster response for analysis of disruptions caused by local transportation network changes,

migration patterns, or even pandemics. My method for detecting functional closures from

LBS data from Chapter 2 could be applied to internet of things and other sensor data.

Parking lots, for example, make use of sensors and cameras that may provide data that can

be converted to similar time series data to complement the data generated through LBS
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to show patterns of in-access across a community. This method could also be applied to

identify behavioral responses beyond facility closures, such as changes in user appearances

at traffic intersections may show disruptions to a transportation network. Anomaly detec-

tion methods like PELT could be applied to LBS-based time series show behavioral response

and increased or decreased traffic in response to non-hazard service changes, such as transit

service levels or induced demand from added road network capacity. Future analysis could

also show how this method might contribute to facility reopening policies [104].

The household and workplace recovery detection described in Chapter 3 could be further

assessed over longer time horizons and with additional locations of interest for a more com-

plete picture of LBS users’ routine activities. Future work with longer-term data can also

tune this method for more precise treatment of lag days, which my iteration of the model is

currently sensitive to and which may contribute to over- or under-estimated results. Further,

future work involving this method should investigate more inclusive definitions of workplaces,

as the definition described in the workplace finding algorithm excludes populations without

a smartphone, houseless populations, incarcerated populations, and/or those employed at

a job not regularly attended during the prescribed time period of 10am to 3pm on week-

days. These community members may exhibit different responses than those captured by

the algorithms and are critical for a comprehensive understanding of recovery.

Both methods in Chapters 2 and 3 should be further validated and tailored to complement

specific surveys for evaluated future hazard response and recovery. The greatest value from

each of these methods may be the capacity for comparative analysis and broader research

questions that involve investigating community resilience across different locations, hazards,

and time periods. Future research should apply these algorithms for the purpose of directly

comparing communities’ response to a hazard, or directly comparing the same community’s

response to multiple hazards. For example, this analysis could be used to compare behavioral

responses between Hurricane Matthew, which struck Florida in 2016, and Hurricane Irma

to see if users or communities that went through both events exhibited similar or different

behaviors and outcomes. These methods could be used to compare neighboring communities

experiencing the same hazard, controlling for storm parameters, to identify differences in

access and recovery that may reflect differences in local policies, interventions, or strategies

that influence recovery. Such comparisons can reveal local and hazard-specific vulnerabilities

in terms of essential service facility, household, and workplace recovery patterns.

Much more work is needed for quantifying the relationship between access to essential

services and community recovery and resilience. The results of Chapter 4 provide a promising

start, but questions remain about who needs access to what services and when? Further

research, including evaluating additional communities and hazards with other statistical
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models, may illuminate more descriptive location- and hazard-specific relationships between

access and recovery. Additional dimensions of access beyond proximity and availability

should also be considered. For example, affordability may be incorporated by identifying the

food providers that accept SNAP and WIC benefits. Investigating other data-driven means

for capturing affordability as well as accommodation, acceptability, and awareness should be

the subject of future research. Future analysis should also consider communities with higher

transit dependence and transit service levels, which may influence different responses and

vulnerabilities to disruption, as exhibited by the relationship between transit service and

recovery in New York City following Hurricane Sandy in 2012 [45].

Once the relationship between access to essential services and community resilience is

better understood, such measures could be developed into tools for decision makers. The

advent of digital twin technologies for cities offers opportunities to simulate hazards as well

as policies and interventions to evaluate changes in access due to infrastructure, transporta-

tion, and facility outages. Repeated simulations could reveal locations that are particularly

vulnerable to changes in access that may not stand out otherwise. Such simulations could

also reveal critical facilities or transportation pathways that should be further bolstered to

mitigate harm from future disruptions. Access and digital twin research could complement

research around x-minute cities [171] to identify which services should be available and at

what proximity to relate this planning concept of access to hazards scenarios.

5.3 Implications for Practice

Current resilience indices, including the Social Vulnerability Index as well as Baseline Re-

silience Indicators for Communites (BRIC), are widely used for evaluating the capacity and

resilience of communities, including for the U.S. Federal Emergency Management Agency’s

National Risk Index [46, 143, 144, 148]. However, these measures are not event or hazard

specific and lack temporal components. Further, they assume that each of the included met-

rics equally contribute to the vulnerability of every community. Community vulnerability is

place- and hazard-specific, but these index values do not capture important contextual dif-

ferences [146, 148, 169, 172, 173, 174]. Furthermore, these index values are not particularly

actionable, as they reflect stationary demographic, infrastructure, and environmental char-

acteristics of a community [64, 148, 174]. Measuring resilience in terms of access offers new

opportunities for integrating infrastructure and social capacities within a community system.

FEMA already has GIS-based tools through HAZUS for predicting hazard risk and impacts.

The work presented in this dissertation motivates building out similar tools to include access

measures for a more comprehensive and place-specific portrait of hazard risk. With such
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tools in hand, planning and emergency response decision makers can shift the paradigm of

recovery from evaluating property loss to evaluating access to essential resources.

The work described in this dissertation can also motivate local decision makers to evaluate

access in their own communities with known context of the specific social vulnerabilities that

may exacerbate risk. Resilience as a function of access presents opportunities for operational-

ization by local decision makers at every stage of a hazard, but requires transdisciplinary

buy-in and expertise for effective implementation. For the hazard mitigation stage, access

to essential services, equity of access, and redundancies and robustness of access are all

quantifiable and actionable metrics that can be evaluated to determine where additional

essential services facilities or transportation connections may improve resilience. For prepa-

ration, knowing specific locations with already low access to certain resources or with high

likelihood of decreased access can aid the prioritization the distribution of provisions. Dur-

ing the response and recovery phases, anomaly detection methods like those presented in

Chapters 2 and 3 may show which facilities and households are recovering and in need, and

can provide a real-time picture of changes in access to essential services over time. This

work also motivates the need for additional real time data streams on access, as LBS data

is helpful for retrospective analysis but may not be available in real time to practitioners.

With this information on hand, emergency responders can know where to place temporary

supply stations, while decision makers can prioritize infrastructure and facility restoration

to improve access where it is most needed. Transformative sustainability planning can in-

volve incorporating equitable access to essential services in long-range planning to evaluate

facility openings and transportation options based on how they contribute to community

resilience. With such knowledge at each hazard stage, decision makers can introduce people-

centered, place-based interventions and policies to diminish the scale of disruption in the

first place while promoting more equitable and resilient communities. To get to that point,

more work is needed to determine exactly which services are essential for who and at what

time. Successful fulfillment of this work will require cooperation across social scientists,

planners, policy makers, engineers, and data scientists to ensure quality and inclusive data

and methodologies that account for the breadth and depth of human experiences to develop

effective tools and policies that contribute to a more resilient future.

93



APPENDIX A

Functional Closures of Sample Essential

Services Facilities

For each facility category (supermarkets, elementary schools, secondary schools, urgent care

facilities, home improvement facilities) I map the selected facility locations in Figures A.1,

A.3, A.4, A.6, and A.8. I tabulate the latitude and longitude of these locations along with

the estimated closure and recovery dates in Tables A.1, A.2, A.3, A.4, and A.5. I then show

the plotted results from PELT changepoint detection for all facilities with enough unique

users (excluding elementary schools) in Figures A.2, A.5, A.7, and A.9.

Figure A.1: Selected supermarket facilities locations
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Location Facility Latitude Longitude Closure Recovery Duration

Date Date (Days)

Key West Publix 24.56940869 -81.76391392 9/8/17 9/15/17 7

Key West Winn Dixie 24.56445487 -81.77081773 9/8/17 9/15/17 7

Marco Walmart 26.0567864 -81.69696217 9/9/17 9/15/17 6

Island

Marco Winn Dixie 25.95182147 -81.72933746 9/9/17 9/12/17 3

Island

Naples Aldi 26.21890343 -81.77430144 9/8/17 9/14/17 6

Naples Publix 26.27532576 -81.745717 9/9/17 9/13/17 4

Table A.1: Selected supermarket facilities recovery periods
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Figure A.2: PELT changepoint detection for selected supermarket facilities
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Figure A.3: Selected primary school (grades K-5) facilities locations

Location Facility Latitude Longitude Closure Recovery Duration

Date Date (Days)

Key West Poinciana 24.56393853 -81.76607656

Elementary

Key West Gerald Adams 24.58165525 -81.74607789

Elementary

Marco Tommy Barfield 25.93974535 -81.7111098 Not

Island Elementary enough

Marco Manatee 26.04532811 -81.67917478 unique

Island Elementary users

Naples Shadowlawn 26.13361211 -81.7693005

Elementary

Naples Sea Gate 26.20976737 -81.80497323

Elementary

Table A.2: Selected primary school (grades K-5) facilities recovery periods

97



Figure A.4: Selected high school (grades 9-12) facilities locations

Location Facility Latitude Longitude Closure Recovery Duration

Date Date (Days)

Key West Key West 24.55469806 -81.77721592 9/6/17 9/27/27 21

High School

Key West Somerset Island 24.55514959 -81.77932354 9/6/17 9/20/17 14

Prep

Marco Lely 26.08832206 -81.71741543 9/7/17 9/25/17 18

Island High School

Naples Naples 26.17287689 -81.79477825 9/7/17 9/25/17 18

High School

Naples Lorenzo Walker 26.14151171 -81.76286184 9/7/17 9/25/17 18

Technical

High School

Table A.3: Selected high school (grades 9-12) facilities recovery periods
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Figure A.5: PELT changepoint detection for selected high school (grades 9-12) facilities
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Figure A.6: Selected urgent care facilities locations

Location Facility Latitude Longitude Closure Recovery Duration

Date Date (Days)

Key West Advanced 24.55983526 -81.78201053 9/7/17 9/15/17 8

Key West Key West 24.55842623 -81.77343188 9/7/17 9/15/17 8

Urgent Care Inc.

Marco Physicians 25.93388095 -81.69799277

Island Regional Not enough

Marco NCH 25.9380368 -81.71674392 unique users

Island Healthcare

Naples Redi-Med 26.27351711 -81.73055093 9/9/17 9/14/17 5

Naples Advance Medical 26.15833019 -81.78983111 9/10/17 9/16/17 6

Table A.4: Selected urgent care facilities recovery periods
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Figure A.7: PELT changepoint detection for selected urgent care facilities
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Figure A.8: Selected home improvement facilities locations

Location Facility Latitude Longitude Closure Recovery Duration

Date Date (Days)

Key West Home Depot 24.5674623 -81.77222628 9/7/17 9/16/17 9

Marco Lowes 26.06247058 -81.70142496 9/9/17 9/11/17 2

Island

Naples Home Depot 26.13752046 -81.76513321 9/9/17 9/12/17 3

Naples Lowes 26.22148867 -81.77097095 9/9/17 9/13/17 4

Table A.5: Selected home improvement facilities recovery periods
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Figure A.9: PELT changepoint detection for selected home improvement facilities
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APPENDIX B

Household and Workplace Finding Validation

The method I used to identify home locations is consistent with the work of (Washington,

2023) and (M. K. Chen et al., 2018) who used LBS data from the same provider and have

conducted their own validations with Census and land use data to affirm this method is

representative of home locations in their respective study areas. I build on this validation by

aggregating the identified Florida home locations to census tracts and comparing them to the

2013-2017 American Community Survey (ACS) 5-year population estimates. I converted the

home estimates and the tract population data to density in order to compare the variables

on a continuous scale consistent with other academic comparison of cell phone data stay

locations to ground truth (Calabrese et al., 2011). The difference between the ACS census-

tract level population density versus the factored cell phone user home location density

resulted in a linear trend shown transformed to a log scale in Figure B.1. The R2 value of

0.8798 indicates 87.98% of the variability in the LBS user homes density can be explained

by the actual population density of Florida census tracts according to the ACS.
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Figure B.1: Validation of home finding algorithm

I compared identified work locations to the latest available Census Transportation Plan-

ning Products (CTPP) Program tabulation of worker flows based on 2012 – 2016 5-year ACS.

The census tract density comparison transformed to a log scale produced a linear trend with

a R2 value of 0.9007, as shown in Figure B.2.
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Figure B.2: Validation of work finding algorithm

These results in addition to the those of (M. K. Chen et al., 2018; Washington, 2023)

affirm that the LBS is adequately of the study area home and workplace locations to provide

confidence for subsequent recovery modeling and analysis.
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APPENDIX C

Recovery Period Anomaly Detection

Sensitivity Analysis

I introduce several parameters in this Bayesian belief network including: the number of

previous days to include (i.e. the number lag days) L and how much to weigh the prior

data W . Additionally, I introduce variables representing days of the week, weekends and

holidays, and user appearances outside of home and work but within their home county and

other counties in Florida. To evaluate these parameter and variable choices, I conducted

sensitivity analysis and compared the model using across different combinations of variables

and parameter values. As running each combination on the full user dataset was compu-

tationally expensive, I compare the results from models run for a semi-random sample of

1000 users. I oversampled from counties in closer proximity to Hurricane Irma’s path as I

assumed more of these users would experience a recovery period. I weighed the random user

selection process to sample at least 100 users each from Monroe and Collier county and at

least 50 users each from Lee, Henry, Miami-Dade, Broward, and Palm Beach Counties.

Below in Figure C.1 I show box plots of the difference in calculated durations when

different input variables are used in the model setting L = 3, W = 7, and au is the minimum

of the user’s observed August data. In the plots “dow” stands in for “day of week” while

“hc bin” and “other bin” denote locations outside of home and work in the user’s home

county and in other Florida counties, respectively.
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(a) Home recovery sensitivity to input variables

(b) Work recovery sensitivity to input variables

Figure C.1: Sensitivity test comparing difference in duration when modeling with different
input variables
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These results show generally normally distributed differences with outliers distributed

evenly on either side of 0. I expect many of these differences would be reduced with the

inclusion of all users’ data in developing the prior rather than just the sample of 1,000 users.

Still, note that the inclusion of “hc bin” results in a wider distribution skewed towards 1 extra

day of duration when estimating work recovery periods. This may indicate that changes in

appearances in home county are related to changes in appearances at work. This makes

sense as pings could be collected as users travel or make additional stops between home and

work, and that the same barriers in access to work, like road closures or power outages,

would impact other destinations like supermarkets or child care providers. I opt to include

both variables “hc bin” and “other bin” in subsequent modeling to include as much data as

possible, but note that the model is sensitive to including user appearances outside of home

in work in their own home county. Therefore, the definition of home recovery period should

reflect users who change behavior not just by appearing more or less frequently at home and

work, but those who appear more or less frequently in their own home county.

Next, I evaluate model sensitivity to the prior weight, W holding L = 3, au as minimum

of the user’s observed August data, and including all variables including home county and

other Florida county appearances. I evaluate weight values of 1, 7, 14, and 28. This is

equivalent to weighing the prior data for 1 day, 1 week, 2 weeks, or 4 weeks in addition to

each user’s August data. I present the results from this sensitivity test in Figure C.2.
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(a) Home recovery sensitivity to prior weight

(b) Work recovery sensitivity to prior weight

Figure C.2: Sensitivity test comparing difference in duration when modeling with different
prior weight values
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For home recovery, the weight value does not make a difference in detected duration

for over 97% of users. For work recovery, lower weight values result in wider distributions

and slightly longer estimates for duration. I elect to proceed with W = 7 to ensure that

individual users’ results are primarily influenced by their own data while maintaining the

meaning of the day of week variables in the prior distribution. In other words, by setting

W = 7 I set the prior conditional distribution for each day of the week to be weighed exactly

one day relative to the user’s individual daily data.

Finally, I evaluate the number of lag days to include in this Bayesian belief network. The

point of including this variable is to account for expected variation in user home in work

appearances. While some users may appear at home every day during the month of August,

others may take frequent work or vacation trips. If a user regularly leaves their home county

for a day or two, I do not want to mistakenly attribute this regular behavior to a recovery

period. For example, if I include two lag days in the model, then a user who always appears

at home in August will have extremely low values for the probability of appearing at home

given they did not appear at home yesterday or the day before. For users who regularly

leave town for exactly one night, they will have an extremely low value for the probability

of appearing at home given they did not appear two days ago. For users who regularly

leave town for exactly two nights, these probability values will not be as extreme, so will

not reduce the joint probability as much and will be less likely to result in classification as

an anomaly. For these users, identifying an anomalous period will be more heavily based

on probability values from the other day of week and appearance variables. Importantly,

generating a lag day variable requires at least that many days of previous data, so having 10

lag days for example means I cannot include days 1-10 for each user as I would have empty

values. I show the sensitivity results for the number of lag days 0, 1, 3, and 7 included in

Figure C.3.
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(a) Home recovery sensitivity to lag days

(b) Work recovery sensitivity to lag days

Figure C.3: Sensitivity test comparing difference in duration when modeling with different
numbers of previous days
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These results for both home and work indicate high sensitivity of the model to including

lag days, with home having slightly wider distributions than the corresponding results for

work. The inclusion of more lag days results in higher estimations for duration of recovery

period, particularly for home where users are more likely to appear every day versus at work

where they are intuitively more likely to spend more days away on a regular basis. While

ideally one would be able to include all seven days of lag-day variables to capture every

combination of absentee days within a week, the limited time scale of this data means there

are only 24 days of training data. I use L = 3 in the full-data modeling to maintain an

equal number of each day of the week in the training data (exactly four full weeks) while

still including as much past behavior as possible for each user. Given the sensitivity of the

model to this parameter, future steps in the development of this method should evaluate the

sensitivity to lag days using all available users and for a much longer study period to reduce

the impact of losing data.

Sensitivity to this parameter will mostly affect users with low variability in their home

and work appearances. I found that 52,677 users appear at home every day, roughly 43%.

This value was consistent across counties, shown in Figure C.4.
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Figure C.4: Proportion of users appearing at home every day in August 2017

Most of these users still have some variability in their home county or other Florida county

appearances. Only 4.5% of users also have no variability (that is, they show up every day

or not at all) in their home county or other Florida county appearances during the month

of August. These users would be the most influenced by this lag variable. Again, I found

these users were distributed evenly across Florida, shown in Figure C.5.
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Figure C.5: Proportion of users with same daily home, home county, and Florida county
appearances in August 2017

Work disruptions are significantly less impacted by the lag day variable. For work, only

1.5% of users appeared at their work location every day, and 0.2% of users appeared at work

every day and showed up either every day or not at all in their home county or in another

Florida county.
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APPENDIX D

Recovery Period Anomaly Detection Survey

Validation

In Sectioin 3.3.5, I show how the survey results from (Wong et al., 2018) compare to model

results based on an anomaly threshold au set to 3 standard deviations from the mean of the

August data for each user. In Table D.1, I share the results for every anomaly definition I

tested.

LBS % with

Survey % House Recovery

Region Evacuated au = min au = mean− au = mean− au = mean−
2 ∗ SD 3 ∗ SD 4 ∗ SD

Northeast/ 46.2% 47.1% 57.0% 46.3% 38.7%

Central-East

Central-West 73.7% 52.6% 61.6% 51.4% 43.8%

Southwest 72.4% 64.9% 72.6% 64.0% 56.8%

Southeast 61.9% 62.3% 70.4% 60.1% 52.1%

Total 57.1% 55.2% 64.1% 53.9% 46.2%

Table D.1: Survey evacuation versus LBS home recovery by anomaly definitions

Using au = mean−2∗SD consistently overestimates the survey results while au = mean−
4∗SD consistently underestimates the survey results. Both au = min and au = mean−3∗SD
approximate the survey results well, though au = mean− 3 ∗ SD is slightly stricter. I elect

to share results using the au = mean−3∗SD definition to be robust to users who may have

just one extremely low point in their training data (for example, if they have a single night

away from home). I expect the same general patterns would emerge if I used au = min.
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APPENDIX E

Functional Closures of Florida Essential

Services Facilities

From the algorithm described in Chapter 2 I estimated functional closures for all Florida

facilities data obtained from OpenStreetMaps as described in Chapter 4. Figure E.1 shows

the total proportions of each facility type that experienced a detectable functional closure

by county.
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(a) Estimated proportion of clinics functional clo-
sures by county

(b) Estimated proportion of convenience store
functional closures by county

(c) Estimated proportion of gas station functional
closures by county

(d) Estimated proportion of home improvement
functional closures by county
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(a) Estimated proportion of hospital functional
closures by county

(b) Estimated proportion of library functional clo-
sures by county

(c) Estimated proportion of pharmacy functional
closures by county

(d) Estimated proportion of supermarket func-
tional closures by county

Figure E.1: County-level estimations for proportion of facilities facing some period of func-
tional closure
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Figure E.2 shows the mean duration (in days) of the detected functional closure, including

facilities where no functional closure was detected (i.e. duration equals 0).

(a) Mean duration of clinics functional closures by
county (days)

(b) Mean duration of convenience store functional
closures by county (days)

(c) Mean duration of gas station functional clo-
sures by county (days)

(d) Mean duration of home improvement func-
tional closures by county (days)
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(a) Mean duration of hospital functional closures
by county (days)

(b) Mean duration of library functional closures
by county (days)

(c) Mean duration of pharmacy functional clo-
sures by county (days)

(d) Mean duration of supermarket functional clo-
sures by county (days)

Figure E.2: County-level estimations for mean duration of facility functional closures
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APPENDIX F

Variables included in Statistical Modeling for

Evaluating Access to Essential Services vs.

Recovery

Table F.1 shows all variables used in estimating the recovery status of Floridians in the

period surrounding Hurricane Irma. Data was obtained for 7,639 total users in Monroe,

Collier, Lee and Hendry Counties for each day in September, 2017.

Category Variable name Variable Units Source

Recovery sta-

tus

state Recovery status Binary Recovery estimation algo-

rithm

prev state Users recovery status

at same location on

previous day

Binary Calculated

other loc state Users recovery status

at other location on

same day

Binary Calculated

home Location is home

(versus work)

Binary Home finding algorithm

Date day Days since landfall

(9/10/2017)

Days Date

Friday Day is a Friday Binary Date

Monday Day is a Monday Binary Date

Saturday Day is a Saturday Binary Date

Sunday Day is a Sunday Binary Date

Thursday Day is a Thursday Binary Date

Tuesday Day is a Tuesday Binary Date

Wednesday Day is a Wednesday Binary Date

School status school out School closure status Binary County level school districts

Evacuation

status

evac Evacuation status by

zone

Binary Florida Division of Emer-

gency Management public

records request

Access home work car tt Travel time between

user’s home and work

by car

Minutes OpenTripPlanner

home work walk tt Travel time between

user’s home and work

by walking

Minutes OpenTripPlanner

home work transit tt Travel time between

user’s home and work

by transit

Minutes OpenTripPlanner

(’time (min)’, ’clinic’,

’CAR’)

Minimum travel time

to clinic by car

Minutes OpenTripPlanner
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(’time (min)’, ’clinic’,

’TRANSIT’)

Minimum travel time

to clinic by transit

Minutes OpenTripPlanner

(’time (min)’, ’clinic’,

’WALK’)

Minimum travel time

to clinic by walking

Minutes OpenTripPlanner

(’time (min)’, ’convenience’,

’CAR’)

Minimum travel time

to convenience store

store by car

Minutes OpenTripPlanner

(’time (min)’, ’convenience’,

’TRANSIT’)

Minimum travel time

to convenience store

store by transit

Minutes OpenTripPlanner

(’time (min)’, ’convenience’,

’WALK’)

Minimum travel time

to convenience store

store by walking

Minutes OpenTripPlanner

(’time (min)’, ’gas’, ’CAR’) Minimum travel time

to gas station by car

Minutes OpenTripPlanner

(’time (min)’, ’gas’, ’TRAN-

SIT’)

Minimum travel time

to gas station by tran-

sit

Minutes OpenTripPlanner

(’time (min)’, ’gas’, ’WALK’) Minimum travel time

to gas station by

walking

Minutes OpenTripPlanner

(’time (min)’, ’home’,

’CAR’)

Minimum travel time

to home improve-

ment improvement

improvement by car

Minutes OpenTripPlanner

(’time (min)’, ’home’,

’TRANSIT’)

Minimum travel time

to home improvement

improvement by tran-

sit

Minutes OpenTripPlanner

(’time (min)’, ’home’,

’WALK’)

Minimum travel time

to home improvement

improvement by walk-

ing

Minutes OpenTripPlanner

(’time (min)’, ’hospital’,

’CAR’)

Minimum travel time

to hospital by car

Minutes OpenTripPlanner

(’time (min)’, ’hospital’,

’TRANSIT’)

Minimum travel time

to hospital by transit

Minutes OpenTripPlanner

(’time (min)’, ’hospital’,

’WALK’)

Minimum travel time

to hospital by walking

Minutes OpenTripPlanner

(’time (min)’, ’library’,

’CAR’)

Minimum travel time

to library by car

Minutes OpenTripPlanner

(’time (min)’, ’library’,

’TRANSIT’)

Minimum travel time

to library by transit

Minutes OpenTripPlanner

(’time (min)’, ’library’,

’WALK’)

Minimum travel time

to library by walking

Minutes OpenTripPlanner

(’time (min)’, ’pharmacy’,

’CAR’)

Minimum travel time

to pharmacy by car

Minutes OpenTripPlanner

(’time (min)’, ’pharmacy’,

’TRANSIT’)

Minimum travel time

to pharmacy by tran-

sit

Minutes OpenTripPlanner

(’time (min)’, ’pharmacy’,

’WALK’)

Minimum travel time

to pharmacy by walk-

ing

Minutes OpenTripPlanner

(’time (min)’, ’school’,

’CAR’)

Minimum travel time

to school by car

Minutes OpenTripPlanner

(’time (min)’, ’school’,

’TRANSIT’)

Minimum travel time

to school by transit

Minutes OpenTripPlanner

(’time (min)’, ’school’,

’WALK’)

Minimum travel time

to school by walking

Minutes OpenTripPlanner

(’time (min)’, ’supermarket’,

’CAR’)

Minimum travel time

to supermarket by car

Minutes OpenTripPlanner

(’time (min)’, ’supermarket’,

’TRANSIT’)

Minimum travel time

to supermarket by

transit

Minutes OpenTripPlanner

(’time (min)’, ’supermarket’,

’WALK’)

Minimum travel time

to supermarket by

walking

Minutes OpenTripPlanner

(’time (min)’, ’clinic’,

’CAR’) prelandfall

Minimum pre-landfall

travel time to clinic

by car

Minutes OpenTripPlanner

(’time (min)’, ’clinic’,

’TRANSIT’) prelandfall

Minimum pre-landfall

travel time to clinic

by transit

Minutes OpenTripPlanner
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(’time (min)’, ’clinic’,

’WALK’) prelandfall

Minimum pre-landfall

travel time to clinic

by walking

Minutes OpenTripPlanner

(’time (min)’, ’convenience’,

’CAR’) prelandfall

Minimum pre-landfall

travel time to conve-

nience store by car

Minutes OpenTripPlanner

(’time (min)’, ’convenience’,

’TRANSIT’) prelandfall

Minimum pre-landfall

travel time to conve-

nience store by transit

Minutes OpenTripPlanner

(’time (min)’, ’convenience’,

’WALK’) prelandfall

Minimum pre-landfall

travel time to conve-

nience store by walk-

ing

Minutes OpenTripPlanner

(’time (min)’, ’gas’,

’CAR’) prelandfall

Minimum pre-landfall

travel time to gas sta-

tion by car

Minutes OpenTripPlanner

(’time (min)’, ’gas’, ’TRAN-

SIT’) prelandfall

Minimum pre-landfall

travel time to gas sta-

tion by transit

Minutes OpenTripPlanner

(’time (min)’, ’gas’,

’WALK’) prelandfall

Minimum pre-landfall

travel time to gas sta-

tion by walking

Minutes OpenTripPlanner

(’time (min)’, ’home’,

’CAR’) prelandfall

Minimum pre-landfall

travel time to home

improvement by car

Minutes OpenTripPlanner

(’time (min)’, ’home’,

’TRANSIT’) prelandfall

Minimum pre-landfall

travel time to home

improvement by tran-

sit

Minutes OpenTripPlanner

(’time (min)’, ’home’,

’WALK’) prelandfall

Minimum pre-landfall

travel time to home

improvement by walk-

ing

Minutes OpenTripPlanner

(’time (min)’, ’hospital’,

’CAR’) prelandfall

Minimum pre-landfall

travel time to hospital

by car

Minutes OpenTripPlanner

(’time (min)’, ’hospital’,

’TRANSIT’) prelandfall

Minimum pre-landfall

travel time to hospital

by transit

Minutes OpenTripPlanner

(’time (min)’, ’hospital’,

’WALK’) prelandfall

Minimum pre-landfall

travel time to hospital

by walking

Minutes OpenTripPlanner

(’time (min)’, ’library’,

’CAR’) prelandfall

Minimum pre-landfall

travel time to library

by car

Minutes OpenTripPlanner

(’time (min)’, ’library’,

’TRANSIT’) prelandfall

Minimum pre-landfall

travel time to library

by transit

Minutes OpenTripPlanner

(’time (min)’, ’library’,

’WALK’) prelandfall

Minimum pre-landfall

travel time to library

by walking

Minutes OpenTripPlanner

(’time (min)’, ’pharmacy’,

’CAR’) prelandfall

Minimum pre-landfall

travel time to phar-

macy by car

Minutes OpenTripPlanner

(’time (min)’, ’pharmacy’,

’TRANSIT’) prelandfall

Minimum pre-landfall

travel time to phar-

macy by transit

Minutes OpenTripPlanner

(’time (min)’, ’pharmacy’,

’WALK’) prelandfall

Minimum pre-landfall

travel time to phar-

macy by walking

Minutes OpenTripPlanner

(’time (min)’, ’school’,

’CAR’) prelandfall

Minimum pre-landfall

travel time to school

by car

Minutes OpenTripPlanner

(’time (min)’, ’school’,

’TRANSIT’) prelandfall

Minimum pre-landfall

travel time to school

by transit

Minutes OpenTripPlanner

(’time (min)’, ’school’,

’WALK’) prelandfall

Minimum pre-landfall

travel time to school

by walking

Minutes OpenTripPlanner

(’time (min)’, ’supermarket’,

’CAR’) prelandfall

Minimum pre-landfall

travel time to super-

market by car

Minutes OpenTripPlanner
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(’time (min)’, ’supermarket’,

’TRANSIT’) prelandfall

Minimum pre-landfall

travel time to super-

market by transit

Minutes OpenTripPlanner

(’time (min)’, ’supermarket’,

’WALK’) prelandfall

Minimum pre-landfall

travel time to super-

market by walking

Minutes OpenTripPlanner

(’time (min)’, ’clinic’,

’CAR’) diff

Difference from min-

imum pre-landfall

travel time to clinic

by car

Minutes OpenTripPlanner

(’time (min)’, ’clinic’,

’TRANSIT’) diff

Difference from pre-

landfall travel time to

clinic by transit

Minutes OpenTripPlanner

(’time (min)’, ’clinic’,

’WALK’) diff

Difference from pre-

landfall travel time to

clinic by walking

Minutes OpenTripPlanner

(’time (min)’, ’convenience’,

’CAR’) diff

Difference from pre-

landfall travel time to

convenience store by

car

Minutes OpenTripPlanner

(’time (min)’, ’convenience’,

’TRANSIT’) diff

Difference from pre-

landfall travel time to

convenience store by

transit

Minutes OpenTripPlanner

(’time (min)’, ’convenience’,

’WALK’) diff

Difference from pre-

landfall travel time to

convenience store by

walking

Minutes OpenTripPlanner

(’time (min)’, ’gas’,

’CAR’) diff

Difference from pre-

landfall travel time to

gas station by car

Minutes OpenTripPlanner

(’time (min)’, ’gas’, ’TRAN-

SIT’) diff

Difference from pre-

landfall travel time to

gas station by transit

Minutes OpenTripPlanner

(’time (min)’, ’gas’,

’WALK’) diff

Difference from pre-

landfall travel time to

gas station by walking

Minutes OpenTripPlanner

(’time (min)’, ’home’,

’CAR’) diff

Difference from pre-

landfall travel time to

home improvement by

car

Minutes OpenTripPlanner

(’time (min)’, ’home’,

’TRANSIT’) diff

Difference from pre-

landfall travel time to

home improvement by

transit

Minutes OpenTripPlanner

(’time (min)’, ’home’,

’WALK’) diff

Difference from pre-

landfall travel time to

home improvement by

walking

Minutes OpenTripPlanner

(’time (min)’, ’hospital’,

’CAR’) diff

Difference from pre-

landfall travel time to

hospital by car

Minutes OpenTripPlanner

(’time (min)’, ’hospital’,

’TRANSIT’) diff

Difference from pre-

landfall travel time to

hospital by transit

Minutes OpenTripPlanner

(’time (min)’, ’hospital’,

’WALK’) diff

Difference from pre-

landfall travel time to

hospital by walking

Minutes OpenTripPlanner

(’time (min)’, ’library’,

’CAR’) diff

Difference from pre-

landfall travel time to

library by car

Minutes OpenTripPlanner

(’time (min)’, ’library’,

’TRANSIT’) diff

Difference from pre-

landfall travel time to

library by transit

Minutes OpenTripPlanner

(’time (min)’, ’library’,

’WALK’) diff

Difference from pre-

landfall travel time to

library by walking

Minutes OpenTripPlanner

(’time (min)’, ’pharmacy’,

’CAR’) diff

Difference from pre-

landfall travel time to

pharmacy by car

Minutes OpenTripPlanner

(’time (min)’, ’pharmacy’,

’TRANSIT’) diff

Difference from pre-

landfall travel time to

pharmacy by transit

Minutes OpenTripPlanner
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(’time (min)’, ’pharmacy’,

’WALK’) diff

Difference from pre-

landfall travel time to

pharmacy by walking

Minutes OpenTripPlanner

(’time (min)’, ’school’,

’CAR’) diff

Difference from pre-

landfall travel time to

school by car

Minutes OpenTripPlanner

(’time (min)’, ’school’,

’TRANSIT’) diff

Difference from pre-

landfall travel time to

school by transit

Minutes OpenTripPlanner

(’time (min)’, ’school’,

’WALK’) diff

Difference from pre-

landfall travel time to

school by walking

Minutes OpenTripPlanner

(’time (min)’, ’supermarket’,

’CAR’) diff

Difference from pre-

landfall travel time to

supermarket by car

Minutes OpenTripPlanner

(’time (min)’, ’supermarket’,

’TRANSIT’) diff

Difference from pre-

landfall travel time to

supermarket by tran-

sit

Minutes OpenTripPlanner

(’time (min)’, ’supermarket’,

’WALK’) diff

Difference from pre-

landfall travel time to

supermarket by walk-

ing

Minutes OpenTripPlanner

(’within 10 min’, ’clinic’,

’CAR’)

Number of clinics

within 10 minutes by

car

Count OpenTripPlanner

(’within 10 min’, ’clinic’,

’TRANSIT’)

Number of clinics

within 10 minutes by

transit

Count OpenTripPlanner

(’within 10 min’, ’clinic’,

’WALK’)

Number of clinics

within 10 minutes by

walking

Count OpenTripPlanner

(’within 10 min’, ’conve-

nience’, ’CAR’)

Number of conve-

nience stores within

10 minutes by car

Count OpenTripPlanner

(’within 10 min’, ’conve-

nience’, ’TRANSIT’)

Number of conve-

nience stores within

10 minutes by transit

Count OpenTripPlanner

(’within 10 min’, ’conve-

nience’, ’WALK’)

Number of conve-

nience stores within

10 minutes by walking

Count OpenTripPlanner

(’within 10 min’, ’gas’,

’CAR’)

Number of gas sta-

tions within 10 min-

utes by car

Count OpenTripPlanner

(’within 10 min’, ’gas’,

’TRANSIT’)

Number of gas sta-

tions within 10 min-

utes by transit

Count OpenTripPlanner

(’within 10 min’, ’gas’,

’WALK’)

Number of gas sta-

tions within 10 min-

utes by walking

Count OpenTripPlanner

(’within 10 min’, ’home’,

’CAR’)

Number of home im-

provements within 10

minutes by car

Count OpenTripPlanner

(’within 10 min’, ’home’,

’TRANSIT’)

Number of home im-

provements within 10

minutes by transit

Count OpenTripPlanner

(’within 10 min’, ’home’,

’WALK’)

Number of home im-

provements within 10

minutes by walking

Count OpenTripPlanner

(’within 10 min’, ’hospital’,

’CAR’)

Number of hospitals

within 10 minutes by

car

Count OpenTripPlanner

(’within 10 min’, ’hospital’,

’TRANSIT’)

Number of hospitals

within 10 minutes by

transit

Count OpenTripPlanner

(’within 10 min’, ’hospital’,

’WALK’)

Number of hospitals

within 10 minutes by

walking

Count OpenTripPlanner

(’within 10 min’, ’library’,

’CAR’)

Number of libraries

within 10 minutes by

car

Count OpenTripPlanner

(’within 10 min’, ’library’,

’TRANSIT’)

Number of libraries

within 10 minutes by

transit

Count OpenTripPlanner
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(’within 10 min’, ’library’,

’WALK’)

Number of libraries

within 10 minutes by

walking

Count OpenTripPlanner

(’within 10 min’, ’phar-

macy’, ’CAR’)

Number of pharma-

cies within 10 minutes

by car

Count OpenTripPlanner

(’within 10 min’, ’phar-

macy’, ’TRANSIT’)

Number of pharma-

cies within 10 minutes

by transit

Count OpenTripPlanner

(’within 10 min’, ’phar-

macy’, ’WALK’)

Number of pharma-

cies within 10 minutes

by walking

Count OpenTripPlanner

(’within 10 min’, ’school’,

’CAR’)

Number of schools

within 10 minutes by

car

Count OpenTripPlanner

(’within 10 min’, ’school’,

’TRANSIT’)

Number of schools

within 10 minutes by

transit

Count OpenTripPlanner

(’within 10 min’, ’school’,

’WALK’)

Number of schools

within 10 minutes by

walking

Count OpenTripPlanner

(’within 10 min’, ’supermar-

ket’, ’CAR’)

Number of supermar-

kets within 10 min-

utes by car

Count OpenTripPlanner

(’within 10 min’, ’supermar-

ket’, ’TRANSIT’)

Number of supermar-

kets within 10 min-

utes by transit

Count OpenTripPlanner

(’within 10 min’, ’supermar-

ket’, ’WALK’)

Number of supermar-

kets within 10 min-

utes by walking

Count OpenTripPlanner

(’within 20 min’, ’clinic’,

’CAR’)

Number of clinics

within 20 minutes by

car

Count OpenTripPlanner

(’within 20 min’, ’clinic’,

’TRANSIT’)

Number of clinics

within 20 minutes by

transit

Count OpenTripPlanner

(’within 20 min’, ’clinic’,

’WALK’)

Number of clinics

within 20 minutes by

walking

Count OpenTripPlanner

(’within 20 min’, ’conve-

nience’, ’CAR’)

Number of conve-

nience stores within

20 minutes by car

Count OpenTripPlanner

(’within 20 min’, ’conve-

nience’, ’TRANSIT’)

Number of conve-

nience stores within

20 minutes by transit

Count OpenTripPlanner

(’within 20 min’, ’conve-

nience’, ’WALK’)

Number of conve-

nience stores within

20 minutes by walking

Count OpenTripPlanner

(’within 20 min’, ’gas’,

’CAR’)

Number of gas sta-

tions within 20 min-

utes by car

Count OpenTripPlanner

(’within 20 min’, ’gas’,

’TRANSIT’)

Number of gas sta-

tions within 20 min-

utes by transit

Count OpenTripPlanner

(’within 20 min’, ’gas’,

’WALK’)

Number of gas sta-

tions within 20 min-

utes by walking

Count OpenTripPlanner

(’within 20 min’, ’home’,

’CAR’)

Number of home im-

provements within 20

minutes by car

Count OpenTripPlanner

(’within 20 min’, ’home’,

’TRANSIT’)

Number of home im-

provements within 20

minutes by transit

Count OpenTripPlanner

(’within 20 min’, ’home’,

’WALK’)

Number of home im-

provements within 20

minutes by walking

Count OpenTripPlanner

(’within 20 min’, ’hospital’,

’CAR’)

Number of hospitals

within 20 minutes by

car

Count OpenTripPlanner

(’within 20 min’, ’hospital’,

’TRANSIT’)

Number of hospitals

within 20 minutes by

transit

Count OpenTripPlanner
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(’within 20 min’, ’hospital’,

’WALK’)

Number of hospitals

within 20 minutes by

walking

Count OpenTripPlanner

(’within 20 min’, ’library’,

’CAR’)

Number of libraries

within 20 minutes by

car

Count OpenTripPlanner

(’within 20 min’, ’library’,

’TRANSIT’)

Number of libraries

within 20 minutes by

transit

Count OpenTripPlanner

(’within 20 min’, ’library’,

’WALK’)

Number of libraries

within 20 minutes by

walking

Count OpenTripPlanner

(’within 20 min’, ’phar-

macy’, ’CAR’)

Number of pharma-

cies within 20 minutes

by car

Count OpenTripPlanner

(’within 20 min’, ’phar-

macy’, ’TRANSIT’)

Number of pharma-

cies within 20 minutes

by transit

Count OpenTripPlanner

(’within 20 min’, ’phar-

macy’, ’WALK’)

Number of pharma-

cies within 20 minutes

by walking

Count OpenTripPlanner

(’within 20 min’, ’school’,

’CAR’)

Number of schools

within 20 minutes by

car

Count OpenTripPlanner

(’within 20 min’, ’school’,

’TRANSIT’)

Number of schools

within 20 minutes by

transit

Count OpenTripPlanner

(’within 20 min’, ’school’,

’WALK’)

Number of schools

within 20 minutes by

walking

Count OpenTripPlanner

(’within 20 min’, ’supermar-

ket’, ’CAR’)

Number of supermar-

kets within 20 min-

utes by car

Count OpenTripPlanner

(’within 20 min’, ’supermar-

ket’, ’TRANSIT’)

Number of supermar-

kets within 20 min-

utes by transit

Count OpenTripPlanner

(’within 20 min’, ’supermar-

ket’, ’WALK’)

Number of supermar-

kets within 20 min-

utes by walking

Count OpenTripPlanner

(’within 30 min’, ’clinic’,

’CAR’)

Number of clinics

within 30 minutes by

car

Count OpenTripPlanner

(’within 30 min’, ’clinic’,

’TRANSIT’)

Number of clinics

within 30 minutes by

transit

Count OpenTripPlanner

(’within 30 min’, ’clinic’,

’WALK’)

Number of clinics

within 30 minutes by

walking

Count OpenTripPlanner

(’within 30 min’, ’conve-

nience’, ’CAR’)

Number of conve-

nience stores within

30 minutes by car

Count OpenTripPlanner

(’within 30 min’, ’conve-

nience’, ’TRANSIT’)

Number of conve-

nience stores within

30 minutes by transit

Count OpenTripPlanner

(’within 30 min’, ’conve-

nience’, ’WALK’)

Number of conve-

nience stores within

30 minutes by walking

Count OpenTripPlanner

(’within 30 min’, ’gas’,

’CAR’)

Number of gas sta-

tions within 30 min-

utes by car

Count OpenTripPlanner

(’within 30 min’, ’gas’,

’TRANSIT’)

Number of gas sta-

tions within 30 min-

utes by transit

Count OpenTripPlanner

(’within 30 min’, ’gas’,

’WALK’)

Number of gas sta-

tions within 30 min-

utes by walking

Count OpenTripPlanner

(’within 30 min’, ’home’,

’CAR’)

Number of home im-

provements within 30

minutes by car

Count OpenTripPlanner

(’within 30 min’, ’home’,

’TRANSIT’)

Number of home im-

provements within 30

minutes by transit

Count OpenTripPlanner
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(’within 30 min’, ’home’,

’WALK’)

Number of home im-

provements within 30

minutes by walking

Count OpenTripPlanner

(’within 30 min’, ’hospital’,

’CAR’)

Number of hospitals

within 30 minutes by

car

Count OpenTripPlanner

(’within 30 min’, ’hospital’,

’TRANSIT’)

Number of hospitals

within 30 minutes by

transit

Count OpenTripPlanner

(’within 30 min’, ’hospital’,

’WALK’)

Number of hospitals

within 30 minutes by

walking

Count OpenTripPlanner

(’within 30 min’, ’library’,

’CAR’)

Number of libraries

within 30 minutes by

car

Count OpenTripPlanner

(’within 30 min’, ’library’,

’TRANSIT’)

Number of libraries

within 30 minutes by

transit

Count OpenTripPlanner

(’within 30 min’, ’library’,

’WALK’)

Number of libraries

within 30 minutes by

walking

Count OpenTripPlanner

(’within 30 min’, ’phar-

macy’, ’CAR’)

Number of pharma-

cies within 30 minutes

by car

Count OpenTripPlanner

(’within 30 min’, ’phar-

macy’, ’TRANSIT’)

Number of pharma-

cies within 30 minutes

by transit

Count OpenTripPlanner

(’within 30 min’, ’phar-

macy’, ’WALK’)

Number of pharma-

cies within 30 minutes

by walking

Count OpenTripPlanner

(’within 30 min’, ’school’,

’CAR’)

Number of schools

within 30 minutes by

car

Count OpenTripPlanner

(’within 30 min’, ’school’,

’TRANSIT’)

Number of schools

within 30 minutes by

transit

Count OpenTripPlanner

(’within 30 min’, ’school’,

’WALK’)

Number of schools

within 30 minutes by

walking

Count OpenTripPlanner

(’within 30 min’, ’supermar-

ket’, ’CAR’)

Number of supermar-

kets within 30 min-

utes by car

Count OpenTripPlanner

(’within 30 min’, ’supermar-

ket’, ’TRANSIT’)

Number of supermar-

kets within 30 min-

utes by transit

Count OpenTripPlanner

(’within 30 min’, ’supermar-

ket’, ’WALK’)

Number of supermar-

kets within 30 min-

utes by walking

Count OpenTripPlanner

(’within 40 min’, ’clinic’,

’CAR’)

Number of clinics

within 40 minutes by

car

Count OpenTripPlanner

(’within 40 min’, ’clinic’,

’TRANSIT’)

Number of clinics

within 40 minutes by

transit

Count OpenTripPlanner

(’within 40 min’, ’clinic’,

’WALK’)

Number of clinics

within 40 minutes by

walking

Count OpenTripPlanner

(’within 40 min’, ’conve-

nience’, ’CAR’)

Number of conve-

nience stores within

40 minutes by car

Count OpenTripPlanner

(’within 40 min’, ’conve-

nience’, ’TRANSIT’)

Number of conve-

nience stores within

40 minutes by transit

Count OpenTripPlanner

(’within 40 min’, ’conve-

nience’, ’WALK’)

Number of conve-

nience stores within

40 minutes by walking

Count OpenTripPlanner

(’within 40 min’, ’gas’,

’CAR’)

Number of gas sta-

tions within 40 min-

utes by car

Count OpenTripPlanner

(’within 40 min’, ’gas’,

’TRANSIT’)

Number of gas sta-

tions within 40 min-

utes by transit

Count OpenTripPlanner
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(’within 40 min’, ’gas’,

’WALK’)

Number of gas sta-

tions within 40 min-

utes by walking

Count OpenTripPlanner

(’within 40 min’, ’home’,

’CAR’)

Number of home im-

provements within 40

minutes by car

Count OpenTripPlanner

(’within 40 min’, ’home’,

’TRANSIT’)

Number of home im-

provements within 40

minutes by transit

Count OpenTripPlanner

(’within 40 min’, ’home’,

’WALK’)

Number of home im-

provements within 40

minutes by walking

Count OpenTripPlanner

(’within 40 min’, ’hospital’,

’CAR’)

Number of hospitals

within 40 minutes by

car

Count OpenTripPlanner

(’within 40 min’, ’hospital’,

’TRANSIT’)

Number of hospitals

within 40 minutes by

transit

Count OpenTripPlanner

(’within 40 min’, ’hospital’,

’WALK’)

Number of hospitals

within 40 minutes by

walking

Count OpenTripPlanner

(’within 40 min’, ’library’,

’CAR’)

Number of libraries

within 40 minutes by

car

Count OpenTripPlanner

(’within 40 min’, ’library’,

’TRANSIT’)

Number of libraries

within 40 minutes by

transit

Count OpenTripPlanner

(’within 40 min’, ’library’,

’WALK’)

Number of libraries

within 40 minutes by

walking

Count OpenTripPlanner

(’within 40 min’, ’phar-

macy’, ’CAR’)

Number of pharma-

cies within 40 minutes

by car

Count OpenTripPlanner

(’within 40 min’, ’phar-

macy’, ’TRANSIT’)

Number of pharma-

cies within 40 minutes

by transit

Count OpenTripPlanner

(’within 40 min’, ’phar-

macy’, ’WALK’)

Number of pharma-

cies within 40 minutes

by walking

Count OpenTripPlanner

(’within 40 min’, ’school’,

’CAR’)

Number of schools

within 40 minutes by

car

Count OpenTripPlanner

(’within 40 min’, ’school’,

’TRANSIT’)

Number of schools

within 40 minutes by

transit

Count OpenTripPlanner

(’within 40 min’, ’school’,

’WALK’)

Number of schools

within 40 minutes by

walking

Count OpenTripPlanner

(’within 40 min’, ’supermar-

ket’, ’CAR’)

Number of supermar-

kets within 40 min-

utes by car

Count OpenTripPlanner

(’within 40 min’, ’supermar-

ket’, ’TRANSIT’)

Number of supermar-

kets within 40 min-

utes by transit

Count OpenTripPlanner

(’within 40 min’, ’supermar-

ket’, ’WALK’)

Number of supermar-

kets within 40 min-

utes by walking

Count OpenTripPlanner

(’within 50 min’, ’clinic’,

’CAR’)

Number of clinics

within 50 minutes by

car

Count OpenTripPlanner

(’within 50 min’, ’clinic’,

’TRANSIT’)

Number of clinics

within 50 minutes by

transit

Count OpenTripPlanner

(’within 50 min’, ’clinic’,

’WALK’)

Number of clinics

within 50 minutes by

walking

Count OpenTripPlanner

(’within 50 min’, ’conve-

nience’, ’CAR’)

Number of conve-

nience stores within

50 minutes by car

Count OpenTripPlanner

(’within 50 min’, ’conve-

nience’, ’TRANSIT’)

Number of conve-

nience stores within

50 minutes by transit

Count OpenTripPlanner

130



(’within 50 min’, ’conve-

nience’, ’WALK’)

Number of conve-

nience stores within

50 minutes by walking

Count OpenTripPlanner

(’within 50 min’, ’gas’,

’CAR’)

Number of gas sta-

tions within 50 min-

utes by car

Count OpenTripPlanner

(’within 50 min’, ’gas’,

’TRANSIT’)

Number of gas sta-

tions within 50 min-

utes by transit

Count OpenTripPlanner

(’within 50 min’, ’gas’,

’WALK’)

Number of gas sta-

tions within 50 min-

utes by walking

Count OpenTripPlanner

(’within 50 min’, ’home’,

’CAR’)

Number of home im-

provements within 50

minutes by car

Count OpenTripPlanner

(’within 50 min’, ’home’,

’TRANSIT’)

Number of home im-

provements within 50

minutes by transit

Count OpenTripPlanner

(’within 50 min’, ’home’,

’WALK’)

Number of home im-

provements within 50

minutes by walking

Count OpenTripPlanner

(’within 50 min’, ’hospital’,

’CAR’)

Number of hospitals

within 50 minutes by

car

Count OpenTripPlanner

(’within 50 min’, ’hospital’,

’TRANSIT’)

Number of hospitals

within 50 minutes by

transit

Count OpenTripPlanner

(’within 50 min’, ’hospital’,

’WALK’)

Number of hospitals

within 50 minutes by

walking

Count OpenTripPlanner

(’within 50 min’, ’library’,

’CAR’)

Number of libraries

within 50 minutes by

car

Count OpenTripPlanner

(’within 50 min’, ’library’,

’TRANSIT’)

Number of libraries

within 50 minutes by

transit

Count OpenTripPlanner

(’within 50 min’, ’library’,

’WALK’)

Number of libraries

within 50 minutes by

walking

Count OpenTripPlanner

(’within 50 min’, ’phar-

macy’, ’CAR’)

Number of pharma-

cies within 50 minutes

by car

Count OpenTripPlanner

(’within 50 min’, ’phar-

macy’, ’TRANSIT’)

Number of pharma-

cies within 50 minutes

by transit

Count OpenTripPlanner

(’within 50 min’, ’phar-

macy’, ’WALK’)

Number of pharma-

cies within 50 minutes

by walking

Count OpenTripPlanner

(’within 50 min’, ’school’,

’CAR’)

Number of schools

within 50 minutes by

car

Count OpenTripPlanner

(’within 50 min’, ’school’,

’TRANSIT’)

Number of schools

within 50 minutes by

transit

Count OpenTripPlanner

(’within 50 min’, ’school’,

’WALK’)

Number of schools

within 50 minutes by

walking

Count OpenTripPlanner

(’within 50 min’, ’supermar-

ket’, ’CAR’)

Number of supermar-

kets within 50 min-

utes by car

Count OpenTripPlanner

(’within 50 min’, ’supermar-

ket’, ’TRANSIT’)

Number of supermar-

kets within 50 min-

utes by transit

Count OpenTripPlanner

(’within 50 min’, ’supermar-

ket’, ’WALK’)

Number of supermar-

kets within 50 min-

utes by walking

Count OpenTripPlanner

(’within 60 min’, ’clinic’,

’CAR’)

Number of clinics

within 60 minutes by

car

Count OpenTripPlanner

(’within 60 min’, ’clinic’,

’TRANSIT’)

Number of clinics

within 60 minutes by

transit

Count OpenTripPlanner
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(’within 60 min’, ’clinic’,

’WALK’)

Number of clinics

within 60 minutes by

walking

Count OpenTripPlanner

(’within 60 min’, ’conve-

nience’, ’CAR’)

Number of conve-

nience stores within

60 minutes by car

Count OpenTripPlanner

(’within 60 min’, ’conve-

nience’, ’TRANSIT’)

Number of conve-

nience stores within

60 minutes by transit

Count OpenTripPlanner

(’within 60 min’, ’conve-

nience’, ’WALK’)

Number of conve-

nience stores within

60 minutes by walking

Count OpenTripPlanner

(’within 60 min’, ’gas’,

’CAR’)

Number of gas sta-

tions within 60 min-

utes by car

Count OpenTripPlanner

(’within 60 min’, ’gas’,

’TRANSIT’)

Number of gas sta-

tions within 60 min-

utes by transit

Count OpenTripPlanner

(’within 60 min’, ’gas’,

’WALK’)

Number of gas sta-

tions within 60 min-

utes by walking

Count OpenTripPlanner

(’within 60 min’, ’home’,

’CAR’)

Number of home im-

provements within 60

minutes by car

Count OpenTripPlanner

(’within 60 min’, ’home’,

’TRANSIT’)

Number of home im-

provements within 60

minutes by transit

Count OpenTripPlanner

(’within 60 min’, ’home’,

’WALK’)

Number of home im-

provements within 60

minutes by walking

Count OpenTripPlanner

(’within 60 min’, ’hospital’,

’CAR’)

Number of hospitals

within 60 minutes by

car

Count OpenTripPlanner

(’within 60 min’, ’hospital’,

’TRANSIT’)

Number of hospitals

within 60 minutes by

transit

Count OpenTripPlanner

(’within 60 min’, ’hospital’,

’WALK’)

Number of hospitals

within 60 minutes by

walking

Count OpenTripPlanner

(’within 60 min’, ’library’,

’CAR’)

Number of libraries

within 60 minutes by

car

Count OpenTripPlanner

(’within 60 min’, ’library’,

’TRANSIT’)

Number of libraries

within 60 minutes by

transit

Count OpenTripPlanner

(’within 60 min’, ’library’,

’WALK’)

Number of libraries

within 60 minutes by

walking

Count OpenTripPlanner

(’within 60 min’, ’phar-

macy’, ’CAR’)

Number of pharma-

cies within 60 minutes

by car

Count OpenTripPlanner

(’within 60 min’, ’phar-

macy’, ’TRANSIT’)

Number of pharma-

cies within 60 minutes

by transit

Count OpenTripPlanner

(’within 60 min’, ’phar-

macy’, ’WALK’)

Number of pharma-

cies within 60 minutes

by walking

Count OpenTripPlanner

(’within 60 min’, ’school’,

’CAR’)

Number of schools

within 60 minutes by

car

Count OpenTripPlanner

(’within 60 min’, ’school’,

’TRANSIT’)

Number of schools

within 60 minutes by

transit

Count OpenTripPlanner

(’within 60 min’, ’school’,

’WALK’)

Number of schools

within 60 minutes by

walking

Count OpenTripPlanner

(’within 60 min’, ’supermar-

ket’, ’CAR’)

Number of supermar-

kets within 60 min-

utes by car

Count OpenTripPlanner

(’within 60 min’, ’supermar-

ket’, ’TRANSIT’)

Number of supermar-

kets within 60 min-

utes by transit

Count OpenTripPlanner
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(’within 60 min’, ’supermar-

ket’, ’WALK’)

Number of supermar-

kets within 60 min-

utes by walking

Count OpenTripPlanner

Geography AREA SQMI Area Square miles (census

tract)

CDC 2018 SoVI

urban Location is in urban

boundary

Binary TDA Functional Classifica-

tion and Urban Boundary

monroe Location is in Monroe

County

Binary TIGER/Line Florida 2017

collier Location is in Collier

County

Binary TIGER/Line Florida 2018

lee Location is in Lee

County

Binary TIGER/Line Florida 2019

hendry Location is in Hendry

County

Binary TIGER/Line Florida 2020

Social Vulner-

ability

E TOTPOP Population estimate Count (census tract) CDC 2018 SoVI

E HU Housing units Count (census tract) CDC 2018 SoVI

E HH Households Count (census tract) CDC 2018 SoVI

E POV Persons below poverty Count (census tract) CDC 2018 SoVI

E UNEMP Civilians(age 16+)

unemployed

Count (census tract) CDC 2018 SoVI

E PCI Per capita income $ (census tract) CDC 2018 SoVI

E NOHSDP Persons (age 25+)

with no high school

diploma

Count (census tract) CDC 2018 SoVI

E AGE65 Persons aged 65 and

older

Count (census tract) CDC 2018 SoVI

E AGE17 Persons aged 17 and

younger

Count (census tract) CDC 2018 SoVI

E DISABL Civilian non-

institutionalized

population with a

disability

Count (census tract) CDC 2018 SoVI

E SNGPNT Single parent house-

hold with children un-

der 18

Count (census tract) CDC 2018 SoVI

E MINRTY Minority (all persons

except white, non-

Hispanic)

Count (census tract) CDC 2018 SoVI

E LIMENG Persons (age 5+) who

speak English ”less

than well”

Count (census tract) CDC 2018 SoVI

E MUNIT Housing in structures

with 10 or more units

Count (census tract) CDC 2018 SoVI

E MOBILE Mobile homes Count (census tract) CDC 2018 SoVI

E CROWD At household level

(occupied housing

units), more people

than rooms

Count (census tract) CDC 2018 SoVI

E NOVEH Households with no

vehicle available

Count (census tract) CDC 2018 SoVI

E GROUPQ Persons in group

quarters

Count (census tract) CDC 2018 SoVI

EP POV Percentage of persons

below poverty

% (of census tract) CDC 2018 SoVI

EP UNEMP Unemployment Rate % (of census tract) CDC 2018 SoVI

EP NOHSDP Percentage of persons

with no high school

diploma (age 25+)

% (of census tract) CDC 2018 SoVI

EP AGE65 Percentage of persons

aged 65 and older

% (of census tract) CDC 2018 SoVI

EP AGE17 Percentage of persons

aged 17 and younger

% (of census tract) CDC 2018 SoVI

EP DISABL Percentage of civilian

non-institutionalized

population with a

disability

% (of census tract) CDC 2018 SoVI

EP SNGPNT Percentage of single

parent households

with children under

18

% (of census tract) CDC 2018 SoVI
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EP MINRTY Percentage minority

(all persons except

white, non-Hispanic)

% (of census tract) CDC 2018 SoVI

EP LIMENG Percentage of persons

(age 5+) who speak

English ”less than

well”

% (of census tract) CDC 2018 SoVI

EP MUNIT Percentage of housing

in structures with 10

or more units

% (of census tract) CDC 2018 SoVI

EP MOBILE Percentage of mobile

homes

% (of census tract) CDC 2018 SoVI

EP CROWD Percentage of occu-

pied housing units

with more people

than rooms

% (of census tract) CDC 2018 SoVI

EP NOVEH Percentage of house-

holds with no vehicle

available

% (of census tract) CDC 2018 SoVI

EP GROUPQ Percentage of persons

in group quarters

% (of census tract) CDC 2018 SoVI

EPL POV Percentile percentage

of persons below

poverty

Percentile (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI

EPL UNEMP Percentile percentage

of civilian (age 16+)

unemployed

Percentile (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI

EPL PCI Percentile per capita

income

Percentile (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI

EPL NOHSDP Percentile percentage

of persons with no

high school diploma

(age 25+)

Percentile (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI

SPL THEME1 Socioeconomic

theme: EPL POV

+ EPL UNEMP

+ EPL PCI +

EPL NOHSDP

Sum of % (census

tract)

CDC 2018 SoVI

RPL THEME1 Percentile ranking for

socioeconomic theme

Percent rank (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI

EPL AGE65 Percentile percentage

of persons aged 65

and older

Percentile (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI

EPL AGE17 Percentile percentage

of persons aged 17

and younger

Percentile (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI

EPL DISABL Percentile percentage

of civilian non-

institutionalized

population with a

disability

Percentile (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI

EPL SNGPNT Percentile percentage

of single parent house-

holds with children

under 18

Percentile (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI

SPL THEME2 Household com-

position theme:

EPL AGE65 +

EPL AGE17 +

EPL DISABL +

EPL SNGPNT

Sum of % (census

tract)

CDC 2018 SoVI

RPL THEME2 Percentile ranking for

household composi-

tion theme

Percent rank (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI

EPL MINRTY Percentile percentage

minority (all persons

except white, non-

Hispanic)

Percentile (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI

EPL LIMENG Percentile percentage

of persons (age 5+)

who speak English

”less than well”

Percentile (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI
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SPL THEME3 Minority sta-

tus/language theme:

EPL MINRTY +

EPL LIMENG

Sum of % (census

tract)

CDC 2018 SoVI

RPL THEME3 Percentile ranking

for minority sta-

tus/language theme

Percentile (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI

EPL MUNIT Percentile percentage

housing in structures

with 10 or more units

Percentile (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI

EPL MOBILE Percentile percentage

mobile homes

Percentile (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI

EPL CROWD Percentile percentage

households with more

people than rooms

Percentile (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI

EPL NOVEH Percentile percentage

households with no

vehicle available

Percentile (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI

EPL GROUPQ Percentile percentage

of persons in group

quarters estimate

Percentile (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI

SPL THEME4 Housing

type/transportation

theme: EPL MUNIT

+ EPL MOBIL +

EPL CROWD +

EPL NOVEH +

EPL GROUPQ

Sum of % (census

tract)

CDC 2018 SoVI

RPL THEME4 Percentile ranking for

housing type / trans-

portation theme

Percent rank (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI

SPL THEMES Sum of series themes:

SPL THEME1 +

SPL THEME2 +

SPL THEME3 +

SPL THEME4

Sum of % (census

tract)

CDC 2018 SoVI

RPL THEMES Percentile ranking for

sum of series themes

Percent rank (census

tract relative to other

U.S. census tracts)

CDC 2018 SoVI

F POV Flag- percentage of

persons in poverty is

in the 90th percentile

Binary CDC 2018 SoVI

F UNEMP Flag - the percent-

age of civilian unem-

ployed is in the 90th

percentile

Binary CDC 2018 SoVI

F PCI Flag - per capita in-

come is in the 90th

percentile

Binary CDC 2018 SoVI

F NOHSDP Flag - the percent-

age of persons with no

high school diploma is

in the 90th percentile

Binary CDC 2018 SoVI

F THEME1 Sum of flags for so-

cioeconomic status

theme: F POV +

F UNEMP + F PCI

+ F NOHSDP

Count CDC 2018 SoVI

F AGE65 Flag - the percent-

age of persons aged

65 and older is in the

90th percentile

Binary CDC 2018 SoVI

F AGE17 Flag - the percent-

age of persons aged 17

and younger is in the

90th percentile

Binary CDC 2018 SoVI

F DISABL Flag - the percentage

of persons with a dis-

ability is in the 90th

percentile

Binary CDC 2018 SoVI
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F SNGPNT Flag - the percentage

of single parent house-

holds is in the 90th

percentile

Binary CDC 2018 SoVI

F THEME2 Sum of flags for

household com-

position theme:

F AGE65 + F AGE17

+ F DISABL +

F SNGPNT

Count CDC 2018 SoVI

F MINRTY Flag - the percentage

of minority is in the

90th percentile

Binary CDC 2018 SoVI

F LIMENG Flag - the percentage

those with limited En-

glish is in the 90th

percentile

Binary CDC 2018 SoVI

F THEME3 Sum of flags for

Minority Sta-

tus/Language theme

Count CDC 2018 SoVI

F MUNIT Flag - the percentage

of households in multi

-unit housing is in the

90th percentile

Binary CDC 2018 SoVI

F MOBILE Flag - the percentage

of mobile homes is in

the 90th percentile

Binary CDC 2018 SoVI

F CROWD Flag - the percent-

age of crowded house-

holds is in the 90th

percentile

Binary CDC 2018 SoVI

F NOVEH Flag - the percentage

of households with no

vehicles is in the 90th

percentile

Binary CDC 2018 SoVI

F GROUPQ Flag - the percentage

of persons in institu-

tionalized group quar-

ters is in the 90th per-

centile

Binary CDC 2018 SoVI

F THEME4 Sum of flags for hous-

ing type / transporta-

tion theme

Count CDC 2018 SoVI

F TOTAL Sum of flags for the

four themes

Count CDC 2018 SoVI

E UNINSUR Uninsured in the

total civilian non-

institutionalized

population

Count (census tract) CDC 2018 SoVI

EP UNINSUR Percentage uninsured

in the total civilian

non-institutionalized

population

% (of census tract) CDC 2018 SoVI

E DAYPOP Estimated daytime

population

Count (census tract) CDC 2018 SoVI

density Density Population/square

mile (census tract)

Calculated from SoVI vari-

ables

Power noon percent outage % of county without

power at noon

% (of county) Florida Division of Emer-

gency Management as re-

ported through Florida To-

day

power data days to 25 Days until power re-

stored for 25% of

county

Days Florida Division of Emer-

gency Management as re-

ported through Florida To-

day

power data days to 50 Days until power re-

stored for 50% of

county

Days Florida Division of Emer-

gency Management as re-

ported through Florida To-

day

power data days to 75 Days until power re-

stored for 75% of

county

Days Florida Division of Emer-

gency Management as re-

ported through Florida To-

day
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power data days to 90 Days until power re-

stored for 90% of

county

Days Florida Division of Emer-

gency Management as re-

ported through Florida To-

day

power data days to 95 Days until power re-

stored for 95% of

county

Days Florida Division of Emer-

gency Management as re-

ported through Florida To-

day

power data days to 99 Days until power re-

stored for 99% of

county

Days Florida Division of Emer-

gency Management as re-

ported through Florida To-

day

power data hours to 25 Hours until power re-

stored for 25% of

county

Hours Florida Division of Emer-

gency Management as re-

ported through Florida To-

day

power data hours to 50 Hours until power re-

stored for 50% of

county

Hours Florida Division of Emer-

gency Management as re-

ported through Florida To-

day

power data hours to 75 Hours until power re-

stored for 75% of

county

Hours Florida Division of Emer-

gency Management as re-

ported through Florida To-

day

power data hours to 90 Hours until power re-

stored for 90% of

county

Hours Florida Division of Emer-

gency Management as re-

ported through Florida To-

day

power data hours to 95 Hours until power re-

stored for 95% of

county

Hours Florida Division of Emer-

gency Management as re-

ported through Florida To-

day

power data hours to 99 Hours until power re-

stored for 99% of

county

Hours Florida Division of Emer-

gency Management as re-

ported through Florida To-

day

Cell Network cell service outage % of cell sites out % (of county) FCC Hurricane Irma Com-

munications Status Reports

Wind vmax gust Maximum 10-m 1-

minute gust wind

experienced at the

grid point during the

storm

Meters/second [167]

vmax sust Maximum sustained

wind speed

Meters/second [167]

gust dur Duration gust wind

was at or above a

specified speed (de-

fault is 20 m/s), in

minutes

Minutes [167]

sust dur Duration sustained

wind was at or above

a specified speed

(default is 20 m/s)

Minutes [167]

Storm Surge maxDepth Maximum surge

depth

Meters [168]

maxFlowSpeed Maximum surge flow

speed

Meters/second [168]

maxUnitDischarge Maximum unit dis-

charge

Square-

meters/second

[168]

maxForcePerLength Maximum force per

length

Kilograms/square-

second

[168]

maxSignificantWaveHeight Maximum significant

wave height

Meters [168]

Table F.1: Table of variables used in random forest model estimating recovery state

Figure F.1 below shows the correlation between the 374 included features. For readability,
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labels are included to describe groups of features.

Figure F.1: Correlation between model features

In general, correlation between feature pairs is low except for between variables within

the same group. The pre-landfall access values are deduced from the minimum travel time

access values, and so are highly correlated. The social vulnerability index percentile and flag

features are highly correlated, in part because they do not contain much variability as they

are determined relative to other census tract values across the United States. The storm

surge variables appear correlated with the wind and power outage variables.
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APPENDIX G

Random Forest Classifier Cross Validation

Scenarios

The table below in Figure G.1 shows each model scenario that was evaluated with random

sample cross validation. Cross validation was iterated 10 times with a test set size of 10%.
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Figure G.1: Random forest scenarios with mean of cross validation evaluation metrics
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APPENDIX H

Partial Dependence Plots of Random Forest

Model Variables
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Figure H.1: Partial dependence plots for random forest model estimating recovery for Collier,
Monroe, Hendry, and Lee Counties
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