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ABSTRACT

This dissertation demonstrates the potential of laser wakefield acceleration (LWFA)-generated
relativistic electron beams and X-rays as advanced diagnostics in the realm of high-energy-density
physics (HEDP) interactions. The high-quality electron beams produced by LWFA provide an
ultrafast, bright, and spatially coherent betatron X-ray source with a small size suitable for high-
resolution imaging. When coupled with high-repetition-rate laser systems, this lays the foundation
for capturing the intricate dynamics of submicron-scale structures, such as hydrodynamic instabili-
ties, with unprecedented spatio-temporal resolution. Diagnosing plasma instabilities is particularly
important in order to progress the development of critical technologies such as inertial confinement
fusion, promising sustainable energy solutions.

The dissertation features an innovative bulk liquid (water) target operational within high-
vacuum environments and under extreme conditions, which is pivotal in achieving the experimental
goals. This adaptable target ensures clean and replenishable interactions at high-repetition rates,
thus overcoming challenges associated with conventional solid targets in HEDP experiments.

First, betatron X-rays have been used to dynamically capture the interaction of a long laser pulse
with the liquid target, observing the generation and evolution of a shock wave in water. Through a
combination of experimental results and FLASH hydrodynamic simulations, insights into unique
3D hydrodynamic effects are obtained.

The second core element in this work is hydrodynamic instabilities. Using betatron X-rays,
this work illuminates unstable plasma processes at scales that were previously inaccessible. While
these insights entail elements of speculation, compelling arguments point toward the Richtmyer-
Meshkov process as an underlying mechanism for the instabilities observed in the experiments.

Finally, LWFA-generated relativistic electron beams are used for charged-particle deflectometry
of electromagnetic fields. Focusing on the laser-water interplay at ultrafast timescales, results are
presented for the observation of time-evolving fields produced from the aftermath of the laser
energy deposition into the dense plasma. The experimental measurements have been compared
with electron beam radiographs synthetically generated from 3D hydrodynamic simulations.

The measurements carried out in this dissertation pave the way to improved plasma diagnostic
systems in HEDP experiments. The utilization of both X-ray photons and relativistic electron
beams provides a dual perspective into plasma dynamics that is rarely found.
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CHAPTER 1

Introduction

1.1 Motivation

The wish to understand the nature of matter and its properties under different conditions has driven
human curiosity for centuries. This pursuit has allowed humans to not only better understand our
own biology but also allowed the development of new technologies in medicine, chemistry, and
industry. During the beginning of the 20th century, this quest took on new dimensions as the
research community began to question what stars are made of, and how they are able to power
themselves. High-Energy-Density Physics (HEDP), is a rapidly evolving field that focuses on the
study of plasma and matter under extreme conditions, as found in the interiors of stars, the cores of
giant planets, and advanced laboratory experiments of the kind performed during this dissertation
work. The knowledge gained in this field has widespread implications for astrophysics, materials
science, nuclear physics, and other related disciplines. Among the most promising applications
of HEDP is the pursuit of practical fusion energy, which has the potential to provide a virtually
limitless and clean energy source for humanity. In this sense, gaining insights into the behavior
of matter at extreme pressures, temperatures, and densities has the potential to revolutionize our
energy landscape, particularly through the development of fusion technologies.

Many different approaches to fusion have been proposed in the past decades, each with its own
advantages and technical difficulties. In the absence of a strong gravitational field (the natural
plasma confinement method for the universe), the main efforts can be crudely summarized into
two groups which differ by the confinement method for the fusion plasma - Magnetic Confinement
Fusion (MCF), and Inertial Confinement Fusion (ICF). The MCF machines including Tokamaks
or Stellarators rely on strong magnetic fields to confine the hot plasma, and multiple groups are
currently pursuing research around the world, steadily making progress towards practical fusion
energy. In particular, ITER will be starting operation this decade [70] as the largest fusion exper-
iment to date and a worldwide effort towards fusion. Alternatively, the ICF approach relies on
the compression and heating of a small fuel capsule to extreme conditions using powerful lasers
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Figure 1.1: (a) Multiple laser beams are focused inside an ICF hohlraum [140] and their energy
is converted into X-rays, which then compress a fuel capsule until it implodes to create fusion
plasma. Figure reproduced from [100]. (b) An X-ray radiograph of the plastic capsule and inner
Deuterium-Tritium ice layer showing plastic ablator, DT ice layer, and re-entrant Au cone for the
layered HGR platform. Figure reproduced from [158]. (c) Simulation of Rayleigh-Taylor hydro-
dynamic instability created on LLNL’s BlueGene/L supercomputer using Miranda code. Figure
reproduced from [99].

or other methods, such as heavy ion beams or Z-pinches. The National Ignition Facility (NIF),
the world’s largest and most powerful laser facility, has made significant strides in ICF research,
achieving notable results that have garnered widespread attention this year, by demonstrating a
burning plasma for the first time in history [90, 194, 193]. These experiments have shown that
releasing energy through fusion is achievable under laboratory conditions, raising hopes for the
eventual development of viable fusion power plants.

Despite these successes, fusion technologies face considerable challenges. One of the primary
hurdles is the presence of various instabilities in the plasma, which can develop during the com-
pression and heating of the fuel capsule as shown in Fig. 1.1. These instabilities have a profound
impact on the performance and efficiency of fusion experiments, making their study and control
a crucial aspect of advancing fusion science [138, 157, 94]. In order to study and diagnose plas-
mas under extreme conditions, a wide range of diagnostic systems has been developed, including
optical and X-ray techniques [156, 158, 82]. These diagnostic tools are essential for probing
the properties of matter and understanding the underlying physics in high-energy-density experi-
ments. However, current diagnostic systems have limitations, particularly with respect to spatial
and temporal resolution, as well as signal-to-noise ratio [65, 123, 96, 171, 12, 41, 132, 66]. These
limitations can impede our ability to fully characterize and understand the complex dynamics of
matter at extreme conditions, ultimately hindering the advancement of fusion technology.

High-resolution imaging is essential for capturing the intricate details of plasma behavior and
instability growth, as well as studying turbulent length scales. However, conventional diagnostic
systems often suffer from limited spatial and temporal resolution, which can obscure critical infor-
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mation about plasma dynamics. For example, X-ray radiography, a common diagnostic technique,
relies on the penetration of X-rays through matter to produce images. However, the resolution of
these images is often limited to tens or hundreds of microns, given by the brightness and spot size
of the X-ray source as well as the detector’s sensitivity.

A high signal-to-noise ratio is also crucial for accurately measuring the properties of high-
energy-density plasmas, but current diagnostic systems can struggle to achieve sufficient sensitivity
under challenging experimental conditions. The detection of weak signals in the presence of noise
can be particularly problematic for X-ray diagnostics, as high-energy electrons and photons can
produce background noise that interferes with the measurements.

Furthermore, the ability to perform experiments at a high repetition rate is essential for rapid
progress in HEDP and fusion research [67]. Many diagnostic systems, however, are limited by
their slow data acquisition and processing capabilities. This can be particularly challenging for
X-ray diagnostics, which often require complex and time-consuming procedures for data analysis,
such as phase recovery, or reconstruction of tomographic images. Given these challenges, there
is a pressing need to improve and advance diagnostic systems for HEDP experiments as well as
for fusion technologies. This has been the motivation for the development of high-repetition-rate
targets, as well as imaging techniques with higher spatial and temporal resolution and better signal-
to-noise throughout this dissertation. These techniques not only pave the way to better diagnostic
systems in HEDP experiments but also have the potential to inform on the physics of plasma
instabilities during laser interactions and thus greatly benefit ICF science in the future.

1.2 High-intensity lasers and plasma wakefield acceleration

High-intensity lasers have revolutionized the field of HEDP by providing a powerful tool for gen-
erating and probing extreme states of matter. The story of high-intensity lasers arguably began
with the invention of the laser itself in 1960 by Theodore H. Maiman using a ruby crystal as a gain
medium for light amplification. The laser, an acronym for “Light Amplification by Stimulated
Emission of Radiation”, was a groundbreaking technology for producing spatially and temporally
coherent light, which opened the doors to a multitude of scientific and technological applications,
revolutionizing fields such as medicine, manufacturing, telecommunications, and experimental
physics.

In the early days of laser development, most lasers were Continuous-Wave (CW) lasers, having
a unique frequency and average power. Given their monochromatic nature (nominally infinite pulse
duration), CW lasers are inefficient in increasing their peak power for all time. Alternatively, it is
much more efficient to increase the laser peak power in a burst during a short period of time. This
motivated the development of broadband short pulse lasers with higher peak powers and high field
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intensities, which allowed for producing higher electron quiver velocities during their interaction
with matter.

In the late 1960s, a number of new technologies were developed that revolutionized our capacity
to generate short-pulse higher-intensity lasers including Q-switching and mode-locking. First, Q-
switching is a technique that involves modulating the quality factor (Q) of a laser resonator to
produce high-power output pulses. It uses a shutter to periodically block the output coupler of a
laser, causing the laser energy to build up, and then release it in a short pulse when the shutter
opens. Shortly afterward, mode-locking was developed to produce even shorter pulses. In mode-
locking, the phases of different cavity modes of the optical resonator are locked together, resulting
in the constructive interference of these modes to produce an even shorter pulse of light. The
development of short-pulse lasers once again opened up a wide range of new applications for lasers
including micromachining, material processing, additive manufacturing, and medical applications,
among others [63, 154, 106, 133, 183, 155]. Nevertheless, the pursuit to keep increasing laser
peak power soon encountered an obstacle that would last for more than a decade.

Given a finite beam, as the length of the pulse becomes shorter and shorter its intensity can
become so high that it can damage the material that the laser is passing through. In other words,
this can limit the peak intensity of the laser pulse that can be generated before damaging the
amplifier components themselves. Moreover, there is also a power limit for the pulse before self-
focusing occurs [24], and subsequently filamentation of the beam [15]. This bottleneck seemed
unconquerable until the advent of Chirped Pulse Amplification (CPA) in the mid-1980s [166].

CPA is a technique that earned Gérard Mourou and Donna Strickland the 2018 Nobel Prize
in Physics and ingeniously circumvents the optical damage problem. The technique uses a series
of optical elements to stretch, amplify, and then compress a pulse of light. The chirping pro-
cess changes the shape of the pulse so that different frequency components are linearly distributed
in time. This process modifies the pulse so that it is longer in time with a lower peak intensity
before amplification, which consequently reduces the risk of optical damage. After amplifica-
tion, the pulse is then compressed back to its original state by removing the chirp using a grating
compressor, thus yielding an ultra-short, high-intensity laser pulse. This advent in technology rev-
olutionized the field of laser physics and led to a redefinition of “high-intensity” lasers with pulse
durations of picoseconds and peak powers exceeding terawatts.

Following further CPA development in the mid-1990s, Nd:Glass and CO2 lasers were available
with high enough intensities Iλ2 ≫ 1018 Wcm−2µm2 to allow the birth of one of the most promis-
ing applications of ultra high-intensity lasers - their ability to produce relativistic electron beams
and X-ray radiation through a process known as Laser Wakefield Acceleration (LWFA). In LWFA,
an ultra-high-intensity laser ionizes a gas target and produces a plasma in which electrons are ex-
pelled away from high-intensity regions, thus leaving an ion cavity in the wake of the light pulse.
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This process is mediated through the ponderomotive force, which will be discussed in Chapter 2.
Trapped electrons in the ion cavity can then be accelerated to relativistic velocities and oscillate
to generate X-rays bursts. Theoretical work on LWFA began in the 1970s by Tajima and Daw-
son [168], but practical realization became possible with the development of high-intensity laser
technology.

At the beginning of LWFA research, the laser pulses were still too long in time to couple with
the plasma efficiently and they experienced strong non-linear optical self-focusing. For efficient
LWFA, the length of the pulse should be less than a plasma period as will be discussed in Chapter 2.
Nevertheless, even though ideal lasers were not available, researchers were still producing LWFA
electrons through a process known as Self-Modulated Laser Wakefield Acceleration (SM-LWFA)
[30, 62, 122], with the first experimental evidence of electron trapping and acceleration to 44 MeV
energies with SM-LWFA [121], as well as many other afterwards [145, 34, 124]. Alternatively,
direct-laser acceleration [55, 113, 137, 6] is another known technique that works in a similar man-
ner to SM-LWFA, in which the laser pulse is sufficiently intense but long so that it creates a plasma
channel void of electrons.

Moreover, electron beams from LWFA initially had a broad Maxwellian spectrum. This was
caused by the electron beam outrunning the laser pulse, which has a group velocity that de-
pends on the plasma density. High densities caused the electrons to outrun the pulse and reach
the decelerating portion of the potential, thus gaining energy spread. Then in the early 2000s,
an important achievement has obtained in the LWFA community; the observation of self-trapped
quasi-monoenergetic electron beams [111, 50, 58, 51]. With the advent of more advanced lasers
(t < 50 fs, P > 10 TW) it was possible to maintain the same focused intensity but with a larger
spot size, which caused electrons to self-trap at lower densities than before, and thus prevent them
from reaching the dephasing limit while having a mono-energetic beam [110]. Since then, LWFA
has been a groundbreaking research field for utilizing intense laser pulses to drive plasma waves
and produce monoenergetic electron beams with many successful experiments reaching energy
levels in the GeV range [102, 64, 29, 76, 182, 101, 152].

Furthermore, trapped energetic electrons in LWFA experience the channel and laser electric
fields and oscillate inside the ion channel in response. These electron oscillations emit X-ray ra-
diation through a process analogous to undulator oscillations in conventional synchrotrons. In this
sense, LWFA is an exciting new table-top source of electrons that is capable of accelerating beams
to highly relativistic energies in distances of only centimeters at a fraction of the cost compared
to conventional accelerators extending over kilometers in size. In these regimes, LWFA electron
beams are comparable in energy with those used in 3rd generation synchrotron sources, thus mak-
ing them promising candidates for X-ray photon light source applications.

The X-ray bursts from LWFA, so-called betatron X-rays, exhibit unique properties, such as
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ultrafast pulse durations (on the order of femtoseconds), small source sizes (on the order of a few
microns), and a broad energy spectrum, extending up to several tens of keV. These characteristics
make LWFA X-ray sources particularly suitable for high-resolution imaging applications in HEDP
research and ICF diagnostics. The ultrafast pulse duration of betatron X-rays enables time-resolved
studies of transient phenomena, while the small source sizes and broad energy spectrum allow for
high spatial and temporal resolution, respectively. Moreover, traditional X-ray sources, such as X-
ray tubes, synchrotrons, and the X-ray Free Electron Laser (XFEL), may have limitations in terms
of size, cost, and versatility. The compact nature of LWFA-based X-ray sources can help overcome
these challenges for both, national-scale facilities and university-scale laboratories, having some
remarkable results already published in the literature [186, 71, 83, 31, 52, 53, 2]. The research and
development of LWFA-based betatron X-ray sources over the past decades have been discussed in
research topical reviews [4, 3].

Within this context, the objective of this dissertation is to utilize LWFA electron beams and
betatron X-ray pulses at high repetition rates to study matter under extreme conditions. The disser-
tation will focus on describing both, betatron X-ray imaging and electron beam probing, analysis
techniques as well as presenting original results. In combination with simulation work, the ex-
perimental results attempt to contribute to the understanding of sub-micron scale time-dependent
HEDP systems such as those found in ICF experiments.

1.3 Dissertation outline

The work in this dissertation comprises a series of three experiments conducted at the Hundred-
Terawatt-Thomson (HTT) laser system, as part of the Berkeley Lab Laser Accelerator (BELLA)
Center located at the Lawrence Berkeley National Laboratory (LBNL). The experiments were
supported by LaserNetUS and led by the Center for Ultrafast Optical Science (CUOS) at the Uni-
versity of Michigan. The outline of the dissertation is as follows:

• Chapter II: The second chapter is an introduction to the most important theoretical concepts
needed as a background for this dissertation work. Some of the topics discussed include
high-intensity lasers, the motion of electrons in a laser field, laser-driven plasma waves and
electron acceleration, the generation of betatron radiation in a plasma channel, and some
pertinent concepts in HEDP.

• Chapter III: The third chapter focuses on describing the experimental methods, among
them the characteristics of the laser system, the experimental chamber configuration, optical,
electron beam, and X-ray beam characterization, as well as the analysis techniques used in
the dissertation and simulation methods.
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• Chapter IV: The fourth chapter describes the development of a cylindrical liquid jet target
capable of flowing in a vacuum and undergoing laser heating at high-repetition-rate. This
target is a crucial part of performing the HEDP pump-probe experiments in later chapters.

• Chapter V: The fifth chapter presents the first experimental results using high-repetition-rate
betatron X-rays to capture the dynamic evolution of laser-driven shock waves in water. Some
of the analyses displayed in this chapter include the generation of synthetic phase-contrast
X-ray images, and density recovery techniques from X-ray measurements, shock velocity
measurements, and pressure calculations.

• Chapter VI: The sixth chapter describes the observation of plasma instabilities within a
shocked liquid target. In particular, it focuses on the observation of the Richtmyer-Meshkov
process with state-of-the-art level spatial scales, as well the experimental determination of
the growth-rate for multiple unstable processes and multi-wave generation along the jet.

• Chapter VII: The seventh chapter describes a series of experiments that use the relativistic
LWFA electron beam as a probe to capture time-dependent ultrafast plasma dynamics. The
experimental results obtained from this innovative method include the recovery of electric
and magnetic fields and plasma temperature estimations from the electron beam radiography
images as well as their comparison to 3D hydrodynamic simulations.

• Chapter VIII: The eighth and final chapter focuses on bringing a short summary, drawing
conclusions, and providing an outlook for the future of LWFA-based diagnostic sources in
HEDP.
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CHAPTER 2

Background

2.1 Laser wakefield acceleration

2.1.1 Introduction

The advent of ultra-high-intensity lasers opened the doors to the generation of relativistic electron
beams through LWFA. During the laser-plasma interaction, the ponderomotive force from the light
pulse is responsible for deflecting plasma electrons from their equilibrium positions thus leaving a
channel of heavy ions in the wake of the pulse. This structure is termed the “wakefield”, in which
the space-charge forces exhibit over four orders of magnitude higher acceleration gradients than
conventional accelerators, while simultaneously inducing electron oscillations analogous to those
from magnetic undulators. The production of high-quality monoenergetic beams [111, 50, 58, 51],
as discussed previously in Chapter 1, was a pivotal point in the field. It marked the transition from
a linear regime to a relativistic non-linear regime regarding the characteristics of the wakefield,
also known as the “bubble” or “blow-out” regime as predicted by simulations [136].

LWFA electron beams first reached the 1 GeV milestone by increasing the acceleration distance
utilizing a laser driven capillary channel that served as a guiding structure [102, 75, 178, 101].
Nowadays, higher energies at the GeV-level have successfully been achieved by a variety of meth-
ods that aim to control the electron bunch injection and manipulation of its phase space. Specifi-
cally, wakefield injection [74, 147] consists of electrons crossing the separatrix between trapped
and untrapped orbits in the phase-space diagram. These electrons must not only be injected in
the correct phase of the plasma wave to be accelerated, but also they must be of sufficiently short
duration. The reason for this is that ideally all electrons in the beam bunch experience similar
magnitudes of the electric field, and thus be accelerated uniformly.

If the wakefield amplitude is sufficiently large so that their velocities exceed the wake phase ve-
locity then electrons in the plasma can be self-injected, or self-trapped, and different self-injection
mechanisms have been used to increase its effectiveness [74, 147]. Alternatively, different meth-
ods for injection have been explored in the literature including optical injection using a second
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laser pulse [51, 45, 172, 89, 73, 170], or shock-injection using modulated density gradients [20].
All these methods have advantages and disadvantages which allow to control of the phase-space
distribution of the beam, or its stability during experimental campaigns [57, 146, 60, 68, 19].

Of particular relevance for the experiments performed in this thesis is the technique known as
ionization injection. In ionization injection, a small amount of higher-Z gas is added to the target
so that it interacts with the peak of the laser intensity. As inner shell electrons are ionized they will
disturb the electron orbits from the fluid motion thus causing a more controlled injection scheme
[29, 26, 131, 119, 135, 105, 25]. Given the ability to decouple the ionization process with a second
laser pulse [69], ionization injection has shown great promise for controlling the phase-space
distribution of the electron beam as well as decent stability in gas cell targets [175]. The ability to
control the injection process during experiments is crucial for developing LWFA-based radiation
sources.

LWFA research is now concerned with overcoming the dephasing limit for maximum electron
energy gain, among tackling other challenges for improving the beam instability, and energy dis-
tribution, as well as efforts for creating LWFA-based X-ray free electron lasers. Additionally, the
concept of “staging” including multiple phases of acceleration has been conceptually demonstrated
where an electron beam is coupled into and gained energy in a second LWFA [164]. Other exper-
iments have utilized a driver-witness approach in which the wakefield is driven by a first LWFA
bunch, while a witness gains energy from the wake, thus overcoming the dephasing limit [28]. In
the rest of this subsection, the most fundamental concepts behind LWFA will be introduced.

2.1.2 The relativistic ponderomotive force

When an electron encounters a high-intensity laser field its motion is influenced by the electric and
magnetic fields that comprise the laser light and can be described by the Lorentz force [59, 184],

dp

dt
= −e [E+ (v ×B)] , (2.1)

with an energy equation,
d

dt

(
γmc2

)
= −e (v · E) , (2.2)

where γ =
√

1 + p2/ (m2
ec

2) is the relativistic factor and p = meγv is the electron momentum
with velocity ve, mass me, and charge q = −e. The electric and magnetic fields of the laser can be
expressed as E = −∂A/∂t and B = ∇×A, having a vector potential A. To start, we may gain
an understanding of the basic behavior by considering a non-relativistic case where ve ≪ c and
|B| = |E|/c and a transversely polarized laser plane wave with E = −eE0 cos (ωLt− k · x+ ϕL)
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the magnetic cross-product term can be ignored. This simplifies the Lorentz force equation to

me
dve

dt
= −eE0 cos (ωLt− k · x+ ϕL) , (2.3)

for which integration over time gives the electron quiver velocity ve having a maximum value of

ve,max =
e|E0|
meωL

. (2.4)

Then, by averaging the quiver velocity over one laser cycle it is possible to define an average
ponderomotive energy Wpond and ponderomotive potential ϕpond as

Wpond =
1

2
me⟨v2

e⟩T =
e2E2

4meω2
L

= eΦpond . (2.5)

In this sense, the ratio between the work done by the electric field of the laser pulse over one
wavelength to the rest mass of the electron is defined as the normalized vector potential a0

a0 =
e|E0|
meωLc

=
e|A|
mec

= 0.85
√
I0 [1018W/cm2] · λL [µm] . (2.6)

This parameter is typically used to characterize the difference between the non-relativistic (a0 ≪ 1)
and the relativistic (blow-out) regime (a0 ≥ 1). For instance, in a Ti:Sapph-based laser system like
the ones used for the experiments in this thesis, operating at a wavelength of λ0 = 800 nm then the
relativistic regime a0 = 1 is reached for laser intensities in the order of I0 ≈ 2.2 × 1018 W/cm2.
At these intensities |ve| −→ c the cross magnetic term in Eq. 2.1 can no longer be neglected, so
both the electric and magnetic fields are responsible for the motion of the electron.

The electron motion in this case can be quite complex depending on the laser field’s polariza-
tion, but it generally follows an oscillatory pattern in phase with the electric field of the laser light
as well as net forward drift motion. In particular, for a focused laser pulse, the electron experiences
a quasi-static force known as the ponderomotive force [91], which tends to expel electrons out of
regions of high laser intensity FP = −e∇Φpond. This phenomenon, which is a non-linear effect of
the laser field, can result in the formation of an electron “sheath” around the high-intensity region
and is responsible for many phenomena in LWFA. In the linear regime, the ponderomotive force
can be conveniently described by the normalized vector potential a averaged over one laser cycle,
so for a Gaussian beam in time with a(t) = ⟨a⟩T = a0exp

[
− (t/τ0)

2],
Fp = −mec

2∇a2

2
. (2.7)

Nevertheless, for the non-linear relativistic regime, the ponderomotive force is typically defined
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by the gradient of the cycle-averaged relativistic gamma factor ⟨γ⟩ as described in Ref. [163,
46]. Therefore, let us then make use of multiple timescale perturbation theory letting p = pq +

δp such that for the linear limit, the zeroth order motion is equivalent to the quiver momentum
p⊥ = meca⊥, directly obtained from the conservation of canonical momentum d (p⊥ − eA⊥) = 0.
Then, assuming that the laser is propagating in an underdense plasma with a sufficiently broad spot
size, and taking a slowly varying envelope approximation so that k0w0 ≫ 1 and ω0τp ≫ 1, the
first order motion yields the relativistic ponderomotive force when cycled averaged,

Fp,rel = −mc2

⟨γ⟩
∇
〈
a2

2

〉
. (2.8)

Overall, the ponderomotive force is a key factor in the dynamics of electrons in the interaction
of high-intensity lasers with matter. The motion of an electron in a high-intensity laser field can
vary from simple oscillations to highly complex, relativistic trajectories depending on the laser
intensity. Understanding this motion is fundamental for many applications in modern physics, in-
cluding high-harmonic generation, electron acceleration, attosecond science, and X-ray generation
via LWFA. The ponderomotive force also takes an important role during the initial “injection” of
electrons into the plasma wake and subsequent acceleration in LWFA.

2.1.3 Electron acceleration in a wakefield

LWFA electron beams are produced by focusing an ultrashort short high-intensity laser pulse of
wavelength λ0 into an underdense plasma, typically a gas, with electron number densities of ne ≈
1018–1019 cm−3. The strong electric field of the laser will almost immediately ionize the gas,
and the electron acceleration process is mediated through the interaction of the electromagnetic
wave (laser) with the plasma. Since it would be impossible to describe each particle individually,
the equations normally used to describe the motion of plasma electrons in electromagnetic waves
include the Lorentz equation, the continuity equation, and Poisson’s equation given by,

dp

dt
=

(
∂

∂t
+ v · ∇

)
p = −e [E+ v ×B] , (2.9)

ne

∂t
+∇ (nev) = 0 , (2.10)

∇2Φ = − ρ

ϵ0
= e

δne

ϵ0
, (2.11)

where δne − ne,0 is the local density perturbation and ρ = −eδne is the charge density.
As the electrons are ionized by the laser and expelled away by the ponderomotive force they

will simultaneously experience the restoring electrostatic force from the ions. Therefore, they will
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naturally oscillate from their initial position with a resonant frequency ωp which can be derived
from Eq. 2.9. By assuming small wave amplitudes in a cold plasma fluid, the equation of motion
reads

ne,0me
∂v

∂t
= −ne,0E . (2.12)

For which the initial thermal energy of the electrons as well as any quadratic terms have been
ignored. The vector identity ∇× (∇× a) = ∇ (∇ · a)−∇2a can be used to reformulate the wave
equation to,

−∇ (∇ · E) +∇2E = µ0ne,0
e2

me

E+ µ0ϵ0
∂2E

∂2t
. (2.13)

Therefore assuming a laser pulse with an electric field in the form of a plane wave E ∝
exp (ikLx− ωLt) propagating in a uniform medium (cold neutral plasma) with ∇ · E = 0 the
resulting dispersion relation is,

ω2
L = ω2

p + c2k2
L , (2.14)

it will subsequently launch longitudinal plasma oscillations with a characteristic cold electron
plasma frequency ωp given by

ωp =

√
e2ne,0

meε0
. (2.15)

For the 1D non-linear regime, the laser group velocity is given by vg =
√

1− ne/nc, where nc

is the critical plasma density given by,

ne,c =
ϵ0me

e2
ω2
L =

1.1

λ2
L[µm]

1021cm−3 , (2.16)

for ωL = ωp. When ne < nc the medium is underdense and the electromagnetic wave can propa-
gate through the plasma. However, when ne ≥ nc the medium is overdense and the electrons can
follow the laser field oscillation thus shielding the plasma and reflecting the pulse instead. For an
electromagnetic wave propagating through an underdense plasma the corresponding phase velocity
vph and group velocity vg are

vph =
ωL

kL
, (2.17)

vg =
∂ωL

∂kL
= ηc . (2.18)

Here the refractive index η for a cold plasma medium is given by

η =

√
1−

ω2
p

ω2
L

< 1 . (2.19)
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Therefore the wake phase velocity is dictated to the first order by the laser group velocity and the
corresponding relativistic gamma factor of the plasma wave results in

γp =
1√

1− (vg/c)
2
≈ ωL

ωp

. (2.20)

Furthermore, for a plasma wave excited by a laser pulse in a Coulomb gauge (∇ · A = 0) the
Lorentz force can be expressed in terms of the vector potential so that(

∂

∂t
+ v · ∇

)
p = e

[
∂

∂t
A+∇Φ− v ×∇×A

]
, (2.21)

and by taking ∇p2 = m2
ec

22γ∇γ and using the vector identity ∇p2 = 2 [(p · ∇)p+ p× (∇× p)]

this leads to
mec

2∇γ = (v · ∇)p+ v × (∇× p) . (2.22)

Here the LHS represents the ponderomotive force as described before, which can be inserted into
Eq. 2.21 to obtain the following equation of motion,

∂p

∂t
= e∇Φ + e

∂A

∂t
−mec

2∇γ , (2.23)

where v × ∇ × (p − eA) = 0 indicating that the electrons are exclusively driven by the vector
potential and the canonical momentum is conserved p− eA = 0 for all times if there is no initial
perturbation in the plasma [27]. This equation is the starting point to obtain solutions for linear
and non-linear laser-driven plasma waves.

For the following derivations, it is convenient to introduce a coordinate transformation to the
wake rest frame for a non-evolving wake with ξ = z − vgt and τ = t with partial derivatives,

∂

∂z
=

∂

∂ξ
and

∂

∂t
=

∂

∂τ
= −vg

∂

∂ξ
≈ −c

∂

dξ
, (2.24)

and it is convenient to normalize the relevant quantities,

β = v/c, a0 =
eA

mec
, ϕ =

eΦ

mec2
, γ =

E

mec2
, u =

p

mec
. (2.25)

It is possible to find analytical solutions to Eq. 2.23 by assuming small laser intensities a0 ≪ 1

and small plasma density perturbations δne ≪ ne,0 and using Poisson’s equation Eq. 2.11. Then for
a Gaussian laser beam envelope with a = a0exp

(
−ξ2/ (cτ0)

2) exp (−r2/w2
0) the resulting solution
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for a scalar wakefield potential ϕ(r, ξ) is

ϕ(r, ξ) = −f(r) sin(kpξ) ,

where f(r) = a20

√
π

2

kp
4
cτ0exp

(
−2r2

w2
0

)
exp

(
−(kpcτ0)

2

8

)
.

(2.26)

Based on the definition of ϕ the resulting electric field and electron density are,

E∥

Ep,0

= − 1

kp

∂ϕ

∂ξ
,

E⊥

Ep,0

= − 1

kp

∂ϕ

∂r
,

δne

ne,0

=
1

k2
p

∂2ϕ

∂ξ2
, (2.27)

where Ep,0 is the so-called relativistic wavebreaking field - dictating the field strength at which
breakdown of the wakefield structure occurs. The radius of the wake (assuming a spherical shape)
is dictated by the plasma frequency ωp, as well as the laser focal spot size. Analytical solutions
can be obtained for the 1-D spatial case [45, 161] that are helpful in giving an insight into under-
standing the plasma behavior. Assuming a 1-D case, the 3-D electron momentum can be described
by parallel (z-direction and longitudinal (x-y direction) components. In this case, the equation of
motion can be derived with Eq. 2.1 and Eq. 2.2 and following [59, 184] as,

dp⊥

dt
= e

(
E⊥ + v∥ ×B∥

)
= e

dA⊥

dt
, (2.28)

dE∥

dt
= c

dp∥

dt
, (2.29)

where the integration for an electron initially at rest gives the longitudinal and transverse momenta
as,

p⊥ = eA⊥ =⇒ u⊥ = γβ⊥ = a , (2.30)

E − cp∥ = mec
2 =⇒ γ − 1 = u∥ . (2.31)

Then following the solution for the wake potential ϕ can be derived from Eq. 2.23, Eq. 2.10, and
Eq. 2.11 to be

∂2ϕ

∂ξ2
= k2

pγ
2
p

(
βp

(
1− 1 + a2

γ2
p(1 + ϕ)2

)−1/2

− 1

)
, (2.32)

describing a nonlinear ordinary differential equation that can be solved for wake potential ϕ. If a
linearly polarized square pulse is assumed with vg −→ c, then the scalar potential ϕ0,max and peak
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electric field E0,max can be obtained [14],

ϕ0,max ≈ a20/2, E0,max = Ep,0
a20/2√
1 + a20/2

. (2.33)

Alternatively, for the 3-D non-linear regime (a0 > 1) with an arbitrary pulse envelope a(ξ) the
wakefield is not easily defined and neither is the laser group velocity. Therefore 3-D Particle-In-
Cell (PIC) simulations are typically performed [61, 108] in order to obtain scaling laws for 3D
LWFA, as well as the wake potentials, fields, and density profiles.

When a particle is initiated in a wakefield it will gain energy as long as it stays in phase with
the accelerating section of the wake. Since the laser group velocity in the linear regime is vg < c

the accelerating particles with ve ∼ c will eventually outrun the wake. This means that there is
a maximum energy gain that can be extracted from a wakefield given a laser wavelength λ0 and
plasma density ne. The phenomenon of an accelerating particle outrunning the wakefield is also
known as dephasing, and the distance over which this occurs is known as the dephasing length
Ldeph. It has been shown in [46, 168] that the maximum achievable energy (in the 1D linear
regime) is given by,

Emax ≈
(
nc

ne

)
mec

2 , (2.34)

while the corresponding dephasing length is approximately,

Ldeph ≈
(
nc

ne

)
λp

2
∝
(
ne

ne

)3/2

. (2.35)

In order to obtain scalings for the maximum energy gain and the accelerator length let us once
again assume that wakefield (regardless of its structure) has a potential ϕ(ξ, r⃗). This implies that
in the wake rest frame the new potential, indicated by a prime notation, becomes

ϕ′ = γp (ϕ− vgAz) = γpϕ , (2.36)

when using a Lorenz gauge and the Lorentz boost factor γp. Then, to find scalings for maximum
energy gain, the first assumption is that the difference between the speed of light in a vacuum and
the laser group velocity c− vg is proportional to the plasma density. This implies that

γp =

√
η
nc

ne

, (2.37)
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where η is a constant. Therefore, the maximum energy gain in the wake rest frame is given by,

∆T ′ = e∆ϕ′ = e (ϕ′
max − ϕ′

min) . (2.38)

Next, we can use the limit γp∆ϕ ≫ 1, so that ∆p′c ≈ ∆T ′ to transform this expression so that to
obtain the energy gain of an electron in the laboratory frame

∆T = 2γ2
pe∆ϕ (2.39)

and it, therefore, scales as,

∆T ≈ C1

(
nc

ne

mec
2

)
, (2.40)

where C1 = 2η (e∆ϕ/mec
2) is a scaling factor dependent on the wakefield structure.

Following dimensional analysis it can be concluded that the longitudinal electric field has a
magnitude of order E0 = mcωp/e thus it follows that the dephasing length approximately scales
as

Ldeph ≈ C2

(
nc

ne

)3/2

λ0 , (2.41)

where C2 = C1/2πη is another scaling factor and α is obtained from averaging between the
maximum and minimum potentials in the electric field so that ⟨E∥⟩ = ηE0.

To obtain an accurate value for C1 and C2 scaling factors in the 3D non-linear regime, it is
necessary to run numerical simulations. It is important to remember that this analysis is only valid
for non-evolving wakefields, non-evolving laser pulse, and uniform plasma densities. For more
realistic scenarios, these scalings will certainly change and there have been studies on this subject
[109] using a variety of analysis and simulation tools, obtaining the results

∆T ≈ 2a0
3

(
nc

ne

)
mec

2 (2.42)

and

Ldeph ≈
2
√
a0

3π

(
ne

ne

)3/2

λ0 . (2.43)

describing the energy gain and the dephasing length, which have also been tested experimentally
obtaining accurate results [112, 118].
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2.1.4 Generation of betatron radiation in a plasma channel

When electrons are trapped in a wake they can be injected off-center from the laser propagation
axis and then undergo betatron oscillations. As electrons oscillate inside the wake they produce
radiation bursts in the form of a collimated beam of broadband X-rays. This phenomenon gives the
name to betatron X-rays from relativistic electrons oscillating inside the plasma bubble in LWFA.
In this section, the fundamental equations for betatron radiation are introduced.

The first observation of betatron radiation was at SLAC national laboratory from a ∼ 28 GeV
electron beam from a conventional linear accelerator undergoing oscillations inside a lithium
plasma [181]. Later on, betatron radiation was observed from a laser-driven wake having a broad-
band spectrum in the range of 1–10 keV and approximately ∼ 108 photons [142]. Since then,
multiple experiments have successfully used betatron X-rays for synchrotron-like photon source
applications with reviews available in the literature [33, 47].

In order to obtain the equation of motion for electrons undergoing transverse betatron oscil-
lations while simultaneously being accelerated in the longitudinal direction in the non-linear rel-
ativistic regime, let us first assume a spherical ion cavity following the derivation in [88, 107].
Assuming a frame of reference with the wakefield at rest, the transverse electric fields inside the
ion bubble are given by

Ex =
meω

2
px

4e
(2.44)

and

Ey =
meω

2
py

4e
, (2.45)

having an exclusively azimuthal magnetic field given by

Bx =
meω

2
py

4e
(2.46)

and

By = −
meω

2
px

4e
. (2.47)

Furthermore, the accelerating field in the longitudinal direction is given by

Ez = meω
2
pξ/2e . (2.48)

Here the wake coordinate is ξ = z − vgt has once again been used. In this case, the longitudinal
field will have a maximum amplitude |Ez|max =

√
a0mecωp/e at the bubble edge with radius

rb = 2
√
a0c/ωp and it will be equal to zero |Ez| = 0 at the center of the bubble with ξ = 0. The
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field will then have an average strength given by

⟨Ez⟩ =
1

2
|Ez|max = (

√
a0/2)mecωp/e . (2.49)

We can therefore write all force components an electron would experience inside the wake as,

Fz = −eEz , (2.50)

Fx = −e (Ex − vzBy) , (2.51)

Fy = −e (Ey − vzBx) , (2.52)

which can be expressed in a compact form by taking vz ≈ c then,

dp

dt
≃ −1

2
meω

2
ps (2.53)

where s = (x, y, ξ) = r− vgtẑ as the coordinates co-moving with the bubble at the group velocity
vg. This equation of motion can be integrated by assuming the longitudinal momentum is slowly
varying to give,

pz ≈ γ2
pa0mec

(
1− ξ2

r2b

)
(2.54)

Moreover, for the transverse direction, the equation of motion can be obtained by modeling the
electron as a slowly varying oscillator with betatron frequency

ωb =
ωp√
2pz

, (2.55)

and resulting in WKB solutions following [88],

px =
px0√
pz(ξ)

cos

[∫
ωb(ξ)dξ

]
. (2.56)

According to the text on classical electrodynamics by Jackson [72] it is then possible to calculate
the intensity emitted by the electron per unit frequency dω and solid angle dΩ as,

d2I

dωdω
=

e2ω2

4πc

[∫ ∞

−∞
n× (n× β) eiω(t−

n·r
c )dt

]2
, (2.57)

where n is the vector in the observation direction and β = v/c is the normalized electron velocity.
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This expression can be simplified in the so-called asymptotic limit for strong electron oscillations.
In this regime, the betatron oscillations are comparable to those from a traditional magnetic wiggler
with its characteristic strength parameter only dependent on the strength of the imposed magnetic
field. For the plasma wiggler, the corresponding strength parameter is

aβ = γkβrβ ≫ 1 , (2.58)

where γ is the electron relativistic factor, rβ ≈ rb is the oscillation radius, and kβ = kp/
√
2γ is

wave number dependent on the plasma frequency. When aβ ≫ 1, in the asymptotic limit, the
radiation spectrum can then be described as observed at an angle θ from the plane of the electron
oscillations and it is given by [47, 72] as

d2I

dΩdω
∝ γ2ξ2

1 + γ2θ2

[
K2

2/3(ξ) +
γ2θ2

1 + γ2θ2
K2

1/3(ξ)

]
(2.59)

where in this case K2/3 and K1/3 are modified Bessel functions and

ξ =
ω

ωc

(
1 + γ2θ2

)3/2
, (2.60)

with a critical frequency ωc ≈ 3aβγ
2ωβ , and betatron frequency ωβ = ωp/

√
2γ.

For θ = 0 the expression can then be simplified even further to approximate a synchrotron
spectrum given by

d2I

dΩdω
∝ γ2ξ2K2

2/3(ξ) , (2.61)

with ξ = ω/ωc. This expression leads to a synchrotron-like spectrum which can be integrated over
the full spatial extent of the betatron beam to obtain

dI

dω
=

√
3
e2

c
γξ

∫ ∞

ξ

K5/3(x)dx . (2.62)

The equations in this section for betatron radiation spectra and electron equation of motion
have been extensively used to study LWFA dynamics. In the literature, we can observe multiple
analytical studies which compare these expressions to results obtained from PIC simulations [87,
126, 81]. Although it is important to note that these apply to specifically imposed initial conditions.
Moreover, in the 3D blowout regime electrons undergo betatron oscillations in multiple planes, and
they are affected by the time-evolution of the wakefield as well as the laser field itself. Nowadays,
techniques exist for post-processing PIC simulations and track the electron trajectories, thus being
able to estimate a radiation spectrum and power with accuracy [115, 116, 117].
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2.2 High-energy-density physics

2.2.1 Introduction

High-energy-density science is concerned with the state of matter at high pressures, defined as
having pressures above one million atmospheres, or 1 Mbar. This definition is given in reference
to the internal energy density of a hydrogen molecule. In other words, if the pressure applied to
ordinary solid matter exceeds 1 Mbar it often ionizes, compresses, and becomes a plasma with
high-energy-density (very hot and very dense), such as that found in stellar medium with fusion
conditions. It has become obvious over the past century that matter exhibits distinct behavior under
the presence of free electrons when it is ionized to a plasma, which starts occurring at pressures
above ∼ 0.1 MBar. One way to characterize plasmas is by its Debye length λD given by

λ2
D =

ϵ0kBTe

neq
. (2.63)

Where Te is the electron plasma temperature, ne its number density, kB is the Boltzmann constant,
ϵ0 is the vacuum permittivity, and q the elemental charge. It is possible to compare the high-energy-
density regime to physical and astrophysical systems by considering their respective density and
pressure. For example, common solid, liquid, and gaseous systems lie in the range of temperatures
below 104 K and densities within a few orders or magnitude from that of water 10−3–101 g/cm3.
Most ideal and dusty plasmas in the universe are found at lower densities and higher temperatures
such as solar wind, or nebulae with λD ≈ 10 m, while the solar core or planetary systems are of
significantly higher densities and lower temperatures with λD ≈ 10−11 m.

In general terms, any ionized medium may, by some definitions, be considered plasma so in this
sense high-energy-density matter is plasma. However classical plasma theory is only applicable to
space plasmas and low-pressure plasma sources, the so-called “ideal plasmas” which have many
assumptions built into them. High-energy-density plasmas are not typically ideal plasmas as they
normally have high density and characterizing features which makes them behave like a non-
ideal gas. High-energy-density plasmas also encompass conditions at which the density is low
but at really high temperatures so that the pressure is higher than 0.1 MBar. For example, air
density at a temperature above 1 keV. If the density decreases even further but the temperature
keeps increasing then plasmas where relativistic effects are important arise, which also fall outside
traditional plasma theory.

Overall, all of these plasmas share in common that their collective behavior dominates their
properties. In high-energy-density plasmas, their behavior is more correlated, relativistic, and
radiative while ionization and Coulomb interactions are not necessarily essential. In this sense, one
way to characterize plasmas is to compare the magnitude of the energies associated with Coulomb
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forces to the kinetic energy of a thermal particle. A commonly used coupling parameter is therefore
defined as

Γ =
Ze2

4πϵ0akBTe

, (2.64)

where a = 3/(4πn)1/3 is the Wigner-Seitz radius. Then, for Γ ≫ 1 the system would be a strongly
coupled plasma, while Γ ≪ 1 it would be a weakly coupled (ideal) plasma. Lastly, when higher-Z
plasmas are heated to hundreds of eV then they will emit radiation, and the radiation transport
effects can become important in the collective behavior of the plasma system. This regime is
also known as radiative plasma and radiation hydrodynamics, which mostly falls outside the scope
of this thesis. Alternatively, for accessing relativistic plasmas at hundreds of keV it is typically
needed to use ultrafast lasers and particle accelerators. An important consideration is that plasmas
are typically described in equilibrium conditions, while most interesting HEDP phenomena are
dynamic in nature, which is a core element in this thesis. Some of these include shock waves,
radiation waves, matter ablation, or hydrodynamic instabilities. Therefore, this section will focus
on introducing some of the fundamental concepts in high-energy-density dynamic systems.

2.2.2 Hydrodynamic fluid equations

Plasmas have two key descriptions: kinetic and fluid. The description used depends on the plasma
system in question and the statistical distribution of its particle velocities f(v, r, t). For plasmas
with non-Maxwellian particles distributions a kinetic description is typically required. In order to
describe the particles’ behavior statistically the Boltzmann equation is used which is given by,

df

dt

∣∣∣∣
C

=
∂fs
∂t

+ v · ∇fs +
F

ms

· ∇vfs . (2.65)

In the Right-Hand Side (RHS) of Eq. 2.65, the F term is the sum over all forces acting on the
particles typically referring to the Lorentz force F = q(E + v ×B), then ∇v is the grad operator
in velocity space, df/dt|C indicates the time rate of change of f due to collisions. When the Left-
Hand Side (LHS) of Eq. 2.65 is equal to zero the equation is known as the Vlasov equation for
collisionless plasma. Furthermore, when f(v, r, t) is Maxwellian then a fluid description can be
applied. The Maxwellian particle velocities distribution is of the form,

fs(v) = n(r)

(
ms

2πkBTs

)3/2

e
− msv

2

2kBTs , (2.66)

where ms and Ts are the particle’s mass and temperature, respectively, and it is typically normal-
ized so that

∫∫∫
fs(v, r, t)d

3v = n(r). Then, by taking the moments of the Boltzmann equation
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and assuming a polytropic gas one gets the fluid description for plasmas,

∂ρ

∂t
+∇ · ρu = 0 , (2.67)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p , (2.68)

∂p

∂t
+ u · ∇p = −γp (∇ · u) . (2.69)

Here u, ρ, p are the velocities, density, and pressure respectively, while γ is the polytropic index
(ratio of specific heats). In this set of equations Eq. 2.67 is the continuity equation describing
the conservation of mass, Eq. 2.68 is the equation of motion derived from the conservation of
momentum, and Eq. 2.69 is the energy equation obtained from conservation of energy. From the
EE one will notice that there are three equations and four unknowns. This has to do with the
fact that an Equation of State (EOS) is required which relates state variables including pressure,
temperature, and density to one another. For a polytropic gas, the EOS is

p ∝ ργ . (2.70)

The Euler Equations (EE) can also be written in a more general form such as to include any
other forces such as electromagnetic fields or gravity. Therefore, not accounting for mass sources
the continuity equation Eq. 2.67 would remain unchanged, while the momentum equation (non-
relativistic) Eq. 2.68 would read

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P + FEM +∇ · σv + Fother . (2.71)

The term FEM is to account for the interaction of particles with electromagnetic fields, σv is the
viscous stress tensor, and Fother is to account for any other forces such as gravity. The term in-
volving viscosity with σv can be analyzed by approximating it with the scalar viscosity ν so that
σv ∼ ρν (∇ · u), therefore the viscosity term can be approximated as,

∇ · σv ≈ ∇ · (ρν (∇ · u))

≈ ρν∇2u

≈ ρνU

L2
.

(2.72)
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Where L is the characteristic length and which divides by ρU2/L to find the normalized amplitude,[
ρνU
L2

][
ρU2

L

] =
1

Re

, (2.73)

then,

Re =
UL

ν
. (2.74)

Here Re is the Reynold’s number which describes the ratio of inertial forces to viscous forces in a
fluid. When Re is large and ν is small, then the term ∇ · σv in Eq. 2.68 would be small and can be
dropped. Alternatively, when Re is small and ν is large then ∇·σv must be included and accounted
for in the momentum equation.

In order to solve the EE one technique that can be used is “linearization”, which consists of de-
composing (approximating) a variable into a zeroth order average value denoted with the subscript
0, and a small perturbation/deviation from the average as the first order quantity denoted with a
subscript 1 such as

ρ ≈ ρ0 + ρ1 , (2.75)

p ≈ p0 + p1 , (2.76)

u ≈ u0 + u1 . (2.77)

With u = u1 when u0 = 0. For small wavelength perturbations, we neglect higher-order terms.
Therefore it follows that the linearized continuity and momentum equations become

∂ρ1
∂

+ ρ0∇ · u1 + u1 · ∇ρ1 + ρ1∇ · u1 = 0 , (2.78)

ρ0

(
∂u1

∂t
+ u1 · ∇u1

)
+ ρ1

(
∂u1

∂t
+ u1 · ∇u1

)
= −∂p

∂ρ
∇ρ1 . (2.79)

From these expressions, all terms that have a multiple of two small quantities with subscript 1
will result in a second-order term that is small enough to be dropped. Therefore this leads to the
linearized EE

∂ρ1
∂t

+ ρ0∇ · u1 = 0 , (2.80)

ρ0
∂u1

∂t
= −∂p

∂ρ
∇ρ1 . (2.81)

One can then use these two equations and take the second derivative in time followed by substitu-
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tion and some algebra to obtain the result

∂2ρ1
∂t2

− ∂p

∂ρ
∇2ρ1 = 0 , (2.82)

which describes the acoustic wave equation in which ∂p/∂ρ = c2s = γp/ρ is the speed of sound
for a polytropic gas.

2.2.3 Multi-fluid model

Many high-energy-density phenomena occur at timescales at which the single fluid description
for plasma is no longer valid. For these situations, a multi-fluid description is more appropriate, a
model in which the motion of electrons and ions are considered separately. This kind of description
is more complex than the single fluid, but it is more accurate in describing high-energy-density
systems in which the electrons’ motion has an influence on the behavior. A particularly relevant
example in this context is the case for direct laser irradiation of a target and the laser-plasma
interaction thereafter, a subject that is a core element in this thesis. In this sense, electrons and ions
start acting independently when the density decreases or the temperature increases significantly so
that the collisional coupling between electrons and ions becomes smaller.

Within this context, one can utilize the EE independently for every fluid species j, so that

∂nj

∂t
+∇ · (njuj) = 0 (2.83)

for the continuity equation, and for the momentum equation

mjnj
∂uj

∂t
+mjnjuj · ∇uj = njqj

(
E+

uj

c
×B

)
−∇pj +

∑
l

Rj,l , (2.84)

where the subscript j = e is typically used for electrons, and j = i for ions, and Rj,l is the rate of
momentum density change between species j and l. Just as in the single fluid description, the three
multi-fluid EE have four unknowns and thus an EOS is necessary. At high enough temperatures,
any material can be approximately described as a polytropic gas with an EOS describing an ideal
gas. This is,

p = ρRT = NkBT =
ρ (1 + Z) kBT

Amp

, (2.85)

where N is the total number density of particles, kB is the Boltzmann constant, and T is the
temperature. For a high-energy-density plasma one can take the average level of ionization Z

(number of electrons), the average mass of the ions A, as well as the proton mass mp to estimate
the pressure for a polytropic gas. Moreover, the internal energy for a system of particles with n
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degrees of freedom is

ρϵ =
n

2
NkBT =

n

2

ρ (1 + Z) kBT

Amp

. (2.86)

This leads to the commonly seen result from statistical physics for the internal energy of a particle
given by 1/2KBT per degree of freedom so that ϵ = 3

2
kBT for three degrees of freedom. From

the internal energy, it follows that the specific heat (energy required to raise a unit of mass to a unit
degree in temperature) at constant volume is

Cv =
∂ϵ

∂T

∣∣∣∣
ρ

=
n

2
R , (2.87)

and the specific heat at constant pressure (assuming Z(R) is independent of T) is

Cp =
∂ϵ

∂T

∣∣∣∣
P

=
(n
2
+ 1
)
R . (2.88)

Directly from these results and using thermodynamic principles for a constant entropy, once again
one obtains that the speed of sound is given by

c2s =

(
∂p

∂ρ

)
s

=
Cp

Cv

(
∂p

∂ρ

)
T

=
Cp

Cv

p

ρ
=

γp

ρ
. (2.89)

From this result, a definition for the polytropic index can be obtained as the ratio of specific heats

γ =
Cp

Cv

= 1 +
2

n
. (2.90)

Notice that for n = 3 this implies that γ = 5/3, which is typically used for a polytropic (ideal)
gas. However as the degrees of freedom increase then an isothermal system is approached and
γ decreases towards 1. Another consequence would be the previously stated result: p ∝ ργ for
adiabatic changes over pressure in which γ is constant, and furthermore these results imply that
the internal energy is

ρϵ =
p

(γ − 1)
. (2.91)

Calculations using polytropic models are not straightforward. For an isothermal system, the
result would be p ∝ ρ and therefore γ = 1. However, in this limit, Eq. 2.91 would imply that the
internal energy is infinite, which is not physical. Typically, for only kinetic degrees of freedom
one would expect to have γ = 5/3 and the above equation applies to an adiabatic system that
is not isothermal. In contrast, isothermal systems are those with very fast heat transport which
change compression while maintaining a constant temperature. In an isothermal system, acoustic
phenomena can be described with γ = 1, while the internal energy of the system can be evaluated
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using γ = 5/3. This variation in the polytropic index is a more realistic and complex scenario
during high-energy-density experiments, which partly motivates some of the results discussed later
in this dissertation.

2.2.4 Shock waves and jump conditions

Shock waves are a fundamental phenomenon in HEDP and a protagonist in this dissertation work.
Nearly all experiments in HEDP involve at least one kind of shock wave, if not many. On a
fundamental level, shocks are “strong” discontinuities in the state variables carrying disturbances
in a medium with high compression and expansion. In high-energy-density experiments, high-
compression systems might be created by pistons or high-intensity lasers, while in astrophysical
systems such as in sonic booms in the magnetosphere from solar wind, or a supernova expansion
from the passing of a star. Most interesting astrophysical phenomena are sudden and typically
include one kind of shock wave.

To analyze shock waves one can start by comparing them to normal sound waves, in which
energy is transported at the sound speed c2s = ∂p/∂ρ, then the maximum energy than can be
carried by the wave is in the order of the internal pressure ∼ c2sρ with a maximum in the order of
∼ ρc3s. If one is to increase the pressure in the medium even further then a discontinuity (shock)
is created at its boundary. The fluid cannot respond to such higher pressures by radiating sound
waves and so a shock is launched. For instance, when a plasma of density 1g/cm3 is rapidly heated
by a laser, say to 1eV in temperature, the resulting pressure would be in the order of one million
atmospheres (1Mbar), and even higher pressures are relatively easily obtained in high-energy-
density experiments. At those high-energy-density conditions fluids cannot sustain the amount of
pressure generated and shock waves are generated as a result.

If a perturbation in a medium moves at a speed u then the ratio of this quantity to the speed
of sound in the medium cs is known as the Mach number Mu = u/cs. Therefore if u < cs and
Mu < 1 then the flow is said to be subsonic, while for u > cs and Mu > 1 the wave is supersonic
in nature. Within this context, a shock wave will have three effects on the medium. First, it will
carry forward the energy deposited at a shock speed us > cs. Second, it will heat and accelerate the
upstream (ahead of shock, unshocked) medium, thus depositing kinetic energy in the post-shocked
fluid with velocity up. Lastly, it will continue heating the downstream (behind the shock, shocked)
fluid so that the motion of the shock wave relative to the heated fluid is subsonic. For the following
analysis the upstream fluid will be denoted with a subscript 1 and the downstream fluid with a
subscript 2.

By utilizing the shock frame of reference it is possible to derive equations that describe the
physical conditions in the shocked material. Regardless of the presence of a discontinuity in the
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medium, the laws for conservation of mass, conservation of momentum, and conservation of en-
ergy still hold. Therefore, starting once again from the Euler equations in conservative form:

∂ρ

∂t
= −∇ · (ρu) , (2.92)

∂

∂t
(ρu) = −∇ · (ρuu)−∇p , (2.93)

∂

∂t

(
ρu2

2
+ ρϵ

)
= −∇ ·

[
ρu

(
ϵ+

u2

2

)
+ pu

]
. (2.94)

Then for a general conservative type equation with a state variable ρQ and its corresponding flux
ΓQ having the form

∂ρQ
∂t

= −∇ · ΓQ (2.95)

, it is possible to introduce a small planar disturbance ∇ → ∂/∂x and integrate over a small region
so,

∂ρQ
∂t

= − ∂

∂x
ΓQ∫ x2

x1

∂ρQ
∂t

dx′ = −
∫ x2

x1

∂

∂x
ΓQ(x

′)dx′
(2.96)

As the region becomes infinitesimally small x2 − x1 → 0 then the LHS of Eq. 2.96 approaches
zero but the RHS does not, implying that the fluxes at each side of the discontinuity are conserved
this is,

0 = ΓQ(x2)− ΓQ(x1)

ΓQ(xq) = ΓQ(x2)
(2.97)

This is an important result that applies for an infinitesimally small region dx that is fixed, which
highlights the significance of using the shock frame of reference in this analysis. Applying the flux
conservation result to the three EE in conservative form one finds the shock relations, also known
as the (one-dimensional) Rankine-Hugoniot jump conditions,

ρ1u1 = ρ2u2 , (2.98)

ρ1u
2
1 + p1 = ρ2u

2
2 + p2 , (2.99)[

ρ1u1

(
ϵ1 +

u2
1

u

)
+ p1u1

]
=

[
ρ2u2

(
ϵ2 +

u2
2

u

)
+ p2u2

]
, (2.100)

which imply that the mass, momentum, and energy flux across a shock front are conserved. As
in the previous analysis, an equation of state is needed to complete these jump conditions. In
this sense, equation of state measurements are commonly carried out by taking measurements of
shocks and plotting the Rankine-Hugoniot relation or shock Hugoniot function p (p1, 1/ρ1, 1/ρ2).
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To obtain these relations in the laboratory one is often able to measure the shock velocity us and
post-shock fluid velocity up for example by using X-ray imaging techniques, such as those used
during later chapters in this thesis, to measure the time it takes a shock to cross a given thickness.
These measurements are typically obtained in the lab frame of reference where the shock is not
at rest, but rather the shock velocity corresponds to the upstream velocity us = |u1| and the post-
shock particle velocity is up = u1 − u2 which can be substituted in the jump condition equations
to obtain expressions for the density jump and pressure difference across the shock this is,

ρ2
ρ1

= 1 +
up

u1 − up

,

p2 − p1 = ρ1u1 (u1 − u2) = ρ1u1up ,

(2.101)

which allows one to determine the thermodynamic state of a system from the measurements of
us, and up, albeit this is not always straightforward. The jump conditions introduced in Eq. 2.92,
Eq. 2.93, and Eq. 2.94 describe the fundamental concept of mass, momentum, and energy conser-
vation across the shock front, however, these can be manipulated further to obtain other, sometimes
more practical, shock relations. Some of these useful expressions are found in Appendix A and in
later chapters in this dissertation.

2.2.5 Overview of hydrodynamic instabilities

Up to this point, the Euler equations have been used for giving a fluid description of hydrody-
namic phenomena such as shock waves. Nevertheless, this analysis has been conducted for a
One-Dimension (1D) system, which is a function of linear or radial distance. The physical world
really operates in Three-Dimensions (3D), and the increase in dimensionality certainly affects the
overall behavior of the system. In daily activities it is possible to observe some rather intrigu-
ing and fascinating hydrodynamic phenomena such as turbulent clouds, droplet formation in a
faucet, or eddies in a cup of coffee with some milk. One might expect that these well-observed
hydrodynamic instabilities including, but not limited to, the Rayleigh-Taylor (RT) instability, the
Kelvin-Helmholtz (KH) instability, or the Richtmyer-Meshkov (RM) process are well understood,
as they have been studied for centuries. Nonetheless, regardless of highly talented scientists, ad-
vanced mathematics, and supercomputers running fluid simulations, hydrodynamic instabilities
and turbulent flows still hold many mysteries, still being one of the subfields of physics with less
progress over the past century.

To understand why a full description of 3D hydrodynamic instabilities has proved to be so
difficult for physicist includes the fact that the EE contain terms including the divergence of the
product of two parameters, say ∇·ρu. This leads to a non-linear equation assuming both quantities
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are a function of space (which they are in real 3D scenarios). Therefore, to deal with such a
problem it is typically assumed that one of the two variables is constant for a specific situation,
or alternatively, by linearizing the equation and dropping second-order terms. Even then, much
has been learned on hydrodynamic instabilities, and much is still being studied. This is one of the
fundamental motivations in this dissertation work, the need to improve our understanding of such
hydrodynamic systems, and how electron beams and X-rays from LWFA can be a step forward
in the direction to advance our diagnostic systems and consequently expand our knowledge of
hydrodynamic instabilities and their effect on HEDP and ICF experiments.

There is no doubt that these approaches can lead to a useful understanding of how hydrody-
namic instabilities behave at the 1D fundamental level. However, these models fail to capture all
the intricacies in the plasma dynamics found in real 3D experimental conditions. For instance,
some of the second-order non-linear terms dropped during linearization analysis might be large
during strong density and pressure perturbations and are capable of driving waves of their own.
These effects are not tractable in the analysis and, depending on the spatio-temporal scale, its be-
havior is not followed in computer simulations—constrained by the analytical models as well as
their computing capacity for resolving the dynamics. Regardless, of these limitations, acquiring
some understanding of hydrodynamic instabilities is certainly feasible. In particular, analysis and
simulations can help in understanding the conditions that might lead to unstable behavior, from
which many of the well-known instabilities acquired their name.

In this sense, linearization could be used to find an initial approximation for the growth rate
in an unstable system when its perturbation amplitude is relatively small. In real experiments, as
the modulation/perturbation amplitude grows in amplitude then a 1D or 2D approximation will no
longer be valid, and 3D effects will start to influence the dynamics of the instability. This is com-
mon for real fluids in HEDP experiments where structures can develop in 3D as a consequence of
strong 2D perturbations, such as in turbulent flow, which set the stage for secondary instabilities to
develop. It is important to note that even though 2D instabilities have thoroughly been studied, 3D
instabilities are typically specific and geometry dependent. Some of the consequences of geometry
will become apparent later in this thesis.
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CHAPTER 3

Methods

3.1 Introduction

This chapter introduces the experimental, analytical, and simulation methods that were used to
carry out the experiments described in Chapter 5, Chapter 6, and Chapter 7. For the experiment,
the optical characterization of both long pulse and ultrashort pulse laser foci was important, as well
as diagnosing the quality of the generated electron beam in terms of its energy distribution, charge,
and divergence. The X-ray beam was also characterized in order to recover its spectrum and source
size. The characterization of the electron and X-ray beams are accompanied by analysis techniques
described in this chapter, including synthetic phase-contrast X-ray imaging generation, density re-
trieval from experimentally measured phase-contrast X-ray images, and electromagnetic field re-
covery from radiography images taken with a LWFA electron beam probe. These are relevant to
each of the results shown in Chapter 5, Chapter 6, and Chapter 7, respectively. Additionally, an in-
troduction to the FLASH radiation hydrodynamics code is given, where the fundamental equations
under which it operates are discussed. Simulations using the FLASH code have been a pertinent
part in complementing the experimental results obtained during the experimental campaigns.

3.2 BELLA HTT laser system

The experiments conducted for this dissertation were performed at the BELLA Center located at
the Lawrence Berkeley National Laboratory. The experiments utilized the HTT dual-beam laser
system, which is the focus of this section. The HTT laser system front-end starts with the Coher-
ent Vitara oscillator, which generates a train of femtosecond pulses at a rate of ∼ 80MHz having
∼ 100 µJ of pulse energy at central wavelength λ0 = 800 nm. Then, the Coherent Legend Elite
containing a Pockel cell downsamples the frequency from MHz to kHz, meanwhile stretching and
amplifying the beam from microjoules to millijoules through an initial regenerative amplifier pro-
cess. Next, a homemade pulse-cleaning system treats the pre-pulses of the kHz beam, obtaining an
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Figure 3.1: Block diagram showing the BELLA HTT dual-beam laser system architecture. The
BELLA HTT system is designed for the generation of ultrafast laser pulses capable of producing
LWFA electron beams for Thomson scattering and pump-probe experiments.
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intensity contrast ratio of order 10−7, which is sufficient for generating LWFA electron beams. The
laser pulses are next guided to cross-polarized wave (XPW) apparatus as shown in Fig. 3.1. Clean
pulses then are guided through a home-built stretcher which stretches the beam from femtoseconds
to around ∼ 200 ps. Inside the stretcher, a dazzler is used, which manipulates the chirp (color dis-
tribution) inside the pulse. This is available to control the focus and pulse duration in the target
area. After the dazzler and pre-amplifier, the beam is then split into two: a main beamline and a
secondary beamline. Both of these beamlines are guided through independent regenerative ampli-
fiers which are based on a GAIA (Amplitude) pump laser with nominally 16 J of pump energy,
operating at a repetition rate of 1 Hz used for the experiments described in this thesis (maximum
5 Hz).

The GAIA laser amplifies both the main beam as well as the secondary line through a series of
three-crystal regenerative amplifiers. The main seed beam is amplified by ∼ 9 J of energy from
the GAIA to a net output of 3 J before compression (1 J on target). This main arm of amplification
is also responsible for generating a probe beam, which is used to interrogate the plasma density
through interferometric techniques. The probe has ∼ 0.2 J out of the main amplifier. Then, the
secondary beamline is amplified by ∼ 3 J of energy from the GAIA, destined for the so-called
heater line, reaching an output energy of ∼ 1 J before compression and ∼ 600 mJ on target. After
amplification, a pair of two-grating compressors are responsible for individually compressing the
beams from 200 ps to 30 fs. The compressed beams are then guided to the experimental chamber.
During the experiments conducted for this thesis, the heater line was not actually compressed
after amplification, instead, the compressor was bypassed and the amplified long pulse was guided
directly to the experimental chamber to act as a long-pulse shock-driver beam.

3.2.1 Experimental chamber setup

Following amplification from CPA, the BELLA HTW beams are guided into the experimental
chamber. The LWFA main beam has a 3-inch diameter out of the compressor and into the chamber
and a duration of 40 fs. It is later focused by an f/20 off-axis parabolic mirror (1.5 m focal
length) onto the front of a gas plume from the supersonic nozzle, reaching on-target intensities
of order I ∼ 1018 Wcm−2. After bypassing the compressor, the shock-driver (scatter) beam has
a diameter of 1.6 inches and a pulse duration of ∼ 200 ps. It is then focused by an f/27 off-
axis parabolic mirror (focal distance of 1.1 m), reaching intensities of order I ∼ 1014 Wcm−2,
sufficient to generate large amplitude shock-waves in low-Z targets. The long pulse laser was
focused perpendicularly to the LWFA driver pulse beamline and approximately ∼ 20 cm behind
the gas jet. See Fig. 3.2 for a diagram of the experimental chamber configuration. A 1.2 m long
variable delay-stage was also used in the heater line, which allowed for precise control of timing
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Figure 3.2: Diagram of the BELLA HTT experimental chamber configuration for the pump-probe
experiments performed in this dissertation.
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Figure 3.3: Images of focal spots, profiles of focal spots in the transverse direction at focus posi-
tion, and plots of the laser spots mode maxima and second moments as a function of the longitudi-
nal direction: z-scan. (a) LWFA driver laser and (b) shock heater laser.

for the shock-driver with respect to the LWFA X-rays from hundreds of femtoseconds to up to
8 ns within the interaction. Additionally, an optical probe beam with λ = 800 nm and 40 fs is
also available, which was utilized to analyze the plasma density during laser-gas target interactions
through interferometric techniques.

3.3 Diagnostics

3.3.1 Optical characterization

For the experiments performed in Chapter 5, Chapter 6 and Chapter 7, the focal spots of the laser
beams were characterized by using off-axis parabolas to focus the beam, aligned by correcting
astigmatic aberrations, and a camera to capture the focal spots. The far fields of the beams were
imaged using a lens and a Basler camera. The measurement of the focal spot waist can be calcu-
lated by taking into account the geometrical magnification and pixel size of the camera. An image
of the laser spot at the focus position can be found in Fig. 3.3 as well as a z-position scan through
focus, where the maximum mode is plotted as a function distance, as well as the second-moments
in the x-direction and y-direction in order to visualize the change in the beam waist size.
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Figure 3.4: (left) Measurement of t0 from both HTT beams for a given delay stage position taken
with a photodiode and oscilloscope. (right) Tracking measurement of heater laser spot x and y
centroids as a function of delay stage position.

The experiments in later chapters are concerned with using two laser pulses to perform dynamic
imaging based on pump-probe delay scans. One pulse will drive the electron beam and X-ray
source, while the second pulse will heat, ablate, and generate a shock wave in a (liquid) target
for examination. In order to probe different moments in time, two mirrors on top of a 1.2 m long
delay stage were used. Within this context, characterizing the drifting of the focal spot along the
delay line is crucially important to ensure an effective laser-target interaction. Focal spot drifting
occurs due to imperfections in delay stage flatness and mirror alignment. After some optimization,
the drifting effect along the delay line was minimized to ensure the “shock driver” pulse always
interacts with the target. The centroid of the “shock driver” pulse was tracked in the x and y

directions and plotted along the delay stage as shown in Fig. 3.4. Additionally, a photodiode
measurement was used to examine the time difference between the two pulses at a given delay
stage position. With this measurement it was possible to calculate at which delay position both
pulses should overlap, i.e. an indication of the t0 position. The photodiode measurement of both
pulses at a given delay stage position is shown in Fig. 3.4.

3.3.2 Description of gas target

In the experiments described in this thesis, ionization injection of electrons into the laser wakefield
accelerator was achieved by focusing the laser pulse into a plume gas mixture (99.5% Helium
and 0.5% Nitrogen). The supersonic flow was generated from a 3 mm diameter conical nozzle,
which was synchronized and triggered along with the high-power beam line that provided the
laser wakefield driver pulse and provided an approximately flat-top gas profile [192]. A voltage-
controlled regulator was available to tune the backing pressure of the gas jet resulting in modifying
the density of the gas plume ranging from 2.1–2.8× 1018 cm−3. The laser-plasma interaction was
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Figure 3.5: Image of scintillating lanex screen from magnetic spectrometer showing a typical shot
with the resulting electron energy (MeV) vs angle (mrad).

later characterized by a Mach-Zehnder interferometer including a frequency-doubled probe line
running perpendicular to the jet as well as the high-power line.

3.3.3 Electron beam characterization

The electron beam is characterized using a magnetic spectrometer and a scintillating imaging
screen. The spectrometer operates by setting a dipole magnet (in this case electromagnet) along
the electron beam path, thus influencing its direction and curving its trajectory. Lower energy elec-
trons will be more affected by the magnetic field and curve more, while higher energy electrons
will be less affected by the magnetic field and curve less. This energy-dependent curvature allows
for discriminating electrons based on their energy, as they may be imaged after the magnet on
scintillating Lanex screens and the measured angular deflection may be converted into an energy
scale. An example of a spectrum measurement with the lanex screen is shown in Fig. 3.5. To the
lowest order, the angular deflection is inversely proportional to the particle energy, as can be seen
from the Lorentz force equation. The scintillating light from the screens is captured by a CCD
camera, which has a known distance and magnification.

In order to recover momentum and beam charge from the magnetic spectrometer images, the
system must be well calibrated so that the field of the magnet is known, as well as the signal-to-
charge relation for the Lanex screen. After properly taking these calibrations into consideration it is
possible to independently analyze each magnetic spectrometer image and extract the corresponding
momentum distribution, charge, density and, from the scintillating screen, beam divergence, as
shown in Fig. 3.6 for 400 consecutive shots. For more details on the magnetic spectrometer and
its calibration at the BELLA HTT system see Ref. [125]. For the particular run shown in Fig. 3.6,
the high-intensity pulse accelerated electrons to 167 ± 13.4 MeV mean energy with divergences
x : 7.8± 1 mrad, y : 3.4± 0.8 mrad and mean charge 32.5 pC.
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Figure 3.6: (a) Plot of electron beam spectrometer screens for 400 consecutive shots. Displaying
the energy range for the beams as well as the calculated charge density. (b) Energy spectrum for
the electron beam averaging over 400 shots. The standard deviation on the charge density is also
displayed. (c) Scatter plot for 400 shots measuring mean momentum, charge, and divergence of
the beam.
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3.3.4 X-ray beam characterization

Electron beams from a LWFA will produce X-ray bursts through the oscillation of electrons inside
the plasma bubble, so-called betatron oscillations. This section describes the techniques used for
the characterization of the betatron X-ray beam, including its spectrum and source size. Naturally,
due to energy conservation, the X-ray beam from LWFA will have significantly less energy than
the electron beam. A common technique in experimental physics is to recover the X-ray spectrum
by using dispersive Bragg crystals, however, for broadband betatron X-ray sources a crystal-based
spectrometer would not have enough spectral range. Therefore, a series of foils with different ma-
terial and thickness and a CCD camera (or an image plate) is typically used to measure the X-rays.
Given that CCDs are sensitive to electrons as well as photons, the first step in the characterization
of the X-rays is to ensure that the electron beam is deflected from the detector, typically accom-
plished using a dipole magnet as described in Sec. 3.3.3. Next, additional radiation sources, such
as bremsstrahlung generation from the interaction of electrons with chamber walls, must also be
discriminated against before proceeding with X-ray analysis.

The X-ray spectrum may be recovered using the techniques described in [84, 78]. The method
starts by using a Ross filter wheel, as shown in Fig. 3.7, which has slices of different materials
and thicknesses. Each material sample has a different X-ray transmission curve, and the X-ray
CCD camera has a quantum efficiency (sensitivity) dependent on photon energy as well, shown in
Fig. 3.7.

To recover the spectrum of the betatron X-ray source an image is first taken on the CCD of a
filter design with multiple materials for interrogating. The first step is to calculate the synthetic
Photon-Stimulated Luminescence (PSL) value for each material sample i by using their respective
X-ray transmission Ti and the CCD camera quantum efficiency response QCCD defined as,

PSLi =

∫
Yi(ω)f(ω)dωi × θ , (3.1)

where
Yi(ω) = Ti ×QCCD . (3.2)

Here θ is the angle subtended by each pixel from the source. The first variant of the spectrum
recovery technique is based on pairs of Ross filters [141, 79, 80]. This method uses pairs of
filters and takes advantage of the K-edges of the materials. Each Ross pair has the same X-ray
transmission curve, but a different energy range between their K-edges, in such a way that by
subtracting the curves it is possible to obtain an energy bin or bandpass filter-like window for
counting, as shown in Fig. 3.7. The absolute number of photons per energy bin Wi(keV) and solid
angle can be calculated by subtracting the measured signals S(PSL/rad) and taking into account
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Figure 3.7: (a) Picture of the Ross filter wheel retrieved from Ref. [78] displaying all different
channels, materials, and thicknesses in micrometers. (b) Quantum efficiency curve of the Prince-
ton Instruments PI-MTE X-ray CCD camera displaying transmission percentage as a function of
photon energy. (c) Material response curves for all channels in the filter wheel as a function of
X-ray photon energy. (d) Energy bins from the subtracting of Ross filter pair response curves. The
bins are created by the difference in K-edges from two materials that have the same response curve
but a different energy range.
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the mean transmission of the pair and detector response Y mean
i

d2N

dEdΩ
[photons/keV/srad] =

PSLi

Y mean
i × θ ×W bin

i

(3.3)

Ideally, for the Ross method, both filters in a pair are exposed to the same background and thus
when they are subtracted from one another the background is also subtracted. Nevertheless, this
might not be necessarily true in practice for non-uniform backgrounds. Additionally, some specific
materials and thicknesses can be hard to obtain, which in turn would lead to filter pairs that either
do not cover the full energy range in question, leave energy bin gaps in between, or the energy
outside their bin is not exactly zero which leads to errors in the counting.

Alternatively, the forward fit analysis method is fundamentally based on the X-ray attenuation
properties the beam experiences with the filter. Each material wedge is analyzed by counting the
average signal transmitted and fitting an assumed analytical distribution to the measured data set
so as to extrapolate the critical energy [1, 85, 103]. The assumed (guessed) analytical function for
the betatron source, in this case, is a synchrotron-like spectrum following [47] with the given form
in the asymptotic limit,

fguess(ω) = A

(
ω

ωcrit

)2

K2
2/3

(
ω

ωcrit

)
, (3.4)

where ωcrit is the critical frequency after which the spectrum amplitude falls off exponentially. This
guessed function fguess(ω) is then multiplied by each one of the materials transmission curves
Ti(ωi) as well as the quantum efficiency of the camera. The resulting curves are integrated to
obtain the expected relative signal counts compared to the unfiltered signal in PSL values,

Spredicted,i =

∫ ∞

0

fguess(E)Yi(E)dE . (3.5)

Then, the calculated PSL values are compared to those values measured from the data by perform-
ing the least squares subtraction,

χ2 =
∑
i

(Spredicted,i − Smeasured,i)
2 . (3.6)

By varying the critical energy value of the initial analytical expression f it is possible to minimize
χ2 to obtain a best-fit spectrum, as shown in Fig. 3.8. For the given run, the resulting fit results in
a critical energy for the Ecrit = 4.88± 1.33 keV for the BELLA HTT betatron source.

It is also worth mentioning that for this analysis local background subtraction was performed on
the measured image by subtracting the signal level from the Cu and Pb filter in case of a uniform
beam distribution, or by considering the surrounding background signal for non-uniform beams.
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Figure 3.8: (a) Image of Ross filter wheel taken with the HTT betatron X-rays. (b) Comparison of
photon counting for all channels in the filter wheel between synthetic best fit and measured data.
(c) Estimated synchrotron spectrum given a best-fit critical energy for seven shots.

For non-uniform backgrounds, a mask must be created by selecting the perimeter of each filter in
the image and removing the mask from the original image. The background is then smoothed so
that an unperturbed beam can be estimated. Such unperturbed beam is then subtracted from the
data before analysis, thus vastly improving the results.

Next, the size of the radiation source was estimated by making use of Kirchoff-Fresnel formal-
ism on the diffraction of light. The theory fundamentally consists of the idea that disturbances in
a wavefront at a point P arise from the superposition of secondary waves generated at a surface
between this point and the light source. Mathematically, the Huygens-Fresnel principle is an ap-
proximation for expressing the solution of a homogeneous wave equation from disturbances at an
arbitrary point in the field. If P0 is located at (x0, y0, z0), P is located at (x, y, z), and (ξ, η) are
coordinates for a point Q in the aperture plane for the disturbance in between P0 and P , then the
solution to this problem is obtained by solving the diffraction integral following [17],

U(P ) =
i cos δ

λ

Aeik(r
′+s′)

r′s′

∫∫
A

eikf(ξ,η)dξdη , (3.7)

where r′2 = x2
0 + y20 + z20 , s′2 = x2 + y2 + z2, and δ is the angle between the observation direction

and the normal to the aperture plane A . By assuming the size of the aperture is small compared to
both r′ and s′ it is possible to expand r and s as a power series so that

f(ξ, η) = −x0ξ + y0η

r′
− xξ + yη

s′
+

ξ2 + η2

2r′
+

ξ2 + η2

2s′
− (x0ξ + y0η)

2

2r′3
− (xξ + yη)2

2s′3
+ ... (3.8)

It becomes clear that this expression can be simplified when the higher-order terms for ξ and η can
be ignored in f . Indeed, this is known as Fraunhofer diffraction, while for those cases in which the
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higher-order terms cannot be ignored, it is known as Fresnel diffraction. In this section, in order
to recover the size of the X-ray radiation source, the general form of the Fresnel formalism will be
used. First, the basic diffraction integral from Eq. 3.7 can be expressed in complex form as,

U(P ) = B (C + iS) (3.9)

where,

B = −A
i

λ
cos δ

eik(r
′+s′)

r′s′
, (3.10)

C =

∫∫
A

cos [kf(ξ, η)] dξdη , (3.11)

S =

∫∫
A

sin [kf(ξ, η)] dξdη . (3.12)

Then, the intensity of the wave at the point P in the detector is given by

I(P ) = |U(P )|2 = |B|2
(
C2 + S2

)
. (3.13)

In order to solve the integrals of Eq. 3.11 and Eq. 3.12 it is helpful to make some assumptions. Let
us first keep the second-order terms in ξ and η of f in Eq. 3.8 and ignore third and higher-order
terms. Then, following the text by Born and Wolf [17], defining

b =
λ

2
(
1
r′
+ 1

s′

)
cos δ

, (3.14)

it is possible to make a change of variables of integration to u and v via u = ξ
√
b cos δ and

v = η
√

b/ cos δ, thus simplifying the expression even further to yield

C = b

∫∫
A

cos
[π
2

(
u2 + v2

)]
dudv (3.15)

and
S = b

∫∫
A

sin
[π
2

(
u2 + v2

)]
dudv . (3.16)

Additionally, let us further assume that the area of integration A at the perturbation plane
is perpendicular to the incident wavefront and rectangular with sides parallel to u and v, thus
simplifying the integrals even more through trigonometric identities. This means we may make
use of the well-known Fresnel’s integrals
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C(w) =
∫ w

0

cos
(π
2
τ 2
)
dτ (3.17)

and
S(w) =

∫ w

0

sin
(π
2
τ 2
)
dτ (3.18)

where,

w =

√
2

λ

(
1

r′
+

1

s′

)
x cos δ (3.19)

Which have been extensively studied and are of great importance to a variety of diffraction prob-
lems. These integrals have relevant properties which go beyond the scope of this thesis but have
been described in detail in Ref. [17]. The Fresnel’s diffraction integrals can indeed be used to re-
cover the size of the radiation source by solving them for a given interference pattern. In particular,
one can consider the Fresnel diffraction pattern for a straight-edge disturbance. In particular, let us
restrict our attention to the case in which the source-to-detector line PP0 is perpendicular to the
straight edge located at a plane Q in between. If x is the distance of the straight edge from the
origin at Q, the Fresnel’s integrals extend over the following region of integration,

−∞ < ξ < x −∞ < η < ∞ (3.20)

Or,
−∞ < u < w −∞ < v < ∞ (3.21)

Keeping in mind that the dimensions of the domain of integration A must be small compared to the
dimensions of PP0. Further algebra and use of Fresnel identities lead to the following expressions
for the real and complex components of the intensity distribution U(P ) in terms of C(w) and S(w)
this is,

C = b

[(
1

2
+ C(w)

)
−
(
1

2
+ S(w)

)]
(3.22)

S = b

[(
1

2
+ C(w)

)
+

(
1

2
+ S(w)

)]
. (3.23)

When plugged into Eq. 3.13, these equations lead to the following final expression to calculate the
intensity distribution,

I =
1

2

[(
1

2
+ C(w)

)2

+

(
1

2
+ S(w)

)2
]
I0 (3.24)
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Figure 3.9: (a) Expected Fresnel diffraction pattern of a monoenergetic radiation source interfer-
ing with a half-plane straight edge as a function of source size. (b) Expected Fresnel diffraction
pattern of a monoenergetic radiation source interfering with a half-plane straight edge as a func-
tion of source energy. (c) Expected Fresnel diffraction pattern of a polychromatic radiation source
interfering with a half-plane straight edge as a function of source size.
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where,

I0 = 4|B|2b2 = |A|2

(r′ + s′)2
(3.25)

Therefore, Eq. 3.24 can be used to calculate the intensity distribution expected at the detector
for the interference pattern between a beam with initial distribution I0 and a sharp straight edge.
This calculation is made for a point-like radiation source, however here the goal is to obtain the
intensity pattern for a finite-size source. Thus, in order to obtain the real intensity distribution one
must convolve the electric field given by E = B (C + iS) with a source distribution such as,

E∗(ω) = E(ω) ∗ σ (3.26)

then,
I∗(ω) = |E∗(ω)|2 (3.27)

Additionally, the polychromaticity of the radiation source can be taken into account by per-
forming a weighted superposition of the electric fields according to the spectrum. For a Gaussian
source with FWHM given by σ as,

I =

∫ ωmax

0

(
f(ω)∫
f(ω)dω

)
∗ I∗(ω)dω (3.28)

where f(ω) represents the radiation spectrum. It is then possible to calculate the expected diffrac-
tion pattern for a monoenergetic source with different energies, with different source sizes, as
well as for a polychromatic source (synchrotron spectrum) along with different source sizes, as
displayed in Fig. 3.9.

Within this context, by imaging a sharp knife edge with the betatron X-rays and fitting the data
to the expected Fresnel diffraction pattern of a Gaussian source interfering with a half-plane, it is
possible to recover the best-fit for the radiation source size. The fitting of the data for this particular
run results in the size of the X-ray source for the BELLA HTT system being σ ≤ 1µm as shown
in Fig. 3.10.
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Figure 3.10: (a) Betatron X-ray image of a sharp edge. (b) Lineouts for multiple images and fit of
the Fresnel diffraction pattern for a synchrotron spectrum with multiple source sizes.

3.4 Analysis

3.4.1 Phase-contrast X-ray imaging

Traditional X-ray radiography-based techniques are based on the absorption of X-rays as they
travel through a sample. The resulting image is then based on the density of the object and its
absorption coefficient. Alternatively, Phase-Contrast X-ray Imaging (PCXI) is a technique that is
based on the accumulation of phase as X-rays travel through an object. In this sense, X-rays will
experience deflections based on the variations in the index of refraction of the sample, which then
translates to the accumulation of phase. Such a phase-contrast technique offers higher contrast
and resolution of imaging weakly absorbing objects which might also include variations in density
and index of refraction. Some phase-contrast imaging techniques require a highly monochromatic
source, or complex X-ray optics, which makes them challenging for practical applications. Nev-
ertheless, this thesis will focus on the so-called propagation-based PCXI. This kind of scheme is
based on the free-space propagation of X-rays and their interference pattern after they accumulate
phase by traveling through a sample. This kind of scheme is suitable for conventional polychro-
matic sources [185], such as those found in this dissertation work. A free-space propagation
method also appears to be the most suitable for a seamless transition to clinical applications.

A key requirement for a propagation-based technique is ensuring the source has high spatial
coherence in the transverse direction, meaning that the wave amplitudes are laterally correlated.
In order to ensure this requirement is met one must choose the imaging geometry carefully, pay-
ing close attention to the source-to-object distance l and object-to-detector distance L. It is then
possible to estimate a coherence length for a collection of uncorrelated emitters of wavenumber k
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and source size σ, which is given by d⊥ ∼ l/kσ [185, 84]. Therefore, lateral spatial coherence
can be achieved by having a small effective source size, or by imaging at a large distance from the
source. In general, the smaller the source the better as long as the photon flux is sufficiently high.
As stated before, variations in the sample density, thickness, and refractive index, will have the
effect of accumulating phase and changing the shape of the X-ray wavefront traversing the target.

In order to model the expected image pattern from a phase-contrast imaging system a common
approach is given in the text by Born and Wolf [17] which utilizes Fresnel/Kirchoff diffraction
integrals. This approach is also followed in work by Snigrev et al [159] and Arfelli et al [7]. This
method allows to precisely predict the “pure” phase contrast pattern I assuming a monochromatic
point source and infinite detector spatial resolution. In order to obtain the “real” image pattern J

the pure pattern must be convolved with the detector Point Spread Function (PSF) and rescaled by
the source/magnification distribution, as it is followed by Olivo et al [127, 128], and Peterzol et

al [134]. The convolutions have the effect of blurring the image by a finite source size and can be
described as

J = I ∗ PSF ∗
[
S

(
R1

R0

)]
(3.29)

= I ∗ PSF ∗ s (3.30)

= I ∗ f . (3.31)

Where ∗ is the convolution operator, S and s are the source distribution and rescaled source distri-
bution respectively, and f = PSF ∗ s is a function that can be computed first before convolving it
with the pure image for simplicity. Then the real image pattern is given by

J = F−1 [F(I)F(f)] . (3.32)

An alternative to the Fresnel/Kirchoff formalism is based on simpler ray tracing techniques. In
this case, the X-rays are tracked as they pass through the sample and the corresponding deflection
angles are calculated via the gradient of the projected phase-shift in the sample (see Davis et al
[35]). In most practical cases the ray-tracing approach is sufficient in order to capture the effect
of the maximum and minima of the source and detector convolutions, although they fail to cap-
ture secondary fringes. The transition between Fresnel/Kirchoff to ray tracing techniques is also
discussed in Peterzol et al [134].

The work in this dissertation utilizes the Fresnel/Kirchoff method which allows the decou-
pling of the phase-contrast intensity pattern obtained from a sample with the effects of the source
size, detector PSF and beam polychromaticity on the image. The technique consists of solving
the Fresnel/Kirchoff integrals numerically to obtain the expected complex wave distribution and
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Figure 3.11: Synthetic density map projected along the imaging direction. Synthetic phase-contrast
X-ray image (ideal) for a monochromatic radiation source. Synthetic phase-contrast X-ray image
(ideal) for a polychromatic radiation source. Synthetic phase-contrast X-ray image (real) for a
polychromatic radiation source and finite source size. (a) Images for Gaussian function and (b)
corresponding lineouts. (c) Images for top-hat function and (d) corresponding lineouts.
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Figure 3.12: Synthetic density map projected along the imaging direction. Synthetic phase-contrast
X-ray image (ideal) for a monochromatic radiation source. Synthetic phase-contrast X-ray image
(ideal) for a polychromatic radiation source. Synthetic phase-contrast X-ray image (real) for a
polychromatic radiation source and finite source size. (a) Images for cosine function and (b) cor-
responding lineouts. (c) Images for sinc function and (d) corresponding lineouts.
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consequently the induced phase-shift for the material and geometry. Within this context, the real
pattern I is given by

I = I0||ũ(P1)||2 , (3.33)

where I0 is the incoming intensity distribution in the sample, and ũ(P1) is the complex-valued
wave-field distribution in the detector plane given by

ũ(P1) = − i

2λ
re−ikr

∫∫
R2

[
R0

r0
+

R1

r1

]
t(P1)e

ik(r0+r1)

r0r1
dxdy , (3.34)

where r is the length of the vector from the source S to the point P1 on the detector plane, k
is the wave number, R0 and R1 are the source-to-object SP planes and object-to-detector planes
PP1 projection distances respectively. Correspondingly r0 and r1 are the lengths of the vectors
connecting two points from SP and PP1, and t(P1) is the object transfer matrix given by

t(P ) = exp [iϕ] (3.35)

= exp [i (iD(P )−B(P ))] (3.36)

where the phase induced ϕ is complex-valued and its form depends on material properties. Partic-
ularly, for a given material sample the index of refraction for X-rays is less than unity and of the
form,

n = 1− δ − iβ (3.37)

with

δ =
reNAλ

2ρ

2π

∑
j

wj

[
Zj + f ′

j

]
Aj

(3.38)

and,
β =

ν

ωp

δ (3.39)

where re is the classical electron radius, NA is the Avogadro number, ρ is the mass density of the
compound, Aj are the atomic number and the atomic weight of the jth element of the compound,
f ′
j is the real part of the dispersion factor, ωp the previously discussed plasma frequency, and ν

is the collisions rate factor. Taking all these considerations into account the phase map for X-
rays crossing a sample can be obtained using the transfer function of Eq. 3.36 and the following
projected distributions

D(P ) =
−2π

λ

∫
δ(x, y, z)dr (3.40)

and
B(P ) =

−2π

λ

∫
β(x, y, z)dr . (3.41)
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Therefore, Eq. 3.34 is sufficient for producing a synthetic phase-contrast X-ray image given a
projected density map and assuming a point-like source. As stated previously the pure image must
be convolved with the source distribution to obtain the real blurred image. Furthermore, Eq. 3.34
can be simplified by utilizing the Fresnel (paraxial) approximation for long propagation distances
relative to the transverse size of the sample. In such approximation R0/r0 ≈ R1/r1 ≈ 1 as long as
the so-called effective Fresnel number is larger than unity Neff > 1 where

Neff =
(
Rλ̄
)−1 M

M − 1
σobj

√
M2σ2

obj + (M − 1)2 σ2
src + PSF2 . (3.42)

Here R = R0+R1, λ̄ is the weighted sum of the source spectrum wavelength, M = (R0+R1)/R0

is the magnification, σobj is the size of the smallest object feature, and σsrc is the source width.
Therefore, as long as Neff > 1 the Fresnel approximation can be used to simplify Eq. 3.34 and
reach the final expression in Fourier space,

Ũ(u, v) = M2T (Mu,Mv)exp
[
−πiλR1M(u2 + v2)

]
exp [2πi(R1/R0)(x0u+ y0v)] , (3.43)

where u and v are the transverse spatial frequencies corresponding to x and y, and T (Mu,Mv)

is the Fourier transform of the object transfer function t(P ). Therefore, Eq. 3.43 can be readily
solved using a Fast Fourier Transform (FFT) algorithm. To obtain the pure pattern I , and later
convolve it with s to obtain the real phase-contrast pattern one would obtain in the detector.

Finally, this routine would produce a real image from a finite-size monochromatic source, in
order to account for polychromaticity of the source, the resulting image can be weighted and
summed according to the spectrum distribution of the source so that

Ipoly =
∑
λ

w(E)Imono(λ) , (3.44)

where w(E) is the energy-dependent weighting factor. The effect of the full algorithm can be
observed in Fig. 3.11 and Fig. 3.12 for both a monochromatic source and a polychromatic source
evaluated for different 2D projected density maps.

3.4.2 Density retrieval

In the previous section, we explored a Fresnel-based propagation technique to generate synthetic
PCXI images from a given density map. This method is advantageous to others since it doesn’t
depend on additional optical elements which can induce aberrations. The free space propagation
nature indicates that the achievable resolution is highly dependent on the source size, and its appli-
cability using polychromatic sources was discussed in the previous section. In this section, we do
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the inverse and describe an algorithm used for quantitative phase extraction from an image taken
using propagation-based projection microscopy. This method can be utilized to analyze data ob-
tained from X-ray phase-contrast imaging [159, 185] or electron microscropy, as well as other
point-projection microscopy techniques using visible light [13], electron beams [37, 9, 36], an
even neutrons [5]. For review articles on this technique see [130, 129].

The algorithm starts with the so-called transport-of-intensity Transport-of-Intensity (TIE) equa-
tion, which describes the evolution of a paraxial monochromatic electromagnetic or matter wave
[169, 144]:

∇⊥ · [I(r⊥, z)∇⊥ϕ(r⊥, z)] = −2π

λ

∂

∂z
I(r⊥, z) . (3.45)

Where I(r⊥, z) is the beam intensity, ϕ(r⊥, z) is the beam phase, r⊥ denotes the position vector
in the plane perpendicular to the optical axis z, and λ is the radiation wavelength. In general, for
a normally incident plane wave of radiation the evolution of its intensity is well approximated by
Beer’s law of absorption as it travels through the sample,

I(r⊥, z = R1) = I ine(−µT (r⊥)) , (3.46)

where I in is the uniform intensity of the incident beam, z = R1 indicates the plane at the exit
surface of the object, µ is the linear attenuation coefficient, and T (r⊥) is the projected thickness of
the homogeneous object along the optical axis onto the plane over which the image is taken. Most
of the aforementioned work using this equation has been directed towards finding a solution of the
TIE for the phase of the wave, and the full derivation of the algorithm can be found in Ref. [129].
The final result can be summarized in the following equations to simultaneously extract the phase
and amplitude from a single defocused image of a homogeneous object [129, 11]. Then, assuming
Neff > 1 and a polychromatic radiation source the recovered transfer function T (r⊥) is given by

T (r⊥) = −
(
1

µ̄

)
ln

(
F−1

[
F (M2I(Mr⊥, z = R1)) /Iin

1 + 4π2
(
R1

M

)
( δ̄
µ̄
) [u2 + v2]

])
. (3.47)

Where M is the magnification of the imaging system, u and v correspond to the spatial frequencies
in Fourier space, and δ̄, µ̄ are the spectral averaged deviation of the refractive index and linear
attenuation coefficient factors respectively. Then, if the object is sufficiently thin, the phase of the
beam at z = R1 is then proportional to the projected thickness such that

ϕ(r⊥, z = R1) = −2π

λ̄
δ̄T (r⊥) . (3.48)

The extracted phase can then be related to the projected electron number density ne/m
2 of the
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Figure 3.13: Synthetic density map projected along the imaging direction. Recovered density map
from the synthetic phase-contrast X-ray image with a monochromatic radiation source. Recovered
density map from the synthetic phase-contrast X-ray image with polychromatic radiation source.
Recovered density map from the synthetic phase-contrast X-ray image with polychromatic radia-
tion source and finite source size. (a) Images for Gaussian function and (b) corresponding lineouts.
(c) Images for top-hat function and (d) corresponding lineouts.
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Figure 3.14: Synthetic density map projected along the imaging direction. Recovered density map
from the synthetic phase-contrast X-ray image with a monochromatic radiation source. Recovered
density map from the synthetic phase-contrast X-ray image with polychromatic radiation source.
Recovered density map from the synthetic phase-contrast X-ray image with polychromatic radia-
tion source and finite source size. (a) Images for cosine function and (b) corresponding lineouts.
(c) Images for sinc function and (d) corresponding lineouts.
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homogeneous object following [185] and solving the following equation,

ϕ(r⊥, z) = −λ̄re

∫
z

ne(r⊥, z)dz (3.49)

and so, ∫
z

ne(r⊥, z)dz = −ϕ(r⊥, z)

λ̄re
, (3.50)

where re is the classical electron radius. In order to successfully apply the algorithm the polychro-
maticity of the source needs to be taken into account with the weighted averages λ̄, δ̄, µ̄ over the
energy spectrum. These can be calculated using the following equations,

λ̄ =

∫
λD(λ)I(λ)dλ∫
D(λ)I(λ)dλ

, (3.51)

δ̄ =

∫
δ(λ)D(λ)I(λ)dλ∫
D(λ)I(λ)dλ

, (3.52)

β̄ =

∫
β(λ)D(λ)I(λ)dλ∫
D(λ)I(λ)dλ

, (3.53)

µ̄ =

∫
µ(λ)D(λ)I(λ)dλ∫
D(λ)I(λ)dλ

. (3.54)

Here, δ(λ) and β(λ) = δ(λ) (ν/ωp) correspond to the real and imaginary parts of the X-ray re-
fractive index as a function of wavelength n(λ) = 1 − δ(λ) − iβ(λ). And µ(λ) = 4πβ(λ)/λ is
the corresponding wavelength dependent attenuation factor. Note that β is δ multiplied by ν/ωp

which accounts for collisions in the plasma. Finally, in order to obtain the mass density ρ from the
electron number density the following equation can be applied,

δ =
reNAλ

2ρ

2π

∑
j

wj

(
Zj + f ′

j

)
Aj

. (3.55)

Where NA is the Avogadro’s number, Zj and Aj are the atomic number and atomic weight of
the compound respectively, and f ′

j is the real part of the dispersion correction factor. This tech-
nique can be successfully applied to recover the phase and projected density for data taken with
propagation-based phase-contrast X-ray imaging, as it will be shown in later chapters.

55



Figure 3.15: Diagram depicting the geometry for electron beam deflectometry.

3.4.3 Electron beam probing and field recovery

An emerging area of research, relativistic electron deflectometry, consists on the probing of elec-
tromagnetic fields using relativistic electrons from an LWFA as a probe [149, 180, 191, 190].
This technique can be used to examine electric and magnetic fields that might be generated during
laser-plasma interactions in HEDP experiments. Any generated fields will then have the effect of
deflecting the trajectories of the electrons by a certain angle that depends on both the electron beam
energy and the field magnitude as well as direction. The deflected electron beam is then captured
on a scintillating phosphore screen for analysis. This section consists of describing the background
material and key steps for recovering the magnitude of electromagnetic fields that have been cap-
tured by a relativistic LWFA electron beam probe following the technique and notation described
by [92].

The recovery method starts by assuming that the object (fields) is located at a distance l from
the particle (electron) source, and the detection screen is situated at a distance L from the object
as shown in Fig. 3.15. Generally, L ≫ l, and l ≫ a, where a is a characteristic spatial scale of the
field in question. In a cartesian geometry, the object plane is described by the coordinates (x0, y0),
while the ideal image in the detector is described by the coordinates (x, y), such that x = x0 ×M

and y = y0×M , where M = (1+L/l) is the geometric magnification. After the electrons traverse
the electromagnetic fields they will be deflected by an angle αx, αy such that the coordinates of the
real image described by the electron trajectories can be described in the following way,

x = x0 +
L

l
x0 + αxL , (3.56)
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y = y0 +
L

l
y0 + αyL , (3.57)

where tanα ≈ α. When α is small, the last term can simply be dropped and use the approximations
above. However, when α is large, indicating strong deflections, then the relationship between
image and object coordinates is nonlinear, which introduces issues discussed below. The deflection
angles are the key to this technique as they can be related to the path-integrated electric or magnetic
fields by the following expressions for a relativistic electron beam

αx =
q

γmev2z

∫
Exdz or αx =

q

γmevz

∫
Bydz , (3.58)

αy =
q

γmev2z

∫
Eydz or αy =

q

γmevz

∫
Bxdz . (3.59)

Within this context, the objective of the following algorithm is to obtain solutions for the deflection
angles αx and αy and thus reconstruct the electromagnetic fields present at the interaction (object)
plane. Following Kugland et al. [92], the undisturbed electron beam at the object plane is de-
scribed by the image I0(x0, y0), while the image of the disturbed beam at the detector plane I(x, y)
can be obtained by the following relation,

I(x, y) =
I0(x0, y0)∣∣∣ ∂(x,y)

∂(x0,y0

∣∣∣ , (3.60)

where | ∂(x,y)
∂(x0,y0

| is the absolute value of the determinant of the Jacobian matrix relating the object
and image planes and can be described by∣∣∣∣ ∂(x, y)∂(x0, y0)

∣∣∣∣ = ∣∣∣∣(1 + L

l
+

∂αx

∂x0

L

)(
1 +

L

l
+

∂αy

∂y0
L

)
− L2∂αx

∂y0

∂αy

∂x0

∣∣∣∣ . (3.61)

In order to solve this equation let us assume that ααα = [αx, αy, 0] is small and that the object-to-
image coordinates follow a linear mapping. Additionally, all electron trajectories are assumed to
be rotation-less such that ∇× ααα = 0. For this regime, the deflection angles can be obtained from
a potential field ϕ so that

ααα = ∇Φ . (3.62)

For convenience let us introduce the normalization x̃ = x/wx, ỹ = y/wy, α̃i = αiL/wi,
α̃αα = ∇̃Φ̃, and Ĩ0 = I0/M

2 where wi is width of the beam at the image plane. The Jacobian
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Figure 3.16: Map of user-defined deviation angles αx and αy as well as the resulting image I
obtained from the calculated potential field Φ.

described by Kugland et. al [92] can then be rewritten in the following form,

1

M2

∣∣∣∣ ∂(x, y)∂(x0, y0)

∣∣∣∣ =
∣∣∣∣∣∣1 + ∇̃2Φ̃ +

∂2Φ̃

∂x̃2

∂2Φ̃

∂ỹ2
−

(
∂2Φ̃

∂x̃∂ỹ

)2
∣∣∣∣∣∣ . (3.63)

Which leads to the final expression being solved numerically,

∇̃2Φ̃ =
Ĩ0 + ϵ

I + ϵ
− 1− ∂2Φ̃

∂x̃2

∂2Φ̃

∂ỹ2
+

(
∂2Φ̃

∂x̃∂ỹ

)2

. (3.64)

This has an important assumption, which is that ααα was assumed to be small. In the regime where
ααα is large, the fields are too strong, and particle crossing occurs along the trajectories. This results
in the formation of caustics, and implies that the relationship between x0 and x is highly nonlinear,
for which there is no unique solution to Φ, and thus the relationship between I0 and I is no longer
unique, imposing limitations on the applicability of this algorithm for inversing radiographs where
strong fields are present. To evaluate such a scenario, it is useful to introduce the variable µ which
parametrizes the non-linearity of the projection,

µ =
lα

a
. (3.65)

So that when µ ≪ 1 the mapping is linear and the approximation x ≈ M × x0 and y ≈ M × y0

can be made. Nevertheless, as µ −→ 1 the mapping becomes non-linear, and therefore second-
order terms with α must be included. Finally, when µ > 1 caustics (particle-crossing trajectories)

58



are present in the image. For the non-linear regime without caustics, electromagnetic fields can
recovered using this inversion technique and they can be compared to synthetic radiography images
based on hydrodynamic simulations as it will be shown in Chapter 7.

For the purpose of demonstration, the algorithm was used along with synthetic data to analyze
its performance in recovering ϕ, αx, αy and µ as shown in Fig. 3.17. The algorithm starts by the
user defining the initial conditions, such as the geometry of the problem—source-to-object l and
object-to-detector L distances—beam energy W , and the test field values and magnitudes. In this
case a user-defined potential field Φtest was provided in the form,

Φtest = − e√
2meW

B0
a · b
2

√
πexp

[
−
(r
a

)2]
, (3.66)

where W is the beam energy, a and b are constants, r =
√

x2 + y2 is the position vector, and B0 is
the peak magnetic field value. Then everything follows, and αx, αy can be calculated by taking the
gradient of the potential so ∇Φtest,i = αi as shown in Fig. 3.16. Having defined the potential field
and calculated the deflection angles an image can be generated from them Itest. The deflection
potential can be reconstructed using an iterative algorithm.

The iterative algorithm operates by taking two images as an input: the original image I , in
which field deflections are present, as well as an image corresponding to the unperturbed beam
profile Ĩ0 before the deflections. The process to obtain the background (unpertubed) image Ĩ0

from an experimental measurement will be highlighted in Chapter 7. The algorithm then starts by
initializing the normalized spatial coordinates (x̃, ỹ) and solving for Φ̃1. Next, the iterative solution
will be solved including a correction for the non-linear terms of Φ̃. A description of the algorithm
reads as follows,
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Figure 3.17: (a) Map of deflection potential field Φ as well as a map of the iteratively recovered
potential field. (b) Image obtained from the user-defined potential field Φ as well as a calculated
image from recovered potential field. (c) Image of magnetic field defined by the user as well as
magnetic field recovered by the algorithm. Plots of their corresponding lineouts are displayed for
comparison.

60



Iterative reconstruction of the deflection potential
Input: I, Ĩ0
Output: Φ̃ and (x̃, ỹ)

Initialize normalized spatial coordinates (x̃, ỹ)
% Solve for Φ̃1:
∇̃2

1 =
Ĩ0+ϵ
I+ϵ

− 1

% Begin iterative solution including nonlinear terms

while difference(Iinterp, Icalc) or difference(Φ̃n, Φ̃n−1) > tolerance do
Use Φ̃n and Ĩ0 to calculate (xn, yn) and Icalc

Calculate Iinterp by interpolating I onto (xn, yn)

I∗ = average(Iinterp, Icalc) % Improves stability and converge

% Use full expression from Eq. (8) to solve for Φ̃n+1

∇̃2Φ̃n+1 =
Ĩ0+ϵ
I∗+ϵ

− 1− ∂2Φ̃n

∂x̃2
∂2Φ̃n

∂ỹ2
+
(

∂2Φ̃n

∂x̃∂ỹ

)2
end while

This iterative algorithm is capable of reconstructing the deflection potential Φinv and conse-
quently it is possible to reconstruct Iinv with great accuracy and has been demonstrated for the test
benchmarking problem shown in Fig. 3.17

3.4.4 Computational modeling: FLASH 4.0

The computational code FLASH 4.0 [22] is capable of simulating HEDP experiments using what is
known as Three-Temperature (3T) capabilities. It is often found in HED plasmas that the electron
temperature Te and ion temperature Ti are not necessarily the same. Additionally, if radiation is
emitted during the interaction it will also have an independent temperature Trad = (urad/a)

1/4

for a radiation field with total energy density urad(x, t). The radiation field is not in equilibrium
with the plasma thus normally Te ̸= Ti ̸= Trad, thus it is desired to have a 3T plasma treatment.
FLASH treats the radiation field using frequency-dependent multi-group diffusion. The radiation
temperature Trad does not directly enter the calculations, but the 3T treatment implies that there are
three components being modeled: electrons, ions, and radiation. This section is meant to describe
the 3T capabilities of the FLASH code and the equations it uses for its treatment and evolution of
3T HED plasmas. For a more detailed description see the FLASH code User’s guide [22]. Starting
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with the equations for conservation of mass, momentum, and energy:

∂ρ

∂t
+∇ · (ρv) = 0 , (3.67)

∂ρ

∂t
+∇ · (ρv) = 0 , (3.68)

∂

∂t
(ρEtot) +∇ · [(ρEtot + Ptot)v] = Qlaser −∇ · q . (3.69)

Where ρ is the total mass density, v is the average fluid velocity, Ptot is the total pressure defined
as the sum of the ion, electron, and radiation pressure so,

Ptot = Pele + Pion + Prad . (3.70)

Then Etot is the total specific energy which includes the specific internal energies of the electrons,
ions, and radiation field as well as the specific kinetic energy, therefore,

Etot = eion + eele + erad +
1

2
v · v . (3.71)

Moreover, q is the total heat flux which includes a radiation and electron conductivity component,

q = qele + qrad . (3.72)

Finally Qlaser represents the energy source due to laser heating. Given that FLASH utilizes a 3T
approach, the internal energy of electrons, ions, and radiation must be evolved using a different set
of equations as shown below,

∂

∂t
(ρeion) +∇ · (ρeionv) + Pion∇ · v = ρ

cv,ele

τei
(Tele − Tion) , (3.73)

∂

∂t
(ρeele) +∇ · (ρeelev) + Pele∇ · v = ρ

cv,ele

τei
(Tion − Tele)−∇ · qele +Qabs −Qemis +Qlaser ,

(3.74)
∂

∂t
(ρerad) +∇ · (ρeradv) + Prad∇ · v = ∇ · qrad −Qabs +Qemis . (3.75)

Where cv,ele is the electron specific heat, and τei is the ion/electron equilibration time, Qabs and
Qemis represent the increase in electron internal energy due to the total absorption or radiation, or
decrease in electron internal energy due to the total emission of radiation, respectively.

Next the 3T equation of state in FLASH is what connects the internal energy of the components
to their temperatures and pressures. FLASH offers a variety of equations of state which are de-
scribed in the User’s guide [22]. During a full physics HED simulation, FLASH will use the 3T
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equation of state to complete the system and solve Eq. 3.67, Eq. 3.68, Eq. 3.69, Eq. 3.73, Eq. 3.74,
and Eq. 3.75. The method for FLASH to do this starts by a series of operator splits which split
off all of the terms on the left-hand side of the equations and solve them in different code units.
Therefore the equations that remain describe the effect of work and the advection of conserved
quantities described as,

∂ρ

∂t
+∇ · (ρv) = 0 , (3.76)

∂

∂t
(ρv) +∇ · (ρvv) +∇Ptot = 0 , (3.77)

∂

∂t
(ρEtot) +∇ · [(ρE + Ptot)v] = 0 , (3.78)

∂

∂t
(ρeion) +∇ · (ρeionv) + Pion∇ · v = 0 , (3.79)

∂

∂t
(ρeele) +∇ · (ρeelev) + Pele∇ · v = 0 , (3.80)

∂

∂t
(ρerad) +∇ · (ρeradv) + Prad∇ · v = 0 . (3.81)

These sets of equations are solved by the Hydro unit in FLASH. The Hydro unit utilizes general
hydrodynamic solvers only with only conservation of energy, momentum, and mass. Notice how
Eq. 3.79, Eq. 3.80, and Eq. 3.81 are not in conservative form given that there work terms present
that diverge under the presence of shocks and cannot be solved directly. More specific information
on the hydro unit, as well as other units, can be found in the FLASH code User’s guide as well
[22].

Without taking into account hydrodynamic terms, the remaining equations that describe the
evolution of electron, ion, and radiation internal energies are the following,

ρ
∂eion
∂t

= ρ
cv,ele

τei
(Tele − Tion) , (3.82)

ρ
∂eele
∂t

= ρ
cv,ele

∂t
= ρ

cv,ele

τei
(Tion − Tele)−∇ · qele +Qabs −Qemis +Qlaser , (3.83)

ρ
∂erad

∂t
= ∇ · qrad −Qabs +Qemis . (3.84)

These sets of equations are solved by the Heatexchange unit. The first term on the right-hand side
of Eq. 3.82 represents collisions between electrons and ions and is responsible for the exchange of
internal energy between them. This term will equilibrate the electron and ion temperatures over
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time. The Heatexchange unit will therefore update the electron and ion temperatures following,

∂eion

∂t
=

cv,ele

τei
(Tele − Tion) , (3.85)

∂eele

∂t
=

cv,ele

τei
(Tion − Tele) , (3.86)

(3.87)

where the specific heat of the electron cv,ele is calculated through the equation of state. Next, the
second term of the right-hand side in Eq. 3.83 is responsible for electron energy transport through
the conduction of heat, where the heat flux is defined as

qele = −Kele∇Tele , (3.88)

where Kele is the electron thermal conductivity and is calculated in the Conductivity unit, while the
Diffuse unit is in charge of including the effect of conduction in FLASH by using operator splitting
and solving the following equation each time step, which can be solved implicitly,

ρ
eele

∂t
= ∇ ·Kele∇Tele . (3.89)

FLASH also utilizes an electron diffusion flux limiter parameter 0 < f < 1 to give the electron
heat transport a more physically realistic behavior in regions with high-temperature gradients.
Finally, the radiation transport is treated through multi-group diffusion theory. Each energy group
contributes to the total radiation flux, emission, and absorption terms in Eq. 3.82, Eq. 3.83, and
Eq. 3.84. Then for a given energy group g with 1 < g ≤ Ng the total flux can be calculated as a
summation over each group as,

Qabs =

Ng∑
g=1

Qele,g, Qemis =

Ng∑
g=1

Qemis,g (3.90)

qrad =

Ng∑
g=1

qg . (3.91)

And the change of each group’s radiation energy density ug is calculated through

∂ug

∂t
+∇ · (ugv) +

(
ug

eradρ
Prad∇ · v = −∇ · qg +Qemis,g −Qabs,g

)
, (3.92)

64



where the total specific radiation energy is related to the energy density ug by,

ρerad =

Ng∑
g=1

ug (3.93)

In this regard, the RadTrans unit will solve the radiation diffusion equations for each energy
group and calculate its values in conjunction with the Diffuse unit. The multigroup diffusion pack-
age used in FLASH depends on the radiation flux, emission, and absorption which are all functions
of the material opacity, calculated in turn by the Opacity unit.

The last remaining flux term is Qlaser, which represents the deposition of energy by a laser source
into the electrons, and is highly relevant in the work in this thesis. The Qlaser term is computed by
the EnergyDeposition unit in FLASH, which utilizes the geometrics optics approximation to laser
energy deposition in the form of a laser ray-tracing model. The current implementation of ray-
tracing in FLASH consists of setting up a beam made of a number of rays whose paths are traced
through the simulation domain, then their trajectories are updated according to the local refractive
index of each cell. The EnergyDeposition unit in FLASH is responsible for calculating this process
through the geometric optics approximation. Moreover, the laser power that is deposited into a cell
is calculated based on the process of inverse bremsstrahlung power in each cell, which depends on
the gradient of the local electron number density and the local gradient of the electron temperature.
At the moment of writing, in the FLASH 4.7 distribution, two implementations of ray tracing are
available - one is based on the average quantities for each cell, and the other one is more refined
and is based on cubic interpolation for the calculation. Modeling laser energy deposition with
ray-tracing is rather complex and requires a large number of input parameters, for a more detailed
description of these two implementations see the FLASH User’s Guide Chapter 17.4 [22].

The FLASH simulation allows the user to define multiple laser pulses when modeling a HED
interaction. Each laser pulse is first defined by sections (piecewise linear function), for each section
of the pulse a pair of time-power parameters are given as shown in Fig. 3.18. The time-power pairs
ensure that by integrating over all sections the total energy in the pulse is obtained. The user is also
capable of setting the spot size of the laser beam, as well as the direction and angle of incidence
into the simulation domain.

Additionally, the user must also define the spatial variation of the intensity transversely across
the beam. If the FLASH variable ed crossSectionFunctionType 1 is set to “gaussian2D”, the trans-
verse spatial intensity profile is defined by a supergaussian function of the form

I(r) = I0

(
−

[(
x

Rx

)2

+

(
y

Ry

)2
]γ)

, (3.94)
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Figure 3.18: (a) Plot of time-power pairs which define the evolution of the laser pulse in FLASH.
(b) Spatial intensity profile for x > 0. Colors displayed represent time evolution. (c) 3D represen-
tation of the FLASH laser pulse constructed from the spatial intensity profile and time-power pairs
evolution. (d) Intensity profile of laser pulse in the transverse x and y directions.
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where Rx and Ry define the e-folding length of the intensity distribution in x and y direction
respectively, and γ sets the power of the supergaussian function desired. An example of a spatial
intensity distribution for x > 0 is shown in Fig. 3.18 where the colormap represents its evolution
in time longitudinally along the pulse. Finally, the user does not directly specify I0. Instead, the
total beam power P is calculated and I0 is calculated through the relation

P = 2π

∫ R

0

rI(r)dr . (3.95)

Finally, the user needs to specify how many rays to use in the simulation as well as how the rays
will be spatially distributed across the beam. Typically the configuration used is one such that the
rays are laid out on the circular cross-section of the beam with some radial and angular spacing. In
other words, the beam is divided into regions of equal radius and angle, the total number of rays is
divided by the number of regions, and an equal number of rays is assigned to each angular slice.
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CHAPTER 4

Liquid Targets for High-Repetition-Rate
Experiments

4.1 Motivation

In the realm of high-energy-density physics HEDP experiments, the quest for innovative and ef-
ficient target designs has been a topic of constant interest and development. The advent of high-
intensity, high-repetition-rate lasers has broadened the scope of these experiments, paving the way
for numerous new applications and discoveries. One particular area of development that warrants
attention is the implementation of liquid targets, for example, water, that can operate in a vacuum
environment. The prospect of employing liquid targets offers several advantages in terms of data
acquisition rates, time-varying hydrodynamic systems, and increased experimental adaptability
compared to traditional solid targets.

Furthermore, high-repetition-rate lasers operating at high intensities have the potential to gener-
ate vast amounts of data, crucial for enhancing the understanding of HEDP phenomena [67]. How-
ever, the current reliance on solid targets presents a limitation in terms of data acquisition rates.
Solid targets require regular replacement and alignment, leading to longer experimental times and
reduced overall efficiency. By introducing a liquid target, such as water, that can withstand the vac-
uum environment, this issue can be effectively mitigated. Liquid targets can regenerate at much
faster rates, enabling rapid, continuous interaction with the laser and resulting in significantly in-
creased data acquisition rates. The ability to collect data at a faster pace will enhance the depth of
analysis, offering invaluable insights into the underlying processes of HEDP.

Beyond the increase in data acquisition rates, liquid targets present new opportunities for time-
varying hydrodynamic systems in pump-probe experiments. As water flows in a vacuum, its hy-
drodynamic properties and interactions with the laser can be closely examined in real-time. This
ability to investigate the behavior of the target material over a continuous time period opens the
door for the study of dynamic and transient phenomena that were previously inaccessible using
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solid targets. The application of liquid targets in this context will offer a more comprehensive un-
derstanding of the material behavior and energy coupling under extreme conditions, providing an
essential platform for the development of novel applications and technologies.

This section will serve as a description to the most important concepts regarding liquid targets
flowing in a vacuum, as well as highlight relevant work on liquid targets for laser-plasma experi-
ments. Starting with liquid sheet targets, which have been studied for plasma mirror applications
[56, 173]. Next, single micron diameter liquid jet targets have been designed specifically for ion
acceleration research [77, 86]. Most relevant to the studies in this thesis is the work by Faubel et
al. on bulk liquid jet targets [48, 49, 23, 54]. Bulk targets with diameters D > 10 µm are desired in
HEDP pump-probe imaging experiments [162], given that a larger liquid interaction region equals
more space for evolution of the interaction. This implies that for high-repetition-rate experiments
a larger window of the hydrodynamic evolution in time and space can be captured. For the exper-
iments carried out in this thesis, the designed cylindrical liquid microjet had D ≤ 50 µm and was
capable of operating in a vacuum p = 10−5 torr for extended periods of time, limited by the water
intake capacity of the roughing and turbo pumps in the chamber as well as the inclusion of an LN2

cold trap as described in the next section.

4.2 Experiment

The cylindrical liquid microjet is composed of two main components: a fused silica nozzle with
20–50 µm aperture diameter and a catcher with 300–600 µm opening diameter. The alignment of
both components is achieved through the use of 5× translation stages (or 2× translation stages and
3× picomotors), which ensure the jet nozzle remains in alignment with the catcher and the whole
target structure is in focus with the experimental probe. One in-vacuum (USB) camera is necessary
to assist in the alignment procedure of nozzle and catcher. Alternatively, two cameras closely
monitoring the target through viewports outside the chamber can also be used. Once alignment is
complete the liquid is delivered to the chamber and vacuum pressures as low as to 10−5 Torr can
be achieved, provided a ∼1000 L/min turbo pump and LN2 cold trap are included.
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Figure 4.1: Cylindrical jet target CAD assembly. (left) Side view and (right) isometric view. The
design includes 3× picomotors controlling the nozzle in the x, y, z directions and 2× translation
stages for aligning the target to the experimental probe.

A schematic design of the target assembly is shown in Figure 4.1 and a technical drawing with
its dimensions in the Appendices in Figure B.1. The liquid target is usually modified to satisfy
the chamber and experimental requirements. Some modifications include changing the height to
match that of the probe, incorporating a larger liquid reservoir to increase the operation time, or
varying the jet diameter to match the vacuum level requirements. The cylindrical liquid microjet
parameters are summarized in Table 4.1.

Cylindrical microjet parameters Range
Jet diameter (µm) 10–50

Jet length (cylindrical section) (mm) 1–20
Jet velocity (ms−1) 10–100

Liquid viscosity (mPa·s) 1–10
Operation time (hrs.) 1–12

Chamber pressure (mTorr) 0.01–100

Table 4.1: Table of parameter for the cylindrical microjet.

The jet nozzle is made of cleaved capillary tubing (30 µm ID Polymicro capillary tubing —
Molex) and similarly connected to the chamber via 1/16” (0.03” inner diameter) stainless steel
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tubing and fittings. The liquid is delivered to the nozzle by a High-Performance Liquid Chro-
matography (HPLC) pump similarly connected to the chamber via a 1/16” outer diameter stainless
steel tubing feed-through. The liquid flow rate in the experiment is variable reaching up to 10
ml/min with jet velocities up to 100 m/s. The liquid jet is subsequently captured at the bottom by
a custom made conical-shaped copper catcher with a top aperture of 300–600 µm where the liquid
falls into. This is shown in Figure 4.2.

Figure 4.2: Close-up pictures of a cylindrical water target. (left) A water jet diameter of ∼ 100 µm
and (right) photo taken inside the vacuum chamber with alignment cameras and a jet diameter of
∼ 50 µm.

The copper head of the catcher is linked with standard DN16CF flanges and connected directly
to a liquid reservoir through a metal tube. The catcher is simultaneously heated by direct contact
with miniature cartridge heaters ( 3×15 W, Thorlabs) in order to avoid ice formation during the
alignment procedure. This configuration is better appreciated in Figure 4.3.
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Figure 4.3: Photograph showing the configuration of the liquid microjet catcher.

An experimental setup including the cylindrical microjet target is shown in Figure 4.4. In this
configuration a 30 µm water jet is installed along the optical axis 10 cm past the focus of the
high power laser at the gas jet. This particular liquid target setup includes a nozzle, a catcher, 5×
manipulators for alignment, heating elements, and a reservoir connected to an additional vacuum
pump as well as a liquid nitrogen cold trap.
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Figure 4.4: Example photo showing a ∼ 30 µm cylindrical water jet target configured in a laser
wakefield accelerator pump-probe experiment setup.
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4.3 Discussion

The use of liquid targets affords increased adaptability in experimental design. With the option to
easily vary target thickness, composition, and flow rate, researchers can fine-tune their experiments
to explore different facets of HEDP. This flexibility in target manipulation allows for the study of
a diverse range of phenomena, spanning from laser-plasma interactions to inertial confinement
fusion and more. By incorporating liquid targets, the range of potential experimental parameters
and research avenues is expanded, fostering a more thorough understanding of HEDP.

Furthermore, the integration of betatron X-ray imaging from a laser wakefield accelerator
presents a unique opportunity for observing hydrodynamic interactions with unmatched spatio-
temporal resolution. The integration of liquid targets with this imaging technique permits visual-
izing and characterizing the complex interplay between the high-intensity laser pulses and hydro-
dynamic systems, revealing intricate details of plasma formation and energy deposition processes.
Having a replenishing target implies that movies can be quickly captured with the X-rays during
pump-probe experiments in high-energy-density conditions.

In conclusion, the development of liquid targets for high-repetition-rate high-energy-density
physics experiments in vacuum environments represents a significant stride forward in the field.
With faster data acquisition rates, the ability to investigate time-varying hydrodynamic systems,
and increased experimental adaptability, liquid targets offer a promising alternative to their solid
counterparts.
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CHAPTER 5

Dynamic Ultrafast X-Ray Imaging of Shocks in
Water

5.1 Introduction

Matter at extreme conditions, such as those found when heated by a high-intensity laser, remains
difficult to study in the laboratory due to the high field intensities present, limited control of the
experimental environment, and poor resolution of diagnostic systems. Within this context, X-ray
radiography is an important tool in HEDP and has been used successfully over the past decades
to study the dynamics of matter during high-energy-density interactions [43, 93, 95, 40, 179, 97].
Nevertheless, X-ray radiography presents many limitations regarding the contrast, signal-to-noise
ratio, and imaging resolution it can provide given complex target configurations such as those
found in ICF experiments. Even at NIF, the images are based on absorption from a laser backlighter
X-ray source and can be limited to ∼ 20 µm resolution [21] and, in some cases, this may be reduced
to ∼ 10 µm [165]. It is therefore imperative to improve on new systems with higher-quality images
to better diagnose turbulent length scales in HEDP experiments.

As an alternative approach, laser wakefield acceleration (LWFA) [168], has emerged [111,
58, 50, 102, 64, 29, 182, 76] as a table-top source of ultrafast [167], bright, and spatially-
coherent [151] X-ray pulses with a small source size [84] that allows for high spatial resolution
imaging [4]. As the ultrashort laser pulse travels through the plasma the ponderomotive force
FP = −(e2/2γme)∇A2 expels electrons away from high-intensity regions leaving an ion channel
and launching plasma waves in the wake of the pulse [109]. The oscillation of electrons inside
the ion bubble generates radiation bursts with broadband spectrum [47] typically in the keV range
[2]. Importantly, the betatron X-rays proceed from a small source size (a few microns) such that
after propagation of a few cm the photons develop spatial coherence, making them suitable for
phase-contrast X-ray imaging (PCXI) [159, 185]. Propagation based PCXI technique is based
on the phase-shift induced as the spatially-coherent X-ray beam crosses a sample and its contrast

75



enhancement is entirely geometry dependent [129]. The small X-ray deflections induced by gra-
dients in the refractive index n = 1 − δ − iβ result in the deflection of rays out of regions of
high density. It is particularly sensitive and may detect relatively small density gradients, thus
making it an excellent candidate for probing weakly absorbing objects with low atomic number.
This has been demonstrated in recent work conducting PCXI of bubbles, capsules, and insects
[174, 52, 53], 3D reconstruction of bone structure [32], and imaging of laser-driven shocks in solid
targets [186, 187, 148], among others [3]. Nevertheless, previous experiments have been lim-
ited to a single-shot configuration and many have not been able to exploit the high-repetition-rate
capabilities to image time-dependent dynamic phenomena.

Within this context, imaging the evolution of hydrodynamic shock waves in a pump-probe
configuration is a particularly relevant first step towards better imaging diagnostic systems in high-
energy-density experiments, where shock waves are largely common. Previous studies have been
limited thus far by the repetition rate of both the laser and target systems, and have only recorded
static single-shot images. In this sense, a liquid target improves on previous work by providing
orders of magnitude more data in less amount of time, while also making possible to image hy-
drodynamic phenomena in situ. In this work we demonstrate a platform for studying laser-driven
shock waves with unprecedented spatio-temporal resolution by using the betatron X-rays from a
high-repetition-rate LWFA in combination with a liquid (water) jet target. A high-repetition-rate
scheme, small source size, and ultrashort pulse duration permit studying sub-micron scale hydro-
dynamic systems in regimes unreachable until now.

5.2 Experiment

The experiments were performed at the LBNL BELLA Center, where the HTW dual beam laser
system (20–30 TW, λ0 = 800 nm) was used to drive both the laser wakefield accelerator and gen-
erate the shock wave in the liquid target as shown in Fig. 5.1. The main LWFA beam consisted of a
linearly-polarized high-energy (1.5±0.2) J, high-repetition-rate (1 Hz), ultrafast (40±5 fs FWHM)
laser pulse focused by an f /20 off-axis parabola into a gas jet (see Methods, chapter 3) reaching
on-target intensities in the order of I ≈ 1018 Wcm−2. The high-intensity pulse accelerated elec-
trons to 167±13.4 MeV mean energy with x : 7.8±1 mrad, y : 3.4±0.8 mrad pointing divergence
and mean charge of 32.5 pC. The relativistic electrons generated radiation bursts with sub-micron
source size and synchrotron-like spectrum. The X-rays were recorded using a cooled, in-vacuum,
CCD camera (PI-MTE). The characterization of the radiation spectrum was performed following
Ref. [78] by imaging a Ross filter wheel with wedges of different materials and thicknesses. The
resulting fit gives a critical energy of Ecrit = 4.88± 1.33 keV. The size of the source was estimated
by imaging a sharp “knife edge” and fitting the data to the expected Fresnel diffraction pattern of a
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Figure 5.1: (a) Experimental configuration for pump-probe ultrafast X-ray imaging of shocks in
water. (b) Characterization of the electron beam, 460 shots were taken continuously measuring the
mean momentum, charge, and FWHM divergence angle. (c) Energy spectrum of the betatron X-
ray source, measured by imaging a filter wheel with samples of different materials and thicknesses
and fitting a synthetic spectrum to the data. (d) Betatron X-ray source size is measured by imaging
a sharp knife-edge and fitting the expected Fresnel diffraction pattern for different source sizes.
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Gaussian source interfering with a half-plane. The fitting of the data results in the size of the X-ray
source being predicted to be σ ≤ 1µm, as shown in Fig. 5.1.

The geometry of the experimental setup was carefully considered as the phase-contrast effect
is sensitive to spatial coherence i.e. phase correlation across the wavefront. To properly choose
source-to-object distance l and object-to-detector distance L we can estimate the coherence length.
For a collection of uncorrelated emitters of wavenumber k and source size σ the coherence length
is given by L⊥ = l/kσ [84]. Since we expect to be able to resolve features of order σ at the image
plane, therefore the coherence length should be longer than the source size, L⊥ > σ, so we can
reverse this equation to estimate the required source-object distance to be l ≈ L⊥σk > kσ2, which
in terms of the photon energy in units of keV and microns is

l[m] > 5.1× 10−3 (σ[µm])2 (ℏω[keV ]) . (5.1)

For example, for 5 keV X-rays with a 2 µm source size, the coherence length is at least the
source size when the source-to-object distance is 10 cm. The broadband polychromatic spectrum
of a betatron source is still suitable for a propagation-based geometry as the phase-contrast pattern
is independent of wavelength to first order in the Fresnel or paraxial approximation (R0/r0 ≈
R1/r1 ≈ 1. For this approximation to be valid the Fresnel effective number must be larger than
unity NF,eff > 1. This condition holds true given the present experimental setup with source-to-
object distance R0 = 20 cm, object-to-detector distance R1 = 580 cm, and beam divergence of a
few tens of mrad.

The shock driver laser was obtained by splitting the main BELLA HTW beam and subsequently
bypassing the compressor, thus generating a long high-energy pulse (200 ps, 1.2±0.2 J). The laser
was focused perpendicularly to the main beam into the water target plane to a FWHM spot size of
60±5 µm reaching intensities of order I ≈ 1014 W/cm2. A variable delay line allowed for precise
control of timing with respect to the X-rays up to 8 ns within the interaction. It is also worth noting
that the pulse waist at the target plane is w0 ≈ 60 µm to ensure its interaction with the 30 µm jet
when subject to horizontal jitter of the focus spot along the delay line. Moreover, the focal spot of
the shock driver laser pulse at the water jet plane was optimized and its centroid was tracked along
the delay line to guarantee the interaction of the pulse with the target.

To complement the experimental results, 3D FLASH simulations have been performed to
predict the fluid dynamics of the interaction. The simulation radiography maps were cou-
pled to a phase-contrast X-ray imaging algorithm following the Fresnel-Kirchoff formalism
[128, 17, 11, 134] on propagation of the wave distribution (described in Chapter 3) in order to
have a more direct comparison to experimental images.
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Figure 5.2: Time evolution plots for 3D FLASH simulations of laser-water interaction. (a) x-y
plane shows a laser-driven shock propagating through the target. (b) y-z plane displays the high-
density wrapping around the cylindrical target. (c) x-z plane showing the 3D effects of shock
generation from the top, compressing the target symmetrically from around the surface.

5.3 Results & Simulations

In order to predict the characteristics and evolution of the laser-water interaction, 3D radiation
hydrodynamic simulations were performed using the FLASH code, as described in Sec. 3.4. The
simulation results are presented in Fig. 5.2 with slices from all three perspectives (directions) of
the interaction in order for the reader to better understand the overall three-dimensional evolution.
Looking at the water jet from the betatron X-rays point-of-view, a shock can be observed being
generated from the front ablation surface and propagating throughout the water target. Once the
shock reaches the back surface it expands adiabatically by releasing the pressure into the vacuum.
Looking at the interaction from the top plane down, as well as from the perspective of the long
pulse into the screen, it becomes clear that in three dimensions the high-density shock is not planar
but rather has a curvature that wraps around the cylindrical target. In this sense, the shocked fluid
is capable of propagating not only through the target but also around the target.

Within this context, Fig. 5.3 shows a time series of a laser-driven shock wave propagating
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Figure 5.3: (a) Projected density from 3D FLASH radiation hydrodynamic simulation of the in-
teraction of a 200 ps long laser pulse with a 30 µm cylindrical water jet target for 0 < t < 1 ns.
(b) Synthethic phase-contrast X-ray images of laser-driven shock waves using FLASH simula-
tions and solving the Fresnel-Kirchoff integrals for a complex wave distribution. Experimental
(c) single-shot and (d) ten-shot average betatron phase-contrast X-ray images of the laser-water
interaction. (e) Density map recovered from experimental phase-contrast X-ray images. The water
stream flows from left to right, while the long laser pulse propagates from the top.
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through the cylindrical water target, comparing both simulation and experimental results for
0 < t < 1 ns. The projected density maps obtained from FLASH simulations were treated with
a Fresnel-Kirchoff-based algorithm to generate synthetic phase-contrast X-ray images that can di-
rectly be compared with experimental measurements. In this sense, Fig. 5.3 presents the formation
and evolution of a hydrodynamic shock captured with ultrafast betatron X-rays. The time evolution
of the shock is captured for single-shot images as well as for a ten-shot average. The experimental
images have been pre-processed by applying a filter in Fourier space reducing undesired high spa-
tial frequencies and thereby increasing the signal-to-noise ratio. The phase-contrast enhancement
at the interfaces of the target is clearly visible, as well as the blurring effect on the image due to
the finite source size. For both simulation and experiment it can be observed how the ablation of
material by the laser generates a hydrodynamic shock that propagates from one end of the water
target to the other. This allows for measuring the shock velocity in situ, which is approximately
us ≈ 20 µm/ns = 20 km/s.

Shock velocity is important because it provides information regarding the thermodynamic state
of the material. To see how this is true let us work in the shock frame of reference and introduce
once again the conservation of mass, momentum, and energy through the Rankine-Hugoniot jump
conditions discussed in Chapter 2,

ρ1u1 = ρ2u2 , (5.2)

ρ1u
2
1 + p1 = ρ2u

2
2 + p2 , (5.3)[

ρ1u1

(
ϵ1 +

u2
1

2

)
+ p1u1

]
=

[
ρ2u2

(
ϵ2 +

u2
2

2

)
+ p2u2

]
. (5.4)

Where ρ is the mass density, u is the fluid velocity, p is the pressure, and ϵ the specific internal en-
ergy. Here the subscript 1 denotes the upstream unshocked fluid and subscript 2 is the downstream
post-shock fluid. Note that in the laboratory frame of reference, us = |u1| when the upstream fluid
is at rest. This helps us define an upstream shock Mach number for a polytropic gas as,

Mu =
−u1

cs1
= us

√
ρ1

(γ1p1)
. (5.5)

Where the index γ = 5/3 is commonly used for materials with low atomic number. This leads to
obtaining Mu ≈ 2× 104 for the present parameters, a clear indication of strong shock generation.
We can then introduce Mu in the jump conditions of Equation (5.4) and solve for useful expressions
to calculate the post-shock pressure and density using the measured shock velocity, this is

ρ2
ρ1

=
M2

u(γ + 1)

M2
u(γ − 1) + 2

, (5.6)
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Figure 5.4: (a) Center lineouts for phase-contrast X-ray images of the shocked target, both for
simulation and experiment. (b) Center lineouts for projected density of the shocked target, both
from FLASH 3D simulation and recovered from experimental phase-contrast X-ray images. (c)
Plot of shock velocity across the target. Measured by tracking the point of highest density in
FLASH, and point of darkest signal in phase-contrast X-ray images. (d) Plot of shock magnitude
(density jump) as a function of time. Measured by tracking the magnitude of the projected density
as a function of time, both in FLASH simulations as well as from the density recovery analysis of
the experimental images.

82



and
p2
p1

=
2γM2

u − (γ − 1)

(γ + 1)
. (5.7)

We notice that in the strong shock regime when Mu becomes large, the physical limit for density
jump in a polytropic gas is ρ2/ρ1 = (γ+1)/(γ−1) ∼ 4, while the pressure grows infinitely, and is
strongly dependent on the shock velocity measured experimentally. For the present analysis shown
in Fig. 5.4 with us ≈ 20 km/s, the resulting pressure is p2 ∼ 3.3 Mbar which falls within the range
and order of magnitude of the ablation pressure predicted by FLASH and can be compared with a
theoretically calculated ablation pressure [42].

Pabl = ncrit(1 + 1/Z)kBTe = 7.63 Mbar (5.8)

Where nc is the critical density, Z is the effective ionization state, and Te is the electron tem-
perature. This results in an ablation pressure that closely matches the value calculated using the
experimentally obtained shock velocity indicating simulation and experiment agree qualitatively
well.

The evolution of the shock past 1 ns can be appreciated in Fig. 5.5, in which discrepancies be-
tween simulation and experiments start to emerge. One interesting result is that the experimental
measurements show evidence of the liquid jet being compressed from multiple directions. Even
though initial 2D and 3D FLASH simulations do not show such strong multi-direction compres-
sion. It was found that the compression in part occurs due to higher electron heat transport around
the surface of the target, mediated by collisions in a liquid-vapor blanket present from the evap-
oration of the water jet in a vacuum. When such vapor blanket around the jet was introduced in
the 3D simulation, in order to approximate the evaporative process, a clear observation of multi-
direction compression was observed in the 3D simulations as shown in Fig. 5.5. The experimental
images were processed using a Meijering filter, which calculates the eigenvectors of the Hessian to
compute the similarity of an image region to neurites, according to the method described in [120].

Furthermore, the X-ray measurements go beyond compression to show evidence of shock re-
flection at the liquid-vacuum interface. Sound wave reflections at interfaces have been well doc-
umented from the mismatch in acoustic impedance. Nevertheless, the FLASH simulations do not
display such behavior. One possible explanation is concerned with an increase in surrounding pres-
sure. In the same way that increasing the vapor density surrounding the leads to multi-directional
compression, it is possible that at high enough densities and temperatures, the pressure surround-
ing the jet is sufficient to avoid isothermal expansion and produce a shock reflection, or backward
propagating shock as shown in Fig. 5.5.

83



Figure 5.5: (a) 2D slice from 3D FLASH simulation of laser water interaction with no surrounding
vapor density. (b) 2D slice from 3D FLASH simulation of laser water interaction with a sur-
rounding vapor profile. (c) Experimentally measured data of laser water interaction displayed with
Meijering filter, showing compression of the cylindrical target from multiple directions.

84



5.4 Discussion

We can attempt to model the laser-water interaction analytically following texts by Lindl and Drake
[104, 42], and obtain some useful estimates for the electron temperatures and ablation pressures
expected for the experiment. Initially the front tail of the long pulse will quickly produce plasma
and the laser energy of the peak of the pulse is deposited in the ionized water electrons below the
critical density nc [38]. This creates a high-temperature region from which the electrons transport
heat above nc into the dense matter. The heated material flies away from the ablation surface
and a strong shock is launched into the target through a rocket-like acceleration process. The
energy deposited by the laser is responsible for sustaining both, the electron heat transport and the
expansion of material away from the irradiated surface. Even though these laser conditions are
different from what is typically used on Omega or NIF to generate flows to study hydrodynamic
instabilities, for an initial calculation following texts by [104] and [42] let us treat the electron
heating above critical density as a flux-limited transport model [39] and approximate the expansion
of material as an isothermal rarefaction (given the good thermal conductivity and low density of
the corona) with polytropic index γ and energy flux given by ρsc

3
s(5γ−3)/ (2 (γ − 1)). The energy

flux conservation equation then becomes

IL = fnckBTe

√
kBTe/me + ρsc

3
s

(5γ − 3)

2 (γ − 1)
. (5.9)

Here ρs = gnc is the density at the sonic point (critical surface), given as a fraction g of the critical
density, c2s = (ZkBTe + 3kBTi) /M ≈ 224 µm/ns is the effective ion sound velocity, and f is the
flux-limiter number. To match the heat flux given by the Fokker-Planck equation typically requires
f ≈ 0.1, yet experimental observations suggests that the reported heat transport is even lower than
predicted and could only be explained by using f as small as f ∼ 0.01. This could be due to
the fact that these models do not include non-local heat transport effects or magnetization of the
electrons. For this analysis let us take f = 0.05 and radiation hydrodynamic simulations often find
Ti ≈ Te/3 in the corona below nc. Therefore, solving for Te,

kBTe =

(
IL
nc

)2/3
(

f
√
me

+
g(1 + Z)3/2(5γ − 3)

2
√

AmpZ (γ − 1)

)−2/3

. (5.10)

In practical units we have,

Te = 4.19
(
I14λ

2
u

)2/3(
20f +

0.23g (1 + Z)3/2 (5γ − 3)√
AZ (γ − 1)

)−2/3

keV , (5.11)
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where I14 is the laser irradiance in units of 1014 W/cm2, and λu is the laser wavelength in µm.
For the present experimental parameters, the predicted electron temperature is Te ≈ 2.41 keV. The
calculation of electron temperature is relevant as it allows one to estimate important parameters
regarding the thermodynamic state of the material.

First, it has been demonstrated that the electron temperature in the shocked fluid can be effec-
tively used to calculate the time-scale for the thermal electron-ion equilibration time [143, 114].
In this sense, the calculation of the electron temperature through the Rankine-Hugoniot jump con-
ditions presents a unique opportunity to estimate the time it takes for electrons and ions to reach
equilibrium after the passage of the shock. As the shock propagates through a collisional plasma
it will dissipate energy into the ions. The electrons, having a much higher thermal velocity, are
adiabatically compressed and subsequently reach thermal equilibrium with the ions in time-scales
according to Coulomb collisions [160]. This is, for electrons and ions reaching Te ≈ Ti = T then,

ν̄e|i/ni = ν̄i|e/ne = 3.2× 10−9Z2λ/µT 3/2 cm3sec−1 . (5.12)

Here the atomic Z can be effectively calculated for a molecule in a compound. An alternative
expression for the thermal equilibration time is based on the post-shock electron temperature giving

teq(e, p) ≈ 19.5× 1015
(

Te

108K

)3/2 ( ne

10−3cm−3

)−1

sec. (5.13)

Where Te is the electron temperature and ne is the electron number density. Therefore, using
the calculated electron temperature, and Eq. 5.13 the estimated electron-ion thermal equilibration
time-scale is teq(e, p) ∼ 1 − 10 ps. Nevertheless, this estimation is only considering Coulomb
collisions. When particles couple to electric and magnetic fields the dissipation scale lengths are
much shorter compared to the typical collisional mean free path. Additionally, the coupling of
charged particles to electromagnetic fields mediated by plasma waves inherently affects electrons
and ions differently due their significant difference in mass. For these reasons, and based on the fact
that traditional radiation hydrodynamic simulations do not include such charge-separation effects,
we might expect that the electron heating rate is shorter compared to the Coulomb collisional
time-scales predicted above. Some of these charge separation effects are studied further in 7.

Next, using the value of Te it is also possible to obtain an approximation for the ablation pressure
at the critical surface,

Pabl = nc (1 + 1/Zeff ) kBTe = aI
2/3
14 λ−2/3

u Mbar . (5.14)

In this case a is a constant that depends on the material. Using the obtained value for temperature
the predicted ablation pressure is in the order of Pabl ∼ 5.82–7.63 Mbar, directly dependent on IL.
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This is about twice the pressure found at the Earth’s core [16]. The exact values for a still need to
be firmly grounded through more experimental measurements.

The hypothesis of multi-directional compression, or pinching, is based on the idea that free
electrons in the low-density region below nc are not able to fully escape from the electrostatic
forces imposed by the ions, but are free to move around the surface of the target traveling a signif-
icant distance before depositing their energy. For instance, let us take the mean free path λmfp of
an electron in the plasma region below nc and an electron above nc. For the low density let us use
a value slightly lower than critical nl = nc/2 ≈ 1 × 1021cm−3 and approximate Te ∼ 2 keV and
Ti ∼ 50 eV from our model in the previous section. Using a ionization state Z = 3.5 we obtain
λmfp ∼ 21 µm. On the contrary, for the high-density region with nh = n0/2 ≈ 1.5 × 1023 cm−3

and the same Te, Ti, and Z we obtain λmfp ∼ 0.2 µm, which is clearly an overestimation given
than the temperatures at high densities are much lower as well as their ionization state.

Ultimately, wave reflection is an inherent process whenever a propagating wave encounters an
interface. Whether it’s light bouncing off a mirror or sound echoing off a canyon, it’s because of
boundary conditions. When the signal in a line meets a change in impedance, that’s an interface.
At any interface, certain conditions need to be met. In the case of electric signals, these conditions
are delineated by Maxwell’s equations, which in turn impose restrictions on distinct features of the
electric and magnetic fields at the interface. For shock waves or strong hydrodynamic waves, the
equations that describe their behavior at interfaces are Euler’s equations. The equations predict the
transmission of the shock and generation of a reflected rarefaction. The strength of the rarefaction
depends on a variety of experimental conditions including the specific polytropic index of the
plasma.

In this work, we have created a platform and a systematic study for observing the genera-
tion of laser-driven hydrodynamic shocks in water with unprecedented spatio-temporal resolu-
tion. Through direct measurement of shock velocity using the betatron X-rays, it was possible to
estimate the ablation pressure and ion temperature through Rankine-Hugoniot calculations. Ad-
ditionally, interesting hydrodynamic phenomena outlining the importance of 3D effects on the
evolution of high-energy-density systems have been observed such as multi-direction pinching of
the target and wave reflection. In this sense, this work hopes to move a step closer to improving
high-repetition-rate diagnostic systems in HEDP experiments that can help to better understand
the electron heat transport dynamics, which are crucial for developing laser-driven fusion tech-
nologies.
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CHAPTER 6

Hydrodynamic Instabilities in Shocked Liquid Jets

6.1 Introduction

Hydrodynamic instabilities such as Rayleigh-Taylor, and Kelvin-Helmholtz are ubiquitous in the
universe and found in many exotic astrophysical events including solar flares, supernova rem-
nants, or plasma nebulae. Similar environments can be found in HEDP experiments such as
those pursuing inertial confinement fusion with high-energy lasers such as NIF and OMEGA, in
which hydrodynamic instabilities are the primary cause for degradation in the thermonuclear yield
[156, 8, 189]. In this sense, the diagnosis of hydrodynamic instabilities is imperative in order to
continue progressing towards achievable fusion energy technologies.

In the preceding Chapter 5, high-repetition-rate betatron X-ray sources were introduced as a
promising tool for imaging hydrodynamic phenomena. The pages ahead are a continuation of
this narrative, focused on the evolution of the laser-shocked water at later stages, when the intri-
cate tapestry of plasma instabilities may develop. This chapter hopes to push the limits of high-
resolution imaging using LWFA betatron X-rays even further by providing first-of-their-kind X-ray
images of the evolution of plasma instabilities in spatial and temporal resolutions unexplored until
now. The experimental setup shown in Fig 6.1 is essentially the same as the one described in Chap-
ter 5, with particular emphasis on probing the later phase of the laser-water interaction through a
long delay stage and applying active correction for the shock driver laser focal pointing into the
water target.

While this chapter embraces some elements of speculation, it stands as a testament to our quest
for understanding. Through thoughtful analysis, arguments are presented to suggest that the in-
stabilities observed with the X-rays are originated from the Richtmyer-Meshkov (RM) process.
This phenomenon arises when a shock wave collides with the interface between different media,
imprinting vorticity into the liquid. An increase in vorticity subsequently leads to the amplifica-
tion of small perturbations and waves that might develop at the shock interface. This chapter not
only presents some results that show the incredible high-resolution imaging capacities of betatron
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Figure 6.1: Experimental setup used for LWFA betatron X-ray imaging of laser-shocked water at
later times +2 < t < +8 ns. Particular emphasis is placed on the active correction of the pointing
of the shock driver laser to ensure proper alignment with the target as the delay line is varied.

X-rays, but also serves as proof that the platform developed as part of this thesis can be used to
conduct analytical studies and compare them with theory, and simulation.

6.2 Results & Simulations

A laser-generated shock is by nature not an ideal shock. It is driven by the ablation of mass from
a surface and thus it is not perfectly planar. The images obtained in Fig. 5.3 from the previous
Chapter 5 display this by presenting a hydrodynamic shock with a bow shape - having a center
head, and trailing wings at the sides. When a rippled shock with such lateral structure interacts with
an interface that is also rippled (water to vapor-vacuum in this case) it affects the post-shock fluid
flow with velocity u by depositing vorticity within the subsequently shocked fluid as described in
Fig. 6.2. Vorticity can be defined as a vector field that describes the curl or local spinning motion of
a continuum flow with velocity u, mathematically this is ∇×u. Next, the post-shock fluid velocity
slows causing the fluid to flow away from the shock normal plane and introducing fluid velocity
components in the directions transverse to the shock propagation direction. The sketch of this
phenomenon in Fig. 6.2 shows how the post-shock fluid deflects away from the shock’s normal
direction while moving along both sides of the interface in opposite directions. The vorticity
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Figure 6.2: (a) Sketch of the Richtmyer-Meshkov process describing 1: deflection of post-shock
fluid from shock normal, 2: introduction of vorticity at the interface, and 3: amplification of
structure by the introduced vorticity (b) Sketch used for analyzing the behavior when an oblique
shock encounters an interface using different components of the interaction. For convenience, η
and β as shown are taken to be positive angles.

deposited in the post-shock fluid will reduce oscillations in the transmitted shock wave and grow
small perturbations at the interface with time, thus amplifying any rippled structure present at the
interface layer. This effect is also known as the Richtmyer-Meshkov (RM) process and has been
studied previously [139, 176, 177, 188]. So long as the shock does not happen to be flat when it
encounters the interface it will deposit vorticity at the interface and amplify any structure present.

Within this context, the evolution of a hydrodynamic instability captured with the betatron X-
rays is shown in Fig. 6.3. The time-series shows a process that resembles the RM instability, in
the sense that a strong shock crosses a rippled interface, the interface moves forward, and after
the passage of the shock very distinctive ripples develop. A 3D hydrodynamic simulation was
also performed in FLASH, in which a sinusoidal instability was imposed on the cylindrical jet
radius, which later in time developed into a larger structure. The simulation and experimental
measurements are not particularly the same, as it is expected. However, in both scenarios, the RM
behavior is captured.
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Figure 6.3: (a) Projected density from 3D FLASH simulation. A sinusoidal perturbation was
introduced to the radius of the cylindrical water target to observe the evolution of the Richtmyer-
Meshkov process. (b) The amplification of the perturbation structure can be observed in the sim-
ulations at lower densities. (c) Time delay scan of laser-water interaction captured experimentally
using single-shot betatron X-ray imaging. The shock proceeds from left to right, resulting in the
displacement of the back interface and subsequent instability formation, displaying the evolution
of the Richtmyer-Meshkov process.

91



We can estimate how rapidly the modulations at the interface should grow using the equations
for an oblique shock encountering an interface with a density decrease. Typically, a shock encoun-
tering an interface where the density decreases will produce a transmitted shock and a reflected
rarefaction. Nevertheless, from our results in the previous section, we observed that the back sur-
face of the target is also being compressed by pressure from 3D electron heat transport, thus we
believe it is more reasonable to treat our description of the interface behavior as if a shock was
reflected. Following texts by Landau [98] and Drake [42] on oblique shocks meeting interfaces,
we will analyze the system by labeling shocked and unshocked regions with subscripts a, b, c, and
d, and the region between the contact surface and the reflected wave as R as shown in Fig. 6.2.
In this diagram, α indicates the angle between the initial shock normal and the transmitted shock
front, β denotes the angle between the initial shock normal and the plane of the local interface, χ
is the angle between the initial shock normal and the moving interface, and η represents the angle
between the initial shock normal and the reflected wavefront. For simplification purposes, we will
assume that the shock is driven by a constant pressure source and thus each of the waves has a con-
stant velocity. Similarly, the entropy is assumed to be constant across all of the regions changing
only at the shocks. To analyze the post-shock interface behavior this system can be thought of as
stationary using cylindrical coordinates centered at the point where the shock meets the interface.
Then a point on the shock moves radially inwards with time and a point on the reflected wave
moves radially outwards as shown in Fig. 6.2. In this frame of reference, we also assume that uz

is constant everywhere (duz/dt = 0 = dur/dt) and the angle ϕ is defined relative to the x-axis. In
this case, the momentum and continuity equations read

∂ur
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(6.1)

These equations can be combined and simplified to expressions for fluid velocities at each of the
regions a, b, c, d, R and the solutions can then be translated to the lab frame of reference. In our
case we are particularly interested in describing the effects on regions d and R, denoting the fluid
at both sides of the interface. The lateral deviation of the flow can be described as the x-component
in the velocity vectors ud and uR, which in the lab frame of reference and approximated for small
angles are given by,
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−2β
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[
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β
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ŷ , (6.2)
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Figure 6.4: (a) Phase-contrast X-ray images of hydrodynamic instability (average of 5 shots per
time-step) at 3 < t < 6 ns. (b) The wavelength of the perturbations is relatively constant and
recovered through Fourier analysis.
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We can then approximate the growth rate due to the RM process from the point of view that the
increase in ripple amplitude is caused by the inward flow of material from the center toward the
sides. Therefore, assuming the counter-propagating shock uR deposits vorticity, and assuming
small angles, η = kL and η/β ∼ 0.9 (typical for reflected shocks), then we obtain a perpendicular
flow velocity,

u⊥ ≈ 3.4γ

(γ + 1)2
kusxps , (6.4)

and thus a growth rate is given by,

d

dt
x0 =

1.7γ

(γ + 1)
kupsxps . (6.5)

This implies that the ripples in the interface grow with time at a rate linearly proportional to the
initial ripple amplitude x0, wave-number k, and post-shock interface velocity ups in the lab frame.
These features are also present in the formula described by Richtmyer [139], dx0/dt = kA∗upsxps

which, in contrast, includes A∗ the interface post-shock Atwood number. Therefore, by finding k,
ups, and x0 we can utilize Eq. 6.5 to calculate an expected growth rate for the interface perturbations
and compare it to a growth rate obtained experimentally.
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Figure 6.5: (a) Stack of line-outs through the center of experimental images (10 shot average).
(b) Stack of line-outs through the center of experimental images (single-shot). Left: unperturbed
section of the jet. Middle: perturbed center section of the jet. Right: fit to interface displacement
velocity.
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First, to obtain the wave number k = 2π/λ, the wavelength of the perturbations was recovered
by performing Fourier analysis on the region enclosing the ripples found in the image observed
with the betatron X-rays. Fig. 6.4 shows the results of the Fourier analysis indicating that λ ∼
15 µm.

Next, the post-shock velocity of the interface was obtained by taking a line-out through the
center of the X-ray images at each time-step. In this case, we have stacked the line-outs next to
each other in Fig. 6.5 to reveal the movement of the interface with time. The figure shows that
at t ∼ 2.5 ns the liquid-vacuum interface at the back of the target expands and moves forward
with a velocity of ups ∼ 7 µm/ns. The movement of the interface in the back side of the target
is a consequence of the shock crossing the interface and therefore the interface moves in the laser
propagation direction.

Finally, assuming an initial perturbation amplitude of size xps = 1 − 3 µm and using Eq. 6.5,
we obtain a theoretically estimated growth rate to be,

d

dt
a0 = 2− 20 µm/ns (6.6)

We can similarly obtain a growth rate experimentally, by analyzing how the amplitude grows in
time for each peak in the rippled structure. This analysis is also plotted in Fig. 6.6, resulting in an
experimental growth rate of d/dt(a0) ≈ 10− 20µm/ns, which agrees very well with the analytical
approximation.

6.3 Discussion

The exploration of plasma instabilities through the lens of high-resolution betatron X-ray imaging
brings new possibilities of understanding within the realm of HEDP. This section provided the
first-of-its-kind measurement of the Richtmyer-Meshkov-like plasma instabilities with unprece-
dented spatio-temporal resolution using a laser wakefield-based radiation source. At first sight, the
observed waves present many mysteries including defined wavelengths, asymmetries, and com-
plex structures. Multiple phenomena could be responsible for developing such structures, not only
including the Richtmyer-Meshkov process but also the Rayleigh-Taylor or Kelvin-Helmholtz in-
stabilities initially are potential candidates. The conclusions drawn in this chapter are based on the
idea that the instabilities observed with the X-rays are primarily shock-driven and intrinsic to the
interface between the liquid water and vacuum.

First, the RT instability is a phenomenon that materializes at the interface of two fluids of
different densities—precisely the scenario characterizing this experimental setup. Two conceivable
alternatives are possible at this interface; either the lighter fluid exerts force on the denser fluid,
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Figure 6.6: (a) Phase-contrast X-ray images (10 shot average) displayed with Meijering filter [120]
showing a clear growth of the fluid perturbations’ amplitude through the RM process. (b) 3D
waterfall plot showing ripple magnitude growth with time. (c) Plot of experimentally calculated
growth rate and comparison with the theoretical prediction.
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establishing a stable equilibrium (e.g. the atmospheric air on top of the ocean’s surface), or the
heavier fluid imposes its force upon the lighter one, triggering the unstable process of Rayleigh-
Taylor. When considering the case of the laser-water interaction at later phases, the conditions in
the region of interest are those remaining from the aftermath of an adiabatic plasma expansion.
During such a process, the expansion of the hot plasma exerts a force on the target surface similar
to the rocket effect. This process is responsible for generating the hydrodynamic shocks observed
in Chapter 5, however in this configuration, the low-density plasma fluid is exerting a force on the
dense plasma core and not the opposite, hindering the likelihood of the RT instability developing
at the surface.

Alternatively, the KH instability is based on the shear between two fluids of different densities
which move in opposite directions. Even though fluids of different densities are certainly present
at the interface (liquid water and vapor) their fluid velocities are practically negligible for the
timescales captured with the X-rays. For instance, the liquid jet moves at a velocity of u ≈ 40

m/s, which translates to a total displacement of only approximately 4 µm over the course of 10 ns.
Given the fact that the observed perturbations in Fig. 6.6 cover a total distance in the order of tens
of microns, it is unlikely that the fluids would have moved sufficiently fast from their own initial
velocity to produce sufficient shear triggering the KH unstable processes.

Given the ultrashort timescales in which these plasma instabilities arise, other more exotic phe-
nomena involving electron fluids-based KH processes have been theorized to explain the measure-
ments presented in this chapter. In this scenario, some of the asymmetries observed are explained
by introducing the fact that one of the ends of the water jet is connected to ground, while the other
end is open-ended. If this is the case, strong positive fields near the interaction region could quickly
generate a current running through the interface of the target. These innovative ideas while inter-
esting and possible, but would require more involved hybrid simulation methods. Before venturing
into the realm of charged-particle-based instabilities, this chapter has considered a simpler alterna-
tive that could be triggering such hydrodynamic phenomena and be responsible for the growth of
the perturbations, such as the Richtmyer-Meshkov process.

The argument presented in this chapter is primarily based on pointing out the fact that the
rippled structures grow soon after the shock crosses the interface. The RM process involves a
non-ideal shock and/or a non-ideal interface. Both of these conditions are true in the experimental
setup. Furthermore, based on the X-ray measurements it is certainly apparent that vorticity, to
less or more extent, has been introduced into the fluid after the shock. Furthermore, the RM
process predicts a moving interface triggering the growth of existing disturbances. In this sense,
the analysis displayed in Fig. 6.5 of this chapter evidenced a clear displacement of the back liquid-
vacuum interface after the crossing of the shock. The fact that the liquid water jet is inherently an
unstable medium with minute disturbances present at all times and multiple wavelengths further
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suggests that the RM process is likely to develop.
One important consideration in this argument is the initial seed of the instability which is an

essential element in any perturbation theory. As previously mentioned, the water jet cylinder is
inherently an unstable medium, so multiple minute waves run through its surface produced from
a variety of environmental conditions including but not limited to, the evaporation at its surface,
supersonic vapor emanating from the jet catcher, small vibrations in the chamber from the vacuum
pumps, or most importantly, its interaction with a multitude of lasers. Not only is the shock driver
laser interacting with the water jet, but also is the underlying kHz alignment laser which is of order
mJ in energy and always present, as well the LWFA driver laser and its own kHz alignment laser.
The variety of lasers involved in the experimental setup make them likely candidates to serve as a
seed for plasma instabilities.

This consideration opens the door to a new avenue of investigation - the electromagnetic fields
that are generated during the high-energy-density conditions from pressure gradients, and their
potential influence on the overall interplay between shocks, plasmas, and the laser fields them-
selves. Certainly, for the interaction of high-intensity lasers and matter the presence of magnetic
and electric fields is guaranteed. Nevertheless, while the photons from the betatron X-ray diagnos-
tic that has been used thus far offer phenomenal imaging resolution, they are not sensitive to the
presence of these fields. If any electromagnetic fields have an influence on the dense plasma their
effect could be observed by the X-rays, but the mechanism and magnitude of the fields would be
entirely missed. With the purpose of looking at the plasma dynamics from a completely different
perspective, the next and final experimental chapter is focused on the probing of laser-generated
electromagnetic fields using the relativistic electron beam as a probe.
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CHAPTER 7

Relativistic Electron Beam Probing Using Laser
Wakefield Accelerators

7.1 Introduction

The preceding chapters journeyed into the realm of high-resolution imaging using betatron X-
rays, capturing ultrafast snapshots of matter under extreme conditions within the domain of HEDP.
These images, although enlightening, are bound by the inherent limitations of photons. These
imaging techniques primarily depend upon the deflection of X-rays by density gradients in the
target sample, thereby revealing hydrodynamic shocks in regions with sharp density gradients and
high pressures. While X-ray diagnostics serve as indispensable tools for imaging dense media,
they often obscure the underlying electromagnetic fields that might be crucial to our understanding.
This chapter is more than an exploration, it is a transformation of perspective.

It is universally acknowledged that in any laser-matter interaction within high-energy-density
regimes, electric and magnetic fields emerge as intrinsic companions. The magnitude and topology
of these fields varies depending on the experimental configuration, but their presence is ubiquitous.
In the previous chapter it is hypothesized that some generated fields might potentially feed back
into the hydrodynamic interactions and influence their behavior triggering instabilities. The degree
at which electromagnetic fields could influence the plasma dynamics is not clearly defined, but
their influence is guaranteed. Importantly, conventional radiation hydrodynamic simulations often
fail to account for the charge separation between electrons and ions, a void that prevents a holistic
portrayal of the interactions where magnetic fields may emerge and wield a significant influence.
The pulse of innovation echoes loudly in the technique’s core premise: the conversion of relativistic
electron beams into field probes, unveiling an alternative perspective that goes beyond the scope
of traditional X-ray photons. These beams respond to the fields they traverse, becoming living
witnesses to electromagnetic phenomena.

The electromagnetic fields that orchestrate these intricate interactions might hold the key to un-
raveling their mysteries, yet they have remained largely elusive to direct observation. This chapter
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embarks on a transformative direction of probing matter under extreme conditions, spotlighting
an emerging technique that leverages the power of laser wakefield acceleration to use relativistic
electron beams as dynamic probes for radiographic measurements of electromagnetic fields during
HED encounters. As discussed in Section 3.4.3, any generated fields will have the effect of de-
flecting the trajectories of the electrons by a certain angle that depends on both the electron beam
energy and the field magnitude as well as direction. Some previous measurements have been per-
formed using LWFA electrons as a probe [149, 180, 191, 190], yet many of these do not capture
the evolution of fields in time, and in some instances an estimation for the field magnitudes is not
possible.

The investigation in this chapter once again revolves around the interaction of a long laser
pulse with a water jet target, except from a completely different perspective that allow capturing
nuances and intricacies inaccessible to their photon counterparts. Our journey unfolds through
probing three distinct laser energy deposition regimes—low, medium, and high deposition. In
each of these regimes, the relativistic electron beams traverse the interaction zones, capturing the
electromagnetic signatures imprinted upon them. Subsequent analyses determine the magnitudes
and orientations of these fields, emphasizing the stark difference between conventional focusing
fields and robust fields that, while initially appearing defocusing, in truth exert an over-focusing
influence. The transition between focusing and over-focusing regimes is captured as both, energy-
dependent and time-dependent measurements of the fields. These measurements provide a fresh
lens through which to diagnose the tapestry of high-energy-density interactions.

7.2 Experiment

The experimental investigations were conducted at the LBNL BELLA Center, where the HTW
dual beam laser system (20–30 TW, λ0 = 800 nm) played a dual role in driving the laser wakefield
accelerator and generating the shock wave within the liquid target (depicted in Fig. 7.1). The
intensity of the LWFA driver was in the order of I ∼ 1018 W/cm2, while the intensity of the shock
driver arm is in the order I ∼ 1014 W/cm2. The short high intensity pulse was focused into a
gas target [192] thus driving a wakefield and producing a relativistic electron beam. The electron
beam obtained during this campaign had a mean energy of 137.9±35.8 MeV with 128.7±54.2 pC
of charge, and a mean FWHM divergence of 5.7± 1.1 mrad. The electron beam was characterized
with a beam profile monitor as well as with a magnetic spectrometer.

The beam profile monitor consists of a Phosphorous scintillating screen located at z ≈ 156 cm
from the gas jet nozzle. The screen is imaged onto a camera which records the light emitted from
the phosphorous in the form an image of the electron beam transverse profile. For the magnetic
spectrometer diagnostic a dipole electromagnet deflects the electron beam into a series of lanex
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Figure 7.1: (a) Experimental setup for relativistic electron beam probing of dynamic electromag-
netic fields using an LWFA. (b) Electron beam characterization showing its spectrum and charge
density for 200 consecutive shots. The mean momentum is plotted as well as its standard deviation.
(c) Scatter plot for the beam characteristics including mean momentum, charge, and divergence.
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screens and, by doing so, differentiate the particles based on their momentum [125]. Less energetic
particles will be deflected more by the imposed magnetic field, while higher energy particles will
have a smaller deflection orbit. Through calibration of the trajectories with respect to the dipole
field the electron beam spectrum was recovered successfully (Fig. 7.1).

The shock driver laser (200 ps) on the other hand, was obtained through the division of the main
BELLA HTW beam. Typically, the secondary arm of the system is similarly amplified (1.2 ±
0.2 J) and compressed through chirped-pulse-amplification. Nevertheless, for this experimental
configuration the desired shock driver laser has a long duration in time depositing its energy over
200 ps. In order to obtain the long pulse the compressor was bypassed after amplification of the
secondary beam. This long pulse was perpendicularly focused onto the water target plane, having
a FWHM spot size of w0 = 40 ± 10 µm. A flexible delay line furnished meticulous temporal
synchronization of the long pulse with respect to the LWFA electron beam probe, permitting timing
adjustments within the interaction of order tens of femtoseconds.

Notably, since the field recovery analysis technique described in Chapter 3 is highly sensitive
to the unperturbed beam profile, the electron probe was optimized for improved stability and con-
sistency before interacting with the high-energy-density fields. Additionally, the shock driver laser
pulse’s focal spot at the water jet plane was meticulously optimized, and its centroid constantly
tracked along the delay line to secure the desired interaction with the target.

To enrich the empirical findings, 3D FLASH simulations (see FLASH simulations in Chapter 3)
have been performed in order to observe the type of fields that radiation hydrodynamic codes pre-
dict for the interaction. The fields derived from the hydrodynamic simulations are then compared
to those recovered from the measurements. Additionally, a synthetic electron beam radiography
algorithm was employed to simulate the interaction of a fictitious relativistic electron beam with
the fields obtained from FLASH.

7.3 Results & Simulations

The results consist of different datasets of electron radiography images taken using the LWFA
relativistic electron beam as a probe. The charged-particle beam captured the evolution of elec-
tromagnetic fields generated during the laser-water interaction as a function of time. Multiple
time-series were obtained, which primarily vary on the laser energy that was used for the shock
driver laser.

The electron radiography images were analyzed with the iterative algorithm described in Chap-
ter 3 in order to reconstruct the magnitude and direction of the fields that are captured. The first
step in the analysis of the electron beam radiography images is the removal of the background;
in other words, predict to some accuracy how the unperturbed electron beam I0 looks like. This
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is imperative for the application of the iterative algorithm in order to recover the magnitude and
direction of the fields. In this sense, the reconstruction of I0 does not follow a straightforward
unique method, but rather it depends on different techniques which might lead to better or worse
results depending on the dataset in question.

As it will be shown in this section, the background removal procedure needs to be adapted
to match the measurements as best as possible. Fig. 7.2 displays an example measurement of
electromagnetic fields captured with the electron beam probe, denoted as I original, as well the
first-order technique to recover the unperturbed beam I0. The method consists on first masking out
the region where the fields are present in the measured image. Next, a low-pass filter is applied
in Fourier space to the original image in order to obtain an initial approximation of I0. Using this
initial approximation an inverse mask is applied to set up apart the section where the fields reside.
Both of these masked images are then blended together to obtain a prediction for I0. The result is
a blurred image in which the perturbations to the beam are smoothed out (see Fig. 7.2).

An important caveat with this method is that the blending should be done in such a way that
the intensity of the signal is matched as closely as possible to the predicted background. One way
of accomplishing this is by integrating the field-affected region before the mask and making sure
that the substitute region has the same integral of intensity. This is a way of approximating charge
conservation. The charge that is absent due to the fields must have moved in space to some other
coordinates.

After the recovery of I0 the calculation of any present electromagnetic fields proceeds following
the method described in Sec 3.4.3. The iterative algorithm utilizes the original measured image as
well as the predicted I0 to obtain a resulting map of the deflection potential ϕ,

∇ϕ = ααα (7.1)

where ααα are the deflection angles experienced by the relativistic electrons. Then, through the
following relations,

αx =
q

γmev2z

∫
Exdz or αx =

q

γmevz

∫
Bydz (7.2)

αy =
q

γmev2z

∫
Eydz or αy =

q

γmevz

∫
Bxdz . (7.3)

The electric or magnetic field can be reconstructed following the calculated deflection potential.
Fig 7.3 shows an example of this field recovery calculation for the same example radiography
image in Fig. 7.2.

Before venturing into discussing these fields in more detail, let us reiterate the fact that different
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Figure 7.2: Workflow for background removal and approximation of unperturbed beam profile
image I0. (a) The original measured image is masked to remove the fields at the edges of a logical
mask. (b) A low-pass filter is applied to the measured image to find an initial approximation for
the unperturbed beam. The inverse of the mask is similarly applied to section out the region with
the fields. (c) Both masked images are blended together to obtain a first-order approximation of
the unperturbed beam I0.
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Figure 7.3: Workflow for the recovery of electromagnetic fields from an experimentally taken elec-
tron beam image (∼ 1 J laser energy deposition). (a) Approximation of the unperturbed reference
beam I0. (b) Comparison between the original electron image and the image obtained from the
reconstruction of the deflection potential field Φ. (c) Recovered potential field Φ as well as its
gradients corresponding to the deflection angles αx and αy. (d) Electric field reconstruction from
the deflection angles. The resulting deflection angles can be interpreted as either an electric or a
magnetic field.
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beam profiles and field configurations require an adaptation to the I0 calculation process discussed
above. When the fields are captured in a region away from the beam centroid then a simple filtered
image might suffice to predict I0. Nevertheless, for the kind of fields shown in Fig 7.4, Fig 7.5, and
Fig 7.6, in which the electron beam is found rather centered on the perturbation (for the purpose
repeatability), the background removal process to obtain I0 is slightly more involved.

The adaptation to predict the unperturbed beam consists on precisely using a dataset of the
electron beam profile without imposing a perturbation (no shock driver laser). In this sense, be-
fore imposing a field for the probe to go through and using the same experimental conditions, a
dataseries (images) was taken to use as a reference stack for I0. Following the background removal
procedure of Fig. 7.2 the main difference consists on using a real unperturbed image that can be
masked and blended, as opposed of using the same image with a Fourier filter. This technique can
work better or worse than the Fourier filter approach, depending on how similar the chosen unper-
turbed image is to the perturbed image in question. In order to make a quantitative measurement of
this discrepancy all the unperturbed images in the dataset stack were tested against the perturbed
in image in question and the χ2 difference between the images was calculated following

χ2 =
∑
i

(Spredicted,i − Smeasured,i)
2 . (7.4)

This was done to better approximate the field-affected area based on how the surrounding beam
looks like. The image that minimized χ2 with respect to the perturbed image in question was
chosen as the reference for I0. An alternative approach would be to use all the images in the
unperturbed data stack and calculate a mean that could be used for reference of I0. Nevertheless, it
was observed that using the mean of the images did not necessarily minimize χ2. This modification
of the background removal process was utilized to recover I0 with acceptable accuracy in Fig. 7.4,
Fig. 7.5, and Fig. 7.6. Each of these examples corresponds to a different regime in laser energy
used on the heating laser, and each corresponds to a different regime of imaging for the electron
beam probe. This variation in the way fields are imaged come accompanied by an adaptation to
their background removal process in order to obtain an accurate representation of I0 and therefore
a more trustworthy recovery of the electromagnetic fields with this technique. Once a background
removal and field recovery process is successfully tested for each electron beam imaging regime,
their field evolution as a function of time can follow.

Before analyzing the recovered fields obtained from the measurements, it is certainly helpful
to obtain a prediction from simulations for the kind of fields one might expect during the interac-
tion. In this regard, 3D radiation hydrodynamic simulations were performed using FLASH (see
Fig. 7.7), which allow the prediction of the expected density, temperature, and pressure distri-
butions at these timescales, albeit using fluid equations. From these parameters it is possible to
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Figure 7.4: Workflow for the recovery of electromagnetic fields from an experimentally taken
electron beam image (∼ 0.5 J laser energy deposition). (a) Approximation of the unperturbed
reference beam I0. (b) Comparison between the original electron image and the image obtained
from the reconstruction of the deflection potential field Φ. (c) Recovered potential field Φ as well
as its gradients corresponding to the deflection angles αx and αy. (d) Electric field reconstruction
from the deflection angles. The resulting deflection angles can be interpreted as either an electric
or a magnetic field

107



Figure 7.5: Workflow for the recovery of electromagnetic fields from an experimentally taken
electron beam image (∼ 0.1 J laser energy deposition). (a) Approximation of the unperturbed
reference beam I0. (b) Comparison between the original electron image and the image obtained
from the reconstruction of the deflection potential field Φ. (c) Recovered potential field Φ as well
as its gradients corresponding to the deflection angles αx and αy. (d) Electric field reconstruction
from the deflection angles. The resulting deflection angles can be interpreted as either an electric
or a magnetic field
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Figure 7.6: Workflow for the recovery of electromagnetic fields from an experimentally taken
electron beam image (∼ 0.5 J laser energy deposition with quadrupole). (a) Approximation of
the unperturbed reference beam I0. (b) Comparison between the original electron image and the
image obtained from the reconstruction of the deflection potential field Φ. (c) Recovered potential
field Φ as well as its gradients corresponding to the deflection angles αx and αy. (d) Electric field
reconstruction from the deflection angles. The resulting deflection angles can be interpreted as
either an electric or a magnetic field
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calculate derived fields for the simulation results. Specifically, the generated electric field during
the interaction was derived from the FLASH calculated pressure and number density following,

E = −∇p

ene

. (7.5)

By being 3D simulations, the fields are similarly calculated in all three dimensions. Nonetheless,
the electron beam probing measurements are consistent with the deflection of particles due to path-
integrated fields. In other words, the accumulation of field experienced by the electrons as they
travel through the sample. For this purpose, the x and y components of the derived electric field
displayed in Fig. 7.7 are projected fields. Finally, having calculated path-integrated fields from
FLASH it is possible to combine them with a relativistic-electron deflectrometry code in order
to produce synthetic electron beam radiographic images (see Fig. 7.7), that can later be directly
compared with the measurements.

Following the laser-matter interaction, the FLASH simulations predict the expansion of low
density plasma electrons heated by the laser, which creates a zone of high pressure gradients. The
highest pressure point at the surface of the target is responsible for driving the hydrodynamic shock
explored in Chapter 5. Following this topology, the simulations predict a strong focusing field that
the electron beam will interact with.

Within this context, it is possible to examine the electron beam radiography measurements that
were obtained during this experiment and compare them with simulation. Starting with Fig. 7.8, the
time-series is obtained by probing the interaction of the long-pulse laser at low energies (∼ 100 mJ)
with the cylindrical water target. At this energy regime, the fields predicted by simulation are
validated by the measurements not only in magnitude but also in direction. The recovered fields
present a clear focusing effect on the electron beam probe as a result of the laser heating and
ionization at the surface of the target, previously predicted by FLASH. The time-evolution can
also be appreciated in the measurements, which clearly describe a field that quickly increases in
magnitude and subsequently weakens and fades away with time.

Based on the preceding simulations and experimental measurements, one might expect that as
the energy deposited by the laser increases, so does the magnitude of the focusing fields. The
strength of the fields is directly dependent on the temperatures and pressure gradients that are
present during the interaction, and having more energy available in the laser directly translates
to higher energy-density conditions. Fig. 7.9 shows the time-series evolution of the laser-driven
fields for an intermediate laser energy regime (EL ≈ 500 mJ). The experimental results obtained
at this regime are immediately different than those previously measured for the focusing fields.
To begin with, the relativistic electron beam probe appears to be increasingly defocusing with
time, indicated by a void in the center of the beam that is continuously expanding. The recovered
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Figure 7.7: 3D FLASH radiation hydrodynamic simulation of the laser-water interaction. The re-
sulting electric fields are derived and projected. (a) Time evolution of projected number density. (b)
Time evolution of projected pressure. (c) Time evolution of projected electric field x-component.
(d) Time evolution of projected electric field y-component. (e) Time evolution of projected electric
field magnitude.
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Figure 7.8: Relativistic electron beam probing of electromagnetic field evolution (∼ 0.1 J laser
energy deposition). (a) Shows I/I0 to display the perturbation field and its evolution in time.
(b) Path-integrated (projected) electric field (x-component) recovered with iterative algorithm. (c)
Path-integrated (projected) electric field (y-component) recovered with iterative algorithm. (d)
Path-integrated (projected) electric field magnitude recovered with iterative algorithm. (e) Syn-
thetic electron beam radiography image using the predicted field configuration in order to compare
with the original measurement.
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electric fields from the iterative code predict a similar scenario, displaying x and y components
that are, while similar in magnitude, exactly opposite in direction from those previously predicted
in Fig. 7.8. The fields recovered in Fig. 7.9 would seem to indicate a defocusing effect that initially
goes against natural intuition and is further discussed in the discussion section.

Lastly, the third time-series dataset in Fig. 7.10 consists on the highest laser energy (EL ≈ 1 J)
deposited in the water target. At this regime, one can observe a defocusing an effect similar to the
one present in Fig. 7.9. The strength of the fields is high enough to produce this effect even when
probed with a less energetic region of the electron beam probe. The field responsible for the void
in the electron radiographs of Fig. 7.10 is similarly evolving in time. From the results of the field
reconstruction it can be appreciated that the fields are only short-lived. They increase in magnitude
quickly, while diminish its effect with time. This measurement is particularly interesting because in
the later frames of the time-series, as the magnitude of the field decreases, a reversal in the y field
direction is observed. This observation goes in line with the field reversal previously observed
between Fig. 7.8 and Fig. 7.8, except here it is occurring not as a function of energy but as a
function of time. This field reversal mechanism is discussed in the next section.

7.4 Discussion

Early in time, before the peak of the main pulse arrives, the water target is transparent to laser light,
a phenomenon also known as the shine-through effect in ICF research [10, 18, 39, 44], which will
likely cause pre-heating of the target before plasma formation. After pre-heating the electrons
continue getting hotter because they absorb the full laser energy and transfer this energy back to
the ions. Nevertheless, the electron-ion energy transfer rate es very slow, much slower compared
to the laser energy deposition occurring at much shorter timescales. This means that the rate of
heat transfer for the ions is subsonic i.e. at the acoustic wave propagation velocity. However in the
case of the electrons due to their small mass and higher heat conduction they will transport heat
supersonically, having an average thermal velocity two orders of magnitude higher than the ion
sound speed. This means that the internal heat of the target increases in isochoric conditions i.e.
the target doesn’t have time to expand and release the energy.

This increase in energy in turn causes pressure to increase and a rarefaction into vacuum pro-
ceeds. In a hydrodynamic picture, we immediately created a heated zone/ pressurized layer by
supersonic electron heat conduction from the laser energy deposited into the plasma. This ther-
malization effect lasting a few tens of picoseconds can be observed in the first few frames of
Fig. 7.7.

Within this context, the results obtained in the preceding section (Fig. 7.8) successfully demon-
strate the application of the relativistic electrons from LWFA to capture the time evolution of a
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Figure 7.9: Relativistic electron beam probing of electromagnetic field evolution (∼ 0.5 J laser
energy deposition). (a) Shows I/I0 to display the perturbation field and its evolution in time.
(b) Path-integrated (projected) electric field (x-component) recovered with iterative algorithm. (c)
Path-integrated (projected) electric field (y-component) recovered with iterative algorithm. (d)
Path-integrated (projected) electric field magnitude recovered with iterative algorithm. (e) Syn-
thetic electron beam radiography image using the predicted field configuration in order to compare
with the original measurement.
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Figure 7.10: Relativistic electron beam probing of electromagnetic field evolution (∼ 1 J laser
energy deposition). (a) Shows I/I0 to display the perturbation field and its evolution in time.
(b) Path-integrated (projected) electric field (x-component) recovered with iterative algorithm. (c)
Path-integrated (projected) electric field (y-component) recovered with iterative algorithm. (d)
Path-integrated (projected) electric field magnitude recovered with iterative algorithm. (e) Syn-
thetic electron beam radiography image using the predicted field configuration in order to compare
with the original measurement.
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thermoelectric field consistent with the expanded plasma predicted by simulation. Based on these
fields topology, the expected effect on the electron beam probe is that of a focusing lens, is which
correctly captured at low energy deposition.

Nevertheless, as the the energy in the heating laser increases and the field intensities become
stronger what the experimental measurements reveal in Fig. 7.9 and Fig. 7.10 is that the relativis-
tic electron beam is actually overfocused. The high field intensities exert a force on the beam
sufficiently strong to focus it down to a point closer to the interaction coordinates and therefore
projecting into the detector screen as a defocusing lens. This realization changes the perspective
from which the high-field measurements are analyzed, and can give hints as to what extent the
magnitude of fields prediced by simulation disagree with those obtained from experiment.

Of particular relevance is the fact that the high energy deposition results show evidence for
heating and ionization breakdown on both sides of the target, followed by plasma expansion rather
symmetrically around the interaction region as has been discussed in Chapter 5. The experimen-
tally measured fields in Fig. 7.10 expand at a rate of c ≈ 284 ± 3µm/ns, which can be compared
to the theoretically calculated plasma expansion velocity into vacuum using an isothermal rarefac-
tion model along with temperatures obtained from a radiation hydrodynamic code such as FLASH
giving cs =

√
(ZTe + 3Ti) /M ≈ 224µm/ns.

Overall, the analysis suggests that the emergence and expansion of the observed dark voids
during the interaction are explained by the creation of robust electric fields resulting from the rapid
plasma heating and expansion. Consequently, these electric fields exert a strong focusing effect on
the electron beam, leading to a regime of overfocusing that manifests as apparent defocusing in the
detector plane. The manifestation of overfocused fields forms a void at the center of the electron
beam probe, which evolves over time and can be quantified through measurements. Furthermore,
this analysis aids in establishing a more accurate determination of the magnitude of the fields
generated within high-energy-density experiments. To explore this notion further, a sequence of
synthetic electron beam radiographs have been calculated in Fig. 7.11. These radiographs were
created by imposing the electric fields anticipated by FLASH and varying their magnitude through
scalar multiplication. The analysis is aimed at exploring the distinct imaging regimes enabled by
the electron beam, contingent upon the strength of the fields applied.

What the synthetic radiographs reveal is in fact all regimes of imaging that have been captured
by the experimental measurements. When lower electric field intensities are imposed the electron
beam responds by focusing, while at higher field strengths a void is generated caused by the over-
focusing of the charged particle probe. If the magnitude of the fields is increased even further,
not only the overfocused void is present, but also the horizontal focusing field line that has been
captured in Fig. 7.3 can be appreciated.

The differentiation between focusing and overfocusing regimes and their transition in time is
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Figure 7.11: Synthetic electron beam radiography maps given the electric field topology derived
from 3D FLASH simulations. The radiographs are performed for different time delays and multiple
regimes are displayed for comparison which vary on the strength of the imposed electric field. (a)
E0 × 100, (b) E0 × 101, (c) E0 × 102, (d) E0 × 103, (e) E0 × 104.
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an interesting phenomenon. The work in this chapter captured the transition of these regimes
both by varying the laser energy as well as their time delay. Nevertheless, there is potentially an
alternative way of resolving this ambiguity. This innovative idea is based on the introduction of a
quadrupole magnet. In order to make sense of this let us refer back to the field recovery method
from Kugland et al. [92] introduced in Chapter 3. This charged particle deflectrometry method
to recover electromagnetic fields relies on the important assumption that no particle crossings, or
caustics, are present during the interaction. Assuming no particle crossing exist, the algorithm
will have a unique solution for the recovery of the electromagnetic field. For this reason, the
recovery results obtained in Fig. 7.3 and Fig. 7.4 which predict a defocusing field are not correct.
The presence of particles crossing while overfocusing does not permit the algorithm to recover
the correct topology of fields. Moreover, in order to reduce particles crossing one solution is to
increase the beam’s divergence. Larger beam divergence would allow for probing stronger fields
before caustics occur. In this context, the quadrupole setup in Fig. 7.1 would have the advantage of
increasing the divergence of the field in one direction, while reducing in the other direction. This
configuration would allow for a potentially dual perspective when capturing the fields, by probing
strong fields in the direction that the divergence was increase before they have an overfocusing
effect.

This idea was tested as part of this experimental campaign by introducing a quadrupole magnet
a few centimeters away from the electron accelerator and the results are shown in Fig. 7.6 and
Fig. 7.12. Initially, the quadrupole has the expected effect of focusing the electron beam in one
direction (reducing divergence), while defocusing in the other direction (increasing divergence).
When the perturbation field is introduced into this imaging configuration the measurements display
what looks like two defocusing fields (voids) on top and bottom of the electron beam. In order
to make sense of this, one potential explanation is based on the fact that in the direction that the
electron beam is focused by the quadrupole the expected measurement is a large parabola-like field
from strong overfocusing. Alternatively, in the direction where the electron beam is defocused by
the magnet the expected measurement would be the real focusing field predicted by simulations
in the absense of particles crossings. If put together, both of these images would result in a bean-
like parabolic shape which is focused in the center. This hypothesis resemble the experimental
measurements obtained with the quadrupole in Fig. 7.6.

In the case of direct-laser irradiation, electron heat transport plays a key role in the evolution
of the target and it is a major issue in ICF research. For low-Z targets that are fully ionized, the
laser energy absorption opacity to inverse-Bremsstrahlung is close to that of the free-free value.
However, as the effective nuclear charge Z of the irradiated material increases and more electrons
are attached to the nuclei the ionization is less complete and the emitted thermal radiation plays an
increasing role in the dynamics. For medium Z targets like the one in the present experiment with
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Figure 7.12: Relativistic electron beam probing of electromagnetic field evolution with quadrupole
lens (∼ 0.5 J laser energy deposition). (a) Shows I/I0 to display the perturbation field and its evo-
lution in time. (b) Path-integrated (projected) electric field (x-component) recovered with iterative
algorithm. (c) Path-integrated (projected) electric field (y-component) recovered with iterative al-
gorithm. (d) Path-integrated (projected) electric field magnitude recovered with iterative algorithm.
(e) Synthetic electron beam radiography image using the predicted field configuration in order to
compare with the original measurement.
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Z ≈ 4 and n0 > nc the target evolution is complex, and the overall laser energy deposition depends
on the interchange between electron and radiation heat transport, hydrodynamic expansion, and
shock generation. Initially, the laser energy is deposited in the corona below nc, mostly through
inverse-bremsstrahlung. This creates a heat front from which electrons transport energy above nc

up to the ablation surface, sustaining the pressure that drives a shock forward into the matter as
was observed in Fig. 5.3. In the case of direct-drive ICF experiments, the overall efficiency to
compress the fuel is directly determined by the fraction of laser energy that is absorbed as electron
thermal flux and transported to the ablation region. The excess energy that is not carried above nc

towards the dense plasma will heat and accelerate the corona outwards, and the heated low-density
plasma will diminish the laser-energy absorption efficiency even further, as the opacity to inverse-
bremsstrahlung absorption KIB ≈ N2

e /T
3/2
e is inversely dependent on electron temperature [38].

In practice, the electron heat-transport models are only an approximation and the electron tem-
peratures are affected by several details including laser spectrum, intensity, and spatial profiles.
For instance, the classical derivation by Spitzer and Harm to describe the dynamics of electron
heat flux is governed by the equation QSH = −κth∂kBTe/∂z with transport coefficient κth. It
is a diffusive heat transport model and relies on the assumption of gentle temperature gradients
λmfp ≪ Te/|∇Te| = LT . Any plasma configuration with large temperature gradients will not be
accurately described by the model as the transport becomes too strong. Additionally, the derivation
ignores electron-electron collision which would overestimate the transport as described by [91].
In general, the Spitzer and Harm model gives accurate results as long as LT/λmfp >> 30. This
condition is typically satisfied by UV lasers, rarely satisfied by 800nm lasers like the one in the
present experiment, and never satisfied at infrared wavelengths [42]. A more accurate descrip-
tion of electron transport would include solving the Fokker-Planck equation, yet this must be done
numerically and it cannot be practically included in a radiation-hydrodynamics code. These chal-
lenges have motivated the search for alternative simpler models that can be effectively implemented
in simulations, as is the case of the commonly used flux-limited heat transport model. In such de-
scription, the thermal energy density in the plasma is transported at some limiting free-streaming
thermal velocity. This results in a maximum heat flux that can be adjusted by multiplying a flux
limiter parameter f so that QFS = f × nekBTevth. The flux-limited heat transport description can
be improved further by crude modeling the non-local effects as electron bunches streaming at dif-
ferent thermal velocities, also known as multi-group flux-limited diffusion (used in FLASH) These
models can be useful for predicting ablation pressures and shock wave propagation velocities af-
ter tuning them to experimentally measured parameters, and adjusting f accordingly (f ∼ 0.05

typical). However, these models do not accurately capture the kinetics of the interaction during
laser energy absorption and deposition where strong temperature gradients are present. In reality,
electron heat transport in laser-irradiated materials is not unidirectional diffusive and only affected

120



by the local surrounding particles. The transport is also affected by non-local effects including
electric and magnetic field generation and super-thermal particles traveling from a range of dis-
tances which influence the overall heating dynamics. For all these reasons, the simulations of such
electron heat transport physics use only crude models and may not give accurate results. In par-
ticular, these simulations will not give correct results for the detailed structure of the plasma near
the irradiated surface where fast particles penetrate deep into the target. The larger mean free path
of heated particles below nc means they are capable of traveling larger distances along the critical
surface of the target and their smaller Coulomb cross section allows them to penetrate deeper into
the target. This can have the effect of producing an ionization front and leaving a warm foot ahead
of the peak of the pulse. A great deal of effort has been carried out to create non-local electron
heat transport models that are also feasible to implement in hydrodynamic codes including one
by Schurtz [150]. These models have most recently been reviewed and compared by Sherlock
[153]. It is evident that obtaining a better understanding of the electron heat transport dynamics is
imperative for accurately modeling ICF and HEDP experiments. Additionally, the data supports
the idea that non-local heating effects do come into play during the interaction, with the possibility
of electric and magnetic fields contributing to the electron transport dynamics as well. Motivated
by acquiring an insight into these effects and obtaining a better understanding of the target evo-
lution, innovative electron beam radiography measurements have been performed using the laser
wakefield relativistic beam.

Beyond the immediate horizons of this investigation lies a future rich with potential. This
innovative technique not only augments our understanding of HEDP phenomena but also opens
doors to a broader realm of applications. By embracing the advantages of charged particle imaging,
we embark on a dual journey—complementing the radiant insights of X-ray photons with the
dynamic revelations of relativistic electrons.
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CHAPTER 8

Conclusion and Outlook

The work in this thesis is a first of its kind series of experimental campaigns aiming to demonstrate
the potential application of electron beams and X-rays produced from laser wakefield accelera-
tors for pump-probe studies of high-energy-density systems that are dynamically evolving with
submicron scale features in space. Traditional diagnostic systems in high-energy-density exper-
iments, such as those performed at NIF or OMEGA, often suffer from low resolution and poor
signal-to-noise ratio. In this regard, it is imperative to develop higher-resolution diagnostic sys-
tems that advance our understanding of high-energy-density systems and leverage the progress on
investigations such as those pursuing inertial confinement fusion.

Given their small source size (σ ≈ 1µm), LWFA-produced X-ray radiation sources present a
promising alternative for high resolution imaging studies of high-energy-density systems. Beta-
tron X-rays have already proven to hold great potential for imaging of static biological systems,
materials for additive manufacturing, and a variety of single-shot experiments with solid targets.
Meanwhile, advancements in laser technology during the past decade have enabled scientists to
produce high quality electron beams and X-rays at high-repetition-rates (Hz), and LWFA elec-
tron beams at kHz repetition rates have already been demonstrated. The advancement in both
laser technology and the future outlook of LWFA research at high-repetition-rate begs the devel-
opment of novel targetry that are equally capable of operate at higher rates. A small source size,
higher-repetition-rate accelerator, and replenishing target set the stage for acquiring data at orders
of magnitude faster pace.

Within this context, the heart of this work lies in the realization of an original high-vacuum
bulk water target – a novel achievement in the realm of high-energy-density experiments - that
aligns with the ever-growing demand for high repetition rate studies. Conventional solid targets
pose challenges in terms of reproducibility and chamber contamination, particularly in the context
of high repetition rates. The innovation of a bulk liquid target, described in Chapter 4 and demon-
strated successfully in this thesis, offers a promising avenue for clean in situ dynamic experiments,
replete with regenerative capabilities. The liquid target concept presents a versatile and repeatable
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platform, open to future explorations involving diverse liquids, geometries, configurations, and
even higher repetition rates.

Chapter 5 ventured into the realm of propagation-based phase-contrast X-ray imaging employ-
ing betatron X-rays generated by LWFA. The chosen platform consists on the generation of a
hydrodynamic shock wave in the water jet target by the interaction of a long pulse laser. This en-
deavor not only validated the potential of this technique for high resolution imaging, but also shed
light on crucial dynamics of the shock behavior at unprecedented temporal resoluton. The realiza-
tion that 3D hydrodynamic effects in high-energy-density experiments often transcend the confines
of 2D simulations underscored the critical need for comprehensive studies. In a remarkable reve-
lation, the experiment unraveled the role of a low-density vapor layer enveloping the target due to
evaporation from the water due its low volatility in high vacuum (low pressure). This vapor layer
enabled a symmetrical heating mechanism due to faster electron heat transport mediated through
collisions, thus impacting the target behavior from multiple directions.

Moreover, Chapter 6 marked a significant extension, focusing on the temporal evolution of
the shock at later times, and the observation of plasma instabilities that resemble the Richtmyer-
Meshkov process through ultra-high-resolution betatron X-ray imaging. The superb spatiotempo-
ral resolution facilitated unprecedented insights into wave growth, unveiling waves at the micron
and submicron scales. The growth rates calculated for these waves not only validated their pres-
ence but also allowed for comparison with analytical calculations predicting Richtmyer-Meshkov
process growth rates.

Chapter 7 brought an additional dimension, probing the interaction of the long-pulse laser with
the water target using the relativistic LWFA-produced electron beam as a radiographic probe. This
charged-particle based probing tool enabled the exploration of electromagnetic fields arising from
the laser-plasma interaction. Through a field-reconstruction analysis, this unique perspective re-
vealed the presence of time-evolving fields with diverse magnitudes. The utilization of a liquid
target and a high-repetition-rate accelerator was crucial for allowing the exploration of a variety of
regimes regarding the generated fields by varying the laser energy. Multiple studies were indicative
of a transition from focusing to strong over-focusing fields dependent on the laser energy that is de-
posited into the target. Crucially, these strong fields are not observed by the X-ray diagnostics, thus
elevating the importance of the electron beam probe as a diagnostic tool in high-energy-density ex-
periments at femtosecond timescales. The measured fields were compared with synthetic electric
fields derived from radiation hydrodynamic simulations.

Looking ahead, this thesis lays the foundation for potentially groundbreaking applications and
investigations using LWFA systems. The outlook is guided by the vision of utilizing betatron
X-rays and LWFA-produced electron beams as diagnostics, offering an exceptional vantage point
from two different perspectives that are not typically found together. While NIF currently oper-
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ates at low repetition rates, a potential future expansion could benefit immensely from platforms
capable of high repetition rate experiments, thereby accelerating progress in our understanding
of relevant high-energy-density concepts. The challenges accompanying this outlook are not to
be understated. The high X-ray fluxes generated during interactions at NIF pose a significant
background that betatron X-ray probes would need to overcome. Addressing this issue would
necessitate advancements in laser technology to create exceptionally bright probes. However, as
history has shown, scientific and technological progress is marked by surmounting challenges that
once seemed insurmountable.

Moreover, the applicability of liquid water targets extends beyond the realm of imaging. These
targets hold promise for ion acceleration experiments and potential applications in short-pulse
interactions with low-Z liquid targets for electron generation, diversifying their impact. As more
studies look into liquid targetry for innovation, their applicability grows into regimes that were
previously unthinkable for both research and industry.

In conclusion, this thesis has ventured into uncharted territories, illuminating the intricate world
of high-energy-density phenomena in both spatial and temporal resolution scales that have not
been explored before. The accomplishments outlined within serve as stepping stones towards a
more profound understanding of matter under extreme conditions and the innovative applications
that can spring from liquid targets. By embracing the spirit of collaboration, innovation, and
determination, the trajectory set by this thesis illuminates a pathway toward a future where the
mysteries found in experiments, such as those pursuing inertial confinement fusion, can greatly
benefit from plasma-based accelerators and compact radiation sources.
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APPENDIX A

Useful Shock Relations

The most useful shock relations relate the Mach number Mu = u/cs to the downstream and up-
stream properties of the fluid. Once again, let us assume a polytropic gas with an equation of state
relating ϵ to p as,

ρϵ =
p

(γ − 1)
. (A.1)

In this case, γ is the single shock polytropic index, although in real HED experiments the index γ

can vary greatly across a shock front. For those situations, once would have the upstream index γ1

and downstream index γ2. The shock velocity in the lab frame is us = u1 and the upstream Mach
number is M1 = −u1/cs = us/cs, so for a polytropic gas this is,

Mu = us

√
ρ1
γ1p1

. (A.2)

Therefore, substituting this expression into the Euler equations (Eq. 2.67, Eq. 2.68, and Eq. 2.69)
and after some algebra, the ratio of pressures can be expressed as

p2
p1

=
ρ2 (γ + 1)− ρ1 (γ − 1)

ρ1 (γ + 1)− ρ2 (γ − 1)
, (A.3)

or for different polytropic indices across the shock then,

p2
p1

=
ρ2 (γ1 + 1)− ρ1 (γ1 − 1)

ρ1 (γ2 + 1)− ρ2 (γ2 − 1)

(γ2 − 1)

(γ1 − 1)
. (A.4)

Similarly, the density ratios can be obtained,

ρ2
ρ1

=
p2 (γ + 1) + p1 (γ − 1)

p1 (γ + 1) + p2 (γ − 1)
, (A.5)
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and similarly for different indices,

ρ2
ρ1

=
p2 (γ2 + 1) + p1 (γ2 − 1)

p1 (γ1 + 1) + p2 (γ1 − 1)

(γ1 − 1)

(γ2 − 1)
. (A.6)

Therefore, by taking the limit as p2 ≫ 1 leads to the result,

ρ2
ρ1

≈ (γ + 1)

(γ − 1)
. (A.7)

This implies that there is a fixed maximum density ratio that can be achieved. In HEDP experi-
ments with a low Z material acting as polytropic gas with index γ = 5/3 the resulting density jump
would be ρ2/ρ1 ≈ 4. Other useful equations include expressing the density jump and pressure dif-
ference as a function of the Mach number, using the EE and a similar approach one gets

ρ2
ρ1

=
M2

u (γ + 1)

M2
u (γ − 1) + 2

, (A.8)

and
p2
p1

=
2γM2

u − (γ − 1)

(γ + 1)
. (A.9)

The regime in which Mu becomes really large is known as the strong shock limit, and it is
typically applicable for shocks found in HED experiments. In the strong shock limit, the density
ratio still tends towards a fixed value based on γ, while the pressure ratio increases indefinitely.
Unfortunately, typically Mu is poorly known during experiments. The uncertainty in Mu arises
from the uncertainty in real experimental conditions regarding the temperature or state of a target.
Several factors contribute to real experimental conditions such as vacuum cooling, or radiation
heating. Nevertheless, the higher Mu the less this matters. An alternative expression for the post-
shock pressure can be found in the strong shock limit so that the equation is in terms of shock
velocity and initial density,

p2 =
2

(γ + 1)
ρ1u

2
s

[
1− (γ − 1) p1

2ρ1u2
s

]
. (A.10)

Assuming a single value for the shock index γ. Therefore, for strong shocks, a simple approxima-
tion for the pressure given a shock velocity is

p2 ≈ ρ1u
2
s . (A.11)

Similarly, it is possible to obtain an estimate of temperature given this pressure by assuming the
electrons fully equilibrate with the ions, to be non-degenerate, and ignoring Coulomb interactions
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so if p2 = (Z2 + 1) kBT2ρ2/ (Amp) in the strong shock limit one would have

kBT2 =
Amp

(1 + Z2)
u2
s

2 (γ2 − 1)

(γ2 + 1)2
. (A.12)

From this equation it is also possible to approximate the post-shock temperature of the ions by
setting Z2 = 0 and γ2 = 5/3 in the previous equation, this is

Ti,2 ≈ 10× Ampu
2
s . (A.13)

Furthermore, other shock properties worth mentioning include the fact that the velocity ratio
across the shock front is the inverse of the density ratio so,

u2

u1

=
ρ1
ρ2

=
(γ − 1)

(γ + 1)
. (A.14)

This is a helpful expression for finding the post-shock particle velocity in the lab frame given by,

up = us + u2 =
2

(γ + 1)
us . (A.15)

Then up = (3/4)us for γ = 5/3 and up = (6/7)us for γ = 4/3. Therefore the post-shock pressure
in the lab frame would then be given by

p2 = (γ − 1)
ρ2u

2
p

2
. (A.16)

Implying that in the strong shock limit and the lab frame of reference one would have an equal
amount of kinetic and internal energy densities in a polytropic gas with EOS given by Eq. A.1.
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APPENDIX B

Technical Drawing of Water Target
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Figure B.1: Technical drawing of target assembly including overall height, width, and depth. All
dimensions are in millimeters. The height of the target is typically changed to match focus of
experimental probe.
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